A Language Manual For
Sather1.1____

Benedict Gomes, David Stoutamire, Boris Vaysman, Holger Klawitter

October 2, 1996

This document is an introduction to the Sather language approriate for those fa-
miliar with other programming languages. Unlike the specification, this manual
eschews conciseness in favor of ease of understanding. Language features are pre-
sented in their completeness, augmented by copious examples as well as the moti-
vation underlying more unusual or complex language features.

And pSather 1.1

Jerome Feldman

August 19, 1996

The parallel and distributed extensions of Sather, collectively referred to as
pSather, were designed hand-in-hand with the serial language. In addition to de-
scribing the language features of pSather, this document presents a particular ap-
proach to object-oriented parallel programming.

A Language Manual For
Sather 1.1

Benedict Gomes, David Stoutamire, BorisVaysman,
Holger Klawitter

October 2, 1996

This document is a description of the Sather language approriate for those familiar
with other programming languages. Unlike the specification, this manual es-
chews conciseness in favor of ease of understanding. Language features are pre-
sented in their completeness, augmented by copious examples as well as the
motivation underlying more unusual or complex language features.

Contents

1.5 Summary of Features 3

INTRODUCTION Basic Concepts
Garbage Collection and Checking

1.1 Acknowledgements 1 No Implicit Calls
Subtyping and Code Inclusion

1.2 How to read this Document 2 Iterators

Closures

1.3 Sources of Information 2 Immutable and Reference Objects

1.4 Obtaining the Compiler 2 IEEE Floating-Point
pSather

How do | ask questions?
Data placement

1.6 History 8
The Name
Sather’s Antecedents
References

CLASSES AND OBJECTS

2.1 Preliminaries 13
Some basic classes
Printing output
Sather source files
Hello World

2.2 Defining Classes and Creating Objects
15

Defining Simple Classes
Object Creation: create and new
Attribute access
Points to note

Checking whether an object has been created
Types Introduced

Hiding features: private and readonly
Points to note

2.3 Class Data: shared and const 18
Shared Attributes - Restricted global variables

Class Constants
Integer constants and Enumerated Types
Points to note

Accessing Class Data - the :: notation

2.4 Routine definitions 22
Using the return value

Routine Arguments and Modes
Multiple return values and out arguments
inout arguments

Local Variables - Scoping and Shadowing
Points to note

Routine calls
Simple Overloading - Selecting a routine to call

2.5 Conditional Execution 27
if statements

case statements
Points to note

Short circuit boolean expressions: and and or

2.6 Attribute Accessor Routines 31

Attribute assignment
Replacing an attribute by a routine

2.7 Static Type Inference 33
Creation Expressions
Assignments and ::=
Arguments to a function call

2.8 Class Parameters 35
Arrays

2.9 Command line arguments 36

2.10 A Running Example: Employees 36
EMPLOYEE definition
TESTEMP definition
Running the example

2.11 Summary of Idioms 38

LOOPS AND ITERATORS

3.1 Using iterators 39
loop statements
Built-in iterators

3.2 Defining Iterators 42
yield statements
Explicitly leaving an iterator using quit
Control flow within an iterator
The once argument mode
out and inout argument modes
Argument evaluation in iterators

Points to note
Iterator usage
Iterator definitions

3.3 Iterator Examples 47
Separating elements of a list

CODE INCLUSION AND PARTIAL CLASSES

4.1 Include Clauses 51
Points to Note

Renaming
Points to note

Multiple Inclusion
Resolving conflicts

4.2 Partial Classes and Stub routines 55
Points to note

Mixins: A Prompt Example

ABSTRACT CLASSES AND SUBTYPING

5.1 Abstracting over Implementations 59
Implementing a Stack using an Array
A Stack Calculator
A Linked List Representation of a Stack
Switching Representations:Polymorphism

5.2 Abstract Class Definitions 62
Example: An abstract employee
More abstract class examples

5.3 Subtyping 64

Points to note about subtyping:
The Type Graph

Dynamic Dispatch and Subtyping
An example: Generalizing Employees

5.4 Supertyping 66
Using supertyping

5.5 Type Conformance 67

Contravariant conformance
What does not work
What does work

Subtyping = substitutability

5.6 The typecase statement 70
Points to note
Typecase Example

5.7 The Overloading Rule 71

Extending Overloading
Overloading based on Concrete Argument Types
Overloading based on Abstract Argument Types
The Demon of Ambiguity

Permissible overloading
Finding matching signatures
Finding a most specific matching signature
More examples

Overloading as Statically resolved Multi-
Methods

Conflicts when subtyping

Conflicts during code inclusion
Conflicting Methods
Conflicting Attributes

Points to note
Overloading in Parametrized Classes

Why not use the return type to resolve
conflicts?

5.8 When Covariance Ails You 80
But don’'t animals eat food?
Solution 1: Refactor the type hierarchy
Solution 2: Eliminate the offending method
Solution 3: Dynamically Determine the Type
Solution 4: Parametrize by the Argument Type

PARAMETRIZED CLASSES AND ARRAYS

6.1 Parametrized concrete types 83
Why Parametrize?

6.2 Support for Arrays 85
Array Access

Array Classes: Including AREF and calling
new();

Standard Arrays: ARRAY{T}
Array Literals

Multi-dimensional Arrays

6.3 Type Bounds 88
Why have typebounds?
Supertyping and Type Bounds

6.4 Parametrized Abstract Classes 91
How are different parametrizations related?

6.5 Overloading 92

Overloading In the Parametrized Class
Interface

Overloading Resolution within the
Parametrized Class

OPERATOR REDEFINITION

7.1 Method Names for Operators 95

7.2 Operator expressions 96
Grouping

Operator precedence
Points to note
Syntactic sugar example

7.3 Array Access Routines 98

IMMUTABLE CLASSES

8.1 Defining Immutable Classes 99
Immutable Class Example
Creating a new object

Initial value of immutable objects
Void value of the basic classes:

Attribute access routines
Points to note

8.2 Using Immutable Classes 102
Rules of Thumb

CLOSURES

9.1 Creating and Calling Closures 103
Creating a closure
Calling a closure

Binding overloaded routines
Binding in an assignment
Binding in a call

Paints to note
Binding some arguments
Leaving self unbound

9.2 Further Examples of Closures 107
Closures for Applicative Programming
Menu Structures
Iterator closures

EXCEPTIONS

10.1 Throwing Exceptions with raise 111

10.2 Catching Exceptions with protect 111
Points to note

10.3 Usage to avoid 112
Alternatives to Exceptions
A more elaborate example

SAFETY FEATURES

11.1 Preconditions 115

11.2 Postconditions 116
initial expressions
result expressions
Example
pre and post conditions in iterators

11.3 Assertions 118
assert statements

11.4 Invariants 118
The invariant routine

BUILT-IN CLASSES

12.1 Fundamental Classes 121
$0B
Array support

12.2 Tuples 122
12.3 The SYS Class 122
12.4 Object Finalization: $FINALIZE 123

12.5 Basic Classes and Literal Forms 123
Booleans and the BOOL class
Characters and the CHAR class
The string class STR
Integers and the INT class
Infinite precision integers and the INTI class

Floating point numbers: the FLT and FLTD
classes

12.6 Library Conventions 126
Obiject Identity
IS EQ
Programmer defined hash functions and $HASH
Objects that can be copied and $COPY

Nil and void

INTERFACING WITH FORTRAN

13.1 Overview 129
External Fortran Call Example

Overall Organization
Points to note

13.2 Name Binding 133
Difficulties
Implementation

13.3 Datatype Mapping 136

Scalar Types
F_INTEGER
F_REAL
F_DOUBLE
F_LOGICAL
F_COMPLEX
F_DOUBLE_COMPLEX
F_CHARACTER
F_STRING

Fortran Array Classes
Points to note

F_ROUT and F_HANDLER Types
Passing Routines as Arguments, F_ROUT{}
Points to note

Exceptional Condition Handling, F HANDLER

Points to note

13.4 Parameter Passing 151
Return Types
Argument Types

OUT and INOUT Arguments
Points to note

13.5 Portability Issues 154

Portability of the Interface Implementation
Code

Portability of the Generated Code

14.3 User-defined External C types 159

Constants and C binding names
Examples

Attributes and C structs
Attributes and C structs
Points to note

Shared Attributes and C globals
14.4 Parameter Passing 163

14.5 Inlining C Code 163

INTERFACING WITH ANSI C

14.1 Overall Organization 157

14.2 Built-in C classes 158

STATEMENT AND EXPRESSION CATA-
LOGUE

15.1 Statements 165
Assignment statements
case statements
if statements

protect statements
loop statements
return statements
typecase statements
yield statements
quit statements

15.2 Expressions 170
void expressions
void test expressions

Short circuit boolean expressions: and and or

exception expressions

pSather 1.1

INTRODUCTION

THE THREADED EXTENSION

17.1 Introduction 179
Hello Worlds

17.2 Realistic Examples Using Threads 181

THE SYNCHRONIZATION EXTENSION

18.1 Barrier Synchronization and sync 183

18.2 The lock Statement and the MUTEX
Class 183

Memory Consistency, Round One

18.3 Conjunctive Locking 186
Read-Write Locks, three kinds
Tuple Space, Round 1
Disjunctive Locking

18.4 GATE and GATE{T} classes 191
Gates as Synchronizers and Queues
Tuple Space, Round Two

18.5 GATES and attached threads 198
Tasks, Actors, etc.
Discussion and Extensions

PERFORMANCE AND THE DISTRIBUTED EX-

TENSION

19.1 Introduction 207

19.2 Placement and the @ operator. 208
Tuple Spaces, Round Three

19.3 Addresses and the with ... near
construct 214

ADVANCED TOPICS

20.1 Exceptions in pSather 217
Yielding inside locks
Implementation Considerations
Thread-safe libraries

20.2 User defined $LOCK classes 219
Reservable, Reserve and Free
Primary
Request_reservation, Cancel_reservation
Combinations
Wait_for
Summary

APPENDIX: TERMINOLOGY

21.1 Sather Terminology 227
21.2 Sather 1.0 to Sather 1.1 228

21.3 C++ to Sather 229

21.4 Java to Sather 230

21.5 Modula-3 to Sather 230

21.6 Smalltalk to Sather 231

INDEX

Introduction : 1.1 Acknowledgements 1

Introduction

Sather is an object oriented language designed to be simple, efficient, safe, and non-proprietary. It
aims to meet the needs of modern research groups and to foster the development of a large, freely
available, high-quality library of efficient well-written classes for a wide variety of computational
tasks. It was originally based on Eiffel but now incorporates ideas and approaches from several lan-
guages. One way of placing it in the ‘space of languages’ is to say that it attempts to be as efficient
as C, C++, or Fortran, as elegant but safer than Eiffel or CLU, and to support higher-order functions
as well as Common Lisp, Scheme, or Smalltalk.

Sather has garbage collection, statically-checked strong (contravariant) typing, multiple inheritance,
separate implementation and type inheritance, parameterized classes, dynamic dispatch, iteration
abstraction, higher-order routines and iters, exception handling, assertions, preconditions, postcon-
ditions, and class invariants. Sather code can be compiled into C code and can efficiently link with
object files of other languages. pSather, the parallel and distributed extension, presents a shared
memory abstraction to the programmer while allowing explicit placement of data and threads.

Sather and the ICSI Sather compiler have a very unrestrictive license aimed at encouraging contri-
bution to the public library without precluding the use of Sather for proprietary projects.

This chapter will provide a basic introduction for new users, pointing to sources of information about
the language and the compiler. It also contains a summary of Sather features - for those familiar with
another object-oriented language, this section provides an overview of the key features of Sather.

1.1 Acknowledgements

This text has its roots in the Sather 1.1 specification, the Eclectic tutorial and Holger’s iterator tuto-
rial. This document also contains several organizational ideas and some text from S. Omohundro’s
originally planned Sather book.

This text has benefitted from corrections, comments and suggestions from several people Particular
thanks to Cary Renzema, Arno Jacobsen , Jerome Feldman, Erik Schnetter and Claudio Fleiner for
detailed error reports and suggestions. Arno also made several suggestions regarding terminology
and examples that have been incorporated.

2 Introduction : 1.2 How to read this Document

Boris wrote the sections on the external interfaces and made substantial changes to the document as
awhole. The iterator chapter was derived partially from Holger’s iterator tutorial and the specifica-
tion. While David was not directly involved in the creation of this document, there is a significant
amount of text that originated in the Sather language specification.

1.2 How to read this Document

This document is meant to be a complete description of Sather 1.1, and is intended as an
introduction to the language for a person with some programming background. It is
more expository in nature than the specification and contains sections that motivate par-
ticular aspects of the language, such as the overloading rules. In addition, it deals with
some more abstract design issues that arise when programming in Sather (such as the ef-
fect of the contra-variant subtyping rule).

1.3 Sources of Information

This section briefly introduces some concepts important to Sather that the reader may not have been
exposed to in C++ [2]. Itisn’t meant as a complete language tutorial. More information of a tutorial
nature is available from the WWW page:

http://www.icsi.berkeley.edu/Sather

At the time of this writing, the only compiler implementing the 1.1 language specification is avail-
able from ICSI. ltis freely available, includes source for class libraries and the compiler, and com-
piles into ANSI C. This compiler has been ported to a wide range of UNIX and PC operating
systems.

1.4 Obtaining the Compiler

The ICSI Sather 1.1 compiler can be obtained by anonymous ftp at
ftp.icsi.berkeley.edu: Ipub/sather

Other sites also mirror the Sather distribution. The distribution includes installation instructions,
‘man’ pages, the standard libraries and source for the compiler (in Sather). Documentation, tutorials
and up-to-date information are also available at the Sather WWW page:

http://lwww.icsi.berkeley.edu/~sather

ICSI also maintains a library of contributed Sather code at this page.

Introduction : 1.5 Summary of Features 3

There is a newsgroup devoted to Sather:

comp.lang.sather

There is also a Sather mailing list if you wish to be informed of Sather releases; to subscribe, send
email to:

sather-request@icsi.berkeley.edu

It is not necessary to be on the mailing list if you read the Sather newsgroup.

1.4.1 How do I ask questions?

If it appears to be a problem that others would have encountered (on platform ‘X', | tried to install
it but the it failed to link with the error ‘Y’), then the newsgroup is a good place to ask. If you have
problems with the compiler or questions that are not of general interest, mail to one of

sather-bugs@icsi.berkeley.edu
psather-bugs@icsi.berkeley.edu

This is also where you want to send bug reports.

1.5 Summary of Features

This section provides a summary of Sather’s features, with particular attention to features that are
not found in the most common object oriented languages.

1.5.1 Basic Concepts

Data structures in Sather are constructed figrets, each of which has a speciéancrete type that
determines the operations that may be performed ofibdtract types specify a set of operations
without providing an implementation and correspond to sets of concrete types. The implementation
of concrete types is defined by textual units callesies; abstract types are specified by textual units
calledabstract classes. Sather programs consist of classes and abstract class specifications. Each
Sathewvariable has adeclared type which determines the types of objects it may hold.

Classes define the followirfeatures: attributes which make up the internal state of objestareds
andconstants which are shared by all objects of a type, amathods which may be eithemutines

or iterators. Any features are by defagltiblic, but may be declargttivate to allow only the class

in which it appears access to it. An attribute or shared may instead be desidoaty to allow

only the class in which it appears to modify it. Accessor routines are automatically defined for read-
ing or writing attributes, shareds, and constants. The set of non-private methods in a class defines the
interface of the corresponding type. Method definitions consistatéments; for their construction

4 Introduction : 1.5 Summary of Features

expressions are used. There are speditdral expressions for boolean, character, string, integer, and
floating point objects.

Certain conditions are describedfasl errors. These conditions should never occur in correct pro-
grams and all implementations of Sather must be able to detect them. For efficiency reasons, how-
ever, implementations may provide the option of disabling checking for certain conditions.

1.5.2 Garbage Collection and Checking

Like many object-oriented languages, Sathagaibage collectedso programmers never have to

free memory explicitly. The runtime system does this automatically when it is safe to do so. Idiom-
atic Sather applications generate far less garbage than typical Smalltalk or Lisp programs, so the cost
of collecting tends to be lower. Sather does allow the programmer to manually deallocate objects,
letting the garbage collector handle the remainder. With checking compiled in, the system will catch
dangling references from manual deallocation before any harm can be done.

More generally, when checking options have been turned on by compiler flags, the resulting program
cannot crash disastrously or mysteriously. All sources of errors that cause crashes are either elimi-
nated at compile-time or funneled into a few situations (such as accessing beyond array bounds) that
are found at run-time precisely at the source of the error.

1.5.3 No Implicit Calls

Sather does as little as possible behind the user's back at runtime. Theimaligitly constructed
temporary objects, and therefore no rules to learn or circumvent. This extends to class constructors:
all calls that can construct an object are explicitly written by the programmer. In Sather, constructors
are ordinary routines distinguished only by a convenient but optional calling syntax (page 87). With
garbage collection there is no need for destructors; however, explicit finalization is available when
desired (page 123).

Sather never converts types implicitly, such as from integer to character, integer to floating point, sin-

gle to double precision, or subclass to superclass. With neither implicit construction nor conversion,

Sather resolves routine overloading (choosing one of several similarly named operations based on
argument types) much more clearly than C++. The programmer can easily deduce which routine

will be called (page 27).

In Sather, the redefinition of operators is orthogonal to the rest of the language. There is “syntactic
sugar” (page 96) for standard infix mathematical symbols suck asd V' as calls to otherwise
ordinary routines with namegplus’ and ‘pow’. ‘a+b’is just another way of writinga.plus(b)’.
Similarly, ‘a[i]’ translates toa.aget(i)’ when used in an expression. An assignmafi} ‘= expr’
translates intod.aset(i,expr)’.

Introduction : 1.5 Summary of Features 5

1.5.4 Subtyping and Code Inclusion

In many object-oriented languages, the term ‘inheritance’ is used to mean two things simultaneously.
One issubtyping which is the requirement that a class provide implementations for the abstract
methods in a supertype. The other is code inheritance (catinclusionin Sather parlance)

which allows a class to reuse a portion of the implementation of another class. In many languages
it is not possible to include code without subtyping or vice versa.

Sather provides separate mechanisms for these two conédgstsact classesepresent interfaces:

sets of signatures that subtypes of the abstract class must provide. Other kinds of classes provide
implementation. Classes may include implementation from other classes using a isyohudk’ ‘

clause; this does not affect the subtyping relationship between classes. Separating these two con-
cepts simplifies the language considerably and makes it easier to understand code. Because itis only
possible to subtype from abstract classes, and abstract classes only specify an interface without code,
sometimes in Sather one factors what would be a single class in C++ into two classes: an abstract
class specifying the interface and a code class specifying code to be included. This often leads to

cleaner designs.

Issues surrounding the decision to explicitly separate subtyping and code inclusion in Sather are dis-
cussed in the ICSI technical report TR 93-064: “Engineering a Programming Language: The Type
and Class System of Sather,” also published as [7]. Itis available at the Sather WWW page.

1.5.5 Iterators

Early versions of Sather used a conventiounatil...loop...end’ statement much like other languag-

es. This made Sather susceptible to bugs that afflict looping constructs. Code which controls loop
iteration is known for tricky “fencepost errors” (incorrect initialization or termination). Traditional
iteration constructs also require the internal implementation details of data structures to be exposed
when iterating over their elements.

Simple looping constructs are more powerful when combined with heavy wsesof objects
(sometimes called ‘iterators’ in other languages, although Sather uses that term for something else
entirely) to iterate through the contents of container objects. Cursor objects can be found in most
C++ libraries, and they allow useful iteration abstraction. However, they have a number of problems.
They must be explicitly initialized, incremented, and tested in the loop. Cursor objects require main-
taining a parallel cursor object hierarchy alongside each container class hierarchy. Since creation is
explicit, cursors aren't elegant for describing nested or recursive control structures. They can also
prevent a number of important optimizations in inner loops.

An important language improvement in Sather 1.0 over earlier versions was the additicaias

Iterators are methods that encapsulate user defined looping control structures just as routines do for
algorithms. Code using iterators is more concise, yet more readable than code using the cursor ob-
jects needed in C++. It is also safer, because the creation, increment, and termination check are
bound together inviolably at one point. Each class may define many sorts of iterators, whereas a tra-
ditional approach requires a different yet intimately coupled class for each kind of iteration over the
major class. Sather iterators are part of the class interface just like routines.

6 Introduction : 1.5 Summary of Features

Iterators act as a lingua-franca for operating on collections of items. Matrices define iterators to
yield rows and columns; tree classes have recursive iters to traverse the nodes in pre-order, in-order,
and post-order; graph classes have iters to traverse vertices or edges breadth-first and depth-first.
Other container classes such as hash tables, queues, etc. all provide iters to yield and sometimes to
set elements. Arbitrary iterators may be used together in loops with other code.

The rationale of the Sather iterator construct and comparisons with related constructs in other lan-
guages can be found in the ICSI technical report TR 93-045: “Sather Iters: Object-Oriented Iteration
Abstraction,” also published as [5]. It is available at the Sather WWW page.

1.5.6 Closures

Sather provides higher-order functions thronggthod closuresvhich are similar to closures and
function pointers in other languages. These allow binding some or all arguments to arbitrary rou-
tines and iterators but defer the remaining arguments and execution until a later time. They support
writing code in an applicative style, although iterators eliminate much of the motivation for program-
ming that way. They are also useful for building control structures at run-time, for example, regis-
tering call-backs with a windowing system. Like other Sather methods, method closures follow
static typing and behave with contravariant conformance.

1.5.7 Immutable and Reference Objects

Sather distinguishes between reference objects and immutable objects. Imutable objects never
change once they are created. When one wishes to modify an immutable object, one is compelled to
create a whole new object that reflects the modification.

Experienced C programmers immediately understand the difference when told about the internal

representation the ICSI compiler uses: immutable types are implemented with stack or register allo-

cated Cstruct's while reference types are pointers to the heap. Because of that difference, reference

objects can be referred to from more than one variabéséd, but immutable objects never appear

to be. Many of the built-in types (integers, characters, floating point) are immutable classes. There

are a handful of other differences between reference and immutable types; for example, reference
objects must be explicitly allocated, but immutable objects ‘just are’.

Immutable types can have several performance advantages over reference types. Immutable types
have no heap management overhead, they don't reserve space to store a type tag, and the absence of
aliasing makes more compiler optimizations possible. For a small clasSHke (complex num-

ber), all these factors combine to give a significant win over a reference class implementation. Bal-
anced against these positive factors in using an immutable object is the overhead that some C
compilers introduce in passing the entire object on the stack. This problem is worse in immutable
classes with many attributes. Unfortunately the efficiency of an immutable class is directly tied to
how smart the C compiler is; at this tinge¢’ is not very bright in this respect, although other com-

pilers are.

Introduction : 1.5 Summary of Features 7

Immutable classes aren'’t strictly necessary; reference classes with immutable semantics work too.
For example, the reference claB¢TI’ implements immutable infinite precision integers and can be
used like the built-in immutable cladBIT’. The standard string clasSTR’ is also a reference type

but behaves with immutable semantics. Explicitly declaring immutable classes allows the compiler
to enforce immutable semantics and provides a hint for good code generation. Common immutable
classes are defined in the standard libraries; defining a new immutable class is unusual.

1.5.8 IEEE Floating-Point

Sather attempts to conform to the IEEE 754-1985 specification for its floating point types. Unfor-
tunately, many platforms make it difficult to do so. For example, underflow is often improperly im-
plemented to flush to zero rather than use IEEE’s gradual underflow. This happens because gradual
underflow is a special case and can be quite slow if implemented using traps. When benchmarks
include simulations which cause many underflows, marketing pressures make flush-to-zero the de-
fault.

There are many other problems. Microsoft's C and C++ compilers defeat the purpose of the invalid
flag by using it exclusively to detect floating-point stack overflows, so programmers cannot use it.
There is no portable C interface to IEEE exception flags and their behavior with respettp’*

is suspect. Threads packages often fail to address proper handling of IEEE exceptions and rounding
modes.

Correct IEEE support from various platforms was the single worst porting problem of the Sather 1.0
compiler. In 1.1, we give up and make full IEEE compliance optional. Sather implementations are
expected to conform to tlspirit, if not the letter, of IEEE 754, although proper exceptions, extended
types, underflow handling, and correct handling of positive and negative zero are specdicaly
quired.

The Sather treatment dfaNs is particularly tricky; IEEE wantsaN to be neither equal nor un-
equal to anything else, including other NaNs. Because Sather defireg as ‘x.is_eq(y).not’
(page 96), to get the IEEE notion of unequal is necessary to wrkehd y=y and x/=y’. Other
comparison operators present similar difficulties.

1.5.9 pSather

Parallel Sather (pSather) is a parallel extension of the language, developed and in use at ICSI. It ex-
tends serial Sather with threads, synchronization, and data distribution.

pSather differs from concurrent object-oriented languages that try to unify the notions of objects and
processes by following thectorsmodel [1]. There can be a grave performance impact for the im-
plicit synchronization this model imposes on threads even when they do not conflict. While allowing
for actors, pSather treats object-orientation and parallelism as orthogonal concepts, explicitly expos-
ing the synchronization with new language constructs.

8 Introduction : 1.6 History

pSather follows the Sather philosophy of shielding programmers from common sources of bugs.
One of the great difficulties of parallel programming is avoiding bugs introduced by incorrect
synchronization. Such bugs cause completely erroneous values to be silently propagated, threads to
be starved out of computational time, or programs to deadlock. They can be especially troublesome
because they may only manifestthemselves under timing conditions that rarely occur
(race conditionyand may be sensitive enough that they don't appear when a program is instrument-
ed for debugginghgisenbugs pSather makes it easier to write deadlock and starvation free code

by providing structured facilities for synchronization.lokk statemenautomatically performs un-

locking when its body exits, even if this occurs under exceptional conditions. It automatically
avoids deadlocks when multiple locks are used together. It also guarantees reasonable properties of
fairness when several threads are contending for the same lock.

Data placement

pSather allows the programmer to direct data placement. Machines do not need to have large laten-
cies to make data placementimportant. Because processor speeds are outpacing memory
speeds, attention to locality can have a profound effect on the performance of even ordinary serial
programs. Some existing languages can make life difficult for the performance-minded programmer
because they do not allow much leeway in expressing placement. For example, extensions allowing
the programmer to describe array layout as block-cyclic is helpful for matrix-oriented code but of no
use for general data structures.

Because high performance appears to require explicit human-directed placement, pSather imple-
ments a shared memory abstraction using the most efficient facilities of the target platform available,
while allowing the programmer to provide placement directives for control and data (without requir-
ing them). This decouples the performance-related placement from code correctness, making it easy
to develop and maintain code enjoying the language benefits available to serial code. Parallel pro-
grams can be developed on simulators running on serial machines. A powerful object-
oriented approach is to write both serial and parallel machine versions of the fundamental classes in
such a way that a user's code remains unchanged when moving between them.

1.6 History

Sather is still growing rapidly. The initial Sather compiler (for ‘Version 0’ of the language) was writ-

ten in Sather (bootstrapped by hand-translating to C) over the summer of 1990. ICSI made the lan-
guage publicly available (version 0.1) June of 1991 [4]. The project has been snowballing since
then, with language updates to 0.2 and 0.5, each compiler bootstrapped from the previous. These
versions of the language are most indebted to Stephen Omohundro, Chu-Cheow Lim, and Heinz
Schmidt. pSather co-evolved with primary contributions by Jerome Feldman, Chu-Cheow Lim,
Franco Mazzanti and Stephan Murer. The first pSather compiler [3] was implemented by Chu-cheow
Lim on the Sequent Symmetry, workstations and the CM-5.

Introduction : 1.6 History 9

Sather 1.0 was a major language change, introducing bound routines, iterators, proper separation of
typing and code inclusion, contravariant typing, strongly typed parameterization, exceptions, stron-
ger optional runtime checks and a new library design [6]. The 1.0 compiler was a completely fresh
effort by Stephen Omohundro, David Stoutamire and Robert Greisemer. It was written in 0.5 with
the 1.0 features introduced as they became functional. The 1.0 compiler was first released in the
summer of 1994, and Stephen left the project shortly afterwards. The pSather 1.0 design was largely
due to Jerome Feldman, Stephan Murer and David Stoutamire.

This document describes Sather 1.1, released the summer of 1996. The compiler was originally de-
signed and implemented by S. Omohundro, D. Stoutamire and (later) Robert Griesemer. Boris Vay-
sman is the current Sather czar and feature implementor. Claudio Fleiner implemented most of the
common optimizations , a lot of debugging support, the pSather runtime and back-end support for
pSather. Michael Philippsen implmented the front/middle support for pSather. Holger Klawitter im-
plemented type checking of parametrized classes. Arno Jacobsen worked on bound iterators. lllya
Varnasky implemented inlining support and Trevor Paring implemented an early version of common
subexpression elimination.

A group at the University of Karlsruhe under the direction of Gerhard Goos created a compiler for
Sather 0.1. The language their compiler supports, Sather-K, diverged from the ICSI specification
when Sather 1.0 was released. Karlsruhe has created a large class library called Karla using Sather-
K. More information about Sather-K can be found at:

http://i44www.info.uni-karlsruhe.de/~frick/SatherK

1.6.1 The Name

Sather was developed at the International Computer Science Institute, a research institute affiliated
with the computer science department of the University of California at Berkeley. The Sather lan-
guage gets its name from the Sather Tower (popularly known as the Campanile), the best-known
landmark on campus. A symbol of the city and the university, it is the Berkeley equivalent of the
Golden Gate bridge across the bay. Erected in 1914, the tower is modeled after St. Mark's Campanile
in Venice, Italy. It is smaller and a bit younger than the Eiffel tower. The way most people say the
name of the language rhymes with ‘bather’.

The name ‘Sather’ is a pun of sorts - Sather was originally envisioned as a smaller, efficient, cleaned-
up alternative to the language Eiffel. However, since its conception the two languages have evolved
to be quite distinct.

1.6.2 Sather’s Antecedents

Sather has adopted ideas from a number of other languages. Its primary debt is to Eiffel, designed
by Bertrand Meyer, but it has also been influenced by C, C++, Cecil, CLOS, CLU, Common Lisp,
Dylan, ML, Modula-3, Oberon, Objective C, Pascal, SAIL, School, Self, and Smalltalk.

10 Introduction : 1.6 History

Steve Omohundro was the original driving force behind Sather, keeping the language specification
from being pillaged by the unwashed hordes and serving as point man for the Sather community until
he left in 1994. Chu-Cheow Lim bootstrapped the original compiler and was largely responsible for
the original 0.x compiler and the first implementation of pSather. David Stoutamire took over as lan-
guage tsar and compiler writer after Stephen left. That position was, in turn, taken over by Boris
Vaysman in late 1995.

Sather has been very much a group effort; many, many people have been involved in the language
design discussions including: Subutai Ahmad, Krste Asanovic, Jonathan Bachrach, David Bailey,
Joachim Beer, Jeff Bilmes, Chris Bitmead, Peter Blicher, John Boyland, Matthew Brand, Henry Ce-
jtin, Alex Cozzi, Richard Durbin, Jerry Feldman, Carl Feynman, Claudio Fleiner, Ben Gomes, Ger-
hard Goos, Robert Griesemer, Hermann Haertig, John Hauser, Ari Huttunen, Roberto lerusalimschy,
Arno Jacobsen, Matt Kennel, Holger Klawitter, Phil Kohn, Franz Kurfess, Franco Mazzanti,
Stephan Murer, Michael Philippsen, Thomas Rauber, Steve Renals, Noemi de La Rocque Rodriguez,
Hans Rohnert, Heinz Schmidt, Carlo Sequin, Andreas Stolcke, Clemens Szyperski, Martin Trapp,
Boris Vaysman, and Bob Weiner. Countless others have assisted with practical matters such as port-
ing the compiler and libraries.

1.6.3 References

[1] G. Agha, “Actors: A Model of Concurrent Computation in Distributed
Systems”, The MIT Press, Cambridge, Massachusetts, 1986.

[2] S. Burson, “The Nightmare of C++”, Advanced Systems November 1994, pp.
57-62. Excerpted from The UNIX-Hater's Handbook, IDG Books, San Mateo, CA,
1994,

[3] C. Lim. “A Parallel Object-Oriented System for Realizing Reusable and
Efficient Data Abstractions,” PhD thesis, University of California at Berkeley,
October 1993. Available at the Sather WWW page.

[4] C.Lim, A. Stolcke. “Sather language design and performance evaluation.” TR-
91-034, International Computer Science Institute, May 1991. Also available at
the Sather WWW page.

[5] S. Murer, S. Omohundro, D. Stoutamire, C. Szyperski, “Iteration abstraction in
Sather”, Transactions on Programming Languages and Systems, Vol. 18, No. 1, Jan
1996 p. 1-15. Available at the Sather WWW page.

[6] S. Omohundro. “The Sather programming language.” Dr. Dobb’s Journal, 18
(11) pp. 42-48, October 1993. Available at the Sather WWW page.

[71 C. Szyperski, S. Omohundro, S. Murer. “Engineering a programming
language: The type and class system of Sather,” In Jurg Gutknecht, ed.,
Programming Languages and System Architectures, p. 208-227. Springer Verlag,

Introduction : 1.6 History

11

Lecture Notes in Computer Science 782, November 1993. Available at the
Sather WWW page.

12

Introduction : 1.6 History

Classes and Objects : 2.1 Preliminaries 13

Classes and Objects

All entities in Sather are objects, and objects are defined by classes. Even the basic entities in Sather,
such as integers and floating point values are objects in Sather. Sather has several different kinds
of classes - reference classes, abstract classes, immutable classes, partial classes and external classes.
The important kinds of classes are reference classes and abstract classes - the rest are used in restrict-
ed circumstances. There are also some special objects (closures) which are not directly defined by
classes, but we will defer their discussion till later.

Each Sather object has an associated type which indicates the class that was used to create the object.
A variable in Sather also has a type, which indicates the kinds of objects it can be assigned to.

This chapter will focus on the most common kind of classes, reference classes, and the standard con-
structs used to create classes. Though iterators are an essential component of Sather code, their dis-
cussion has been deferred to the next chapter, since they are a relatively novel language feature.

2.1 Preliminaries

To make it easier to present examples in the following sections, we will start by introducting a few
basic classes - integers, floating point numbers and strings. We will also describe how to print out
data and to use the compiler

2.1.1 Some basic classes

Though basic numbers and strings enjoy some special language support (such as a means to initialize
them to values like 5 or "foo") , they are defined as regular classes, and are a part of the standard
library. The FLT class represents floating point numbers, while the INT class represents integers and
the STR class represents strings. Variables may be declared to be of any of these classes and as-
signed when they are declared.

a:FLT :=3.0;
b:INT :=5;
c:STR :="foo";

14 Classes and Objects : 2.1 Preliminaries

It is also possible to perform the usual operations on these classes, such as addition of numbers and
concatenation of strings (represented by the "+" operator):

a:STR :="foo";

b:STR :="bar"; -- + concatentates strings
c:STR:=a+b; -- c is "foobar".

e:INT :=5;

f:INT := 7,

g:INT := e+f; -gis12
compare:BOOL :=e > f; -- compatre is false
#OUT + compare; -- Prints out 'false’

Comments in Sather start with-aand extend to the end of the line. Note that all variables have a
default initialvoid value. For the preseniid may be thought of as either the NULL pointer for
reference objects) for integers.0 for floats andalse for booleans.

2.1.2 Printing output

You can print data of various types in Sather using the coma@nd+

a:INT :=10;
#0OUT+"hello world "+a; -- Prints out "hello world 10"

Treat '#OUT+ as an idiom for now; it is equivalent to the standard output routines in other languag-
es.

2.1.3 Sather source files

Sather source files consist of lists of classes. In addition to the source files that a user specifies on
the command line to the compiler, the standard library files are always implicitly examined. Defini-
tions of the basic classes such as integers and strings as well as containers of all kinds are to be found
in the standard library.

Execution of a Sather program begins with a routine nammeef in a specified class, (a class called
‘MAIN’ is used by default). If main is declared to have a return value ofNyip¢his will specify the
exit code of the program when it finishes execution.

2.1.4 Hello World

The hello world program is show below:

class HELLO_WORLDB
main is
#OUT+"Hello World\n";
end;

end;

Classes and Objects : 2.2 Defining Classes and Creating Objects 15

As we mentioned earlier, printing to standard output is obtained by catiug-+.

If the above code is stored in the file hw.sa, it can be compiled (using the ICSI Sather compiler) by:
¢s -main HELLO_WORLD -o hw hw.sa
The -main’ option simply indicates to the compiler that the main routine will be found in class
HELLO_WORLD. The resulting executabléyw’ can be run as follows
prompt> hw

Hello World
prompt>

2.2 Defining Classes and Creating Objects

Objects are usually models of conceptual or real-world entities; they consist of a combination of da-
ta, which models the state of the entity and operations which model the behavior of the entity. The
body of a Sather class consists of a list of features which define the data and behavior of the class.
A class defines a new type and may be used to create object instances of that type

We will start by describing the data elements and then move on to the operations. In subsequent sec-
tions, we will describe the definition of object behavior in the form of routines. We will then point
out that Sather provides a level of abstraction, which permits the state and behavior of the object to
be treated in a uniform manner. Finally, we will describe the somewhat unusual meaning of assign-
ment in Sather that makes this uniformity possible.

2.2.1 Defining Simple Classes

The state of a class is defined by attributes, which are have theagrefix

class POINT is
attr X:INT;
attr y:INT;
end;

ThePOINT class above defines ahand ay’ attribute both of which are integers. This class is use-
less, as it stands, since it provides no way to create instances of itself.

1. This is only true for reference, immutable and some kinds of external classes. Abstract a, partial and most ex-
ternal classes cannot have instances.

16 Classes and Objects : 2.2 Defining Classes and Creating Objects

Object Creation: create and new

To make objects of theOINT class, we have to introduceraate routine

class POINT is
attr x, y:INT;

create(xvalue,yvalue:INT):POINT is
res:POINT := new;
res.x := xvalue; res.y := yvalue;
return res;

end,

end;

Thecreate routine first calls the special expressimw’. 'new’ creates a new uninitialized instance

of thePOINT class and returns it. All the attributes in the new instance have default ‘void’ values.
It then assigns thex and’y’ attributes of this new instance xtealue andyvalue respectively. In-
stances of theOINT class can then be created as shown below

p:POINT := POINT::create(3,5);

Since creation is such a common operation, Sather provides a special shorthand for calls to the rou-
tine ‘create’. The’create’ routine shown could be invoked with the # sign as shown below

point:POINT :=#POINT(3,5);

Expressions using thesign are referred to aseation expressions, and are a convenient shorthand
used for creating new objects and initializing their attributes.

Attribute access

When an object of the claB®INT is created, thae and’y’ attributes may be accessed by 'dotting’
into the object.

a:POINT := #POINT(3,5); -- Create a new point
#OUT + a.x ; -- Prints out the value of 'x’, which is 3
ax:=5; -- Sets the value of the 'x’ attribute to 5

Points to note

e The semantics of a class is independent of the textual order of its class elements. In particular,
the actual attribute layout used by a Sather implementation is invisible to a programmer.

* The scope of feature names is the class body
» Feature names may be either lower or upper case.

» Class names must be all upper case letters (underscores and digits are permitted except as the
first character).

» The feature namespace is separate from the class namespace.

Classes and Objects : 2.2 Defining Classes and Creating Objects 17

» The scope of class names is the entire program; no two classes can have the same name (un-
less they have different number of parameters, which will be explained in the chapter on class
parametrization).

» You have to explicitly calinew’ in the create routine. The following code exhibits a common
error:

class POINT is
attr x,y:INT,;
create(xval, yval:INT):POINT is
X = xval; -- Run time error! We have no object as yet!
y :=yval;
end;

2.2.2 Checking whether an object has been created

Before a variable is assigned to an object, the variable has the void value. The expoissitay
be used to determine whether a value is void or not. The following example will print out the string

a:POINT;
if void(a) then #0UT+"a is void!" end;

"a is void!" since @OINT is a reference class arlhas not been created.

a:POINT := #POINT(3,5);
if void(a) then #OUT+"a is void!" else #0UT+"a is not void!" end;

In the above version, the string "a is not void!" will be printed since an object has been assigned to
the variablea’.

Note that the above test will not work in the same way for some of the built-in classes such as inte-
gers and booleafs

2.2.3 Types Introduced

Each Sather variable and object has an associated type. The type of the object indicates the class
that was used to create the object. In the following example,da@thd’b’ have the typ@OINT,
indicating that they are associated with instances d?ChRT class.

a:POINT := #POINT(2,3);
b:POINT := #POINT(4,5);

In this example, the type of the varialdlas the same as the type of the object to which it is assigned.
This is always the case with the reference classes we have seen so far.

2. The void test returns true for all integers with a value of 0 and booleans with a value of false. In general, the
void test is not useful for immutable classes.

18 Classes and Objects : 2.3 Class Data: shared and const

When we introduce abstract classes in the chapter on Abstract Classes and Subtyping on page 59,
we will see that some Sather variables can hold objects of many different types. In this case, it is
useful to distinguish between the type of the variable (calledebkared typg and the type of the

object that it holds (called the actual type or¢hacrete typg.

2.2.4 Hiding features: private and readonly

A fundamental feature of object oriented programming languages is that they permit an object to

hide certain features which are for internal use only. Attributes may be completely hidden by mark-

ing themprivate. Routines may likewise be marked private, meaning that they cannot be accessed

outside the original class. Attributes can also be hidden so that they can be read but not modified
from outside the class, by marking thexadonly.

class POINT2 is
private attr x:INT; -- X cannot be seen from outside
readonly attr y:INT; -- y cannot be changed from outside
create(xvalue,yvalue:INT):POINT is
res:POINT := new;
res.x := xvalue;
res.y := yvalue;
return res
end;

end;

This restricts external access to the attributes in the object

foois ... -- some other piece of code
a:POINT2 := #POINT2(3,5); -- Create a new POINTZ2
#OUT+ a.y; -- Prints out '5’

-- lllegal: #0UT+ a.x
-- lllegal a.y := 10;

Points to note

» Privacy is on a per-class basis, rather than on a per-object basis. Thus, an object can access
the private features of other objects of the same class. We actually use this facteat¢he
routine of the clasBOINT2 above. Assignments to the attributesesfare being done outside
the object being returned.

2.3 Class Data: shared and const

In addition to object attributes, a class definition may also contain 'shared’ data, which is shared by
all the objects of that class.

Classes and Objects : 2.3 Class Data: shared and const 19

2.3.1 Shared Attributes - Restricted global variables

Shared attributes are similar to object attributes, but are shared between all the instances of a class.
They are essentially global variables that reside within a class namespace. They can be accessed
and modified by any instance of the class. Shareds can have the same private and readonly restric-
tions that regular attributes have

private shared i,j:INT;
readonly shared c:CHAR :='X’

Unlike regular attributes, when only a single shared attribute is defined, a constant initializing ex-
pression may be provided.

shared s:STR := "name";

-- ILLEGAL shared s,p:STR := "name";

-- cannot use initializing expression if two shareds are
-- declared at the same time

If no initializing expression is provided, the shared is initialized to the valig®

2.3.2 Class Constants

Constants are accessible by all objects in a class and may not be assigned to - they must have an
initializing expression from which their value is determined at compile time (there is an exception
when no type is specified, as descrbed in the next subsection). If a type is specified, then the con-
struct defines a single constant attribute which must be initialized to a constant expression. Con-
stant expressions are recursively composed out of a combination of literals, function calls on literals,
and references to other constants. More precisely, legal assignments are to

» a character, boolean, string, integer or floating point literal

» avoid orvoid test expression

» anand oror expression, each of whose components is a constant expression
* an array literal, each of whose components is a constant expression

» aroutine call applied to a constant expressitdrer than void, each of whose arguments is a
constant expression. This caveat is imporant, sirezge routines are called on void. Thus
the following is illegal®

-- ILLEGAL const a:POINT := #POINT(3,3);
const a:POINT := void,;
-- The only legal kind of constant POINT is void

3. Implementation Note: The compiler currently does not always detect this illegal case

20 Classes and Objects : 2.3 Class Data: shared and const

» areference to another constant in the same class or in another class usingtagon.

const r:FLT:=45.6; -- Reader routine is private r:FLT;
private const a,b,c;

private const d:=4,e,f

const bar:BOOL :=r > 10; -- Function call on constants
const foo:ARRAY{INT} :=1,2,4,5,6[;

-- Sather arrays are explained later

const baz ::= BAR::foz ;

-- foz must be a constant expression in BAR

Integer constants and Enumerated Types

If a type specifier is not provided, then no initializing expression is required and the construct de-
fines one or more successive integer constants. The first identifier is assigned the value zero by de-
fault; its value may also be specified by a constant expression ¢fiTydée remaining identifiers

are assigned successive integer values. This is the way to do enumeration types in Sather. It is an
error if no type is specified and there is an assignment that is not oftype

const a; --ais of type INT and gets the value 0
const c,d; --cgets 0 and d gets 1
conste :=3; -- e is also of type INT

Points to note
« There must not be cyclic dependencies among constant initializers.

class FOO is
const b:INT := BAR::c;
class BAR is
const C:INT := BAZ:.d;
class BAZ is

-- ILLEGAL! const d:INT := FOO::b;
-- Introduces a cycle between b, ¢ and d

» Since constant initialization involves permits operations on the built-in types, the operations on
the built-in types are designed so that no observable side-effects can occur during constant ini-
tialization.

» The prefix readonly cannot be applied to constants, since constants cannot be modified in any
case.

» Due to their definition, constants are only useful for the basic classes such as numbers, bool-
eans and characters. All other constants can only be assigned to be void!

class FOO is
const a:BAR := void,; -- only legal value

Classes and Objects : 2.3 Class Data: shared and const 21

2.3.3 Accessing Class Data - the :: notation

It is possible to directly access the class data or features using the :: notation.

class FOO is
const a:INT := 3;
private const b:INT := 5;
readonly shared c:INT := 6;
shared d:INT := 7;
attr f:INT;

create(i:INT):FOO is res:FOO := new; res.f ;= i; return res; end;
method1:INT is return d+a; end;
method2:INT is return f+a; end;

end;

The shared and const class data can then be accessed using the :: notation

#OUT+ FOO::a+"\n";
FOO::d := 3;

When a method is called using thenotation, it is equivalent to calling the method on a void object.
Calling a method on a void object makes sense if the feature only makes use of shared data and local
state. If the method makes use of object data, a run-time error will result.

#OUT+FOO::methodl; -- Prints outd+a =10
#OUT+FOO::method2; -- Tries to print out self.f+a
-- However, self (the object) is void, so trying to access 'f’
-- results in a run-time error - Attribute access of void

» The usual privacy and modification restrictions are maintained

a_copy:INT := FOO::a;
-- ILLEGAL FOO::c :=3; -- ¢ is readonly
--FOO::a:=7; --ais a constant

22 Classes and Objects : 2.4 Routine definitions

2.4 Routine definitions

The behavior of a class is specified by routines in the class body. Routines may take arguments and
may return a value.

class CALCULATOR is
attr running_sum:INT;

create:CALCULATOR is
res:CALCULATOR := new;
res.running_sum := 0;
return res;

end;

add(x:INT):INT is
res:INT := running_sum + x;
return res;
end;
end;

A routine definition may begin with the keywdtdlivate’ to indicate that the routine may be called
from within the class but is not visible from outside the class. The methods that are visible from
outside the class are referred to as the class interface.

The body of a routine is a list of statements, separated by semicolons. In a routine with a return val-

ue, the final statement along each execution path mustétira statement . Thus, the following
is not legal

scale_x(X:INT):INT is
-- lllegal routine - the else clause has no return value
if x > 0 then
return 15;
else
#OUT+"Error!"; -- last statement on this branch is not return
end;
end,;

A raise statement raises an exception, and can be used wherever a return statement might be re-
quired. Raise statements will be described in more detail in the chapter on Exceptions on page 111.
For now, we merely note that the following version of the routicede_x’ does not return a value

in the second branch of the if statement, but raises an exception instead, which is perfectly legal.

scale_x(x:INT):INT is

if x> 0then return 15;

else raise "An error occurred!"; end;
end;

Classes and Objects : 2.4 Routine definitions 23

Using the return value

Note that, unlike most other languages, Sditreesyou to make use of the return value. This may
be considered an extension of strong typing - the presence or absence of a return value is a part of
the signature that should not be ignored.

new_x:INT := scale_x(15); -- Legal, the return value used
scale_x(15); -- ILLEGAL! Return value unused

The return value can also be used as part of an expression.

a :=scale_x(15) + 3;

2.4.1 Routine Arguments and Modes

The arguments to a routine are specified as a comma-separated list. Each argument must provide

a name and type. The types of consecutive arguments may be declared with a single type specifier.
create(X,y:INT):POINT ...

The scope of method arguments is the entire body of the method, and also shadows methods and at-

tributes in the class. If a routine has a return value, it is declared by a colon and a specifier for the
return type. You can get around this restriction by usingelfeexpression explicitly

class POINT is
attr x,y:INT,;
add_x(x:INT) is
self.x := self.x + X;
end;

Each argument also hasreode which determines how that argument is treated when the routine is
called. If no mode is explicitly stated, the argument modae i$hat means it is simply a value sent
into the routine. The other possible modesaateinout andonce (which will be described in the
section on iterators).

Multiple return values and out arguments

An out argument is really like an extra return value. ohargument is not set when the routine is
called; rather, it is filled in by the routine itself. Consider an integer division function that returns
both the divident and remainder of the two integer arguments

divide(x,y, out dividend, out remainder:INT) is
-- Note that the "INT’ type specifier applies to multiple
-- arguments while the mode qualifiers apply to only one

-- argument.
dividend := x/y; -- Integer division result
remainder := X - y*(x/y); -- Remainder after the division.

-- Could also use x.mod(y)

end;

24 Classes and Objects : 2.4 Routine definitions

The divide routine may be used as shown below:

a:INT :=15; b:INT := 10;
div, rem:INT; -- These are defined but not assigned
divide(a,b,out div, out rem);
#OUT+"Divident="+div+" Remainder="+rem+"\n";
-- Prints out Divident=1 Remainder=5

Note that theout argument has to be marked both where the method is defined (i.e. as a marker of

the formal parameter) and at the point of call, or the compiler will commlage(andin arguments
need not be mentioned at the point of call)

inout arguments

inout arguments are a combinationimfindout arguments. They take a value into the function and
return a value out of the function. We can thus write the swap function compactly as:

swap(inout x, inout y:INT) is
tmp:INT = X;
X =Y,
y = tmp;
end;
a:INT := 5; b:INT := 10; -- a and b have an initial value
swap(inout a,inout b);
#OUT+"a="+a+" b="+b; -- Prints a=10 b=5

The table below describes the argument modes in more detail:

Mode Description

in All arguments are ‘in’ by default; there is no ‘in’ keyword. ‘In’ arguments pass a qopy
of the argument from the caller to the called method. With reference types, this}s a
copy of the reference to an object; the called method sees the same object as thg caller.

out An ‘out’ argument is passed from the called method to the caller when the callel]

method returns. It is a fatal error for the called method to examine the value of the
‘out’ argument before assigning to it. The value of@ut’*argument may only be
used after it has appeared on the left side of an assignment.

inout | An ‘inout’ argument is passed to the called method and then back to the caller vjhen
the method returns. It is not passed by reference; modifications by the called mgthod
are not observed until the method returns (value-result).

once | Once parameters are discussed in detail in the chapter on Loops and Iterators gn page
39. Only iterators may haverice’ arguments. Such arguments are evaluated ex]ctly

once, the first time the iterator is encountered in the containing loope’‘argu-

ments otherwise behave as ‘in’ arguments, and are not marked at the point of cill.

Classes and Objects : 2.4 Routine definitions 25

2.4.2 Local Variables - Scoping and Shadowing

Declaration Statements are used to declare the type of one or more local variables. The scope of a
local variable declaration begins at the declaration and continues to the end of the statement list in
which the declaration occurs. Local variables shadow routines (including the accessor routines of
attributes) in the class which have the same name and no arguments.

... in the POINT class ...
swap_x_y is
temp:INT,;
temp = X;
X:=y,;
y = temp;
end;

Within the scope of a local variable it is illegal to declare another local variable with the same name.

Points to note
e Local variables are initialized tmid when the containing method is called.

» Local variables araot re-initialized when the declaration is encountered in the flow of con-
trol. This is particularly relevant in loop statements, which are discussed in the next chapter.
The integera’ is initialized to zero when the functicswompute’ is entered. It is not initialized
every time through the loop.

compute is
loop 3.times!;
a:INT;
a=a+3;
#OUT+a+"\n"; -- Prints out successively 3, 6, 9
end;
end,;

» Note that explicit initialization (in this case=15") is performed every time it is encountered

compute is
loop 3.times!;
a:INT := 15
a=a+3;
#OUT+a+"\n"; -- Prints out successively 18, 18, 18
end;
end,;

2.4.3 Routine calls

The most common expressions in Sather programs are methdd calsutine call usually takes
the form of a 'dotted’ expression suchaaf®o(b). The object on which the routine is being called

4. We use the term 'method’ here to indicate that the same description is applicable to both iterators, which have
not yet been introduced, and routines.

26 Classes and Objects : 2.4 Routine definitions

(a’ in this example) is determined by what precedes the dot. If no object name precedes the 'dot’,
theself object i.e. the current object, is assumed. We use the following definition of the POINT class
to illustrate different kinds of routine calls

class POINT is
attr x,y:INT,;

create(x,y:INT):POINT is
res:POINT := new; res.x := X; res.y :=y; return res;
end;

add(xval,yval:INT):POINT is
XSUm:INT := x + xval;
ysum:INT := y+yval;
res:POINT := #POINT(xsum, ysum);
return res;
end;

offset_by(val:INT):POINT is
return add(val,val); --shortfor’returnself.add(val,val),’
end;
end;

= If nothing precedes the method name, then the form is syntactic sugar for a call on
self If the method name is preceded by an expression and a dot *.’, then the method is
called on the object returned by the expression. In the following example, pair (3,7) is
first added to p1 and the pair (4,9) is added to that result. Note that the intermediate
point that is created after the first 3,7 is added is not accessible from any variable and
will be garbage collected.

p1:POINT := #POINT(3,5);
p2:POINT := pl.add(3,7).add(4,9);

» If the method name is preceded by a type specifier and a double:catda presumed to
be a call on @oid object of the specified clasBJINT in the case below)

a:POINT := POINT::create(3,5);

This works for thecreate routine, since it creates a new objeet, and then makes use of it.
However, this will not work for a call on, sagd

res:POINT := POINT::add(4,7); -- Runtime Error!

Sincexsum := x + xval; is actually equivalent to sayingum := self.x + xval; the routine access-
esself, which is void and cannot be accessed.

Classes and Objects : 2.5 Conditional Execution 27

2.4.4 Simple Overloading - Selecting a routine to call

Sather supports routineverloading. We will present a simplified version of the overloading here,
as it applies to the simple reference classes we have discussed. The full overloading rule will be de-
scribed in more detail in the section on The Overloading Rule on page 71.

Two routines in a class may have the same name provided they differ in at least one of the following
aspect:

» the number of arguments

» the presence or absence of a return value

» the type of one of the arguments (provided the types are not abstract).

Here are some examples of properly overloaded routines.

foo(a:INT, b:INT);
foo(a:INT); -- Different number of arguments
foo(a:INT,b:INT):INT; -- Has a return value

All of the above routines could co-exist in a single class interface. The right one would be selected
at the point of call. The following two routines, however cannot co-exist in the same interface

foo(a:INT,b:INT):INT;

-- foo(a:INT,b:INT):BOOL
-- differs only in return type, cannot overload 'foo’

2.5 Conditional Execution

Sather supports the standard constructs for conditional execution - if statements and
multi-way case statements

2.5.1 if statements

if statements are used to conditionally execute statement lists according to the value of a boolean
expression. In this form, thEkeyword is followed by a boolean expression, the keywwed, a list

of statements and the final keywanad. When the statement is executed, the boolean expression is
evaluated and if the resulttimie the statements in the statement list are executed. Faisis,then

control passes directly to the end of thetatement.

i:INT :=-15

if i <0 then i:=-i end

#OUT +i; -- Prints out 15

JAINT :=15

if j <0 then j:=-j end

#OUT +j; -- Prints out 15

28 Classes and Objects : 2.5 Conditional Execution

It often happens that one wishes to perform a sequence of tests, executing only the statements which
correspond to the first test in the sequence which evaluategtd-or example, we may want to
produce a integer valug from an integer valu&’ which has the shape of a triangular bump. It
should be zero wher<0’, equal tox’ when’'0<=x<100’, equal t0200-x’ when 100 <= x<200’, and

equal to0’ when'x>=200". This can be accomplished with a nested seridsstdtements:

if x <0 then y:=0
else
if x <100 theny := x
else
if x <200 theny := 200 - x else y := 0 end;
end
end;

Because this kind of construct is so common and the deeply ifestiz@ments can get confusing,
Sather provides a special form for it. A serieglgff clauses may appear after the statements fol-
lowing thethen keyword:

ifx<Otheny:=0

elsif x <100 theny :=x

elsif x < 200 then y := 200 - x
elsey:=0end

There may be an arbitrary number of sedif clauses. Each is evaluated in turn until one returns
true. The statement list following this clause is evaluated and the statement finishes. If none of the
expressions is true, the statements following the éisa&l clause are evaluated.

2.5.2 case statements

Multi-way branches are implemented tgse statements. There may be an arbitrary number of
when clauses and an optionelse clause. The initial construct is evaluated first and may have a re-
turn value of any type.

iIINT := 7,

switch i

when 1,2,3 then j :
when 4,5,6 then j :
when 7,8,9 thenj:=5

else j:=10end

#OUTHj; -- Prints out 5

AW

Classes and Objects : 2.5 Conditional Execution 29

This type must define one or more routines natireely’ with a single argument and a boolean re-
turn value.

class POINT is
attr x,y:INT;

create(x,y:INT):POINT is
res:POINT := new; res.x :=X; res.y :=y; return res;
end;

is_eq(point2:POINT):BOOL is
-- In Sather,= is short hand for a call on ’is_eq’
return x = point2.x and y = point2.y;
end;
str:STR is return "X="+x+" Y="+y; end

end;

Points can then be used in a case statement as shown below

p:POINT := #POINT(3,4);
zero_point:POINT := #POINT(0,0);

case p
when zero_point then
#OUT+"Zero point\n";
when #POINT(1,1), #POINT(1,-1),#POINT(-1,-1), #POINT(-1,1) then
#OUT+"Unit point:"+p.str+"\n":
else
#0OUT+" Some other point\n"
end;

Note that the equal sign is really short hand for the roigireg. The case statement is equivalent
to anif statement, each of whose branches tests a dallegf Thus the above case is equvalent to

if p = zero_point then #0UT+ "Zero point\n";

elsif p = #POINT(1,1) or p = #POINT(1,-1) or ... etc. then
#OUT+ "Unit point:"+p.str+"\n";

else
#OUT+" Some other point\n";

end;

The expressions tested in the branches off #tatement are the expressions of succesgien

lists. The first one of these calls to retum® causes the corresponding statement list to be executed
and control passed to the statement followingctse statement. If none of thehen expressions
matches and agise clause is present, then the statement list followingl¥e clause is executed

There is one difference between ttese statement and the equivaléhstatement. If none of the
branches of aif statement match and etse clause is present, then execution just continues onto
the next statement after tifestatement. However, if none of the branches ot statement
matches and there is Btse clause, then a fatal run-time error will result.

30 Classes and Objects : 2.5 Conditional Execution

Points to note

* |tis a fatal error if no branch matches and there isls® clause foicase statements but not
for if statements.

2.5.3 Short circuit boolean expressions: and and or

and expressions compute the conjunction of two boolean expressions and return boolean values. The
first expression is evaluated andaife, false is immediately returned as the result. Otherwise, the
second expression is evaluated and its value retunexhressions compute the disjunction of two
boolean expressions and return boolean values. The first expression is evaluatedeyridié is
immediately returned as the result. Otherwise, the second expression is evaluated and its value re-
turned.

Consider the code

p:POINT,;
if p.x > 3 then #OUT+p.x; end,; -- Runtime error if p is void

The above block of code will work jif is not void. If it is void, however, the tgsk >3 will result
in a runtime error, since it is attempting to dot into a void reference type. We can catch this problem
by using the following piece of code, and the semantics of the short-circuit and

if ~void(p) and p.x > 3 then
-- The ~ symbol indicates logical negation
#OUT+p.X;
end,;

The above piece of code will not generate an error, eyes ifoid. The first part of the and expres-
sion tests for whetheris void. If it is void, then the void test returns true anchititdurns this into
a false. Thend therefore fails before trying to evaluate the dotted expregsion

A similar behavior can be seen with the short-cirouistatement, where the second expression is
not examine if the first expression evaluates to true

a:INT := 15;
p:POINT;
if a>10 or p.x < 10 then
-- Since a>10 is true, the second expression is not evaluated

» Note that booleans also defineaanl_rout routine, which does not have the same short-circuit
behavior:

if ~void(p).and_rout(p.x > 3) then

-- May generate a run-time error, when 'p’ is void

-- The argument to the 'and_rout’ routine (p.x) is evaluated
-- even when the first condition, ~void(p) fails.

-- Hence, if 'p’ is void, p.x is still evaluated and generates a
-- run-time error (attribute access of void)

Classes and Objects : 2.6 Attribute Accessor Routines 31

2.6 Attribute Accessor Routines

The distinction between data and behavior is not as strong as has been described above. In fact, it is
possible to implement a feature such that outside the class it is impossible to tell whether it is a fea-
ture or a pair of functions This section describes how this level of uniformity is achieved.

Each attribute definition adds a field to the object’s state and causes the definition of a reader rou-
tine and a writer routine, both with the same name. The reader routine takes no arguments and re-
turns the value of the attribute. Its return type is the attribute’s type. The reader routine is private if
the attribute is declaregrivate’. The writer routine sets the value of the attribute, taking a single
argument whose type is the attribute’s type, and has no return value. The writer routine is private if
the attribute is declared eithgrivate or readonly.

class INTERVAL is
attr start:FLT; -- Defines the public reader start:FLT
-- and the public writer start(FLT)
attr finish; INT;

create(st,fin:INT):INTERVAL is
-- Create a new interval
res:INTERVAL := new;

res.start(st); -- Equivalent to res.start := st;
res.finish(fin); -- Equivalent to res.finish := fin;
end;
end,;

Thus, the levels of privacy are defined by whether the reader and writer routines are public or private

private attr a:FLT; -- Defines the reader, private a:FLT
-- and the writer private a(FLT);
readonly attr b:FLT; -- Defines the public reader, b:FLT

-- and the private writer b(FLT)

The same holds true for shared attribubtes. Each shared definition causes the definition of a reader
routine and a writer routine, both with the same name. The reader routine takes no arguments and
returns the value of the shared. Its return type is the shared’s type.

class FOO is
shared a:INT := 3; -- Defines a:INT and a(arg:INT);
readonly shared b:INT; -- Defines a:INT and private a(arg:INT);
#OUT + FOO::a; -- Prints out 3
FOO::a(4); --'a’is set to 4, same as FOO::a := 4;
#0OUT+ FOO::a; -- Prints out 4;
FOO:a:=7,;

--'a’is set to '7’, equivalent to FOO::a(7);
FOO:b(3); --ILLEGAL! The writer routine is private

Constants do not define a writer routine. Each constant definition causes the implicit definition of
a reader routine with the same name. It takes no arguments and returns the value of the constant. Its

32 Classes and Objects : 2.6 Attribute Accessor Routines

return type is the constant’s type. The routine is private if and only if the constant is demliared
vate’.

const r:FLT:=45.6; -- Reader routine is r:FLT;

private const a,b,c; -- Reader routine is private a:INT;
private const d:=4,e,f

const bar:BOOL :=r > 10; -- Function call on constants

2.6.1 Attribute assignment

In order to achieve the unification of attribute assignment and routine calls, for attributes, assign-
ment has to be given a meaning in terms of function calls.

By default, the assignment is syntactic sugar for a call of the routine with the same name as the at-
tribute with the right hand side of the assignment as the only argument

p:POINT := #POINT(3,5);
p.x:=3; -- Is syntactic sugar for p.x(3);

In the above example, the assignment to X’ is the same as calling the routine "X’ with a single argu-
ment.

Replacing an attribute by a routine

The beauty of this treatment of assignment is that an attribute in a class can later be substituted by a
pair of routines. Consider a class to represent integer intervals, where we store the first and last value
in the interval

class I_INTERVAL is

-- Integer intervals
attr start:INT; -- Defines start:INT and start(INT)
attr finish:INT; -- Defines finish:INT and finish(INT)

create(start,finish:INT):I_INTERVAL is
res:|_INTERVAL := new;

res.start := start; -- Equivalent to res.start(start);
res.finish := finish; -- Equivalent to res.finish(finish);
return res;

end;

size:INT is return finish - start + 1; end;
-- Returns the number of integers in the interval
end,;

We can make calls on this class

i:l_INTERVAL := #|_INTERVAL(3,10);

i.finish := 11; -- Equivalent to a call i.finish(11);

#OUT+ i finish; -- Prints out 11

i.start := 15; -- Equivalent to the call i.start(15) ;

Classes and Objects : 2.7 Static Type Inference 33

Suppose we then realize that we usually want to know the size of the interval, and rarely need to
know the end point. It would then be cheaper to store the size directly, rather than computing it. The
class can be changed so that we storérthh@ndsize and computédnish.

class I_INTERVAL is
-- Integer intervals
attr start:INT; -- Defines start:INT and start(INT)
readonly attr size:INT; -- Defines size:INT and private size(INT)
-- size is readonly, since we only need size:INT in the interface

create(start,finish:INT):SAME is
res:SAME = new;

res.start := start; -- Equivalent to res.start(start);
res.size := finish-start+1,; -- Store the result in res.size
return res;

end;

finish:INT is return start+size-1 end,;
-- Replacement for the reader routine for 'finish’
-- Compute finish using ’start’ and 'size’

finish(new_finish:INT) is size:=new_finish-start+1 end;
-- Replacement for the writer routine for ‘finish’

end;

All the calls described above will continue to work as before. The assignniieighten particular
will now be a call on the user-defined finish routine, instead of a call to the implicit writer routine
for the attributéinish.

2.7 Static Type Inference

For the sake of convenience, Sather provides a mechanism for statically inferring the type of a vari-
able from the context. This type-inference takes place in different situations, where the type is avail-
able from the context.

2.7.1 Creation Expressions

In a creation expression, it is tedious to have to repeat the type of a class on both sides of a creation
expression and assignment. Hence, the # symbol may infer its type from the context.

a:POINT;
a = #(3,4); -- Equivalent to a := #POINT(3,4);

34 Classes and Objects : 2.7 Static Type Inference

2.7.2 Assignments and ::=

Type inference can also take place in a declaration, if it is combined with an assignment. Since the
declared type of the right hand side of the assignment is known, its type is used as the type of the
variable. This combination of declaration and assignment is extremely common in Sather code.

a:=3; -- Equivalent to a:INT := 3;
p1:POINT := #POINT(3,5);

p2:POINT := #POINT(4,5);

p3 ::= pl.add(p2); -- 'p3’is of type POINT.

-- Assumes the function ‘add’ in POINT i.e. POINT::add(POINT,POINT);

When an assignment is associated with a creation, we can make use of either form of type inference

a .= #POINT(3,4); -- Equivalent to a:POINT := #POINT(3,4);
a:POINT := #(3,4); -- Means the same

2.7.3 Arguments to a function call

The type of the arguments to a function call are also known and can be used to infer the type of a
creation expression in a call to the function.

foo(a:POINT) is ...

foo(#(3,5));
-- The create expression infers its type
-- from the type of the argument that 'foo’ is expecting

This form of type inference may be used for closure creation expressions as well, which will be dis-
cussed in the chapter on Closures

apply(arg:ROUT{INT}:INT) is
apply(bind(3.plus());

If the plus routine in the INT class is overloaded, then the appropriate routine is chosen based on the
declared type of the argument to "apply’ i.e. ROUT{INT}:INT. Note that if both the "apply’ routine

and the 'plus’ routine are overloaded, type inference may not be able to determine the type and it
might be necessary to create a temporary variable with the right type

rrROUT{INT}INT := bind(3.plus());
apply(r);

In any case, we strongly recommend that static type inferemdee used in cases where confusion
might result; the extra typing is usually worthwhile!

Classes and Objects : 2.8 Class Parameters 35

2.8 Class Parameters

We will briefly describe simple parametrized classes here so that they may be used in examples
through the rest of the text. For a full description of parametrized classes, please see the chapter on
Parametrized Classes.

A Sather class may have various type parameters, which are basically place holders for types which
are specified when the class is actually used. This allows us to write codegémerisand can

be used with a different types. By convention, these type parameters are given namesTlike

We show below a clasdJP, which holds pairs of objects. Since we would like to be able to hold
objects of any types, we just specify type parametérandT2. These parameters are place-hold-

ers, which must be set to actual honest-to-goodness concrete classes Wwhénishactually used

class TUP{T1,T2} is
-- Simple version of the library tuple class
attr t1:T1;
attr t2:T2;
create(t1:T1, t2:T2): SAME is
-- Standard create routine. Arguments use the type parameters

res :=new; -- Using static type inference - new returns SAME
res.tl :=tl; -- The types of res.t1 and the argument t1
-- are both T1 so the assignment is legal
res.t2 ;= t2;
return res;
end;
end;

We can now create a tuple object that holds, for instance, a pair consisting of a string and an integer:

t 1= #TUP{INT,STR}(5,"this"); -- Create a new tuple.
-- Uses ::= to determine the type of 't’
#OUT + t.t1 + "\n";

2.8.1 Arrays

A standard parametrized class is the array claBRAY{T}. Arrays are explained in more detalil
on page 85. When an array is actually used to hold objects, the type parameter must be instantiated
to indicate the kind of objects being held.

a:ARRAY{INT} := |2,5,7|;
-- Special syntax for initializing an array with values 2,5,7
#OUT+a[1]; -- Return the second element of the array

For example, arrays are used to pass in the arguments to a program into the main procedure.

main(args:ARRAY{STR}) is
#0OUT+args[0]; -- On unix, args[0] is the name of the program
end;

36 Classes and Objects : 2.9 Command line arguments

We can hold a collection of points using an array, as follows

a:ARRAY{POINT} := #(3);
a[0] := #POINT(0.0,0.0);
a[l] := #POINT(0.0,1.0);
a[2] := #POINT(2.0,2.0);

2.9 Command line arguments

It is very easy to access command line arguments from within a Sather program. Just specify your
main routine with an argument of type ARRAY{STR}.

class MAIN is
main(args: ARRAY{STR}) is
#OUT+"Program name is:"+args[0]+"\n";
#OUT+"First argument:"+args[1]+"\n";
#OUT+"Second argument;"+args[2]+"\n";
#OUT+"Number of arguments:"+(args.size-1)+"\n";
end;
end;

If the preceeding program is in a file 'foo.sa’ it can be compiled:

cs foo.sa -o foo

and then run as follows:

> [foo this that 1
Program name is:foo
First argument:this
Second argument:that
Number of arguments:3

2.10 A Running Example: Employees

We will illustrate the points made above by using a simple example, which will be something of a
running example to be extended in later chapters. We will start here by defining’BMRIS3Y-

EE'. Please bear in mind that this example is used to illustrate various language features, not object-
oriented design.

5. Astring can be converted to an INT or a float by using the STR_CURSOR class as follows:
a: STR :="5";
b:INT := a.cursor.int;

Classes and Objects : 2.10 A Running Example: Employees 37

EMPLOYEE definition

The class is composed of several attributes which hold the employee information. Various degrees
of privacy are illustrated

class EMPLOYEE is

private attr wage:INT;

readonly attr name:STR,;

attr id:INT;

const high_salary:INT := 40000;

create(a_name:STR, a_id:INT, a_wage:INT):SAME is
res ;= new;
res.id := a_id;
res.name := a_name;
res.wage := a_wage;
return(res);
end,;

highly_paid:BOOL is return wage >= high_salary; end;
end;

Note the use of the special ty8ME as the return type of theeate routine, which denotes the
current class nameSAME changes to mean the including class when it is included, as will be ex-
plained in the next chapter on code inclusion.

TESTEMP definition

The employee class may be exercised using the following main class.

class TESTEMP is

main is
john:EMPLOYEE := #EMPLOYEE("John",100,10000);
peter:EMPLOYEE := #EMPLOYEE("Peter",3,10000);

john.id := 100; -- Set the attr "id" in john to 100
#OUT+ john.name+"\n"; -- Prints "John"
#OUT+ peter.id+"\n"; -- Prints "3"
end;
end;

Note that the following calls would be illegal:

#OUT+john.wage+"In"; -- ILLEGAL! "wage" is private
john.name := "martha"; -- ILLEGAL! "name" is readonly.

A distinguished class must be specified when a Sather program is compiled (the default is to look
for a class calleMAIN). This class must define a routine narmegln’. When the program executes,
an object of the specified type is created ‘arah’ is called on it.

38 Classes and Objects : 2.11 Summary of Idioms

Running the example
To run the above example - type the code into a file emp.sa and then run the executable 'emp’
cs emp.sa -main TESTEMP -0 emp

This generates the executable "emp”, using the "main” routifESTEMP as its starting point. You
can browse the resulting code by calling

bs emp.sa -main TESTEMP

2.11 Summary of Idioms

The table below is a brief reference to some of the idioms that you might encounter in reading a
typical Sather program and what they mean

a<b, a=b, a>b, a>=b, a<=b, a*b, a/b, a-b, arflbase see Operator Redefinition on page 95
~a, -a

Square brackets as in a[3] := 5 or b := a[5]; Shorthands for the routines 'aset’ and 'aget’ in 'a’.

a ::= b.foo; Declare 'a’ to be of the same type as the return value of|the
function 'foo’. Assign 'a’ to this return value. See
Section 2.7 on page 33

a ;.= #FOO(b); Declare 'a’ to be of type 'FOO’. Call FOO::create(b) and
assign the result to 'a’.

a:FOO = #(b); Declare 'a’ to be of type 'FOO’. Call FOO::create(b) and
assign the result to 'a’

a:ARRAY{INT}; a:=|1,2,3]; Create an array of integers with the three elements
specified. Assign the result to 'a’

class FOO{T < $BAR{T}} < $SKY > $BOG isDeclare a new parametrized class FOO, with the single
formal parameter T, with a type bound of $BAR{T}. The
class is a subtype of the abstract class $SKY and a
supertype of the class $BOG.

a: ITER{BOOL}INT, b:ROUT{FLT}INT Declare "a’ to be an iterator closure that takes an argument
of type BOOL and yields an INT. Declare 'b’ to be a
routine closure that takes an argument of type FLT and
returns an INT.

SAME The type of the current object.

new Allocate space for a new object of the current class. Car
only be called within the class. Usually called using the
idiom ' create: SAME is res:SAME := new; ...’

Loops and lIterators : 3.1 Using iterators 39

Loops and Iterators

Sather’s simplest iterating constructs are while! and untill. These are similar to the loop constructs
found in other languages, aside from the terminal 'I". However, that terminal 'I" hides something
very special about these loop constructs in Sather; a programmer can define such looping constructs
as easily as he or she could define a standard routine. Once defined, they may be used as convenient-
ly as the while! and until! iterators.

To a first approximation, iterators are like streams that can "yield" different values on successive loop
iterations. When an iterator has no more values to yield, it "quit"s. This, in turn, terminates the en-
closing loop.

Iterators are defined as class features, just like routines, but iterator names must terminate with an
. When an iterator is called, it executes the statements in its body in order. If it exegigiels a
statement, control is returned to the caller. In this, the iterator is similar to a coroutine whose state
remains persistent over multiple calls. Subsequent calls on the iterator resume execution with the
statement following thgield statement. If an iterator execuisit or reaches the end of its

body, control passes immediately to the end of the innermost enclosing loop statement in the caller
and no value is returned.

3.1 Using iterators

3.1.1 loop statements

Iteration is done withoop statements, used in conjunction with iterator calls. In the absence of iter-
ator calls, a loop statement simply executes an infinite loop. The difference between an iterator call
and a routine call is that the iterator call "remembers" its state after it yields a value and, on subse-
quent calls, it simply resumes execution. The "lifetime" of an iterator usually includes several calls
within a particular loop. Hence, an execution state is maintained for each iterator call textually en-
closed within a loop - this execution state will be used to "remember" the state of the iterator be-
tween invocations. When a loop is entered, the execution state of all enclosed iterator calls is
initialized. When an iterator is encountered, control is transferred to the iterator until the iterator

40 Loops and Iterators : 3.1 Using iterators

"yields" control. Just as a routine may provide a value when it returns, so too an iterator may provide
a value when it yields.

sum: INT :=0;
loop sum := sum + 1.upto!(10); end;
#OUT + sum + '\n’; -- Prints sum of integers from 1 to 10

Instead of yielding control back to the enclosing loop, an iterator may also terminate or quit, which
terminates the enclosing loop.

Note that each loop may contain more than one iterator call, thus providing much more flexibility
than conventional languages. When any of the iterators terminates, the whole loop terminates, and
execution continues at the next statement after the loop.

3.1.2 Built-in iterators

Theuntil! ,while!l andbreak! iterators are built-in. They have the standard definitions of
until, while and break in other languages and may occur anywhere in the loopAjoldy. ex-
pressions are iterator calls which take a single boolean argument that is re-evaluated on each itera-
tion. They yield when the argument is true and quit when it is falggil! expressions are

iterator calls which take a single boolean argument that is re-evaluated on each iteration. They yield
when the argument is false and quit when it is thoeak! expressions are iterator calls which
immediately quit when they are called.

Sum:INT :=0;i: INT :=0;
loop whilel(i < 5);
sum = sum + i;
i=i+1;
end;
#OUT+ "Sum="+sum+"\n’; -- Prints out Sum=10

Thebreak! iterator can be used to terminate a loop at any time. We illustrate this with the bubble
sort routine show below, which terminates the first time a pass through the data occurs with no order
change.

bubble_sort(a:ARRAY{INT}) is

loop
done: BOOL := true;
iZINT := 0; -- Loop until the "break!" is encountered

loop untill(i = (a.size-2));
if a[i] > a[i+1] then
done := false
swap(inout a[i], inout afi+1]);
end;
i=i+ 1
end;
if done then break!; end;
end;
end;

Loops and Iterators : 3.1 Using iterators 41

The’swap’ routine is as we have described earlier.

swap(inout x:INT, inout y:INT) is
tmp:INT = x; X :=y; y ;= tmp;
end;

Note that the abovéubblesort’ routine could easily be rewritten to only usdil!

In addition to the built-in iterators, there are many commonly used iterators in the INT class that pro-
vide for interation over a range of values. For instance, the itenattar yileds successive integer
values.

sum:INT:= 0; loop sum := sum+ 10.upto!(20); end;

Theupto! iterator returns successive integers from 10 upto 20, inclusive. Below, are examples of
a few other common iterators

iZINT :== 10; sum:INT := O;
loop 11.times!; sum :=sum +i;i:=i+ 1; end;

The'times’ iterator yields a certain number of times. For iterating over a range with a certain
stride, use théstep’ iterator. The following example counts 11 even numbers starting at 18

sum: INT :=0;

loop sum := sum + 18.step!(11,2); end;

-- The first argument is the number of iterations, 11 in this case
-- the second argument is the stride

The’step_upto! iterator is similar, but instead of specifying a number of iterations, it specifies
the maxium value to be reached. The following loop is equivalent to the preceeding one.

sum: INT :=0;
loop sum := sum + 18.step_upto!(40,2); end,;

42 Loops and Iterators : 3.2 Defining Iterators

3.2 Defining Iterators

3.2.1 yield statements

Iterator definitions are similar to routine definitions, except that we need to indicate when control
should be transferred back to the calling point. In a routine, this transfer of control is indicated by a
return statement, which terminates the routine. An iterator, however, can return control in two

different ways. It can either

» Temporarily yield control to the callig point, ready to continue the next time it is encountered.
This yield of control is done byyield statement

» Permanently yield control to the calling loop, terminating the loop in the process. This termina-
tion of the enclosing loop is achieved byuit statemen or by reaching the end of the itera-
tort.

Theyield must return a value (of the appropriate type), if the iterator has a return value.

range!(min, max:INT):INT is
iZINT := min;
loop until!(i > max);
yield i;
=i+,
end;
end;

This iterator can be used to add up all the numbers in a particular integer range

sum: INT := 0; loop sum := sum+range!(1,10); end;

3.2.2 Explicitly leaving an iterator using quit

When an iterator has yielded as many times as needed, it can either reach the end of it's statement
list or explicitly call a quit statemerguit statements are used to terminate loops and may only ap-

pear in iterator definitions. No value is returned from an iterator when it quits. No statements may
follow aquit statement in a statement list. The following definition of range!’ is equivalent to the
preceeding definition:

range!(min, max:INT):INT is
X:INT := min;
loop if x > max then quit end;
yield x;
X:=x+1;
end;
end,;

Loops and Iterators : 3.2 Defining Iterators

3.2.3 Control flow within an iterator

The following figures illustrate the control flow between an interator and its calling loop.

When the iterator is first called, (1 sym =0
control goes into the iterator |

and then returns to the outer [2lloop range!(min, max: INT): INT is
loop, when the iterator yields in 3] i :=range!(1,10) —» [4]x INT := min;
Step [7] [8] sum :=sum +i; [5] loop
end: [6] if x>max then quit end,;
[7] yield x;
X=X +1;
end;
After the first yield, control [10] loop
continues in the outer loop until (1] | = rangel(1.10) CINT = i
the iterator is encountered = rangets T
again in step [11] and control is | [17] sum:=sum+i [14] loop D
ggain transferre(_:i to the ite_rator, Ig] end: [15] if x>max then quit end
right after the point of the yield,
in step [12] [16] yield x;
12] x:=x+1;
|
[13] end;

The above sequence will con- [—[1911oop

tinue until theif statement is [zé] i := range!(1,10)
true and theuit statementis
encountered in the iterator.
Control is then transferred to | _[ig]end:
the end of the enclosing loop.

X: INT :=min;

sum :=sum + i; [23] loop —

[24] if x > max then
[25] quit

end;
The iterator calling context . yield x;
keeps track of the internal state [261#OUT * sum+\n’ Bl x=x+L:
of the iterator from the last !
[22] end;

yield.

44 Loops and Iterators : 3.2 Defining Iterators

3.2.4 The once argument mode

One problem with the above definition’cdnge!’ is that the arguments to the function will be
evaluated each time through the loop. Consider the following loop

sum:INT := 0O;

max:INT :=5;

loop sum :=sum + range!(3,max);
max := max+2;

end;

This, somewhat silly, example will go into an infinite loop, since the argumanxt increases
each time through the loop.

Iterator argument ateot by default. This means that the arguments will be re-evaluated and passed
to the iterator each time through the loop. When the arguments to the iterator are constant, it is not
important whether they are re evaluated or not. However, in many cases it is important to ensure that
the argument is only evaluated the first time through the loop.

This happens tonce- arguments. Arguments which are marked with the maatece are only
evaluated the first time they are encountered during a loop execution. Thus, the correct definition of
the 'range’ iterator is:

range!(once min, once max:INT):INT is
iZINT := min;
loop until!(i > max);
yield i
i=i+1;
end;
end;

Note thatonce’ arguments are only marked at the point of definition, not at the point of call.
Thus, invoking the loop will look the same as before

sum:INT := 0; loop sum := sum + range!(3,5); end;

The’self’ parameter (i.e. the object on which the iterator is being calledvés/sa once pa-
rameter.
i INT :=5;

loop #0UT+i.upto!(11)!+' ’; i:=1; end;
-- The above loop prints out56 78 9 10 11

In the above example, though the valuegi'of changes the second time through the loop, the
change is ignored - the first value'iof is used.

Loops and Iterators : 3.2 Defining Iterators 45

The following more complex example will sum up some of the elements of the first row although
the variableow will contain different rows in consecutive loop iterations.

loop -- Sum up some of the elements of the first row!
row := matrix.row!;
sum := sum + row.elt!;
-- row is only evaluated at the first iteration!
end;

3.2.5 out and inout argument modes

Yield causes assignmentdat andinout rguments in the caller i.e. these arguments are assigned
each time when the iterator yields..

range!(once min, once max:INT, out val:INT) is
i INT := min;
loop until!(i > max);
val :=i;
yield,;
i=i+1;
end,
end;

Which may be used by:

Sum:INT :=0;
loop res:INT,;
range2!(3,5, out res);
sum := sum + res;
end,;
#OUT+sum+'\n’; -- Prints out 12

Note that no assignmentéait andinout arguments takes place when an iterator quits.

3.2.6 Argument evaluation in iterators

At a more technical level, when an iterator is first called in a loop, the expressieal foand for
eachonce argument are evaluated left to right. Then the expressions for arguments which are not
once (in orinout before the callput orinout after the call) are evaluated left to right. On
subsequent calls, only the expressions for arguments which avagotare re-evaluatedself

and anyonce arguments retain their earlier values.

3.2.7 Points to note

Iterator usage
» Iterators may only be called withioop statements.

46

Loops and Iterators : 3.2 Defining Iterators

once mode arguments are only marked at the point of definition, not at the point of call, un-
like out andinout argumentsout andinout arguments cannot lmmce arguments
as well.

Each textual instance of an iterator in a loop is distinct. The following loop prints out [2,2]
[3,3] [4,4] (and not [2,3])

loop
a: INT :=range!(2,4);
b: INT :=range!(2,4);
#OUT+ "['+a +","+ b+" ",
end;

Not all iterators reach their end or quit - execution may be terminated because some other itera-
tor in the same loop quits. See the next point.

Iterator instances in a conditional statement are evaluated every time they are encountered.
The following loop prints out [2,2] [3,2] [4,3] and then is terminated when the first iterator
quits, even though the second iterator is not yet complete

b: INT :=0;

loop a: INT :=range!(2,4);
if a.is_even then b :=range!(2,4); end;
HOUT+ "["+a +","+ b+"] ™

end;

The expressions farelf and foronce arguments may not themselves contain iterator calls.
(Such iter calls would not be useful anyway, since they would only execute their first itera-
tion.) Thus, the following code is illegal, even though the 'times!’ iterator is a perfectly valid it-
erator on integers.

loop a: INT :=range!(3,4).times!; end;

Iterators may have pre and post conditions, just like routines. They are described in section
11.2.4 on page 117
Iterators may call themselves recursively as routines do. As iterators are normally supposed to

yield more than once, one should not forget to define a loop within the iterator to catch all of
these results.

class BINARY_TREE is
attr left,right: SAME; -- subtrees
attr data: INT;
eltl: INT is
if void(self) then quit end,;
yield data;
loop yield left.elt! end,; -- yield data in the left subtree.
loop yield right.elt! end;
end,
end;

If an iterator in complex expression quits, the surrounding expression might not be fully evalu-
ated.

loop #OUT +"(" + c.elt! + ")\n" end;

Loops and lterators : 3.3 Iterator Examples 47

When the iterator elt! terminates the surrounding loop, an opening bracket has al-
ready been printed. The expression producing the matching closing bracket will not
be evaluated, hence the algorithm will always print a bogus closing bracket in the be-
ginning. The standard solution looks as follows:

loop #OUT + ("(* + c.elt! + ")\n"); end;

The extra paratheses force the whole line to be evaluated first. As this evaluation will
be aborted by the quit of the iterator the printing evaluation will not happen for the
last iterator call.

Iterator definitions
* Iterator names always end with an exclamation mark *
 Yield is not permitted within a protect statement (see the Chapter on Exceptions)

* Iterators enjoy the same access options as routines. Just as with routine definitions, iterator de-
finintions may be marked private.

 Iterator overloading and conformance rules are the same as those for routines.

* An iter argument may have only one mode. Thus, it is neither possible nor meaningful to have
‘once inout ' or’once out 'arguments.

3.3 lIterator Examples

Some of the following examples make use of arrays, which have been briefly introduced in section
2.8.1 on page 35.

Because they are so useful, thafle! ', ‘untill " and ‘break! ’iterators are built into the lan-
guage. Here's howvhile! ’ could be written if it were not a primitive

while!(pred:BOOL) is
-- Yields as long as ‘pred’ is true
loop
if pred then
yield
else
quit
end
end
end.

48 Loops and lIterators : 3.3 Iterator Examples

The built-in classINT ’ defines some useful iterators. Here’s the definitiompfd! . Unlike the
argumentpred ’ used above,i* here is declared to bence ’; when ‘upto! ' is called, the argu-
ment is only evaluated once, the first time the iterator is called in the loop.

uptol(once i:SAME):SAME is
-- Yield successive integers from self to i’ inclusive.
r::=self;
loop
until!(r>i);
yield r;
r=r+1
end
end;

To add up the integers 1 through 10, one might say

sum: INT := 0; loop sum := sum + 1.upto!(10) end

Or, using the library iteratostim! ’ like this. ‘x’ needs to be declared (but not initialized) outside
the loop, so its value is available after the loop terminates.

X: INT; loop x:=INT::sum!(1.upto!(10)) end

Some of the most common uses of iters are with container objects. Arrays, lists, sets, trees, strings,
and vectors all have iterators to yield all their elements. Here we print all the elements of some con-
tainer @’

a: ARRAY{INT} :=|1,2,7|;
loop #OUT + a.elt!.str + \n’ end

This doubles the elements of array

loop a.setl(a.elt! * 2) end

This computes the dot product of two vect@'sdnd 'b’. There is also a built-in methoddt ' to
do this. X’ needs to be declared (but not initialized) before the loop.

loop x:=sum!(a.elt! * b.elt!) end

Separating elements of a list

When printing out the elements of a container, or other kinds of lists, it is usually appropriate to in-
sert a separator between all the elements (but, of course, not after the last element). There is a con-
venient iterator in the string class that does exactly this:.

a: ARRAY{INT} := |1,2,3];
loop #OUT + ",".separate!(a.elt!.str); end;
-- Prints out 1,2,3

Loops and lterators : 3.3 Iterator Examples 49

Theseparate! iterator is called on the string which you wish to use to separate components of
the list. In this case, the list elements will be separated by a comma. The definition of this iterator
is as shown below

class STR is

separate!(s: STR): STR is
-- On the first iteration just outputs 's', on later iterations
-- it outputs self followed by 's".
yield s.str; loop yield self + s.str end
end;

Note that the argument to the iterator is nohae argument, and will be evaluated each time the
iterator is called.

50

Loops and Iterators : 3.3 Iterator Examples

Code Inclusion and Patrtial Classes : 4.1 Include Clauses 51

Code Inclusion and
Partial Classes

Object oriented languages usually support the derivation of new classes by inheriting from existing
classes and modifying them. In Sather, the notion of inheritance is split into two separate concepts
- type relations between classes and code relations between classes. In this chapter we will deal with
the latter (and simpler) concept, that of reusing the code of one class in another. We refer to this as
implementation inheritance or code inclusion.

4.1 Include Clauses

The re-use of code from one class in another class is defirnadine clauses. These cause the in-
corporation of the implementation of the specified class, possibly undefining or renaming features
with feature modifier clauses. Theclude clause may begin with the keywongrivate ', in

which case any unmodified included feature is made private.

include A a->b, c->, d->private d;
private include D e->readonly f;

Code inclusion permits the re-use of code from a parent concrete class in child concrete class . In-
cluding code is a purely syntactic operation in Sather. To help illustrate the following examples, we
repeat the interface &VIPLOYEEfrom page 37.

class EMPLOYEE is
private attr wage:INT;
readonly attr name:STR,;
attr id:INT;
const high_salary:INT := 40000;

create(a_name:STR, a_id:INT, a_wage:INT):SAME is ...

highly_paid:BOOL is ...
end;

52 Code Inclusion and Partial Classes : 4.1 Include Clauses

Routines that are redefined in the child class over-ride the corresponding routines in the included
class. For instance suppose we define a new kiedi6fLOYEE- aMANAGER~vho has a number

of subordinates.

class MANAGER is
include EMPLOYEE
create->private oldcreate;
-- Include employee code and rename create to 'oldcreate’

readonly attr numsubordinates:INT; -- Public attribute

create(aname:STR, aid:INT,awage:INT,nsubs:INT):SAME is
-- Create a new manager with the name ‘aname’

-- and the id ‘aid’ and number of subordinates = ‘nsubs’
res ::= oldcreate(aname,aid,awage);
res.numsubordinates := nsubs;
return res;

end;
end;

See the EMPLOYEE definition on page 37. The create routine MAMNAGERIass extends the
EMPLOYEIreate routine, which has been renamed to oldcreate (renaming is explained below) and

is called by the new create routine.

Points to Note
» The order of inclusion is not significant and cannot affect conflicts.

» External classes may be included if the interface to the language permits this; external Fortran

and C classes may not be included.

» Immutable (see page 99) and reference classes cannot be mixed into a single class during in-
clusion. In the case of arrays (see page 85), there cannot be include paths from reference types
to AVAL or from immutable types tAREFi.e. reference types cannot include an immutable

array portion and immutable classes cannot include a reference array portion.

» There must be no cycle of classes such that each class includes the next, ignoring the values of

any type parameters.

class A is include B;...
class B is include C;...
class Cis include A; ..

Code Inclusion and Patrtial Classes : 4.1 Include Clauses 53

» If SAMEoccurs in included code it is interpreted as the eventual type of the class (as late as
possible). We make use of this fact every time we include a create routine that3aiMias

class FOO is
create:SAME is return new; end;

class SON_OF_FOO is
include FOO;
-- Since create returns SAME, we have create:SON_OF_FOO;

class GRANDSON_OF_FOO is
include SON_OF_FQOOQ; -- Now we have create:GRANDSON_OF _FOO;

a ;= #GRANDSON_OF_FOOQO; -- Calls GRANDSON_OF_FOO:.create:SAME,
-- which returns a GRANDSON_OF_FOO.

4.1.1 Renaming

The include clause may selectively rename some of the included features. It is also possible to in-
clude a class and make all routines private, or some selectively public

class MANAGER is
private include EMPLOYEE;
-- All included features are made private
class MANAGER is
private include EMPLOYEE id->id;
-- Makes the "id" routine public and others stay private

If no clause follows the-> ' symbol, then the named features are not included in the class. This is
equivalent to 'undefining’ the routine or attribute.

class MANAGER is
include EMPLOYEE id->; -- Undefine the "id" routine
attr id:MANAGER_ID; -- This ' id’ has a different type

Points to note

» All overloaded features must be renamed at the same time - there is no way to specify them in-
dividually.

» A public routine can be made private by either a private include or by renaming the individual
routine to be private

class MANAGER is
include EMPLOYEE id->private id;
-- Renames both reader and writer routines of the attribute 'id’

» In a private include, renaming a particular feature has the effect of making just that one feature
public. For instance

class MANAGER is
private include EMPLOYEE
name->name; -- only ‘name’ is made public

54 Code Inclusion and Partial Classes : 4.1 Include Clauses

« lterator names may only be renamed as iterator names.
* lItis an error if there are no appropriate methods to rename in the included class.
» Both a reader and a writer method must exige@donly ’is used in a renaming clause.

class I_INTERVAL is
private attr first, size:INT;
finish:INT is return first + size - 1 end;
finish(fin:INT) is size := fin - first + 1; end;

class LINE_SEGMENT is
include |_INTERVAL
finish->readonly finish;
-- makes private finish(fin:INT)
-- and leaves public finish:INT;

4.1.2 Multiple Inclusion

Sather permits inclusion of code from multiple source classes. The order of inclusion does not mat-
ter, but all conflicts between classes must be resolved by renaming. The example below shows a
common idiom that is used in create routines to permit an including class to call the attribute initial-
ization routines (by convention, this is frequently called 'init") of parent classes.

class PARENTL1 is
attr a:INT;
create:SAME is return new.init; end;
private init: SAME is a := 42; return self; end;
end;

In the above class, the attributes are initialized inrttie routine. The use of such initialization
routines is a good practice to avoid the problem of assigning attriutes to the "self" object in the create
routine (which is void)

The other parent is similarly defined

class PARENT2 is
attr c:INT,;
create:SAME is return new.init end;
private initt SAME is ¢ := 72 end,;
end;

Code Inclusion and Partial Classes : 4.2 Partial Classes and Stub routines 55

In the child class, both parents are initialized by calling the initialization routines in the included
classes

class DERIVED is
include PARENTL1 init-> PARENT _init;
include PARENT2 init-> PARENT2_init; -- Rename init

attr b:INT;

create:SAME is

-- a gets the value 42, b the value 99 and c the value 72
return new.PARENT1_init. PARENTZ2_init.init

end;

private init:SAME is b := 99; return self;
end; -- class DERIVED

4.1.3 Resolving conflicts

Two methods which are included from different classes may not be able to coexist in the same inter-
face. They are said to conflict with each other. For a full discussion of resolving conflicts, please
see page 78. We have to first present the general overloading rule, before discussing when included
signatures will conflict and what can then be done about it.

For now, we simply note that if we have signatures with the same name in two included classes, we
can simply rename one of them away i.e.

class FOO is
include BAR bar->; -- eliminate this 'bar’ routine
include BAR2; -- Use the ’bar’ routine from BAR2

4.2 Partial Classes and Stub routines

Partial classes have no associated type and contain code that may only be included by other classes.
Partial classes may not be instantiated: no routine calls from another class into a partial class are al-
lowed, and no variables may be declared in another class of such a type.

A stub feature may only be present in a partial class. They have no body and are used to reserve a
signature for redefinition by an including class. If code in a partial class contains calls to an unim-
plemented method, that method must be explicitly provided as a stub. The following class is a stub

56 Code Inclusion and Partial Classes : 4.2 Partial Classes and Stub routines

debugging class which checks on the value of a boolean and then prints out a debugging message
(preceeding by the class name of 'self’)

partial class DEBUG_MSG is
stub debug:BOOL;

debug_msg(msg:STR) is
-- Prints out the type of "self' and a debugging message
if not debug then
-- Don't print out the message if the debug flag is false
return
end;
type_str:STR,;
-- Declared here since used in both branches of the if
if ~void(self) then
type_id:INT := SYS::tp(self);
-- SYS::tp will not work if self is void!
type_str:STR := SYS::str_for_tp(type_id);

else
type_str := "VOID SELF";
end;
#OUT+ "Debug in class:"+type_str +" "+ msg+"\n";
end;

end;

This class can be used by some other class - for instance, a main routine that wants to print out all
the arguments to main. The stub routine 'debug’ must be filled in using either an attribute (a con-
stant, in this case) or a routine.

class MAIN is
include DEBUG_MSG;

const debug:BOOL := true; -- Fill in the stub.

main(args:ARRAY{STRY}) is
loop arg:STR := args.elt!
debug_msg("Argument:"+arg); -- Print out the argument
end,
end;
end,;

Points to note

» Partial classes cannot be used to instantiate parameters of a parametrized class. For example,
'ARRAY{DEBUG_MSGY} would not be legal.

» Create cannot be called on a partial class, nor can a partial class occur as the type of a variable
or attribute.

4.2.1 Mixins: A Prompt Example

This code demonstrates the use of partial classes. NBX@N class provides a different way of
prompting the user; each can be combined ®TMPUTEO make a complete program. The stub

Code Inclusion and Partial Classes : 4.2 Partial Classes and Stub routines 57

in COMPUTHallows that class to be type checked without needing either mix-in class. Only
COMPUTE_AndCOMPUTE_Bhay actually be instantiated.

This style of code reuse is very flexible because the stub routines can access private data in
COMPUTE

partial class PROMPT_STYLE_Ais
prompt_user:STR is
#OUT+">",
return IN::get_str;
end;
end; -- partial class PROMPT_SYTLE_A

partial class PROMPT_STYLE_B is
prompt_user:STR is
#0OUT+"Please enter a command:\n";
return IN::get_str;
end;
end; -- partial class PROMPT_STYLE_B

Now suppose that we have a 'COMPUTE’ class that requires a prompt for some input data. It can
leave the prompt routine as a stub, which will later be filled in by some prompt class

partial class COMPUTE is
stub prompt_user:STR;

main is
res ::= prompt_user;
-- Convert it to an integer and do something with it
i2INT := res.cursor.get_int;
#OUT+" I'm going to compute with this number, now:"+i+"\n";

end;““

end; -- partial class COMPUTE

We can now create different computation classes by mixing an arbitrary prompt style with the main
computation partial class.

class COMPUTE_A is

include COMPUTE;

include PROMPT_STYLE_A,
end; -- class COMPUTE_A

class COMPUTE_B is

include COMPUTE;

include PROMPT_STYLE_B;
end; -- class COMPUTE_B

58

Code Inclusion and Partial Classes : 4.2 Partial Classes and Stub routines

Abstract Classes and Subtyping : 5.1 Abstracting over Implementations 59

Abstract Classes and
Subtyping

Abstract class definitions specify interfaces without implementations. Abstract class names must be

entirely uppercase and must begin with a dollar $gn ; this makes it easy to distinguish abstract

type specifications from other types, and may be thought of as a reminder that operations on objects
of these types might be more expensive since they may involve dynamic dispatch. In order to moti-

vate the notion of abstract classes, we will start by considering different implementations of a data

structure.

5.1 Abstracting over Implementations

We will illustrate the need for abstraction by considering the implementation of a classic data struc-
ture, the stack. Objects are removed from a stack such that the last object to be inserted is the first to
be removed (Last In First Out). For the sake of simplcity, we will define our stack to hold integers.

5.1.1 Implementing a Stack using an Array

The obvious implementation of a stack is using an array and a pointer to the top of the stack. When
the stack outgrows the original array we allocate, we double the size of the array and copy the old
elements over. This technique is known as amortized doubling and is an efficient way to allocate
space for a datastructure whose size is not known when it is created.

60 Abstract Classes and Subtyping : 5.1 Abstracting over Implementations

class ARR_STACK is
private attr elems:ARRAY{INT};
private attr index:INT; -- Points to the next location to insert

create:SAME is
res::=new; res.elems:=#ARRAY{INT}(5); res.index := 0; return res;
end;

push(e:INT) is
if index > elems.size then
new_elems:ARRAY{INT} := #ARRAY{INT}index * 2);
-- copy over the old elements
loop new_elems.set!(elems.elt!) end;
elems := new_elems;
end;
elems[index] := e;
index := index + 1;
end;

pop:INT is index := index - 1; return elems[index]; end;

is_empty:INT is return index = 0 end;
end;

It would be appropriate to also shrink the array when elements are popped from the stack, but we
ignore this complexity for now.

5.1.2 A Stack Calculator

The stack class we defined can now be used in various applications. For instance, suppose we wish
to create an calculator using the stack. This corresponds to a H-P style reverse polish notation cal-

class RPN_CALCULATOR is
private attr stack: ARR_STACK;

create:SAME is res ::=new; res.stack := #ARR_STACK; return res; end;
push(e:INT) is stack.push(e) end;

add:INT is
-- Add the two top two eleemnts
if stack.is_empty then empty_err; return O; end;
argl:INT := stack.pop;
if stack.is_empty then empty_err; return O end;
arg2:INT := stack.pop
return argl + arg2;
end;

private empty_err is #£ERR+"No operands available!" end;
end;

culator (RPN) where you first enter operands and then an operator.

Abstract Classes and Subtyping : 5.1 Abstracting over Implementations 61

5.1.3 A Linked List Representation of a Stack

An alternative implementation of a stack might make use of a chain of elements i.e. a linked list
representation. Each link in the chain has a pointer to the next element

class STACK_ELEM_HOLDER is
readonly attr data:INT;
attr next:INT_STACK_ELEM,;
create(data:INT):SAME is
res ::= new; res.data := data; res.next := void; return res;
end;
end;

The whole stack is then constructed using a chain of element holders

class LINK_STACK is
private attr head:STACK_ELEM_HOLDER;
create:SAME is res ::= new; return res; end;

push(e:INT) is
elem_holder ::= #STACK_ELEM_HOLDER(e);
elem_holder.ext := head;
head := elem_holder;

end;

pop:INT is
res:INT := head.data;
head := head.next;
end;

is_empty:BOOL is return void(head) end;
end;

5.1.4 Switching Representations:Polymorphism

Each of these stack implementations has advantages and disadvantages (the trade-offs are not very
significant in our example, but can be quite considerable in other cases). Either of these stacks could
be used in our calculator. To use the linked list stack we would need to rRRRc&TACKby

by LINK_STACK. wherever it is used.

It would be nice to be able to write code such that we could transparently replace one kind of stack
by the other. If we are to do this, we would need to be able to refer to them indirectly, through some
interface which hides which particular implementation we are using. Interfaces of this sort are de-
scribed by abstract classes in Sather. An abstract class that describes the stack abstraction is

abstract class $STACK is
create:SAME;
push(e:INT);
pop:INT;
is_empty:BOOL;

end;

62 Abstract Classes and Subtyping : 5.2 Abstract Class Definitions

Note that the interface just specifies the operations on the stack, and says nothing about how they are
implemented. We have to then specify how our two implementations conform to this abstraction.
This is indicated in the definition of our implementations. More details on this will follow in the
sections below.

class ARR_STACK < $STACK is ... same definition as before ...

class LINK_STACK < $STACK is ... same definition as before ...

The calculator class can then be written as follows

class RPN_CALCULATOR is
private attr stack:$STACK;
create(s:$STACK):SAME is res::= new; res.stack:=s; return res; end;

... 'add’ and 'push’ behave the same
end;

In this modified calculator, we provide a stack of our choice when creating the calculator. Any im-
plementation that conforms to our stack abstraction my be used in place of the array based stack

S:LINK_STACK := #LINK_STACK;
calc:RPN_CALCULATOR := #RPN_CAICULATOR(s);
calc.push(3); calc.push(5);

#0UT+calc.add; -- Prints out 8

5.2 Abstract Class Definitions

The body of an abstract class definition consists of a semicolon separated list of signatures. Each
specifies the signature of a method without providing an implementation at that point. The argument
names are required for documentation purposes only and are ignored.

abstract class $SHIPPING_CRATE is
destination:$LOCATION;
weight:FLT;

end; -- abstract class $SHIPPING_CRATE

Due to the rules of subtyping, which will be introduced on page 67, there is one restriction on the
signatures -SAMBHs permitted only for a return type or out arguments in an abstract class signature.

Abstract types can never be created! Unlike concrete classes, they merely specify an interface

to an object, not an object itself. All you can do with an abstract type is to declare a variable to be of
that type. Such a variable can point to any actual object which is a subtype of that abstract class. How
we determine what objects such an abstract variable can point to is the subject of the next section.

Note that we can, of course, provide a create routine in the abstract class

abstract class $SHIPPING_CRATE is
create:SAME; ...

Abstract Classes and Subtyping : 5.2 Abstract Class Definitions 63

However, we can never call this creation routine on a void abstract class i.e. the following is pro-
hibited

crate:$SHIPPING_CRATE := #$SHIPPING_CRATE; -- ILLEGAL
In fact, all class calls (:: calls) are prohibited on abstract classes

FFLT := $SHIPPING_CRATE::weight; -- ILLEGAL
Since abstract classes do not define objects, and do not contain shared attributes or constants, such
calls on the class are not meaningful.

Example: An abstract employee

$EMPLOYEHllustrates an abstract typeMPLOYEE andMANAGERare subtypes. Abstract type
definitions specify interfaces without implementations.. Below, we will illustrate how the abstract
type may be used.

abstract class $SEMPLOYEE is
-- Definition of an abstract type. Any concrete class that
-- subtypes from this abstract class must provide these routines.
name:STR,;
id:INT;
end,;

This abstract type definition merely states that any employee must have a name and an id.

More abstract class examples

Here’s an example from the standard library. The abstract®BRR represents the set of types
that have a way to construct a string suitable for output. All of the standard types BNIEhFST,
BOOLandCPXknow how to do this, so they are subtype$8TR Attempting to subtype from
$STRa concrete class that didn’t providesta method would cause an error at compile time.

abstract class $STR is
-- Ensures that subtypes have a ’str’ routine
str:STR,; -- Return a string form of the object
end;

64 Abstract Classes and Subtyping : 5.3 Subtyping

5.3 Subtyping

As promised, here is the other half of inheritance, subtyping. A subtyping ckuséoflowed by
type specifiers) indicates that the abstract signatures of all types listed in the subtyping clause are
included in the interface of the type being defined. In the example, the subtyping clause is

abstract class $SHIPPING_CRATE< $CRATE is ...

The interface of an abstract type consists of any explicitly specified signatures along with those in-
troduced by the subtyping clause.

Points to note about subtyping:
» Every type is automatically a subtype$iB
» Only abstract types can be mentioned in the subtyping clause

* When a subtyping clause is used in a partial class, it enforces the basic subtyping rule using
the stub routine.

» There must be no cycle of abstract types such that each appears in the subtype list of the next,
ignoring the values of any type parameters but not their number.

* A subtyping clause may not referS&\ME

« SAMEs only permitted as a return type oraut arguments in abstract class signatures.

5.3.1 The Type Graph

We frequently refer to the Sather type graph, which is a graph whose nodes represent Sather types
and whose edges represent subtyping relationships between sather types. Subtyping clauses intro-
duce edges into the type graph. There is an edge in the type graph from each type in the subtyping
clause to the type being defined. The type graph is acyclic, and may be viewed as a tree with cross
edges (the root of the treei®B which is an implicit supertype of all other types).

abstract class STRANSPORT is ...

abstract class $FAST is ...

abstract class $SROAD_TRANSPORT < $TRANSPORT is ...
abstract class $AIR_TRANSPORT < $TRANSPORT, $FAST is ...
class CAR < $SROAD_TRANSPORT is ...

class DC10 < $AIR_TRANSPORT is ...

Abstract Classes and Subtyping : 5.3 Subtyping 65

Since it is never possible to subtype from a concrete class (a reference, immutable or external class),
these classes, CAR and DC10 form the leaf nodes of the type graph.

$OB (implicit supertype of all classes)

}I’ﬁANSPORT /($FAST
$ROAD_TRANSPORT $AIR_TRANSPORT
CAR IiClO

5.3.2 Dynamic Dispatch and Subtyping

Once we have introduced a typing relationship between a parent and a child class, we can use a vari-
able of the type of the parent class to hold an object with the type of the child. Sather supports dy-
namic dispatch - when a function is called on a variable of an abstract type, it will be dispatched to
the type of the object actually held by the variable. Thus, subtyping provides polymorphism.

An example: Generalizing Employees

To illustrate the use of dispatching, let us consider a system in which variables denote abstract em-
ployees which can be eithelANAGERr EMPLOYEIBbjects. Recall the defintions of manager and
employee

class EMPLOYEE < $SEMPLOYEE s ...
-- Employee, as defined earlier

class MANAGER < $EMPLOYEE is ...
-- Manager as defined earlier on page 36

66 Abstract Classes and Subtyping : 5.4 Supertyping

The above defintions can then be used to write code that deals with any employee, regardless of
whether it is a manager or not

class TESTEMPLOYEE is
main is
employees:ARRAY{$EMPLOYEE} := #ARRAY{$EMPLOYEE}(3);
-- employees is a 3 element array of employees
iZINT := 0; wage:INT := 0;
loop until!(i = employees.size);
emp:$EMPLOYEE := employees]i];
emp_wage:INT := emp.wage;
-- emp.wage is a dispatched call on "age’
wage := wage+emp_wage;
end;
#0OUT+wage+"\n";
end;
end;

The main program shows that we can create an array that holds either regular employees or manag-
ers. We can then perform any action on this array that is applicable to both types of employees. The
wage routine is said to beispatched . At compile time, we don’t know which wage routine will

be called. At run time, the actual class of the object held bgrtipevariable is determined and the

wage routine in that class is called.

5.4 Supertyping

Unlike most other object oriented languages, Sather also allows the programmer to introduce types
above an existing class. A supertyping clause (followed by type specifiers) adds to the type

graph an edge from the type being defined to each type in the supertyping clause. These type speci-
fiers may not be type parameters (though they may include type parameters as components) or ex-
ternal types. There must be no cycle of abstract classes such that each class appears in the supertype
list of the next, ignoring the values of any type parameters but not their number. A supertyping clause
may not refer tSAME

If both subtyping and supertyping clauses are present, then each type in the supertyping list must be
a subtype of each type in the subtyping list using only edges introduced by subtyping clauses. This
ensures that the subtype relationship can be tested by examining only definitions reachable from the
two types in question, and that errors of supertyping are localized.You define supertypes of already
existing types. The supertype can only contain routines that are found in the subtype i.e. it cannot
extend the interface of the subtype.

abstract class $IS_EMPTY > $LIST, $SET is
is_empty:BOOL;
end;

Abstract Classes and Subtyping : 5.5 Type Conformance 67

5.4.1 Using supertyping

The main use of supertyping arises in defining appropriate type bounds for parametrized classes, and
will be discussed in the next chapter (see Supertyping and Type Bounds on page 89).

5.5 Type Conformance

In order for a child class to legally subtype from a parent abstract class, we have to determine wheth-
er the signatures in the child class are consistent with the signatures in the parent class. The consis-
tency check must ensure that in any code, if the parent class is replaced by the child class, the code
would continue to work. This guarantee of substuitability which is guaranteed to be safe at compile
time is at the heart of the Sather guarantee of type-safety.

5.5.1 Contravariant conformance

The type-safe rule for determining whether a signature in a child class is consistent with the defini-
tion of the signature in the parent class is referred to as the conformarcd&elerule is quite
simple, but counter-intuitive at first. Assume the simple abstract classes which we will use for ar-
gument types

abstract class $UPPER is ...
abstract class $MIDDLE < $UPPER is...
abstract class $LOWER < $MIDDLE is ...

If we now have an abstract class with a signature

abstract class $SUPER is
foo(al:$MIDDLE, out a2:$MIDDLE, inout a3:$MIDDLE):$MIDDLE;
end;

What are the arguments typesfad in a subytpe o8SUPER The rule says that in the subtype
definition of foo

* Normal arguments (with the mode) must have the same type or a supertypes

e out arguments and return values must have the same type or a subtype

e inout arguments must have the same type

1. Frequently called the contravariant conformance rule to distinguish it from the more restrictive C++ rule of
invariance and the unsafe Eiffel rule (of covariance in the argument types). Hence, the co- vs. contra variance
debate just refers to the behavior of the argument types

68 Abstract Classes and Subtyping : 5.5 Type Conformance

Thus, a valid subtype $#SUPERis

abstract class $SUPER is
foo(al:$MIDDLE, out a2:$MIDDLE, inout a3:$MIDDLE):$MIDDLE;
end;

We will explain this rule and its ramifications using an extended example.

Suppose we start with herbivores and carnivores, each of which are capable of eating

abstract class $HERBIVORE is
eat(food:$PLANT); $FOOD
abstract class $CARNIVORE is
eat(food:$MEAT); SMEAT SPLANT
abstract class $FOOD is ...
_abstract class $PLANT < $FOOD
%:s:tract class $MEAT < $FOOD $Cé§t’(\l$!\l\g%§$) $HE§tI(3${\|:/>(|_)AR§T)

What does not work

It would appear that both herbivores and carnivores could be subtypes of omnivores.

abstract class $OMNIVORE is eat(food:$FOOD);
abstract class SCARNIVORE < $OMNIVORE is ..
abstract class SHERBIVORE < SOMNIVORE s ...

Howeversubtyping conformance will not permit this! The argument to eat 83HERBIVORE
is SPLANTwhich is not the same as or a supertypeF@ODthe argument to eat BOMNIVORE

To illustrate this, consider a variable of tyf@MNIVORE,which holds a herbivore.

cow:$HERBIVORE := -- assigned to a COW object
animal:3OMNIVORE := cow;

meat:$MEAT;

animal.eat(meat);

Abstract Classes and Subtyping : 5.5 Type Conformance 69

This last call would try to feed the animal meat, which is quite legal according to the signature of
SOMNIVORE::eat($FOOD) , sinceSMEATis a subtype dSFOOD However, the animal happens
to be a cow, which is a herbivore and cannot eat meat.

~ rd
\\QOMNIVORE::eaI@FODDf

7~
~
// /\)\
P ~

$CARNIVORE::eat(SMEAT) SHERGIVORE:-eat(SPLANT)
~

// ~

What does work

When contravariance does not permit a subtyping relationship this is usually an indication of an ex-
ceptional case or an error in our conceptual understanding. In this case, we note that omnivores are
creatures that can eat anything. But a herbivore really is not an omnivore, since it cannot eat any-
thing. More importantly, a herbivore could not be substuted for an omnivore. It is, however, true
that an omnivore can act as both a carnivore and a herbivore.

abstract class $CARNIVORE is eat(food:$MEAT); ...

abstract class $HERBIVORE is eat(food:$PLANT);...

abstract class $OMNIVORE < $HERBIVORE, $CARNIVORE is
eat(food:$FOOD); ...

The argument of eat in the omnivor&OOD which is a supertype 8MEAT the argument of eat
in SCARNIVORE $FOODis also a supertype d8PLANT which is the argument of eat $iHER-
BIVORE

$CARNIVORE::eat($MEAT) $HERBIVORE:€at($PLANT) oo

$OMNIVORE::eat($FOOD) SMEAT $PLANT

5.5.2 Subtyping = substitutability

A key distinction is that between is-a and as-a relationships. When a cla$&MByVOREuUb-

types from another class such$ARNIVOREIt means that an omnivore can be used in any code
which deals with carnivores i.e. an omnivore can substitute for a carnivore. In order for this to work
properly, the child class omnivore must be able to betisaecarnivore. In many cases, an is-a re-
lationship does not satisfy the constraints required by the as-a relationship. The contravariant con-
formance rule captures the necessary as-a relationship between a subtype and a supertype.

70 Abstract Classes and Subtyping : 5.6 The typecase statement

5.6 The typecase statement

It is sometimes necessary to bypass the abstraction and make use of information about the actual
type of the object to perform a particular action. Given a variable of an abstract type, we might like
to make use of the actual type of the object it refers to, in order to determine whether it either has a
particular implementation or supports other abstractions.

Thetypecase statement provides us with the ability to make use of the actual type of an object
held by a variable of an abstract type.t

a:$0B :=5;

... some other code...

res:STR,;

typecase a

when INT then --'a’ is of type INT in this branch
#0OUT+"Integer result:"+a;

when FLT then --'a’is of type FLT in this branch
#0OUT+"Real result:"+a

when $STR then --'a’is $STR and supports .str’

#OUT+"Other printable result:"+a.str;

else
#0OUT+"Non printable result";

end,;

The typecase must act on a local variable or an argument of a method.On execution, each successive
type specifier is tested for being a supertype of the type of the object held by the variable. The state-
ment list following the first matching type specifier is executed and control passes to the statement
following thetypecase

Points to note
» Itis not legal to assign to tigpecase variable within the statement lists.

» If the object’s type is not a subtype of any of the type specifiers agidanclause is present,
then the statement list following it is executed.

» ltis a fatal error for no branch to match in the absence elsan clause.

» If the value of the variable imid when thelypecase is executed, then its type is taken to
be the declared type of the variable. In the above example, the declaredayps $OB ,
which does not match any of the branches, selge clause is taken

» The variable of the typecase must be a local variable or a method argument.

+ Ifthetypecase appears in an iterator, then the mode of the argument must either be a local
variable or amnce argument; otherwise, the type of object that such an argument holds could
change.

» The typecase does not search for the branch with the tightest match - it goes down the first
branch that matches.

Abstract Classes and Subtyping : 5.7 The Overloading Rule 71

» After a branch has been selected, the typecase tries to cast the variable to as narrow a type as
possible - if the declared type of the variable is actually stronger than (a subtype of) the chosen
branch, then the variable will keep the stronger, declared type. For instance

a:$SET{INT};
typecase a
when INT then ... -- a will never get here, INT is not < $SET{INT}
when $OB then ...
-- a has the type of $SET{INT} which is stronger than $0B

Typecase Example

For instance, suppose we want to know the total number of subordinates in an array of general em-
ployees.

peter ::= #EMPLOYEE("Peter",1); -- Name = "Peter”, id = 1
paul ::= #MANAGER("Paul",12,10); --id = 12,10 subordinates
mary ::= #MANAGER("Mary",15,11); -- id = 15,11 subordinates

employees:ARRAY{$EMPLOYEE} := |peter,paul,mary];
totalsubs:INT := 0;
loop employee:$EMPLOYEE := employees.elt!; -- yields array elements
typecase employee
when MANAGER then
totalsubs := totalsubs + employee.numsubordinates;
else end;
end;
#0OUT+"Number of subordinates:"+totalsubs+"\n";

Within each branch of the typecase, the variable has the type of that branch (or a more restrictive
type, if the declared type of the variable is a subtype of the type of that branch).

5.7 The Overloading Rule

We mentioned an abridged form of the overloading rule in the chapter on Classes and Objects. That
simple overloading rule was very limited - it only permitted overloading based on the number of
arguments and the presence or absence of a return value. Here, it is generalized.

As a preliminary warning:the overloading are flexible, but are intended to support the coexistance
of multiple functions thahave the same meaning, but differ in some implementation de-

tail. Calling functions that do different things by the same name is wrong, unwholesome and se-
verely frowned upon! For instance, using the function nimes with different number of
arguments to mean 'multiply’ and 'multiply and add’.

72 Abstract Classes and Subtyping : 5.7 The Overloading Rule

5.7.1 Extending Overloading

Overloading based on Concrete Argument Types

However, we often want to overload a function based on the actual type of the arguments. For in-
stance, it is common to want to define addition routipkss() that work for different types of val-
ues. InthdNT class, we could define

plus(a:INT):INT is ...
plus(a:FLT):INT is ...

We can clearly overload based on a the type of the argument if it is a non-abstract class - at the point
of the call, the argument can match only one of the overloaded signatures.

Overloading based on Abstract Argument Types

Extending the rule to handle abstract types is not quite as simple. To illustrate the problem, let us
first introduce th&STR abstract class

abstract class $STR is
str:STR;
end;

The$STRabsraction indicates that subtypes provide a routine that renders a string version of them-
selves. Thus, all the common basic types sudiBsBOOL etc. are subtypes 85TRand provide
astr: STR routine that returns a string representation of themselves.

Now consider the interface to tRéLE class. In the file class we would like to have a general
purpose routine that appends any®EI R object, by calling the str routine on it and then appending

the resulting string. This allows us to append any subty8DRto a file at the cost of a run-time
dispatch. We also want to define more efficient, special case routines (that avoid the dispatched call
to the str routine) for common classes, such as integers .

class FILE is

-- Standard output class
(1) plus(s:$STR) is ...
(2) plus(s:INT) is ...

The problem arises at the point of call

f:FILE := FILE::open_for_read("myfile");
a:INT :=3;
f+a;

Now which plus routine should we invoke? Clearly, both routines are valid,Islfices a subtype

of $STR We want thestrongestor most specifiamong the matching methods, (2) in the example
above. Though the notion of the most specific routine may be clear in this case, it can easily get
murky when there are more arguments and the type graph is more complex.

Abstract Classes and Subtyping : 5.7 The Overloading Rule 73

The Demon of Ambiguity

It is not difficult to construct cases where there is no single most specific routine. The following ex-
ample is hypotheical and not from the current Sather library, but illustrates the point. Suppose we
had an abstraction for classes that can render a binary versions of themselves. This might be useful,
for instance, for the floating point classes, where a binary representation may be more compact and
reliable than a decimal string version

abstract class $BINARY_PRINTABLE is
-- Subtypes can provide a binary version of themselves
binary_str:STR;

end;

Now suppose we have the following interface toRHeéE class

class FILE is

(1) plus(s:$STR) is ..

(2) plus(s:$BINARY_STR) is ...
(3) plus(s:INT) is ...

Now certain classes, suchRisT could subtype frorBBINARY_STRinstead of fron$STR. Thus,
in the following example, second plus routine would be seletected

f:FILE;
f+3.0;

Everything is still fine, but suppose we now consider

class FLTD < $BINARY_STR, $STR is
binary_str:STR is ... binary version
str:STR is ... decimal version

The plus routine iffILE cannot be unambiguously called with an argument of g i.e. a call
like 'f+3.0d’ is ambiguous. None of the 'plus’ routines match exactly; (1) and (2) both match
equally well.

The above problem arises because neither (1) nor (2) is more specific than the other - the problem
could be solved if we could always impose some ordering on the overloaded methods, such that
there is a most specific method for any call.

We could resolve the above problem by rulingRHeE class to be illegal, since there is a common
subtype to bot8STRand$BINARY_STR namelyLTD. Thus, a possible rule would be that over-
loading based on abstract arguments is permitted, provided that the abstract types involved have no
subtypes in common.

However, the problem is somewhat worse than this in Sather, since both subtyping and supertyping
edges can be introduced after the fact. Thus, if we have the following definifhi Df

class FLTD < $BINARY_STR is
binary_str:STR is ...
str:STRis ...

74 Abstract Classes and Subtyping : 5.7 The Overloading Rule

the file class will work. However, at a later point, a user can introduce new edges that cause the same
ambiguity described above to reappear!

| abstract class $BRIDGE_FLTD < $STR > FLTD is end;

Adding this new class introduces an additional edge into the
$STR $BINARY_STR type graph and breaks existing code.

$BRIDGE_FLTD The essense of the full-fledged overloading rule avoids this

/v problem by requiring that the type of the argument in one of
the routines must be known to be more specific than the type

of the argument in the corresponding position in the other rou-

tine. Insisting that a subtyping relationship between corre-

sponding arguments must exist, effectively ensures that one of the methods will be more specific in

any given context. Most importantly, this specificity cannot be affected by the addition of new edges

to the type graph. Thus, the following definitior3&NARY_STRwould permit the overloading

in theFILE class to work properly

FLTD

abstract class $BINARY_STR < $STR is
binary_str:STR;

end;
$STR When the 'plus’ routine is called with aFLTD, the routine
T 'plus($BINARY_STRY)’ is unambiguously more specific than
'plus($STRY’
$BINARY_STR
FLTD

5.7.2 Permissible overloading

Two signatures (of routines or iterators) can overload, if they can be distinguished in some manner.
The obvious ways to distinguish between two routines at the point of call are by looking at how many
arguments each has, whether or not a return type is present and whether one of the marked modes is
different. Distinguishing between two routines based on the types of the arguments is trickier, as has
been described above. Basically, it is possible to unambiguously distinguish between two routines
based on the argument types, if there is a subtyping relationship between corresponding arguments,
making one routine more specific than the other for any particular call. More precisely, two routines
must differ in one of the following ways in order to coexist in a single interface

Overload 1: The presence/absence of a return value

Overload 2: The number of arguments

Overload 3: In at least one case corresponding arguments must have different marked modes (in
and once modes are not marked at the point of call and are treated as being the same from the
point of view of overloading).

Abstract Classes and Subtyping : 5.7 The Overloading Rule 75

Overload 4: In at least one of thén, once or inout argument positionsaj both types
must be concrete and different bi) ¢here must be a subtyping relationship between the corre-
sponding arguments i.e. one must be more specific than the other. Note that this subtyping or-
dering between the two arguments cannot be changed by other additions to the type graph, so
that working libraries cannot be broken by adding new code.

Note that this definition of permissible permissible coexistance is the converse of the definition of
conflict in the specification. That is, if two signatures cannot coexist, they conflict and vice-versa.

abstract class $VEC is ...
abstract class $SPARSE_VEC < $VEC is ...
abstract class $DENSE_VEC < $VEC is...

class DENSE_VEC < $DENSE_VEC is ...
class SPARSE_VEC < $SPARSE_VEC is

Given the above definitions of vectors, we can define a multiply and add routine in the matrix class

abstract class SMATRIX is

(1) mul_add(by1:$VEC, add1:$SPARSE_VEC);

(2) mul_add(by2:$DENSE_VEC, add2:$VEC);

-- (1) and (2) can overload, since the arg types can be ordered
-- by2:$DENSE_VEC < by1:$VEC,
-- add2:$VEC > add1:.$SPARSE_VEC

(3) mul_add(by3:DENSE_VEC, add3:SPARSE_VEC);
-- (3) does not conflict with the (1) and (2) because there
-- is a subtyping relation between corresponding arguments.
--(vs 1) by3:DENSE_VEC < byl:$VEC,
-- add3:SPARSE_VEC < add1:$SPARSE_VEC
-- (vs 2) by3:DENSE_VEC < by2:$DENSE_VEC,
-- add3:SPARSE_VEC < add2:$VEC

While any of the above conditions ensures that a pair of routines can co-exist in an interface, it
still does not describe which one will be chosen during a call.

Finding matching signatures

When the time comes to make a call, some of the coexisting routines will match - these are the rou-
tines whose arguments are supertypes of the argument types in the call. Among these matching sig-
natures, there must be a single most specific signature. In the example below, we will abuse Sather
notation slightly to demonstrate the types directly, rather than using variables of those types in the
arguments

f:SMATRIX;

f.mul_add(DENSE_VEC, SPARSE_VEC); -- Matches (1), (2) and (3)
f.mul_add($DENSE_VEC, $SPARSE_VEC); -- Matches (1) and (2)
f.mul_add($DENSE_VEC, $DENSE_VEC); -- Matches (2)
f.mul_add($SPARSE_VEC, SPARSE_VEC); -- Matches (1)

76 Abstract Classes and Subtyping : 5.7 The Overloading Rule

Finding a most specific matching signature

For the method call to work, the call must now find an unique signature which is most specific in
each argument position

E:SMATRIX;

f.mul_add(DENSE_VEC, SPARSE_VEC) -- (3) is most specific
f.mul_add($DENSE_VEC, $DENSE_VEC); -- Only one match
f.mul_add($SPARSE_VEC, $SPARSE_VEC); -- Only one match

The method calf.mul_add($DENSE_VEC, $SPARSE_VEC)’ is illegal, since both (1) and
(2) match, but neither is more specific.

More examples
Let us illustrate overloading with some more examples. Con'éiéa:A, out b:B);’

All the following can co-exist with the above signature

foo(a:A, out b:B):INT -- Presence return value (Overload 1)
foo(a:A) -- Number of arguments (Overload 2)
foo(a:A, b:B) -- Mode of second argument (Overload 3)
foo(a:B, out b:B) -- Different concrete types in

-- the first argument (Overload 4a)

The following cannot be overloaded witho(a:A,out b:B):INT,;

foo(a:A,b:B):BOOL; -- Same number, types of arguments ,
-- both have a return type.
-- Difference in actual return type cannot be used to overload

For another example, this time using abstract classes, consider the mathematical abstraction of a ring
over numbers and integers. The following can be overloaded witpltis¢ function in a class
which describes the mathematical notion of rings

abstract class $RING is
plus(arg:$RING):$RING;

abstract class $INT < $RING is
plus(arg:$INT):$RING;
-- By Overload 4 since he type of arg:$INT < arg:$RING

abstract class $CPX < $RING is
plus(arg:$CPX):$RING;
- - By Overload 4b, since the type of arg:$CPX < arg:$RING

Abstract Classes and Subtyping : 5.7 The Overloading Rule 77

The overloading works because there is a subtyping relationship between the arguments ’arg’ to
'plus’ The following overloading also works

abstract class $RING is
mul_add(ring_arg1:$RING, ring_arg2:$RING);

abstract class $INT < $RING is
mul_add(int_arg1l:$INT, int_arg2:$INT);
--int_arg1l:$INT <ring_arg:$INT and
- int_arg2:$INT < ring_arg2:$INT

Now there is a subtyping relationship betw&&NT::mul_add and$RING::mul_add for
both’argl’ and'arg2’ , but there is no subtyping

This somewhat complex rule permits interesting kinds of overloading that are needed to implement
a kind of statically resolved, type-safe co-variance which is useful in the libraries, while not sacri-
ficing compositionality. Externally introducing subtyping or supertyping edges into the typegraph
cannot suddenly break overloading in a library.

5.7.3 Overloading as Statically resolved Multi-Methods

For the curious reader, we would like to point out a connection to the issue of co and contra-vari-
ance. It was this connection that actually motivated our overloading rules. The first point to note is
that overloading is essentially like statically resolved multi-methods i.e. methods that can dispatch
on more than one argument. Overloaded methods are far more restricted than multi-methods since
the declared type must be used to perform the resolution. The second point to note is that multi-
methods can permit safe 'covariance’ of argument types. For instance, consider the following ab-
stractions

abstract class $FIELD_ELEMENT is
add(f:$FIELD_ELEMENT):$FIELD_ELEMENT;

abstract class $SNUMBER < $FIELD_ELEMENT is
add(fF$NUMBER):$NUMBER

abstract class $INTEGER < $NUMBER is
add(f:$INTEGER):$INGEGER

Note that all the above definitions of tlaeld’ routines safely overload each other. As a conse-
guence, it is possible to provide more specific versions of functions in sub-types.

5.7.4 Conflicts when subtyping

When we described subtyping earlier, we said that the interface of the abstract class being defined is
augmented by all the signatures of the types in the subtyping clause. But what if some of these su-
pertypes contain conflicting signatures?

78 Abstract Classes and Subtyping : 5.7 The Overloading Rule

It is important to note that a conflict occurs when two signatures are so similar that they cannot co-
exist by the over-loading rules. This happens when there is not even one argument where there is a
sub- or supertyping relationship or where both arguments are concrete. As a consequence, you can
always construct a signature thatrisre generathan the conflicting signatures

abstract class $ANIMAL is ...

abstract class $PIG < $ANIMAL is ...

abstract class $COW < SANIMAL is ...

abstract class $COW_FARM is has(a:3COW); end;
abstract class $PIG_FARM is has(a:$PIG); end;

abstract class $SANIMAL_FARM < $COW_FARM, $PIG_FARM is
-- The signatures for has(a:$COW) and has(a:$PIG) must
-- be generalized
has(a:$5ANIMAL);
-- $ANIMAL is a supertype of $COW and $PIG, so this 'has’
-- conforms to both the supertype 'has’ signatures
end;

In the above example, when we create a more general farm, we must provide a signature that con-
forms to all the conflicting signatures by generalizing the in arguments. If the arguments in the par-
ent used theout mode, we would have to use a subtype in the child. A problem is exposed if the
mode of the arguments in the parentsidt

abstract class $COW_FARM is processes(inout a:$COW); end;
abstract class $PIG_FARM is processes(inout a:$PIG); end;

-- ILLEGAL! abstract class $ANIMAL_FARM < $COW_FARM, $PIG_FARM is
-- No signature can conform to both the 'processes’ signatures
-- in the $COW_FARM and $PIG_FARM

5.7.5 Conflicts during code inclusion

Since Sather permits inclusion from mulitple classes, conflicts can easily arise between methods
from different classes. The resolution of inclusion conflicts is slightly different for attributes than it
is for methods, so let us consider them separately.

Abstract Classes and Subtyping : 5.7 The Overloading Rule 79

Conflicting Methods

1. First, let us consider the resolution method for routines. Conflicts can occur between
methods in different classes that have been included and must be resolved by renam-
ing the offending feature in all but one of the included classes.

class PARENTL1 is foo(INT):INT;

class PARENT2 is foo(INT):BOOL; -- conflicts with PARENT1::foo
class PARENT3 is foo(INT):FLT; -- would similarly conflict
class CHILD is

include PARENT1 foo -> parentl_foo;

-- Include and rename away the routine ‘foo’
include PARENT2 foo -> parent2_foo;

-- Include and rename away the routine ‘foo’
include PARENTS3;

-- Use the routine from this class

2. The other way to resolve method conflicts is to explicitly define a method in the child
class that will then over-ride all the parent methods.

class CHILD is
include PARENT1;
include PARENTZ2;
include PARENTS3;
foo(INT):BOOL is
-- over-rides all the included, conflicting routines.

Conflicting Attributes

With conflicting attributes (including shareds and consts), the offending attribustise renamed
away, even if they are going to be replaced by other attributes i.e. Method 2 described above is not
allowed for attributes:

class PARENT is
attr foo:INT;
class CHILD is
foo:BOOL; - ILLEGAL!
-- Confiicts with the included reader for 'foo’ i.e. foo:INT

Also the implicit reader and writer routines of attributes defined in the child must not conflict with
routines in a parent

class PARENT is
foo(arg:INT);
class CHILD is
include PARENT;
- ILLEGAL! attr foo:INT;
-- the writer routine foo(INT) conflicts
-- with the writer for the include attribute foo(INT)

In other words, as far as attributes are concerned, they must always be explicitly renamed away - they
are never silently over-ridden.

80 Abstract Classes and Subtyping : 5.8 When Covariance Ails You

5.7.6 Points to note

» Itis not possible to overload based based solelyubn orinout arguments (by the pre-con-
dition for applying the overload rule 4a and 4b)

* When a class explicitly defines a signature and includes a conflicting signature from another
class, the included signature is over-ridden. This might lead to included signatures unexpected-
ly disappearing, instead of overloading.

» In certain special cases, subtyping from two classes with conflicting signatures thiat use
orinout arguments might not be possible, since the conflict cannot be resolved.

5.7.7 Overloading in Parametrized Classes

The overloading rule for parametrized classes is discussed on page 92

5.7.8 Why not use the return type to resolve conflicts?

According to the current overloading rules, the type of the return valueuandrguments cannot

be used to differentiate between methods in the interface. There is no theoretical reason to disallow
this possibility. However permitting overloading based on such return values involves significant
implementation work and was not needed for the usages we envisaged. Thus, overloading is not
permitted based on differences in the return typeof@r arguments, which are equivalent to re-

turn types) of a method

5.8 When Covariance Ails You

In some cases, however, one type can substitute for the other type but with a few exceptions. There
are several ways to deal with this problem when it occurs.

[This section attempts to provide some insight into dealing with covariance. It is not essential to
understanding the language, but might help in the design of your type hierarchy.]

5.8.1 But don't animals eat food?

We will consider the definition of an animal class, where both herbivores and carnivores are animals.

abstract class $ANIMAL is eat(food:$FOQOD);
abstract class $HERBIVORE < $ANIMAL is...
abstract class $CARNIVORE < $ANIMAL is...

Abstract Classes and Subtyping : 5.8 When Covariance Alils You 81

The problem is similar to that in the previous section, but is different in certain ways that lead to the
need for different solutions

5.8.2 Solution 1: Refactor the type hierarchy

The ideal solution would be to do what we did in the previous section - realize the conceptual prob-
lem and rearrange the type hierarchy to be more accurate. There is a difference in this case, though.
When considering omnivores, the 'eat’ operation was central to the definition of the subtyping rela-
tionship. In the case of animals, the eat operation is not nearly as central - the subtyping relationship
is determined by many other features, completely unrelated to eating. It would be unreasonable to
force animals to be subtypes of carnivores or herbivores.

5.8.3 Solution 2: Eliminate the offending method

A simple solution would be to determine whether we really need the 'eat’ routine in the animal class.
In human categories, it appears that higher level categories often contain features that are present,
but vary greatly in the sub-categories. The feature in the higher level category is not "operational”
in the sense that it is never used directly with the higher level category. It merely denotes the pres-
ence of the feature in all sub-categories.

Since we do not know the kind of food a general animal can eat, it may be reasonable to just omit
the 'eat’ signature from the definition of $ANIMAL. We would thus have

$SANIMAL (no eat signature)

N

$CARNIVORE::eat($MEAT) $HERBIVORE::eat($PLANT)

5.8.4 Solution 3: Dynamically Determine the Type

Another solution, that should be adopted with care, is to permit the 'eat($FOOD)’ routine in the an-
imal class, and define the subclasses to also eat any food. However, each subclass dynamically de-
termines whether it wants to eat a particular kind of food.

abstract class $SANIMAL is eat(arg:$FOOD); ...
abstract class $HERBIVORE < $ANIMAL is -- supports eat(f.$FOOD);

class COW < $HERBIVORE is
eat(arg:$FOQOD) is
typecase arg
when $PLANT then .. --eat it!
else raise "Cows only eat plants!"; end;
end;
end;

82 Abstract Classes and Subtyping : 5.8 When Covariance Ails You

The 'eat’ routine in the COW class accepts all food, but then dynamically determines whether the
food is appropriate i.e. whether it is a plant.

This approach carries the danger that if a cow is fed some non-plant food, the error may only be dis-
covered at run-time, when the routine is actually called. Furthermore, such errors may be discovered
after an arbitrarily long time, when the incorrect call to the 'eat’ routine actually occurs during exe-
cution.

This loss of static type-safety is inherent in languages that support co-variance, such as Eiffel. The
problem can be somewhat ameliorated through the use of type-inference, but there will always be
cases where type-inference cannot prove that a certain call is type-safe.

Sather permits the user to break type-safety, but only through the use of a typecase on the arguments.
Such case of type un-safety uses are clearly visible in the code and are far from the default in user
code.

5.8.5 Solution 4: Parametrize by the Argument Type

Another typesafe solution is to parametrize the animal abstraction by the kind of food the animal
eats.

Parametrized Classes and Arrays : 6.1 Parametrized concrete types 83

Parametrized Classes
and Arrays

All Sather classes may be parametrized by one or more type parameters. Type parameters are essen-
tially placeholders for actual types; the actual type is only known when the class is actually used.
The array class, which we have already seen, is an example of a parametrized class.Whenever a pa-
rameterized type is referred to, its parameters are specified by type specifiers. The class behaves like
a non-parameterized version whose body is a textual copy of the original class in which each param-
eter occurrence is replaced by its specified type. Parameterization may be thought of as a structured
macro facility, that generates different versions of a class, with no typing relationship between dif-
ferent parametrizations. Parameter names are local to the abstract class definition and they shadow
non-parameterized types with the same name. Parameter names must be all uppercase, and they may
be used within the abstract type definition as type specifiers.

6.1 Parametrized concrete types

As an example of a parametrized class, consider the class PAIR, which can hold two objects of ar-
bitrary types. We will refer to the types as T1 and T2:

class PAIR{T1,T2} is
readonly attr first:T1;
readonly attr second:T2;

create(a_first:T1, a_second:T2):SAME is
res ;= new;
res.first := a_first;
res.second := a_second;
return res;
end;
end;

84 Parametrized Classes and Arrays : 6.1 Parametrized concrete types

We can use this class to hold a pair of integers or a pair of an integer and a real etc.

¢ = #PAIR{INT,INT}(5,5); -- Holds a pair of integers
d ::= #PAIR{INT,FLT}(5,5.0); -- Holds an integer and a FLT
e 1= #PAIR{STR,INT}("this",5); -- A string and an integer

f:INT := e.second,;
g:FLT :=d.second;

Thus, instead of defining a new class for each different type of pair, we can just parametrize the PAIR
class with different parameters.

6.1.1 Why Parametrize?

Parametrization is normally presented as a mechanism for achieving efficiency by specializing code
to use particular types. However, parametrization plays an even more important conceptual role
in a language with strong typing like Sather.

For instance, we could define a pair to hold $OBs

class OB_PAIR is
readonly attr first,second:$OB;

create(a_first, a_second:$0OB):SAME is
res ;= new;
res.first ;= a_first;
res.second := a_second;
return res;
end;
end; -- class OB_PAIR

There is no problem with defining OB_PAIR objects; in fact, it looks a little simpler.

c :=#0OB_PAIR(5,5); --Holds a pair of integers
d ::= #OB_PAIR(5,5.0); -- Holds an integer and a FLT

However, when the time comes to extract the components of the pair, we are in trouble:
-- f:INT := e.second; ILLEGAL! second is declared to be a $OB

We can typecase on the return value:

f_ob:$OB := e.second;
f:INT;
typecase f_ob when INT then f :=f_ob end;

The above code has the desired effect, but is extremely cumbersome. Imagine if you had to do this
every time you removed an INT from an ARRAY{INT}! Note that the above code would raise an
error if the branch in the typecase does not match.

Parametrized Classes and Arrays : 6.2 Support for Arrays 85

The parametrized version of the pair container gets around all these problems by essentially anno-
tating the type of the container with the types of the objects it contains; the types of the contained
objects are the type parameter.

6.2 Support for Arrays

Arrays (and, in fact, most container classes) are realized using parametrized classes in Sather. There
is language support for the main array claBRAY{T} in the form of a literal expressions of the
form

a:ARRAY{INT} := [1,2,3[;

In addition to the standard accessing function, arrays provide many operations, ranging from trivial
routines that return the size of the array to routines that will sort arbitrary arrays. See the array class
in the container library for more details. There are several aspects to supporting arrays:

» Support for accessing array elements

» Support for objects which represent arrays

e Support for initializing these arrays using literals

6.2.1 Array Access

The form a[4]:=.. is syntactic sugar for a call of a routine narasdt ' with the array index
expressions and the right hand side of the assignment as arguments. In the class TRIO below we
have three elements which can be accessed using array notation.

class TRIO is
private attr a,b,c:FLT;
create:SAME is return new end;
aget(i:INT):FLT is
case i
when 0 then return a
when 1 then return b
when 2 then return ¢
else raise "Bad array index!\n"; end;
end;
aset(i:INT, val:FLT) is
case i
when 0 then a :=val;
when 1 then b :=val;
when 2 then ¢ :=val;
end;
end;

86 Parametrized Classes and Arrays : 6.2 Support for Arrays

The array notation can then be used with objects of type TRIO

trio:TRIO := #TRIO; -- Calls TRIO: create
trio[2] := 1;
#OUT+trio[2]; -- Prints out 1

See the section on operator redefinition (page 98) for more details.

6.2.2 Array Classes: Including AREF and calling new();

Sather permits the user to define array classes which support an array portion whose size is deter-
mined when the array is created. An object can have an array portion by in&&RERGT} .

class POLYGON is
private include AREF{POINT}
aget->private old_aget, aset->private old_aset;
-- Rename aget and aset

create(n_points:INT):SAME is
-- Create a new polygon with a 'n_points’ points
res:SAME := new(n_points); -- Note that the new takes
-- as argument of the size of the array
end;

aget(i:INT):POINT is
if i > asize then raise "Not enough polygon points!" end;
return old_aget(i);

end;

aset(i:INT, val:POINT) is
if i > asize then raise "Not enough polygon points!" end;
old_aset(i,val);
end;
end;

SinceAREF{T} already definemget’ and’aset’ to do the right thing, we can provide wrap-

pers around these routines to, for instance, provide an additional warning message. The above ex-
ample make use of tHOINT class from page 15. We could have also useBAtR class defined

on page 83. The following example uses the polygon class to define a triangle.

poly:POLYGON := #POLYGON(3);
poly[0] := #POINT(3,4);
poly[1] := #POINT(5,6);
poly[2] := #POINT(0,0);

Parametrized Classes and Arrays : 6.2 Support for Arrays 87

AREFdefines several useful routines:

asize:INT -- Returns the size of the array
aelt!'T; -- Yields successive array elements
aelt!(once beg:INT):T; -- Yields elements from index 'beg’
aelt!(once beg,once num:INT):T; -- Yields 'num’ elts from index 'beg’

aelt!(once beg,once num,once step:INT):T;

-- Yields 'num’ elements, starting at index 'beg’ with a 'step’
... Analgous versions of aset! ..
acopy(src:SAME); -- Copy what fits from 'src’ to self
acopy(beg:INT,src:SAME); -- Start copying into index 'beg’
acopy(beg:INT,num:INT,src:SAME);

-- Copy 'num’ elements into self starting at index 'beg’ of self
aind!:INT; -- Yields successive array indices

When possible, use the above iterators since they are built-in and can be more efficient than other
iterators.

6.2.3 Standard Arrays: ARRAY{T}

The classARRAY{T} in the standard library is not a primitive data type. It is based on a built-in
classAREF{T} which provides objects with an array portiokRRAYobtains this functionality us-

ing aninclude , but chooses to modify the visibility of some of the methods. It also defines addi-
tional methods such@ntains , sort etc. The methodaget , aset andasize are defined
asprivate in AREF, butARRAYredefines them to be public.

class ARRAY{T} is
private include AREF{T}
-- Make these public.
aget->aget,
aset->aset,
asize->asize;

contains(e:T):BOOL is ... end

end;

The array portion appears if there isiaclude path from the type tBREFfor reference types
or toAVAL for immutable types.

Array Literals

Sather provides support for directly creating arrays from literal expressions.

a:ARRAY{INT} :=2,4,6,8];
b:ARRAY{STR} := |"apple","orange"|;

The type is taken to be the declared type of the context in which it appears and it RRRA¥E{T}
for some typdl. An array creation expression may not appear

88 Parametrized Classes and Arrays : 6.3 Type Bounds

« as the right hand side of a2 ’ assignment
» as a method argument in which the overloading resolution is ambiguous

» as the left argument of the dot bperator.
a:INT := [1,2,3].size -- ILLEGAL

The types of each expression in the array literal must be subtypeEte size of the created array
is equal to the number of specified expressions. The expressions in the literal are evaluated left to
right and the results are assigned to successive array elements.

6.2.4 Multi-dimensional Arrays

Special support is neither present nor needed for multi-dimensional arraysagétie and

'aset’ routines can take multiple arguments, thus permitting multiple indices. The library does
provide ARRAY2 andARRAY3 classes, which provide the necesary index computation. All stan-
dard array classes are addressed in row-major order. However, the MAT class is addressed in column
major order for compatibility with external FORTRAN routiAesMulti-dimensonal array literals

may be expressed by nesting of standard array literals

a:ARRAY{ARRAY{INT}} = ||1,2,3|,3.4,5/,|5,6,7|l;

6.3 Type Bounds

When writing more complex parametrized classes, it is frequently useful to be able to perform op-
erations on variables which are of the type of the parameter. For instance, in writing a sorting algo-
rithm for arrays, you might want to make use of the "less than" operator on the array elements.If a
parameter declaration is followed by a type constraint clagsto(fowed by a type specifier), then

the parameter can only be replaced by subtypes of the constraining type. If a type constraint is not
explicitly specified, then< $OB’ is taken as the constraint. A type constraint specifier may not refer

to SAME The body of a parameterized class must be type-correct when the parameters are replaced
by any subtype of their constraining types this allows type-safe independent compilation.

For our example, we will return to employees and managers. Recall that the employee abstraction
was defined as:

abstract class $SEMPLOYEE is
name:STR;
id:INT;

end;

2. Efficiency in converting to FORTRAN was more important for mathematical entitites which will
be used with existing mathematical libraries such as BLAS and LAPACK, most of which are in
FORTRAN

Parametrized Classes and Arrays : 6.3 Type Bounds 89

We can now build a container class that holds employees. The container class makes use of a stan-
dard library class, a LIST, which is also parametrized over the types of things being held.

class EMPLOYEE_REGISTER{ETP < $EMPLOYEE} is
private attr emps:LIST{ETP};

create:SAME is res ::= new; res.emps := #; return res; end;
add_employee(e:ETP) is emps.append(e); end;
n_employees:INT is return emps.size end;

longest_name:INT is
-- Return the length of the longest employee name

i2INT :=0;
cur_longest:INT :=0;
loop

until!(i=n_employees);
employee:ETP := empsli];
name:STR := employee.name;
-- The type-bound has the ".name" routine
if name.size > cur_longest then
cur_longest := name.size;

end;

end;

return cur_longest;

end;
end;

The routine of interest is "longest_name". The use of this routine is not important, but we can imag-
ine that such a routine might be useful in formatting some printout of employee data. In this routine
we go through all employees in the list, and for each employee we look at the "name". With the type-
bound orETR, we know thaETP must be a subtype SEMPLOYEEHence, imusthave a routine
"name" which returns 8TR

If we did not have the typebound (there is an implicit typeboui$&, we could not do anything
with the resulting "employee"; all we could assume is that it vi#3Bx which is not very useful.

6.3.1 Why have typebounds?
The purpose of the type bound is to permit type checking of a parametrizedvelaadl possible

instantiations Note that the current compiler does not do this, thus permitting some possibly illegal
code to go unchecked until an instantiation is attempted.

6.3.2 Supertyping and Type Bounds

The need for supertyping clauses arises from our definitition of type-bounds in parametrized types.
The parameters can only be instantiated by subtypes of their type bounds.

90 Parametrized Classes and Arrays : 6.3 Type Bounds

You may, however, wish to create a parametrized type which is instantiated with classes from an ex-
isting library which arenot under the typebound you require. For instance, suppose you want to
create a class PRINTABLE_ SET, whose parameters must support both hash and the standard string
printing routinestr . The library contains the following abstract classes.

abstract class $HASH < $IS_EQis hash:INT; end;
abstract class $STR is str:STR; end;

However, our PRINTABLE_SET{T} must take all kinds of objects that support both $HASH and
$STR, such as integers, floating point numbers etc. How do we support this, without modifying the
distributed library?

abstract class $HASH_AND_STR > INT, FLT, STRis
hash:INT;
Str:STR,;

end;

class PRINTABLE_SET{T < $HASH_AND_STR} is ...
-- Set whose elements can be printed

str:STRis
loop res :=res+",".separate!(elt!.str); end;

return res;
end;

The PRINTABLE_SET class can now be instantiated using integers, floating point numbers and
strings. Thus, supertyping provides a way of creating supertypes without modifying the original
classes (which is not possible if the original types are in a different library).

Note that this inly useful if the original classes cannot be modifiedgeneral, it is usually far
simpler and easier to understand if standard subtyping is used.

A more complicated example arises if we want to create a sorted set, whose elements must be hash-
able and comparable. From the library we have.

abstract class $HASH < $IS_EQis hash:INT; end;

abstract class $IS_LT{T} <$IS_EQ is -- comparable values
is_lt(elt:T):BOOL;

end;

However, our SORTABLE_SET{T} must only take objects that support both $HASH and
SIS _LT{T}

abstract class $ORDERED_HASH{T} < $HASH, $IS_LT{T}is end;

class ORDERED_SET{T < $ORDERED_HASH{T}} is ...
-- Set whose elements can be sorted

sort is
-- ... uses the < routine on elements which are of type T
end;

Parametrized Classes and Arrays : 6.4 Parametrized Abstract Classes 91

The above definition works in a straightforward way for user classes. For instance, a POINT class
as defined below, can be used in a ORDERED_SET{POINT}

class POINT < SORDERED_HASH{POINT} is
-- define hash:INT and is_It(POINT):BOOL

But how can you create an ordered set of integers, for instance? The solution is somewhat laborious.
You have to create dummy classes that specify the subtyping link for each different parametrization
of SORDERED_HASH

abstract class $SDUMMY_INT > INT < $ORDERED_HASH{INT} is end;
abstract class $DUMMY_STR > STR < $ORDERED_HASH{STR} is end;
abstract class $SDUMMY_FLT > FLT <$ORDERED_HASH{FLT} is end;

Note that the above classes are only needed

$HASH $IS_LT{T} because we are not directly modifying INT
and FLT to subtype from
$ORDRED_HASH(T}. In the following dia-
$ORDERED_HASH(T} gram , recall that since there is no relationship

between different class parametrizations, it is

T:lN//(‘\T:FLT necessary to think of them as separate types.

$SDUMMY_INT $DUMMY_FLT

supertyping links |
|

INT FLT

6.4 Parametrized Abstract Classes

Abstract class definitions may alsogagameterized by one or more type parameters within enclos-

ing braces, with no implicit type relationship between different parametrizations of an abstract class.
Each type parameter may have an optional type bound; this forces any actual parameter to be a sub-
type of the corresponding type bound. Given the following definitions,

abstract class $A{T < $BAR} is
foo(b:T):T;
end; -- abstract class $A{T}

abstract $BAR is end;
class BAR < $BAR is end;

we may then instantiate an abstract variable a:$3A{BAR}. BAR instantiates the parameter T and
hence must be under the type bound for T, namely$BAR. If a type-bound is not specified then a type
bound of $OB is assumed.

92 Parametrized Classes and Arrays : 6.5 Overloading

How are different parametrizations related?

It is sometimes natural to want$&IST{MY_FOO} < $LIST{$MY_FOO} . Sather, however,
specifies no subtyping relationship between various parametrizations. Permitting such implicit sub-
typing relationships between different parametrizations of a class can lead to type safety violations.

6.5 Overloading

There are two aspects to the use of overloading in a parametrized class - one aspect is the behavior
of the interface of the parametrized class itself, and the other aspect is calls within the parametrized
class where one or more arguments have the type of one of the type parameters, or is related to the
type parameters through static type inference (see .

6.5.1 Overloading In the Parametrized Class Interface

Argument with the type of a class parameter cannot be used to resolve overloading (such an argu-
ment is similar to an 'out’ argument or a return type in this respect).

class FOO{T1<$STR ,T2<$ELT} is

(1) bar(a:T1);
(2) bar(a:T2);

Even though the type bounds for T1 and T2 are distinct and one is more specific than the other, this
is not a sufficient constraint on the actual instantiation of the parameter. In a class such as

FOO{ARRAY{INT}, ARRAY{INT}}

for instance, the two versions of 'bar’ will essentially be identical.

6.5.2 Overloading Resolution within the Parametrized Class

Note: The current ICSI compiler does not yet have this behaviour implemented. In the current com-
piler, overloading resolution is based on the actual instantiated class.

For all calls within the parametrized class, the resolution of overloading is done with respect to the
type bounds of the parameters. Consider a class that makes use of output streams

abstract class $OSTREAM is plus(s:$STR); end;

Parametrized Classes and Arrays : 6.5 Overloading 93

A parametrized class can then write to any output stream

class FOO{S < $OSTREAM} is
attr x,y:INT;

describe(s:S) is
s+"Self is:"; s+x; s+",";s+y;
end;
end;

Now, suppose we instantiate the cla€Owith aFILE

class FILE < $OSTREAM is
(1) plus(s:$STR) is ...
(2) plus(s:INT) is ...

a:FOO{FILE} := ..
f:FILE := FILE::open_for_read("myfile");
a.describe(f)

Only’'(1) plus($STR)’ will be called inFOO{FILE}, even though the more specifi2)
plus(INT)’ is available irFILE .

The reason for this behavior is to preseve the ability to analyze a stand alone class, which is needed
for separate compilation of parametrized classes - this requires that the behavior of the parametrized
class be completely determined by the typebounds and not based on the existance of specialized
overloaded routines in particular instantiations.

94

Parametrized Classes and Arrays : 6.5 Overloading

Operator Redefinition : 7.1 Method Names for Operators 95

Operator Redefinition

7.1 Method Names for Operators

It is possible to define operators such as + and * to work with objects of arbitrary classes. These
operators are transformed into standard routine calls in the class. Thus, if a class defines the routine
'plus’ you can then apply the + operator to objects from that class. For instance, the complex num-
ber class POINT could define the plus routine to mean pairwise addition

class POINT is
readonly attr x,y:INT;
create(x,y:INT):SAME is ... -- same as before
plus(s:POINT):POINT is return #POINT(x + s.X, y + s.y); end;

we can now use the plus routine on two points

p1l:POINT := #POINT(3,5);
p2:POINT := #POINT(4,6);
p3:POINT :=pl + p2; -- p3is set to the point 7,11

Most of the standard operators may be redefined; in some cases, redefining one operator such as the
< operator implicitly redefines the associated >, >= and <= operators. These operators are meant to
be used together in a consistent manner to indicate the mathematical notion of complete or partial
ordering. They are not intended to be used as a convenient short-hand for other purposes.

96 Operator Redefinition : 7.2 Operator expressions

7.2 Operator expressions

The following table shows how the standard operators are directly converted into routine calls.

Operator Routine Operator Routine
exprl+ expr2| expriplus(exprd exprl® expr2 expripow(exprd
exprl- expr2| expriminus(exprd exprl% expr2 exprimod(exprd
exprl* expr2| exprlimes(expr? expri< expr2 exprlis_lt(expr?
exprl/ expr2 expridiv(expr? exprl=expr2 exprlis_eq(expr?d

Table 1: Binary Operators

Below are the routines that correspond to unary operators, for arithmetic and logical negation.

Unary Operator Routine
- expr exprnegate
~ expr expmot

Table 2: Unary Operators

In addition to the unary and binary operators, there are additional operators that are defined in terms
of a combination of the unary and binary operators

Operator Translation Operator Translation
exprl<= expr2 exprds_lt(exprd.not exprl/= expr2 exprlis_eq(exprd.not
exprl>= expr2 exprlis_lt(exprd.not exprl> expr2 exprds_lt(expr)

Table 3: Compound Operators

The form’[expression list]’ is translated into a call on the routiaget. For instance,
a:=[3,5]; -- Equivalent to a := aget(3,5); Used in the array class
f:=arr[2]; -- Equivalent to f := arr.aget(2),; Used outside the array

This is described in more detail later.

3. Earlier versions of Sather 1.0 defined separate routines for each of these operators.

Operator Redefinition : 7.2 Operator expressions 97

Grouping

In addition to the above mentioned operators, it is possible to group expressions using plain paren-
theses, which have the highest precedence.

7.2.1 Operator precedence

The precedence ordering shown below determines the grouping of the syntactic sugar forms. Sym-
bols of the same precedence associate left to right and parentheses may be used for explicit grouping.
Evaluation order obeys explicit parenthesis in all cases.

Strongest . 0100
N
~ Unary -
* | %
+ Binary -
< <= = [= >= >
Weakest and or
Table 4:

Points to note

e The >, >= and /= operators are not directly translated into their own routine. Rather, they are
defined in terms of is_It and is_eq.

» Each of these transformations is applied after the component expressions have themselves
been transformed.

e ‘out 'and ‘inout ' modes may not be used with the syntactic sugar expressions.

» The ‘<="and ‘>’ expressions do not reverse the original left to right order of argument evalua-
tion.

e and’andor ' are not listed as syntactic sugar for operatiorB@OL; this allows short-cir-
cuiting the evaluation of subexpression.

» The aget and aset routines are meant to support array like indexed access and require at least
one index argument.

98 Operator Redefinition : 7.3 Array Access Routines

Syntactic sugar example

Here’s a formula written with syntactic sugar and the calls it is textually equivalent to. It doesn'’t
matter what the types of the variables are; the sugar ignores types.

-- Written using syntactic sugar
r:=(x"2 + y"2).sqrt;

-- Written without sugar
r:= (x.pow(2).plus(y.pow(2))).sqrt

7.3 Array Access Routines

Sather supports the standard array access syntax of square brackets. For instance:

a:ARRAY{INT} := |1,2,3|;

a[2] :=5; -- Sets the third element of the array to 5
#0OUT+a[0]; -- Prints out '1’

C:ARRAY2{INT} := ||1,2,3],|4,5,6],17,8,9][;

#OUT + c[2,2]; -- Prints out '9’

However, the array bracket notation is not built into the array class. It is just a short hand for the rou-
tinesaget andaset

a[2] :=5; -- equivalent to a.aset(2,5);
#0OUT+a[l]; -- equivalent to #0UT+a.aget(1);

Thus, classes which are not arrays can make use of the array notation as they please:

class INT is
-- The standard integer class
aget(i:INT):BOOL is -- returns the 'i'th bit of the integer
end;

In order for a class to actually have an array portion, it must inheritAREF{T} (if it is a refer-
ence class) oAVAL{T} if it is an immutable class. The array setting notation is not as useful for
immutable classes, since any modification of an immutable class must return a whole new object.

Immutable Classes : 8.1 Defining Immutable Classes 99

Immutable Classes

Sather has special support for classes that define immutable objects. Such objects cannot be mod-
ified after they have been created, and are said to have value semantics. Many of the basic types such
as integers and floating point numbers (the INT and FLT classes) are implemented using immutable
classes. This chapter illustrates how immutable classes may be defined, and highlights the peculiar-
ities in their usage that may trip up a beginning user.

At a fundamental level: immutable classes define objects which, once created, never change their
value. A variable of an immutable type may only be changed by re-assigning to that variable. When
we wish to only modify some portion of an immutable class, we are compelled to reassign the whole
object. For experienced C programmers the difference between immutable and reference classes is
similar to the difference between structs (immutable types) and pointers to structs (reference types).
Because of that difference, reference objects can be referred to from more than one variable
(aliased), while immutable objects cannot.

This section illustrates the definition of immutable types using a simple version of the complex num-
ber class, CPX. We also describe the benefits of immutable classes and when they should be used.
Finally, we close with a description of a how to transparently replace in immutable class by a stan-
dard reference class which implements value semantics.

8.1 Defining Immutable Classes

In most ways, defining and using immutable classes is similar to defining and using reference class-
es. Immutable classes consist of a collection of attributes and functions that can operate on the at-
tributes. Since we have already described reference classes in considerable detail, we will describe
immutable classes in terms of their differences from reference classes.

100 Immutable Classes : 8.1 Defining Immutable Classes

8.1.1 Immutable Class Example

We illustrate the use of immutable classes through the example of the complex class CPX. The ver-
sion shown here is a much simplified version of the library class. The key point to note is the manner
in which attribute values are set in the create routine.

immutable class CPX is
readonly attr real,imag:FLT;

create(re,im:FLT):SAME is
-- Returns a complex number with real and imaginary parts set
res:SAME;
res := res.real(re);
res := res.im(im);
return res;
end;

plus(c:SAME):SAME is

-- Return a complex number, the sum of 'self’ and c'.
return #SAME(real+c.real,imag+c.imag);

end;
end; -- immutable class CPX

The complex class may then be used in the following manner.

b:CPX := #(2.0,3.0);
d:CPX := #(4.0,5.0);
C:CPX := b+d;

8.1.2 Creating a new object

Unlike reference classes, instances of an immutable class are not explicitly allocated using the 'new’
expression. A variable of an immutable class always has a value associated with it, from the point
of declaration. In the example above, the return variable of the create routine ,res’ simply has to be
declared.

8.1.3 Initial value of immutable objects

The initial value of an immutable object is defined to have all its fields set to the 'void’ value and this

is defined to be the 'void’ value of the immutable object. Note that this 'void’ value means something
different than it does for a reference class. It does not mean that the object does not exist, but rather
that all its fields have the 'void’ value.

Immutable Classes : 8.1 Defining Immutable Classes

Void value of the basic classes:

Class Initial Value Class Initial Value
CINT 0 CHAR O
FLT 0.0 FLTD 0.0d
BOOL false

The initial values for the built-in immutable classes are defined above. These values will return true
for the 'void’ test.

8.1.4 Attribute access routines

Since an immutable object cannot change its value, what does assigning to an attribute mean?
Sather’s immutable classes define attribute assignment to create a copy of the original object, with
the attribute modified. Thus the attribute declaration attr re:FLT ’ of the CPX class has an implicit
attribute setting routine with the signature:

re(new_re_part:FLT):SAME

which returns a copy of the original CPX object in which the attribute 're’ has the new value
'new_re_value’. Contrast this with a reference class, in which the setting routine would have the sig-
nature

re(new_re_part:FLT);

The syntax of the setting routines of immutable classes is a common source of confusion.

8.1.5 Points to note

» There must be no cycle of immutable types such that each type has an attribute whose type is
in the cycle. In the following example, the class PAIR has a FIRST_PART that contains a
PAIR - leading to an infinite loop and an infinite size structure.

immutable class PAIR is
attr first:FIRST_PART;
attr second:SECOND_PART; ...
immutable class FIRST_PART is
attr begin:PAIR;...

» Accessing an attribute of a void immutable object will always work. Accessing an attribute of
a void reference object results in a fatal error

* The 'void’ value for the basic classes are useful values - false is the 'void’ value for the BOOL
class, and 0 for the number classes.

102 Immutable Classes : 8.2 Using Immutable Classes

8.2 Using Immutable Classes

Immutable classes behave differently from reference classes both in terms of their abstract behaviour
(value semantics) and in terms of their implementation.

To begin with, immutable classes cannot suffer from aliasing problems, since they are immutable.
You can get the same effect with reference classes by not providing any modifying operations in the
interface - any operation that would modify the object, returns a new object instead. For example,
take a look at the STR class

Immutable classes may have several efficiency advantages over reference classes in certain circum-
stances. Since they are usually stored on the stack, they have no heap management overhead and
need not be garbage collected. They also don't use space to store a tag, and the absence of aliasing
makes more C compiler optimizations possible. For a small class like CPX, all these factors combine

to give a significant win over a reference class implementation. On the other hand, copying large im-
mutable objects onto the stack can incur significant overhead. Unfortunately the efficiency of an im-
mutable class appears directly tied to how smart the C compiler is; “gcc” is not very bright in this
respect.

Note that when an immutable class is passed as an argument to a function which is expecting an ab-
stract type, the compildroxesit i.e. it is given a temporary reference class wrapper with a type-tag.
Thus, immutable objects behaves exactly like an immutable reference objects in this situation.

Rules of Thumb

So, when should you use an immutable class? Here are a few rules of thumb.

* You want the class to have immutable semantics. You could still consider an immutable refer-
ence class.

» The class is small - the exact speed trade-offs have not been investigated, but immutable class-
es have so far been used when there are a fewer than a handful of attributes.

» There are going to be a large number of objects of that class. This goes along with the previous
point. For instance, if you are going to have large arrays of complex numbers, then the space
that would be required for an object pointer and an object tag may be considerable.

Closures : 9.1 Creating and Calling Closures 103

Closures

Routine and iteclosures are similar to the ‘function pointer’ and ‘closure’ constructs of other lan-
guages. They bind a reference to a method together with zero or more argument values (possibly in-
cludingself). The type of a closure begins with the keywd@JTor ITER and followed by

the modes and types of the underscore arguments, if any, enclosed indotpROUT{A, out

B, inout C} ", ITER{once A, outB, C}). These are followed by a colon and the return
type, if there is onee(g. " ROUT{INT}INT ', 'ITER{once INT}.FLT).

9.1 Creating and Calling Closures

9.1.1 Creating a closure

A closure is created by an expression that binds a routine or an iterator, along with some of its argu-
ments. The outer part of the expressiomisd(...) ". This surrounds a routine or iterator call in
which any of the arguments self may have been replaced by the underscore charatt8uch
unspecified arguments arabound. Unbound arguments are specified when the closure is eventu-
ally called.

a:ROUT{INT}INT := bind(3.plus())
b:ITER:INT := bind(3.times!);

Out and inout arguments must be specified in the closure type. If the routinedtasorout ar-
guments as show below, they are mentioned in the type of the closure:

swap(inout X, inout y:INT) is tmp::=x; X :=Yy; y:=tmp; end;

The routindswap’ swaps the values of the two argumeixts, and’y’ r' is a closure for

binding the'swap’ routine.

rrRROUT{inout INT, inout INT} := bind(swap(_,_));

104 Closures : 9.1 Creating and Calling Closures

9.1.2 Calling a closure

Each routine closure defines a routine nanwadl * * and each iterator closure defines an iterator
namedcall’ . These have argument and return types that correspond to the closure type speci-
fiers. Invocations of these features behave like a call on the original routine or iterator with the argu-
ments specified by a combination of the bound values and those provim#d t@r call! . The
arguments teall andcall! match the underscores positionally from left to right .

The previously defined closures are invoked as shown

#0OUT+ a.call(4); -- Prints out 7, where a is bind(3.plus(_)
Sum:INT := 0;

loop sum :=sum + b.call!; end;

#OUT+sum; -- Prints out 3 (0+1+2)

In the following example, we define a bound routine that takédras an argument and returns
an INT.

br:ROUT{INT}INT := bind(1.plus());
#OUT+br.call(9); -- Prints out ’10’

The variable bris typed as a bound routine which takes an integer as argument and returns an integer.
The routine 1.plus, which is of the appropriate type, is then assigned to br. The routine associated
with br may then be invoked by the built in functmail . Just as we would when calling the rou-

tine INT::plus(INT) , we must supply the integer argument to the bound routine.

9.1.3 Binding overloaded routines

When binding a routine which is overloaded, there might be some ambiguity about which routine is
meant to be bound

class FLT is
plus(f:FLT):FLT -- add self and '’ and return the result
plus(i:INT):FLT; -- add self and ‘'f’ (after converting i’ to FLT)
end;

When binding theplus routine, it might not be obvious which routine is intended
b ::= bind(_.plus());

In case of ambiguity, the right method must be determined by the context in which the binding takes
place.

Closures : 9.1 Creating and Calling Closures 105

Binding in an assignment

If there is ambiguity about which method is to be bound, the type of the variable must be explicitly
specified

b:ROUT{FLT,FLT}:FLT := bind(_.plus()); -- Selects the first ‘plus’

Binding in a call

A method may also be bound at the time a call is made. The type of the closure is determined by the
type of the argument in the call.

reduce(a:ARRAY{FLT}, br:ROUT{FLT,FLT}:FLT):FLT is
res:FLT :=0.0;
loop el:FLT := a.elt!; res := br.call(res,el); end;
return res;

end;

We can call the reduction function as follows:

a:ARRAY{FLT} :=1.0,7.0,3.0|;
#OUT + reduce(a,bind(_.plus()));
-- Prints '11.0’, the sum of the elements of 'a’

The second argument to the functieduce expects &OUT{FLT,FLT}:FLT and this type was
used to select whigblus routine should be bound. When there could be doubt about which rou-
tine is actually being bound, it is very good practice to specify the type explicitly

rROUT{FLT,FLT}FLT := bind(_.plus());
#0OUT+reduce(a,r);

9.1.4 Points to note

e out andinout arguments must be left unbound. This is a reasonable restriction, since such
arguments must return a value to the calling context. If such an argument were bound, when
the closure is invoked, variables that existed at the point of closure binding would be affected.
Such variables might not even be alive at the point where the closure is actually invoked.

106 Closures : 9.1 Creating and Calling Closures

9.1.5 Binding some arguments

When a routine closure is created, it can preset some of the values of the arguments.

class MAIN is
foo(a:INT, b:INT):INT is return(a+b+10) end;

main is

bri:ROUT{INT,INT}INT := bind(foo(_,));
br2:ROUT{INT}:INT := bind(foo(10,_));
#OUT+brl.call(4,3)+","+br2.call(9); -- Should print 17 and 29
end;
end;

In the example abovér2 binds the first argument dioo to 10 and the second argument is left
unbound. This second argument will have to be supplied by the caller of the bound rbrtine.
binds neither argument and hence when it is called, it must supply both arguments.

Here we double every element of an array by applying a routine closareach element of an ar-
ray.

r :ROUT{INT}INT := bind(2.times());

loop

a.set!(r.call(a.elt!))
end

9.1.6 Leaving self unbound

bound routines are often used to apply a function to arbitrary objects of a particular class. For this
usage, we need the self argument to be unbound. This illustrates how self may be left unbound. The
type of self must be inferred from the type cont®&DOUT{INT}).

r :ROUT{INT} := bind(_.plus(3));
#OUT + r.call(5); - prints ‘8’

In the following example we will make use of tipbus routine from thdNT class.

... from the INT class

plus(arg:INT):INT is ... definition of plus

main is
plusbrl:ROUT{INT,INT}:INT:=bind(_.plus()); -- self and arg unbound
brilres:INT := plusbrl.call(9,10); -- Returns 19
plusbr2:ROUT{INT}:INT := bind(3.plus()); -- Binding self only
br2res:INT := plusbr2.call(15); -- Returns 18
plusbr3:ROUT{INT}:INT := bind(_.plus(9)); -- Binding arg only
br3res:INT := plusbr3.call(11); -- Returns 20
#OUT+brlres+","+br2res+","+br3res; --19,18,20

end;

Closures : 9.2 Further Examples of Closures 107

In the above examplglusbrl leaves both self and the argumenflas unbound. Note that

we must specify the type of self when creating the bound routine, otherwise the compiler cannot
know which class the routine belongs to (the type could also be an abstract type that defines that fea-
ture in its interface)plusbr2 binds self t@8, so that the only argument that need be supplied at

call time is the argument to the plyslusbr3 binds the argument gdlus to 15, so that the only
argument that need be supplied at call time is self for the routine.

9.2 Further Examples of Closures

Just as is the case with C function pointers, there will be programmers who find closures indispen-
sible and others who will hardly ever touch them. Since Sather’s closures are strongly typed, much
of the insecurity associated with function pointers in C disappears.

9.2.1 Closures for Applicative Programming

Closures are useful when you want to write Lisp-like "apply” routines in a class which contains other
data . Routines that use routine closures in this way may be found in the class ARRAY{T}. Some
examples of which are shown below.

every(test: ROUT{T}:BOOL):BOOL is
-- True if every element of self satisfies ‘test’.
loop
e :=elt! -- Iterate through the array elements
if ~test.call(e) then return false end
-- If e fails the test, return false immediately
end;
return true
end;

The following routine which takes a routine closure as an argument and uses it to select an element
from a list

select(e:ARRAY{INT}, rROUT{INT}:BOOL):INT is
-- Return the index of the first element in the array ‘e’ that
-- satisfies the predicate 'r'.
-- Return -1 if no element of ‘e’ satisfies the predicate.
loop i:INT := e.ind!;
if r.call(e[i]) then returniend;
end;
return -1;
end;

108 Closures : 9.2 Further Examples of Closures

The selection routine may be used as shown below:

a:ARRAY{INT} :=]1,2,3,7;

br:ROUT{INT}:BOOL := bind(_.is_eq(3));

#OUT + select(a,br); -- Prints the index of the first element of ‘a’
-- that is equal to '3". The index printed is '2’

9.2.2 Menu Structures

Another common use of function pointers is in the construction of an abstraction for a set of choices.
TheMENUCclass shown below maintains a mapping between strings and routine closures associated
with the strings.

class MENU is

private attr menu_actions:MAP{STR,ROUT};
-- Hash table from strings to closures
private attr default_action:ROUT{STR};

create(default_act:ROUT{STR}):SAME is
res:SAME := new;
res.menu_actions := #MAP{STR,ROUT};
res.default_action := default_act;
return(res)

end;

add_item(name:STR, func:ROUT) is menu_actions[name] := func end;
-- Add a menu item to the hash table, indexed by 'name’

run is
loop
#OUT+">",
command: STR := IN::get_str; -- Gets the next line of input
if command = "done" then break!
elsif menu_actions.has_ind(command) then
menu_actions[command].call;
else
default_action.call(command);
end;
end;
end;
end;

Closures : 9.2 Further Examples of Closures 109

We use this opportunity to create a textual interface for the calculator described on page 60:

class CALCULATOR is

private attr stack:A_STACK{INT};
private attr menu:MENU;

create:SAME is res ::= new; res.init; return res; end,

private init is -- Initialize the calculator attributes
stack := #;
menu := #MENU(bind(push()));
menu.add_menu_item("add",bind(add));
menu.add_menu_item("times",bind(times));

end;

run is menu.run; end;

The main routines of the calculator computation are:

push(s:STR) is
-- Convert the value 's' into an INT and push it onto the stack
-- Do nothing if the string is not a valid integer
¢: STR_CURSOR :=s.cursor;
i INT := c.int;
if c.has_error then #ERR+"Bad integer value:"+s;
else stack.push(i); end;
end;

add is -- Add the two top stack values and push/print the result
sum:INT := stack.pop+stack.pop;
#OUT+sum+"\n";
stack.push(sum);

end;

times is -- Multiply the top stack values and push/print the result
product:INT := stack.pop*stack.pop;
#OUT+product+"\n";
stack.push(product);
end;
end; --class CALCULATOR

This calculator can be started by a simple main routine:

class MAIN is main is c: CALCULATOR :=#; c.run; end;end,;

110 Closures : 9.2 Further Examples of Closures

After compiling the program, we can then run the resulting executable

pts/1 samosa:~/Sather>a.out
>3

>4

>add

7

>10

>11

>times

110

>done

pts/1 samosa:~/Sather>

9.2.3 lIterator closures
An iterator closure is created that may be used to extract elements of a map that satisfy the
selection criteria defined by ‘select ’

select:ROUT{T}:BOOL,;
select_elt:ITER{MAP{K,T}:T;

select_elt := bind(_filter!(select));

This creates an iterator closure that returns successive odd integers, and then prints the
first ten.

odd_ints :(ITER{INT}INT;
odd_ints := bind(1.step!(_,2));
loop

#OUT + odd_ints.call!(10);
end

Exceptions : 10.1 Throwing Exceptions with raise 111

Exceptions

Exceptions are used to escape from method calls under unusual circumstances. For example, a ro-
bust numerical application may wish to provide an alternate means of solving a problem under un-
usual circumstances such as ill conditioning. Exceptions bypass the ordinary way of returning from
methods and may be used to skip over multiple callers until a suitable handler is found.

There are two aspects to indicating errors using exceptions - how the error is indicated at the point
where it occurs. This is usually referred to as throwing the exception. The other aspect of exceptions
is how the error message is handled, which is referred to as catching the exception.

10.1 Throwing Exceptions with raise

Exceptions are explicitly raised lrgise statements. The raise statement specifies an expression,
which is evaluated to obtain the exception object.

add_if_positive(i:INT) is
ifi <0then
raise "Negative value:"+i+"\n";
end;
end;

In the example above, the object happens to be a string that indicates the problem. In general, the
exception object must provide enough information for the error handling mechanism. Since the er-
ror handling mechanism can discriminate between different objects of different types, it is standard
practice to use the type of the exception object to indicate the type of the error that occurred.

10.2 Catching Exceptions with protect

Exceptions are passed to higher contexts until a handler is found and the exception is caught. Ex-
ceptions are caught using protect statements. The protect statement surrounds a piece of code, and

112 Exceptions : 10.3 Usage to avoid

provides an appropriate method of handling any exceptions that might occur when executing that
piece of code.

protect
foo;
when $STR then #ERR+"An error in foo!:"+exception.str;
when INT then #ERR+"INT error="+exception; -- 'exception’ of type INT
else
-- Some other error handling
end;

When there is an uncaught exception in a protect statement, the system finds the first type specifier
listed in the When’ lists which is a supertype of the exception object type. The statement list fol-
lowing this specifier is executed and then control passes to the statement followingieoe

statement.

In the protect clause, the exception raised may be referred to by the built in expeesspn

tion’” 4 which refers to the exception object. The type of the exception object can be used to cat-
egorize the exception and to discriminate between exceptions when they are actually caught. In fact,
thewhen clauses may be viewed at/pecase (see page 70) on the exception object.

Points to note

* No statements may followraise statement in a statement list because they can never be
executed.

« Ifthereis neelse clause in @rotect statement, and none of the types invihen branch-
es matches the type of the exception object, then the exception is passed to the next higher
protect statement

10.3 Usage to avoid

Exceptions can be significantly slower than ordinary routine calls, so they should be avoided except
for truly exceptional (unexpected) cases. Using exceptions to implement normal control flow may

4. In fact, you can look at the tail half of the protect as a typecase on the exception object.

Exceptions : 10.3 Usage to avoid 113

be tempting, but should be avoided. For instance, iisie_CURSORIass, we can make use of
exceptions for parsing. It might be tempting to write code like the following

test_bool:BOOL is
protect
current_state ::= save_state;
b ::= get_bool;
restore_state(current_state);
when STR_CURSOR_EX then return(false); end;
return(true);
end;

The above code determines whether a boolean is present in the string by trying to read one and
treating an error state as evidence that there is no boolean. While it is perfectly correct code, this
is an example of what you should not do. The implementation of a function should not rely on ex-
ceptions for its normal functioning. Doing so is extremely inefficient and can result in an unneces-
sarily complicated flow of control.

10.3.1 Alternatives to Exceptions
The alternative to using exceptions is to use a sticky error flag in the class, as is done by IEEE ex-
ceptions and the curreRtLE classes. This has problems such as the fact that the outermost error is

logged, not the most immediate one, and it is very easy to forget to test for the error. However, this
method has a much lower overhead and is suitable in certain cases.

10.3.2 A more elaborate example

Consider the following routine, which tries to read a boolean value from a string:

get_bool(file_name:STR):BOOL is
f:FILE := FILE::open_for_read(file_name);
if f.error then raise #FILE_OPEN_EXC(file_name); end;
s:STR :=f.str; -- Read the file into a string
f.close; -- Close the file
res:BOOL;
bool ::= ",
i:INT :=0;
loop until!(~(s[i].is_alpha) or (s[i].is_space) or i >= s.size);
bool := bool + s[i]; i :=i+1;
end;
case bool
when “true","t","True","T","TRUE" then return true;
when "false","f","False","F","FALSE" then return false;
else
raise #PARSE_BAD_BOOL_EXC(s);
end;
end;

114 Exceptions : 10.3 Usage to avoid

In the above routine there are two possible errors - either the file could not be opened or it does not
contain a valid boolean. The two cases can be distinguised at the point when the exception is caught

protect

file_name:STR; ... set to a value

b:BOOL := get_bool(s);
when FILE_OPEN_EXC then #ERR+"Could not
open:"+exception.file_name+"\n";
when PARSE_BAD_BOOL_EXC then

#ERR+"Error in reading boolean:"+exception.str+"\n";
end;

The classes that implement these exceptions can be fairly simple

class FILE_OPEN_EXC is
readonly attr str:STR:
create(file_name:STR):SAME is
res::=new; res.str := file_name; return res;
end;
end;

The other exception class is very similar.

Safety Features : 11.1 Preconditions 115

Safety Features

Methods definitions may include optional pre- and post-conditions. Togetheasstrt ' and
'invariant’ these features allow the earnest programmer to annotate the intention of code. The
Sather compiler provides facilities for turning on or off the runtime checking these safety features
imply. Classes may also define a routine nanmedfiant ', which is a post condition that ap-

plies to all public methods.

These safety features are associated with the notion of programming contracts. The precondition of
a method is the contract that the method requires the caller to fulfill. It is a statement of the condition
of the world that the method needs to find, in order to work correctly. The postcondition is a contract
that the method guarantees, if its precondition has been met. Itis a statement of the state the method
will leave the world in, when it is finished executing. These programming contracts are very impor-
tant in the creation of robust, reusable code.

In addition to providing a level of checking, these safety features are also an invaluable form of doc-
umentation. Since preconditions and postconditions must actually execute, they can be trusted to
be accurate and up-to-date, unlike method comments which may easily fall out of sync with the code.

11.1 Preconditions

A precondition states the assumptions that a method makes. It is the contract that the caller must
fullfil in order for the routine to work properly. Preconditions frequently include checks that an ar-
gument is non-zero or hon-void.

The optional pre ’ construct of method definitions contains a boolean expression which must eval-
uate totrue whenever the method is called; it is a fatal error if it evaluatizdse .The expres-
sion may refer tgelf and to the routine’s arguments. For iterators, pre and post conditions are

116 Safety Features : 11.2 Postconditions

checked before and after every invocation of the iterator (not just the first or last time the iterator is
called).

class POSITIVE_INTERVAL is
readonly attr start, finish:INT;
create(start, finish:INT)
-- Ensure that the interval is positive on positive numbers
pre start > 0 and finish > 0 and finish-start >= 0

res ::= new;
res.start := start;
res.finish := finish;
return res;
end;
end; -- class POSITIVE_INTERVAL

Note that it is usuallynot appropriate to place conditions on the internal state in the precondition.
This is an inappropriate conduct, since it may be impossible for the caller to determine whether the
conduct can be properly fulfilled.

move_by(i:INT) pre start >0 is ...
The test on ’'start’ is actually verifying something about the internal state of the object, and has noth-

ing to do with the caller of the routine. Tests such as the one above are more appropriately placed
in assertions.

11.2 Postconditions

Post conditions state what a method guarantees to the caller. It is the method’s end of the contract.
Post conditions are also stated as an optional initial construct in a method.

The optional post ’ construct of method definitions contains a boolean expression which must
evaluate to true whenever the method returns; it is a fatal error if it evalutdks®to. The expres-
sion may refer tgelf and to the method’s arguments.

class VECTOR is
Hbrm:FLT; -- norm of the vector

normalize post norm = 1.0 is ...
-- Normalize the vector. The norm of the result must be 1.0

It is frequently useful to refer to the values of the arguntesiisrethe call, as well as the result of

the method call. A problem arises because the initial argument values are no longer known by the
time the method terminates, since they may have been arbitrarily modified. Also, since the post con-
dition is outside the scope of the method body, it cannot easily refer to values which are computed
before the method executes. The solution to this problem consists ofemittg expressions

which provide the return value of the method anitigl expressions which are evaluated at the
time the method is invoked.

Safety Features : 11.2 Postconditions 117

11.2.1 initial expressions

initial expressions may only appear in thgost expressions of methods. The argument to the initial

add(a:INT):INT post initial(a)>result is ..

expression must be an expression with a return value and must not itself cotighin ~ expres-
sions. When a routine is called or an iterator resumes, it evaluatdgidath expression from
left to right. When the postcondition is checked at the end ieitieth expression returns its pre-
computed value.

11.2.2 result expressions

Result expressions are essentially a way to refer to the return value of a method in a postcondition
(the post condition is outside the scope of the routine and hence cannot access variables in the rou-
tine).

sum:INT postresult>5is . -- Means that the value return must be > 5

Result expressions may only appear within the postconditions of methods that have return values and
may not appear withimitial expressions. Aesult expression returns the value returned by

the routine or yielded by the iterator. The type oésult expression is the return type of the
method in which it appearti\T, in the above example).

11.2.3 Example

The above routine maintains an (always positive) running sum in 'sum’. Only positive numbers are
added to the sum, and the result must always be bigger than the argument.

class CALCULATOR is
readonly attr sum:INT; -- Always kept positive

add_positive(x:INT):INT pre x > 0 post result >= initial(x) is
return sum + x; end;

11.2.4 pre and post conditions in iterators

The behavior of pre- and post- conditions in iterator definitions is a natural extension of their behav-
ior in routine definitions. Thpre clause must be true each time the iterator is called ampadshe
clause must be true each time it yields. phst clause is not evaluated when an iterator quits.

118 Safety Features : 11.3 Assertions

11.3 Assertions

Assertions are not part of the interface to a routine. Rather, they are an internal consistency check
within a piece of code, to ensure that the computation is proceeding as expected.

11.3.1 assert statements

assert statements specify a boolean expression that must evaluateu¢o ; otherwise it is a fatal
error.

private attr arrARRAY{INT};
sum_of_elts is

sum:INT :=0;
loop e = arr.elt!;
asserte > 0;
sum ;= sum + ¢;
end;
return sum;
end;

In the above piece of code, we expect the class to only be storing postive values in the array 'arr’ .
To double check this, when adding the elements together, we check whether each element is positive.

11.4 Invariants

A class invariant is a condition that should never be violated in any object, after it has been created.
Invariants have not proven to be as widely used as pre- and post- conditions, which are quite ubiqg-
uitous in Sather code.

11.4.1 The invariant routine

If a routine with the signaturénvariant:BOOL ’, appears in a class, it defines a class invariant.
It is a fatal error for it to evaluate talse after any public method of the class returns, yields, or
quits.

Safety Features : 11.4 Invariants

Consider a class with a list (we use the library class A_LIST) whose size must always be at least 1.
Such a situtation could arise if the array usually contains the same sort of elements and we want to

use the first element of the array as a prototypical element

class PROTO_LIST is
private attr .:A_LIST{FOO};

create(first_elt:FOO):SAME is
res ;= new;
res.| .= #;
res.l.append(first_elt);
return res;

end;

invariant:BOOL is return l.size > 0 end;

delete_last:FOO is return l.delete_elt(l.size-1); end;

If the 'delete_last’ operation is called on the last element, then the assertion will be violated and an

error will result.

proto:FOO :=#; -- Some FOO object
a:PROTO_LIST := #(FOO);
last :FOO := a.delete_last;
-- At runtime, an invariant violation will occur
-- for trying to remove the last element.

The invariant is checked at the end of every public method. However, the invariant is not checked

after a private routine. If we have the additional routines

delete_and_add is f:FOO
res ::= internal_delete_last;
l.append(res);
return res;

end;

private internal_delete_last:FOO is
return l.delete_elt(l.size-1);
end;

Now we can call 'delete_and_add’

proto:FOO :=#;
a:PROTO_LIST := #(FOO);
last:FOO := a.delete_and_add; -- does not violate the class invariant

The private call to 'internal_delete_lasfoesviolate the invariant, but it is not checked, since it is

a private routine.

120 Safety Features : 11.4 Invariants

Built-in classes : 12.1 Fundamental Classes 121

Built-in classes

This section provides a short description of classes that are a part of every Sather implementation
and which may not be modified. The detailed semantics and precise interface are specified in the
class library documentation.

12.1 Fundamental Classes

There are a handful of classes that are specially recognized by the compiler and are implicitly and
explicitly used in most Sather code.

12.1.1 $0OB

‘SOB’ is automatically a supertype of every type. Variables declared to be of this type may hold
any object. It has no features.

12.1.2 Array support

Sather objects may have an array portion, which is specified by including either the primitive refer-
ence or value array

* 'AREF{T} is areference array class. Any reference class which includes it obtains an array
of elements of typ@ in addition to any attributes it has defined. In such classes,has a
single integer argument that specifies the size of the array portion. It defines routines and iters
named: asize ’, ‘aget ’, ‘aset ’, ‘aclear ’, ‘acopy’, ‘aelt! ’, ‘aset! ’, and ‘aind! '
Array indices start at zero.

* 'ARRAY({T} includes from AREF and defines general purpose array objects. They may be
directly constructed by array creation expressions.

* 'AVAL{T} ' is the immutable class analog &REF. Classes which includéAVAL must de-
fineasize as an integer constant which determines the size of the array portion.

122

Built-in classes : 12.2 Tuples

12.2 Tuples

Tuples are not really a fundamental class, but are commonly used for a very fundamental purpose

- multiple return values.

‘TUP names a set of parameterized immutable types called tuples, one for each number of param-
eters. Each has as many attributes as parameters and they arethdmel”, etc. Each is declared
by the type of the corresponding paramegeg.(TUP{INT,FLT} ' has attributest1:INT 'and
‘t2:FLT 7). It defines treate ' with an argument corresponding to each attribute.

12.3 The SYS Class

SYSdefines a number of routines for accessing system information:

Routine

Description

is_eq(obl, 0b2:$0B):BOOL

is_lt(ob1, ob2:$0B):BOOL

hash(ob:$0OB):INT

type(ob:$OB):INT

Tests two objects for equality. If the arguments are of different §ype,

itreturns false . If both objects are immutable, this is a recurg
test on the arguments’ attributes. If they are reference types,

ve
it re-

turns true ' if the arguments are the same object. It is a fatal §rror

to call with external, closure, or void reference arguments.
Defines an arbitrary total order on objects. This never returng

true

if ‘is_eq 'would return true with the same arguments. It is a ftal

error to call with external, closure, or void reference argumentg.
Defines an arbitrary hash function. For reference arguments, ris is

a hash of the pointer; for immutable types, a recursive hash of
tributes. Hash values for two objects are guaranteed to be ide
when ‘is_eq’ would return true, but the converse is not true.

Returns the concrete type of an object encoded dslan. "

Il at-
htical

str_for_type(i:INT):STR

destroy(ob:$0B)

Returns a string representation associated with the integer. |
for debugging in combination withype " above.

Explicitly deallocates an object. Sather is garbage collected a
sual use ofdestroy ' is discouraged. Sather implementati
provide a way of detecting accesses to destroyed objects (a f
ror).

seful

d ca-

al er-

Table 5: Operation in the SYS class

Built-in classes : 12.4 Object Finalization: $FINALIZE 123

12.4 Object Finalization: $FINALIZE

$FINALIZE defines the single routifimalize . Any class whose objects need to perform spe-

cial operations before they are garbage collected should subtyp&FitbiALIZE . Thefinal-

ize routine will be called once on such objects before the program terminates. This may happen at
any time, even concurrently with other code, and no guarantee is made about the order of finalization
of objects which refer to each other. Finalization will only occur once, even if new references are
created to the object during finalization. Because few guarantees can be made about the environment
in which finalization occurs, finalization is considered dangerous and should only be used in the rare
cases that conventional coding will not suffice.

12.5 Basic Classes and Literal Forms

The basic Sather classes such as integers and booleans are not treated specially by the compiler.
However, they do have language support in the form of convenient literal forms that permit easy
specification of values. These literal forms all have a concrete type derived from the syntax; typing
of literals is not dependent on context. Each of these basic classes also has a default void initial val-
ue.

Type | Initial value Description
BOOL false Immutable objects which represent boolean values.
CHAR \0’ Immutable objects which represent characters. The number of bit§ in a

‘CHAROobject is less than or equal to the number inlBiT * object.

STR "™ (void) | Reference objects which represent strings for charactersd * is a repre-
sentation for the null string.

INT 0 Immutable objects which represent efficient integers. The size is defingd by
the implementation but must be at least 32 bits. Bit operations are supported
in addition to numerical operations.

INTI 0i Reference objects which represent infinite precision integers.

FLT 0.0 Immutable objects which represent single precision floating point valugs as
defined by the IEEE-754-1985 standard.

FLTD 0.0d Immutable objects for double precision floating point values.

124 Built-in classes : 12.5 Basic Classes and Literal Forms

12.5.1 Booleans and the BOOL class

Examples: a:BOOL := true
b ::= false;
¢:BOOL := a.and(b);
if a.and(b).or(d) then
end;

BOOLobjects represent boolean values (page 123). The two possible values are represented by the
boolean literal expressions: ‘true ' and false '. Boolean objects support the standard logical op-
erations. Note that these logical operations are evaluated in the standard way, and not short-circuit-
ed. The Sather expressions "and" and "or" provide a short circuit logical operations.

if b.has_value and b.get_value > 3 then
-- The short circuit and will only evaluate b.get_value
-- if b.has_value is true
end;

12.5.2 Characters and the CHAR class

Examples: C:CHAR =&’
new_line:CHAR :="\n’;
code_16:CHAR :="\016’;

CHARbbjects represent characters (page 123racter literal expressions begin and end with sin-
gle quote marks. These may enclose either any single ISO-Latin-1 printing character except single
guote or backslash or an escape code starting with a backslash.

’

e \@ s analertsuch as a bell,
 \b' isthebackspaceharacter,

« \f' s theform feedcharacter,

is thenewlinecharacter,

e \r' s thecarriage returncharacter,
o '\t is thehorizontal tabcharacter,
is thevertical tabcharacter,

« '\' s thebackslasicharacter,

« '\ isthesingle quotecharacter

« '\ s thedouble quoteharacter.

A backslash followed by one or more octal digits represents the character whose octal representation
is given. A backslash followed by any other character is that character. The mapping of escape codes
to other characters is defined by the Sather implementation.

Built-in classes : 12.5 Basic Classes and Literal Forms 125

12.5.3 The string class STR

Examples: s:STR := "a string literal"
d:STR :="concat" "enation\015"
--d is "concatenation\015"

STRobjects represent stringitring literal expressions begin and end with double quote marks. A
backslash starts an escape sequence as with character literals. All successive octal digits following
a backslash are taken to define a single character. Individual string literals may not extend beyond
a single line, but successive string literals are concated together. Thus, a break in a string literal can
also be used to force the end of an octal encoded character. For eXdd8618: is a one charac-

ter string, while"\03"'67" is a three character string. Such segments may be separated by
whitespace.

12.5.4 Integers and the INT class

Examples: a:INT = 14;
b:INT :=-4532
C:INT := 39_8322_983 298
binary:INT := 00101011,
bin:INT :=-0b_101010_1010
octal:ITN := 0037323
hex_num:INT:= 0x_ea_75_67

INT objects represent machine integers. Integer literals can be represented in four bases: binary is
base 2, octal is base 8, decimal is base 10 and hexadecimal is base 16. These are indicated by the
prefixes: Ob’, ‘00’, nothing, and 0x ' respectively. Underscores may be used within integer literals

to improve readability and are ignordlT literals are only legal if they are in the representable

range of the Sather implementation, which is at least 32 bits.

Underscores may be used to separate the digits of an integer to improve readability - this may be
particularly useful for very long binary numbers.

12.5.5 Infinite precision integers and the INTI class

Examples: b:INTI := -4532i
infinite_hex:INTI := 0x373254i

Infinite precision integers are are implemetned by the INTI class and supported by a literal form
which is essentially the same as that of integers, but with a trailing 'i’. All the standard arithmetic
operations are defined on infinite precision integers.

126 Built-in classes : 12.6 Library Conventions

12.5.6 Floating point numbers: the FLT and FLTD classes

Examples: f:FLT :=12.34
fd:FLTD := 3.498_239e-8d

Syntax:

flt_literal_expression 0 [-]decimal_int. decimal_int[e [-] decimal_int] [d]

FLT andFLTD objects represent floating point numbers according to the single and double repre-
sentations defined by the IEEE-754-1985 standard (see also page 123). A floating point literal is of
typeFLT unless suffixed by ‘d’ designating=aTD literal. The optionalé’ portion is used to spec-

ify a power of 10 by which to multiply the decimal value. Underscores may be used within floating
point and other numeric literals to improve readability and are ignored. Literal values are only legal
if they are within the range specified by the IEEE standard.

Sather does not do implicit type coercions (such as promoting an integer to floating point when used
in a floating point context.) Types must instead be promoted explicitly by the programmer. This
avoids a number of portability and precision issues (for example, when an integer can't be represent-
ed by the floating point representation.

The following two expressions are equivalent. In the firstahis a literal suffix denoting the type.
In the second,3.14 ' is the literal and.fltd ' is an explicit conversion.

3.14d -- A double precision literal
3.14 fltd -- Single, but converted

12.6 Library Conventions

In addition to treate ’, there are a number of other naming conventions:

» Classes which are related should reflect this in their names. For example, there are many ex-
amples in the library of an abstraction, classes implementing the abstraction, and code testing
implementations of the abstraction. For example, in the standard library the set abstraction is
named$SET, H_SET is a hash table implementation, and the test cGESS SET

* Some classes implement an immutable, ‘mathematical’ abstraetjantégers), and others
implement mutable "object" abstractions that can be modified in @gcarfays). For most
objects, the mutable, object semantics are natural and efficient. However, for classes such as
sets, the semantics may be different from those of the traditional mathematical set entities.

» Classes with immutable semantics are given their ‘mathematical’ namesvETRESET.
When separate abstractions exist to handle value and reference semantics, theatethod
will be provided in the reference version to provide an immutable snapshop of the reference
class.

Built-in classes : 12.6 Library Conventions 127

» Conversions from a typeOOto a typeBARoccur in two ways: by defining an appropriate
‘create(f:FOO):BAR ’'routine inBARas seen above, or be defining a routha:BAR ’
in FOO For example, in the standard library conversionfefa to aFLTD is done by calling
the routine fitd:FLTD '’ defined inFLT.

» Methods which return BOOL(calledpredicates), usually have the prefixs'_
ple, is_prime ' tests integers for primality.

» Abstract classes that require a single method should be named after that method. For example,
subtypes ofHASHdefine the methodhash .

» If there is a single iterator in a container class which returns all of the items, it should be
named élt! . If there is a single iterator which sets the items, it should be nesagd *.
In general, iterators should have singulatt(* °) rather than plural glts! ') names if the
choice is arbitrary.

. For exam-

12.6.1 Object Identity

Many languages provide built-in pointer and structural equality and comparison. To preserve encap-
sulation, in Sather these operations must go through the class interface like every methed. The
symbol is syntactic sugar for a call ie_‘eq ' (page 96). is_eq:BOOL ' must be explicitly de-

fined by the type of the left side for this syntax to be useful.

The SYSclass (page 122) can be used to obtain equality based on pointer or structural notions of
identity. This class also provides built-in mechanisms for comparison and hashing.

IS_EQ

Classes which define their own notion of equality should subtype$t8nEQ. This class is a
common parameter bound in container classes. In the standard library, we have

abstract class $IS_EQ is
is_eq(e:$0B):BOOL;

end;

Many classes define a notion of equality which is different than pointer equality. For example, two
STRstrings may be equal although, in general, strings are not unique.

class STR < $IS_EQiis...
is_eq(arg:$0B):BOOL is ... end;

end; -- class STR

128 Built-in classes : 12.6 Library Conventions

Programmer defined hash functions and $HASH

Many container classes need to be able to compute hash values of their items. Jusisagyith *
classes may subtype frdpASHto indicate that they know how to compute their own hash value.
$HASH is defined in the library to be

abstract class $HASH is
hash:INT;
end;

Objects that can be copied and $COPY

To preserve class encapsulation, Sather does not provide a built-in way to copy objects. By conven-
tion, objects are copied by a class-defined routiopy ', and classes which provide this should
subtype fron8COPY $COPY is defined in the standard library.

.abstract class $COPY is
copy:SAME;
end;

12.6.2 Nil and void

Reference class variables can be declared without being allocated. Unassigned reference or abstract
type variables have theid value, indicating the non-existence of an object. However, for immu-
table types this unassigned value is not distinguished from other legitimate values; for example, the
void of typelNT is the value zero.

It is often algorithmically convenient to have a sentinel value which has a special interpretation. For
example, hash tables often distinguish empty table entries without a separate bit indicating that an
entry is empty. Becaus®id is a legitimate value for immutable typgsjd can't be used as this
sentinel value. For this reason, classes may defini d value to be used to represent the non-
existence of an immutable object. Such classes subtype$iin and define the routines
‘ni:kSAME "’ and‘is_nil: BOOL ",

The 'nil ’ value is generally a rarely used or illegal value. IRdr, it is the most negative repre-
sentable integer. For floating point types, N&N ‘is_nil ’is necessary becaub&aNis defined
by IEEE to not be equal to itself.

abstract class $NIL is
nil:SAME;
is_nil:BOOL;

end; -- anstract class $NIL

Interfacing with Fortran : 13.1 Overview 129

Interfacing with Fortran

Providing a type-safe Sather interface to Fortran 77 is desirable for several reasons. There is a large
body of well debugged and well tested high performance Fortran source code for various kinds of
numerical computations. Many vendors provide versions of low level numerical Fortran libraries
tuned for particular hardware platforms. Fortran 77 BLAS have becataedartostandard for the
elementary vector and matrix operations. The external Fortran interface provides a standard mecha-
nism for Fortran procedures and data to be accessed from Sather and vice versa. It enables a Sather
programmer to exploit the wealth of available numerical software in a type safe and portable manner.

Several important issues need to be resolved to provide interoperability between Sather and Fortran.
The issues are:

= name binding

= datatype mapping

= parameter passing

Section 13.1 introduces the Sather/Fortran interface and provides a few illustrative examples. Sec-
tion 13.2 talks about binding Sather entities to corresponding Fortran entities. Section 13.3 provides

a mapping of "basic" Sather types to Fortran types. Section 13.4 explains how arguments in a Sather
call are passed to a Fortran procedure or function that implements the feature. Finally, section 13.5
talks about various portability issues.

13.1 Overview

Sather 1.1 provides an interface to a superset of Fortran 77 (ANSI X3.9-1978). The interoperability
with Fortran code is achieved with the help of external Fortran classes. External Fortran classes are
used to implement a strongly typed bidirectional Sather/Fortran interface. The extended library pro-
vides a set of built-in classes corresponding to all Fortran 77 types. Signatures of all inter-language
calls must contain only these built-in classes as argument or return types.

130 Interfacing with Fortran : 13.1 Overview

13.1.1 External Fortran Call Example

The keywordsexternal’ and’FORTRAN’ precedingclass’ indicate that some class features may
be implemented externally in Fortran and some other features are compiled in a way that makes it
possible to call them from Fortran. An example of a simple call to a Fortran function is given below

external FORTRAN class FOO is
foo(a:F_INTEGER,b:F_INTEGER):F_INTEGER;
-- a feature with a missing body is implemented externally
-- in Fortran.
-- Fortran definition:
-- INTEGER FUNCTION foo(A,B)
-- INTEGER A
--INTEGER B

end;"

-- a call to an externally defined Fortran function

i:F_INTEGER := FOO::foo(#F_INTEGER(1), #F INTEGER(2));

-- #F_INTEGER(1) creates a variable of Fortran type F_INTEGER and
-- initializes it to 1,

-- #F_INTEGER(2) does a similar job,but initializes a new variable to 2

F_INTEGER is a built-in type representing Fortran integers. A full list of builtin-in Fortran types

will be given in section Datatype Mapping on page 136. Standard libraries provide a set of construc-
tors and conversion routines for conversion from Sather to Fortran types and vice versa. The defini-
tion of featuréfoo’ in external class FOO looks similar to abstract signatures in abstract classes. The
implementation of external classes methods without bodies is assumed to be given in a correspond-
ing language (Fortran in the case of 'foo’.) Such abstract signatures specify the interface from Sather
code to Fortran code.

13.1.2 Overall Organization

External Fortran classes are used to provide both Sather/Fortran and Fortran/Sather interfaces. Ex-
ternal Fortran classes can contain methods of two kinds: bodyless routines indicating externally im-
plemented features and methods with code bodies some of which could be called from Fortran code.
External Fortran classes cannot be instantiated and exist only to provide a bidirectional interface
from Sather to Fortran.

Only routines may have no body in the external Fortran classes (not iterators). Bodyess routines
specify the interface for Sather code (both in external and "regular" Sather classes) to call Fortran
code. They have Sather signatures corresponding to the Fortran functions and subroutines imple-
menting these features. Calls to such routines are compiled using the Fortran style name binding
and parameter passing convention. The full correspondence between Fortran 77 types and Sather
built-in Fortran classes is given in section Datatype Mapping on page 136.

Methods with bodies in external Fortran classes serve a dual purpose. Methods whose arguments and
return types are a combination of Sather and external Fortran types are merely helper routines and
iterators whose semantics is the same as that of regular routines and iterators. They could be called

Interfacing with Fortran : 13.1 Overview 131

from any Sather or external classes and such calls support the Sather name binding and parameter
passing convention. Code for such methods can contain all sorts of calls without restrictions.

If all argument types and a return type, if any, in a routine with a body are built-in Fortran types (e.g.
F_INTEGER, F_REAL, etc.) , such routines are meant to be callable from Fortran. They are com-
piled using the Fortran name binding and parameter passing convention. In fact, they could be freely
substituted for Fortran 77 subroutines and functions that perform the same functions. Such routines
could be also called from Sather code, but these calls will also support the Fortran parameter passing
convention which is often less efficient relative to regular Sather calls. There are no restrictions on
the implementation of these function: they can freely use internally any methods implemented either
in Sather or Fortran. Routines which are meant to be called from Fortran cannot be overloaded.

In the diagram, arrows indicate the direction of calls. For example, an arrow connecting Fortran
classes with bodyless routines in External classes indicate calls in the regular Sather code to abstract
routines in the external Fortran classes. The type of the arrow demonstrates that such calls are com-
piled using the Fortran style call name binding and parameter passing convention. On the other hand,
calls from routines with bodies in the external Fortran classes into regular Sather classes are repre-
sented by a solid arrow which denotes the Sather call name binding and parameter passing conven-
tion.

Sather _ Fortran
classes code
a \\ O External Fortran class ,/l / N
DS RN 20V AN
bodiless / (l
routines N / - /

Sather interface to
Fortran

Methods with I |

bodies Arrows indicate call

! P
o e y | directions

methods-]—
helpers

/
Call name binding and
Y parameter passing convention

~ 'Fortran’ _ Sath
— || routines __p Vather
Fortran interfa _ Fortran
to Sather >
» ... p= Mapping of Sather

bodiless routines to
Fortran

132

Interfacing with Fortran : 13.1 Overview

In this example, a Fortran function implementing 'foo’ is called in Sather code as if it were a regular

Sather routine: FOO::foo(i,a,c). However, the call is generated using the Fortran name binding and
parameter passing convention. Calls to 'bar’ are compiled in a similar fashion; however, it could be
called from both Sather or external Fortran code. Finally, 'helper’ has both Sather and external For-
tran types as arguments and therefore could be called from Sather code only.

-- This is a Fortran definition for FOO
INTEGER FUNCTION FOO(I,A,C)
INTEGER |

REAL A

CHARACTER C

END
external FORTRAN class FOO is
-- this routine is implemented externally in Fortran and could

-- be called in Sather like this: tmp::=FOO::foo(i,a,c)
foo(i:F_INTEGER,a:F_REAL,c:F_CHARACTER):F_INTEGER;

-- this routine could be called from both Sather and Fortran
-- all calls to bar (either from Sather or Fortran) use the

-- Fortran 77 parameter passing convention
bar(i:F_INTEGER,a:F_REAL) is

end;

-- this routine can only be called in Sather since
-- argument size has a Sather type
helper(arr:F_ARRAY{F_INTEGERY}, size:INT) is

t::=foo(i,a,c); --call uses Fortran parameter passing convention
bar(t,a); --Fortran convention, but implemented in Sather
end;
end;

Points to note

» External Fortran class routines without bodies (abstract signatures) provide Sather/Fortran in-

terface.

» Routines with bodies could be called from Fortran if and only if their signatures contain only
built-in Fortran types. Such routines can be also called from Sather. However, regardless of the
way they are called, they always support the Fortran style name binding and parameter passing

convention.

» Methods with bodies whose signatures have non-Fortran types are regular Sather methods.
They could be used as helper methods for the interface classes. They always support Sather

style name binding and parameter passing.

Interfacing with Fortran : 13.2 Name Binding 133

13.2 Name Binding

Symbols for Sather calls to Fortran code need to be generated in exactly the same way as a Fortran
77 compile would. This is also necessary for the names of routines intended to be called from For-
tran. This is difficult to ensure in a portable way since neither Sather nor Fortran 77 language spec-
ification prescribes any symbol binding convention and the name mangling strategy is usually very
sensitive to particular Fortran platforms. Sather 1.1 attempts to solve the name biding problem in an
easy to use, but sufficiently general manner.

13.2.1 Difficulties

Various naming issues have to be resolved to provide seamless platform independent interoperability
between Sather and Fortran. Neither Sather nor Fortran specifies a way to mangle symbols generated
for the linking stage. Moreover, various Fortran compilers adopt vastly different naming strategies
and, in general, it is impossible to link together object files generated by different Fortran compilers.
Unfortunately, this is the case even for relatively mainstream platforms: for instance, AT&T 77
compiler name mangling is very different from that of Sun’s f77 compiler.

This is an incomplete list of various Fortran 77 naming practices

* long names may be truncated at various lengths
» Fortran names may have one (most common) or two underscores appended
» Fortran names are usually forced to lower case

» external names (external procedures and common blocks) may be mangled differently from in-
ternal names (various number of trailing underscores, etc.)

The Sather symbols may be generated using quite different naming conventions. For instance, the
ICSI Sather 1.1 compiler generates symbols for Sather routine and iterator names by concatenating
a class name (including class parameters) with a routine name, truncating the resulting name to a
length specified at the compiler configuration/installation step and appending a number at the end to

make the name unique. Other Sather implementations are free to choose any name binding conven-
tion.

The set of problems we have to deal with is the same set of problems that needs to be resolved to
provide interoperability between Fortran and such an "old" language as C. To this day, there is no
standard or even a concrete proposal to resolve F77/C, HPF/C or F95/C name binding issues in a
platform independent fashion.

The Sather 1.1 implementation deals with the naming issues in a more fundamental fashion, in some
respects, than any of the mentioned external interface proposals.

134 Interfacing with Fortran : 13.2 Name Binding

13.2.2 Implementation

The name mangling strategy for external Fortran names generated by Sather is set at the compiler
configuration time. Thus, to move a mixed language program or library from one platform to anoth-
er, it is only necessary to reconfigure the Sather compiler at the compiler installation time to inform

it about the naming convention of the Fortran compiler on the new platform. All user and library
code will continue working as is.

There are at least three potential ways to insure the portability of name binding. The simplest (con-
ceptually, not practically!) way is to keep a list of all known Fortran compilers and used name man-
gling conventions. The Sather compiler should be able to implement any of the possible name
binding strategies. This solution was adopted (not implemented!) by the HPFF proposal to provide
HPPF/C interoperability. Problems with this approach:

» works only with the existing compilers for other languages. A new compiler cannot be support
unless major modifications to the existing tools are performed.

* adds lots of complexity to the Sather compiler as it must know many things about common
Fortran compilers

* moving to a new Fortran platform may potentially require large modifications to the Sather
compiler internals as the mangling decisions for special cases are hardcoded in the Sather com-
piler

Another solution that tries to simplify Sather compiler complexity is to add a "Fortran name bind"
directive to the Sather language. This directive would specify an actual binding name for each For-
tran routine meant to be called from Sather and each Sather routine callable from Fortran. F95/C in-
teroperability proposal partially adopts this approach. This solution, however tedious it may be for
the user, may be unavoidable for Fortran to interface other languages since Fortran names are always
converted to lowercase and to call an external routine whose name in the symbol table has at least a
single uppercase letter a new language construct needs to be added to Fortran. This particular prob-
lem, however, may be avoided for Sather. Nevertheless, there are some serious problems with this
approach:

» the burden is entirely on the user’s shoulders. He/she needs to be aware about too many low-
level name binding details

« the "name bind" directive pollutes the code with things that are irrelevant for the program se-
mantics

» itis a pain to port a program to a different Fortran platform: name binding will need to change
accordingly

Finally, a completely general solution is to provide a Sather compiler at configuration time with a
stand alone function that would take the Sather name as an input and generate a biding Fortran name
as output that conforms to all conventions of the current Fortran platform. A library of such functions
for most common platforms could be distributed with the compiler, and to port the Sather compiler

to an exotic Fortran platform, only a single function will need to be written (or modified given a valid
Fortran platform with a similar functionality.) This approach was considered as superior in the F95/

C Interoperability Technical Report (ISO/IEC JTC1/SC22/WG5 N1147), but it was not accepted be-
cause of the F95 compiler implementation difficulties.

Interfacing with Fortran : 13.2 Name Binding 135

Sather 1.1 tries to shield the user completely from the horrors of low-level mangling details. It adopts
the third and most general strategy. In addition, it also provides simple hooks for most common For-
tran mangling conventions.

Most Fortran compilers simply append an underscore as a prefix or suffix to the textual name (mod-
ulo necessary truncation) . The same behavior for external names could be achieved by setting either
one or both configuration variables in the CONFIG file for a particular platform at installation time:

FORTRAN_APPEND_UNDERSCORE:true;
FORTRAN_PREFIX_UNDERSCORE:false;

In this example, the Fortran binding name is generated from the routine name used in the external
Fortran class by appending ’_".

If this is not sufficient, a general Fortran name mangling function can be specified at installation
time:

FORTRAN_BIND_FUNC: true;

When FORTRAN_BIND_FUNC configuration variable is set to true, a general name binding func-
tion BIND_FORTRAN::bind_name(name:STR):STR is invoked whenever Fortran symbols are gen-
erated. It, in turn, can call any user supplied mangling function capturing the peculiarity of a
particular Fortran platform. BIND_FORTRAN class contains most common binding functions. To
port the system to an exotic Fortran environment, a single name binding routine needs to be added
to BIND_FORTRAN.

Class BIND_FORTRAN resides in the Fortran library. The following Fortran name binding function
simply appends an underscore to the textual name:

class BIND_FORTRAN is
-- contains various functions binding Fortran names for exotic
-- architectures. "bind_name" should always call the appropriate
-- function and FORTRAN_FUNC_BIND in CONFIG should be set to true
bind_name(name:STR):STR is
res:STR;
-- various Fortran mangling routines should be plugged in here
res := append_underscore(name);
return res;
end;

append_underscore(s:STR):STR is
return s+"_";
end;
end;

136 Interfacing with Fortran : 13.3 Datatype Mapping

13.3 Datatype Mapping

The extended Sather 1.1 library provides a set of built-in classes interfacing to Fortran. These types
are "binary" compatible with their Fortran 77 counterparts. Only these built-in classes may be used
in signatures of routines implemented in Fortran or Sather routines called from Fortran. Fortran sca-
lar types can be used alone or as parametrizations for built-in Fortran array classes. Sather also pro-
vides a convenient way for packaging Sather routines and passing them to Fortran functions or
subroutines that expect externally defined subroutines as arguments. There is also a facility for

Fortran 77 Sather class Features

integer F_INTEGER binary compatible with Fortran 77 integers and can be
used whenever Fortran integer type is expected. Supports
arithmetic and relational operations, construction from
and convention to INT

real F REAL represents Fortran 77 reals and can be used whenever For-
tran real type is expected. Supports arithmetic and rela-
tional operations, construction from and convention to

FLT
logical F_LOGICAL binary compatible with Fortran 77 logical. Supports logi-
cal operations and constructors from Sather BOOL type.
double F_DOUBLE binary compatible with Fortran 77 double precision type.
precision Supports a set of features simialr to F_REAL
complex F_COMPLEX binary compatible with Fortran 77 complex type. Supports

arithmetic operations and creation from Sather CPX type
(although the binary representation is quite different from

CPX)
double F_DOUBLE_CO | binary compatible with Fortran 77 double complex type.
complex MPLEX Supports a set of features similar to F_COMPLEX, but
uses double precision arithmetic.
character, F _CHARACTER| binary compatible with both Fortran 77 character and
character*1 character*l types. As an optimizations, inside Sather

space it is represented by a single byte and is, therefore,
more efficient than corresponding Fortran 77 types.

character*n F _STRING binary compatible with Fortran 77 character*n type (in-
cluding character*1). Intra Sather calls are slightly more
efficient than corresponding Fortran/Fortran, Sather/For-
tran or Fortran/Sather calls.

Table 6: Built-in Scalar Types

Interfacing with Fortran : 13.3 Datatype Mapping

137

Fortran 77

Sather Types

Features

Various
array types

F_ARRAYN{T<
$F_SCALAR}
wheren=1,2,..

Can be parametrized by any scalar Fortran types, binary
compatible with the corresponding Fortran 77 arrays: use
the same layout. Can be constructed using Sather arrays,
matrix and vector classes. arr:F_ARRAY{F_INTEGER}
corresponds to INTEGER arrr(*) in Fortran.

Table 7: Array Types

Fortran 77 Sather Type Features
External F_ROUT{} Used to bind Fortran routines, strongly type checked. Can
subroutines be passed as arguments to external Fortran routines that
passed as expect externally defined subroutines as parameters.
arguments
Alternate F_HANDLER Implements Fortran exception handling in Sather. Can be
returns passed as an arguments to Fortran subroutines with alter-
(exception nate returns (Fortran’s way to handle exceptional or abnor-
handling) mal conditions.)

Table 8: Fortran Routine and Exception Handler Types

Sather to provide exception handlers for Fortran subroutines with alternate returns (Fortran’s way to
handle exceptional or abnormal conditions).

13.3.1 Scalar Types

There are eight built-in scalar types: F_INTEGER, F_REAL, F_LOGICAL, F_DOUBLE,
F_COMPLEX, F_DOUBLE_COMPLEX, F_CHARACTER, and F_STRING. They correspond to
Fortran 77 types as shown in the table. All scalar Fortran types are subtypes of $F_SCALAR
($F_SCALAR is used as a bound for array parametrizations to ensure that arrays are parameterized
with scalar types only).

Itis important to distinguish between external Fortran interface types and "regular” Sather types with
similar semantics. For example, Sather type INT is different from Fortran F_INTEGER, although
both abstract the meaning of integers. There is no sub- or super-typing relationship between INT and
F_INTEGER and these types cannot be used interchangeably. No assumption could be made about
the relative amounts of memory the Sather and Fortran types need. This is defined differently by
Sather and Fortran 77 language specifications. For instance, the only relevant Fortran 77 rule guar-
antees that integer, logical, and real Fortran types occupy the same amount of memory, and double
precision and complex types occupy twice as much (the language does not specify the absolute
amounts). Sather, on the other hand, does not specifically support these assumptions.

138 Interfacing with Fortran : 13.3 Datatype Mapping

F_INTEGER

F_INTEGER is a Sather 1.1 class representing Fortran 77 integer type. It can be used whenever a
Fortran 77 integer is expected: calls to routines implemented in Fortran, Fortran array parametriza-
tions, etc. The Sather 1.1 library defines the following features for F_INTEGER

Fortran 77 Sather class Features provided by the library
INTEGER F_INTEGER create(X:INT):F_INTEGER -- construct from INT
int:INT -- INT version of self
str:STR -- string representation
zero:SAME -- zero and
nil:SAME -- nil values
is_nil:BOOL -- true if self is nil

plus(i:SAME):SAME
minus(i:SAME):SAME
times(i:SAME):SAME
div(i:SAME):SAME
is_eq(i:SAME):BOOL
is_lt(i:SAME):BOOL

Table 9: F_INTEGER

F_INTEGER could be created using a Sather INT type. An existing F_INTEGER could also yield a
corresponding Sather INT value. Although the intended use for F_INTEGER variables is to be
passed as arguments to and from external Fortran routines, some simple operations on F_INTEGER
variables are built-in and could be performed in Sather directly without going through Fortran. Such
operations are the regular arithmetic operations (+ -* /) and logical operations. Syntactic sugar and
operator precedence rules are same as those for Sather types.

Interfacing with Fortran : 13.3 Datatype Mapping 139

This example uses an external function defined in Fortran to implement a factorial function missing
in the F_INTEGER interface:

* A Fortran function that implements factorial of N
INTEGER FUNCTION FACTORIAL(N)
INTEGER N
FACTORIAL =1
DO 10, I=1,N

FACTORIAL = FACTORIAL * |

10 CONTINUE

END

external FORTRAN class USEFUL_FUNCTIONS is
factorial(i:F_INTEGER):F_INTEGER;

-- a function implemented in Fortran that returns factorial of i

end;

class MAIN is
main is
i:F_INTEGER := #(4);
a:F_INTEGER := USEFUL_FUNCTIONS::factorial(i);
#OUT + "This " + a.str + " should be 24\n";
end;
end;

140 Interfacing with Fortran : 13.3 Datatype Mapping

F_REAL

F_INTEGER, F_REAL represents Fortran 77 real type. Sather syntactic sugar for arithmetic and re-

Fortran 77 Sather class Features provided by the library
REAL F_REAL create(x:FLT):F_REAL -- construct from FLT
fItINT -- FLT version of self
str:STR -- string representation
zero:SAME -- zero and
nil:SAME -- nil values
is_nil:BOOL -- true if self is nil

plus(i:SAME):SAME
minus(i:SAME):SAME
times(i:SAME):SAME
div(i:SAME):SAME
is_eq(i:SAME):BOOL
is_lt(i:SAME):BOOL

Table 10: F_REAL

lational operations and operator precedence rules apply to F_REAL. Now, we can extend
USEFUL_FUNCTIONS class with a power routine for F_REAL.:

external FORTRAN class USEFUL_FUNCTIONS is
-- external Fortran function that raises x to power y
power(x:F_REAL,y:F_REAL):F_REAL;

end,;

Interfacing with Fortran : 13.3 Datatype Mapping 141

F_DOUBLE

F_DOUBLE represents Fortran 77 double type. Sather syntactic sugar for arithmetic and relational

Fortran 77 Sather class Features provided by the library
REAL F_REAL create(x:FLTD):F_REAL -- construct from FLTD
fltd:INT -- FLTD version of self
str:STR -- string representation
zero:SAME -- zero and
nil:SAME -- nil values
is_nil:BOOL -- true if self is nil

plus(i:SAME):SAME
minus(i:SAME):SAME
times(i:SAME):SAME
div(i:SAME):SAME
is_eq(i:SAME):BOOL
is_lt(i:SAME):BOOL

Table 11: F_DOUBLE

operations and operator precedence rules apply to F DOUBLE.

F_LOGICAL

F_LOGICAL is a Sather class representing Fortran 77 logical type. It is "binary" compatible with
Fortran’s "logical" type (Sather BOOL has a vastly different representation in ICSI 1.1 compiler). In
particular, F_LOGICAL occupies the same amount of space as Fortran integer and real types to con-
form to Fortran 77 rules.

Fortran 77 Sather class Features provided by the library
LOGICAL F_LOGICAL create(x:BOOL):F_LOGICAL -- construct from INT
bool:BOOL -- INT version of self
str:STR -- string representation
not:SAME

is_eq(B:SAME):BOOL
f_or(b:SAME):SAME
f_and(b:SAME):SAME

Table 12: F_LOGICAL

142 Interfacing with Fortran : 13.3 Datatype Mapping

Logical operations are called f_or and f_and to avoid hame collisions with short-circuited Sather op-
erators’and’ and 'or’. The following function implementing exclusive or can be added to
USEFUL_FUNCTIONS

xor(a:F_LOGICAL,b:F_LOGICAL):F_LOGICAL is
return (a.not.f_and(b)).f_or(a.f_and(b.not));
end;

F_COMPLEX

F_COMPLEX is a Sather class binary compatible with Fortran 77 COMPLEX type. Although
F_COMPLEX provides a constructor that accepts a variable of Sather CPX type, F_COMPLEX has
a binary representation quite different from that of CPX. F_COMPLEX provides a set of features for
setting and returning the values of the real and imaginary parts. It also provides useful constructors
and supports a set of arithmetic operations.

Fortran 77 Sather class Features provided by the library
COMPLEX F_COMPLEX re:F_ REAL -- return real part
re(x:F_REAL) -- set real part
im:F_REAL -- return imaginary part
im(x:F_REAL) -- set imaginary part
create(c:CPX):SAME -- create new and

-- initialize to value of ¢
create(re:F_REAL,im:F_REAL):SAME
create(re:FLT,im;FLT):SAME
create(fc:F_COMPLEX):SAME

cpx:CPX -- Sather comlplex type
str:STR -- string representation
zero:SAME -- zero and

nil:SAME -- nil value
is_nil:BOOL -- true if self is nil

plus(c:SAME):SAME
minus(c:SAME):SAME
times(c:SAME):SAME
div(c:SAME):SAME
is_eq(c:SAME):.BOOL

Table 13: F_COMPLEX

This is a possible implementation of addition of F_COMPLEX numbers:

plus(c:F_COMPLEX):F_COMPLEX is
return #F_COMPLEX(re+c.re,im+c.im);
end;

Interfacing with Fortran : 13.3 Datatype Mapping 143

F_DOUBLE_COMPLEX

Similar to F_ COMPLEX, F_DOUBLE_COMPLEX is a Sather class binary compatible with the
Fortran double complex type. Double complex type is an extension to Fortran 77 supported by many
F77 compiler. F_ DOUBLE_COMPLEX class provides functionality similar to F_ COMPLEX, but
works with double precision floating point representations.

Fortran 77 Sather class Features provided by the library
double F_DOUBLE_ re:F_DOUBLE -- return real part
complex COMPLEX re(x:F_DOUBLE) -- set real part

im:F_DOUBLE -- return imagianry part
im(x:F_DOUBLE) -- set imaginary part
create(c:CPXD):SAME -- create new and

-- initialize to value of ¢
create(re:F_DOUBLE,im:F_DOUBLE):SAME
create(re:FLTD,im:FLTD):SAME
create(fc:F_DOUBLE_COMPLEX):SAME

cpxd:CPXD -- CPXD version of self
str:STR -- string representation
zero:SAME -- zero and

nil:SAME -- nil value
is_nil:BOOL -- true if self is nil

plus(c:SAME):SAME
minus(c:SAME):SAME
times(c:SAME):SAME
div(c:SAME):SAME
is_eq(c:SAME):BOOL

Table 14: F_DOUBLE_COMPLEX

F_CHARACTER

F_CHARACTER is binary compatible with Fortran 77 types character and character*1. Fortran 77
character and character*1 types are, in fact, instances of character*n types with n set to 1. In Sather
terms, they are strings with size always set to one. For parameter passing purposes, Fortran character
and character*1 variables behave exactly as generic character*n types (the length of the string which
is always one is passed as an extra parameter for each character or character*1 argument). Since the
goal for F_CHARACTER is binary compatibility with Fortran, this is how F_CHARACTER class
behave when a call crosses the language boundary. However, as long as F_ CHARACTER variables
stay within the Sather space, they are represented and passed to routines more efficiently, as a single

144 Interfacing with Fortran : 13.3 Datatype Mapping

byte. As a result, simple character operations performed on F_CHARACTER class in Sather are
more efficient than their Fortran versions!

Fortran 77 Sather class Features provided by the library
character F_CHARACTER | create(c:CHAR):SAME -- create new and
character*l -- initialize to value of ¢

char.CHAR -- CHAR version of self
str:STR -- STR version of self
zero:SAME -- Zero
is_eq(c:SAME):BOOL

is_It(c:SAME):BOOL

Table 15: F_CHARACTER

F_STRING

F_STRING is binary compatible with Fortran 77 character*n types. Note, that both
F_CHARACTER and F_STRING can be used to interface with Fortran character*l type, but
F_CHARACTER yields better performance for computations performed in Sather.

F_STRING is internally represented by a tuple: the first field points to the string itself, and the sec-
ond records the string length. An inter-language call requires that both be passed as separate argu-
ments. The section Parameter Passing on page 151 provides more information on this. Inside Sather
however (calls using the Sather parameter passing convention), F_STRING is passed as a whole,
which is slightly more efficient than the Fortran calls.

Fortran 77 Sather class Features provided by the library
character*n F_STRING create(s:STR):SAME -- create new and
-- initialize to value of s

create(n:INT):SAME --new of size n
create(c:CHAR):SAME -- create fromc
address:C_ CHAR_PTR --the "string" part
size:INT -- string length
str:STR -- STR version of self

Table 16: F_STRING

13.3.2 Fortran Array Classes

Providing a convenient array interface is an important goal for Sather/Fortran interoperability. A set
of parametrized classes F_ARRAY{T<$F_SCALAR}, and F_ARRAYn{T<$F_SCALAR}, where
n=2,3... are used for this purpose. Array classes can be parametrized by any of the scalar types. For

Interfacing with Fortran : 13.3 Datatype Mapping 145

example, F_ARRAY{F_INTEGER} corresponds to a Fortran 77 integer array type. Similarly,
F_ARRAY2{F_REAL} represents a Fortran 77 two-dimensional array of real numbers.

F_ARRAY classes must be binary compatible with the Fortran 77 arrays and therefore they conform
to the Fortran array layouts. For instance, this requires that in a two dimensional arrays successive
elements of a column are in a contiguous memory locations (i.e. column major layout.) Note that
regular Sather arrays (ARRAY{}, ARRAY2{}, etc.) support C-like row-major layout. Thus, creation

of Fortran arrays based on Sather arrays may require a layout change. On the other hand, matrix
classes provided by the Sather Math library have the same layout as Fortran arrays. F_ ARRAY2
classes provide constructors from MAT classes that have reference semantics - thus the creation pro-
cedure is fairly inexpensive.

Combining materials from this chapter, and using Fortran array types, we can construct a simple
Sather interface to standard Fortran BLAS single precision matrix multiplication routine as follows:

SUBROUTINE SGEMM (TRANSA, TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
CHARACTER*1 TRANSA, TRANSB

INTEGER M, N, K, LDA, LDB, LDC
REAL ALPHA, BETA
REAL A(LDA, *), B(LDB, *), C(LDC, *)

external FORTRAN class BLAS is
sgemm(transa:F_CHARACTER, transb:F_CHARACTER, m,n,k:F_INTEGER,
alpha:F_REAL, a:F_ ARRAY2{F_REAL}, lda:F_INTEGER,
b:F_ARRAY2{F_REAL}, Idb:F_INTEGER,beta:F_REAL,
C:F_ARRAY2{F_REAL}Idc:F_INTEGER);
-- this corresponds to the fortran BLAS signature
end;

class TEST_BLAS is
main is
fa,fb,fc:F_ARRAY2{F_REAL};
sa,sh,sc:MAT;

initialize(sa,sb,sc);

fa := #(sa); -- these creations has "reference" semantics
fb := #(sb);

fc 1= #(sc);

dim:F_INTEGER := #(fa.size);
TEST_BLAS::sgemm(#('N"),#('N"),#(sa.nr),#(sb.nc),#(sa.nc),#(1.0),
fa,#(sa.sizel),fb,#(sb.sizel),#(0.0),fc,#(sc.sizel));

-- at this point, both fc and sc have a multiplication result

end;

initialize(sa:MAT,sb:MAT,sc:MAT) is
-- initialization code ...
end;
end;

146 Interfacing with Fortran : 13.3 Datatype Mapping

We can go one step father and hide the details of Fortran implementation of sgemm entirely from the
user:

class MAT is

times(m:SAME):SAME is
-- multiply self by m and return the resulting matrix
-- For efficiency, uses high-performance Fortran 77 BLAS sgemm
res:MAT := #(nr,m.nc); -- storage for result
fa,fo,fc:F_ARRAY2{F_REAL},

fa := #(self);
fb ;= #(m);
fc = #(res);

-- now, call the Fortran BLAS sgemm
TEST_BLAS::sgemm(#('N"),#('N"),#(nr),#(m.nc),#(nc),#(1.0),
fa,#(sizel),tb,#(m.sizel),#(0.0),fc,#(res.sizel));
-- at this point, both fc and res have a multiplication result
return res;
end;
end;

-- now it is really easy to multiply matrices!
a,b,c:MAT,;
c:=a*b;

This code shows that using high-performance Fortran BLAS in Sather is, in fact, much easier than
in Fortran! The internal workings of BLAS could be buried in the libraries. As a result, matrix mul-
tiplication is expressed as easily as "a*b" in the example. If the code is compiled with compiler op-
timizations on, the Sather inlining stage eliminates an extra routine call, and the end result will be as
efficient as calling "sgemm" from Fortran directly. However, we get away with not specifying about
a dozen parameters in the most general case.

In the given example, the space for the multiplication refilhéeds to be allocated in Sather (For-
tran 77 has no means for a dynamic memory allocation). This is also necessary even when Fortran
arrays are returned by functions.

Points to note

» Fortran arrays have a different layout from standard Sather arrays. In particular, in
F_ARRAY2, consecutive elements in array columns occupy consecutive storage, while
ARRAY2 has a row-major layout.

e MAT classes have the same layout as Fortran arrays, and conversion from MAT to
F_ARRAY?2 is very light-weight (reference semantics)

Interfacing with Fortran : 13.3 Datatype Mapping 147

13.3.3 F_ROUT and F_HANDLER Types

Passing Routines as Arguments, F_ROUT{}

Fortran 77 supports passing procedures as arguments to subroutines and functions. It is desirable to
be able to package a Sather routine and pass it as an argument to Fortran code. It may prove neces-
sary for example, when Fortran numerical code expects a differentiation or integration function to
be passed as an argument. Since we would like to exploit Sather flexibility and development speed
whenever possible, a natural thing to do is to write such integration routines in Sather and pass them
to numerical Fortran code.

Sather 1.1 provides a way to bundle any routine in the External class that supports the Fortran pa-
rameter passing convention and pass it as a functional argument to Fortran code that expects external
procedures as parameters. A Fortran routine type F_ROUT{} serves this purpose. In many ways,
F_ROUTs are similar to Sather routine closures. Just as routine closures, they are strongly typed and
provide similar creation facilities. However, unlike routine closures, all arguments in the Fortran rou-
tine used for creation must be left unbound. This is necessary to adhere to Fortran semantics and for
performance considerations.

'#F_ROUT(...)" is a creation expression that surrounds a Fortran calls with all arguments replaced
by the underscore character’_'. For example, this code may be used to compute a distance between
two points on the plane whose coordinates are represented by Fortran complex numbers:

external FORTRAN class STAT is

distance(pointl:F_COMPLEX, point2:F_COMPLEX,res:F_REAL) is
-- this routine is compiled using the Fortran parameter
-- passing convention and name binding. It could be called
-- from either Sather or Fortran
X1:FLT := pointl.re.fit; y1:FLT := pointl.im.flt;
X2:FLT := point2.re.flt; y2:FLT := point2.im.flt;
res := #F_REAL(((x1-x2).square + (y1-y2).square).sqrt);

end;

-- this routine is implemented externally in Fortran
process_points(arrayl:F_ARRAY{F_COMPLEX}, array2:F_ARRAY{F_COMPLEX},
func:F_ROUT{F_COMPLEX,F_COMPLEX,F_REAL),size:F_INTEGER);
end;

In the above example, an externally implemented Fortran subroutine process_points expects two ar-
rays of complex numbers and a function that will be applied to corresponding elements in the arrays:

SUBROUTINE PROCESS_POINTS(ARRAY1,ARRAY2,FUNC,SIZE)
COMPLEX ARRAY1(*), ARRAY2(*)

EXTERNAL FUNC

INTEGER SIZE

REAL RES
DO 10 I=1,SIZE
CALL FUNC(ARRAY1(l),ARRAY2(l),RES)
PRINT *, RES
10 CONTINUE
END

148 Interfacing with Fortran : 13.3 Datatype Mapping

We can pass a routine defined in Sather to Fortran subroutine process_points the following way:

-- This code appears in some STAT feature
arrayl, array2:F_ARRAY{F_COMPLEX}
-- some code to initialize arrayl and array2

rout:F_ROUT{F_COMPLEX,F_COMPLEX,F_REAL} := #F_ROUT(distance(_,_,));
process_points(arrayl,array2,rout); -- call Fortran code

Variables of F_ROUT type behave similarly to ROUT variables. It is possible to assign to such vari-
ables, pass them as parameters, etc.:

rout:F_ROUT{F_COMPLEX,F_COMPLEX,F_REAL} := #F_ROUT(distance(_,_,));

routl:F_ROUT{F_COMPLEX,F_COMPLEX,F_REAL);
routl :=rout; -- F_ROUT assignment: Ihs and rhs types are the same

Points to note

F_ROUT type specifiers are very similar to routine closure type specifiers, but all types inside
F_ROUT{} must be Fortran types.

All call arguments in #F_ROUT() must remain unbound (Fortran 77 does not support binding
subroutine or function arguments)

F_ROUT variables could be assigned to just like other Sather variables. The types of the right-
hand side and the left-hand sides of such assignments are strongly checked the same way as
for other assignments.

Unlike Sather routine closures, there may be no subtyping relationship between different
F_ROUT types (this is because all Fortran types are concrete). Assignments or calls are possi-
ble only when the types are exactly the same.

#F_ROUT() could be used just as well to bind externally defined Fortran routines (routines
without bodies). These could be passed back to Fortran or used in Sather without restrictions.

Type inferencing for F_ROUT creations works exactly as that for closure creation expressions.
F_ROUT arguments cannot be passetbat' or "inout" arguments.

Interfacing with Fortran : 13.3 Datatype Mapping 149

Exceptional Condition Handling, F_HANDLER

It is possible in Fortran to anticipate exceptional conditions and have different flow paths depending
on whether the called subroutine has terminated properly, or has detected abnormal circumstances.
This is achieved using the alternate RETURN facility.

A call to a subroutine with "alternate returns"

This is a Fortran’s way to handle exceptional conditions
If, for some reason, FOO detects an abnormality

it can choose to return to exception handlers

(passed as labels 100 and 200), rather than to the caller
CALL FOO(l,3,*100,*200)

L

* Handle exceptions
* Exception Handler 1
100 ...
GOTO1
200 Exception Handler 2

GOTO1

A subroutine with alternate returns

Two exception handlers are passed in (marked by *)
RETURN 1 transfers control to the first handler, and
RETURN 2 transfers control to the second handler
"Normal" RETURN transfers control to the caller
SUBROUTINE FOO(l,J,**

L

* Detect abnormal conditions and transfer control to
the appropriate exception handlers
IF (.LEQ.0) RETURN 1
IF (J.EQ.0) RETURN 2
END

In the given example, the argument list of the call to subroutine FOO includes 2 labels corresponding
to the exception handler entries. If an exceptional condition of some sort arises, FOO will transfer
control to the appropriate exception handler (passed as an argument) rather than the caller. For ex-
ample, if the value of argument | is 0, the control is transferred to exception handler 1, if J is 0, ex-
ception handler 2 handles the exception. The exception handlers are indicated by the dummy asterisk
arguments in the subroutine argument list. Only subroutines are allowed to have such arguments.

Since alternate returns are a part of Fortran, they may be present in the interfaces provided by the
Fortran libraries. It is, therefore, desirable to call such subroutines from Sather and provide exception
handlers written in Sather for such calls.

The F_HANDLER class captures the essence of the Fortran exception handlers and could be passed
in as an argument to a subroutine with alternate returns. F_HANDLER provides a single constructor
create(rout:ROUT):SAME. The argument is a bound routine with no arguments since Fortran han-

150 Interfacing with Fortran : 13.3 Datatype Mapping

dlers do not have any arguments. Now, we will call the Fortran subroutine FOO, but supply Sather
exception handlers at the moment of the call.

class HANDLERS is
h(i:INT) is
#OUT + "Sather handler for Fortran exception "+i.str +"\n";
end;
create:SAME is return new; end;
end;

external FORTRAN class FOO is
foo(i:F_INTEGER,j:F_INTEGER,handlerl:F_HANDLER, handler2:F_HANDLER);
-- note that foo can't have a return value - this is a Fortran
-- restriction on subroutine with alternate returns

end;

-- code that calls Fortran FOO

handlers:HANDLERS := #;

handlerl:F_HANDLER := #(bind(handlers.h(1))); -- create first handler
handler2:F_HANDLER := #(bind(handlers.h(2))); -- create second handler
FOO::foo(#(1),#(0),handlerl,handler2);

When this code is executed, it prints: "Sather handler for Fortran exception 2".

F_HANDLER mechanism allows to integrate Fortran and Sather exceptions even more closely. For
example, we can use Sather exception handlers that catch Fortran exceptions to raise standard Sather
exceptions that are caught by the Sather protect mechanism. Essentially, this turns Fortran exception
into regular Sather exceptions:

class HANDLERS is
r_h(i:INT) is
raise "FORTRAN->Sather exception redirected by handler #"+i.str;
end;
create:SAME is return new; end;
end;

external FORTRAN class FOO is
foo(i:F_INTEGER,j:F_INTEGER,handlerl:F_HANDLER, handler2:F_HANDLER);
-- note that foo can’t have a return value - this is a Fortran
-- restriction on subroutine with alternate returns

end;

-- code that calls Fortran FOO
handlers:HANDLERS := #;
redirect_handlerl:F_HANDLER := #(bind(handlers.r_h(1)));
redirect_handler2:F_HANDLER := #(bind(handlers.r_h(2)));
protect
FOO::foo(#(1),#(0),redirect_handlerl,redirect_handler2);
when STR then
#OUT + "Sather exception for "+exception+\n";
end

This code produces: "Sather exception for FORTRAN->Sather exception redirected by handler 2"

Interfacing with Fortran : 13.4 Parameter Passing 151

Points to note

» Only routines that have no return value can have F_ HANDLER arguments. This is a Fortran
restriction: only subroutines (not functions) can have alternate returns.

» F_HANDLER can be created from a standard closure with no arguments or return value:
ROUT. An attempt to use closures of other types (like ROUT{INT}) is reported as an error.
This restriction is also necessitated by the semantics of alternate returns in Fortran. Fortran ex-
ception handlers do not permit arguments.

« F_HANDLER types cannot be passed ast" or "inout" arguments.

13.4 Parameter Passing

Some routines and calls in external Fortran classes are compiled using the Fortran parameter passing
convention. This section describes how this is achieved. Routines without bodies in external Fortran
classes and Fortran routines (routines whose return types and all arguments are Fortran types) are
compiled as described below. The explanation is done in terms of mapping the original Sather sig-
natures to C prototypes. All Fortran types are assumed to have corresponding C types defined. For
example, F_INTEGER class maps onto F_INTEGER C type. Section Portability Issues on page 154
describes how this could be achieved in a portable fashion. The examples are used to illustrate pa-
rameter passing only - the actual binding of function names is irrelevant for this purpose.

13.4.1 Return Types

Routines that return F_INTEGER, F_REAL, F_LOGICAL, and F_DOUBLE map to C functions
that return corresponding C types. A routine that returns F_ COMPLEX or F_ DOUBLE_COMPLEX

is equivalent to a C routine with an extra initial arguments preceding other arguments in the argument
list. This initial argument points to the storage for the return value.

F_COMPLEX foo(i:F_INTEGER,a:F_REAL);
-- this Sather signature is equivalent to
void foo(F_COMPLEX* ret_val, F_INTEGER* i_address, F_REAL* a_address)

A routine that returns F_CHARACTER is mapped to a C routine with two additional arguments: a
pointer to the data, and a string size, always set to 1 in the case of F_CHARACTER.

F_CHARACTER foo(i:F_INTEGER, a:F_REAL);

-- this Sather signature maps to

void foo(F_CHARACTER* address, F_LENGTH size, F_INTEGER* i_address,
F_REAL* a_address);

152 Interfacing with Fortran : 13.4 Parameter Passing

Similarly, a routine returning F_STRING is equivalent to a C routine with two additional initial ar-
guments, a data pointer and a string Ier’rgth.

F_STRING foo(i:F_INTEGER, a:F_REAL);
-- this Sather signature maps to
void foo(F_CHARACTER* address, F_LENGTH size, F_INTEGER* i, F_REAL* a);

13.4.2 Argument Types

All Fortran arguments are passed by reference. In addition, for each argument of type
F_CHARACTER or F_STRING, an extra parameter whose value is the length of the string is ap-
pended to the end of the argument list.

foo(i:F_INTEGER,c:F_CHARACTER,a:F_REAL):F_INTEGER

-- this is mapped to

F_INTEGER foo(F_INTEGER* i_address,F_CHARACTER*c_address,F_REAL*
a_address,F_LENGTH c_length);

-- all calls have c_length setto 1

foo(i:F_INTEGER,s:F_STRING,a:F_REAL):F_INTEGER

-- this is mapped to

F_INTEGER foo(F_INTEGER* i_address,F_CHARACTER* s_address,F_REAL*
a_address,F_LENGTH s_length);

-- propoer s_length is supplied by the caller

Additional string length arguments are passed by value. If there are more than one F_CHARACTER
or F_STRING arguments, the lengths are appended to the end of the list in the textual order of string
arguments:

foo(s1:F_STRING,i:F_INTEGER,s2:F_STRING,a:F_REAL);

-- this is mapped to

void foo(F_CHARACTER* s1_address,F_INTEGER* i_address,F_CHARACTER*
s2_address, F_REAL a_address,F_LENGTH s1_length, F_LENGTH s2_length);

Sather signatures that have F_ HANDLER arguments correspond to C integer functions whose return
value represents the alternate return to take. The actual handlers are not passed to the Fortran code.
Instead, code to do the branching based on the return value is emitted by the Sather compiler to con-
form to the alternate return semantics.

Arguments of type F_ROUT are passed as function pointers.

Thus, the entire C argument list including additional arguments consists of:

» one additional argument due to F_ COMPLEX or F_DOUBLE_COMPLEX return type, or two
additional arguments due to F_CHARACTER or F_STRING return type

» references to "normal" arguments corresponding to a Sather signature argument list

1. The current Sather 1.1 implementation disallows returning Fortran strings of size greater than 32 bytes. This
restriction may be lifted in the future releases.

Interfacing with Fortran : 13.4 Parameter Passing 153

» additional arguments for each F_CHARACTER or F_STRING argument in the Sather signa-
ture

The following example combines all rules:

foo(s1l:F_STRING, i:F_INTEGER, a:F_REAL, c:F_CHARACTER):F_COMPLEX
-- is mapped to

void foo(F_COMPLEX* ret_address, F_ CHARACTER* s1_address, F_INTEGER*
i_address, F_REAL* a_address, F_CHARACTER* c_address, F_LENGTH
s1_length, F_LENGTH c_length);

-- all Sather calls have c_length set to 1

13.4.3 OUT and INOUT Arguments

Sather 1.1 provides the extra flexibility 'ofit’ and’inout’ argument modes for Fortran calls. The
Sather compiler ensures that the semantiteutfand inout’ is preserved even when calls cross the
Sather language boundaries. In particular, the changes to such arguments are not observed until the
call is complete - thus the interlanguage calls have the same semantics as regular Sather calls.

This additional mechanism makes the semantics of some arguments visually explicit and conse-
quently helps catch some bugs caused by the modificatiom’ afguments (all Fortran arguments

are passed by reference, and Fortran code can potentially modify all arguments without restrictions.)
A special compiler option may enable checking the invariance of Fdnramgumem%

In the case of calling Fortran code, the Sather compiler ensures that the value/result semantics is pre-
served by the caller - the Sather compiler has no control over external Fortran code. This may involve

copying’inout’ arguments to temporaries and passing references to these temporaries to Fortran. In

the case of Sather routines that are called from Fortran, the Sather compiler emits a special prologue
for such routines to ensure the value/result semantics for the Fortran caller. In summary, the value/

result semantics for external calls to Fortran is ensured by the caller, and for Sather routines that are
meant to be called by Fortran it is implemented by the callee.

This example suggests how a signature for a routine that swaps two integers:

SUBROUTINE SWAP(A,B)
INTEGER A,B

-- a Sather signature may look like
swap(inout a:F_INTEGER, inout b:F_INTEGER);

Note that using argument modes in this example makes the semantics of the routine more obvious.

2. The ICSI Sather 1.1 compiler currently does not implement this functionality.

154 Interfacing with Fortran : 13.5 Portability Issues

In the following example, compiling the program with all checks on may reveal a bug due to the in-
correct modification of the vector sizes:

SUBROUTINE ADD_VECTORS(A,B,RES,size)
REAL A(*),B(*),RES(*)
INTEGER SIZE

-- Sather signature
add_vectors(a,b,res:F_ARRAY{F_REAL}, size:F_INTEGER)
-- size is an 'in’ parameter and cannot be modified by Fortran code

In addition to extra debugging capabilitiée; arguments are passed slightly more efficiently than
‘out’” and’inout’ arguments.

Points to note
« F_ROUT and F_HANDLER types cannot lmut" or "inout" arguments.

13.5 Portability Issues

This section discusses the portability of the Sather/Fortran interface. Various name binding portabil-
ity issues where covered in section Name Binding on page 133. Issues relevant to code portability
are addressed here.

13.5.1 Portability of the Interface Implementation Code

It is important to distinguish between portability of the Sather compiler module that implements the
Sather/Fortran interface and the portability of the code it generates. The Fortran 77 interface module
is written entirely in Sather and is integrated with the ICSI Sather compiler. The Fortran interface
should be available on all platforms where the ICSI Sather compiler is available. In particular, it is
available on most UNIX platforms.

13.5.2 Portability of the Generated Code

The Fortran 77 standards says that all Fortran 77 types except for COMPLEX, DOUBLE PRECI-
SION, and CHARACTER of any flavor occupy a single "unit" of storage space. COMPLEX and
DOUBLE PRECISION types take two "units" of storage. This may need to be adjusted accordingly
when porting the Sather compiler to a different platform. A modification to "System/Common/for-

Interfacing with Fortran : 13.5 Portability Issues 155

tran.h" may be necessary. "System/Common/fortran.h” contains a set of definitions for Fortran stor-
age types used by the Sather/Fortran interface:

typedef long int F_INTEGER,;
typedef long int F_LOGICAL;
typedef float F_REAL;
typedef double F_DOUBLE;
typedef char F_CHARACTER;
typedeflongint F_LENGTH,;
typedef struct {
F_REAL re, im;
} F_COMPLEX_struct;
typedef F_COMPLEX_struct F_ COMPLEX;

This proves to be adequate for most UNIX platforms. On the Cray, however, both float and double
types occupy the same storage, and to conform to Fortran 77 specification, fortran.h needs to be ed-
ited to define F_DOUBLE as "long double". For the Macintosh, however, it should be defined as
"short double."

This is a full set of C types that are used by the interface as return and argument types:

F_INTEGER integer or integer*4

F_LOGICAL logical

F_REAL real

F_DOUBLE double

F_CHARACTER character or character*l

F_STRING character*n

F_LENGTH string length (same as F_INTEGER)

F_COMPLEX complex

F_HANDLER call argument for a subroutine
with alternate returns

F_ROUT a routine passed as argument

Array types are represented as pointer to corresponding scalar types.

156 Interfacing with Fortran : 13.5 Portability Issues

Interfacing with ANSI C : 14.1 Overall Organization 157

Interfacing with ANSI C

This chapter describes interfacing with ANSI C , X3.159-1989. Section 14.1 gives a short overview

of the C interface functionality. Section 14.2 introduces built-in C types provided by the extended
Sather library. Section 14.3 talks about user defined external C types, constants, attributes, and
shared elements. Section 14.4 covers parameter passing issues, and finally section 14.5 describes the
inline C facility.

14.1 Overall Organization

An external class which interfaces to ANSI C is designated with the language identifier ‘C’. Types
defined by external C classes are cadigernal C types. Similar to external Fortran types, signatures
without bodies (abstract signatures) are allowed in external C types. Such signatures must contain
only built-in or user defined C types and they are implemented externally in ANSI C. Abstract iter-
ator signatures are not allowed in external C classes. Routines with bodies whose signatures contain
only C types may be called from C. Routines with bodies whose signatures use types other than C
types are regular Sather routines and are not accessible from C. External C routines cannot be over-
loaded.

In contrast with the external Fortran classes, external C classes may have attributes and objects of
external C types may exist. All attributes must also be of C types. The C interface provides a naming
facility that allows interoperability with the existing C header files.

Global C variables can be accessed as shared attributes of external C classes.

C symbols are generated by applying a platform specific C name binding convention to the textual
external C routine names. It is also possible to explicitly specify name binding for external C classes.

Finally, it is possible to inline ANSI C code into Sather sources. This allows for even greater flexi-
bility in achieving Sather/C interoperability.

158

Interfacing with ANSI C : 14.2 Built-in C classes

14.2 Built-in C classes

The following C types are built into the extended library:

Sather Class

ANSI C type

Sather Class

ANSI C type

C_CHAR
C_UNSIGNED_CHAR

char
unsigned char

C_UNSIGNED_CHAR_PTR
C_SIGNED_CHAR_PTR

unsigned char *
signed char *

C_UNSIGNED_SHORT

unsigned short

C_UNSIGNED_INT_PTR

C_SIGNED_CHAR signed char C_SHORT_PTR short *
C_SHORT short C_INT_PTR int*

C INT int C_LONG_PTR long *

C_LONG long C_UNSIGNED_SHORT_PTR | unsigned short *

unsigned int *

C_UNSIGNED_INT unsigned int C_UNSIGNED_LONG_PTR unsigned long *
C_UNSIGNED_LONG | signed long C_FLOAT_PTR float *
C_FLOAT float C_DOUBLE_PTR double *
C_DOUBLE double C _LONG_DOUBLE_PTR long double *
C_LONG_DOUBLE long double C SIZE T size t

C_PTR void * C_PTRDIFF_T ptrdiff_t
C_CHAR_PTR char *

Variable of the built-in types are binary compatible with the corresponding C types. These classes
define appropriate creation routines which may be used for convenient casting between Sather and
C types. Also, many basic operations on the built-in C types are provided by the library. For example,
it is not necessary to call external C code to add two C_INT variables. All operations on built-in C
types defined by the library have the ANSI C semantics. Syntactic sugar for the built-in C types is
defined exactly as for "regular" Sather classes.

-- "basic" operations may be done in Sather
a:C_LONG := #(10);

b:C_LONG := #(5);

ci=a+b;

#OUT + c.str + " should be 15\n";

‘AREF{TY} defines a routineatray_ptr:C_PTR’ which may be used to obtain a pointer to the first

item in the array portion of Sather objects. The external routine may modify the contents of this array
portion, but must not store the pointer; there is no guarantee that the pointer will remain valid after
the external routine returns. This restriction ensures that the Sather type system and garbage collec-
tor will not be corrupted by external code while not sacrificing efficiency for the most important cas-
es.

Interfacing with ANSI C : 14.3 User-defined External C types 159

The following example shows how a Sather array could be passed to external C functions:

/* ANSI C prototypes for functions called from Sather */
void clear(void* p, int size);
void better_clear(int *, int size);

external C class PROCESS_ARRAYS is
-- routines implemented externally in C that zero
-- all elements in an integer array of a specified size
clear(p:C_PTR, size:C_INT);
better_clear(p:C_INT_PTR, size:C_INT);

end;

-- This code demonstrates how to call external C routines

a:ARRAY{INT} := #(10);

-- this call just passes an array portion and avoids typecheking

-- This is not recommended ("a" could be of type ARRAY{CHAR} and the
-- call would still compile resulting in a runtime error)
PROCESS_ARRAYS::clear(a.arr_ptr, #(a.size);

-- this is a better sequence achieving the same result
-- if "a" is not an array of integers, an error is reported
PROCESS_ARRAYS::better_clear(#C_INT_PTR(a), #(a.size));

The second call is type-safe. It exploits the constructor for C_INT_PTR that allows creation from
ARRAY{INT}.

14.3 User-defined External C types

User-defined external C classes are used for multiple purposes. C routines in external C classes im-
plement Sather/C and C/Sather call interfaces. In addition, objects of external C types could be cre-
ated and passed to or received from C. C global variables are accessed from Sather as shared
attributes of external C classes.

14.3.1 Constants and C binding names

Constants are allowed in external C classes. The rules for constant initialization are the same as for
constants in "regular" Sather classes.

There are two constant features of external C classes that have a special semantics. If present, the
STR constantC_name’ may be used to force a particular C declaration for an external C type. Sim-
ilarly the STR constantC_header’ may be used to specify a list of C header files that should be
included in each file in which the C declaration appears.

The STR constant 'C_name’ provides a C binding name for the type in which it occurs. The STR

constant 'C_header’ must be initialized to a space separated list of header files (the standard C no-
tation <foo.h> is allowed). Note that if constants C_name and C_header are absent, the Sather com-
piler generates layouts for the external C objects. If they are present, no layouts are generated and

160 Interfacing with ANSI C : 14.3 User-defined External C types

the necessary types must be defined in the specified header files. In this case, it is the responsibility
of the programmer to ensure that attribute names are exactly as the structure filed names provided
by the header files.

Examples

external C class BAR is
attr bar_attr_int:C_INT;
attr bar_attr_float:C_FLOAT;

-- the constructor is defined in C
create_bar:BAR;
-- this routine that does some processing of bar is also
--definedin C
process_bar(bar:BAR);
end;

-- create an object of type BAR by calling an external
-- C constructor
bar:BAR := BAR::create_bar;

-- now pass "bar" back to C from processing
BAR::process_bar(bar);

In this example, the Sather compiler generates the layout for the external objec BARt. The corre-
sponding C layout and prototypes of C functions that are called from Sather are below:

typedef struct {
int integer_field;
float float_field;

} *C_BAR,;

/* Note that C names for the type and struct fields could be
different from the corresponding names in Sather */

C_BAR create_bar();
void process_bar(C_BAR bar);

Interfacing with ANSI C : 14.3 User-defined External C types 161

This is a similar example, but an existing C header file is used with Sather code:

external C class BAR is
const C_name:STR := "C_BAR"; -- C binding name for the type
const C_header:STR := "bar.h <stdlib.h>";

attr integer_field:C_INT;
attr float_field:C_FLOAT,;

-- the constructor is defined in C
create_bar:BAR;
-- this routine that does some processing of bar is also
-- defined in C
process_bar(bar:BAR);
end;

-- code that creates an object of type BAR by calling an external
-- C constructor and then passes the object back to C
bar:BAR := BAR::create_bar;

-- now pass "bar" back to C from processing
BAR::process_bar(bar);

The C header "bar.h" contains the following:

typedef struct {
int integer_field;
float float_field;

} *C_BAR,;

/* Note that C names for the type must be exactly as the binding C
name specified by the C_name attribute.
also, struct field names must be exactly the same as attribute
names in the external C class*/

C_BAR create_bar();
void process_bar(C_BAR bar);

This creates a Sather typ€ ‘WIDGET’ which may be used to declare variables, parameterize
classes, and so forth. Furthermore, the C declaration used for variables of tWi®GET’ will

be ‘struct XSomeWidget *'. Any generated C file containing any variable of this type will also in-
clude <widgets.h>’

external C class X_WIDGET is
const C_name:STR:=
"struct XSomeWidget *";
const C_header:STR:=
"<widgets.h>";
end; -- external class X_WIDGET

162 Interfacing with ANSI C : 14.3 User-defined External C types

14.3.2 Attributes and C structs

Attributes and C structs

Attributes may be placed in external C classes; they are interpreted as fields of a C struct. If the layout
of the class is generated by Sather (C_name and C_header symbolic constants are absent), then at-
tributes can have any names. If a C layout from a header file specified by C_header is used, attribute
textual names must be exactly the same as a struct filed names from a corresponding C type. It is the
responsibility of the programmer to ensure this correspondence.

Points to note
» External C class attributes may only have built-in or user-defined external C types.
» Class constants do not contribute anything to the class layouts; all attributes do.

14.3.3 Shared Attributes and C globals

Global C variables may be accessed from Sather as shared attributes of external C classes. Such
shared attributes must have names corresponding to those of C globals. Similar to constants, shared
attributes do not contribute to the storage needed to layout the class objects.

external C class FOO is
C_name:STR :="FOQO";
C_header:STR := "foo.h";

shared foo:FOO:
attr val:C_INT;

-- this is implemented in C
create_foo:FOO;
end;

-- accessing a global C variable
FOO::foo := FOO::create_foo;
FOO::foo.val := #(10);

#ifndef _FOO_H_
#define _FOO_H_

typedef struct {
int val;
}*FOOQ;

FOO create_foo();
#endif _FOO_H_

/*in some C file */
FOO foo;

Interfacing with ANSI C : 14.4 Parameter Passing 163

14.4 Parameter Passing

The ANSI C standard prescribes that a copy is made of each call argument and all argument-passing
is done strictly by value. To conform to ANSI C, all "in" arguments are passed by value. In the case
of the built-in C types, a copy of a variable is passed. In the case of user defined external C types, a
pointer to the object is copied and passed by value.

In addition, for extra flexibility, Sather suppoftsut" and"inout" argument modes for external C
routines."out" and 'Inout" arguments are passed by a pointer to a local, which may be legally mod-
ified by the called routine. The Sather implementation guarantee that such modifications cannot be
observed until the routine returns. For C routines called from Sather this is guaranteed by emitting
special code for the caller. For Sather routines that may be called from C, this is guaranteed by emit-
ting special function prologues for the callee.

14.5 Inlining C Code

Sometimes it isn't possible to decide at the time the external C class is written whether a routine will
be implemented in the C code with a macro. This presents a portability problem, because the writer
of the external class can’t know ahead of time whether the routine will be obtained by linking or by
a header file. Such petulant cases can be dealt with by th&¥alttinlined_C’. The argument must

be a string literal, and is placed directly into the generated code, except that identifiers fofowing *
that correspond to locals and arguments are translated into the appropriate C names.

164 Interfacing with ANSI C : 14.5 Inlining C Code

Statement and Expression Catalogue : 15.1 Statements 165

Statement and
Expression Catalogue

This chapter presents a catalogue of statements and expressions in Sather and descriptions of them
that originated in the specification. In some cases, these definitions are duplicated elsewhwere in the

text. However, they have been included here, sometimes with more elaborate examples, as a conve-
nient reference.

15.1 Statements

15.1.1 Assignment statements

Examples: a=5
b(7).c :=5;
A:d:=5;
[3]:=4;
e[7,8] :=5;
g:INT :=5;
h:=5;

Assignment statements are used to assign objects to variables or attributes. The expression on the
right hand side must have a return type which is a subtype of the declared type of the destination
specified by the left hand side. When a reference object is assigned to a locatiomefengnado

the object is assigned. This means that later changes to the state of the object will be observable from
the assigned location. Since immutable and closure objects cannot be modified once constructed, this
issue is not relevant to them.

An assignment can also declare new local variables usingrtigntax.

166 Statement and Expression Catalogue : 15.1 Statements

The operation of assignment statements on attributes is described in the section on Attribute Acces-
sor Routines. They are often syntactic sugar for function calls with one argument, which is the right
hand side.

See

» Type inference in assignment statements on Section 2.7 on page 33.
« Attribute assignment sugar on Section 2.6 on page 31.

» Array element assignment on Section 7.3 on page 98.

« Immutable class attribute assignment on Section 8.1.4 on page 101.

15.1.2 case statements

Example: case i
when 5,6 then ...

when j then
else ...
end;

Multi-way branches are implementeddage statements. There may be an arbitrary numbewdin

clauses and an optionallse clause. The initialexpressiortonstruct is evaluated first and may have a

return value of any type. This type must define one or more routines namegl with a single

argument and a boolean return value.The expressions tested in the branches of the if statement are
the expressions of successive when lists. The first one of these calls to returns true causes the cor-
responding statement list to be executed and control passed to the statement following the case state-
ment. If none of the when expressions matches and an else clause is present, then the statement list
following the else clause is executed

There is one difference between tase statement and the equivaléhstatement. If none of the
branches of aif statement match and etse clause is present, then execution just continues onto
the next statement after tifestatement. However, if none of the branches ottt statement
matches and there is mtse clause, then a fatal run-time error will result.

Points to note
* |tis a fatal error if no branch matches and there isls® clause.

See
» Statement description in Section 2.5.2 on page 28.

Statement and Expression Catalogue : 15.1 Statements 167

15.1.3 if statements

Example: if a>5 then foo
elsif a>2 then bar

else error
end;

if statements are used to conditionally execute statement lists according to the value of a boolean
expression. Eachxpressiorthat is tested must return a boolean value. The first expression is evalu-

ated and if it is true, the following statement list is executed. If it is false, then the expressions of
successivelsif clauses are evaluated in order. The statement list following the first of these to return
true is executed. If none of the expressions return true and therelseatiause, then its statement

list is executed. Note that the else clause is not compulsory.

See
» Statement description in Section 2.5.1 on page 27.

15.1.4 protect statements

Example: protect < some statements >
when $STR then
#ERR+exception.str;
when FOO then
#ERR+exception.foobar;
else
end;

Exceptions may be explicitly raised by a program or generated by the system. Each exception is
represented by aaxception object whose type is used to select a handler frqrotect statement.

Execution of gorotect statement begins with the statement list following fhretect’ keyword.

These statements are executed to completion unless an exception is raised which is not caught by
some nestedrotect.

When there is an uncaught exception in a protect statement, the system finds the first
type specifier listed in the ‘when’ lists which is a supertype of the exception object type.
The statement list following this specifier is executed and then control passes to the state-
ment following the protect statement. An exception expression may be used to access
the exception object in these handler statements. If none of the specified types are super-
types, then the statements in an ‘else’ clause are executed if it is present. If it is not
present, the same exception object is raised to the next most recently entered protect
statement which is still in progress. It is a fatal error to raise an exception which is not
handled by some protect statement. protect statements may only contain iterator calls if
they also contain the surrounding loop statement. protect statements without an else
clause must have at least one when.

168 Statement and Expression Catalogue : 15.1 Statements

See
» Statement description in Section 10.2 on page 111 and the chapter on exceptions in general.

15.1.5 loop statements

Example: f: INT:=4; --Compute b factorial
res: INT :=1;
iZINT :=1;
loop until!(i > f);
res:=res *i;
=i+l
end;

Iteration is done with loop statements, used in conjunction with iterator calls. An execution state is
maintained for each textual iterator call. When a loop is entered, the execution state of all enclosed
iterator calls is initialized. When an iterator is first called in a loop, the expressim®dffand for
eachonce argument are evaluated left to right. Then the expressions for arguments which are not
once (in orinout before the callput orinout after the call; are evaluated left to right. On subsequent
calls, only the expressions for arguments which arence are re-evaluatedself and anyonce
arguments retain their earlier values. The expressiossglifaand foronce arguments may not them-
selves contain iterator calls (such iters would only execute their first iteration.) .

When an iterator is called, it executes the statements in its body in order. If it exgdelestate-

ment, control is returned to the caller. Subsequent calls on the iterator resume execution with the
statement following thgield statement. If an iterator executgst or reaches the end of its body,
control passes immediately to the end of the innermost enclosing loop statement in the caller and no
value is returned.

See
» Statement description in Section 3.1.1 on page 39 and the chapter on iterators in general.

15.1.6 return statements

Examples: foo(a: INT): INT is
return a*10; end;

return statements are used to return from routine calls. No other statements may folletmra
statement in a statement list because they could never be executed. If a routine doesn’t have a return
value then it may return either by executingtrn statement without a@xpressiorportion or by
executing the last statement in the routine body.

If a routine has a return value, thenrggurn statements must specify expressions whose types are
subtypes of the routine’s declared return type (see the chapter on Abstract Classes and Subtyping).
Execution of theeturn statement causes the expression to be evaluated and its value to be returned.

Statement and Expression Catalogue : 15.1 Statements 169

It is a fatal error if the final statement executed in a routine with a return type isehatreor raise
statement.

15.1.7 typecase statements

Example: typecase a
when INT then ...

when FLT then ...
when $A then ...
else

end;

The typecase statement is described in the chapter on Abstract Classes and Subtyping on page 59.

An operation that depends on the runtime type of an object held by a variable of abstract type may
be performed inside a typecase statement. The variable in the typecase (‘a’ in the above example)
must name a local variable or an argument of a method. tifpleease appears in an iterator, then

the mode of the argument mustdoece; otherwise, the type of object that such an argument holds
could change.

On execution, each successive type specifier is tested for being a supertype of the type of the object
held by the variable. The statement list following the first matching type specifier is executed and
control passes to the statement followingtifeecase. Within each statement list, the type of the
typecase variable is taken to be the type specified by the matching type specifier unless the vari-
able’s declared type is a subtype of it, in which case it retains its declared type. It is not legal to assign
to thetypecase variable within the statement lists. If the object’s type is not a subtype of any of the
type specifiers and aise clause is present, then the statement list following it is executed.

It is a fatal error for no branch to match in the absence efsanclause. The declared type of the
variable is not changed within tledse statement list. If the value of the variablerigd when the
typecase is executed, then its type is taken to be the declared type of the variable.

See
» Statement description in Section 5.6 on page 70.

170 Statement and Expression Catalogue : 15.2 Expressions

15.1.8 yield statements

Examples: odd_upto!(n: INT): INT is
i INT :=0;
loop until!(i = n);
if i.is_odd then yield i end,;
=i+l
end;
end;

yield statements are used to return control to a loop and may appear only in iterator defi-
nitions. The yield statement must be followed by a value if the iterator has a return value
and must be absent if it does not. The value yielded must be a subtype of the return type
of the iterator. Execution of a yield statement causes the expression to be evaluated and its
value to be returned to the caller of the iterator in which it appears. Yield is not permitted
within a protect statement (see Section 15.1.4 on page 167). Yield causes assignment to out
and inout arguments in the caller

In the example above the iterator yields odd numbers upto the specified value, "n".

See
» Statement description in Section 3.2.1 on page 42 and the chapter on iterators in general.

15.1.9 quit statements
quit statements are used to terminate loops and may only appear in iterator definitions. No value is

returned from an iterator when it quits, and no assignment takes place to out or inout arguments in
the caller. No statements may follow a quit statement in a statement list.

See
» Statement description in Section 3.3 on page 47 and the chapter on iterators in general.

15.2 Expressions

We describe below a few special expressions used in Safbiel; void() and the short circuit bool-
ean operationsr andand.

Statement and Expression Catalogue : 15.2 Expressions 171

15.2.1 void expressions

A void expression returns a value whose type is determined from conteud. is the value that a
variable of the type receives when it is declared but not explicitly initialized. The valoedbr

objects (except for immutable objects) is a special value that indicates the absence of an object - it
is essentially the NULL pointer. Immutable objects are described in their own chapter, but for the
sake of reference:

Class Initial Value Class Initial Value
CINT 0 CHAR O
FLT 0.0 FLTD 0.0d
BOOL false

For other immutable types the void value is determined by recursively setting each attribute and ar-
ray element tovoid.> For numerical types, this results in the appropriate version of ‘zero’.

void expressions may appear

 as the initializer for a constant or shared attribute. In fact, for most built-in classes, the only le-
gal constant value is the void value e.qg.
const a: POINT := void;

» as the right hand side of an assignment statement

» as the return value inraturn oryield statement

» as the value of one of the expressions ¢ase statement

» as the exception object irraise statement (see the chapter on Exceptions)

e as an argument value in a method call

* in a creation expression. In this last case, the argument is ignored in resolving overloading.

void expressions may not appear:

» as the left argument of the ddtdperator.

a: POINT := #POINT(3,3);
-- ILLEGAL (and silly) a.void

It is a fatal error to access object attributes of a void variable of reference type or to make any calls
on a void variable of abstract type. Calls on a void variable of an immutable type are, however, quite
legal (otherwise you would not be able to dot into a false boolean or a zero valued integer!)

1. The other built-in basic types are defined as arrays of BOOL and all have their values set to void by this rule.

172 Statement and Expression Catalogue : 15.2 Expressions

15.2.2 void test expressions
Example: void(x)

Void test expressions evaluate their argument and return a boolean value which is true if the value is
void .

p: POINT;

#OUT + void(p); -- Prints out true
p := #POINT(3,5);

#OUT + void(p); -- Prints out false

p := void;

#OUT + void(p); -- Prints out true;

b: BOOL;

#OUT + void(b); -- Prints out true

b :=false;

#OUT + void(b); -- Prints out true!

-- Even though b has been assigned, it has the void value

15.2.3 Short circuit boolean expressions: and and or

Example if (3>a and b>6) or (c="Go0") then
#OUT+"Success!"
end;

and expressions compute the conjunction of two boolean expressions and return boolean values. The
first expression is evaluated andaifse, false is immediately returned as the result. Otherwise, the
second expression is evaluated and its value returned.

or expressions compute the disjunction of two boolean expressions and return boolean values. The
first expression is evaluated andrife, true is immediately returned as the result. Otherwise, the
second expression is evaluated and its value returned.

See
» Expression description in Section 15.2.3 on page 172.

15.2.4 exception expressions

Example: protect
.... some code

when STR then #OUT+exception.str end;
when ...

else ...

end,;

exception expressions may only appear within the statements of the when and else clauses in
protect statements. They return the exception object that caused the when branch to be tak-

Statement and Expression Catalogue : 15.2 Expressions 173

en in the most tightly enclosing protect statement. The return type is the type specified in
the corresponding when clause (Section 15.1.4 on page 167). In an else clause the return
type is ‘$OB".

See
* The description of the protect statement in Section 10.2 on page 111.

174 Statement and Expression Catalogue : 15.2 Expressions

pSather 1.1

Jerome Feldman

September 15, 1996

The parallel and distributed extensions of Sather, collectively referred to as
pSather, were designed hand-in-hand with the serial language. In addition to de-
scribing the language features of pSather, this document presents a particular ap-
proach to object-oriented parallel programming.

Introduction: 177

Introduction

Parallel programming is often viewed as much harder than serial programming. Unfortunately the
general perception is correct, parallel programming is difficult. The parallel features of Sather, col-
lectively known as pSather, have been under development and experimental use at ICSI for several
years and have recently been integrated into the general distribution. Some of the simplest features
are supported on all platforms, even those with no parallel capabilities. This is mainly to provide
compatibility with parallel platforms. Unfortunately, to make any interesting use of pSather or of this
tutorial you need access to a platform that supports pSather threads. A current list of these can be
found on the pSather home page http://www.icsi.berkeley.edu/~sather/. Because there is no general-
ly accepted portable thread interface, it is a significant effort to port pSather to a new parallel system
and there are separate compilation flags for each of these. The platforms that have the most extensive
history are various Solaris implementations and these are used for the examples here.

There are many approaches to parallel programming languages and dozens of proposals for parallel
(or concurrent) OO languages. The design goals of pSather are the same as for the serial portions of
the language. The most important criteria are execution efficiency, safety and reusability. The project
has, from the outset, been based on the belief that Sather’s constructs and methodology will be even
more valuable in the more challenging domain of parallel computing. Extending Sather, pSather is
an explicit imperative object-oriented language.

The underlying model remains one large shared address space, although there are also features for
placement of objects and threads for greater efficiency. The colustgr model assumes that the
underlying system has a specified number of clusters, each of which might support the parallel exe-
cution of multiple threads. The presumption is that the communication costs across clusters is much
greater than within a cluster. The motivating example is a network of SMP workstations. At ICSI we
have been using a low-latency Myrinet/active-message network of quad Sparcl10s as a prototype.
There is also an ethernet implementation, but the latencies make this impractical for all but the most
loosely coupled parallel programs. An implementation on the Meiko CS-2 allows us to test scalabil-
ity to larger systems.

We believe that pSather effectively supports all the standard styles of parallel programming such as
data parallel, task parallel, actor, etc. and this tutorial will provide some indication of how we think
this should go. The focus of the language design was to provide convenient constructs for writing
libraries of parallel and distributed objects.The most fundamental additional extension to Sather is
the notion of multiplehreads of execution.Threads are not first-class objects in pSather. This and
other design decisions are discussed in a variety of papers accessible through the web page. Al-

178 Introduction:

though there are facilities for mutual exclusion (at most one thread active in an object), these are not
mandatory and many pSather programs depend upon multiple active threads. In general, the lan-
guage attempts to provide the library designer and application programmer with tools for creating
systems that achieve maximum performance, but also supports parallel computing styles that con-
centrate on simplicity and safety.

The parallel extensions to Sather that constitute pSather are currently divided into three conceptually
distinct extensions. The Threaded Extension (Section 1.2) is the most basic and introduces the par,
fork and parloop constructs. Programs that require no synchronization can be coded using only these
mechanisms.The Synchronization Extension (Section 1.3)is the most complex and includes the ab-
stract class $LOCK and its descendants and the various forms of the lock statement. It includes the
powerful GATE construct (Section 1.4)that combines the semantics of futures, events, and locks
found in other languages. The Distributed Extension (Section 1.5)adds the placement annotation, @,
and the with...near statement. These do not affect the semantics of a correct program, but can support
greatly improved performance on distributed platforms such as a network of workstations. Sather 1.2
will extend these ideas with the Zone Extension, which supports a much richer model of data and
thread locality.

The Threaded Extension : 17.1 Introduction 179

The Threaded
Extension

17.1 Introduction

The most basic parallel extension to serial Sather adds only threads and the ability to fork them and
wait for a collection of threads to complete execution. Although this extension provides no capabil-
ities for coordinating access to shared data or waiting for events, a wide range of problems can be
coded in this extension. ICSI compilers starting with 1.1 will compile programs using the threaded
extension on all platforms; on platforms without thread support, the various threads will each be se-
rially run to completion. We will start with some simple “Hello World” variants and then discuss a
range of medium sized tasks that use only the threaded extension capabilities.

17.1.1 Hello Worlds

We will give two example “Hello World” programs to illustrate some of the basic pSather con-
structs. The simplest one uses the two most basic pSather congauetsdfork. Here there are
two explicit threads forked within the par .. end statement

class MAIN is
main is
par
fork #0UT+"Hello World #1" +\n' end;
fork #0UT+"Hello World #2" +\n' end;
end;
end;
end; -- class MAIN

Eachfork statement establishes a separate thread of control executing the enclosed statement. Fork
statements can only occur withpar .. end brackets. Control passes to the statement following the

180 The Threaded Extension : 17.1 Introduction

end after the termination of all of the statements forked within the brackets. There is no fixed order
of execution of the forked statements; even this tiny program might print the greetings in either order.

This program can be compiled and run on any Sather platform in the usual way, but of course can
only execute in parallel on systems with thread support. The list of supported pSather platforms can
be found in the web page. There is a whole range of command line options for pSather, the most
important of which is the platform. It is easiest to develop code on a single processor, even if it is to
eventually run on a large system. For Solaris, there are currently two platform designators:

Solaris/1cluster -- this treats a uni- or multi-processor workstation as one shared memory
Solaris/smp -- this treats a workstation with k processors as k distinct clusters
The command line to compile the initial program, stored as hello.sa, could be:

cs -Solaris/1cluster -o hello hello.sa

The distinction between the two Solaris platforms is not important for the first example, but will be
in our second version of "Hello World". This version introduces the third and last construct in the
Threaded Extensioparloop. Using fork statements within a par .. end bracket, one can fork differ-
ent threads of any variety; if all of the threads are essentially the same, it is often more convenient
to use a parloop.

class MAIN is
main is
parloop i::=0.upto!(3) do@i
#OUT + ("Hello World # " + i + \n")
end;
end;
end; -- class MAIN

Here there will be separate threads forked for each valuanof this value will be passed as a pa-
rameter to the respective thread. The annota@oafterdo is part of the Distributed Extension to

be discussed in Section 1.5. It specifies that thread 1 is to be started on cluster 1, etc. This makes no
sense on a platform with only one cluster like Solaris/1cluster and a run-time error will result from
trying to run a distributed code on such a platform. When compiled appropriately, the second exam-
ple will print its greetings, but almost certainly not in order.

Suppose that we wanted to be sure that the Hellos were printed in order without serializing the com-
putation. One way would be to use a global ARRAY{STR} indexed by the same loop varizdda

thread could insert its greeting and the array printed after the parloop completes. You might want to
try this. Notice that this depends on multiple threads writing to a single object; there is no danger
here because each thread writes to a disjoint piece of the array. This fixes the output order, but says
nothing about the order of execution of the threads. In general there is no guarantee on the execution
order and interleaving of pSather threads and this can be a significant problem in constructing reli-
able code. The synchronization extensions discussed in the next section help significantly, but it we
still usually fall back on known patterns.

The Threaded Extension : 17.2 Realistic Examples Using Threads

181

17.2 Realistic Examples Using Threads

The ICSI pSather group has developed various small and medium sized examples for use in testing

and benchmarking the system. Several of these use only the par, fork, and parloop constructs of the

threads extension and these can serve as additional examples at this elementary level. One obvious
benchmark is matrix multiplication . The following is the complete code for the parallel part of the

class MMULT is
mult(a,b,c:MATRIX{FLT}) is
parloop x::=b.rows.times!;

do
loop y::=b.rows.times!;
loop z::=b.cols.times!;
aly,x]:=aly,x]+b[z,x]*c[y,z];
end;
end;
end;
end;
end;

example - just a parloop over the rows of the first multiplicand. This is, of course, very naive com-
pared to the sophisticated loop parallelization of modern FORTRAN compilers. For a variety of rea-
sons beyond the scope of this tutorial, pSather and other OO languages take an entirely different
approach to the problems of parallelization. From the OO perspective, low-level optimizations
should be encsapsulated in classes. For standard matrix/vector operations, Sather can do no better
than the well developed FORTRAN packages such as BLAS and does not try. ICSI Sather compilers

from 1.1 on provide a FORTRAN interface which is for just such purposes.

From the perspective of the tutorial, the interesting thing is how many standard benchmarks can be
coded using only the threaded extension. Here is another typical example, the control loop of a pro-

gram to compute heat flow expansion over time.<Fleiner thesis>

heat_step is
cl_size:=cluster_size; -- just for formating
ti=t1;
t1:=t2;
t2:=t;
parloop p::=cl_size.times!;
do
loop x::=((cols*p)/cl_size).upto!(cols*(p+1)/cl_size-1);
loop y::=rows!;
ti[x,y]:=heat_of(t2,x,y);
end;
end;
end;
end;

Here the parloop runs over the number of clusters in the current platform, breaking up the computa-
tion into that number of pieces by columns of the underlijigagt_of array. Again, because there

182 The Threaded Extension : 17.2 Realistic Examples Using Threads

are no interactions and each thread treats a disjoint subarray, life is easy. This simplistic way of par-
titioning the problem is appropriate for a platform like Solaris/smp where clusters are separate pro-
cessors sharing physical memory. We will later see some more sophisticated partitioning.

The Synchronization Extension : 18.1 Barrier Synchronization and sync 183

The Synchronization
Extension

18.1 Barrier Synchronization and sync

The simplest synchronization primitive is thygnc statement, which causes all the threads forked
within a par or parloop block to suspend until every thread in the block has terminated or is also ex-
ecuting async command. This is called barrier synchronization in the computational science liter-
ature for obvious reasons. One important feature ofyhe statement, in contrast with stopping

and restarting the threads, is that the participating threads all retain their state. After all threads in
the block meet the sync criterion, the unterminated ones are resumed. One basic use of the sync con-
struct is to assure that all threads in a parloop are set up before any of them execute; the dining phi-
losophers example in Section 1.3.3 does this. We will see another use of the sync command in the
chunk maximum example of the next section. A realistic example can be found in the benchmark
program <Fleiner thesis>. The next two sections introduce more sophisticated control mechanisms.
The sync construct just has a collection of threads wait for one another. The lock statement of the
next section provides various ways to control access to data among threads, but is still passive. Ac-
tive signaling between threads requires the GATE construct, described in Section 1.4.

18.2 The lock Statement and the MUTEX
Class

All of the other synchronization constructions in pSather use various forms lotkhstatement.

We will start with the simplest form of the lock construct and gradually increase the complexity of
both the form of lock statement and the classes of objects to be locked. The basic form with a single
unconditional mutual-exclusion lock suffices for many cases and should be considered first. In the
following example, we suppose that a large vector has been stored as a number of separate "chunks"
using a library class DVEC. We talk later about the design of such distributed classes, which uses
the convention of an iteratarhunks!, for iterating the separate pieces of a distributed object, such

184 The Synchronization Extension : 18.2 The lock Statement and the MUTEX Class

as a DVEC. The code below is from an artificial example where the task is to print both the maximum
value in theDVEC vec and the number of instances of it in each chunk. This makes prototypical
uses of aMUTEX big_Ik, the lock statement and the sync command of Section 1.3.1.

class MAIN is
main is
vec:DVEC:=#DVEC(3,4); -- 3 chunks of size 4
counts:ARRAY{INT}:=#(vec.num_chunks); -- max of chunk

big::= -FLT::infinity;-- initialize
big_lk::=#MUTEX;

vec.init;-- kludge for example only
parloop
ch::=vec.chunks!;-- Iterate over each chunk
idx::=0.up!;-- Places for result of each thread
do;
m::= -FLT::infinity;
ct::=0;
loop
el::=ch.elt!;-- Iterate over elements,1
if m=el then ct:=ct+1
elsif m<el then m:=el; ct:=1
end;
end;
if big<m then lock big_lk then big:=big.max(m) end end,;
sync;-- Wait for all threads

if m=big then countsJidx]:=ct end;
end; -- parloop

#OUT + "The maximum value is: " + big + '\n’;
loop i::=0.for!(vec.num_chunks) ;
#OUT + "Chunk "+i + " has "+counts[i]+" instances"+'\n’;
end;
end; -- main
end; -- class MAIN

The parloop forks a thread for each chunk of data and also provides a consecutive index for each
thread/chunk pair. The variables, i, dx, m, and ct are all instantiated separately for each thread.
Each thread computes the maximum value in its chunk and its multiplicity. The way we have chosen
to calculate the global maximum uses a global varidiidg,and the accompanying mutdsig_Ik.

After each thread computes its local maximum, it compares it with the current global makigum,

If the local one is bigger, it should become the global maximum.

But there is a synchronization problem. It could happen that several threads simultaneously have a
local maximum larger than the current global winner. Using the lock statement ensures that only one
thread at a time will try to updakgg. An additional subtlety is that, even after acquiring unique ac-
cess tdig, a thread can not assume that its local maximum still exceeds the global one. Between the
time a thread checks the relative values and when it acquires the lock, another thread might have
changedbig. This is the kind of problem that makes parallel programming tricky and there is no
good way around it while preserving performance. A helpful heuristic is to think about a thread be-
ing interrupted indefinitely between any two statements.

The Synchronization Extension : 18.2 The lock Statement and the MUTEX Class 185

Now, after each thread has tried its luck at being the global maximum, they all wagyatdtstate-

ment barrier for the others. When all are finished, the true global maximum has been found and the
various threads can output the number of occurrences of this in their chunk. Because wgnsed a
statement, all of the threads resume with context retained, including the locaktowhich is the

desired result. Rather than print the results in execution order, they are all stored in a global array
which is printed after the parloop. We will see many more examples of the MUTEX, sync and lock
constructs. Section 1.3.4 discusses when one would choose a read-write lock, RW_LOCK, instead
of a MUTEX to control access to a global object.

18.2.1 Memory Consistency, Round One

The synchronization extension of pSather plays another important role in the language, but one that
usually remains implicit. What we have discussed above is how a MUTEX can keep two threads
from making conflicting updates to the same object. A more subtle problem can arise when one
thread updates a value and one or more other threads want to use the new value; how can they know
when the write has completed? Essentially the same problem arises in modern high performance
processors as an aspect of cache consistency and is the subject of considerable work <Stoutamire
thesis>. For pSather, the critical requirement is to supply a clean assignment semantics that the user
can rely upon and that all compilers must implement. Part of the semantics is that all assignments
are atomic, it will never happen that only part of an write command is executed. Furthermore, Sather
guarantees that any update executed by a thread will always be observable by that thread. What is
trickier is how to specify exactly when other threads will know about such an update.

To understand this, we need to define notionspbrt andexport. Both of these are available as
explicit commands in the SYS class, but using them directly is unusual. An example using explicit
import andexport statements is shown in Section 1.4.2.eXport. operation suspends the current
thread until all of the updates that it has done are publicly knownimport operation suspends

the executing thread until all publicly known updates are made in its context. It follows that an up-
date is guaranteed to be seen by all threads that idapant after the updating thread has done an
export. It turns out that this can be implemented efficiently on most platforms, <Fleiner thesis>
tells all. This often doesn’t help the programer that much because the he/she would still seem to need
to know when to issue these import and export commands. However, pSather already has various
synchronization constructs like the par statment of the previous section and the lock statement de-
scribed in this section. The key idea is to associate implicit imports and exports with the appropriate
pSather constructs. These are spelled out in a chart on page 82 of the language description. The im-
portant point for now is that one can not assume anything about the relative timing of various threads
that is not specified by some synchronization constructs. But, given the explicit synchronization,
your intuition about memory consistency is preserved.

186 The Synchronization Extension : 18.3 Conjunctive Locking

18.3 Conjunctive Locking

One of the fundamental issues in synchronization is the treatment of multiple locks. A very common
cause of deadlock is when two or more threads compete for multiple locks. There are theoretical re-
sults that prove that no deadlock can arise from this situation if all the locks are linearly ordered and
threads always acquire locks according to this order. Sometimes the pSather programmer will need
to carefully arrange the fixed order, but most cases (and a good bit more) are handled automatically
by the conjunctive lock construct. This is illustrated with the classical dining philosophers problem.
The setting is a round table with one chopstick between each two diners. Since two chopsticks are
needed for eating the diners need some way to manage the required resources.

class MAIN is
attr chopsticks:ARRAY{MUTEX}; -- need two adjacent ones to eat

main is
chopsticks:=#(7);
loop chopsticks.set!(#MUTEX) end;

parloop i::=0.upto!(6)
do sync; -- wait for all to start
philosopher(i)
end; -- parloop;
end; -- main

philosopher(k:INT) is
loop 3.times!;
lock chopsticks[k], chopsticks[(k+1).mod(7)]
then #OUT + ("philosopher "+ k +" is eating.\n")

end; -- lock
end; -- loop
end; -- philosopher
end; -- MAIN

This example is complete and can be run and modified. We use a separate MUTEX for each chop-
stick and it is natural to make these an array. The main routine initializes this array and starts the
parloop which forks off a separate thread for each philosopher. The sync command ensures that all
the threads are established before any start running; this is often needed for fairness. The conjunctive
lock is in the code for each philosopher. Each one tries to conjunctively lock the mutex to its left and
its right and, when it succeeds, prints its message and ends the lock statement, freeing the locks. The
pSather lock implementation guarantees the absence of deadlock (or livelock) among the competing
threads and also a weak form of fairness. No thread will compete indefinitely for an achievable set
of locks without eventually winning and getting to execute. Although it is not illustrated here, there

is also an explicit unlock statement that can be used to release one of the conjunctive locks before
the entire body completes. More details on all this can be found in <Fleiner thesis>. Several of our
later examples rely on conjunctive locks so we won't bother you with more at this point.

The Synchronization Extension : 18.3 Conjunctive Locking 187

18.3.1 Read-Write Locks, three kinds

So far we have seen only mutual exclusion (MUTEX) locks. For many applications, it is very useful
to have other forms of locking, such as the classical read-write locks. The idea is to allow many
threads to lock as a reader, but to restrict modification (writer) to one thread at a time. This is another
classic concept and is captured in pSather by the claR¥¢sLOCK, WR_LOCK,and
FRW_LOCK. There are also a number of other kinds of lock objects in pSather and all of them are
subtypes of the built-in abstract cld##sOCK.

Consider again the example of Section 1.3.2 that computed the number of occurrences of the max-
imum value in each chunk of a distributed vector. The global maxitnigmyas protected by a lock
big_Ik:MUTEX and accessed using the statement:

if big<m then lock big_lk then big:=big.max(m) end end;

The first conditional did not need to be locked because the test is atomic. Now suppose instead that
we needed to calculate the number of occurrences of the second largest value rather than the maxi-
mum. The obvious code for this again has each chunk thread compare its local values against both
big and the second value, sagxt. The problem is that this multiple test is not atomic and can’t be
done unprotected by a lock. But we don’t need exclusive access amdnext for checking pur-

poses, just a guarantee that no changes will occur during our multiple tests. Enter the WR_LOCK
construct. Suppose that we modify the example of 1.3.2 to have a secondekt,Tand a
WR_LOCK, next_lk. Then the global update code fragment becomes:

lock next_lk.reader then
if (m>big) or (m>next) then update:=true end
end;
if update then
lock next_lk.writer then
if m>big then next:=big; big:=m
elsif (m>next and m<big) then next:=m end
end;
end; -- if update

Actually, testing justm>next would suffice, but we will ignore this. Not only does the class
WR_LOCK subtype from BOCK but it defines two methodseader andwriter, that have return

type $LOCK. There are several other methods with return ty@€& and they play an important

role in pSather. Here threader lock protects the two tests from changes. Any attempt to write-lock
the variablenext_Ik will wait until all reads have completed. The loB&OL update is set if up-

dates are needed. We must exit the reader lock before attempting to get the writer lock to avoid dead-
lock. There are two other variants of reader-writer locks defined in pSather; they differ in the relative
priority given to readers and writers awaiting the same lock. RMWaLOCK, readers are given
priority. AnWR_LOCK gives priority to writers and a (faiFRW_LOCK treats readers and writers

the same. Which of these is best for the example above? Writing, in this case, should have priority
because this will sometimes eliminate extra lock-and-modify execution by other threads. Therefore
aWR_LOCK is best. For our realistic example, we present the first of three stories involving tuple
spaces.

188 The Synchronization Extension : 18.3 Conjunctive Locking

18.3.2 Tuple Space, Round 1

One very general parallel construct is a tuple-space. The most famous language based on this idea
is Linda <Carriero, N. and D. Gelerntner, How to Write Parallel Programs, MIT PRESS, 1990>,
which includes pattern matching on tuples as a fundamental construct. We will examine a simpler
case where matching only happens on the first element of a tuple, which must be a STR. Our example
follows that of Foster<Designing and Building Parallel Programs, Addison-Wesley, 1995>, p.152.
His terminology is a bit confusing. The final 'p’ in rdp and inp can be thought of suggesting a pred-
icate for the nonblocking cases. The two versions of 'in’ commands can be thought of pulling tuples
into worker objects and out of the tuple space. This version also allows only one tuple type in each
tuple-space; this is consistent with Sather's strong typing. Thus:

class TSPACE{TT<$TUP} is...

Foster includes five basic operations:

insert(tup:TT) -- put a new tuple into the space, duplicates Ok
rd(s:STR):TT -- blocking read, wait for match to appear
rdp(s:STR):TT -- return void if no match

in(s:STR):TT -- blocking move, wait then erase and read
inp(s:STR):TT -- non-blocking move, return void if no match

In round 1, we consider the non-blocking case for which we need only insert, inp and rdp. For con-
creteness suppose that the tuples are to be stored\irL#T. In practice, one would use a more-
efficient container class. Then the code is very straightforward; the bMIRINLOCK construct
provides the basic functionality needed for writers (insert, inp) and readers (rdp). Any number of rdp
operations can run in parallel, but insert and inp modify the tuple space and thus require a lock spac-
erw.writer. Using aVR_LOCK maximizes the chance that a tuple will be present when requested.
Using aFRW_LOCK instead would not change the code, but would have the semantics of strictly
obeying the arrival order of operations. However, this arrival order is usually not consistent in a mul-
tiple processor system; small variations in load or initial conditions can change the order. Both rdp

The Synchronization Extension : 18.3 Conjunctive Locking 189

and inp search for a tuple with a matching key. ifipesearch iterates over indices usind! be-
causeA_LIST::remove_index(INT) requires the index.

abstract class $TUP is
t1:STR; -- all tuples have a STR key
end; -- class $TUP

class TSPACE{ TT < $TUP } is
attr b:A_LIST{TT};
attr spacerw:WR_LOCK; -- insert is mutator, rd*,in* are visitors

create:SAME is
res::=new;
return(res.init);
end;

init: SAME is
b:=#;
spacerw:=#,
return self
end;

insert(tup:TT) is
lock spacerw.writer then
b.append(tup);
end; -- spacerw lock;
end;

rdp(s:STR):TT is
el:TT;
lock spacerw.reader then
loop el:=b.elt!; if el.tl=s then break! end
end;
end; -- lock spacerw
if el.t1=s then return el else return void end,;
end;

inp(s:STR):TT is
i:INT;
el:TT;
lock spacerw.writer then -- mutator
loop i:=b.ind!;
if b.aget(i).t1=s then
el:=b.aget(i);
b.remove_index(i);
break!
end
end;
end; -- lock spacerw.writer
if el.t1l=s then return el else return void end;
end;
end; -- class TSPACE{TT<$TUP}

190 The Synchronization Extension : 18.3 Conjunctive Locking

18.3.3 Disjunctive Locking

There are two orthogonal dimensions of functionality in pSather locking, the various subtypes of
$LOCK and the different forms of the lock statement. We have seen how conjunctive locking can be
employed to solve hard problems in coordinating access to multiple resources. Disjunctive locking
is our current solution to a wide range of thread termination and related problems. The motivation
for the current design is discussed in <Fleiner thesis>. Briefly, there appears to be no good way to
safely terminate a thread from the outside. Threads can cleanly self-destruct, but only if they are ex-
ecuting. Now it is frequently convenient to have threads suspended waiting for events that might or
might not occur. This is standard well-known problem with a variety of proposed solutions. For
pSather, disjunctive locking is by far the best. As always, the construct is finding a variety of other
applications.

The protoypical use of disjunctive locking would be in a procedure that was waiting for some event
or new data that might not materialize. At a higher level, a control program, probably the one that
forked the waiting thread, knows when the waiter should terminate. We can't present a real example
yet, because we first need to introduce gates, which are the basic pSather constructs for events
(among other things). Schematically, the code would look like:

loop
lock
when terminate then return
when event then action
end;

end; -- loop

The general construct also allows one to prepend a boolean condition to any of the when branches.
Each time through the loop these conditions are all evaluated and any branch whose prepended con-
dition is false will be disabled. The idea of disjunctive guarded commands appears in several lan-
guages, most prominently Ada<Barhes, J.G.P., Programming in Ada, Addison -Wesley, 1994>. It is
natural to incorporate these features into the pSather lock statement because, in a truly parallel en-
vironment, an event that is not locked might well change between the time it is triggered and when
it gets handled. As we will see in the next section, pSather provides mechanisms that simultaneously
resume a thread that is waiting for some event and grant it a lock on the corresponding $LOCK ob-
ject.

Thus there are four increasingly flexible parallel cordination mechanisms in pSather. The simplest,

barrier synchronization, was described in Section 1.3.1. Mutual exclusion mechanisms and conjunc-
tive locking were discussed in Sections 1.3.2-3. Three variations on reader-writer locks were pre-

sented in Section 1.3.4. All of these and the event coordination constructions of the next chapter can
be used disjunctively as described in this section.

The Synchronization Extension : 18.4 GATE and GATE{T} classes 191

18.4 GATE and GATE{T} classes

The Sather gate construct is the most complex and powerful feature of the language extensions and
will be discussed in this section and the next one. Our hope is that most application programmers
will be able to do fine using only the constructs described above, once the pSather libraries are in
place. But for writing efficient and reusable libraries and for novel applications, the power tools can
make all the difference. The Sather 1.1 specification discusses gates in conjunction with the classes
FUTURE andATTACH and the abstract clasBBTACH. These are minor variations on the basic
concept and can be ignored for tutorial purposes. We will present the various aspects of gate func-
tionality separately and then give examples of how they can be combined. The table on page 80 of
the 1.1 specification is complete and accurate, but is not very helpful in understanding gates.

18.4.1 Gates as Synchronizers and Queues

We will first describe the more gene@ATE{T} construct and then define how it specializes to the
datales§SATE version. In early versions of pSather, gates were called monitors but the functionality
has changed very little. Monitors were used, as gates can be, to collect results returned by functions
forked as separate threads. Since several such threads could return values to the same monitor(gate),
there needed to be some discipline for how the multiple values were stored. The FIFO queue was an
obvious choice and, as often happens, the queue functionality of gates came to be used much more
widely than anyone anticipated.

An object of typeGATE{T} can be created and used rather like any other paramterized Sather con-
tainer, but has a number of features built-in. One important feature is that the usual queue opera-
tions:set(T), get:T, enqueue(T), and dequeue:T are guaranteed to be atomic. In addition, any
attempt to get or dequeue a value from an empty queue will suspend until a value is present, provid-
ing a simple "futures” capability. Objects of type GATE define the same operations, but with mean-
ings appropriate for queues that have only counts, not a collection of values. This is all described
adequately in the specification.

As a first example, we point out that a subset of the typed gate functionality is just what is needed
for a simple message passing mechanism. Consider the following class.

class PORT{MSG} is
attr channel:GATE{MSG}, -- GATE is a queue

create:SAME is
res::=new,
res.channel:=#;
return res end;

send(datum:MSG) is channel.enqueue(datum) end;

receive:MSG is return channel.dequeue end; -- blocks when empty
end; -- class PORT

192 The Synchronization Extension : 18.4 GATE and GATE{T} classes

This implements a typed message port with the usual propertieseitheperation is non-blocking
and thereceive blocks until there is a message and atomically pulls it off the queue. We will see
some more elaborate message channels in later examples.

SinceGATE subtypes fron$LOCK, we could have used a gate instead of a mutex in the examples
of sections 1.3.2 and 1.3.3. This is not normally useful in itself, but becomes quite powerful when
combined with the other features of gates. Our current focus is on the queue functionality and this
contains two functions that have return type $LO€Kpty andnot_empty. Lock statements can
include conditiongyate.empty or gate.non_empty. A GATE{T} satisfies the empty condition
when there are zero elements in its queue. An untgekE satisfies the empty condition when its
counter equals zero. There is also a non-locking funsiiEINT which returns the size of the
queue.

The synchronization features of gates can be used build other classes with similar capabilities. As a
simple example, here is a cl88STACK{T}. The PSTACK class is a parallel computing interface

to the standard Sather array-based stack. It guarantees atomicity of operations and giep has a
method that suspends when called on an empty stack. It is worth examining how the gate function-
ality supports this.

class PSTACK({T} is -- pop waits if empty
private attr s:A_STACK{T};
private attr ct: GATE;

create: SAME is
res ::= new;
res.s := #A_STACK({T};
res.ct:=#GATE;
return(res);

end;

is_empty: BOOL pre ~void(self) is return(s.size = 0) end;

push(e: T) pre ~void(self) is
lock ct then
s.push(e);
ct.enqueue;
end;
end;

pop: T pre ~void(self) is
lock ct.not_empty then
ct.dequeue;
return(s.pop);
end;
end;

top: T pre ~void(self) and ~is_empty is return(s.top) end;

size: INT pre ~void(self) is return(s.size) end;
end; -- class PSTACK({T}

The Synchronization Extension : 18.4 GATE and GATE{T} classes 193

All of the required functionality is conveniently packaged using one untypeagathepush and

pop methods are both destructive and require mutual exclusion. Thet gltes this, but it is also

used as a blocking counter of the size of the stack. Reca#iriaeue increments the counter of

an untyped gate and trdgqueue decrements a non-zero counter and blocks on zero. Hgreshe

method does the appropriate enqueue; notice that this isathsllcked against other threads. The

pop method starts with a lock @h.not_empty; this blocks on an empty stack and atomically locks

ct as soon as some other thread has pushed a value on to it. All of the coordination required for mul-
tiple users and for conjunctive and disjunctive locking is handled by the run-time lock manager. In
general, the programmer just needs to understand that pSather has a very flexible event and lock
mechanism, but only for a restricted set of event types under $LOCK. In our example, we were able
to represent the events and locks required for the task by pSather primitives and the result was clean
and efficient code. There will be additional examples below. For wizards, there is a way to define
custom classes that subtype from $LOCK. This can be done in Sather, but requires some understand-
ing of the lock manager details and is discussed in Section 1.6, Advanced Topics.

Our next example illustrates a pSather solution to another classic and important parallel computing
problem, producers and consumers. We describe code for one producer and one consumer, the gen-
eral case is essentially the same and would make a good exercise. In order to help visualize the whole
mechanism, this example is present as a monolithic program rather than encapsulated classes. An-
other good exercise would be to use the PORT class described earlier in this section.

class MAIN is
attr channel:GATE{INT};-- queue aspect of GATE exploited
attr prod_cnt:GATE;-- used to count live producer

main is
channel:=#;
prod_cnt:=#;
par
prod_cnt.enqueue; fork producer end; -- one producer
fork consumer end;
end
end; -- main

producer is
loop i::=3.upto!(8);
channel.enqueue(i*i)
end,
prod_cnt.dequeue; -- done, decrement producer count
end,

consumer is
loop
-- disjunctive lock, here mutually exclusive branches
lock
when channel.not_empty then #OUT+channel.dequeue+ \n'
when channel.empty, prod_cnt.empty then return
end; -- lock
end -- loop
end; -- consumer
end; -- MAIN

194 The Synchronization Extension : 18.4 GATE and GATE{T} classes

Here there are two gates employed. A typed ghignnel, is the queue of data between producers

and consumers. An untyped gagtepd_cnt, will count the number of active producers. As in the
stack example we map a task condition - no active producers - onto an event handled by the locking
mechanism prod_cnt.empty. The main program just forks a producer and a consumer while add-

ing 1 to theprod_cnt. Our producer sends its squares to the communication channel and signals that
it is finished by decrementimrod_cnt. The consumer is a bit more complex and is our first real
example of a disjunctive lock. The first disjunct is the normal case where data in the communication
channel is printed. The classical problem is that the consumer function has no way to know when
production has ceased. There are various unattractive solutions such as putting special sentinel val-
ues in the data stream. Here the second disjunct waits for both the absence of data on the channel
and the signal that there are no active producers. Again, this only works out so nicely because we
mapped problem conditions onto pSather primitives. For our last example of this section, we revisit
the tuple space problem and add blocking reads and moves in an efficient way.

18.4.2 Tuple Space, Round Two

In section 1.3.4 we described a reduced version of the tuple space example from Foster in which only
the non-blocking read and move operations were implemented. The more general case with blocking
read (rd) and move (in) is considerably more complex because we want to avoid any busy waiting

or polling. Our solution follows a standard pSather pattern with each blocking read becoming a sus-

pended thread waiting on some event. If we assume that blocked reads are relatively infrequent, a
good solution is to treat these specially and leave the unblocked case efficient. The expanded
TSPACE class has a wish list, wish, that holds elements of type WISH, each of which captures one
or more blocked rd/in requests. The class WISH is quite simple.

class WISH{TT} is
attr key:STR;
attr claimed:BOOL;-- an "in" will snarf this wish
attr que:GATE{TT}

create(s:STR):SAME is
res::=new;
res.key:=s;
res.claimed:=false;
res.que:=#,
return res

end;

end; -- class WISH

The full tuple space implementation is captured in the AI&¥ACE, which appears in the next
three codeblocks. Most of the code from the earlier version is preserved. In additidi T
wishlk controls mutual exclusion teish. Since there is no guarantee that a blocked rd/in command

The Synchronization Extension : 18.4 GATE and GATE{T} classes 195

will ever be satisfied, there should be some way to clean up a tuple space and tr#ie3aTEed
to signal waiting threads that it is time to quit.

class TSPACE{ TT < $TUP } is
private attr b:A_LIST{TT};
private attr wish:A_LIST{WISH{TT}};-- WISH has key:STR, que:GATE{TT}
private attr spacerw:RW_LOCK;-- insert, in* mutates space, rd* visits
private attr wishlk: MUTEX;
private attr die:GATE;

create:SAME is
res::=new;
return(res.init);
end;

init SAME is
b:=#;
wish:=#;
spacerw:=#,
wishlk:=#;
die:=#;
return self

end;

insert(tup:TT) is
iZINT:=0;
WWISH{TT}L=#("*"); -- initialize;

lock wishlk then -- #OUT+ wish.size +'\n’;
loop i:=wish.ind!;
if wish.aget(i).key= tup.tl then
w:=wish.aget(i);
break!
end
end;
if w.key=tup.t1 then-- if no matching wish, skip all this
w.que.set(tup);-- enables waiting rd/in threads
lock
when w.que.no_threads
then wish.remove_index(i); -- zap the wish list entry
if w.claimed then return end -- don't insert tuple
when die.not_empty then return
end; -- lock when
end; -- if w.key=s
end; -- lock wishlk

lock spacerw.writer then-- OK, tuple gets added to space
b.append(tup);
end; -- spacerw lock;
end;-- insert

The non-blockingdp andinp methods do not need to change at all from our previous solution.
The blocking versionsd andin, each start with a call to the non-blocking counterpart. If the request
is found, thereis no loss of efficiency. Similarly for theert method,; if there are no unsatisfied
wishes, the code is the same as the base case. The extra work is all in the wish list, and the synchro-
nization problems can also be isolated there. Since angeat, in, orrd can modify the wish list,
access to it is controlled by the MUTEMXshIk. Consider first thed method. If there is no match
in the tuple space, a search of the wish list is done. Of course if there is also no match on the wish

196 The Synchronization Extension : 18.4 GATE and GATE{T} classes

list then a new wish entry must be created and appended. It could also happen that there is a matching
wish entry, but a previoun call has staked a claim to the tuple-to-come and so a new wish entry is
also needed in this case. All of this is expressed in the two statements within the wishlk. It is possible
that, while this thread was making its wish another thread inserted a matching tuple. This is handled
by again tryingdp.

rd(s:STR):TT is
v:TT:=void;
el:TT:=rdp(s);
if ~(el=v) then return el end;

W:WISH{TT}:=#("*");-- initialize to non-match;
lock wishlk then
loop w:=wish.elt!; if w.key=s then break! end end,;
if ~(w.key =s) or w.claimed then w:=#(s); wish.append(w)
end;
end; -- lock wishlk

el:=rdp(s);-- maybe got in while making wish
if ~(el=v) then return el end,;

lock
when w.que.not_empty then return w.que.get
when die.not_empty then return void
end; -- lock
end;

rdp(s:STR):TT is

el:TT;
lock spacerw.reader then
loop el:=b.elt!;
if el.t1=s then break! end
end;

end; -- lock spacerw
if el.t1=s then return el else return void end;
end;

The final code segment of implements the wait for a matching tuple using a disjunctive lock-
statement.The second when branch waits for a global signal to die. The first branch is the normal
case and relies upon the properties of the pSather GATE{T} construct. Notice that a wish list entry
has three attributegey:STR, claimed:BOOL, andque:GATE{TT} where TT is the tuple type.

The GATE construct supports multiple threads waiting for a value and this is just what is needed
here. The first when branch can be taken as soon as a value (here a tuple) is assigonechtad

this value is returned as the result of the original blocked read.

The Synchronization Extension : 18.4 GATE and GATE{T} classes 197

The additional code required for the blockingommand is quite similar to this. The search for an
unclaimed matching tuple is identical, except thaitheommands mark the tuple as claimed. The
disjunctive lock that implements waiting is also the same ad in

in(s:STR):TT is
v:TT:=void;
el:TT:=inp(s);
if ~(el=v) then return el end;

W:WISH{TT}:=#("*");-- initialize to non-match;
lock wishlk then
loop w:=wish.elt!; if w.key=s then break! end end,;
if ~(w.key =s) or w.claimethen w:=#(s); wish.append(w)
end;
w.claimed:=true;-- wish will be snarfed
end; -- lock

el:=inp(s);-- maybe got in while making wish
if ~(el=v) then return el end;

lock
when w.que.not_empty then return w.que.get
when die.not_empty then return void
end; -- lock
end;

inp(s:STR):TT is
i:INT:=0;
el:TT;-- non match;
lock spacerw.writer then-- mutator
loop i:=b.ind;
if b.aget(i).t1=s then
el:=b.aget(i);
b.remove_index(i);
break!
end
end;
end; -- lock spacerw.writer
if el.t1l=s then return el else return void end;
end;

done is die.set end;
end; -- class TSPACE{TT<$TUP}

Itis theinsert method that involves most of the extra complexity for dealing with the wish list, when
present. The first loop searches for an existing wish index with the same key; if there is none, inser-
tion reverts to our previous case. If there is a matching wish, this insertion is its answer and this is
indicated by settingv.que to have a value of the tuple being inserted. Now, one or more threads are
waiting for this GATE{TT} to be set and they will all be enabled. Tieert routine now waits for

these all to finish with a disjunctive lock. As in the other cases, the second branch catches the global
command to quit. The first disjunct matches the condition that there are no threads still waiting for
w.que. The current wish is removed in any case and, if the tuple has been claimed, thearthe
routine returns. If all of the waiting operations wedethen the current tuple will not have been
claimed and will be added to the main tuple store by the last code segment. The only other method
isdone which sets th&ATE:die as the signal for waiting threads to return. This completes the code

198 The Synchronization Extension : 18.5 GATES and attached threads

for the tuple space example from the perspective of functionality. There will be a third round of con-
sideration of this task when we discuss performance and the distributed extension in Section 1.5.

18.5 GATES and attached threads

Both the typed and untyped gate classes have another area of functionality that interacts with the
gueue andISOCK properties described in the previous section. We consider first the typed case. In
certain programming styles, it is common to fork a (value returning) function linked to a variable
that will eventually hold the result of the forked function, in the 'future’. The obvious semantics is
that any access to such a future value will block until there is a value present. Historically, the orig-
inal motivations for the pSather gate (originally monitor) construct was very much concerned with
future values. In our terminology, a thread was 'attached’ to the gate that would receive its value. We
considered it important to allow multiple threads to be attached to the same gate and this led to the
idea of a typed gate as a queue of values. It was also clear that, in a true parallel environment, re-
trieving a future must be atomic. The remaining three methods of the gateA®RA®H, etc.)
classes:as_thread:BOOL, gate.threads:$LOCK, and gate.no_threads:$LOCK deal with

these issues.

The BOOL function,has_thread, is non-blocking and just gives a snapshot of whether there are
any threads attached to this gate. The other two methods have returb@i€ &nd participate in

the full range of lock constructs. As expectgdte.threads will lock until gate has at least one

thread attached arghte.no_threads will lock until there are no attached threads. Notice that in
these cases, as well@sipty andnot_empty, the gate itself is also locked. Tpar ... end syntax

was not included in earlier versions of pSather because this can be expressed in terms of the other
primitives. You might want to try this; the answer will appear later in the text. There is a specific
syntax for attaching a thread to a gate:

gate :- expression

The :- notation is intended to convey the notion of incomplete (future) assignment. For untyped
gates, everything is analogous. The procedure that is attached to an untyped gate must not return a
value; on completion the counter of the untyped gate is incremented. In both cases, the calling code
can either test if the method has returngaltg.size>0), block until this happengéte.get or
gate.enqueue) or lock on this conditiorlgck gate.not_empty ...). This provides a rich set of pro-
gramming options for dealing with threads doing speculative computation., etc. For example, instead
of enclosing a set of forked functions ipar ... end bracket, one could attach them all to some
untyped gateg, and then coddock g.no_threads then end.Thesync command discussed in Sec-

tion 1.3.1 can also be used; executisgrc in a thread attached to a gate synchronizes with all other
threads attached to the same gate.

There is currently much less use of the attach statement, futures, et. al. than we anticipated. Certainly
thefork andparloop mechanisms are clearer when they apply. It is too early to know whether this
trend will continue or whether we will start developing patterns that rely heavily on these more flex-
ible mechanisms. We will present two artificial examples that give an idea of what can be easily done

The Synchronization Extension : 18.5 GATES and attached threads 199

with these mechanisms. Suppose that we wanted to fork off a number of threads to try alternative
ways of solving the same problem, this might be searching a data base or the internet or various ap-
proaches to an Al task. Our toy example just has different threads looking for a random number with
a particular property; it is the control that is of interest.

class MAIN is
attr num:GATE{INT};
attr stop:BOOL,;
attr win:INT;

main is

i/INT;

num:=#;

stop:=false;

loop i:=0.upto!(3);

num :- worker(i);

end;

stop:=true; SYS::export; -- make this known

#OUT + num.dequeue +" thread " + win +'\n’;
end; -- main

worker(id:INT):INT is
RND::seed(31463*(id+43));
loop SYS:import; -- stop is a global, import its value
if stop then return(0) end;
ans::=RND::int(0,10000);
if ans.mod(71)=0 then win:=id; return ans end;
end; --loop
end; -- worker
end; -- class MAIN

The GATE{INT}, num, will have the worker threads attached to it and their answers will be placed
on its queue when available. TB®OL, stop, is a global signal for the other workers to stop after
an answer has been found. TN&, win, is the thread number of the winning worker, this will usu-
ally vary even on a uniprocessor platform. Tim@n program starts four workers and gives each its
integerid. The forking thread is not blocked (as it would be with par ... end) and could do other com-
putation. In this case it just waitsum.dequeue) for the first answer, sets tetop flag, exports it,

and prints the first answer. Since the worker threads might be on separate clusters, thexexplicit
port is needed to make the flag visible to all the workers.

The worker threads each initialize the random number generator differently and then loop until they
find a number divisible by 71 or find out that another worker has done so. At the start of the loop,
each thread does an explicitport to make sure that it has a current copgtop. In this simple

case the whole program terminatestap isn't really needed. But termination is an important prob-

lem in general and we will return to this case in the next section.

The next example is a slight modification of this one that illustrates an important additional control
option in pSather. Normally, any nested set of calls (whether forked or called in the same thread)
must be completely unwound when the result is found and needs to be returned. The gate mecha-
nisms make it easy to employ a kind of 'continuation passing’ control technique that allows the di-
rect return of a result to the top-level caller. It turns out that intermediate threads can terminate
without causing any difficulty. The task is the same - several threads are given the task of finding a

200 The Synchronization Extension : 18.5 GATES and attached threads

random number divisible by 71. The difference is that here we separate the attachment of threads
from the return of answers We also fix a coordination bug in the previous example. Before we ret
urned the id of the winning thread separately from the answer and could not be sure that the two val-
ues corresponded. Here we return a tuple (val, thread) and avoid that problem.

class MAIN is
attr num:GATE{TUP{INT,INT}}; -- answer is (val,thread)
attr dum:GATE;
attr stop:BOOL;

main is
num:=#; dum:=#;
stop:=false;
i/INT;
loop i:=0.upto!(3);
dum :- worker(i,num);
end;
ans::=num.dequeue;
#OUT + ans.tl +" thread " + ans.t2 +\n’;
stop:=true; SYS::export;
end; -- main

worker(id:INT, g:GATE{TUP{INT,INT}}) is
RND::seed(31463*(id+43));
ans: TUP{INT,INT}:=#(0,id);
loop SYS::import;
if stop then return end,;
try::=RND::int(0,10000);
if try.mod(71)=0 then g.enqueue(ans.t1(try)); return end;
end; --loop
end; -- worker
end; -- class MAIN

There is one additional untyped gatem, which is a dummy used for attaching the worker threads.
Theworker code is changed so that it takes two parameterd,atsd the gatey, to which the an-

swer should be returned and it now has no return value. When a worker finds an answer, it enqueues
a tuple with the answer and its id on the gate given to it as a parameter and returns. The continuation
idea isn't used here, but a worker could pass on the answer gate (and possibly task state) to another
thread and terminate or do other work, for example return additional answers. Another possibility
would be to have a worker that was attached to a typed gate enqueue results on the same gate before
its final return.

A use of the attach construct in a real application can be found in Ben Gomes’ thesis. The task is to
analyze a neural network graph and partition it segments that are placed on separate cluster.

18.5.1 Tasks, Actors, etc.

One popular style of parallel programing employs the metaphor of cooperating active agents. The
pure form of this is given in the various Actor formulations <Agha,G., Actors, MIT Press,1988.>,
but it cccurs in many other forms. In pSather, it is fairly simple to create and manipulate active ob-
jects; the major issue is that the strong compile-time type system of Sather requires typed messages

The Synchronization Extension : 18.5 GATES and attached threads 201

or run-time case statements. We will first present a general tasking package in pSather and then dis-
cuss how this could be modified and extended to support various paradigms of programing. Since
tasks should be free running once created, the central idea is to akadher :- statement to start

a single thread within the object that is the actor or task. Tasks will communicate using objects of
the simplePORT class, which was the first example in Section 1.4.1. The core tasking functionality
will be encapsulated in a partial cla$SK, listed in the table below. Various specific kinds of tasks

will have their own class, each of which includ&sSK; examples are given in the following code

table. Since all different types of task must communicate, we define an abstract 8BKs $hich
expresses the common interface of all tasks. The abstract definition listed in the table is over-simpli-
fied in assuming that all messages are of type STR; we will discuss the general case shortly. Ele-
ments of abstract singature include a routbo@nect executed in a receiving task, that connects the
outport of some source to theport of self and a reader of tloaitport that needs to be public for
connect to work. Our design requires that each task type provided a subrduathe that is its

main program. A discussion of tiéSK class follows the table.

abstract class $TASK is
connect(sender:$TASK);
outport: PORT{STR}; -- real case is more general
body;

end; -- class $TASK

partial class TASK < $TASK is
attr inport,outport: PORT{STR};
private shared all:GATE; -- all tasks of this type.

create:SAME is
res::=new;
res.inport:=#;
res.outport:=#;
return res

end; -- create

start:SAME is
if void(all) then all:=# end;
all:-body;
return self

end;

stub body;
send(datum:STR) is

outport.send(datum)
end; -- send

receive:STR is -- blocks until data present
return inport.receive
end; -- receive

connect(sender:$TASK) is -- useage: receiver.connect(sender)
sender.outport.channel:=inport.channel
end;

end; -- class TASK

The partial clas§ASK will be included in the various specific task types. It has two public at-
tributes,inport andoutport, which are for now of typPORT{STR}. The private shared gate is used
to attach all tasks of a given type. In pSather 1.1 there is no way to operate on these threads, but one

202 The Synchronization Extension : 18.5 GATES and attached threads

can test or lock on whether there any threads attached to thallgat& have chosen to have a sep-
aratestart routine so thereate is straightforward. Recall that every task class must define a body,
specified as a stub here. The start method attaches a thread executing the body to the sh#ired gate,
,and returns self; this makes it convenient to create and start a task in one expression. The send and
receive methods just wrap the same methods in the PORT class of Section 1.4.1. The connect meth-
od is used to set the output channel of a sender to be the input channel (a gate) of the receiver. A

minimal example of task useage is provided in the following table.

class SINK < $TASK is include TASK;

body is
S:STR;
loop
s:=receive; -- waits for data
#OUT + s;
if s ="." then #0UT +\n"; break! end
end
end;

end; -- class SINK

The SOURCE class is described below

class SOURCE < $TASK is include TASK create -> task_create;
attr ok:GATE;

create:SAME is
res::=task_create;

res.ok:=#; -- the extra attr
return res

end;

body is
ok.get; -- wait for signal

send("Hello);
send("World");
send(".");

end;end; -- class SOURCE

These are all tied together by the MAIN class

class MAIN is
main is
source:SOURCE:=#SOURCE.start;
sink:SINK:=#SINK _start;
sink.connect(source);
source.ok.set;
end;
end; -- class MAIN

There are two tiny task class&NK andSOURCE, each of which includeBASK and subtypes

from $TASK, in the usual Sather fashion. The sink class consists only of the required body subrou-
tine. It loops with a (blocking) receive command, included figx8K. If it sees a period in its input

it prints a new -line and returns. The source task is a bit more complicated because it needs one extra
attribute,ok:GATE, which will be its starting signal. The creation code is the standard Sather idiom

The Synchronization Extension : 18.5 GATES and attached threads 203

, augmenting thereate routine of the parent class. Thedy subroutine just waits for a starting

signal and then sends three famous strings, again using a method included®idni-inally, there

is a litlemain program that first creates and starts the two tasksce andsink. We don’t want

source to start generating before it is connected which is why we have it wiitAs an exercise,

you might want to chang@OURCE so its body waits for a starting message on its input channel
instead. The main program just connects the sink to the source and signals ok. Because setting the
gateok is a synchronization operation, the implicit export/import (cf. page 7) assures tbhahthe

nect will be complete beforsource starts spewing text. Hopefully, people will rarely need to ex-
plicitly consider this kind of consistency issue.

18.5.2 Discussion and Extensions

The core task functionality just presented provides a framework for building up other task or actor
based mechanisms. Even the existing code allows multiple sources to connect to a receiving task
port. It is straightforward to allow multiple inport and outport channels, for example by using an AR-
RAY{PORT}. This is almost all that we need to capture the core programming model used by Taylor
as the basis for his book<op.cit>, p.12-13. Taylor also allows references to ports to be passed in mes-
sages, supporting dynamic communication channels. Our task class already allows new assignments
to the outport(s) of a task, but there is not yet a way to pass anything but strings in a message. The
strong typing places constraints on how we can deal with various kinds of messages in a uniform
way. We will outline one simple solution, retaining the simplification of a single inport and outport
per task.

In this example, we will introduce a version of the task realization that can really be used to build
significant systems. The main simplification in our first solution was requiring that each message be
a string. We clearly want messages of many types and this must be reconciled with Sather's strong
static typing. The saving grace is that all types of message should behave the same way at the level
of task communiction, differences only matter inside the body of tasks. This suggests that we define
a general message typdSG, with one attribute (here datum) of typ®E; the tiny class for this
is included in the next code table. The only change in the partialléd&3§ is that the three instanc-
es of STR are replaced bISG and this modification is not shown. For our example, the class
SOURCE requires no change at all and is also not repeated.

The most important change is in the abstract claSK, which was just a hack in the previous
example. We now can specify a compete and general interface for tasks. As we will see, all kinds of
tasks can communicate using all kinds of messages with these general mechanisms. The abstract in-
terface specifies the functionality needed by any task ; any class that inchfsl€and supplies a

body will comply with the interface. It is easy to convert our previous example to use the more gen-
eralMSG class. Consider the revised code for@heK class, included in the code table. The new

body code obviously needs a variabitg Of typeMSG as well as the string from before. Recall that

the data field oMSG is datum; the local variablend is needed beacuse typcase takes an identifier.

The code has two typecase branches, but ignore the second branch for now. The code in the first
branch is unchanged, the new versioSINK just needs an extra level of indirection since the-mes

204 The Synchronization Extension : 18.5 GATES and attached threads

sage isn't itself a string but has a string datum. If this were the only added functionality in the second
task example, the main program would require no change.

class MSG is
attr datum:$OB;

create(dd:$OB):SAME is
res::=new;
res.datum:=dd;
return res
end;
end; -- class MSG

The $TASK abstraction is show below

abstract class $TASK is
connect(sender:$TASK);
outport: PORT{MSG}; -- now more general
create:SAME;
start:SAME;
send(datum:MSG);
receive:MSG;
body;
end; -- class $TASK

The SINK class is defined as

class SINK < $TASK is include TASK;

body is
m:MSG; s:STR;
loop
m:=receive; md::=m.datum;
typecase md
when STR then s:=md;
#OUT + s;

if s ="." then #0UT +\n"; break! end
when RFCONN then
connect(md.sender)
end; --typecase
end
end;
end; -- class SINK

The RFCONN class is

class RFCONN is
attr sender:$TASK;

create(s:$TASK):SAME is
res::=new;
res.sender:=s;
return res
end;
end; -- class RFCONN

The Synchronization Extension : 18.5 GATES and attached threads 205

These are all tied together by the main routine

class MAIN is
main is
source:SOURCE:=#SOURCE.start;
sink:SINK:=#SINK _start;
msg:MSG:=#(#RFCONN(source));
sink.inport.send(msg); -- unSathery, but simple
source.ok.set;
end;
end; -- class MAIN

However, now that we have messages of arbitrary type, we can fulfill our earlier promise to allow
connections to be established by message. This is an important capability and can support systems
with very dynamic connectivity. It is quite easy to do this with the mechanisms that we have estab-
lished. Again we need a tiny class to define a message typ&F@@NN for request-for-connec-

tion, shown in the code table above. It simply has one attribute of T®8k§ the sending task

that needs to be connected to the inport of some receiver. We can now understand the second branch
of the typecase statement in BI&IK class. If &5INK object gets aRFCONN message, it executes

its connect method which sets theutport of the task listed as the desired sender in the message.
The revisedmain program illustrates how this might be used. Rather than directly link our one
source to the one sink as before, the main program constructs and sends a message to do this. This
is no improvement in the example, but should illustrate how connection requests can be passed and
carried out within the design. This almost completes the requirements for Foster's tasks. He also re-
quires that a task be placeable on different processors; the pSather mechanisms for this will be dis-
cussed in Section 1.5.

The tasking and rendevous mechanisms of Ada are similar to the above with the major difference
being guarded disjunctive method call. In fact, the disjunctive locking construct of Section 1.3.5 was
partially based on the Ada guarded select statement . Rendevous (both the caller and callee being
blocking) does not seem like a good style for pSather’s goals, but it is straightforward to achieve.
One way to implement this in pSather would be to use explicit message passing, possibly with the
task mechanisms of this section. An implementation closer to Ada syntax could be achieved by
grouping the various accessible methods (corresponding to Ada entries) and associating each group
with a MUTEX object. There would be one such MUTEX object for each select/accept block and

a single MUTEX variable that corresponded to the current state (~ which select statement) . A meth-
od would start by locking the contolling MUTEX. Recall that the natural state of a pSather object

is passive; if no active threads are running the object is, in effect, waiting for a rendevous. First con-
sider the case where there is only one select statement in the Ada code, then a single MUTEX will
ensure that exactly one of the entries executes at a time and callers of any others will wait for their
rendevous. A guarded select would be modeled by a guarded lock statement that exits if its guard
fails. Multiple select statements would map to multiple MUTEXes, with the one corresponding to
the current state being assigned to the controlling variable. There is a standard pSather coding style
that is quite similar. A collection of methods is collected into a class without an active thread. Using
classes can call these methods in either blocking or non-blocking (:-) mode. If mutual exclusion
over some subset of methods is desired, these all start by locking on a shared MUTEX. In fact, using
the advanced techniques of Section 1.6.3, one can define rendevous locks in Sather.

206 The Synchronization Extension : 18.5 GATES and attached threads

Another widespread paradigm appears in the various forms of Actor systems, as exemplified by
Agha’s book<MIT Press, 1988>. Most of the required functionality for Actors can be built easily
from the task and messaging facilities described in the this section. The interesting additional re-
guirement is that an actor can change its behavior after processing a message. This is typically done
with abecome <behavior> statement. One can get some of this effect by simply havihgdye

in your task class be a case statement that depends on some state variable. This is the standard com-
piled language approximation, but we can do something much more interesting using Sather’s bound
routines. The body of the task class can be written with a function closure which has one argument
of the of the typ®SG , say :

body var: ROUT{MSG};

Then the actor "becoming" another behavior is modeled by asigning a function closure to this vari-
able :

body_var:= bind(behavior6)
and, obviously enough, the basic body code is:
body_var.call(receive);

With appropriate message types defined, we could easily have an actor receive a message naming a
new behavior. It would not be obvious how to debug this kind of code, but it does illustrate the gen-
erality of the constructs.

Performance and The Distributed Extension : 19.1 Introduction 207

Performance and The
Distributed Extension

19.1 Introduction

Performance is the raison d’etre of parallel processing, but has not yet been mentioned in this chap-
ter. This is consistent with the pSather design philosophy that attempts to allow users to develop and
test their programs without concern for implementation details. The programmer is encouraged to
code for the basic abstract machine consisting of a large shared address space and an unbounded
number of threads of control. Sharing is determined by the rules of the language, not by where data
happens to reside. We believe that this will make it relatively easy to develop complex codes and to
port them between platforms. Of course there are performance penalties to pay for this oblivious
view of the underlying platform. On some architectures, the penalty might be tolerable; a single SMP
(symmetric multi-processor) or the Cray T3E provides an effective shared memory. There are major
efforts <Soutamire thesis> to achieve efficient emulation of shared memory through hardware and
low-level software without help from the compiler or programmer, if these succeed it should be pos-
sible to develop efficient pSather code using only the mechanisms described above.

Hardware shared memory, or its equivalent, provides a best case on the kind of platform for which
pSather is appropriate. There is also a maximum latency beyond which the pSather constructs offer
no performance advantage over general message passing systems such as MPI<Foster, CH. 8>. If
the ratio between local and remote operations exceeds 4 orders of magnitude (which it frequently
does) then only the most loosely coupled computations can be parallelized efficiently. We believe
that pSather can be effective with latency ratios up to several hundred and that systems within this
range will continue to be important. Two paradigm examples are the Meiko CS-2, where local oper-
ations are ??? faster than remote ones and our Myrinet network of quad-Sparc 10 workstations with
a ratio of about ???. In contrast, our ethernet realization with the same workstations has a ratio of ???
and can not be used for most of the problems that interest us.

Achieving good performance is the central research goal of the pSather project. There are currently
four doctoral projects focusing on different aspects of this. Claudio Fleiner is looking at how con-
ventional and novel compiler optimizations can be employed in pSather. Ben Gomes is using pSather
in a system for mapping neural network applications to parallel machines. Boris Vaysman is study-

208 Performance and The Distributed Extension : 19.2 Placement and the @ operator.

ing class library design, and is especially concerned with execution time adaptation and representa-
tion change. David Stoutamire’s thesis focuses on locality and storage management and will
introduce the 'zone extension’ that generalizes the current cluster based distributed extension. Both
the current cluster version and the new zone system share the basic idea that a moderate amount of
placement information supplied by the user can help a great deal in producing good code.

19.2 Placement and the @ operator.

The current pSather system has a built-in knowedge that the address space might be broken into sev-
eral pieces, called clusters, and that it is expensive to reference data across cluster boundaries. For
reasonable performance in a portable design, assume that it is hundreds of times more costly to ref-
erence a remote cluster. There are ways to incorporate detailed platform dependent latency esti-
mates, but that is beyond this tutorial. With penalties of this magnitude it is important to allocate
objects and threads well. There is a large literature on programmer placement strategies and all of
this appears to be useable in our context. From the pSather perspective, automatic and adaptive
placement strategies should be encapsulated in classes and we have done some work on this.

The language primitives for placement are quite simple. Any expression of the language can be con-
joined with the text '@exp’ where exp must evaluate to an integer from 0 to the number of clusters
-1. The preceeding expression is then evaluated on the corresponding cluster. In the usual case where
no @ is specified, execution continues in the current cluster. If the expression to the left of an @ is

a create expression, the created object will reside on the cluster specified after the @. If the expres-
sion to the left of @ contains calls or other subexpressions, these will be evaluated before the @exp
is calculated and thus will be on the current cluster. This is quite different than the 'owner computes’
rule often built into parallel languages. One expression might involve objects resident on several dif-
ferent clusters and remote access is sometimes the best strategy. As described in the manual, the @
opertor can also be used with the fork and parloop statements.

For repeated computations, it is always better to copy data so that the inner loop all happens on one
cluster. To aid in this, PSather includes three location tests on objects. The wiethe(expres-
sion):INT returns the number of the cluster on which the value of the expression resides. The pred-
icatenear returns true if the value of its argument is on the executing cliesteeturns true if its
argument is not on the executing cluster. The treatment of void and immutable arguments is decribed
in the table on page 85 of the specification. The two most basic patterns are moving the object to the
operation and vice-versa. The schematic code for bringing the object to the code goes like this, given
a variable v:T

local_v:T:=v;
if far(v) then local_v := v.copy end;

Of course, if we are modifying the variable v, just modifying the copy won't suffice. To execute an
operation on the cluster where the object in variable v resides, one writes

Performance and The Distributed Extension : 19.2 Placement and the @ operator.

operation@where(v);

For our first real examples, we return to two of our earlier sample programs. It turns out that some
code that works fine with low-latency shared memory becomes awful on a platform with relative la-
tencies in the hundreds. In Section 1.4.2, there were two variations on disjunctive search and one
issue was to stop other threads once one had found an answer. Each worker thread was coded to
check a global flagstop, on each iteration. This seems harmless, but could totally dominate the ex-
ecution time. The following revision illustrates some issues in coding for costly clusters.

class REFBOOL is

attr val:BOOL;

create:SAME s return new end;
end; -- class REFBOOL

class MAIN is
attr num:GATE{INT};
attr stops:ARRAY{REFBOOL};
attr win:INT;

main is
iXINT;
num:=#;
stops:=#(clusters);
loop i:=clusters!;
num :- worker(i)@i; -- workers to clusters
end;
ans::= num.dequeue;
loop i:=clusters!; #OUT +i + '\n';
stopsi].val:=true;
end;
SYS::export;
#OUT +ans + "thread " + win +'\n’;
end; -- main

worker(id:INT):INT is
stop:BOOL;
stops[id]:=stop;
sync; -- everyone gets to start
RND::seed(81463*(id+43));
loop SYS::import;
if stop then return(0) end;
ans::=RND::int(0,10000);
if ans.mod(71)=0 then win:=id; return ans end,
end; --loop
end; -- worker
end; -- class MAIN

The major difference in the main program is that workers are each forked to a different cluster, using
the syntaxvorker(i)@i. To avoid costly checks of a shared signal, each worker should check a vari-
able on its own cluster. Earlier versions of pSather had a primitive storage class, spread, that made
it easy to do this case but was not general enough for all of our requirements. We will illustrate one
standard pattern here and discuss others later. In this solution, each worker thread creastsm local
variable and registers it with the main program. Whan an answer is found, the main program sets
all the flags. The only complication is that this requires a reference object, here realized by the class
REFBOOL, suggesting a boxed boolean. Thus the test in each workest@poral. The code as

210 Performance and The Distributed Extension : 19.2 Placement and the @ operator.

given might still be too slow if thienport in each loop was costly, the obvious fix isrtgort and
test only every Nth step.

As a second example, let's reconsider the program of Section 1.3.2 that computed the count in each
chunk of some DVEC of the overall maximum value. We are now able to define the class DVEC,
which was left implicit in the earlier example. It turns out that our earlier example was very unSath-
ery code; one expects functionality to be encapsulated in object methods, not in the main program.
The following example is over-simplified, but is characteristic of our approach to distributed objects
in pSather. A major goal is to leverage the exisitng serial Sather classes, here VEC. A distributed
vector, or DVEC, should have the same interface as the serial version allowing users to easily move
code to a parallel platform. Distributed object classes always have a dirdatahat points to the

Performance and The Distributed Extension : 19.2 Placement and the @ operator.

part of the d-object that is on each cluster. Here there is just one chunk per cluster and a total of
num_chunks. The only other attribute is the fixed shunk scte,size.

class DVEC is
private attr dirARRAY{VEC};-- directory is array of chunks
private attr num_chunks:INT;
private attr ch_size:INT;

create(num,csize:INT):SAME is
res::=new;
res.num_chunks:=num;
res.ch_size:=csize;
res.dir=#ARRAY{VEC}num);
loop j::=0.upto!(num-1); res.dir[j]:=#VEC(csize)@j end,;
return res
end;

chunks!:VEC is-- Iterate over chunks
loop j::=0.upto!(num_chunks-1); yield (dir[j]) end
end;

plus(v1:SAME):SAME is
assert(aligned(v1));
res::=#DVEC(num_chunks,ch_size);
parloop j::=0.upto!(num_chunks-1) do@j

res.dir[j]:= dir[j].plus(v1.dir[j])

end;
return res

end; -- plus

dot(v1:SAME):FLT is
assert(aligned(v1));
res:ARRAY{FLT}:=#(num_chunks);
parloop j::=0.upto!(num_chunks-1) do@j
res[j]:= dir[j].dot(v1.dir[j])
end;
r::=0.0;
loop j::=0.upto!(num_chunks); r:=r+res[j] end,;
return r;
end;

aligned(v1:SAME):BOOL is
if (num_chunks=v1.num_chunks and ch_size=v1l.ch_size)
then return true else return false end
end; --aligned
end; -- class DVEC

The code is all straightforward. Notice that in ¢heate routine, the individual chunks of type VEC

are created on separate clusters and thus live thereehlinks! iter used in our earlier example

yields references to these distributed chunks; this isn’t very efficient and the other methods don't use
it. The example includes two of the many methods that are needed to duplicate the VEC interface.
Both first require that the two vectors be aligned, i.e., have the same number and size of chunks. The
predicate for testing this is also part of the public interface.plinre routine first creates a new

DVEC, which itself is distributed over all the clusters. Therptmoop forks off threads to compute

the separate chunks of the result on separate clusters. The code for the dot product is similar. Since
the answer is the sum of the dot products of the chunks, some coordiantion is needed. Here each

212 Performance and The Distributed Extension : 19.2 Placement and the @ operator.

thread stores its local dot product in an entry of the shared msagnd the total is computed after

all subcomputations complete. Of course not all operations on distributed data structures partition so
nicely, but it seems to be possible to provide functional interfaces to the user and bury the complexity
in the library methods. It was this insight that led us to believe that OO methods will be even more
impostant for parallel computing than they are for serial tasks.

19.2.1 Tuple Spaces, Round Three

In Section 1.4.1 we saw a fairly complex class TSPACE {TT <$TUP} that implmented the full non-
blocking version of the tuple space example from Foster <op. cit.>. Here we show how this can be
extended to the distributed case with no changes at all in the class TSPACE. As Foster points out,
the key to a tuple (an STR) provides a natural way to distribute the tuple space over parallel ma-
chines. If we simply hash on the key then with high probability the tuple space will be spilt in an

Performance and The Distributed Extension : 19.2 Placement and the @ operator.

efficient way. The following block contains the complete code for the class DSPACE, which does
this. The interface is identical to that of the underlying uni-processor class TSPACE.

class DSPACE{ TT < $TUP }is
private attr tspace: ARRAY{TSPACE{ TT}};
const n:INT:=4;-- number of subtables

create:SAME is
res::=new;
res.tspace:=#(n);
return(res.init);
end;
init: SAME is
loop i::=0.upto!(n-1); tspaceli:=#TSPACE{ TT}@i end;
return self
end;

private hash(s:STR):INT is
return s.hash.mod(n);-- number of subspaces
end; -- hash

insert(tup:TT) is k::=hash(tup.t1);
tspacelK].insert(tup) @k
end;

rdp(s:STR):TT is k::=hash(s);
return tspace[k].rdp(s)@k
end;

rd(s:STR):TT is k::=hash(s);
return tspace[k].rd(s)@k
end;

inp(s:STR):TT is k::=hash(s);
return tspace[K].inp(s)@k
end;

in(s:STR):TT is k::=hash(s);
return tspace[k].in(s)@k
end;

done is
loop k::=0.upto!(n-1); tspace[k].done@k end;
end;
end; -- class DSPACE{TT<$TUP}

Everything is very simple, almost mechanical. A DSPACE has a privatésptice, which is an

array of TSPACE, here 4 of them. The privlatessh function tells which of the tuple spaces to use

and the various methods just call their uni-cluster counterpartsloffeemethod must notify all the
clusters when it is time to stop. Much of the Sather and pSather design has been driven by the re-
guirement that extensions to functionality be as simple as this. In our current and future research, we
plan to provide interfaces, like the tuple space one here, that shelter the user from knowing what kind
of implementation is being emplyed and libraries that adaptively change representation as a function
of load.

214 Performance and The Distributed Extension : 19.3 Addresses and the with ... near construct

19.3 Addresses and the with ... near
construct

We have come this far without saying anything about how pSather produces the illusion of one large
shared address space on a platform, such as a network of workstations, where the reality is a number
of distinct address spaces. There is still no need for implementation detail, but the fact this requires
some kind of address translation must be taken into account for peak performameardrelfar
predicates allow a programmer to test locality at execution time and act accordingly. But a little
thought makes it clear that there must be some penalty paid because the compiler does not know if
a reference type variable will refer to an object that is near or far. This could obviously involve extra
storage, additional tests, etc. Moreover, the uncertainty about the locality of referenced objects can
interfere with in-lining and other code optimizations. In short, it can be very useful for the compiler

to know at compile time that certain variables hold object that will be on the same cluster as the ex-
ecuting thread. It is possible that flow analysis could determine enough of this to suffice, but we ha-
ven't convinced ourselves that this is the case.

What we have done is include into pSather a construct that allows the programmer to tell the com-
piler that the objects in certain reference variables will be near for a given block of computation. The
syntax of this follows a common Sather pattern:

with <id list> near

<statement list>
else <statement list>
end;

The id list is a list of identifiers, and possilskif, that are guaranteed to be near for the block.At

the start of the block, all of these are tested and, if any are not either near or void, the else clause is
executed if present. It is a fatal error if the else clause is needed and is not present. The programmer
has also promised the compiler that the contents of all these identifiers will remain near throughout
the block. Obviously enough, checking this could be costly enough to wipe out the advantage of us-
ing the construct. This is handled in the standard Sather fashion, when the appropriate flags are set,
the nearness of named identifiers is checked. As a simple first example, we can expand the schematic
code of the previous section.

local_v:T:=v;
if far(v) then local_v := v.copy end;

with local_v near res:=local_v.ops end;

Performance and The Distributed Extension : 19.3 Addresses and the with ... near con-

For a real example, consider the following code from a picture processing program. that applys a
supplied filter to each pixel. The procedue apply is started on each cluster and gets a copy of the filter.
It then makes a local copy of the filter and uses with near to inform the compiler about it.

class PHOTO is
--include S_PHOTO{SPREAD_AREF2{FLT}};
--include S_PHOTO{SPREAD_PEANO2{FLT}};
--include S_PHOTO{SPREAD_CHUNKS2{INT}};
include S_PHOTO{BIN_CHUNKS2{INT}};

apply(aa:FILTER) is
ti=tl;
t1:=t2;
t2:=t;
tmp::=tl,
parloop
do@clusters!;
parloop p::=cl_size.times!;
do
i:INT;
a:FILTER;
if far(aa) then
a:=aa.copy;
else
a:=aa;
end;
with a near
loop
x::=(t.112+(t.local.cs2*p/cl_size)).upto!(t.lI2+t.loc)
loop y::=t.II1.upto!(t.ll1+t.local.cs1-1);
[x,y]:=pixel_for(t2,x,y,a);
end;
end;
end;
end;
end;
end;
end;

We don't have enough context to understand all the details, but the structure of the code should be
clear. Obviously the inner loop will run often and it is worth the set up costs to help the compiler
generate the best possible code.

216 Performance and The Distributed Extension : 19.3 Addresses and the with ... near construct

Advanced Topics : 20.1 Exceptions in pSather 217

Advanced Topics

20.1 Exceptions in pSather

Exception handling is complex under any conditions and parallelism only makes it worse. The basic
design decision for serial Sather was to have simple terminating exceptions as described in Section
32.1.4 of the manual. For pSather, we considered a number of complex possibilities and then settled
on the simplest possible solution. Exception handling only works on a per-thread basis. The code for
a thread can include standard Satretect statements. To the extent that these deal with any ex-
ceptions that are raised in that thread, computation can continue. It is a fatal error for an exception
to be raised in a thread and not handled by that thread. Even so it turns out that a stack discipline is
not enough to handle some of the cases that are discussed below.

20.1.1 Yielding inside locks

The pSather primitives are powerful and as a consequence, there can be subtle interactionsamong
them. We have tried to preserve orthogonality and have as few restrictions as possible and this has
worked out fairly well. One of the more complex issues involved yield statements within lock con-
structs and this was prohibited in earlier releases. Recall that a yield statement in Sather iter is a co-
routine and retains context for the return of control.

Exception stacks become trees - Fleiner thesis.

218 Advanced Topics : 20.1 Exceptions in pSather

Advanced Topics : 20.2 User defined $LOCK classes 219

20.1.2 Implementation Considerations

20.1.3 Thread-safe libraries

20.2 User defined $LOCK classes

As we have discussed, the various forms of the lock statement work for any subty@<#f. $n

Section 1.3 we discuss@dUTEX and the various kinds of reader-writer locks. Section 1.4 was
largely about th&sATE andGATE{ T} classes. As we mentioned briefly, there are two other pre-

built classes that are restrictions of the full GATE functionality. The ATTACH class supports the at-
tachment of multiple threads(cf. Section 1.4.2) but does not have return values. The FUTURE{T}
classes do support return values, but only allow a single thread to be attached. The table on page 80
of the language description describes exactly which methods are available in each class. This is not
an advanced topic, but is only the proverbial tip of the iceberg. It turns out that the current pSather
provides mechanism for a user to define his/her dvidCK classes.

We now describe the interface that synchronization objects have to provide in order to subtype from
the type$LOCKand be usable in lock statements. At the end of this description we will provide two
examples, namely the MUTEX implementation and the skeleton of the READER/WRITER imple-
mentation. Other examples and descriptions of synchronization objects are available online in the
pSather library code. This section is taken from Claudio Fleiner's disseration, with minor modifica-
tions.

A synchronization object has an internal state that defines which threads maylabimmbject.

The internal state may only change when the lock manager calls some of the functions defined below
after a thread has acquired this object and before it is released again. Such a state change may be
visible to other threads only after the object has been unlocked.

1. We use the term acquiring a synchronization object as a synonym to locking an object to avoid confusion, as
locking an object has already a predefined meaning, which does not apply to all the synchronization objects de-
fined in the pSather library, like RENDEZVOUS and BARRIER locks.

220 Advanced Topics : 20.2 User defined $LOCK classes

The clas$LOCK:is the superclass for all synchronization objects.

abstract class $LOCK is
primary:$LOCK;
reservable(tid: THREAD_ID):BOOL,;
reserve(tid: THREAD_ID);
free(tid: THREAD_ID);
request_reservation(tid: THREAD_ID);
cancel_reservation(tid: THREAD_ID);
combinations:ARRAY{ARRAY{$LOCK}};
wait_for(tid:- THREAD_ID):ARRAY{THREAD_ID};
end;

Those functions must respect some special properties:

* None of those functions may block, uselibek statement or raise an exception.

» the functions must be ‘class thread safe’, but not ‘object thread safe’, that is, the same function
may be called in different objects at the same time, but the system guarantees that only one
function is called per object at any time.

» The state of a synchronization object may only be changed witbak a.. end block or with-
in one of the functions defined in the@CK interface.

» The functions should not have side effects outside their lock objects.

The THREAD_ID class used in this example is a standard pSather class with the lock interface
shown. A thread-id is, as far as the programmer is concerned, just an opaque value that cannot be
used for anything else. The interface provided allows one to use thread-id’s in hash tables and to sort
them, and, for debugging purposes, it is also possible to print an id. However, there is no guarantee
about any special format of it, and the user should not depend on either the current size of the id or
a particular format or order. It does not , for example, guarantee that threads created later get an id
that is larger than threads created earlier. The only way for a thread to create thread-id’s is to ask for
its own id, or the get a nil id which is guaranteed to be different from all other id’s.

immutable class THREAD_ID < $IS_LT{THREAD_ID}, $HASH, $NIL, $STR is
nil:SAME;-- returns the nil id, which is different from all other thread id’s.
me:SAME;-- returns the id of the calling thread.
is_nil:BOOL;--returns true if self is the nil id.
is_eq(e:THREAD_ID):BOOL;-- true if e and self are the same id.
is_lt(e:THREAD_ID):BOOL;-- true if self is smaller than e.
hash:INT; -- returns a hash value useful for hash tables
str:STR;-- returns a string, useful for debugging

end;

20.2.1 Reservable, Reserve and Free

These three functions are the most important ones and must be defined by all synchronization ob-
jects. All three functions have one parameter, namely the ID of the thread that tries to acquire this

Advanced Topics : 20.2 User defined $LOCK classes 221

lock. THREAD_IDs can be compared, the class also defines a hash valust@8ITR function
useful for debugging. See [http:...] for a more detailed description of this class.

Reservable returns true if the object can be acquired or locked by the thread passed as ID, while
reserve actually acquires the objeftee will release the lock again.

Those three functions are already enough to define the MUTEX class as shown below

class MUTEX < $LOCK is

attr locked_by:THREAD_ID;-- ID of the thread that currently locks this MUTEX

attr locked:INT,;
-~ number of times that the thread stored in locked_by has locked this MUTEX

reservable(tid: THREAD_ID):BOOL is
-- returns true if either this MUTEX is not locked yet or already locked by the
- same thread that tries to lock it again
return locked=0 or locked_by=tid;
end;

reserve(tid: THREAD_ID)
-- locks this MUTEX for the thread
pre locked=0 or locked_by=tid
is
locked:=locked+1;
locked_by:=tid;
end;

free(tid: THREAD_ID)
-- frees the lock, but only the thread that locked it can unlock it again.
pre locked>0 and locked_by=tid
is

locked:=locked-1;
-- not really necessary, but makes the code cleaner
if locked=0 then
locked_by:=THREAD_ID::nil;
end;
end;
end;

20.2.2 Primary

With the exception of the simple locks lIUTEX it is often necessary to have different lock ob-
jects that work on the same lock, like teader and thewriter of a reader/writer lock which form

a lock family. The system has to know which lock objects work together in thipsagry is used

by the system to get the "main” lock object of a family of lock objects. For all family members the

222 Advanced Topics : 20.2 User defined $LOCK classes

methodprimary has to return the same object. Below we show the implementation of the reader/
writer lock.

-- The fair reader/writer lock. The two attributes are just used to store the
-- reader and the writer part respectively.
class FRW_LOCK < $RW_LOCKis
readonly attr reader:$READER_LOCK,;
readonly attr writer:3WRITER_LOCK;
create: SAME is
r:= new,
r.writer:=#FRW_WRITER;
r.reader:=#FRW_READER(r.writer);
return r;
end;
end;

The fair reader lock delegates its functionality to the writer for convenience, so that all the code is in
one location.

class FRW_READER < $READER_LOCKs
-- the reader delegates all calls to the writer. This way the code is concentrated
-- in one class to make maintenance easier.
private attr w:$RW_WRITER,;
primary:3RW_WRITER is return w; end;
create(wr:$RW_WRITER):SAME is

r:= new,
r.WI=Wr;
return r;
end;
reservable(tid: THREAD_ID):BOOL is
return w.r_reservable(tid); end;
reserve(tid: THREAD_ID) is w.r_reserve(tid); end;
free(tid: THREAD_ID) is w.r_free(tid); end;

end;

Advanced Topics : 20.2 User defined $LOCK classes 223

The meat of the lock definition is in the writer

class FRW_WRITER < $RW_WRITERIs
private attr writer_id: THREAD_ID;
private attr write_locks,read_locks:INT;
create: SAME is return new; end;
primary:3LOCK is return self ; end;

-- the next three functions are used when working on the writer
-- They work exactly the same way as in the MUTEX class except that reservable hag to
-- make the additional check that there is no reader that has acquired this lock
reservable(tid: THREAD_ID):BOOL is
return (read_locks=0 and write_locks=0)
or writer_id=tid;
end;
reserve(tid: THREAD_ID) is
write_locks:=write_locks+1;
writer_id:=tid;
end;
free(tid: THREAD_ID) is
write_locks:=write_locks-1;
if write_locks=0 then
writer_id:=THREAD_ID::nil;
end;
end;

- the next three functions do the work of the reader

- Areader cannot acquire the lock unless there is a writer

- (note that the same thread can acquire first the writer

-- and then the reader, but not the other way around).

r_reservable(tid: THREAD_ID):BOOL is
return write_locks=0 or writer_id=tid;

end;

r_reserve(tid: THREAD_ID) is
read_locks:=read_locks+1;

end;

r_free(tid: THREAD_ID) is
read_locks:=read_locks-1;

end;

20.2.3 Request_reservation, Cancel_reservation

Each time a thread waits for a lock, the system calls the funetjpest_reservation, and, as soon
as the thread continues, it will calhncel_reservation for all locks, regardless of whether the
thread acquired some, all or none of the locks. Those functions are used as shown below to imple-

224 Advanced Topics : 20.2 User defined $LOCK classes

ment reader/writer locks with a priority for readers or writers, that is, as soon as a thread waits for
the reader lock, no thread will be able to get the writer lock.

class WR_WRITER < $RW_WRITERIs
include FRW_WRITER r_reservable->,
request_reservation->;
private attr writers_waiting:FSET{THREAD_ID};
request_reservation(tid: THREAD_ID) is
writers_waiting:=writers_waiting.insert(tid);
end;
cancel_reservation(tid: THREAD_ID) is
writers_waiting:=writers_waiting.delete(tid);
end;
-- the reservable function does not change for writers, but readers can now only
-- reserve the lock if no writer is waiting. There is also the special case where the
-- same thread waits for a reader and a writer lock: in this case the reader
--can actually reserve the lock. This happens for code like

-- lock rw.reader,rw.writer then .. end;
-- and
-- lock when rw.reader then ...
-- when rw.writer then
-- end;
r_reservable(tid: THREAD_ID):BOOL is
return

(write_locks=0
and (writers_waiting.size=0
or (writers_waiting.size=1
and writers_waiting.first_elt=tid)))
or writer_id=tid;
end;
end;

20.2.4 Combinations

This function defines which locks of a lock family have to be locked together, a feature used for ren-
dezvous locks. Below, we show how the rendezvous class defined in the pSather library uses this
function to define that the rendezvous main leeglk can either be locked by itself, or the locks

andr2 have to be locked simultaneously by one or two threads.

combinations:ARRAY{ARRAY{$LOCK}} is
return |[self|,|r1,r2||;
end;

Advanced Topics : 20.2 User defined $LOCK classes 225

20.2.5 Wait_for

This function is used for deadlock detection and should return the list of threads that have to release
this lock before the thread passed as argument can eventually acquire it. The list of threads is re-
turned as an array GHREAD _IDs. 9 This functions the way could be used inNiéTEXclass.

wait_for(tid: THREAD_ID):ARRAY{THREAD_ID} is
if locked>0 and tid/=locked_by then
return |locked_by|;
end;
return void
end;

20.2.6 Summary

This table lists all functions and shows how often they are called by the lock manager and whether
they may change the state of the lock object or not.

Function Description? May Call pattern
change
internal
state’
Jreservable returns true if the thread may ac- called whenever the Objl(;t
Iquire this lock may have changed its sta|
Jreserve acquires this lock for the given once to acquire a lock
thread
Ifree Ireleases alock yes once to release a lock
|request_reservation Jused to prioritize certain locks {yes once for each lock objdct
side a lock family when a thread enters a Igck
statement
fcancel_reservation Iused together willyes once for each lock objgct
request_reservation when a thread got the logks
or executes the else part.
Jcombinations returns which locks of the lo¢ck once
Ifamily have to be locked together
wait_for returns an array of threads that occasionally, but only |f
have to release the lock before|the deadlock detection is ¢n-
thread can get it abled

a.All functions, with the exception of primary have a thread id as argument. This is the thread mentioned
in the column “description”, which is not necessarly the same as the thread that calls those functions.

b.The internal state of a lock object may also be changed by other functions, as long as this happens only
inside a lock ... end block where this lock object has been locked.

226 Advanced Topics : 20.2 User defined $LOCK classes

Appendix: Terminology : 21.1 Sather Terminology 227

Appendix: Terminology

This appendix provides a translation of some common terminology from other popular object ori-
ented language. The terminology used in the Sather community has been derived mainly from the
languages that influenced the design, particularly Eiffel. This is not meant to be a point-by-point
comparison of the languages, or a showcase for Sather. Rather, itis intended to help readers to trans-
late the terms they are used to into Sather lingo.

21.1 Sather Terminology

Some confusion may arise between the terminology used to describe parameterized classes and the
terminology used to describe methods. Both functions and parameterized classes have formal
"placeholders" which are later instantiated. We use the term "argument" exclusively in connection
with methods and the word "parameter” exclusively in connection with parametrized classes. The
adjectives "formal" and "actual" may be applied to either methods or arguments.

argument The operands of a method.

attr Keyword used to define an attribute of an object. Can be prefixed by private or rea-
donly to determine its visibility.

attribute An attribute of an object is part of the (potentially hidden) state of the object. Itis

defined by an attr feature.

actual argument The value of an argument when a method is actually invoked.

actual parameter Type that is plugged into a parameterized class. For example, when ARRAY{T}
is used as an ARRAY{INT}, the actual parameter is INT, while the formal param-
eteris T.

closure Also known as a method closure or a routine or iterator closure. Sometimes re-
ferred to by their old names of "bound routine" and "bound iterator". Specifies a
method call possibly with some arguments. Similar to function pointers or clo-
sures in other languages.

conflict If two signatures conflict, they can’'t be used together in the same class. Signatures
conflict if they would make the choice of which method was intended to be in-
voked somehow unclear. A formal definition is given on page...

conformance A signature conforms to another if all the argument and return types (and modes)
would allow it to be substituted without causing type errors. For example, for one

228

Appendix: Terminology : 21.2 Sather 1.0 to Sather 1.1

const

dispatching

feature

type to be a subtype of another it must provide conforming signatures for all mo-
ethods. A formal definition of signature conformance is on page...

A feature prefix used to indicate an element of state shared between all instances
of a class that is assigned at the point of declaration and cannot be modified.
When the compile-time type of ‘self’ is abstract in a method call, the runtime type
is used to select the class and method to call. Also called ‘dynamic dispatch’ to
emphasize that it occurs at runtime. Compare ‘overloading’.

Any textual item in a class interface, including routines, attribute, iterators,
shareds, constants and include clauses

formal argument The textual name of the argument to a method. For instance, in the method foo(a:

INT), the formal name of the argument is "a".

formal parameter The textual name of the parameter in a parametrized class. For instance, in AR-

method
overloading

parameter

RAY{T}, the formal parameter of ARRAY is T.

A routine or an iterator.

Two methods are overloaded if they are in the same class and have the same name.
Which method to call is resolved based on the argument types and number at com-
pile time.

The type argument of a parametrized type. For instance, in the class AR-
RAY{INT}, INT is a parameter. See also "actual parameter".

parameter type boundA restriction imposed on the actual parameter that may be substituted for a

shared

particular formal parameter. A parameter type bound must be an abstract class.
For example COLLECTION{T<$STR} imposes the restriction that any class

used to instantiate the formal parameter T must be a subtype of $STR.

Prefix of a feature that indicates a state element that is shared between all instances
of the class. Can be annotated as private or readonly, to control visibility. For ex-
ample: "private shared a:INT"

21.2 Sather 1.0 to Sather 1.1

There have been some recent changes in terminology that might result in some misused
terminology in this and in other documents. Immutable classes were called value class-
es, routine closures were called bound routines, iterator closures were called bound itera-
tors and abstract classes were called types.

Appendix: Terminology : 21.3 C++ to Sather 229

21.3 C++ to Sather

Sather provides a separation of subtyping and code inclusion, which means that many
single C++ concepts correspond to two distinct concepts in Sather. Since Sather is gar-
bage collected, much of the related terminology also does not translate.

Base Class, Derived Class Not special terms in Sather - for code inclusion, we refer to the parent
and child class. For subtyping we refer to the supertype and the
subtype

Virtual Function Dispatching is not marked on a per-function basis. Rather, variables

of abstract types are dispatched (for all their functions). This is the
more traditional notion of object dispatching.

Abstract Base Class Abstract class

Constructor Create routine - however, a create routine is only special because it
enjoys the special syntactic sugar of #. There are no implicit creators

Destructor Sather is garbage collected, but there is provision for a *finalize’
routine

Casting The typecase statement provides the equivalent of casting. The
compiler provides run-time checks for casts that are not type-safe.

Operator overloading Synactic sugar for operators

conversions, type promotion No implicit conversion routines are invoked. All conversions must
be performed explicitly including between different kinds of floating
point values

private No equivalent in Sather

protected private

friend No equivalent in Sather

static member shared

inline functions Cannot be stated explicitly. Routine and iterator inlining is
performed by the ICSI Sather compiler; some parameters may be
adjusted.

this self

enum Integer constants

union No equivalent in Sather

catch protect

switch case a when 3 then ... etc.

230 Appendix: Terminology : 21.4 Java to Sather

while, until, break, do, for while!, until!, break! . Much richer, programmer defined iteration
mechanism. No equivalent of *for’ or ’i++’

goto No equivalent

function pointers Routine closures (aka bound routines)

Plain structs Immutable classes are similar, but are proper classes.

21.4 Java to Sather

Java and Sather are probably more closely related than Java and C++. Syntactic differenc-
es conceal this underlying similarity. They are both strongly typed, garbage collected
and separate subtyping from code inclusion. However, Sather is geared at high perfor-
mance and is a considerably richer language.

Interface classes Abstract classes
final No Sather equivalent
feature renaming Supported, but works quite differently in Sather

21.5 Modula-3 to Sather

The following is an attempt to convert some of the standard Modula-3 terms. But be-
ware, I’'m not very familiar with Modula-3, so the table could well have serious errors !

Enumeration Same effect by using uninitialized integer constants (const a,b,c;)

types

Subrange types No built-in equivalent, could construct immutable classes with
similar behavior

Ordinal types INTEGER, BOOLEAN and CHAR are INT, BOOL, CHAR

Arrays Any object can have an array portion. Array access syntax [] is

syntactic sugar for aget and aset routines in a class. Dimensionality
is determined by the aget and aset element access functions. 1D and
2D arrays in library as ARRAY{T} and ARRAY2{T}. Higher
dimensions can be trivially constructed.

Appendix: Terminology : 21.6 Smalltalk to Sather 231

Record

Sets

References

Procedure

Argument
Modes

Objects

REFANY
Generic
Interface
Procedure Type
Opaque Types
concrete type
typecase

try .. except

try ... finally

Somewhat like immutable classes without only public attributes and
no other methods. Sather is more similar to Smalltalk - everything
is a pointer, and references are implicit, except for immutable clases
SET{T} is a library class. Not built-in.

All non-void variables indicate references, unless they are of an
immutable class. All references are "traced” See the note for
""Record"

Function. Exceptions are not mentioned in the signature

VAR is the same as inout, and VALUE is similar to the default ’in’
mode. No equivalent of READONLY

Similar to standard Sather classes.
class POINT is x,y: INT; is_origin: BOOL end;

$OB. No equivalent for NULL

Parametrized class.

Abstract class.

Routine closure type. ROUT{FOO1,FOOZ2}: INT
No direct equivalent Essentially abstract types
concrete type

typecase, but with a slightly different syntax
protect ... when

no equivalent

21.6 Smalltalk to Sather

Sather is a 'pure’ object oriented language like Smalltalk (all entities are objects). Howev-
er, Sather is at the other end of the type safety spectrum from langues such as Smalltalk

and Self.

methods

sending a method

features

calling a function or iterator

232 Appendix: Terminology : 21.6 Smalltalk to Sather

code block A routine closure may provide an approximation, but routine
closures are more similar to function pointers with some packaged
argument. Locals are not packaged. Note that the most common use
of code blocks (for iteration constructs) is subsumed in Sather by

iters.
inheritance Code inclusion and subtyping
threads Sather does not support threads, but its elder sibling, pSather,

provides an extremely rich set of thread and synchronization
constructs for high performance parallel and distributed
programming.

INndex

- (sugar for minus) 96
- (sugar for negate) 96
#ROUT See bound routines
$ in abstract class names 59
$COPY 128
$EMPLOYEE 63
$HASH 127, 128
$IS_EQ 127
$NIL 128
$0OB 121
as default type bound 88
$SHIPPING_CRATE 62
% (sugar for mod) 96
* (sugar for times) 96
+ (sugar for plus)
See plus 96
/ (sugar for divide) 96
/= (not equal) 96
:: See double colon calls

as declarative asignment 165
<
subytping> 66
< (sugar for is_It) 96
<= (less than or equal) 96
= (sugar for is_eq) 127
= sugar for is_eq 96
-> (feature renaming) 53
> (greater than) 96
>= (greater or equal) 96
~ (sugar for pow) 96
~ (sugar for not) 96
‘e’ (floating point exponent) 126
‘is_’ routines 127
Ob integer binary prefix 125
0o integer literal prefix 125
Ox integer literal prefix 125

A

abstract class
definition 62
abstract classes 3
creation 62
example 59
separate subtyping 5
syntax and definition 59
See also subtyping, conformance 59

abstract methods 5
abstract types 3
See also conformance
accessing beyond array bounds 4
aclear 121
actors 7
aelt! 121
aget 4, 121
renaming example 87
aind! 121
alert character 124
aliased objects 6
and 19
applicative programming
using bound routines 106
AREF 121
access from C 158
example inclusion in ARRAY 87
include path for array portion 52
specifying array portion 87
argument evaluation
bound routines 104
in iterator calls 39, 168
argv, argc 36
ARRAY
creation from literal 87
example definition 87
inclusion from AREF 121
array
aelts!,aset!,ainds! 121
asize,aget,aset,aclear,acopy 121
definitions of AREF and AVAL 121
element assignment 85
in value class 87
objects with array portion 87
out of bounds errors 4
use in constants 19
use of iterators 48
See also aset, aget 121
array_ptr 158
aset 4, 85, 121
renaming example 87
aset! 121
asize 121
in array example 87
assert statements 118
assertions 118
assignment
array elements 85

233

234

Index

illegal in typecase 70, 169
assignments

and declarations 33
attributes 3

cycles of value types 101
AVAL 52, 87

See also array 87

B

backslash 124
use in string literal escape 125
backslash literal 124
backspace literal 124
bases for integer literals 125
Berkeley, University of California at 9
binary literals 125
BOOL 63, 123
literals 124
boolean literals 124
booleans
void value 171
bound routines 6
call 104
creation 103
example of apply 106
inout arguments 105
leaving self unbound 106
supplying unbound arguments 104
syntax and description 103
unbound arguments 103
use in call-backs 6
break! 40
browser
example of usage 38
bugs
accessing beyond array bounds 4
crashing 4
dangling references 4
deadlock 8
fencepost errors 5
heisenbugs 8
incorrect synchronization 8
race conditions 8

C

Cc1,2,6,9,10
accessing Sather arrays 158
and garbage collection 158
interface to headers 159
interface to structs 159

interfacing to possible macros 163
C types

Sather equivalents 158
C++1,2,4,5,9
C_header 159
C_name 159
CALCULATOR

textual interface 109
call

matching signatures 75
call See bound routines
call by value See in mode 24
call-backs using bound routines 6
carriage return literal 124
case

example 28, 166

statement syntax 28, 166

when clauses 28, 166
Cecil 9
CHAR 123
char

Sather equivalent of C type 158
character literals 124

specifying special characters 124
Class calls See double colon calls 26
class constants

See constants
class elements 15
class invariants See invariant
class variables See shareds 19
classes

See abstract, reference, value, partial 3
CLOS 9
closure 103
closures

relation to bound routines 6

See also bound routines
CLU 1,9
Code inclusion 83
code inclusion

separation from subtyping 5
command line arguments 36
Common Lisp 1, 9
compiler

early versions 8

obtaining 2

pSather 8
complex numbers 6
concrete types 3
constants 3

arrays 19

examples 19

syntax and description 19
constructors. See also create 4
containers 48

Index

235

use of iters 5
contains
in array example 87
conventions, naming 126
conversions 127
$COPY 128
copy 128
Covariance
remedies 80
CPX 63
why a value type 6
See also complex numbers 63
crashing 4
create
use with C structs 163
creation
abstract classes 62
creation expressions
type inference 33
cursor objects 5
cycle
among constant initializers 20
of abstract types 64, 66
of value type attributes 101

D

‘d’ suffix. See floating point
dangling references 4
deadlock 8
declaration
type inference 33
declared type 3
destructors. See also allocation 4
disabling checking 4
div 96
dollar sign ‘$’ 59
dot product 48
double C type, Sather equivalent 158
double colon
calls 26
syntax and description
use in constants
double colon notation
class access 21
double precision
See also floating point 126
double quote literal 124
Dylan 9
dynamic dispatch 59, 65

efficiency of value class 6
Eiffel 1, 9
elements 15
else 167
in case statements 28, 166
in exceptions 167
elsif 167
elt! 127
EMPLOYEE definition 37
encapsulation 128
enumeration types 20
errors
See fatal errors
evaluation order
See also argument evaluation 104
exception object 167
exceptions
choice of handler 167
exception object 167, 172
performance 112
protect statements 167
raising an exception 111
syntax, description, examples 111
explicit placement 1, 8
exponent. See also floating point 126
expressions 4
exception 167
void tests 168, 172
external C types 157
C_name, C_header 159

false 124
fatal errors 4
assertion returns false 118
avoiding void accesses 168, 172
disabling checking 4
failed invariant 118
missing else in typecase 30, 166
typecase with no else 70, 169
uncaught exceptions 167
features 3
fencepost errors 5
finalization 4
finalize 123
float C type, Sather equivalent 158
floating point
‘d’ suffix and example 126
‘e’ exponent 126
FLT, FLTD, FLTI 126

236

Index

literal syntax and description 126
literals example 126
void value 171
FLT, FLTD, FLTI 63, 123
conversion to INT 126
See also floating point 126
form feed character literal 124
Fortran 1
function pointer
Sather equivalent 103
See also bound routine

G

garbage collection 4
and C routines 158
See also allocation 4
gcc 6
global variables 19
See also double colon calls
graph classes 6

H

$HASH 127, 128

hash 122, 128

hash tables 128

hashing 127
heisenbugs 8
hexadecimal literals 125
higher-order function 1

ICSI (International Computer Science Institute)
7,9
ID 127
IEEE 754-1985 7
exception flags 7
Sather conformance 126
if statement 27, 167
Immutable 99
implementation inheritance. See include clauses
51
implicit calls 4
reader for shareds 31
reader routine 31, 79
writer routine 31, 79
implicit reader. See implicit calls
implicit type coercion 4
in

in iterator calls 45, 168
include clauses
multiple includes 51
separation from subtyping 5
syntax,example,definition 51
infinite precision integers See INTI
infix operators 4
See also operators
inheritance
separate subtyping and inclusion 5
See subtyping, include clauses
initial expressions 117
initialization
defaults for constants 20
dependancies among constants 20
errors in loops 5
inlined_C
dealing with possible macros 163
inout 170
assignment after quit 42, 170
assignment after yield 170
in bound routines 105
in iterator calls 45, 168
specification in bound type 103
INT 20, 63, 123
example iterators 48
from STR 57
iterators 48
literal instantiation 125
integer
different bases 125
infinite precision literals 125
literals 125
range 125
void value 171
See also INT and INTI
interface 3, 5, 22
International Computer Science Institute 9
International Computer Science Institute, See
ICSI 7
INTI 7, 123
literal instantiation 125
intialization
enumeration types 20
invariant 115
definition 118
invariants 118
$IS_EQ 127
is_eq 96, 122, 127
use by case statement 29, 166
is_geq 96
is_gt 96
is_leq 96
is_It 96, 122
is_neq 96, 127

Index 237

is_nil 128
is_prime 127
ISO-Latin-1 124
iteration. See iterators 5
iterators 3, 5, 127
example definition 47, 48
in typecases 70, 169
pre conditions 117
quitting 42
rationale and history 5
termination by quit 42, 170
upto! 48
use with containers 48
yield statements 170
yield within protect 47, 170
iterators, naming 127

K

termination 5

termination by quit 42, 170
loop statements

defined 39
looping 5

M

Karla 9
Karlsruhe 9

L

lingua-franca, iterators as 6
Lisp 1, 4,9
lists, use of iterators 48
literal expressions 4
literals
arbitrary character 124
boolean 124
character 124
declared type 123
floating point 126
integers 125

binary 125
hex 125
octal 125
strings 125
octal characters 125

local variables
declaration 25

declaration and assignment 165

initialization 25
passing to C macro 163
scope 25
shadowing 25

locking
concept 8

long C types, Sather equivalent 158

loop

mailing list 3
MAIN 14
main 14
MANAGER class definition 52
manual deallocation (See also allocation) 4
matrices 6, 8
MENU
closure example 108
methods
See also routines, iterators 3
minus 96
Mixin 56
ML 9
mod 96
mode
table of modes 24
Modula-3 9
multiple classes
per source file 14
multiple inheritance
See include clauses, subtyping
multiple return values
See TUP

N

NaN 128

negate 96

newline character literal 124
newsgroup 3

$NIL 128

nil 128

not 96

Not a Number 128

numbers, void (unassigned) value 171

@)

$OB 88, 121, 88
Oberon 9
object allocation
manual deallocation 4
Objective C 9

238 Index
objects 3 preconditions
aliased 6 checking in iterators 115

reference 6
value. See also value class 6
octal digits
in character literals 124
octal integer literals 125
once 45, 168
example usage in upto! 48
syntax, definition and example 44
once arguments
described 44
operator precedence 97
optimizations 5
or 19
out 62, 105, 170
arguments in bound routines 103
assignment after quit 42, 170
assignment after yield 45, 170
in iterator calls 45, 168
out arguments
in iterators 45
overloading 4
general rule and examples 71
matching signatures 75
rules 27

parallel Sather 7
parameters 91
as structured macro 83
parametrization
of abstract classes 91
type relations 91
parametrized class
example 35
partial classes 55
example of mixin 55
stubs 55
Pascal 9
placement 8
plus 4, 96
post conditions 116
postconditions
as safety feature 116
explanation of post 115
in iterators 115
initial 115
result 115
pow 4, 96
pre conditions
in iterators 117
precedence of operators 97

explanation of pre 115
predicates 127
private 3

and readonly 31

attributes 31

changing on include 87

example of include 87

in include syntax 51

in iter syntax 22

routines 32

use with shareds 31
protect

yield statements 47, 170
protect statements 167
pSather 1, 7
ptrdiff_t C type, Sather equivalent 158
public. See also private 3

Q

quit 39, 118, 168
example usage 47
leaving an iterator 42
quote marks in character literals 124

R

race conditions 8
raise 22
syntax definition 111
reader routine. See implicit calls 31
readonly 3
use with shareds 31
reference objects 6
renaming
example 87
reserved names
AREF 121
TUP 122
result
syntax, description, example 117
return 22
statement definition 168
syntax and description 168
type of 168
value returned 23
return value
type restrictions 170
routines 3
bound 6

Index 239

syntax,description,example 22
runtime system 4

S

safety features 115
SAIL 9
SAME 62, 64, 66, 88
in include clause 53
use in create 37
Sather tower 9
Sather-K 9
Scheme 1
School 9
scope
class names and parameters
feature names 16
local variables 25
method arguments 23
self
calls on 26
in class calls 26
Self (language) 9
$SET 126
set! 127
setimp 7
sets 126
shadowing See scope
shared 3
reader, writer routines 31
shared attribute definition 22
shared memory 1, 8
short C type, Sather equivalent 158
signed C types
Sather equivalents 158
single precision. See floating point 126
single quote literal 124
size_t, Sather equivalent 158
Smalltalk 1, 4, 9
sort 87
source files 14
stack allocation 6
statements 3
assert 118
else 167
elsif 167
if 27, 167
lock 8
protect 167
raise 111
return 168
yield 170
static type inference 33
STR 7, 123

literal instantiation 125
to INT 57
STR_CURSOR
example 57
strings 7
literals 125
See also $STR, STR and str
C structs, interface from Sather 159
stub 55
subtype 5
subtyping
adding type-graph edges 64
conflict example 64
definition 5
description 64
See also abstract classes
subtyping clause
supertyping 66
sum! 48
summation
using an iterator 48
supertype 5
supertyping 66
supertyping clause 66
syntactic sugar 4
aget 4
aset 4
plus 4
pow 4
SYS 122
inlined_C 163

T

t1, t2 (TUP attributes) 122
tab character literal 124
templates, Sather equivalent 91
test code 126
TESTEMP definition 37
testing for void 168, 172
threads 7
and IEEE exceptions 7
times 96
tree classes 6
true 124
TUP 122
simple definition 35
type
implicit coercion 126
of literals 126
of void 171
type constraint clause
default of $OB 88
description 88

240

Index

type graph 64
bound routine edges 106
no implicit relations between parametriza-
tions 91
type inference
in# 33
static 33
type promotion 126
type specifier
bound routines 103
typecase 70, 169
with void object 70, 169

U

unary negation 96
unassigned variables 128
unbound arguments 103
underflow 7
underscores
in bound routines 103
in floating point literals 126
in integer literals 125
University of California at Berkeley 9
University of Karlsruhe 9
UNIX 2
unsigned C types, Sather equivalent of 158
until! 40
until...loop...end 5
upto! 48
user-interfaces and call-backs 6

\Y

value class

advantages 6

and array portion 87

attribute cycles 101

efficiency 6

nil 128

unassigned object 128
value objects. See also value class 6
value, call by. See in mode 24
variable declaration

type inference 33
variables

type of 3

type within a typecase 169
vertical tab literal 124
void 128

and nil 128

calls on, See double colon

in constant initialization 19
testing for 168, 172
type of 171
used in typecase 70, 169
void C type, Sather equivalent 158
void test expressions 168, 172

W

when

in case statements 28, 166

in exceptions 112, 167
while! 40

possible implementation 47
whitespace

between strings 125
world-wide web 2, 5, 6

X

X_WIDGET example C interface 161

Y

yield 118
example use in upto! 48
example use in while! 47
execution description 170
syntax,example,description 39, 168
within protect 47, 170

yield statements
defined 42

yielding a value 170

z

zero 128
zero, use in constants 20

	A Language Manual For
	Sather 1.1
	And pSather 1.1
	A Language Manual For
	Sather 1.1
	Contents
	Introduction
	1.1 Acknowledgements
	1.2 How to read this Document
	1.3 Sources of Information
	1.4 Obtaining the Compiler
	1.4.1 How do I ask questions?

	1.5 Summary of Features
	1.5.1 Basic Concepts
	1.5.2 Garbage Collection and Checking
	1.5.3 No Implicit Calls
	1.5.4 Subtyping and Code Inclusion
	1.5.5 Iterators
	1.5.6 Closures
	1.5.7 Immutable and Reference Objects
	1.5.8 IEEE Floating-Point
	1.5.9 pSather
	Data placement

	1.6 History
	1.6.1 The Name
	1.6.2 Sather’s Antecedents
	1.6.3 References

	Classes and Objects
	2.1 Preliminaries
	2.1.1 Some basic classes
	2.1.2 Printing output
	2.1.3 Sather source files
	2.1.4 Hello World

	2.2 Defining Classes and Creating Objects
	2.2.1 Defining Simple Classes
	Object Creation: create and new
	Attribute access
	Points to note

	2.2.2 Checking whether an object has been created
	2.2.3 Types Introduced
	2.2.4 Hiding features: private and readonly
	Points to note

	2.3 Class Data: shared and const
	2.3.1 Shared Attributes - Restricted global variab...
	2.3.2 Class Constants
	Integer constants and Enumerated Types
	Points to note

	2.3.3 Accessing Class Data - the :: notation

	2.4 Routine definitions
	Using the return value
	2.4.1 Routine Arguments and Modes
	Multiple return values and out arguments
	inout arguments

	2.4.2 Local Variables - Scoping and Shadowing
	Points to note

	2.4.3 Routine calls
	2.4.4 Simple Overloading - Selecting a routine to ...

	2.5 Conditional Execution
	2.5.1 if statements
	2.5.2 case statements
	Points to note

	2.5.3 Short circuit boolean expressions: and and o...

	2.6 Attribute Accessor Routines
	2.6.1 Attribute assignment
	Replacing an attribute by a routine

	2.7 Static Type Inference
	2.7.1 Creation Expressions
	2.7.2 Assignments and ::=
	2.7.3 Arguments to a function call

	2.8 Class Parameters
	2.8.1 Arrays

	2.9 Command line arguments
	2.10 A Running Example: Employees
	EMPLOYEE definition
	TESTEMP definition
	Running the example

	2.11 Summary of Idioms

	Loops and Iterators
	3.1 Using iterators
	3.1.1 loop statements
	3.1.2 Built-in iterators

	3.2 Defining Iterators
	3.2.1 yield statements
	3.2.2 Explicitly leaving an iterator using quit
	3.2.3 Control flow within an iterator
	3.2.4 The once argument mode
	3.2.5 out and inout argument modes
	3.2.6 Argument evaluation in iterators
	3.2.7 Points to note
	Iterator usage
	Iterator definitions

	3.3 Iterator Examples
	Separating elements of a list

	Code Inclusion and Partial Classes
	4.1 Include Clauses
	Points to Note
	4.1.1 Renaming
	Points to note

	4.1.2 Multiple Inclusion
	4.1.3 Resolving conflicts

	4.2 Partial Classes and Stub routines
	Points to note
	4.2.1 Mixins: A Prompt Example

	Abstract Classes and Subtyping
	5.1 Abstracting over Implementations
	5.1.1 Implementing a Stack using an Array
	5.1.2 A Stack Calculator
	5.1.3 A Linked List Representation of a Stack
	5.1.4 Switching Representations:Polymorphism

	5.2 Abstract Class Definitions
	Example: An abstract employee
	More abstract class examples

	5.3 Subtyping
	Points to note about subtyping:
	5.3.1 The Type Graph
	5.3.2 Dynamic Dispatch and Subtyping
	An example: Generalizing Employees

	5.4 Supertyping
	5.4.1 Using supertyping

	5.5 Type Conformance
	5.5.1 Contravariant conformance
	What does not work
	What does work

	5.5.2 Subtyping = substitutability

	5.6 The typecase statement
	Points to note
	Typecase Example

	5.7 The Overloading Rule
	5.7.1 Extending Overloading
	Overloading based on Concrete Argument Types
	Overloading based on Abstract Argument Types
	The Demon of Ambiguity

	5.7.2 Permissible overloading
	Finding matching signatures
	Finding a most specific matching signature
	More examples

	5.7.3 Overloading as Statically resolved Multi-Met...
	5.7.4 Conflicts when subtyping
	5.7.5 Conflicts during code inclusion
	Conflicting Methods
	Conflicting Attributes

	5.7.6 Points to note
	5.7.7 Overloading in Parametrized Classes
	5.7.8 Why not use the return type to resolve confl...

	5.8 When Covariance Ails You
	5.8.1 But don’t animals eat food?
	5.8.2 Solution 1: Refactor the type hierarchy
	5.8.3 Solution 2: Eliminate the offending method
	5.8.4 Solution 3: Dynamically Determine the Type
	5.8.5 Solution 4: Parametrize by the Argument Type...

	Parametrized Classes and Arrays
	6.1 Parametrized concrete types
	6.1.1 Why Parametrize?

	6.2 Support for Arrays
	6.2.1 Array Access
	6.2.2 Array Classes: Including AREF and calling ne...
	6.2.3 Standard Arrays: ARRAY{T}
	Array Literals

	6.2.4 Multi-dimensional Arrays

	6.3 Type Bounds
	6.3.1 Why have typebounds?
	6.3.2 Supertyping and Type Bounds

	6.4 Parametrized Abstract Classes
	How are different parametrizations related?

	6.5 Overloading
	6.5.1 Overloading In the Parametrized Class Interf...
	6.5.2 Overloading Resolution within the Parametriz...

	Operator Redefinition
	7.1 Method Names for Operators
	7.2 Operator expressions
	Grouping
	7.2.1 Operator precedence
	Points to note
	Syntactic sugar example

	7.3 Array Access Routines

	Immutable Classes
	8.1 Defining Immutable Classes
	8.1.1 Immutable Class Example
	8.1.2 Creating a new object
	8.1.3 Initial value of immutable objects
	Void value of the basic classes:

	8.1.4 Attribute access routines
	8.1.5 Points to note

	8.2 Using Immutable Classes
	Rules of Thumb

	Closures
	9.1 Creating and Calling Closures
	9.1.1 Creating a closure
	9.1.2 Calling a closure
	9.1.3 Binding overloaded routines
	Binding in an assignment
	Binding in a call

	9.1.4 Points to note
	9.1.5 Binding some arguments
	9.1.6 Leaving self unbound

	9.2 Further Examples of Closures
	9.2.1 Closures for Applicative Programming
	9.2.2 Menu Structures
	9.2.3 Iterator closures

	Exceptions
	10.1 Throwing Exceptions with raise
	10.2 Catching Exceptions with protect
	Points to note

	10.3 Usage to avoid
	10.3.1 Alternatives to Exceptions
	10.3.2 A more elaborate example

	Safety Features
	11.1 Preconditions
	11.2 Postconditions
	11.2.1 initial expressions
	11.2.2 result expressions
	11.2.3 Example
	11.2.4 pre and post conditions in iterators

	11.3 Assertions
	11.3.1 assert statements

	11.4 Invariants
	11.4.1 The invariant routine

	Built-in classes
	12.1 Fundamental Classes
	12.1.1 $OB
	12.1.2 Array support

	12.2 Tuples
	12.3 The SYS Class
	12.4 Object Finalization: $FINALIZE
	12.5 Basic Classes and Literal Forms
	12.5.1 Booleans and the BOOL class
	12.5.2 Characters and the CHAR class
	12.5.3 The string class STR
	12.5.4 Integers and the INT class
	12.5.5 Infinite precision integers and the INTI cl...
	12.5.6 Floating point numbers: the FLT and FLTD cl...

	12.6 Library Conventions
	12.6.1 Object Identity
	IS_EQ
	Programmer defined hash functions and $HASH
	Objects that can be copied and $COPY

	12.6.2 Nil and void

	Interfacing with Fortran
	13.1 Overview
	13.1.1 External Fortran Call Example
	13.1.2 Overall Organization
	Points to note

	13.2 Name Binding
	13.2.1 Difficulties
	13.2.2 Implementation

	13.3 Datatype Mapping
	13.3.1 Scalar Types
	F_INTEGER
	F_REAL
	F_DOUBLE
	F_LOGICAL
	F_COMPLEX
	F_DOUBLE_COMPLEX
	F_CHARACTER
	F_STRING

	13.3.2 Fortran Array Classes
	Points to note

	13.3.3 F_ROUT and F_HANDLER Types
	Passing Routines as Arguments, F_ROUT{}
	Points to note
	Exceptional Condition Handling, F_HANDLER
	Points to note

	13.4 Parameter Passing
	13.4.1 Return Types
	13.4.2 Argument Types
	13.4.3 OUT and INOUT Arguments
	Points to note

	13.5 Portability Issues
	13.5.1 Portability of the Interface Implementation...
	13.5.2 Portability of the Generated Code

	Interfacing with ANSI C
	14.1 Overall Organization
	14.2 Built-in C classes
	14.3 User-defined External C types
	14.3.1 Constants and C binding names
	Examples

	14.3.2 Attributes and C structs
	Attributes and C structs
	Points to note

	14.3.3 Shared Attributes and C globals

	14.4 Parameter Passing
	14.5 Inlining C Code

	Statement and Expression Catalogue
	15.1 Statements
	15.1.1 Assignment statements
	See

	15.1.2 case statements
	Points to note
	See

	15.1.3 if statements
	See

	15.1.4 protect statements
	See

	15.1.5 loop statements
	See

	15.1.6 return statements
	15.1.7 typecase statements
	See

	15.1.8 yield statements
	See

	15.1.9 quit statements
	See

	15.2 Expressions
	15.2.1 void expressions
	15.2.2 void test expressions
	15.2.3 Short circuit boolean expressions: and and ...
	See

	15.2.4 exception expressions
	See

	Introduction
	The Threaded Extension
	17.1 Introduction
	17.1.1 Hello Worlds

	17.2 Realistic Examples Using Threads

	The Synchronization Extension
	18.1 Barrier Synchronization and sync
	18.2 The lock Statement and the MUTEX Class
	18.2.1 Memory Consistency, Round One

	18.3 Conjunctive Locking
	18.3.1 Read-Write Locks, three kinds
	18.3.2 Tuple Space, Round 1
	18.3.3 Disjunctive Locking

	18.4 GATE and GATE{T} classes
	18.4.1 Gates as Synchronizers and Queues
	18.4.2 Tuple Space, Round Two

	18.5 GATES and attached threads
	18.5.1 Tasks, Actors, etc.
	18.5.2 Discussion and Extensions

	Performance and The Distributed Extension
	19.1 Introduction
	19.2 Placement and the @ operator.
	19.2.1 Tuple Spaces, Round Three

	19.3 Addresses and the with ... near construct

	Advanced Topics
	20.1 Exceptions in pSather
	20.1.1 Yielding inside locks
	20.1.2 Implementation Considerations
	20.1.3 Thread-safe libraries

	20.2 User defined $LOCK classes
	20.2.1 Reservable, Reserve and Free
	20.2.2 Primary
	20.2.3 Request_reservation, Cancel_reservation
	20.2.4 Combinations
	20.2.5 Wait_for
	20.2.6 Summary

	Appendix: Terminology
	21.1 Sather Terminology
	21.2 Sather 1.0 to Sather 1.1
	21.3 C++ to Sather
	21.4 Java to Sather
	21.5 Modula-3 to Sather
	21.6 Smalltalk to Sather

	Index

