
A Language Manual For

Sather 1.1
Benedict Gomes, David Stoutamire, Boris Vaysman, Holger Klawitter

October 2, 1996

This document  is an introduction to the Sather language approriate  for those fa-
miliar with other programming  languages. Unlike the specification, this manual
eschews conciseness in favor of  ease of  understanding.  Language features are pre-
sented in their completeness, augmented by copious examples as well as the moti-
vation underlying  more unusual or  complex  language features.

And pSather 1.1
Jerome  Feldman

August 19, 1996

The parallel and distributed extensions of Sather, collectively referred to as
pSather, were designed hand-in-hand with the serial language.  In addition to de-
scribing the language features of pSather, this document presents  a particular ap-
proach to object-oriented parallel programming.





A Language Manual For

Sather 1.1
Benedict Gomes,  David Stoutamire, BorisVaysman,
Holger Klawitter

October 2, 1996

This document  is a  description of the Sather language approriate  for those familiar
with other programming  languages.   Unlike the specification, this manual es-
chews conciseness in favor of  ease of  understanding.  Language features are pre-
sented in their completeness, augmented by copious examples as well as the
motivation underlying  more unusual or  complex  language features.





Contents
INTRODUCTION

1.1 Acknowledgements 1

1.2 How to read this Document 2

1.3 Sources of Information 2

1.4 Obtaining the Compiler 2
How do I ask questions?

1.5 Summary of Features 3
Basic Concepts

Garbage Collection and Checking

No Implicit Calls

Subtyping and Code Inclusion

Iterators

Closures

Immutable and Reference Objects

IEEE Floating-Point

pSather
Data placement

1.6 History 8
The Name

Sather’s Antecedents

References



CLASSES AND OBJECTS

2.1 Preliminaries 13
Some basic classes

Printing output

Sather source files

Hello World

2.2 Defining Classes and Creating Objects
15

Defining Simple Classes
Object Creation: create and new
Attribute access
Points to note

Checking whether an object has been created

Types Introduced

Hiding features: private and readonly
Points to note

2.3 Class Data: shared and const 18
Shared  Attributes - Restricted global variables

Class Constants
Integer constants and Enumerated Types
Points to note

Accessing Class Data - the :: notation

2.4 Routine definitions 22
Using the return value

Routine Arguments and Modes
Multiple return values and out arguments
inout arguments

Local Variables - Scoping and Shadowing
Points to note

Routine calls

Simple Overloading - Selecting a routine to call

2.5 Conditional Execution 27
if statements

case statements
Points to note

Short circuit boolean expressions: and and or

2.6 Attribute Accessor Routines 31
Attribute assignment

Replacing an attribute by a routine

2.7 Static Type Inference 33
Creation Expressions

Assignments and ::=

Arguments to a function call

2.8 Class Parameters 35
Arrays

2.9 Command line arguments 36

2.10 A Running Example: Employees 36
EMPLOYEE definition
TESTEMP definition
Running the example

2.11 Summary of Idioms 38

LOOPS AND ITERATORS

3.1 Using iterators 39
 loop statements

Built-in iterators



3.2 Defining Iterators 42
yield statements

Explicitly leaving an iterator using quit

Control flow within an iterator

The once argument mode

out and inout argument modes

Argument evaluation in iterators

 Points to note
Iterator usage
Iterator definitions

3.3 Iterator Examples 47
Separating elements of a list

CODE INCLUSION AND PARTIAL CLASSES

4.1 Include Clauses 51
Points to Note

Renaming
Points to note

Multiple Inclusion

Resolving conflicts

4.2 Partial Classes and Stub routines 55
Points to note

Mixins: A Prompt Example

ABSTRACT CLASSES AND SUBTYPING

5.1 Abstracting over Implementations 59
Implementing a Stack using an Array

A Stack Calculator

A Linked List Representation of a Stack

Switching Representations:Polymorphism

5.2 Abstract Class Definitions 62
Example: An abstract employee
 More abstract class examples

5.3  Subtyping 64
Points to note about  subtyping:

The Type Graph

Dynamic Dispatch and  Subtyping
An example: Generalizing Employees

5.4 Supertyping 66
Using supertyping

5.5 Type Conformance 67
Contravariant conformance

What does not work
What does work

Subtyping = substitutability

5.6 The typecase statement 70
Points to note
Typecase Example

5.7 The Overloading Rule 71
Extending Overloading

Overloading based on Concrete Argument Types
Overloading based on Abstract Argument Types
The Demon of Ambiguity

Permissible overloading
Finding matching signatures
Finding a most specific matching signature
More examples

Overloading as Statically resolved Multi-
Methods

Conflicts when subtyping

Conflicts during code inclusion
Conflicting Methods
Conflicting Attributes

Points to note

Overloading in Parametrized Classes

Why not use the return type to resolve
conflicts?



5.8 When Covariance Ails You 80
But don’t animals eat food?

Solution 1: Refactor the type hierarchy

Solution 2: Eliminate the offending method

Solution 3:  Dynamically Determine the Type

Solution 4: Parametrize by the Argument Type

PARAMETRIZED CLASSES AND ARRAYS

6.1 Parametrized concrete types 83
Why Parametrize?

6.2 Support for Arrays 85
Array Access

Array Classes: Including AREF and calling
new();

Standard Arrays: ARRAY{T}
Array Literals

Multi-dimensional Arrays

6.3 Type Bounds 88
Why have typebounds?

Supertyping and Type Bounds

6.4 Parametrized Abstract Classes 91
How are different parametrizations related?

6.5 Overloading 92
Overloading In the Parametrized Class
Interface

Overloading Resolution within the
Parametrized Class

OPERATOR REDEFINITION

7.1 Method Names for Operators 95

7.2 Operator  expressions 96
Grouping

Operator precedence
Points to note
Syntactic sugar example

7.3 Array Access Routines 98

IMMUTABLE CLASSES

8.1 Defining Immutable Classes 99
Immutable Class Example

Creating a new object

Initial value of immutable objects
Void value of  the basic classes:

Attribute access routines

 Points to note

8.2 Using Immutable Classes 102
Rules of Thumb

CLOSURES

9.1 Creating and Calling Closures 103
Creating a closure

Calling a closure

Binding overloaded routines
Binding in an assignment
Binding in a call

Points to note

Binding some arguments

Leaving self unbound



9.2 Further Examples of Closures 107
Closures for Applicative Programming

Menu Structures

Iterator closures

EXCEPTIONS

10.1 Throwing Exceptions with raise 111

10.2 Catching Exceptions with protect 111
Points to note

10.3 Usage to avoid 112
Alternatives to Exceptions

A more elaborate example

SAFETY FEATURES

11.1 Preconditions 115

11.2 Postconditions 116
initial expressions

result expressions

Example

pre and post conditions in iterators

11.3 Assertions 118
assert statements

11.4 Invariants 118
 The  invariant   routine

BUILT-IN CLASSES

12.1 Fundamental Classes 121
$OB

Array support

12.2 Tuples 122

12.3 The SYS Class 122

12.4 Object Finalization: $FINALIZE 123

12.5 Basic Classes and Literal Forms 123
 Booleans and the BOOL class

Characters and the CHAR class

The string class STR

Integers and the INT class

Infinite precision integers and the INTI class

Floating point numbers: the FLT and FLTD
classes

12.6 Library Conventions 126
Object Identity

IS_EQ
Programmer defined hash functions and $HASH
Objects that can be copied and $COPY

Nil and void

INTERFACING WITH FORTRAN

13.1 Overview 129
External Fortran Call Example

Overall Organization
Points to note



13.2 Name Binding 133
Difficulties

Implementation

13.3 Datatype Mapping 136
Scalar Types

F_INTEGER
F_REAL
F_DOUBLE
F_LOGICAL
F_COMPLEX
F_DOUBLE_COMPLEX
F_CHARACTER
F_STRING

Fortran Array Classes
Points to note

F_ROUT and F_HANDLER Types
Passing Routines as Arguments, F_ROUT{}
Points to note
Exceptional Condition Handling, F_HANDLER
Points to note

13.4 Parameter Passing 151
Return Types

Argument Types

OUT and INOUT Arguments
Points to note

13.5 Portability Issues 154
Portability of the Interface Implementation
Code

Portability of the Generated Code

INTERFACING WITH ANSI C

14.1 Overall Organization 157

14.2 Built-in C classes 158

14.3 User-defined External C types 159
Constants and C binding names

Examples

Attributes and C structs
Attributes and C structs
Points to note

Shared Attributes and C globals

14.4 Parameter Passing 163

14.5 Inlining C Code 163

STATEMENT AND EXPRESSION CATA-
LOGUE

15.1 Statements 165
Assignment statements

case statements

if statements

  protect statements

loop statements

return statements

typecase statements

yield statements

quit statements

15.2 Expressions 170
void expressions

void test expressions

Short circuit boolean expressions: and and or

exception expressions



pSather 1.1

INTRODUCTION

THE THREADED EXTENSION

17.1 Introduction 179
Hello Worlds

17.2 Realistic Examples Using Threads 181

THE SYNCHRONIZATION EXTENSION

18.1  Barrier Synchronization and sync 183

18.2 The lock Statement and the MUTEX
Class 183

Memory Consistency, Round One

18.3 Conjunctive Locking 186
Read-Write Locks, three kinds

Tuple Space, Round 1

Disjunctive Locking

18.4 GATE and GATE{T} classes 191
Gates as Synchronizers and Queues

Tuple Space, Round Two

18.5  GATES and attached threads 198
Tasks, Actors, etc.

Discussion and Extensions

PERFORMANCE AND THE DISTRIBUTED EX-
TENSION

19.1 Introduction 207

19.2 Placement and the @ operator. 208
Tuple Spaces, Round Three

19.3 Addresses and the with ... near
construct 214

ADVANCED TOPICS

20.1 Exceptions in pSather 217
Yielding inside locks

Implementation Considerations

Thread-safe libraries

20.2  User defined $LOCK classes 219
Reservable, Reserve and Free

Primary

Request_reservation, Cancel_reservation

Combinations

Wait_for

Summary

APPENDIX: TERMINOLOGY

21.1 Sather Terminology 227

21.2 Sather 1.0 to Sather 1.1 228

21.3 C++ to Sather 229



21.4 Java to Sather 230

21.5 Modula-3 to Sather 230

21.6 Smalltalk to Sather 231

INDEX



Introduction : 1.1 Acknowledgements 1

etary. It
e, freely
nal

ral lan-
fficient
ctions

itance,
iteration
ostcon-
k with
 shared
.

 contri-

about
iar with
ther.

r tuto-
undro’s

rticular
iner for
inology
Introduction

Sather is an object oriented language designed to be simple, efficient, safe, and non-propri
aims to meet the needs of modern research groups and to foster the development of a larg
available, high-quality library of efficient well-written classes for a wide variety of computatio
tasks. It was originally based on Eiffel but now incorporates ideas and approaches from seve
guages. One way of placing it in the ‘space of languages’ is to say that it attempts to be as e
as C, C++, or Fortran, as elegant but safer than Eiffel or CLU, and to support higher-order fun
as well as Common Lisp, Scheme, or Smalltalk.

Sather has garbage collection, statically-checked strong (contravariant) typing, multiple inher
separate implementation and type inheritance, parameterized classes, dynamic dispatch, 
abstraction, higher-order routines and iters, exception handling, assertions, preconditions, p
ditions, and class invariants.  Sather code can be compiled into C code and can efficiently lin
object files of other languages.  pSather, the parallel and distributed extension, presents a
memory abstraction to the programmer while allowing explicit placement of data and threads

Sather and the ICSI Sather compiler have a very unrestrictive license aimed at encouraging
bution to the public library without precluding the use of Sather for proprietary projects.

This chapter will provide a basic introduction for new users, pointing to sources of information 
the language and the compiler.  It also contains a summary of Sather features - for those famil
another object-oriented language, this section provides an overview of the key features of Sa

1.1  Acknowledgements

This text has its roots in the Sather 1.1 specification, the Eclectic tutorial and Holger’s iterato
rial.  This document  also contains several organizational  ideas and some text from S. Omoh
originally planned Sather book.

This text has benefitted from corrections, comments and suggestions from several people Pa
thanks to Cary Renzema, Arno  Jacobsen , Jerome Feldman,  Erik Schnetter and Claudio Fle
detailed error reports and suggestions.  Arno also made several suggestions regarding term
and examples that have been incorporated.



2 Introduction : 1.2 How to read this Document

ment as
ifica-
cant

ve been
torial

vail-
 com-
ating

tions,
torials
Boris wrote the sections on the external interfaces and made substantial changes to the docu
a whole.  The iterator chapter was derived partially from Holger’s  iterator tutorial and the spec
tion.   While David was not directly involved in the creation of this document,  there is a signifi
amount of text that originated in the Sather language specification.

1.2  How to read this Document

This document is meant to be a complete description of Sather 1.1,  and is intended as an
introduction to the language for a person with some programming background.  It is
more expository in nature than the specification and contains sections that motivate par-
ticular aspects of the language,  such as the overloading rules.  In addition, it deals with
some more abstract design issues that arise when programming in Sather (such as the ef-
fect of the contra-variant subtyping rule).

1.3  Sources of Information

This section briefly  introduces some concepts important to Sather that the reader may not ha
exposed to in C++ [2].  It isn’t meant as a complete language tutorial.  More information of a tu
nature is available from the WWW page:

http://www.icsi.berkeley.edu/Sather

At the time of this writing, the only compiler implementing the 1.1 language specification is a
able from ICSI.   It is freely available, includes source for class libraries and the compiler, and
piles into ANSI C.  This compiler has been ported to a wide range of UNIX and PC oper
systems.

1.4  Obtaining the Compiler

The ICSI Sather 1.1 compiler can be obtained by anonymous ftp at

ftp.icsi.berkeley.edu: /pub/sather

Other sites also mirror the Sather distribution. The distribution includes installation instruc
‘man’ pages, the standard libraries and source for the compiler (in Sather).  Documentation, tu
and up-to-date information are also available at the Sather WWW page:

http://www.icsi.berkeley.edu/~sather

ICSI also maintains a library of contributed Sather code at this page.



Introduction : 1.5 Summary of Features 3

, send

nstall
have

at are

tation
its
. Each

 read-
nes the
There is a newsgroup devoted to Sather:

comp.lang.sather

There is also a Sather mailing list if you wish to be informed of Sather releases; to subscribe
email to:

sather-request@icsi.berkeley.edu

It is not necessary to be on the mailing list if you read the Sather newsgroup.

1.4.1   How do I ask questions?

If it appears to be a problem that others would have encountered (on platform ‘X’, I tried to i
it but the it failed to link with the error ‘Y’), then the newsgroup is a good place to ask.  If you 
problems with the compiler or questions that are not of general interest, mail to one of

sather-bugs@icsi.berkeley.edu
psather-bugs@icsi.berkeley.edu

This is also where you want to send bug reports.

1.5  Summary of Features

This section provides a summary of Sather’s features, with particular attention to features th
not found in the most common object oriented languages.

1.5.1   Basic Concepts

Data structures in Sather are constructed fromobjects, each of which has a specificconcrete type that
determines the operations that may be performed on it.Abstract types specify a set of operations
without providing an implementation and correspond to sets of concrete types. The implemen
of concrete types is defined by textual units calledclasses; abstract types are specified by textual un
calledabstract classes.   Sather programs consist of classes and abstract class specifications
Sathervariable has adeclared type which determines the types of objects it may hold.

Classes define the followingfeatures: attributes which make up the internal state of objects,shareds
andconstants which are shared by all objects of a type, andmethods which may be eitherroutines
or iterators. Any features are by defaultpublic, but may be declaredprivate to allow only the class
in which it appears access to it.  An attribute or shared may instead be declaredreadonly to allow
only the class in which it appears to modify it. Accessor routines are automatically defined for
ing or writing attributes, shareds, and constants. The set of non-private methods in a class defi
interface of the corresponding type. Method definitions consist ofstatements;  for their construction



4 Introduction : 1.5 Summary of Features

d

ro-
s, how-

o
diom-
the cost
bjects,
 catch

ogram
r elimi-
ds) that

ructors:
uctors
  With
 when

nt, sin-
rsion,
sed on
outine

ntactic
expressions are used. There are specialliteral expressions for boolean, character, string, integer, an
floating point objects.

Certain conditions are described asfatal errors. These conditions should never occur in correct p
grams and all implementations of Sather must be able to detect them. For efficiency reason
ever, implementations may provide the option of disabling checking for certain conditions.

1.5.2   Garbage Collection and Checking

Like many object-oriented languages, Sather isgarbage collected, so programmers never have t
free memory explicitly.  The runtime system does this automatically when it is safe to do so.  I
atic Sather applications generate far less garbage than typical Smalltalk or Lisp programs, so 
of collecting tends to be lower. Sather does allow the programmer to manually deallocate o
letting the garbage collector handle the remainder.  With checking compiled in, the system will
dangling references from manual deallocation before any harm can be done.

More generally, when checking options have been turned on by compiler flags, the resulting pr
cannot crash disastrously or mysteriously.  All sources of errors that cause crashes are eithe
nated at compile-time or funneled into a few situations (such as accessing beyond array boun
are found at run-time precisely at the source of the error.

1.5.3   No Implicit Calls

Sather does as little as possible behind the user's back at runtime.  There are noimplicitly constructed
temporary objects, and therefore no rules to learn or circumvent.  This extends to class const
all calls that can construct an object are explicitly written by the programmer.  In Sather, constr
are ordinary routines distinguished only by a convenient but optional calling syntax (page 87).
garbage collection there is no need for destructors; however, explicit finalization is available
desired (page 123).

Sather never converts types implicitly, such as from integer to character, integer to floating poi
gle to double precision, or subclass to superclass.  With neither implicit construction nor conve
Sather resolves routine overloading (choosing  one of several similarly named operations ba
argument types) much more clearly than C++.  The programmer can easily deduce which r
will be called (page 27).

In Sather, the redefinition of operators is orthogonal to the rest of the language.  There is ‘‘sy
sugar’’ (page 96) for standard infix mathematical symbols such as ‘+’ and ‘̂ ’ as calls to otherwise
ordinary routines with names ‘plus’ and ‘pow’.  ‘ a+b’ is just another way of writing ‘a.plus(b)’.
Similarly, ‘a[i]’ translates to ‘a.aget(i)’ when used in an expression.  An assignment ‘a[i] := expr’
translates into ‘a.aset(i,expr)’.



Introduction : 1.5 Summary of Features 5

ously.
tract

guages

 provide

wo con-
 it is only
ut code,
bstract

eads to

are dis-
 Type

.

-
ls loop
al

xposed

ng else
n most
lems.

 main-
ation is
n also

s do for
rsor ob-
eck are
s a tra-
er the
1.5.4   Subtyping and Code Inclusion

In many object-oriented languages, the term ‘inheritance’ is used to mean two things simultane
One issubtyping, which is the requirement that a class provide implementations for the abs
methods in a supertype.  The other is code inheritance (calledcode inclusion in Sather parlance)
which allows a class to reuse a portion of the implementation of another class.  In many lan
it is not possible to include code without subtyping or vice versa.

Sather provides separate mechanisms for these two concepts.Abstract classes represent interfaces:
sets of signatures that subtypes of the abstract class must provide.  Other kinds of classes
implementation.  Classes may include implementation from other classes using a special ‘include’
clause; this does not affect the subtyping relationship between classes.  Separating these t
cepts simplifies the language considerably and makes it easier to understand code.  Because
possible to subtype from abstract classes, and abstract classes only specify an interface witho
sometimes in Sather one factors what would be a single class in C++ into two classes: an a
class specifying the interface and a code class specifying code to be included.  This often l
cleaner designs.

Issues surrounding the decision to explicitly separate subtyping and code inclusion in Sather 
cussed in the ICSI technical report TR 93-064: ‘‘Engineering a Programming Language: The
and Class System of Sather,’’ also published as [7].  It is available at the Sather WWW page

1.5.5   Iterators

Early versions of Sather used a conventional ‘until...loop...end’ statement much like other languag
es.  This made Sather susceptible to bugs that afflict looping constructs.  Code which contro
iteration is known for tricky ‘‘fencepost errors’’ (incorrect initialization or termination). Tradition
iteration constructs also require the internal implementation details of data structures to be e
when iterating over their elements.

Simple looping constructs are more powerful when combined with heavy use ofcursor objects
(sometimes called ‘iterators’ in other languages, although Sather uses that term for somethi
entirely) to iterate through the contents of container objects.  Cursor objects can be found i
C++ libraries, and they allow useful iteration abstraction.  However, they have a number of prob
They must be explicitly initialized, incremented, and tested in the loop.  Cursor objects require
taining a parallel cursor object hierarchy alongside each container class hierarchy.  Since cre
explicit, cursors aren't elegant for describing nested or recursive control structures.  They ca
prevent a number of important optimizations in inner loops.

An important language improvement in Sather 1.0 over earlier versions was the addition ofiterators.
Iterators are methods that encapsulate user defined looping control structures just as routine
algorithms.  Code using iterators is more concise, yet more readable than code using the cu
jects needed in C++.  It is also safer, because the creation, increment, and termination ch
bound together inviolably at one point.  Each class may define many sorts of iterators, wherea
ditional approach requires a different yet intimately coupled class for each kind of iteration ov
major class.  Sather iterators are part of the class interface just like routines.



6 Introduction : 1.5 Summary of Features

ors to
n-order,
pth-first.
times to

er lan-
ration

y rou-
upport
ram-
regis-
follow

 never
elled to

ternal
er allo-
rence
r

 There
ference

le types
bsence of

.  Bal-
ome C
utable
ied to
-

Iterators act as a lingua-franca for operating on collections of items.  Matrices define iterat
yield rows and columns; tree classes have recursive iters to traverse the nodes in pre-order, i
and post-order; graph classes have iters to traverse vertices or edges breadth-first and de
Other container classes such as hash tables, queues, etc. all provide iters to yield and some
set elements. Arbitrary iterators may be used together in loops with other code.

The rationale of the Sather iterator construct and comparisons with related constructs in oth
guages can be found in the ICSI technical report TR 93-045: ‘‘Sather Iters: Object-Oriented Ite
Abstraction,’’ also published as [5]. It is available at the Sather WWW page.

1.5.6   Closures

Sather provides higher-order functions throughmethod closures, which are similar to closures and
function pointers in other languages.  These allow binding some or all arguments to arbitrar
tines and iterators but defer the remaining arguments and execution until a later time.  They s
writing code in an applicative style, although iterators eliminate much of the motivation for prog
ming that way.  They are also useful for building control structures at run-time, for example, 
tering call-backs with a windowing system.  Like other Sather methods, method closures 
static typing and behave with contravariant conformance.

1.5.7   Immutable and Reference Objects

Sather distinguishes between reference objects and immutable objects. Imutable objects
change once they are created. When one wishes to modify an immutable object, one is comp
create a whole new object that reflects the modification.

Experienced C programmers immediately understand the difference when told about the in
representation the ICSI compiler uses: immutable types are implemented with stack or regist
cated C ‘struct’s while reference types are pointers to the heap. Because of that difference, refe
objects can be referred to from more than one variable (aliased), but immutable objects never appea
to be. Many of the built-in types (integers, characters, floating point) are immutable classes.
are a handful of other differences between reference and immutable types; for example, re
objects must be explicitly allocated, but immutable objects ‘just are’.

Immutable types can have several performance advantages over reference types.  Immutab
have no heap management overhead, they don't reserve space to store a type tag, and the a
aliasing makes more compiler optimizations possible.  For a small class like ‘CPX’ (complex num-
ber), all these factors  combine to give a significant win over a reference class  implementation
anced against these positive factors in using an  immutable object is the overhead that s
compilers introduce in passing  the entire object on the stack.  This problem is worse in imm
classes with many attributes.  Unfortunately the efficiency of an immutable class is directly t
how  smart the C compiler is; at this time ‘gcc’ is not very bright in this respect, although other com
pilers are.



Introduction : 1.5 Summary of Features 7

rk too.
 be

mpiler
utable

nfor-
 im-

 gradual
hmarks
the de-

invalid
use it.

ounding

er 1.0
s are

ded

I.  It ex-

ts and
 im-
wing

expos-
Immutable classes aren’t strictly necessary; reference classes with immutable semantics wo
For example, the reference class ‘INTI’ implements immutable infinite precision integers and can
used like the built-in immutable class ‘INT’.  The standard string class ‘STR’ is also a reference type
but behaves with immutable semantics.  Explicitly declaring immutable classes allows the co
to enforce immutable semantics and provides a hint for good code generation.  Common imm
classes are defined in the standard libraries; defining a new immutable class is unusual.

1.5.8   IEEE Floating-Point

Sather attempts to conform to the IEEE 754-1985 specification for its floating point types.  U
tunately, many platforms make it difficult to do so.  For example, underflow is often improperly
plemented to flush to zero rather than use IEEE’s gradual underflow.  This happens because
underflow is a special case and can be quite slow if implemented using traps.  When benc
include simulations which cause many underflows, marketing pressures make flush-to-zero 
fault.

There are many other problems. Microsoft’s C and C++ compilers defeat the purpose of the 
flag by using it exclusively to detect floating-point stack overflows, so programmers cannot 
There is no portable C interface to IEEE exception flags and their behavior with respect to ‘setjmp’
is suspect.  Threads packages often fail to address proper handling of IEEE exceptions and r
modes.

Correct IEEE support from various platforms was the single worst porting problem of the Sath
compiler.  In 1.1, we give up and make full IEEE compliance optional.  Sather implementation
expected to conform to thespirit, if not the letter, of IEEE 754, although proper exceptions, exten
types, underflow handling, and correct handling of positive and negative zero are specificallynot re-
quired.

The Sather treatment ofNaNs is particularly tricky; IEEE wantsNaN to be neither equal nor un-
equal to anything else, including other NaNs.  Because Sather defines ‘x /= y’ as ‘x.is_eq(y).not’
(page 96), to get the IEEE notion of unequal is necessary to write ‘x=x and y=y and x/=y’.  Other
comparison operators present similar difficulties.

1.5.9   pSather

Parallel Sather (pSather) is a parallel extension of the language, developed and in use at ICS
tends serial Sather with threads, synchronization, and data distribution.

pSather differs from concurrent object-oriented languages that try to unify the notions of objec
processes by following theactors model [1].  There can be a grave performance impact for the
plicit synchronization this model imposes on threads even when they do not conflict.  While allo
for actors, pSather treats object-orientation and parallelism as orthogonal concepts, explicitly 
ing the synchronization with new language constructs.



8 Introduction : 1.6 History

 bugs.
rrect
reads to
lesome
occur
ment-

code

ically
erties of

e laten-
memory
 serial
mmer
llowing
 of no

 imple-
ilable,
quir-
 it easy
lel pro-
bject-
sses in

rit-
he lan-
 since
  These
 Heinz
 Lim,
cheow
pSather follows the Sather philosophy of shielding programmers from common sources of
One of the great difficulties of parallel programming is avoiding bugs introduced by inco
synchronization. Such bugs cause completely erroneous values to be silently propagated, th
be starved out of computational time, or programs to deadlock. They can be especially troub
because they may only manifest themselves under timing conditions that rarely 
(race conditions) and may be sensitive enough that they don't appear when a program is instru
ed for debugging (heisenbugs).  pSather makes it easier to write deadlock and starvation free 
by providing structured facilities for synchronization.  Alock statement automatically performs un-
locking when its body exits, even if this occurs under exceptional conditions.  It automat
avoids deadlocks when multiple locks are used together.  It also guarantees reasonable prop
fairness when several threads are contending for the same lock.

Data placement

pSather allows the programmer to direct data placement.  Machines do not need to have larg
cies to make data placement important.  Because processor speeds are outpacing 
speeds, attention to locality can have a profound effect on the performance of even ordinary
programs.  Some existing languages can make life difficult for the performance-minded progra
because they do not allow much leeway in expressing placement.  For example, extensions a
the programmer to describe array layout as block-cyclic is helpful for matrix-oriented code but
use for general data structures.

Because high performance appears to require explicit human-directed placement,  pSather
ments a shared memory abstraction using the most efficient facilities of the target platform ava
while allowing the programmer to provide placement directives for control and data (without re
ing them). This decouples the performance-related placement from code correctness, making
to develop and maintain code enjoying the language benefits available to serial code.  Paral
grams can be developed on simulators running on serial machines.  A powerful o
oriented approach is to write both serial and parallel machine versions of the fundamental cla
such a way that a user's code remains unchanged when moving between them.

1.6  History

Sather is still growing rapidly. The initial Sather compiler (for ‘Version 0’ of the language) was w
ten in Sather (bootstrapped by hand-translating to C) over the summer of 1990.  ICSI made t
guage publicly available (version 0.1) June of 1991 [4].  The project has been snowballing
then, with language updates to 0.2 and 0.5, each compiler bootstrapped from the previous.
versions of the language are most indebted to Stephen Omohundro, Chu-Cheow Lim, and
Schmidt.  pSather co-evolved with primary contributions by Jerome Feldman, Chu-Cheow
Franco Mazzanti and Stephan Murer. The first pSather compiler [3] was implemented by Chu-
Lim on the Sequent Symmetry, workstations and the CM-5.



Introduction : 1.6 History 9

ration of
 stron-
 fresh

5 with
 in the
 largely

ally  de-
is Vay-
t of the
ort for
r im-
rs. Illya

mon

ler for
cation
 Sather-

ffiliated
r lan-

-known
f the

mpanile
y the

eaned-
volved

signed
 Lisp,
Sather 1.0  was a major language change, introducing bound routines, iterators, proper sepa
typing and code inclusion, contravariant typing, strongly typed parameterization, exceptions,
ger optional runtime checks and a new library design [6].  The 1.0 compiler was a completely
effort by Stephen Omohundro, David Stoutamire and Robert Greisemer.  It was  written in 0.
the 1.0 features introduced as they became functional.  The 1.0 compiler was first released
summer of 1994, and Stephen left the project shortly afterwards.  The pSather 1.0 design was
due to Jerome Feldman, Stephan Murer and David Stoutamire.

This document describes Sather 1.1, released the summer of 1996.  The  compiler was origin
signed and implemented by S. Omohundro, D. Stoutamire and (later) Robert Griesemer.  Bor
sman is the current Sather czar  and  feature implementor.  Claudio Fleiner implemented  mos
common optimizations ,  a lot of debugging support,  the pSather runtime and back-end supp
pSather.   Michael Philippsen implmented the front/middle support for pSather. Holger Klawitte
plemented  type checking of parametrized classes. Arno Jacobsen worked on bound iterato
Varnasky implemented inlining support and Trevor Paring implemented an early version of com
subexpression elimination.

A group at the University of Karlsruhe under the direction of Gerhard Goos created a compi
Sather 0.1.  The language their compiler supports, Sather-K, diverged from the ICSI specifi
when Sather 1.0 was released.  Karlsruhe has created a large class library called Karla using
K.  More information about Sather-K can be found at:

http://i44www.info.uni-karlsruhe.de/~frick/SatherK

1.6.1   The Name

Sather was developed at the International Computer Science Institute, a research institute a
with the computer science department of the University of California at Berkeley.  The Sathe
guage gets its name from the Sather Tower (popularly known as the Campanile), the best
landmark on campus.  A symbol of the city and the university, it is the Berkeley equivalent o
Golden Gate bridge across the bay.  Erected in 1914, the tower is modeled after St. Mark's Ca
in Venice, Italy. It is smaller and a bit younger than the Eiffel tower. The way most people sa
name of the language rhymes with ‘bather’.

The name ‘Sather’ is a pun of sorts - Sather was originally envisioned as a smaller, efficient, cl
up alternative to the language Eiffel.  However, since its conception the two languages have e
to be quite distinct.

1.6.2   Sather’s Antecedents

Sather has adopted ideas from a number of other languages. Its primary debt is to Eiffel, de
by Bertrand Meyer, but it has also been influenced by C, C++, Cecil, CLOS, CLU, Common
Dylan, ML, Modula-3, Oberon, Objective C, Pascal, SAIL, School, Self, and Smalltalk.



10 Introduction : 1.6 History

cation
ity until
le for
s lan-
 Boris

nguage
ailey,

ry Ce-
 Ger-
mschy,
anti,
riguez,

Trapp,
 as port-
Steve Omohundro was the original driving force behind Sather, keeping the language specifi
from being pillaged by the unwashed hordes and serving as point man for the Sather commun
he left in 1994.  Chu-Cheow Lim bootstrapped the original compiler and was largely responsib
the original 0.x compiler and the first implementation of pSather.  David Stoutamire took over a
guage tsar and compiler writer after Stephen left.  That position was, in turn, taken over by
Vaysman in late 1995.

Sather has been very much a group effort; many, many  people have been involved in the la
design discussions including: Subutai Ahmad, Krste Asanovic, Jonathan Bachrach, David B
Joachim Beer, Jeff Bilmes, Chris Bitmead, Peter Blicher, John Boyland, Matthew Brand, Hen
jtin, Alex Cozzi, Richard Durbin, Jerry Feldman, Carl Feynman, Claudio Fleiner, Ben Gomes,
hard Goos, Robert Griesemer, Hermann Häertig, John Hauser, Ari Huttunen, Roberto Ierusali
Arno Jacobsen, Matt Kennel, Holger Klawitter, Phil Kohn, Franz Kurfess,  Franco Mazz
Stephan Murer, Michael Philippsen, Thomas Rauber, Steve Renals, Noemi de La Rocque Rod
Hans Rohnert, Heinz Schmidt, Carlo Sequin, Andreas Stolcke, Clemens Szyperski, Martin 
Boris Vaysman, and Bob Weiner.  Countless others have assisted with practical matters such
ing the compiler and libraries.

1.6.3   References

[1] G. Agha, ‘‘Actors: A Model of Concurrent Computation in Distributed
Systems’’, The MIT Press, Cambridge, Massachusetts, 1986.

[2] S. Burson, ‘‘The Nightmare of C++’’, Advanced Systems November 1994, pp.
57-62. Excerpted from The UNIX-Hater's Handbook, IDG Books, San Mateo, CA,
1994.

[3] C. Lim. “A Parallel Object-Oriented System for Realizing Reusable and
Efficient Data Abstractions,” PhD thesis, University of California at Berkeley,
October 1993.  Available at the Sather WWW page.

[4] C. Lim, A. Stolcke.  ‘‘Sather language design and performance evaluation.’’  TR-
91-034, International Computer Science Institute, May 1991.  Also available at
the Sather WWW page.

[5] S. Murer, S. Omohundro, D. Stoutamire, C. Szyperski, ‘‘Iteration abstraction in
Sather’’, Transactions on Programming Languages and Systems, Vol. 18, No. 1, Jan
1996 p. 1-15.  Available at the Sather WWW page.

[6] S. Omohundro.  ‘‘The Sather programming language.’’ Dr. Dobb’s Journal, 18
(11) pp. 42-48, October 1993.  Available at the Sather WWW page.

[7] C. Szyperski, S. Omohundro, S. Murer.  “Engineering a programming
language: The type and class system of Sather,” In Jurg Gutknecht, ed.,
Programming Languages and System Architectures, p. 208-227.  Springer Verlag,



Introduction : 1.6 History 11
Lecture Notes in Computer Science 782, November 1993.  Available at the
Sather WWW page.



12 Introduction : 1.6 History



Classes and Objects : 2.1 Preliminaries 13

 Sather,
nt kinds
al classes.
in restrict-
fined by

he object.
o.

ard con-
 their dis-
ture.

a few
int out

 initialize
tandard
rs and
 and as-
Classes and Objects

All entities in Sather are objects, and objects are defined by classes. Even the basic entities in
such as integers and floating point values are objects in Sather.  Sather  has several  differe
of classes - reference classes, abstract classes, immutable classes, partial classes and extern
The important kinds of classes are reference classes and abstract classes - the rest are used 
ed circumstances.  There are also some special objects (closures) which are not directly de
classes, but we will defer their discussion till later.

Each Sather object has an associated type which indicates the class that was used to create t
A variable in Sather also has a type, which indicates the kinds of objects it can be assigned t

This chapter will focus on the most common kind of classes, reference classes, and the stand
structs used to create classes.   Though iterators are an essential component of Sather code,
cussion has been deferred to the next chapter, since they are a relatively  novel language fea

2.1  Preliminaries

To make it easier to present examples in the following sections, we will start by introducting 
basic classes - integers, floating point numbers and strings.  We will also describe how to pr
data and to use the compiler

2.1.1   Some basic classes

Though basic numbers and strings enjoy some special language support (such as a means to
them to values like 5 or "foo") , they are defined as  regular classes, and are a part of the s
library.The FLT class represents floating point numbers, while the INT class represents intege
the STR class represents strings.  Variables may be declared to be of any of these classes
signed when they are declared.

a:FLT := 3.0;
b:INT := 5;
c:STR := "foo";



14 Classes and Objects : 2.1 Preliminaries

bers and

ve a
r

uag-

cifies on
efini-
be found

d

It is also possible to perform the usual operations on these classes, such as addition of num
concatenation of strings (represented by the "+" operator):

Comments in Sather start with a-- and extend to the end of the line.   Note that all variables ha
default initialvoid value.  For the present,void  may be thought of as either the NULL pointer  fo
reference objects, 0 for integers,0.0 for floats andfalse for booleans.

2.1.2   Printing output

You can print data of various types in Sather using the command#OUT+

Treat ’#OUT+’  as an idiom for now; it is equivalent to the standard output routines in other lang
es.

2.1.3   Sather source files

Sather source files consist  of lists of  classes.   In addition to  the source files that a user spe
the command line to the compiler, the standard library files are always implicitly examined.  D
tions of the  basic classes such as integers and strings as well as containers of all kinds are to 
in the standard library.

Execution of a Sather program begins with a routine named‘main’ in a specified class, (a class calle
‘MAIN’ is used by default). If main is declared to have a return value of typeINT, this will specify the
exit code of the program when it finishes execution.

2.1.4   Hello World

The hello world program is show below:

a:STR := "foo";
b:STR := "bar"; -- + concatentates strings
c:STR := a + b; -- c is "foobar".
e:INT := 5;
f:INT := 7;
g:INT := e+f; -- g is 12
compare:BOOL := e > f; -- compare is false
#OUT + compare; -- Prints out ’false’

a:INT := 10;
#OUT+"hello world "+a; -- Prints out "hello world 10"

class HELLO_WORLD is
main  is

#OUT+"Hello World\n";
end;

end;



Classes and Objects : 2.2 Defining Classes and Creating Objects 15

er) by:

lass

 of da-
y.  The
e class.

ent sec-
oint

bject to
ssign-

se-
As we mentioned earlier, printing to standard output is obtained by calling#OUT+.

If the above code is stored  in the file hw.sa, it can be compiled (using the ICSI Sather compil

cs -main HELLO_WORLD -o hw hw.sa

The ’-main’  option simply indicates to the compiler that the main routine will be found in c
HELLO_WORLD. The resulting executable,’hw’ can be run as follows

prompt> hw
Hello World
prompt>

2.2  Defining Classes and Creating Objects

Objects are usually models of conceptual or real-world entities; they consist of a combination
ta, which models the state of the entity and operations which model the behavior of the entit
body of a  Sather class consists of  a  list of features which define the data and behavior of th
A class defines a new type and may be used to create object instances of that type1.

We will start by describing the data elements and then move on to the operations.  In subsequ
tions, we will describe the definition of object behavior in the form of routines.  We will then p
out that Sather provides a level of abstraction, which permits the state and behavior of the o
be treated in a uniform manner.  Finally,  we will describe the somewhat unusual meaning of a
ment in Sather that makes this uniformity possible.

2.2.1   Defining Simple Classes

The state of a class is defined by attributes, which are have the prefixattr

ThePOINT class above defines an’x’ and a’y’ attribute both of which are integers.  This class is u
less, as it stands, since it provides no way to create instances of itself.

1.  This is only true for reference, immutable and some kinds of external classes.  Abstract a, partial and most ex-
ternal classes cannot  have instances.

class POINT is
attr x:INT;
attr y:INT;

end;



16 Classes and Objects : 2.2 Defining Classes and Creating Objects

e
lues.

the rou-

d

’

icular,

 as the
Object Creation: create and new

 To make objects of thePOINT  class, we have to introduce acreate routine

Thecreate routine first calls the special expression’new’. ’new’  creates a new uninitialized instanc
of thePOINT class and returns it.  All the attributes in the new instance have default ’void’ va
It then assigns the’x’ and’y’ attributes of this new instance toxvalue andyvalue respectively.  In-
stances of thePOINT class can then be created as shown below

p:POINT := POINT::create(3,5);

Since creation is such a common operation, Sather provides a special shorthand  for calls to 
tine ‘create’.  The’create’ routine shown could be invoked with the #  sign as shown below

point:POINT := #POINT(3,5);

 Expressions using the # sign are referred to ascreation expressions,  and are a convenient shorthan
used for creating new objects and initializing their attributes.

Attribute access

When an object of the classPOINT is created, the’x’ and’y’ attributes may be accessed by ’dotting
into the object.

Points to note

• The semantics of a class is independent of the textual order of its class elements.  In part
the actual attribute layout used by a Sather implementation is invisible to a programmer.

•  The scope of feature names is the class body

• Feature names may be either lower or upper case.

• Class names must be all upper case letters (underscores and digits are permitted except
first character).

• The feature namespace is separate from the class namespace.

class POINT is
attr x, y:INT;

create(xvalue,yvalue:INT):POINT is
res:POINT := new;
res.x := xvalue;   res.y := yvalue;
return res;

end;

end;

a:POINT := #POINT(3,5);  -- Create a new point
#OUT + a.x ; -- Prints out the value of ’x’, which is 3
a.x := 5;  -- Sets the value of the ’x’ attribute to 5



Classes and Objects : 2.2 Defining Classes and Creating Objects 17

 (un-
lass

string

ned to

s inte-

he class

ed.
• The scope of class names is the entire program; no two classes can have the same name
less they have different number of parameters, which will be explained in the chapter on c
parametrization).

• You have to explicitly call’new’ in the create routine.  The following code exhibits a common
error:

2.2.2   Checking whether an object has been created

Before a variable is assigned to an object,  the variable has the void value.  The expression’void’ may
be used to determine whether a value is void or not. The following example will print out the 

"a is void!" since aPOINT is a reference class and’a’ has not been created.

In the above version, the string "a is not void!" will be printed since an object has been assig
the variable’a’.

Note that the above test will not work in the same way for some of the built-in classes such a
gers and booleans2.

2.2.3   Types Introduced

Each Sather variable and object has an associated type.  The type of the object indicates t
that was used to create the object.  In the following example, both’a’ and’b’ have the typePOINT,
indicating that they are associated with instances of thePOINT class.

In this example, the type of the variable’a’ is the same as the type of the object to which it is assign
This is always the case with the reference classes we have seen so far.

2.  The void test returns true for all integers with a value of 0 and booleans with a value of false.  In general, the
void test is not useful for immutable classes.

class POINT is
attr x,y:INT;
create(xval, yval:INT):POINT is

x := xval;   -- Run time error! We have no object as yet!
y := yval;

end; ....

a:POINT;
if void(a) then #OUT+"a is void!" end;

a:POINT := #POINT(3,5);
if void(a) then  #OUT+"a is void!" else #OUT+"a is not void!" end;

a:POINT := #POINT(2,3);
b:POINT := #POINT(4,5);



18 Classes and Objects : 2.3 Class Data: shared and const

age 59,
e, it is

ject to
mark-
essed
odified

ccess

red by
When we introduce abstract classes in  the chapter on Abstract Classes and Subtyping on p
we will see that some Sather variables can hold objects of many different types.   In this cas
useful to distinguish between the type of the variable (called the declared type) and the type of the
object that it holds (called the actual type or theconcrete type).

2.2.4   Hiding features: private and readonly

A fundamental feature of object oriented programming languages is that they permit an ob
hide certain features which are for internal use only.  Attributes may be completely hidden by 
ing themprivate.  Routines may likewise be marked private, meaning that they cannot be acc
outside the original class.  Attributes can also be hidden so that they can be read but not m
from outside the class, by marking themreadonly.

This restricts external access to the attributes in the object

Points to note

• Privacy is on a per-class  basis,  rather than on a  per-object basis. Thus, an object can a
the private features of other objects of the same class.  We actually use this fact in thecreate
routine of the classPOINT2 above.  Assignments to the attributes ofres are being done outside
the object being returned.

2.3  Class Data: shared and const

In addition to object attributes, a class definition may also contain ’shared’ data, which is sha
all the objects of that class.

class POINT2 is
private attr x:INT;   -- x cannot be seen from outside
readonly attr y:INT;   -- y cannot be changed from outside

create(xvalue,yvalue:INT):POINT is
res:POINT := new;
res.x := xvalue;
res.y := yvalue;
return res

end;
end;

foo is ...  -- some other piece of code
a:POINT2 := #POINT2(3,5); -- Create a new POINT2

#OUT+ a.y;                   -- Prints out ’5’
-- Illegal: #OUT+ a.x
-- Illegal a.y := 10;



Classes and Objects : 2.3 Class Data: shared and const 19

 a class.
ccessed
  restric-

g ex-

 have an
ption
he con-
.  Con-
iterals,
2.3.1   Shared  Attributes - Restricted global variables

Shared attributes are similar to object attributes, but are shared between all the instances of
They are essentially  global variables that reside within a class namespace.  They can be a
and modified by any instance of the class.  Shareds can have the same private and readonly
tions that regular attributes have

Unlike regular attributes, when only a single shared attribute is defined, a constant  initializin
pression may be provided.

If no initializing expression is provided, the shared is initialized to the value‘void’.

2.3.2   Class Constants

Constants are accessible by all objects in a class and may not be assigned to - they must 
initializing expression from which their value is determined at compile time (there is an exce
when no type is specified, as descrbed in the next subsection).  If a type is specified, then t
struct defines a single constant attribute which  must be initialized  to a  constant expression
stant expressions are recursively  composed out of a combination of literals, function calls on l
and references to other constants. More precisely, legal assignments are to

• a character, boolean, string, integer or floating point literal

• avoid or void test expression

• anand or or expression, each of whose components is a constant expression

• an array literal, each of whose components is a constant expression

• a routine call applied to a constant expressionother than void, each of whose arguments is a
constant expression.  This caveat is imporant, sincecreate routines are called on void.  Thus
the following is illegal:3

3.  Implementation Note: The compiler currently does not always detect this illegal case

private shared i,j:INT;
readonly shared c:CHAR := ’x’

shared s:STR := "name";
-- ILLEGAL shared s,p:STR := "name";
-- cannot use initializing expression if two shareds are
-- declared at the same time

-- ILLEGAL const  a:POINT := #POINT(3,3);
const a:POINT := void;
-- The only legal kind of constant POINT is void



20 Classes and Objects : 2.3 Class Data: shared and const

ct de-
o by de-

  It is an

s on
nt ini-

 any

ool-
• a reference to another constant in the same class or in another class using the‘::’ notation.

Integer constants and Enumerated Types

If a type specifier is not provided, then no initializing expression is required and  the constru
fines one or more successive integer constants. The first identifier is assigned the value zer
fault;  its value may also be specified by a constant  expression of typeINT. The remaining identifiers
are assigned successive integer values.  This is the way to do enumeration types in Sather.
error if no type is specified and there is an assignment that is not of typeINT.

Points to note

• There must not be cyclic dependencies among constant initializers.

• Since constant initialization involves permits operations on the built-in types, the operation
the built-in types are designed so that no observable side-effects can occur during consta
tialization.

• The prefix readonly cannot be applied to constants, since constants cannot be modified in
case.

• Due to their definition, constants are only useful for the basic classes such as numbers, b
eans and characters.  All other constants can only be assigned to be void!

const r:FLT:=45.6;         -- Reader routine is private r:FLT;
private const a,b,c;
private const d:=4,e,f
const bar:BOOL := r > 10;  -- Function call on constants
const foo:ARRAY{INT} := |1,2,4,5,6|;
-- Sather arrays are explained later
const  baz ::= BAR::foz ;
-- foz must be a constant expression in BAR

const a; -- a is of type INT and gets the value 0
const c,d;   -- c gets 0 and d gets 1
const e := 3;    -- e is also of type INT

class FOO is
     const b:INT := BAR::c;
class BAR is

const c:INT := BAZ::d;
class BAZ is
-- ILLEGAL!  const d:INT := FOO::b;
-- Introduces a cycle between b, c and d

class FOO is
const a:BAR := void; -- only legal value



Classes and Objects : 2.3 Class Data: shared and const 21

ct.
nd local
2.3.3   Accessing Class Data - the :: notation

It is possible to directly access the class data or features using the :: notation.

The shared and const class data can then be accessed using the :: notation

When a method is called using the’::‘ notation, it is equivalent to calling the method on a void obje
Calling a method on a void object makes sense if the feature only makes use of shared data a
state.  If the method makes use of object data, a run-time error will result.

•  The usual privacy and modification restrictions are maintained

class FOO is
const a:INT := 3;
private const b:INT := 5;
readonly shared c:INT := 6;
shared d:INT := 7;

   attr f:INT;

   create(i:INT):FOO is res:FOO := new; res.f := i; return res; end;

   method1:INT is return d+a; end;

   method2:INT is return f+a; end;

end;

#OUT+ FOO::a+"\n";
FOO::d := 3;

#OUT+FOO::method1;  -- Prints out d+a = 10
#OUT+FOO::method2; -- Tries to print out self.f+a
   -- However, self (the object) is void, so trying to access ’f’
   -- results in a run-time error - Attribute access of void

a_copy:INT := FOO::a;
-- ILLEGAL FOO::c :=3; -- c is readonly
-- FOO::a := 7;  -- a is a constant



22 Classes and Objects : 2.4 Routine definitions

nts and

d
 from

rn val-

t be re-
ge 111.

legal.
2.4  Routine definitions

The behavior of a class is specified by routines in the class body.   Routines may take argume
may return a value.

A routine definition may begin with the keyword‘private’ to indicate that the routine may be calle
from within the class but is not visible from outside the class.  The methods that are visible
outside the class are referred to as the class interface.

The body of a routine  is a list of statements, separated by semicolons. In a routine with a retu
ue, the final statement along each execution path must be  areturn statement .  Thus, the following
is not legal

 A raise statement raises an exception, and can be used wherever  a return statement migh
quired.  Raise statements will be described in more detail in the chapter on Exceptions on pa
For now, we merely note that the following version of the routine’scale_x’ does not return a value
in the second branch of the if statement, but  raises an exception instead, which is perfectly 

class CALCULATOR is
attr running_sum:INT;

create:CALCULATOR is
res:CALCULATOR := new;
res.running_sum := 0;
return res;

end;

add(x:INT):INT is
res:INT := running_sum + x;
return res;

end;
end;

scale_x(x:INT):INT is
-- Illegal routine - the else clause has no return value

if x > 0 then
return 15;

else
#OUT+"Error!";  -- last statement on this branch is not return

end;
end;

scale_x(x:INT):INT is
if x > 0 then return 15;
else  raise "An error occurred!";  end;

end;



Classes and Objects : 2.4 Routine definitions 23

ay
 part of

t provide
ecifier.

s and at-
 for the

e is
t

is
turns
Using the return value

Note that, unlike most other languages, Satherforces you to make use of  the return value. This m
be considered an extension of strong typing - the presence or absence of a return value is a
the signature that should not be ignored.

The return value can also be used as part of an expression.

2.4.1   Routine Arguments and Modes

The arguments to a routine are specified as a comma-separated list.  Each argument   mus
a  name and type. The types of consecutive arguments may be declared with a single type sp

create(x,y:INT):POINT ...

The scope of method arguments is the entire body of the method, and also shadows method
tributes in the class.  If a routine has a return value, it is declared by a colon and a specifier
return type.  You can get around this restriction by using theself expression explicitly

Each argument also has amode which determines how that argument is treated when the routin
called.  If no mode is explicitly stated, the argument mode isin.  That means it is simply a value sen
into the routine. The other possible modes areout, inout andonce (which will be described in the
section on iterators).

Multiple return values and out arguments

An out argument is really like an extra return value.  Anout argument is not set when the routine 
called; rather, it is filled in by the routine itself.  Consider an integer division function that re
both the divident and remainder of the two integer arguments

new_x:INT := scale_x(15);  -- Legal, the return value used
scale_x(15);  -- ILLEGAL! Return value unused

a := scale_x(15) + 3;

class POINT is
  attr x,y:INT;
  add_x(x:INT) is
     self.x := self.x + x;
  end;

divide(x,y, out dividend, out remainder:INT) is
-- Note that the ’INT’ type specifier applies to  multiple
-- arguments while the mode qualifiers apply to only one
-- argument.
dividend := x/y; -- Integer division result
remainder := x - y*(x/y); -- Remainder after the division.

       -- Could also use x.mod(y)
end;



24 Classes and Objects : 2.4 Routine definitions

rker of

nd

y
a
aller.

n
od

page
ly
The divide routine may be used as shown below:

Note that theout argument has to be marked both where the method is defined (i.e. as a ma
the formal parameter) and at the point of call, or the compiler will complain (once and in arguments
need not be mentioned at the point of call)

inout arguments

inout arguments are a combination ofin andout arguments.  They take a value into the function a
return a value out of the function.  We can thus write the swap function compactly as:

The table below describes the argument  modes in more detail:

a:INT := 15;  b:INT := 10;
div, rem:INT; -- These are defined but not assigned
divide(a,b,out div, out rem);
#OUT+"Divident="+div+" Remainder="+rem+"\n";
  -- Prints out Divident=1 Remainder=5

swap(inout x, inout y:INT) is
tmp:INT := x;
x := y;
y := tmp;

end;

a:INT := 5;  b:INT := 10; -- a and b have an initial value
swap(inout a,inout b);
#OUT+"a="+a+" b="+b;         -- Prints a=10 b=5

Mode Description

in All arguments are ‘in’ by default; there is no ‘in’ keyword.  ‘In’ arguments pass a cop
of the argument from the caller to the called method.  With reference types, this is 
copy of the reference to an object; the called method sees the same object as the c

out An ‘out’ argument is passed from the called method to the caller when the called
method returns.  It is a fatal error for the called method to examine the value of the
‘out’ argument before assigning to it.  The value of an ‘out’ argument may only be
used after it has appeared on the left side of an assignment.

inout An ‘ inout’ argument is passed to the called method and then back to the caller whe
the method returns.  It is not passed by reference; modifications by the called meth
are not observed until the method returns (value-result).

once Once parameters are discussed in detail in the chapter on Loops and Iterators on 
39.  Only iterators may have ‘once’ arguments.  Such arguments are evaluated exact
once, the first time the iterator is encountered in the containing loop.  ‘once’ argu-
ments otherwise behave as ‘in’ arguments, and are not marked at the point of call.



Classes and Objects : 2.4 Routine definitions 25

ope of a
t list in
ines of

name.

-
ter.

d

2.4.2   Local Variables - Scoping and Shadowing

Declaration Statements are used to declare the type of one or more local variables. The sc
local variable declaration begins at the declaration and continues to the end of the statemen
which the declaration occurs.   Local variables shadow routines (including  the accessor rout
attributes) in the class which have the same name and no arguments.

Within the scope of a local variable it is illegal to declare another local variable with the same 

Points to note

• Local variables are initialized tovoid  when the containing method is called.

• Local variables arenot re-initialized when the declaration is encountered in the flow of con
trol.  This is particularly relevant in loop statements, which are discussed in the next chap
The integer’a’ is initialized to zero when the function’compute’ is entered.  It is not initialized
every time through the loop.

• Note that explicit initialization (in this case’a:=15’ ) is performed every time it is encountered

2.4.3   Routine calls

The most common expressions in Sather programs are method calls4.   A routine call usually takes
the form of a ’dotted’ expression such asa.foo(b). The object on which the routine is being calle

4.  We use the term ’method’ here to indicate that the same description is applicable to both iterators, which have
not yet been introduced,  and routines.

... in the POINT class ...
swap_x_y is

temp:INT;
temp := x;
x := y;
y := temp;

end;

compute is
   loop 3.times!;
     a:INT;
     a := a + 3;
     #OUT+a+"\n"; -- Prints out successively 3, 6, 9
   end;
end;

compute is
   loop 3.times!;
     a:INT := 15
     a := a + 3;
     #OUT+a+"\n"; -- Prints out successively 18, 18, 18
   end;
end;



26 Classes and Objects : 2.4 Routine definitions

e ’dot’,
 class
(’a’ in this example) is determined by what precedes the dot.  If no object name precedes th
theself object i.e. the current object, is assumed. We use the following definition of the POINT
to  illustrate different kinds of routine calls

•  If nothing precedes the method name, then the form is syntactic sugar for a call on
self  If the method name is preceded by an expression and a dot ‘.’, then the method is
called on the object returned by the expression. In the following example,  pair (3,7) is
first added to p1 and the pair (4,9) is  added to that result. Note that the intermediate
point that is created after the first 3,7 is added is not accessible from any variable and
will be garbage collected.

•  If the method name  is preceded by a type specifier and a double colon ‘::’ it is presumed to
be a call on avoid object of the specified class (POINT in the case below)

This works for thecreate routine, since it creates a new object,res, and then makes use of it.
However, this will not work for a call on, say,add

Sincexsum := x + xval; is actually equivalent to sayingxsum := self.x + xval; the routine access-
esself,  which is void and cannot be accessed.

class POINT is

  attr x,y:INT;

  create(x,y:INT):POINT is
res:POINT := new; res.x := x;  res.y := y;  return res;

end;

  add(xval,yval:INT):POINT is
     xsum:INT := x + xval;
     ysum:INT := y+yval;
     res:POINT := #POINT(xsum, ysum);
     return res;

end;

offset_by(val:INT):POINT is
return add(val,val); -- short for ’return self.add(val,val);’

   end;
end;

p1:POINT := #POINT(3,5);
p2:POINT := p1.add(3,7).add(4,9);

a:POINT := POINT::create(3,5);

res:POINT := POINT::add(4,7); -- Runtime Error!



Classes and Objects : 2.5 Conditional Execution 27

re,
l be de-

llowing

lected
e

olean

n is
2.4.4   Simple Overloading - Selecting a routine to call

Sather supports routineoverloading.     We will present a simplified  version of the overloading he
as it applies to the simple reference classes we have discussed.  The full overloading rule wil
scribed in more detail in the  section on The Overloading Rule on page 71.

Two routines in a class may have the same name provided they differ in at least one of the fo
aspect:

• the number of arguments

• the presence or absence of a return value

• the type of one of the arguments (provided the types are not abstract).

Here are some examples of  properly overloaded routines.

All of the above routines could co-exist in a single class interface.  The right one would be se
at the point of call.   The following two routines, however cannot co-exist in the same interfac

2.5  Conditional Execution

Sather supports the standard constructs for conditional execution - if statements and
multi-way case statements

2.5.1 if statements

if statements are used to conditionally execute statement lists according to the value of a bo
expression. In this form, the if keyword is followed by a boolean expression, the keywordthen, a list
of statements and the final keywordend. When the statement is executed, the boolean expressio
evaluated and if the result istrue the statements in the statement list are executed. If it isfalse,then
control passes directly to the end of theif statement.

foo(a:INT, b:INT);
foo(a:INT);  -- Different number of arguments
foo(a:INT,b:INT):INT; -- Has a return value

foo(a:INT,b:INT):INT;
-- foo(a:INT,b:INT):BOOL
-- differs only in return type, cannot overload ’foo’

i:INT :=-15
if i < 0 then i:=-i end
#OUT + i;                 -- Prints out 15
j:INT :=15
if j < 0 then j:=-j end
#OUT + j; -- Prints out 15



28 Classes and Objects : 2.5 Conditional Execution

ts which

 It

,
ol-

rns
 of the

f
 re-
It often happens that one wishes to perform a sequence of tests, executing only the statemen
correspond to the first test in the sequence which evaluates totrue. For example, we may want to
produce a integer value’y’ from an integer value’x’ which has the shape of a triangular bump.
should be zero when’x<0’, equal to’x’ when’0<=x<100’, equal to’200-x’ when ’100 <= x<200’, and
equal to’0’ when’x>=200’. This can be accomplished with a nested series ofif statements:

Because this kind of construct is so common and the deeply nestedif statements can get confusing
Sather provides a special form for it. A series ofelsif clauses may appear after the statements f
lowing the then keyword:

There may be an arbitrary number of suchelsif  clauses. Each is evaluated in turn until one retu
true. The statement list following this clause is evaluated and the statement finishes. If none
expressions is true, the statements following the finalelse clause are evaluated.

2.5.2 case statements

Multi-way branches are implemented bycase statements. There may be an arbitrary number o
when clauses and an optionalelse clause. The initial construct is evaluated first and may have a
turn value of any type.

 if x < 0 then y:=0
 else
   if x < 100 then y := x
   else
     if x < 200 then y := 200 - x else y := 0 end;
   end
 end;

if x < 0 then y := 0
elsif x < 100 then y := x
elsif x < 200 then y := 200 - x
else y := 0 end

i:INT := 7;
switch i
when 1,2,3 then j := 3
when 4,5,6 then j := 4
when 7,8,9 then j := 5
else j := 10 end
#OUT+j; -- Prints out 5



Classes and Objects : 2.5 Conditional Execution 29

e-

t
o

uted

nto
This type must define one or more routines named‘is_eq’ with a single argument and a boolean r
turn value.

Points can then be used in a case statement as shown below

Note that the equal sign is really short hand for the routineis_eq. The case statement is equivalen
to anif statement, each of whose branches tests a call of is_eq. Thus the above case is equvalent t

The expressions tested in the branches of theif statement are the  expressions of successivewhen
lists. The first one of these calls to returnstrue causes the corresponding statement list to be exec
and control passed to the statement following thecase statement. If none of thewhen expressions
matches and anelse clause is present, then the statement list following theelse clause is executed

There is one difference between the case statement and the equivalentif statement.  If none of the
branches of anif statement match and noelse clause is present, then execution just continues o
the next statement after theif statement.  However, if none of the branches of thecase statement
matches and there is noelse clause, then a fatal run-time error will result.

class POINT is
   attr x,y:INT;

   create(x,y:INT):POINT is
     res:POINT := new;  res.x := x; res.y := y; return res;
   end;

   is_eq(point2:POINT):BOOL is
-- In Sather,= is short hand for a call on ’is_eq’

     return x = point2.x and y = point2.y;
   end;

   str:STR is return "X="+x+" Y="+y;  end

end;

p:POINT := #POINT(3,4);
zero_point:POINT := #POINT(0,0);

case p
when zero_point then
      #OUT+"Zero point\n";
when #POINT(1,1), #POINT(1,-1),#POINT(-1,-1), #POINT(-1,1) then

#OUT+"Unit point:"+p.str+"\n":
else

   #OUT+" Some other point\n"
end;

if p = zero_point then #OUT+ "Zero point\n";
elsif p = #POINT(1,1) or p = #POINT(1,-1) or ... etc. then

#OUT+ "Unit point:"+p.str+"\n";
else

#OUT+" Some other point\n";
end;



30 Classes and Objects : 2.5 Conditional Execution

s. The
he

alue re-

oblem

-

 is

it
Points to note

• It is a fatal error if no branch matches and there is noelse clause forcase statements but not
for if statements.

2.5.3 Short circuit boolean expressions: and and or

and expressions compute the conjunction of two boolean expressions and return boolean value
first expression is evaluated and iffalse, false is immediately returned as the result. Otherwise, t
second expression is evaluated and its value returned.or expressions compute the disjunction of two
boolean expressions and return boolean values. The first expression is evaluated and iftrue, true is
immediately returned as the result. Otherwise, the second expression is evaluated and its v
turned.

Consider the code

The above block of code will work ifp is not void. If it is void, however, the testp.x >3 will result
in a runtime error, since it is attempting to dot into a void reference type.  We can catch this pr
by using the following piece of code, and the semantics of the short-circuit and

The above piece of code will not generate an error, even ifp is void.  The first part of the and expres
sion tests for whetherp is void.  If it is void, then the void test returns true and thenot turns this into
a false.  Theand therefore fails before trying to evaluate the dotted expressionp.x.

A similar behavior can be seen with the short-circuitor statement, where the second expression
not examine if the first expression evaluates to true

• Note that booleans also define anand_rout routine, which does not have the same short-circu
behavior:

p:POINT;
if p.x > 3 then  #OUT+p.x; end;  -- Runtime error if p is void

if  ~void(p) and p.x > 3 then
-- The ~ symbol indicates logical negation

  #OUT+p.x;
end;

a:INT := 15;
p:POINT;
if a>10 or p.x < 10 then

-- Since a>10 is true, the second expression is not evaluated

if ~void(p).and_rout(p.x > 3) then
-- May generate a run-time error, when ’p’ is void
-- The argument to the ’and_rout’ routine (p.x) is evaluated
-- even when the first condition, ~void(p) fails.
-- Hence, if ’p’ is void, p.x is still evaluated and generates a
-- run-time error (attribute access of void)



Classes and Objects : 2.6 Attribute Accessor Routines 31

fact, it is
 a fea-

er rou-
 and re-
vate if
gle
ivate if

private

a reader
nts and

tion of
stant. Its
2.6  Attribute Accessor Routines

The distinction between data and behavior is not as strong as has been described above. In 
possible to implement a feature such that outside the class it is impossible to tell whether it is
ture or a pair of functions This section describes how this level of uniformity is achieved.

Each attribute  definition adds a field to the object’s state  and  causes the definition of a read
tine and a writer routine, both  with the same name. The reader routine takes no arguments
turns the value of the attribute. Its return type is the attribute’s type. The reader routine  is pri
the attribute is declared ‘private’. The writer routine sets the value of the attribute, taking a sin
argument whose type is the attribute’s type, and has no return value. The writer routine  is pr
the attribute is declared eitherprivate or readonly.

Thus,  the levels of privacy are defined by whether the reader and writer routines are public or 

The same holds true for shared attribubtes.  Each shared  definition causes the definition of 
routine and a writer routine, both  with the same name. The reader routine takes no argume
returns the value of the shared. Its return type is the shared’s type.

Constants do not define a writer routine.  Each constant  definition causes the implicit defini
a reader routine with the same name. It takes no arguments and returns the value of the con

class INTERVAL is
   attr start:FLT;  -- Defines the public reader start:FLT
                      -- and the public writer     start(FLT)
   attr finish; INT;

   create(st,fin:INT):INTERVAL is
      -- Create a new interval
      res:INTERVAL := new;
      res.start(st); -- Equivalent to res.start := st;
      res.finish(fin); -- Equivalent to res.finish := fin;
    end;
end;

private attr a:FLT;  -- Defines the reader, private a:FLT
-- and the writer  private a(FLT);

readonly attr b:FLT; -- Defines the public reader, b:FLT
-- and the private writer b(FLT)

class FOO is
shared a:INT := 3; -- Defines a:INT and a(arg:INT);
readonly shared b:INT; -- Defines a:INT and private a(arg:INT);

...
#OUT + FOO::a; -- Prints out 3
FOO::a(4);  -- ’a’ is set to 4, same as FOO::a := 4;
#OUT+ FOO::a; -- Prints out 4;
FOO::a := 7;
 -- ’a’ is set to ’7’ , equivalent to FOO::a(7);
 FOO::b(3);     -- ILLEGAL! The writer routine is private



32 Classes and Objects : 2.6 Attribute Accessor Routines

d ‘

ssign-

 the at-

 argu-

ted by a
st value
return type is the constant’s type. The routine is private if and only if the constant is declarepri-
vate’.

2.6.1   Attribute assignment

In order to achieve the  unification of  attribute assignment and routine calls, for attributes, a
ment has to be given a meaning in terms of function calls.

By default, the assignment is syntactic sugar for a call of the routine with the same name as
tribute with the right hand side of the assignment as the only argument

In the above example, the assignment to ’x’ is the same as calling the routine ’x’ with a single
ment.

Replacing an attribute by a routine

The beauty of this treatment of assignment is that an attribute in a class can later be substitu
pair of routines.  Consider a class to represent integer intervals, where we store the first and la
in the interval

We can make calls on this class

const r:FLT:=45.6;    -- Reader routine is r:FLT;
private const a,b,c;   -- Reader routine is private a:INT;
private const d:=4,e,f
const bar:BOOL := r > 10;  -- Function call on constants

p:POINT := #POINT(3,5);
p.x := 3; -- Is syntactic sugar for  p.x(3);

class I_INTERVAL is
  -- Integer intervals
  attr start:INT; -- Defines start:INT and start(INT)
  attr finish:INT; -- Defines finish:INT and finish(INT)

  create(start,finish:INT):I_INTERVAL is
    res:I_INTERVAL := new;
    res.start := start; -- Equivalent to res.start(start);
    res.finish := finish;  -- Equivalent to res.finish(finish);
    return res;
  end;

  size:INT is return finish - start + 1; end;
-- Returns the number of integers in the interval

end;

i:I_INTERVAL := #I_INTERVAL(3,10);
i.finish := 11; -- Equivalent to a call i.finish(11);
#OUT+ i.finish; -- Prints out 11
i.start := 15; -- Equivalent to the call i.start(15) ;



Classes and Objects : 2.7 Static Type Inference 33

eed to
it.  The

tine

 a vari-
 avail-

creation
Suppose we then realize that we usually want to know the size of the interval,  and rarely n
know the end point.  It would then be cheaper to store the size directly, rather than computing 
class can be changed so that we store thefirst andsize and computefinish.

All the calls described above will continue to work as before.  The assignment tofinish in particular
will now be a call on the user-defined finish routine, instead of a call to the implicit writer rou
for the attributefinish.

2.7  Static Type Inference

For the sake of convenience, Sather provides a mechanism for statically inferring the type of
able from the context. This type-inference takes place in different situations, where the type is
able from the context.

2.7.1   Creation Expressions

In a creation expression, it is tedious to have to repeat the type of a class on both sides of a 
expression and assignment.  Hence, the # symbol may infer its type from the context.

class I_INTERVAL is
-- Integer intervals

  attr start:INT; -- Defines start:INT and start(INT)
  readonly attr size:INT;  -- Defines size:INT and private size(INT)
   -- size is readonly, since we only need size:INT in the interface

  create(start,finish:INT):SAME is
    res:SAME := new;
    res.start := start; -- Equivalent to res.start(start);
    res.size :=  finish-start+1; -- Store the result in res.size
    return res;
  end;

  finish:INT is return start+size-1 end;
    -- Replacement for the reader routine for ’finish’
    -- Compute finish using ’start’ and ’size’

  finish(new_finish:INT) is  size:=new_finish-start+1  end;
    -- Replacement for the writer routine for ’finish’

end;

a:POINT;
a := #(3,4);  -- Equivalent to a := #POINT(3,4);



34 Classes and Objects : 2.7 Static Type Inference

ce the
e of the
de.

ference

pe of a

e dis-

 on the
ine
 and it

n

2.7.2   Assignments and ::=

Type inference can also take place in a declaration, if it is combined with an assignment.  Sin
declared type of the right hand side of the assignment is known, its type is used as  the typ
variable.  This combination of declaration and assignment is extremely common in Sather co

When an assignment is associated with a creation, we can make use of either form of type in

2.7.3   Arguments to a function call

The type of the arguments to a function call are also known and can be used to infer the ty
creation expression in a call to the function.

This form of type inference may be used for closure creation expressions as well, which will b
cussed in the chapter on Closures

If the plus routine in the INT class is overloaded, then the appropriate routine is chosen based
declared type of the argument to ’apply’ i.e. ROUT{INT}:INT.  Note that if both the ’apply’ rout
and the ’plus’ routine are overloaded,  type inference may not be able to determine the type
might be necessary to create a temporary variable with the right type

In any case, we strongly  recommend that static type inferencenot be used in cases where confusio
might result; the extra typing is  usually worthwhile!

a ::= 3; -- Equivalent to a:INT := 3;
p1:POINT := #POINT(3,5);
p2:POINT := #POINT(4,5);
p3 ::= p1.add(p2);    -- ’p3’ is of type POINT.
-- Assumes the function ’add’  in POINT i.e. POINT::add(POINT,POINT);

a ::= #POINT(3,4); -- Equivalent to a:POINT := #POINT(3,4);
a:POINT := #(3,4); -- Means the same

foo(a:POINT) is  ...

foo(#(3,5));
 -- The create expression infers its type
 -- from the type of the argument that ’foo’ is expecting

apply(arg:ROUT{INT}:INT) is ....
apply(bind(3.plus(_));

r:ROUT{INT}:INT := bind(3.plus(_));
apply(r);



Classes and Objects : 2.8 Class Parameters 35

amples
apter on

s which

old
d-

integer:

il
antiated

.

2.8  Class Parameters

We will briefly describe simple parametrized classes here so that they may be used in ex
through the rest of the text.  For a full description of parametrized classes, please see the ch
Parametrized Classes.

A Sather class may have various type parameters, which are basically place holders for type
are specified  when the class is actually used.   This allows us to write code that isgeneric and can
be used with a different types.  By convention, these type parameters are given names likeT or TP.
We show below a classTUP, which holds pairs of objects.  Since we would like to be able to h
objects of any types, we just specify type parameters,T1 andT2.  These  parameters are  place-hol
ers, which must be set to actual honest-to-goodness concrete classes when theTUP is actually used

We can now create a tuple object that holds, for instance, a pair consisting of a string and an 

2.8.1   Arrays

A standard  parametrized class  is the array class,ARRAY{T}.  Arrays are explained in more deta
on page 85.  When an array is actually used to hold objects, the type parameter must be inst
to indicate the kind of objects being held.

For example, arrays are used to pass in the arguments to a program into the main procedure

class TUP{T1,T2} is
 -- Simple version of the library tuple class

   attr t1:T1;
   attr t2:T2;
   create(t1:T1, t2:T2): SAME is
      --  Standard create routine. Arguments use the type parameters
      res ::= new; -- Using static type inference - new returns SAME
      res.t1 := t1; -- The types of res.t1 and the argument t1
                    -- are both T1 so the assignment is legal
      res.t2 := t2;
      return res;
   end;
end;

t ::= #TUP{INT,STR}(5,"this"); -- Create a new tuple.
-- Uses ::= to determine the type of ’t’
#OUT + t.t1 + "\n";

a:ARRAY{INT} := |2,5,7|;
-- Special syntax for initializing an array with values 2,5,7
#OUT+a[1];  -- Return the second element of the array

main(args:ARRAY{STR})  is
#OUT+args[0];     -- On unix, args[0] is the name of the program

end;



36 Classes and Objects : 2.9 Command line arguments

ify your

 of a

 object-
We can hold a collection of points using an array, as follows

2.9  Command line arguments

It is very easy to access command line arguments from within a Sather program.  Just spec
main routine with an argument of type ARRAY{STR}.

If the preceeding program is in a file ’foo.sa’ it can be compiled:

and then run as follows:5

2.10  A Running Example: Employees

We will illustrate the points made above by using a simple example, which will be something
running example to be extended in later chapters.  We will start here by defining a class ’EMPLOY-
EE’.  Please bear in mind that this example is used to illustrate various language features,  not
oriented design.

5.  A string can be converted to an INT or a float by using the STR_CURSOR class as follows:
a: STR := "5";

 b:INT := a.cursor.int;

a:ARRAY{POINT} := #(3);
a[0] := #POINT(0.0,0.0);
a[1] := #POINT(0.0,1.0);
a[2] := #POINT(2.0,2.0);

class MAIN is
    main(args: ARRAY{STR}) is
      #OUT+"Program name is:"+args[0]+"\n";
      #OUT+"First argument:"+args[1]+"\n";
      #OUT+"Second argument:"+args[2]+"\n";
      #OUT+"Number of arguments:"+(args.size-1)+"\n";
    end;
end;

cs foo.sa -o foo

>./foo this that 1
Program name is:foo
First argument:this
Second argument:that
Number of arguments:3



Classes and Objects : 2.10 A Running Example: Employees 37

egrees

 ex-

to look
,

EMPLOYEE definition

The class is composed of several attributes which hold the employee information. Various d
of privacy are illustrated

Note the use of the special typeSAME as the return type of thecreate routine, which denotes the
current class name.SAME changes to mean the including class when it is included, as will be
plained in the next chapter on code inclusion.

TESTEMP definition

The employee class may be exercised using the following main class.

Note that the following calls would be illegal:

A distinguished class must be specified when a Sather program is compiled (the default is 
for a class calledMAIN). This class must define a routine named‘main’. When the program executes
an object of the specified type is created and ‘main’ is called on it.

class EMPLOYEE is

   private attr wage:INT;
   readonly attr name:STR;
   attr id:INT;
   const high_salary:INT := 40000;

   create(a_name:STR, a_id:INT, a_wage:INT):SAME is
     res ::= new;
     res.id := a_id;
     res.name := a_name;
     res.wage := a_wage;
     return(res);
    end;

   highly_paid:BOOL is   return wage >= high_salary;   end;
end;

class TESTEMP is

   main is
     john:EMPLOYEE := #EMPLOYEE("John",100,10000);
     peter:EMPLOYEE := #EMPLOYEE("Peter",3,10000);
     john.id := 100; -- Set the attr "id" in john to 100
     #OUT+ john.name+"\n"; -- Prints "John"
     #OUT+ peter.id+"\n"; -- Prints "3"
   end;
end;

#OUT+john.wage+"\n";     -- ILLEGAL! "wage" is private
john.name := "martha";   -- ILLEGAL! "name" is readonly.



38 Classes and Objects : 2.11 Summary of Idioms

p’

ding a
Running the example

To run the above example - type the code into a file emp.sa and then run the executable ’em

cs emp.sa -main TESTEMP -o emp

This generates the executable "emp", using the "main" routine inTESTEMP as its starting point. You
can browse the resulting code by calling

bs emp.sa -main TESTEMP

2.11  Summary of Idioms

The table below is a brief reference to some of  the idioms that you might encounter in rea
typical Sather program and what they mean

a<b, a=b, a>b, a>=b, a<=b, a*b, a/b, a-b, a+b,
~a, -a

Please see Operator Redefinition on page 95

Square brackets as in  a[3] := 5 or  b := a[5]; Shorthands for the routines ’aset’ and ’aget’ in ’a’.

a ::= b.foo; Declare ’a’ to be of the same type as the return value of the
function ’foo’. Assign ’a’ to this return value. See
Section 2.7 on page 33

a ::= #FOO(b); Declare ’a’ to be of type ’FOO’. Call FOO::create(b) and
assign the result to ’a’.

a:FOO := #(b); Declare ’a’ to be of type ’FOO’. Call FOO::create(b) and
assign the result to ’a’

a:ARRAY{INT};  a := |1,2,3|; Create an array of integers with the three elements
specified. Assign the result to ’a’

class FOO{T < $BAR{T}} <  $SKY > $BOG is
...

Declare a new parametrized class FOO, with the single
formal parameter T, with a type bound of $BAR{T}. The
class is a subtype of the abstract class $SKY and a
supertype of the class $BOG.

a:ITER{BOOL}:INT, b:ROUT{FLT}:INT Declare ’a’ to be an iterator closure that takes an argument
of type BOOL and yields an INT.  Declare ’b’ to be a
routine closure that takes an argument of type FLT and
returns an INT.

SAME The type of the current object.

new Allocate space for a new object of the current class. Can
only be called within the class. Usually called using the
idiom  ’ create: SAME is  res:SAME := new; ...’



Loops and Iterators : 3.1 Using iterators 39

structs
thing
nstructs
nvenient-

e loop
he en-

with an

e state
ith the

e caller

er-
tor call
subse-
l calls
lly en-
or be-
alls is
rator
Loops and Iterators

Sather’s simplest iterating constructs are while! and until!.  These are similar to the loop con
found in other languages, aside from the terminal ’!’. However, that terminal ’!’ hides some
very special about these loop constructs in Sather; a programmer can define such looping co
as easily as he or she could define a standard routine.  Once defined, they may be used as co
ly as the while! and until! iterators.

To a first approximation, iterators are like streams that can "yield" different values on successiv
iterations. When an iterator has no more values to yield, it "quit"s.  This,  in turn, terminates t
closing loop.

Iterators are defined as class features, just like routines, but iterator names must terminate 
’!’. When an iterator is called, it executes the statements in its body in order. If it executes ayield
statement, control is returned to the caller. In this, the iterator is similar to a coroutine whos
remains persistent over multiple calls.  Subsequent calls on the iterator resume execution w
statement following theyield  statement. If an iterator executesquit  or reaches the end of its
body, control passes immediately to the end of the innermost enclosing loop statement in th
and no value is returned.

3.1  Using iterators

3.1.1  loop statements

Iteration is done withloop statements, used in conjunction with iterator calls. In the absence of it
ator calls, a loop statement simply executes an infinite loop.  The difference between an itera
and a routine call is that the iterator call "remembers" its state after it yields a value and, on 
quent calls, it simply resumes execution.  The "lifetime" of an iterator usually includes severa
within a particular loop.  Hence, an execution state is maintained for each iterator call textua
closed within a loop - this execution state will be used to "remember"  the state of  the iterat
tween invocations. When a loop is entered, the execution state of all enclosed iterator c
initialized. When an iterator is encountered, control is transferred to the iterator until the ite



40 Loops and Iterators : 3.1 Using iterators

rovide

which

ibility
es, and

 of

ch itera-

y yield
h

ubble
o order
"yields" control.  Just as a routine may provide a value when it returns, so too an iterator may p
a value when it yields.

Instead of yielding control back to the enclosing loop, an iterator may also terminate or quit, 
terminates the enclosing loop.

Note that each loop may contain more than one iterator call, thus providing much more flex
than conventional languages.  When any of the iterators terminates, the whole loop terminat
execution continues at the next statement after the loop.

3.1.2   Built-in iterators

Theuntil! , while! andbreak! iterators are built-in.  They have the standard definitions
until, while and break in other languages and may occur anywhere in the loop body.while! ex-
pressions are iterator calls which take a single boolean argument that is re-evaluated on ea
tion. They yield when the argument is true and quit when it is false.until! expressions are
iterator calls which take a single boolean argument that is re-evaluated on each iteration. The
when the argument is false and quit when it is true. break!  expressions are iterator calls whic
immediately quit when they are called.

Thebreak! iterator can be used to terminate a loop at any time. We illustrate this with the b
sort routine show below, which terminates the first time a pass through the data occurs with n
change.

sum: INT := 0;
loop sum := sum + 1.upto!(10); end;
#OUT + sum + ’\n’; -- Prints sum of integers from 1 to 10

sum:INT := 0; i: INT := 0;
loop while!(i < 5);
   sum := sum + i;
   i := i + 1;
end;
#OUT+ "Sum="+sum+’\n’;          -- Prints out Sum=10

bubble_sort(a:ARRAY{INT}) is
   loop
     done: BOOL := true;
     i:INT := 0;  -- Loop until the "break!" is encountered
     loop until!(i = (a.size-2));
        if a[i] > a[i+1] then
          done := false
          swap(inout a[i], inout a[i+1]);
       end;
       i := i + 1;
     end;
     if done then break!; end;
   end;
end;



Loops and Iterators : 3.1 Using iterators 41

t pro-

les of

rtain

ifies
The ’swap’  routine is as we have described earlier.

Note that the above’bubblesort’ routine could easily be rewritten to only useuntil! .

In addition to the built-in iterators, there are many commonly used iterators in the INT class tha
vide for interation over a range of values.  For instance, the iteratorupto! yileds successive integer
values.

Theupto!  iterator returns successive integers from 10 upto 20, inclusive.  Below, are examp
a few other common iterators

The ’times’ iterator yields a certain number of times.  For iterating over a range with a ce
stride, use the’step’ iterator. The following example counts 11 even numbers starting at 18

The’step_upto!’  iterator is similar, but instead of specifying a number of iterations, it spec
the maxium value to be reached. The following loop is equivalent to the preceeding one.

swap(inout x:INT, inout y:INT) is
   tmp:INT := x; x := y; y := tmp;
end;

sum:INT:= 0; loop sum := sum+ 10.upto!(20); end;

i:INT :== 10; sum:INT := 0;
loop 11.times!; sum := sum + i; i := i + 1; end;

sum: INT := 0;
loop sum := sum + 18.step!(11,2); end;
-- The first argument is the number of iterations, 11 in this case
-- the second argument is the stride

sum: INT := 0;
loop sum := sum + 18.step_upto!(40,2); end;



42 Loops and Iterators : 3.2 Defining Iterators

ontrol
d by a
 two

ed.

ina-

atement
p-
s may
 the
3.2  Defining Iterators

3.2.1 yield statements

Iterator definitions are similar to routine definitions, except that we need to indicate when c
should be transferred back to the calling point.  In a routine, this transfer of control is indicate
return  statement, which terminates the routine.  An iterator, however, can return control in
different ways.  It can either

• Temporarily yield control to the callig point, ready to continue the next time it is encounter
This yield of control is done by ayield statement

• Permanently yield control to the calling loop, terminating the loop in the process. This term
tion of the enclosing loop is achieved by aquit  statemen or by reaching the end of the itera-
tort.

Theyield  must return a value (of the appropriate type), if the iterator has a return value.

This iterator can be used to add up all the numbers in a particular integer range

3.2.2   Explicitly leaving an iterator using quit

When an iterator has yielded as many times as needed, it can either reach the end of it’s st
list or explicitly call a quit statement.quit statements are used to terminate loops and may only a
pear in iterator definitions. No value is returned from an iterator when it quits.   No statement
follow aquit statement in a statement list. The following definition of ’range!’ is equivalent to
preceeding definition:

range!(min, max:INT):INT is
    i:INT := min;
    loop until!(i > max);
        yield i;           --
        i := i + 1;
   end;
end;

sum: INT := 0;  loop sum := sum+range!(1,10); end;

range!(min, max:INT):INT is
    x:INT := min;
    loop if x > max then quit end;
        yield x;
        x := x + 1;
   end;
end;



Loops and Iterators : 3.2 Defining Iterators 43
3.2.3   Control flow within an iterator

The following figures  illustrate the control flow between an interator and its calling loop.

 When the iterator is first called,
control goes into the iterator
and then returns to the outer
loop, when the iterator yields in
step [7]

After the first yield, control
continues in the outer loop until
the iterator is encountered
again in step [11] and control is
again transferred to the iterator,
right after the point of the yield,
in step [12]

The above sequence will con-
tinue until theif statement is
true and  thequit  statement is
encountered in the iterator.
Control is then transferred to
the end of the enclosing loop.
The iterator calling  context
keeps track of the internal state
of the iterator from the last
yield.

[1] sum := 0

[2] loop

[3]   i := range!(1,10)

[8]   sum := sum + i;

    end;

[4] x: INT  := min;

[5] loop

[6]  if x>max then quit end;

[7]  yield x;

     x := x +1;

   end;

range!(min, max: INT): INT is

[10] loop

[11]   i := range!(1,10)

[17]   sum := sum + i;

x: INT  := min;

[14] loop

[15] if x>max then quit end

[16]   yield x;

[12]   x := x +1;

[13] end;

[9] end;

[19] loop

[20]   i := range!(1,10)

       sum := sum + i;

 [26] #OUT + sum+’\n’;

x: INT  := min;

[23] loop

[24]    if x > max then

        yield x;

[21]    x := x +1;

[22] end;

[18] end;
[25]       quit
        end;



44 Loops and Iterators : 3.2 Defining Iterators

e

ssed
it is not
ure that

ition of

call.

he
3.2.4   The once argument mode

One problem with the above definition of’range!’  is that the arguments to the function will b
evaluated each time through the loop. Consider the following loop

This, somewhat silly, example will go into an infinite loop, since the argument’max’  increases
each time through the loop.

Iterator argument arehot by default. This means that the arguments will be re-evaluated and pa
to the iterator each time through the loop. When the arguments to the iterator are constant, 
important whether they are re evaluated or not. However, in many cases it is important to ens
the argument is only evaluated the first time through the loop.

This happens toonce- arguments. Arguments which are marked with the mode  ‘once  are only
evaluated the first time they are encountered during a loop execution.  Thus, the correct defin
the ’range’ iterator is:

Note that’once’ arguments are only marked at the point of definition, not at the point of 
Thus, invoking the loop will look the same as before

The ’self’  parameter (i.e. the object on which the iterator is being called) isalways a once pa-
rameter.

In the above example, though the value of’i’ changes the second time through the loop, t
change is ignored - the first value of’i’ is used.

sum:INT := 0;
max:INT := 5;
loop  sum := sum + range!(3,max);

max := max+2;
end;

range!(once min, once max:INT):INT is
i:INT := min;
loop until!(i > max);

yield i
i := i + 1;

end;
end;

sum:INT := 0; loop sum := sum + range!(3,5); end;

i: INT := 5;
loop #OUT+i.upto!(11)!+’ ’; i:=1; end;
-- The above loop prints out 5 6 7 8 9 10 11



Loops and Iterators : 3.2 Defining Iterators 45

ough

ned

re not
n

The  following more complex example will sum up some of the elements of the first row alth
the variablerow  will contain different rows in consecutive loop iterations.

3.2.5 out and inout argument modes

Yield causes assignment toout  andinout  rguments in the caller i.e. these arguments are assig
each time when the iterator yields..

Which may be used by:

Note that no assignment toout andinout  arguments takes place when an iterator quits.

3.2.6   Argument evaluation in iterators

At a more technical level, when an iterator is first called in a loop, the expressions forself  and for
eachonce  argument are evaluated left to right. Then the expressions for arguments which a
once  (in  or inout  before the call,out  or inout  after the call) are evaluated left to right. O
subsequent calls, only the expressions for arguments which are notonce  are re-evaluated.self
and anyonce  arguments retain their earlier values.

3.2.7    Points to note

Iterator usage

• Iterators may only be called withinloop  statements.

loop -- Sum up some of the elements of the first row!
row := matrix.row!;
sum := sum + row.elt!;

 -- row is only evaluated at the first iteration!
end;

range!(once min, once max:INT, out val:INT) is
i: INT := min;
loop until!(i > max);

val := i;
yield;
i := i + 1;

end;
end;

sum:INT := 0;
loop res:INT;

range2!(3,5, out res);
sum :=  sum + res;

end;
#OUT+sum+’\n’; -- Prints out 12



46 Loops and Iterators : 3.2 Defining Iterators

un-

r itera-

d.

.

d it-

on

ed to
 of

alu-
• once mode arguments are only marked at the point of definition, not at the point of call, 
like out andinout  arguments.out  andinout arguments cannot beonce arguments
as well.

• Each textual instance of an iterator in a loop is distinct. The following loop prints out  [2,2]
[3,3] [4,4] (and not [2,3])

• Not all iterators reach their end or quit - execution may be terminated because some othe
tor in the same loop quits.  See the next point.

• Iterator instances in a conditional statement are evaluated every time they are encountere
The following loop prints out [2,2] [3,2] [4,3] and then is terminated when the first iterator
quits, even though the second iterator is not yet complete

• The expressions forself  and foronce  arguments may not themselves contain iterator calls
(Such iter calls would not be useful anyway, since they would only execute their first itera-
tion.) Thus, the following code is illegal, even though the ’times!’ iterator is a perfectly vali
erator on integers.

•  Iterators may have pre and post conditions, just like routines. They are described in secti
11.2.4 on page 117

• Iterators may call themselves recursively as routines do. As iterators are normally suppos
yield more than once, one should not forget to define a loop within the iterator to catch all
these results.

• If an iterator in complex expression quits, the surrounding expression might not be fully ev
ated.

loop
  a: INT := range!(2,4);
  b: INT := range!(2,4);
  #OUT+ "["+a +","+ b+"] ";
end;

b: INT := 0;
loop a: INT := range!(2,4);
  if a.is_even then  b := range!(2,4); end;
  #OUT+ "["+a +","+ b+"] ";
end;

loop a: INT := range!(3,4).times!; end;

class BINARY_TREE is
   attr left,right: SAME; -- subtrees
   attr data: INT;
   elt!: INT is
     if void(self) then quit end;
     yield data;
     loop yield left.elt! end; -- yield data in the left subtree.
     loop yield right.elt! end;
    end;
end;

loop  #OUT + "(" + c.elt! + ")\n"  end;



Loops and Iterators : 3.3 Iterator Examples 47

tor de-

have

ection
When the iterator elt! terminates the surrounding loop, an opening bracket has al-
ready been printed. The expression producing the matching closing bracket will not
be evaluated, hence the algorithm will always print a bogus closing bracket in the be-
ginning. The standard solution looks as follows:

The extra paratheses force the whole line to be evaluated first. As this evaluation will
be aborted by the quit of the iterator the printing evaluation will not happen for the
last iterator call.

Iterator definitions

• Iterator names always end with an exclamation mark ‘! ’.

• Yield is not permitted within a protect statement (see the Chapter on Exceptions)

• Iterators enjoy the same access options as routines. Just as with routine definitions, itera
finintions may be marked private.

• Iterator overloading and conformance rules are the same as those for routines.

• An iter argument may have only one mode. Thus, it is neither possible nor meaningful to 
’once inout ’ or ’once out ’ arguments.

3.3 Iterator Examples

Some of the following examples make use of arrays, which have been briefly introduced in s
2.8.1 on page 35.

Because they are so useful, the ‘while! ’, ‘ until! ’ and ‘break! ’ iterators are built into the lan-
guage.  Here’s how ‘while! ’ could be written if it were not a primitive

loop #OUT + ( "(" + c.elt! + ")\n" ); end;

while!(pred:BOOL) is
-- Yields as long as ‘pred’ is true

   loop
      if pred then
           yield
      else
           quit
      end
    end
end.



48 Loops and Iterators : 3.3 Iterator Examples

e

 strings,
e con-

 to in-
is a con-
The built-in class ‘INT ’ defines some useful iterators.  Here’s the definition of ‘upto! ’.  Unlike the
argument ‘pred ’ used above, ‘i ’ here is declared to be ‘once ’; when ‘upto! ’ is called, the argu-
ment is only evaluated once, the first time the iterator is called in the loop.

To add up the integers 1 through 10, one might say

Or, using the library iterator ‘sum! ’ like this.  ‘x ’ needs to be declared (but not initialized) outsid
the loop, so its value is available after the loop terminates.

Some of the most common uses of iters are with container objects.  Arrays, lists, sets, trees,
and vectors all have iterators to yield all their elements.  Here we print all the elements of som
tainer ‘a’

This doubles the elements of array ‘a’

This computes the dot product of two vectors ‘a’ and ‘b’.  There is also a built-in method ‘dot ’ to
do this.  ‘x ’ needs to be declared (but not initialized) before the loop.

Separating elements of a list

When printing out the elements of a container, or other kinds of lists, it is usually appropriate
sert a separator between all the elements (but, of course, not after the last element).  There 
venient iterator in the string class that does exactly this:.

upto!(once i:SAME):SAME is
-- Yield successive integers from self to `i' inclusive.
r::=self;
loop

until!(r>i);
yield r;
r:=r+1

end
end;

sum: INT := 0; loop sum := sum + 1.upto!(10) end

x: INT; loop x:=INT::sum!(1.upto!(10)) end

a: ARRAY{INT} := |1,2,7|;
loop #OUT + a.elt!.str + ’\n’  end

loop a.set!(a.elt! * 2) end

loop x:=sum!(a.elt! * b.elt!) end

a: ARRAY{INT} := |1,2,3|;
loop #OUT +  ",".separate!(a.elt!.str); end;
-- Prints out 1,2,3



Loops and Iterators : 3.3 Iterator Examples 49

ts of
terator

he
Theseparate!  iterator is called on the string which you wish to use to separate componen
the list.  In this case, the list elements will be separated by a comma. The definition of this i
is as shown below

Note that the argument to the iterator is not aonce  argument, and will be evaluated each time t
iterator is called.

class STR is
  ...
  separate!(s: STR): STR is

-- On the first iteration just outputs `s', on later iterations
     -- it outputs self followed by `s'.
     yield s.str; loop yield self + s.str end
  end;



50 Loops and Iterators : 3.3 Iterator Examples



Code Inclusion and Partial Classes : 4.1 Include Clauses 51

xisting
ncepts
eal with
 this as

atures

ss . In-
s, we
Code Inclusion and
Partial Classes

Object oriented languages usually support the derivation of new classes by inheriting from e
classes and modifying them.  In Sather, the notion of inheritance is split into two separate co
- type relations between classes and code relations between classes.  In this chapter we will d
the latter (and simpler) concept, that of reusing the code of one class in another.  We refer to
implementation inheritance or code inclusion.

4.1  Include Clauses

The re-use of code from one class in another class is defined byinclude clauses. These cause the in-
corporation of the implementation of the specified class, possibly undefining or renaming fe
with feature modifier clauses. Theinclude  clause may begin with the keyword ‘private ’, in
which case any unmodified included feature is made private.

Code inclusion permits the re-use of code from a parent concrete class in child concrete cla
cluding code is a purely syntactic operation in Sather.  To help illustrate the following example
repeat the interface ofEMPLOYEEfrom page 37.

include A a->b, c->, d->private d;
private include D e->readonly f;

class EMPLOYEE is
private attr wage:INT;
readonly attr name:STR;
attr id:INT;
const high_salary:INT := 40000;

create(a_name:STR, a_id:INT, a_wage:INT):SAME is ...

highly_paid:BOOL is ...
end;



52 Code Inclusion and Partial Classes : 4.1 Include Clauses

cluded

w) and

rtran

g  in-
 types

lues of
Routines that are redefined in the child class over-ride the corresponding routines in the in
class. For instance suppose we define a new kind ofEMPLOYEE- aMANAGER, who has a number
of subordinates.

See the EMPLOYEE definition on page 37.  The create routine  of theMANAGER class extends the
EMPLOYEE create routine, which has been renamed to oldcreate (renaming is explained belo
is called by the new create routine.

Points to Note

• The order of inclusion is not significant and cannot affect conflicts.

• External classes may be included if the interface to the language permits this; external Fo
and C classes may not be included.

• Immutable (see page 99) and reference classes cannot be mixed into a single class durin
clusion. In the case of arrays (see page 85), there cannot be include paths from reference
to AVAL or from immutable types toAREF i.e. reference types cannot include an immutable
array portion and immutable classes cannot include a reference array portion.

• There must be no cycle of classes such that each class includes the next, ignoring the va
any type parameters.

class MANAGER is
include EMPLOYEE

create->private oldcreate;
-- Include employee code and rename create to ’oldcreate’

readonly attr numsubordinates:INT; -- Public attribute

create(aname:STR, aid:INT,awage:INT,nsubs:INT):SAME is
-- Create a new manager with the name ‘aname’

   -- and the id ‘aid’ and number of subordinates = ‘nsubs’
res ::= oldcreate(aname,aid,awage);
res.numsubordinates := nsubs;
return res;

end;
end;

class A is include B;...
class B is include  C;...
class C is include A; ..



Code Inclusion and Partial Classes : 4.1 Include Clauses 53

 as

e to in-

is is

em in-

ual

ature
•  If SAME occurs in included code  it is interpreted as the eventual type of the class (as late
possible).  We make use of this fact every time we include a create routine that returnsSAME

4.1.1   Renaming

The include clause may selectively rename some of the included features.  It is also possibl
clude a class and make all routines private, or some selectively public

If no clause follows the ‘-> ’ symbol, then the named features are not included in the class.  Th
equivalent to ’undefining’ the routine or attribute.

Points to note

• All overloaded features must be renamed at the same time - there is no way to specify th
dividually.

• A public routine can be made private by either a private include or by renaming the individ
routine to be private

• In a private include, renaming a particular feature has the effect of making just that one fe
public. For instance

class  FOO is
create:SAME is  return new; end;

class SON_OF_FOO is
include FOO;
-- Since create returns SAME, we have create:SON_OF_FOO;

class GRANDSON_OF_FOO is
include SON_OF_FOO; -- Now we have create:GRANDSON_OF_FOO;

a ::= #GRANDSON_OF_FOO; -- Calls GRANDSON_OF_FOO::create:SAME,
-- which returns a GRANDSON_OF_FOO.

class MANAGER is
private include EMPLOYEE;
-- All included features are made private

class MANAGER is
private include EMPLOYEE  id->id;
-- Makes the "id" routine public and others stay private

class MANAGER is
include EMPLOYEE  id->; -- Undefine the "id" routine
attr id:MANAGER_ID; -- This ’ id’ has a different type

class MANAGER is
    include EMPLOYEE id->private id;

-- Renames both reader and writer routines of the attribute ’id’

class MANAGER is
private include EMPLOYEE

name->name; -- only ’name’ is made public



54 Code Inclusion and Partial Classes : 4.1 Include Clauses

t mat-
hows a
initial-

 create
• Iterator names may only be renamed as iterator names.

• It is an error if there are no appropriate methods to rename in the included class.

• Both a reader and a writer method must exist if ‘readonly ’ is used in a renaming clause.

4.1.2   Multiple Inclusion

Sather permits inclusion of code from multiple source classes. The order of inclusion does no
ter, but all conflicts between classes must be resolved by renaming. The example below s
common idiom that is used in create routines to permit an including class to call the attribute 
ization routines (by convention, this is frequently called ’init’) of parent classes.

In the above class, the attributes are initialized in theinit  routine. The use of such initialization
routines is a good practice to avoid the problem of assigning attriutes to the "self" object in the
routine (which is void)

The other parent is similarly defined

class I_INTERVAL is
private attr  first, size:INT;
finish:INT is  return first + size - 1 end;
finish(fin:INT) is size := fin - first + 1; end;

...

class LINE_SEGMENT is
include I_INTERVAL

finish->readonly finish;
-- makes private finish(fin:INT)

 -- and leaves public finish:INT;

class PARENT1 is
   attr a:INT;
   create:SAME is  return new.init;  end;
   private init:SAME is a := 42; return self; end;
end;

class PARENT2 is
   attr c:INT;
   create:SAME is return new.init end;
   private init:SAME is c := 72 end;
end;



Code Inclusion and Partial Classes : 4.2 Partial Classes and Stub routines 55

uded

e inter-
lease
ncluded

es, we

 classes.
 are al-

serve a
unim-
 a stub
In the child class, both parents are initialized by calling the initialization routines in the incl
classes

4.1.3   Resolving conflicts

Two methods which are included from different classes may not be able to coexist in the sam
face.  They are said to conflict with each other.  For a full discussion of resolving conflicts, p
see page 78.  We have to first present the general overloading rule, before discussing when i
signatures will conflict and what can then be done about it.

For now, we simply note that if we have  signatures with the same name in two included class
can simply rename one of them away i.e.

4.2  Partial Classes and Stub routines

Partial classes have no associated type and contain code that may only be included by other
Partial classes may not be instantiated: no routine calls from another class into a partial class
lowed, and no variables may be declared in another class of such a type.

A stub feature may only be present in a partial class.  They have no body and are used to re
signature for redefinition by an including class.  If code in a partial class contains calls to an 
plemented method, that method must be explicitly provided as a stub.  The following class is

class DERIVED is
include PARENT1 init-> PARENT_init;
include PARENT2 init-> PARENT2_init; -- Rename init

attr b:INT;

create:SAME is
-- a gets the value 42, b the value 99 and c the value 72

return new.PARENT1_init.PARENT2_init.init
end;

   private init:SAME is b := 99; return self;
end; -- class DERIVED

class FOO is
include BAR bar->; -- eliminate this ’bar’ routine
include BAR2; -- Use the ’bar’ routine from BAR2



56 Code Inclusion and Partial Classes : 4.2 Partial Classes and Stub routines

essage

t out all
a con-

mple,

ariable

f
b

debugging class which checks on the value of a boolean and then prints out a debugging m
(preceeding by the class name of ’self’)

This class can be used by some other class - for instance, a main routine that wants to prin
the arguments to main.  The stub routine ’debug’ must be filled in using either an attribute (
stant, in this case) or a routine.

Points to note

• Partial classes cannot be used to instantiate parameters of a parametrized class. For exa
’ARRAY{DEBUG_MSG}’ would not be legal.

• Create cannot be called on  a partial class, nor can a partial class occur as the type of a v
or attribute.

4.2.1   Mixins: A Prompt Example

This  code demonstrates the use of partial classes.  EachMIXIN  class provides a different way o
prompting the user; each can be combined withCOMPUTE to make a complete program.  The stu

partial class DEBUG_MSG is
stub debug:BOOL;

debug_msg(msg:STR) is
-- Prints out the type of "self" and a debugging message
if not debug then

      -- Don’t print out the message if the debug flag is false
return

end;
type_str:STR;

      -- Declared here since used in both branches of the if
if ~void(self) then

type_id:INT := SYS::tp(self);
        -- SYS::tp will not work if self is void!

type_str:STR := SYS::str_for_tp(type_id);
else

type_str := "VOID SELF";
end;
#OUT+ "Debug in class:"+type_str +" "+ msg+"\n";

end;
end;

class MAIN is
include DEBUG_MSG;

const debug:BOOL := true;           -- Fill in the stub.

main(args:ARRAY{STR}) is
loop arg:STR := args.elt!

debug_msg("Argument:"+arg);    -- Print out the argument
end;

end;
end;



Code Inclusion and Partial Classes : 4.2 Partial Classes and Stub routines 57

Only

 It can

 main
in COMPUTE allows that class to be type checked without needing either mix-in class.  
COMPUTE_A andCOMPUTE_B may actually be instantiated.

This style of code reuse is very flexible because the stub routines can access private data in
COMPUTE.

Now suppose that we have a ’COMPUTE’ class that requires a prompt for some input data. 
leave the prompt routine as a stub, which will later be filled in by some prompt class

We can now create different computation classes by mixing an arbitrary prompt style with the
computation partial class.

partial class PROMPT_STYLE_A is
prompt_user:STR  is

#OUT+">";
return IN::get_str;

end;
end; -- partial class PROMPT_SYTLE_A

partial class PROMPT_STYLE_B is
prompt_user:STR  is

#OUT+"Please enter a command:\n";
return IN::get_str;

 end;
end; -- partial class PROMPT_STYLE_B

partial class COMPUTE is
stub prompt_user:STR;

main is
res ::= prompt_user;
-- Convert it to an integer and do something with it
i:INT := res.cursor.get_int;
#OUT+" I’m going to compute with this number, now:"+i+"\n";
....

end;

end; -- partial class COMPUTE

class COMPUTE_A is
include COMPUTE;
include PROMPT_STYLE_A;

end; -- class COMPUTE_A

class COMPUTE_B is
include COMPUTE;
include PROMPT_STYLE_B;

end; -- class COMPUTE_B



58 Code Inclusion and Partial Classes : 4.2 Partial Classes and Stub routines



Abstract Classes and Subtyping : 5.1 Abstracting over Implementations 59

ust be
ct
 objects
 moti-

a data

 struc-
e first to
ers.

. When
the old
llocate
Abstract Classes and
Subtyping

Abstract class definitions specify interfaces without implementations. Abstract class names m
entirely uppercase and must begin with a dollar sign‘$’  ; this makes it easy to distinguish abstra
type specifications from other types, and may be thought of as a reminder that operations on
of these types might be more expensive since they may involve dynamic dispatch. In order to
vate the notion of abstract classes, we will start by considering different implementations of 
structure.

5.1  Abstracting over Implementations

We will illustrate the need for abstraction by considering the implementation of a classic data
ture, the stack. Objects are removed from a stack such that the last object to be inserted is th
be removed (Last In First Out).  For the sake of simplcity, we will define our stack to hold integ

5.1.1   Implementing a Stack using an Array

The obvious implementation of a stack is using an array and a pointer to the top of the stack
the stack outgrows the original array we allocate, we double the size of the array and copy 
elements over.  This technique is known as amortized doubling and is an efficient way to a
space for a datastructure whose size is not known when it is created.



60 Abstract Classes and Subtyping : 5.1 Abstracting over Implementations

but we

we wish
ion cal-
It would be appropriate to also shrink the array when elements are popped from the stack, 
ignore this complexity for now.

5.1.2   A Stack Calculator

The stack class we defined can now be used in various applications.  For instance, suppose 
to create an calculator using the stack.  This corresponds to a H-P style reverse polish notat

culator (RPN) where you first enter operands and then an operator.

class ARR_STACK is
   private attr elems:ARRAY{INT};
   private attr index:INT; -- Points to the next location to insert

   create:SAME is
     res::=new; res.elems:=#ARRAY{INT}(5); res.index := 0; return res;
   end;

   push(e:INT) is
     if index > elems.size then
         new_elems:ARRAY{INT} := #ARRAY{INT}(index * 2);

 -- copy over the old elements
         loop new_elems.set!(elems.elt!) end;
         elems := new_elems;
     end;
     elems[index] := e;
     index := index + 1;
   end;

   pop:INT is index := index - 1; return elems[index]; end;

   is_empty:INT is return index = 0 end;
end;

class RPN_CALCULATOR is
   private attr stack:ARR_STACK;

   create:SAME is res ::=new; res.stack := #ARR_STACK; return res; end;

   push(e:INT) is stack.push(e) end;

   add:INT is
-- Add the two top two eleemnts

     if stack.is_empty then empty_err; return 0; end;
     arg1:INT := stack.pop;
     if stack.is_empty then empty_err; return 0 end;
     arg2:INT := stack.pop
     return arg1 + arg2;
   end;

   private empty_err is #ERR+"No operands available!" end;
end;



Abstract Classes and Subtyping : 5.1 Abstracting over Implementations 61

ed list

 not very
s could

f stack
 some
re de-
 is
5.1.3   A Linked List Representation of a Stack

An alternative implementation of a stack might make use  of a chain of elements i.e. a link
representation.  Each link in the chain has a pointer to the next element

The whole stack is then constructed using a chain of  element holders

5.1.4   Switching Representations:Polymorphism

Each of these stack implementations has advantages and disadvantages (the trade-offs are
significant in our example, but can be quite considerable in other cases).  Either of these stack
be used in our calculator.  To use the linked list stack we  would need to replaceARR_STACKby
by LINK_STACK. wherever it is used.

It would be nice to be able to write code such that we could transparently replace one kind o
by the other.  If we are to do this, we would need to be able to refer to them indirectly, through
interface which hides which particular implementation we are using.  Interfaces of this sort a
scribed by abstract classes in Sather.   An abstract class that describes the stack abstraction

class STACK_ELEM_HOLDER is
   readonly attr data:INT;
   attr next:INT_STACK_ELEM;
   create(data:INT):SAME is
      res ::= new; res.data := data; res.next := void; return res;
   end;
end;

class LINK_STACK is
    private attr head:STACK_ELEM_HOLDER;
    create:SAME is  res ::= new; return res; end;

    push(e:INT) is
       elem_holder ::= #STACK_ELEM_HOLDER(e);
       elem_holder.ext := head;
       head := elem_holder;
    end;

    pop:INT is
      res:INT := head.data;
      head := head.next;
    end;

    is_empty:BOOL is return void(head) end;
end;

abstract class $STACK is
   create:SAME;
   push(e:INT);
   pop:INT;
   is_empty:BOOL;
end;



62 Abstract Classes and Subtyping : 5.2 Abstract Class Definitions

 they are
ction.

 the

y im-
tack

s. Each
ument

on the
ture.

ce
 be of
s. How
ction.
Note that the interface just specifies the operations on the stack, and says nothing about how
implemented.  We have to then specify how our two implementations conform to this abstra
This is indicated in the definition of our implementations.  More details on this will follow in
sections below.

The calculator class can then be written as follows

In this modified calculator, we provide a stack of our choice when creating the calculator.  An
plementation that conforms to our stack abstraction my be used in place of the array based s

5.2  Abstract Class Definitions

 The body of an abstract class definition consists of a semicolon separated list of   signature
specifies the signature of a method without providing an implementation at that point. The arg
names are required for documentation purposes only and are ignored.

 Due to the rules of subtyping, which will be introduced on page 67, there is one restriction 
signatures -SAME is permitted only for a return type or out arguments in an abstract class signa

Abstract types can never be created! Unlike concrete classes,  they merely specify an interfa
to an object, not an object itself. All you can do with an abstract type is to declare a variable to
that type. Such a variable can point to any actual object which is a subtype of that abstract clas
we determine what objects such an abstract variable can point to is the subject of the next se

Note that we can,  of course, provide a create routine in the abstract class

class ARR_STACK < $STACK is ... same definition as before ...

class LINK_STACK < $STACK is ... same definition as before ...

class RPN_CALCULATOR is
   private attr stack:$STACK;
   create(s:$STACK):SAME is res::= new; res.stack:=s; return res; end;

   ... ’add’ and ’push’ behave the same
end;

s:LINK_STACK := #LINK_STACK;
calc:RPN_CALCULATOR := #RPN_CAlCULATOR(s);
calc.push(3);  calc.push(5);
#OUT+calc.add;  -- Prints out 8

abstract class $SHIPPING_CRATE  is
destination:$LOCATION;
weight:FLT;

end; -- abstract class $SHIPPING_CRATE

abstract class $SHIPPING_CRATE is
create:SAME; ...



Abstract Classes and Subtyping : 5.2 Abstract Class Definitions 63

s pro-

nts, such

tract

s

However,  we can never call this creation routine on a void abstract class i.e. the following  i
hibited

crate:$SHIPPING_CRATE := #$SHIPPING_CRATE; -- ILLEGAL

In fact, all class calls (:: calls) are prohibited on abstract classes

f:FLT := $SHIPPING_CRATE::weight;  -- ILLEGAL

Since abstract classes do not define objects, and do not contain shared attributes or consta
calls on the class are not meaningful.

Example: An abstract employee

$EMPLOYEE illustrates an abstract type. EMPLOYEE and MANAGER are subtypes. Abstract type
definitions specify interfaces without implementations.. Below, we will illustrate how the abs
type may be used.

This abstract type definition merely states that any employee must have a name and an id.

 More abstract class examples

Here’s an example from the standard library.  The abstract class$STR  represents the set of type
that have a way to construct a string suitable for output.  All of the standard types such asINT , FLT,
BOOL andCPX know how to do this, so they are subtypes of$STR. Attempting to subtype from
$STR a concrete class that didn’t provide  astr  method would cause an error at compile time.

abstract class $EMPLOYEE is
-- Definition of an abstract type.  Any concrete class that
-- subtypes from this abstract class must provide these routines.
name:STR;
id:INT;

end;

abstract class $STR is
-- Ensures that subtypes have a ’str’ routine
str:STR; -- Return a string form of the object

end;



64 Abstract Classes and Subtyping : 5.3 Subtyping

use are

se in-

ing

 next,

er types
es intro-
btyping
th cross
5.3   Subtyping

As promised, here is the other half of inheritance, subtyping. A subtyping clause (‘<’  followed by
type specifiers) indicates that the  abstract signatures of all types listed in the subtyping cla
included in the interface of the type being defined.  In the example, the subtyping clause is

abstract class $SHIPPING_CRATE< $CRATE is ...

 The interface of an abstract type consists of any explicitly specified signatures along with tho
troduced by the subtyping clause.

Points to note about  subtyping:

• Every type is automatically a subtype of$OB

• Only abstract types can be mentioned in the subtyping clause

• When a subtyping clause is used in a partial class, it enforces the basic subtyping rule us
the stub routine.

• There must be no cycle of abstract types such that each appears in the subtype list of the
ignoring the values of any type parameters but not their number.

•  A subtyping clause may not refer toSAME.

• SAME is only permitted as a return type or onout arguments in abstract class signatures.

5.3.1   The Type Graph

We frequently refer to the Sather type graph, which is a graph whose nodes represent Sath
and whose edges represent subtyping relationships between sather types. Subtyping claus
duce edges into  the type graph.  There is an edge in the type graph from each type in the su
clause to the type being defined.   The type graph is acyclic, and may be viewed as a  tree wi
edges (the root of the tree is$OB, which is an implicit supertype of all other types).

abstract class $TRANSPORT is ...
abstract class $FAST is ...
abstract class $ROAD_TRANSPORT < $TRANSPORT is ...
abstract class $AIR_TRANSPORT < $TRANSPORT, $FAST is ...
class CAR < $ROAD_TRANSPORT is ...
class DC10 < $AIR_TRANSPORT is ...



Abstract Classes and Subtyping : 5.3 Subtyping 65

l class),

e a vari-
rts dy-
hed to

act em-
nd
Since it  is never possible to subtype from a concrete class (a reference, immutable or externa
these classes,  CAR and DC10  form the leaf nodes of the type graph.

5.3.2   Dynamic Dispatch and  Subtyping

Once we have introduced a typing relationship between a parent and a child class, we can us
able of the type of the parent class to hold an object with the type of the child. Sather suppo
namic dispatch - when a function is called on a variable of an abstract type, it will be dispatc
the type of the object actually held by the variable.  Thus, subtyping provides polymorphism.

An example: Generalizing Employees

To illustrate the use of dispatching, let us consider a system in which variables denote abstr
ployees which can be eitherMANAGER or EMPLOYEE objects. Recall the defintions of manager a
employee

class EMPLOYEE < $EMPLOYEE is ...
-- Employee, as defined earlier

class MANAGER < $EMPLOYEE is ...
-- Manager as defined earlier on page 36

$TRANSPORT

$ROAD_TRANSPORT $AIR_TRANSPORT

CAR DC10

$FAST

$OB (implicit supertype of all classes)



66 Abstract Classes and Subtyping : 5.4 Supertyping

less of

 manag-
es. The
ll

e types
e
e speci-
) or ex-

supertype
clause

must be
s. This
rom the
lready

cannot
The above defintions can then be used to write code that deals with any employee, regard
whether it is a manager or not

The main program shows that we can create an array that holds either regular employees or
ers. We can then perform any action on this array that is applicable to both types of employe
wage routine is said to bedispatched . At compile time, we don’t know which wage routine wi
be called. At run time, the actual class of the object held by theemp variable is determined and the
wage routine in that class is called.

5.4  Supertyping

Unlike most other object oriented languages, Sather also allows the programmer to introduc
above an existing class. A supertyping clause (‘>’  followed by type specifiers) adds to the typ
graph an edge from the type being defined to each type in the supertyping clause. These typ
fiers may not be type parameters (though they may include type parameters as components
ternal types. There must be no cycle of abstract classes such that each class appears in the 
list of the next, ignoring the values of any type parameters but not their number. A supertyping 
may not refer toSAME.

If both subtyping and supertyping clauses are present, then each type in the supertyping list 
a subtype of each type in the subtyping list using only edges introduced by subtyping clause
ensures that the subtype relationship can be tested by examining only definitions reachable f
two types in question, and that errors of supertyping are localized.You define supertypes of a
existing types. The supertype can only contain routines that are found in the subtype i.e. it 
extend the interface of the subtype.

class TESTEMPLOYEE is
main is

employees:ARRAY{$EMPLOYEE} := #ARRAY{$EMPLOYEE}(3);
-- employees is a 3 element array of employees
i:INT := 0; wage:INT := 0;
loop until!(i = employees.size);

emp:$EMPLOYEE := employees[i];
emp_wage:INT := emp.wage;
-- emp.wage is a dispatched call on "’age’
wage := wage+emp_wage;

end;
#OUT+wage+"\n";

end;
end;

 abstract class $IS_EMPTY > $LIST, $SET is
    is_empty:BOOL;
  end;



Abstract Classes and Subtyping : 5.5 Type Conformance 67

es, and

 wheth-
 consis-
he code
mpile

defini-

for ar-

e

5.4.1   Using supertyping

The main use of supertyping arises in defining appropriate type bounds for parametrized class
will be discussed in the next chapter (see Supertyping and Type Bounds on page 89).

5.5  Type Conformance

In order for a child class to legally subtype from a parent abstract class, we have to determine
er the signatures in the child class are consistent with the signatures in the parent class. The
tency check must ensure that in any code, if the parent class is replaced by the child class, t
would continue to work.  This guarantee of substuitability which is guaranteed to be safe at co
time is at the heart of the Sather guarantee of type-safety.

5.5.1   Contravariant conformance

The type-safe rule for determining whether a signature in a child class is consistent with the 
tion of the signature in the parent class is referred to as the  conformance rule1. The  rule is quite
simple, but counter-intuitive at first.   Assume the simple abstract classes  which we will use 
gument types

If we now have an abstract class with a signature

What are the arguments types  offoo in a subytpe of$SUPER?  The rule says that  in the subtyp
definition of foo

• Normal arguments (with the modein ) must have the same type  or a supertypes

• out arguments and return values must have the same type or a subtype

• inout  arguments must have the same type

1.  Frequently called the contravariant conformance rule to distinguish it from the more restrictive C++ rule of
invariance and the unsafe Eiffel rule (of covariance in the argument types).  Hence, the  co- vs. contra variance
debate just refers to the behavior of the argument types

abstract class $UPPER is ...
abstract class $MIDDLE < $UPPER is...
abstract class $LOWER < $MIDDLE is ...

abstract class $SUPER is
foo(a1:$MIDDLE, out a2:$MIDDLE, inout a3:$MIDDLE):$MIDDLE;

end;



68 Abstract Classes and Subtyping : 5.5 Type Conformance
Thus, a valid subtype of$SUPER is

We will explain this rule and its ramifications using an extended example.

Suppose we start with herbivores and carnivores, each of which are capable of eating

What does not work

It would appear that both herbivores and carnivores could be subtypes of omnivores.

However,subtyping  conformance  will not permit this!  The argument to eat in$HERBIVORE
is $PLANT which is not the same as or a supertype of$FOOD, the argument to eat in$OMNIVORE.

 To illustrate this, consider a variable of type$OMNIVORE, which holds a herbivore.

abstract class $SUPER is
foo(a1:$MIDDLE, out a2:$MIDDLE, inout a3:$MIDDLE):$MIDDLE;

end;

abstract class $HERBIVORE is
eat(food:$PLANT);

abstract class $CARNIVORE is
eat(food:$MEAT);

abstract class $FOOD is ...
abstract class $PLANT < $FOOD
is...
abstract class $MEAT < $FOOD
is...

abstract class $OMNIVORE is eat(food:$FOOD);
abstract class $CARNIVORE < $OMNIVORE is ..
abstract class $HERBIVORE < $OMNIVORE is ...

cow:$HERBIVORE := -- assigned to a COW object
animal:$OMNIVORE := cow;
meat:$MEAT;
animal.eat(meat);

$FOOD

$MEAT $PLANT

$HERBIVORE
     eat($PLANT)

$CARNIVORE
     eat($MEAT)



Abstract Classes and Subtyping : 5.5 Type Conformance 69

ure of
s

an ex-
res are

at any-
, true

de
 work
-

nt con-
This last call would try to feed the animal meat, which is quite legal according to the signat
$OMNIVORE::eat($FOOD) , since$MEAT is a subtype of$FOOD.  However, the animal happen
to be a cow, which is a herbivore and cannot eat meat.

What does work

When contravariance does not permit a subtyping relationship this is usually an indication of 
ceptional case or an error in our conceptual understanding.  In this case, we note that omnivo
creatures that can eat anything.  But a herbivore really is not an omnivore,  since it cannot e
thing.  More importantly, a herbivore could not be substuted for an omnivore.  It is, however
that an omnivore can act as both a carnivore and a herbivore.

The argument of eat in the omnivore is$FOOD, which is a supertype of$MEAT, the argument of eat
in $CARNIVORE. $FOOD is also a supertype of$PLANT which is the argument of eat in$HER-
BIVORE.

5.5.2   Subtyping = substitutability

A key distinction is that between is-a and as-a relationships.  When a class, say$OMNIVORE sub-
types from another class such as$CARNIVORE, it means that an omnivore can be used in any co
which deals with carnivores i.e. an omnivore can substitute for a carnivore.   In order for this to
properly, the child class omnivore must be able to behaveas-a carnivore.  In many cases, an is-a re
lationship does not satisfy the constraints required by the as-a relationship. The contravaria
formance rule captures the necessary as-a relationship between a subtype and a supertype.

abstract class $CARNIVORE is   eat(food:$MEAT); ...
abstract class $HERBIVORE is   eat(food:$PLANT);...
abstract class $OMNIVORE < $HERBIVORE, $CARNIVORE is

 eat(food:$FOOD); ...

$CARNIVORE::eat($MEAT) $HERBIVORE::eat($PLANT)

$OMNIVORE::eat($FOOD)

$FOOD

$MEAT $PLANT

$HERBIVORE::eat($PLANT)$CARNIVORE::eat($MEAT)

$OMNIVORE::eat($FOOD)



70 Abstract Classes and Subtyping : 5.6 The typecase statement

e actual
ht like
r has a

bject

ccessive
e state-
tement

ocal
uld

st
5.6  The typecase statement

It is sometimes necessary to bypass the  abstraction and make use of information about th
type of the object to perform a particular action.  Given  a variable of an abstract type,  we mig
to make use of the actual type of the object it refers to, in order to determine whether it  eithe
particular implementation or supports other abstractions.

The typecase statement provides us with the ability to make use of the actual type of an o
held by a variable of an abstract type.t

The typecase must act on a local variable or an argument of a method.On execution, each su
type specifier is tested for being a supertype of the type of the object held by the variable. Th
ment list following the first matching type specifier is executed and control passes to the sta
following thetypecase .

Points to note

•  It is not legal to assign to thetypecase  variable within the statement lists.

• If the object’s type is not a subtype of any of the type specifiers and anelse  clause is present,
then the statement list following it is executed.

•  It is a fatal error for no branch to match in the absence of anelse  clause.

• If the value of the variable isvoid  when thetypecase  is executed, then its type is taken to
be the declared type of the variable.  In the above example, the declared type ofa  is $OB ,
which does not match any of the branches, so theelse clause is taken

• The variable of the typecase must be a local variable or a method argument.

•  If the typecase  appears in an iterator, then the mode of the argument must either be a l
variable or aonce argument; otherwise, the type of object that such an argument holds co
change.

• The typecase does not search for the branch with the tightest match - it goes down the fir
branch that matches.

a:$OB := 5;
... some other code...
res:STR;
typecase a
when INT then -- ’a’ is of type INT in this branch
     #OUT+"Integer result:"+a;
when FLT then  -- ’a’ is of type FLT in this branch
     #OUT+"Real result:"+a
when $STR then -- ’a’ is $STR and supports ’.str’
      #OUT+"Other printable result:"+a.str;
else
    #OUT+"Non printable result";
end;



Abstract Classes and Subtyping : 5.7 The Overloading Rule 71

pe as
hosen

ral em-

trictive

s.  That
er of

stance

nd se-
• After a branch has been selected, the typecase tries to cast the variable to as narrow a ty
possible - if the declared type of the variable is actually stronger than (a subtype of) the c
branch, then the variable will keep the stronger, declared type.  For instance

Typecase Example

For instance, suppose we want to know the total number of subordinates in an array of gene
ployees.

Within each branch of the typecase, the variable has the type of that branch (or a more res
type, if the declared type of the variable is a subtype of the type of that branch).

5.7  The Overloading Rule

We mentioned an abridged form of the overloading rule in the chapter on Classes and Object
simple overloading rule  was very limited - it only permitted overloading based on the numb
arguments and the presence or absence of a return value. Here, it is generalized.

As a preliminary warning:the  overloading are flexible,  but are intended  to support the coexi
of  multiple functions thathave the same meaning,  but differ in some implementation de-
tail. Calling functions that do different things by the same name is  wrong, unwholesome a
verely frowned upon!  For instance, using the function nametimes  with different number of
arguments to mean ’multiply’ and ’multiply and add’.

a:$SET{INT};
typecase a
when INT then ... -- a will never get here, INT is not < $SET{INT}
when $OB then  ...

-- a has the type of $SET{INT} which is stronger than $OB

peter ::=  #EMPLOYEE("Peter",1); -- Name = "Peter", id = 1
paul  ::=  #MANAGER("Paul",12,10);  -- id = 12,10 subordinates
mary  ::=  #MANAGER("Mary",15,11); -- id = 15,11 subordinates
employees:ARRAY{$EMPLOYEE} := |peter,paul,mary|;
totalsubs:INT := 0;
loop employee:$EMPLOYEE := employees.elt!; -- yields array elements

typecase employee
when MANAGER then

totalsubs := totalsubs + employee.numsubordinates;
else  end;

end;
#OUT+"Number of subordinates:"+totalsubs+"\n";



72 Abstract Classes and Subtyping : 5.7 The Overloading Rule

For in-

e point

, let us

 them-

ral
ing

ed call

le
ily get
5.7.1   Extending Overloading

Overloading based on Concrete Argument Types

 However, we often want to overload a function based on the actual type of the arguments.  
stance, it is common to want to define addition routines (plus ) that work for different types of val-
ues.  In theINT  class, we could define

We can clearly overload based on a the type of the argument if it is a non-abstract class - at th
of the call, the argument can match only one of the overloaded signatures.

Overloading based on Abstract Argument Types

Extending the rule to handle abstract types is not quite as simple. To illustrate the problem
first introduce the$STR abstract class

The$STR absraction indicates that subtypes provide a routine that renders a string version of
selves.  Thus, all the common basic types such asINT ,  BOOL etc. are subtypes of$STR and provide
astr: STR  routine that returns a string representation of themselves.

Now consider the interface to theFILE  class.  In the file class  we would  like to have a gene
purpose routine that appends any old$STR object, by calling the str routine on it and then append
the resulting string.  This allows us to append any subtype of$STR to a file at the cost of a run-time
dispatch. We also want to define more efficient, special case routines (that avoid the dispatch
to the str routine) for common classes, such as integers .

The problem arises at the point of call

Now which plus routine should we invoke? Clearly, both routines are valid, sinceINT  is a subtype
of $STR.  We want thestrongest  ormost specific among the matching methods, (2) in the examp
above.  Though the notion of the most specific routine may be clear in this case, it can eas
murky when there are more arguments and the type graph is more complex.

plus(a:INT):INT is ...
plus(a:FLT):INT is ...

abstract class $STR is
  str:STR;
end;

class FILE is
   -- Standard output class
(1)  plus(s:$STR) is ....
(2)  plus(s:INT) is ...

f:FILE := FILE::open_for_read("myfile");
a:INT := 3;
f+a;



Abstract Classes and Subtyping : 5.7 The Overloading Rule 73

g ex-
se we
 useful,

act and

atch

roblem
ch that

n
r-
have no

rtyping
The Demon of Ambiguity

It is not difficult to construct cases where there is no single most specific routine.  The followin
ample is hypotheical and not from the current Sather library, but illustrates the point. Suppo
had an abstraction for classes that can render a binary versions of themselves.  This might be
for instance, for the floating point classes, where a binary representation may be more comp
reliable than a decimal string version

Now suppose we have the following interface to theFILE  class

Now certain classes, such asFLT could subtype from$BINARY_STR instead of from$STR. Thus,
in the following example, second plus routine would be seletected

Everything is still fine, but suppose we now consider

The plus routine inFILE  cannot be unambiguously called with an argument of typeFLTD i.e. a call
like  ’f+3.0d’  is ambiguous. None of the ’plus’ routines match exactly; (1) and (2) both m
equally well.

The above problem arises because neither (1) nor (2) is more specific than the other - the p
could be solved if we could always impose some ordering on the overloaded methods,  su
there is a most specific method for any call.

We could resolve the above problem by ruling theFILE  class to be illegal, since there is a commo
subtype to both$STR and$BINARY_STR, namelyFLTD.  Thus, a possible rule would be that ove
loading based on abstract arguments is permitted, provided that the  abstract types involved  
subtypes in common.

However, the problem is somewhat worse than this in Sather, since both subtyping and supe
edges can be introduced after the fact.  Thus, if we have the following definition ofFLTD

abstract class $BINARY_PRINTABLE is
   -- Subtypes can provide a binary version of themselves
   binary_str:STR;
end;

class FILE is
(1)  plus(s:$STR) is ..
(2)  plus(s:$BINARY_STR) is ...
(3)  plus(s:INT) is ...

f:FILE;
f+3.0;

class FLTD < $BINARY_STR, $STR is
  binary_str:STR is ... binary version
  str:STR is ... decimal version

class FLTD < $BINARY_STR is
     binary_str:STR is ...
     str:STR is ...



74 Abstract Classes and Subtyping : 5.7 The Overloading Rule

e same

the

his
 of
ype
ou-
re-
cific in

edges

n

anner.
 many
modes is
 as has
utines

uments,
utines

s (in
m the
the file class will work.  However, at a later point, a user can introduce new edges that cause th
ambiguity described above to reappear!

Adding this new class introduces an additional edge into 
type graph and breaks existing code.

The essense of the full-fledged overloading rule avoids t
problem by requiring that the type of the argument in one
the routines must be known to be more specific than the t
of the argument in the corresponding position in the other r
tine. Insisting that a subtyping relationship between cor

sponding arguments must exist, effectively ensures that one of the methods will be more spe
any given context.  Most importantly, this specificity cannot be affected by the addition of new 
to the type graph.  Thus, the following definition of$BINARY_STR would permit the overloading
in theFILE  class to work properly

When the ’plus’  routine is called with a FLTD, the routine
’plus($BINARY_STR)’  is unambiguously more specific tha
’plus($STR)’ .

5.7.2   Permissible overloading

Two signatures (of routines or iterators)  can  overload, if they can be distinguished in some m
The obvious ways to distinguish between two routines at the point of call are by looking at how
arguments each has, whether or not a return type is present and whether one of the marked 
different.  Distinguishing between two routines based on the types of the arguments is trickier,
been described above.  Basically, it is possible to unambiguously distinguish between two ro
based on the argument types, if there is a subtyping relationship between corresponding arg
making one routine more specific than the other for any particular call.  More precisely, two ro
must differ in one of the following ways in order to coexist in a single interface

Overload 1: The presence/absence of a return value

Overload 2: The number of arguments

Overload 3: In at least one case corresponding arguments must have different marked mode
and once modes are not marked at the point of call and are treated as being the same fro
point of view of overloading).

abstract class $BRIDGE_FLTD < $STR > FLTD is end;

abstract class $BINARY_STR < $STR is
    binary_str:STR;
end;

$STR $BINARY_STR

FLTD

$BRIDGE_FLTD

$STR

$BINARY_STR

FLTD



Abstract Classes and Subtyping : 5.7 The Overloading Rule 75

re-
g or-
h, so

ion of
ersa.

 class

ce,  it

he rou-
ing sig-
 Sather
 in the
Overload 4: In at least one of thein, once or inout  argument positions: (a) both types
must be concrete and different or (b) there must be a subtyping relationship between the cor
sponding arguments i.e. one must be more specific than the other. Note that this subtypin
dering between the two arguments cannot be changed by other additions to the type grap
that working libraries cannot be broken by adding new code.

Note that this definition of permissible permissible coexistance  is the converse of the definit
conflict in the specification.  That is, if two signatures cannot coexist, they conflict and vice-v

Given the above definitions of vectors, we can define a multiply and add routine in the matrix

While any of the above  conditions ensures that a pair of routines  can co-exist  in an interfa
still does not describe which one will be chosen during a call.

Finding matching signatures

When the time comes to make a call, some of the coexisting routines will match - these are t
tines whose arguments are supertypes of the argument types in the call.   Among these match
natures, there must be a single most specific signature.  In the example below, we will abuse
notation slightly to demonstrate the types directly, rather than using variables of those types
arguments

abstract class $VEC is ...
abstract class $SPARSE_VEC <  $VEC is ...
abstract class $DENSE_VEC  < $VEC is...

class DENSE_VEC  < $DENSE_VEC is ...
class SPARSE_VEC < $SPARSE_VEC is ....

abstract class $MATRIX is

(1) mul_add(by1:$VEC, add1:$SPARSE_VEC);
(2) mul_add(by2:$DENSE_VEC,  add2:$VEC);
-- (1) and (2) can overload, since the arg types can be ordered

   -- by2:$DENSE_VEC < by1:$VEC,
   -- add2:$VEC       > add1:$SPARSE_VEC

(3) mul_add(by3:DENSE_VEC, add3:SPARSE_VEC);
 -- (3) does not conflict with the (1) and (2) because there

     --     is a subtyping relation between corresponding arguments.
     -- (vs 1) by3:DENSE_VEC    < by1:$VEC ,
     --        add3:SPARSE_VEC < add1:$SPARSE_VEC
     -- (vs 2) by3:DENSE_VEC    < by2:$DENSE_VEC ,
     --        add3:SPARSE_VEC < add2:$VEC

f:$MATRIX;
f.mul_add(DENSE_VEC, SPARSE_VEC); -- Matches (1), (2) and (3)
f.mul_add($DENSE_VEC, $SPARSE_VEC);  -- Matches (1) and (2)
f.mul_add($DENSE_VEC, $DENSE_VEC); -- Matches (2)
f.mul_add($SPARSE_VEC, SPARSE_VEC); -- Matches (1)



76 Abstract Classes and Subtyping : 5.7 The Overloading Rule

ific in

of a ring
Finding a most specific matching signature

For the method call to work, the call must now find an unique signature which is most spec
each argument position

The method call’f.mul_add($DENSE_VEC, $SPARSE_VEC)’  is illegal, since both (1) and
(2) match, but neither is more specific.

More examples

Let us illustrate overloading with some more examples. Consider’foo(a:A, out b:B);’

All the following can co-exist with the above signature

The following cannot be overloaded withfoo(a:A,out b:B):INT;

For another example, this time using abstract classes, consider the mathematical abstraction 
over numbers and integers.  The following can be overloaded with the’plus’  function in a class
which describes the mathematical notion of rings

f:$MATRIX;
f.mul_add(DENSE_VEC, SPARSE_VEC) -- (3) is most specific
f.mul_add($DENSE_VEC, $DENSE_VEC); -- Only one match
f.mul_add($SPARSE_VEC, $SPARSE_VEC); -- Only one match

foo(a:A, out b:B):INT -- Presence return value (Overload 1)
foo(a:A) -- Number of arguments (Overload 2)
foo(a:A, b:B) -- Mode of second argument (Overload 3)
foo(a:B, out b:B) -- Different concrete types in

-- the first argument (Overload 4a)

foo(a:A,b:B):BOOL; -- Same number, types of arguments ,
 -- both have a return type.

-- Difference in actual return type cannot be used to overload

abstract class $RING is
plus(arg:$RING):$RING;

abstract class $INT  < $RING is
plus(arg:$INT):$RING;
--  By Overload 4 since he type of  arg:$INT  < arg:$RING

abstract class $CPX < $RING is
plus(arg:$CPX):$RING;
- - By Overload 4b, since the type of arg:$CPX < arg:$RING



Abstract Classes and Subtyping : 5.7 The Overloading Rule 77

’arg’ to

ement
sacri-
raph

a-vari-
ote is
patch
s since

t multi-
ng ab-

se-

fined is
ese su-
The overloading works because there is a subtyping relationship between the arguments 
’plus’    The following overloading also works

Now there is a subtyping relationship between$INT::mul_add  and$RING::mul_add   for
both ’arg1’  and’arg2’ , but there is no subtyping

This somewhat complex rule permits interesting kinds of overloading that are needed to impl
a kind of statically resolved, type-safe co-variance which is useful in the libraries, while not 
ficing compositionality.  Externally introducing subtyping or supertyping edges into the typeg
cannot suddenly break overloading in a  library.

5.7.3   Overloading as Statically resolved Multi-Methods

For the curious reader,  we  would like to point out  a connection to the issue of co and contr
ance. It was this connection that actually motivated our overloading rules.  The first point to n
that overloading is essentially like statically resolved multi-methods i.e. methods that can dis
on more than one argument.  Overloaded methods are far more restricted than multi-method
the declared type must be used to perform the resolution.  The second point to note is tha
methods can permit safe ’covariance’ of argument types.  For instance, consider the followi
stractions

Note that all the above definitions of the’add’  routines safely overload each other.  As a con
quence, it is possible to provide more specific versions of functions in sub-types.

5.7.4   Conflicts when subtyping

When we described subtyping earlier, we said that the interface of the abstract class being de
augmented by all the signatures of the types in the subtyping clause.  But what if some of th
pertypes contain conflicting signatures?

abstract class $RING is
mul_add(ring_arg1:$RING, ring_arg2:$RING);

abstract class $INT < $RING is
mul_add(int_arg1:$INT, int_arg2:$INT);

-- int_arg1:$INT  < ring_arg:$INT and
  -- int_arg2:$INT < ring_arg2:$INT

abstract class $FIELD_ELEMENT is
  add(f:$FIELD_ELEMENT):$FIELD_ELEMENT;

abstract class $NUMBER < $FIELD_ELEMENT is
  add(f:$NUMBER):$NUMBER

abstract class $INTEGER < $NUMBER is
  add(f:$INTEGER):$INGEGER



78 Abstract Classes and Subtyping : 5.7 The Overloading Rule

ot  co-
ere is a

 you can

at con-
e par-
if the

ethods
an it
It is important to note that a conflict occurs when two signatures are so similar that they cann
exist by the over-loading rules.  This happens when there is not even one argument where th
sub- or supertyping relationship or where both arguments are concrete.   As a consequence,
always construct a signature that ismore general than  the conflicting signatures

In the above example, when we create a more general farm, we must provide a signature th
forms to all the conflicting signatures by generalizing the in arguments.  If  the arguments in th
ent used theout  mode, we would have to use a subtype in the child.  A problem is exposed 
mode of the arguments in the parents isinout

5.7.5   Conflicts during code inclusion

Since Sather permits inclusion from mulitple classes,  conflicts can easily arise between m
from different classes. The resolution of inclusion conflicts is slightly different for attributes th
is for methods, so let us consider them separately.

abstract class $ANIMAL is ...
abstract class  $PIG < $ANIMAL is ...
abstract class $COW  < $ANIMAL is ...
abstract class $COW_FARM is    has(a:$COW);  end;
abstract class $PIG_FARM is    has(a:$PIG);     end;

abstract class $ANIMAL_FARM < $COW_FARM, $PIG_FARM is
-- The signatures for has(a:$COW) and has(a:$PIG) must
-- be generalized

has(a:$ANIMAL);
-- $ANIMAL is a supertype of $COW and $PIG, so this ’has’
-- conforms to both the supertype ’has’ signatures

end;

abstract class $COW_FARM is   processes(inout a:$COW);  end;
abstract class $PIG_FARM is   processes(inout a:$PIG);  end;

-- ILLEGAL! abstract class $ANIMAL_FARM < $COW_FARM, $PIG_FARM is
-- No signature can conform to both the ’processes’ signatures
-- in the $COW_FARM and $PIG_FARM



Abstract Classes and Subtyping : 5.7 The Overloading Rule 79

e is not

 with

y - they
Conflicting Methods

1. First, let us consider the resolution method for routines. Conflicts can occur between
methods in different classes that have been included  and must be resolved by renam-
ing the offending feature in all but one of the included classes.

2. The other way to resolve method conflicts is to explicitly define a method in the child
class that will then over-ride all the parent methods.

Conflicting Attributes

With conflicting attributes (including shareds and consts),  the offending attributesmust be renamed
away, even if they are going to be replaced by  other attributes i.e. Method 2 described abov
allowed for attributes:

Also the implicit reader and writer routines  of attributes defined in the child must not conflict
routines in a parent

In other words, as far as attributes are concerned, they must always be explicitly renamed awa
are never silently over-ridden.

class PARENT1 is  foo(INT):INT;
class PARENT2 is  foo(INT):BOOL; -- conflicts with PARENT1::foo
class PARENT3 is  foo(INT):FLT; -- would similarly conflict

class CHILD is
include PARENT1 foo -> parent1_foo;

-- Include and rename away the routine ’foo’
include PARENT2 foo -> parent2_foo;

-- Include and rename away the routine ’foo’
include PARENT3;

-- Use the routine from this class

class CHILD is
include PARENT1;
include PARENT2;
include PARENT3;

foo(INT):BOOL is
-- over-rides all the included, conflicting routines.

class PARENT is
attr foo:INT;

class CHILD is
foo:BOOL; -- ILLEGAL!
-- Conflicts with the included reader for ’foo’ i.e. foo:INT

class PARENT is
foo(arg:INT);

class CHILD is
include PARENT;
-- ILLEGAL! attr foo:INT;
-- the writer routine foo(INT) conflicts
-- with the writer for the include attribute foo(INT)



80 Abstract Classes and Subtyping : 5.8 When Covariance Ails You

her
ected-

isallow
ficant
g is not
-

. There

tial to

imals.
5.7.6   Points to note

• It is not possible to overload based based solely onout or inout  arguments (by the pre-con-
dition for applying  the overload rule 4a and 4b)

• When a class explicitly defines a signature and includes  a conflicting signature from anot
class, the included signature is over-ridden.  This might lead to included signatures unexp
ly disappearing, instead of overloading.

• In certain special cases, subtyping from two classes with conflicting signatures that useout
or inout arguments might not be possible, since the conflict cannot be resolved.

5.7.7   Overloading in Parametrized Classes

The overloading rule for parametrized classes is discussed on page 92

5.7.8   Why not use the return type to resolve conflicts?

According to the current overloading rules, the type of the return value andout  arguments cannot
be used to differentiate between methods in the interface.  There is no theoretical reason to d
this possibility.   However permitting overloading based on such return values  involves signi
implementation  work and was not needed for the usages we envisaged.  Thus, overloadin
permitted based on differences in the return type (or out  arguments, which are equivalent to re
turn types) of a method

5.8  When Covariance Ails You

In some cases, however, one type can substitute for the other type but with a few exceptions
are several ways to deal with this problem when it occurs.

[This section attempts to provide some insight into dealing with covariance.   It is not essen
understanding the language, but might help in the design of your  type hierarchy.]

5.8.1   But don’t animals eat food?

 We will consider the definition of an animal class, where both herbivores and carnivores are an

abstract class $ANIMAL is   eat(food:$FOOD); ....
abstract class $HERBIVORE < $ANIMAL is...
abstract class $CARNIVORE < $ANIMAL is...



Abstract Classes and Subtyping : 5.8 When Covariance Ails You 81

 to the

l prob-
 though.
 rela-
ionship
able to

 class.
present,
tional"
e pres-

st omit

e an-
cally de-
The problem is similar to that in the previous section, but is different in certain ways that lead
need for different solutions

5.8.2   Solution 1: Refactor the type hierarchy

The ideal solution would be to do what we did in the previous section - realize the conceptua
lem and rearrange the type hierarchy to be more accurate.   There is a difference in this case,
When considering omnivores, the ’eat’ operation was central to the definition of the subtyping
tionship.  In the case of animals, the eat operation is not nearly as central - the subtyping relat
is determined by many other features, completely unrelated to eating.  It would be unreason
force animals to be subtypes of carnivores or herbivores.

5.8.3   Solution 2: Eliminate the offending method

A simple solution would be to determine whether we really need the ’eat’ routine in the animal
In human categories, it appears that higher level categories often contain features that are 
but vary greatly in the sub-categories.  The feature in the higher level category is not "opera
in the sense that it is never used directly with the higher level category.   It merely denotes th
ence of the feature in all sub-categories.

Since we do not know the kind of food a general animal can eat, it may be reasonable to ju
the ’eat’ signature from the definition of $ANIMAL.  We would thus have

5.8.4   Solution 3:  Dynamically Determine the Type

Another solution, that should be adopted with care, is to permit the ’eat($FOOD)’ routine in th
imal class, and define the subclasses to also eat any food.  However, each subclass dynami
termines whether it wants to eat a particular kind of food.

abstract class $ANIMAL is   eat(arg:$FOOD); ...
abstract class $HERBIVORE < $ANIMAL is -- supports eat(f:$FOOD);

class COW < $HERBIVORE is
eat(arg:$FOOD) is

typecase arg
when $PLANT then .. -- eat it!
else raise "Cows only eat plants!"; end;

end;
end;

$HERBIVORE::eat($PLANT)$CARNIVORE::eat($MEAT)

$ANIMAL (no eat signature)



82 Abstract Classes and Subtyping : 5.8 When Covariance Ails You

er the

 be dis-
overed
 exe-

l.  The
ays be

uments.
 in user

nimal
The ’eat’ routine in the COW class accepts all food, but then dynamically determines wheth
food is appropriate i.e. whether it is a plant.

This approach carries the danger that if a cow is fed some non-plant food, the error may only
covered at run-time, when the routine is actually called.  Furthermore, such errors may be disc
after an arbitrarily long time, when the incorrect call to the ’eat’ routine actually occurs during
cution.

This loss of static type-safety is inherent in languages that support co-variance, such as Eiffe
problem can be somewhat ameliorated through the use of type-inference, but there will alw
cases where type-inference cannot prove that a certain call is type-safe.

Sather permits the user to break type-safety, but only through the use of a typecase on the arg
Such case of type un-safety uses are clearly visible in the code and are far from the default
code.

5.8.5   Solution 4: Parametrize by the Argument Type

 Another typesafe solution is to parametrize the animal abstraction by the kind of food the a
eats.



Parametrized Classes and Arrays : 6.1 Parametrized concrete types 83

re essen-
 used.
ver a pa-
aves like
param-
ructured
n dif-

 shadow
 they may

s of ar-
Parametrized Classes
and Arrays

All Sather classes may be parametrized by one or more type parameters. Type parameters a
tially placeholders for actual types; the actual type is only  known when the class is actually
The array class, which we have already seen, is an example of a parametrized class.Whene
rameterized type is referred to, its parameters are specified by type specifiers. The class beh
a non-parameterized version whose body is a textual copy of the original class in which each 
eter occurrence is replaced by its specified type.   Parameterization may be thought of as a st
macro facility, that generates different versions of a class, with no typing relationship betwee
ferent parametrizations. Parameter names are local to the abstract class definition and they
non-parameterized types with the same name. Parameter names must be all uppercase, and
be used within the abstract type definition as type specifiers.

6.1  Parametrized concrete types

As an example of a parametrized class, consider the class PAIR, which can hold two object
bitrary types.  We will refer to the types as T1 and T2:

class PAIR{T1,T2} is
   readonly attr first:T1;
   readonly attr second:T2;

    create(a_first:T1, a_second:T2):SAME is
      res ::= new;
      res.first := a_first;
      res.second := a_second;
      return res;
    end;
end;



84 Parametrized Classes and Arrays : 6.1 Parametrized concrete types

e PAIR

g code
al role

 do this
 an
We can use this class to hold a pair of integers or a pair of an integer and a real etc.

Thus, instead of defining a new class for each different type of pair, we can just parametrize th
class with different parameters.

6.1.1   Why Parametrize?

Parametrization is normally presented as a mechanism for achieving efficiency by specializin
to use particular types.    However,  parametrization plays an even more important conceptu
in a language with strong typing like Sather.

 For instance, we could define a pair to hold $OBs

There is no problem with defining OB_PAIR objects; in fact, it looks a little simpler.

However, when the time comes to extract the components of the pair, we are in trouble:

-- f:INT := e.second; ILLEGAL! second is declared to be a $OB

We can typecase on the return value:

The above code has the desired effect, but is extremely cumbersome. Imagine if you had to
every time you removed an INT from an ARRAY{INT}! Note that the above code would raise
error if the branch in the typecase does not match.

c ::= #PAIR{INT,INT}(5,5); -- Holds a  pair of integers
d ::= #PAIR{INT,FLT}(5,5.0);  -- Holds an integer and a FLT
e ::= #PAIR{STR,INT}("this",5); -- A string and an integer
f:INT := e.second;
g:FLT := d.second;

class OB_PAIR is
   readonly attr first,second:$OB;

    create(a_first, a_second:$OB):SAME is
      res ::= new;
      res.first := a_first;
      res.second := a_second;
      return res;
    end;
end; -- class OB_PAIR

c ::= #OB_PAIR(5,5);     -- Holds a  pair of integers
d ::= #OB_PAIR(5,5.0);   -- Holds an integer and a FLT

f_ob:$OB := e.second;
f:INT;
typecase f_ob when INT then f := f_ob end;



Parametrized Classes and Arrays : 6.2 Support for Arrays 85

y anno-
tained

r.  There
e

 trivial
y class

low we
The parametrized version of the pair container gets around all these problems by essentiall
tating the type of the container with the types of the objects it contains; the types of the con
objects are the type parameter.

6.2  Support for Arrays

Arrays (and, in fact, most container classes) are realized using parametrized classes in Sathe
is  language support for the main array classARRAY{T} in the form of a literal expressions of th
form

In addition to the standard accessing function, arrays provide many operations, ranging from
routines that return the size of the array to routines that will sort arbitrary arrays.  See the arra
in the container library for more details.  There are several aspects to supporting arrays:

• Support for accessing array elements

• Support for objects which represent arrays

• Support for initializing these arrays using literals

6.2.1   Array Access

The form ’a[4]:=..’ is syntactic sugar for a call of a routine namedaset ’ with the array index
expressions and the right hand side of the assignment as arguments.  In the class TRIO be
have three elements which can be accessed using array notation.

 a:ARRAY{INT} := |1,2,3|;

class TRIO is
  private attr a,b,c:FLT;
  create:SAME is return new end;
  aget(i:INT):FLT is
     case i
     when 0 then return a
     when 1 then return b
     when 2 then return c
     else raise "Bad array index!\n"; end;
   end;
   aset(i:INT, val:FLT) is
      case i
      when 0 then a := val;
      when 1 then b := val;
      when 2 then c := val;
   end;
end;



86 Parametrized Classes and Arrays : 6.2 Support for Arrays

is deter-

-
ove ex-
The array notation can then be used with objects of type TRIO

See the section on operator redefinition (page 98) for more details.

6.2.2   Array Classes: Including AREF and calling new();

Sather permits the user to define array classes which support an array portion whose size 
mined when the array is created.  An object can have an array portion by includingAREF{T} .

SinceAREF{T}  already defines’aget’  and’aset’  to do the right thing, we can provide wrap
pers around these routines to, for instance, provide an additional warning message. The ab
ample make use of thePOINT class from page 15.  We could have also used the PAIR  class defined
on page 83.  The following example uses the polygon class to define a triangle.

trio:TRIO := #TRIO;  -- Calls TRIO::create
trio[2] := 1;
#OUT+trio[2]; -- Prints out 1

class POLYGON is
   private include AREF{POINT}
        aget->private old_aget, aset->private old_aset;
           -- Rename aget and aset

   create(n_points:INT):SAME  is
  -- Create a new polygon with a ’n_points’ points

       res:SAME := new(n_points); -- Note that the new takes
       -- as argument of the size of the array
   end;

   aget(i:INT):POINT is
      if i > asize then raise "Not enough polygon points!" end;
      return old_aget(i);
   end;

   aset(i:INT, val:POINT) is
      if i > asize then raise "Not enough polygon points!" end;
      old_aset(i,val);
   end;
end;

poly:POLYGON := #POLYGON(3);
poly[0] := #POINT(3,4);
poly[1] := #POINT(5,6);
poly[2] := #POINT(0,0);



Parametrized Classes and Arrays : 6.2 Support for Arrays 87

n other

lt-in

ddi-
AREF defines several useful routines:

When possible, use the above iterators since they are built-in and can be more efficient tha
iterators.

6.2.3   Standard Arrays: ARRAY{T}

The classARRAY{T} in the standard library is not a primitive data type.  It is based on a bui
classAREF{T}  which provides objects with an array portion.ARRAY obtains this functionality us-
ing aninclude , but chooses to modify the visibility of some of the methods.  It also defines a
tional methods such acontains , sort  etc.  The methodsaget , aset  andasize  are defined
asprivate  in AREF, butARRAY redefines them to be public.

The array portion appears if there is aninclude  path  from the type toAREF for reference types
or toAVAL for immutable types.

Array Literals

Sather provides support for directly creating arrays from literal expressions.

The type is taken to be the declared type of the context in which it appears and it must beARRAY{T}
for some typeT. An array creation expression may not appear

asize:INT -- Returns the size of the array
aelt!:T; -- Yields successive array elements
aelt!(once beg:INT):T;  -- Yields elements from index ’beg’
aelt!(once beg,once num:INT):T; -- Yields ’num’ elts from index ’beg’
aelt!(once beg,once num,once step:INT):T;

  -- Yields ’num’ elements, starting at index ’beg’ with a ’step’
... Analgous versions of aset! ..
acopy(src:SAME);        -- Copy what fits from ’src’ to self
acopy(beg:INT,src:SAME);   -- Start copying into index ’beg’
acopy(beg:INT,num:INT,src:SAME);

-- Copy ’num’ elements into self starting at index ’beg’ of self
aind!:INT;      -- Yields successive array indices

class ARRAY{T} is
private include AREF{T}

-- Make these public.
aget->aget,
aset->aset,
asize->asize;

...
contains(e:T):BOOL is ... end
...

end;

a:ARRAY{INT} := |2,4,6,8|;
b:ARRAY{STR} := |"apple","orange"|;



88 Parametrized Classes and Arrays : 6.3 Type Bounds

y
d left to

does
tan-
 column

m op-
 algo-
ts.If a

t is not
efer
placed

traction

will
in
• as the right hand side of a ‘::= ’ assignment

•  as a method argument in which the overloading resolution is ambiguous

• as the left argument of the dot ‘. ’ operator.
a:INT := |1,2,3|.size -- ILLEGAL

The types of each expression in the  array literal must be subtypes ofT. The size of the created arra
is equal to the number of specified expressions. The expressions in the literal are evaluate
right and the results are assigned to successive array elements.

6.2.4   Multi-dimensional Arrays

Special support is neither present nor needed for multi-dimensional arrays.  The’aget’  and
’aset’  routines can take multiple arguments, thus permitting multiple indices.   The library 
provide ARRAY2 and ARRAY3 classes, which provide the necesary index computation.  All s
dard array classes are addressed in row-major order.  However, the MAT class is addressed in
major order for compatibility with external FORTRAN routines2 .  Multi-dimensonal array literals
may be expressed by nesting of standard array literals

6.3  Type Bounds

When writing more complex parametrized classes, it is frequently useful to be able to perfor
erations on variables which are of the type of the parameter. For instance, in writing a sorting
rithm for arrays, you might want to make use of the "less than" operator on the array elemen
parameter declaration is followed by a type constraint clause (’<’ followed by a type specifier), then
the parameter can only be replaced by subtypes of the constraining type. If a type constrain
explicitly specified, then ‘< $OB ’ is taken as the constraint. A type constraint specifier may not r
to SAME’. The body of a parameterized class must be type-correct when the parameters are re
by any subtype of their constraining types this allows type-safe independent compilation.

For our example, we will return to employees and managers. Recall that the employee abs
was defined as:

2.  Efficiency in converting to FORTRAN was more important for mathematical entitites which 
be used with existing mathematical libraries such as BLAS and LAPACK, most of which are 
FORTRAN

a:ARRAY{ARRAY{INT}} := ||1,2,3|,|3,4,5|,|5,6,7||;

abstract class $EMPLOYEE is
    name:STR;
    id:INT;
end;



Parametrized Classes and Arrays : 6.3 Type Bounds 89

f a stan-

 imag-
outine
 type-

llegal

 types.
We can now build a container class that holds employees. The container class makes use o
dard library class, a LIST, which is also parametrized over the types of things being held.

The  routine of interest is "longest_name". The use of this routine is not important, but we can
ine that such a routine might be useful in formatting some printout of employee data. In this r
we go through all employees in the list, and for each employee we look at the "name". With the
bound onETP, we know thatETPmust be a subtype of$EMPLOYEE. Hence, itmust have a routine
"name" which returns aSTR.

If we did not have the typebound (there is an implicit typebound of$OB), we could not do anything
with the resulting "employee"; all we could assume is that it was a$OB, which is not very useful.

6.3.1   Why have typebounds?

The purpose of the type bound is to permit type checking of a parametrized classover all possible
instantiations. Note that the current compiler does not do this, thus permitting some possibly i
code to go unchecked until an instantiation is attempted.

6.3.2   Supertyping and Type Bounds

The need for supertyping clauses arises from our definitition of type-bounds in parametrized
The parameters can only  be instantiated by subtypes of their type bounds.

    class EMPLOYEE_REGISTER{ETP < $EMPLOYEE} is
private attr emps:LIST{ETP};

create:SAME is res ::= new; res.emps := #; return res;  end;

add_employee(e:ETP) is  emps.append(e);    end;

n_employees:INT is return emps.size end;

longest_name:INT is
-- Return the length of the longest employee name
i:INT := 0;
cur_longest:INT := 0;
loop

until!(i=n_employees);
employee:ETP := emps[i];
name:STR := employee.name;

-- The type-bound has the ".name" routine
if name.size > cur_longest then

cur_longest := name.size;
end;

end;
return cur_longest;

end;
     end;



90 Parametrized Classes and Arrays : 6.3 Type Bounds

 an ex-
nt to
rd string

and
ng the

rs and
iginal

e hash-

and
You may, however, wish to create a parametrized type which is instantiated with classes from
isting library   which arenot   under the typebound you require. For instance, suppose you wa
create a class PRINTABLE_ SET, whose parameters must support both hash and the standa
printing routinestr . The library contains the following abstract classes.

However, our PRINTABLE_SET{T}  must take all kinds of objects that support both $HASH 
$STR, such as integers, floating point numbers etc.  How do we support this, without modifyi
distributed library?

The PRINTABLE_SET class can now be instantiated using  integers, floating point  numbe
strings.  Thus, supertyping provides a way of creating supertypes without modifying the or
classes (which is not possible if the original types are in a different library).

Note that this is only useful if the original classes cannot be modified.  In general, it is usually far
simpler and easier to understand if standard subtyping is used.

A more complicated example arises if we want to create a sorted set, whose elements must b
able and comparable.  From the library we have.

However, our SORTABLE_SET{T}  must only take  objects that support both $HASH 
$IS_LT{T}

abstract class $HASH < $IS_EQ is    hash:INT;     end;
abstract class  $STR   is str:STR;   end;

abstract class $HASH_AND_STR  > INT, FLT, STR is
 hash:INT;
str:STR;

end;

class PRINTABLE_SET{T < $HASH_AND_STR}  is ...
     -- Set whose elements can be printed

str:STR is
res:STR := "";
loop res := res+",".separate!(elt!.str); end;
return res;

end;

abstract class $HASH < $IS_EQ is    hash:INT;     end;
abstract class  $IS_LT{T}  < $IS_EQ  is  -- comparable values

is_lt(elt:T):BOOL;
end;

abstract class $ORDERED_HASH{T}  <  $HASH, $IS_LT{T} is  end;

class ORDERED_SET{T < $ORDERED_HASH{T}}  is ...
     -- Set whose elements can be sorted

sort is
-- ... uses the < routine on elements which are of type T

end;



Parametrized Classes and Arrays : 6.4 Parametrized Abstract Classes 91

 class

orious.
ization

ed

ip
is
s.

s-
 class.
e a sub-

T and
 a type
The above definition works in a straightforward way  for user  classes.  For instance, a POINT
as defined below, can be used in a ORDERED_SET{POINT}

But how can you create an ordered set of integers, for instance?  The solution is somewhat lab
You have to create dummy classes that specify the subtyping link for each different parametr
of $ORDERED_HASH

Note that the above classes are only need
because we are not directly modifying INT
and FLT to subtype from
$ORDRED_HASH{T}.  In the following dia-
gram , recall that since there is no relationsh
between different  class parametrizations, it 
necessary to think of them as separate type

6.4  Parametrized Abstract Classes

Abstract class definitions may also beparameterized by one or more type parameters within enclo
ing braces, with no  implicit type relationship between different parametrizations of an abstract
Each type parameter may have an optional type bound; this forces any actual parameter to b
type of the corresponding type bound. Given the following definitions,

we may then instantiate an abstract variable  a:$A{BAR}.  BAR instantiates the parameter 
hence must be under the type bound for  T, namely$BAR. If a type-bound is not specified then
bound of $OB is assumed.

class POINT < $ORDERED_HASH{POINT} is ....
 -- define hash:INT and is_lt(POINT):BOOL

abstract class $DUMMY_INT > INT  < $ORDERED_HASH{INT} is end;
abstract class $DUMMY_STR > STR  < $ORDERED_HASH{STR} is end;
abstract class $DUMMY_FLT > FLT  < $ORDERED_HASH{FLT} is end;

abstract class $A{T < $BAR} is
foo(b:T):T;

end; -- abstract class $A{T}

abstract $BAR is end;
class BAR < $BAR is end;

$ORDERED_HASH{T}

$HASH $IS_LT{T}

$DUMMY_INT $DUMMY_FLT

INT FLT

supertyping links

T=FLTT=INT



92 Parametrized Classes and Arrays : 6.5 Overloading

it sub-
ations.

behavior
etrized
d to the

n argu-

er, this

t com-

 to the
How are different parametrizations related?

It is sometimes natural to want a$LIST{MY_FOO} < $LIST{$MY_FOO} . Sather, however,
specifies no subtyping relationship between various parametrizations.  Permitting such implic
typing relationships between different parametrizations of a class can lead to type safety viol

6.5  Overloading

There are two aspects to the use of  overloading in a parametrized class - one aspect is the 
of the interface of the parametrized class itself, and the other aspect is calls within the param
class where one or more arguments have the type of one of the type parameters, or is relate
type parameters through static type inference (see .

6.5.1   Overloading In the Parametrized Class Interface

Argument with the type of a class parameter cannot be used to resolve overloading (such a
ment is similar to an ’out’ argument or a return type in this respect).

Even though the type bounds for T1 and T2 are distinct and one is more specific than the oth
is not a sufficient constraint on the actual instantiation of  the parameter.  In a class such as

   FOO{ARRAY{INT}, ARRAY{INT}}

for instance, the two versions of ’bar’ will essentially be identical.

6.5.2   Overloading Resolution within the Parametrized Class

Note: The current ICSI compiler does not yet have this behaviour implemented. In the curren
piler,  overloading resolution is based on the actual instantiated class.

For all calls within the parametrized class, the resolution of overloading is done with respect
type bounds of the parameters.  Consider a class that makes use of output streams

class FOO{T1<$STR ,T2<$ELT} is

(1)  bar(a:T1);
(2)  bar(a:T2);

abstract class $OSTREAM is  plus(s:$STR);  end;



Parametrized Classes and Arrays : 6.5 Overloading 93

 needed
etrized
cialized
A parametrized class can then write to any output stream

Now, suppose we instantiate the classFOO with aFILE

Only ’(1) plus($STR)’  will be called inFOO{FILE},  even though the more specific’(2)
plus(INT)’   is available inFILE .

The reason for this behavior is to preseve the ability to analyze a stand alone class, which is
for separate compilation of parametrized classes - this requires that the behavior of the param
class be completely determined by the typebounds and not based on the existance of spe
overloaded routines in particular instantiations.

class FOO{S < $OSTREAM} is

   attr x,y:INT;

   describe(s:S) is
     s+"Self is:"; s+x; s+",";s+y;
   end;
end;

class FILE < $OSTREAM is
 (1)  plus(s:$STR) is ...
 (2)  plus(s:INT) is ...

a:FOO{FILE} := ..
f:FILE := FILE::open_for_read("myfile");
a.describe(f)



94 Parametrized Classes and Arrays : 6.5 Overloading



Operator Redefinition : 7.1 Method Names for Operators 95

 These
 routine

x num-

ch as the
eant to

 partial
Operator Redefinition

7.1  Method Names for Operators

It is possible to define operators such as + and * to work with objects of arbitrary classes. 
operators are transformed into standard routine calls in the class. Thus, if a class defines the
’plus’  you can then apply the + operator to objects from that class.  For instance, the comple
ber class POINT could define the plus routine to mean pairwise addition

we can now use the plus routine on two points

Most of the standard operators may be redefined; in some cases, redefining one operator su
< operator implicitly redefines the associated >,  >= and <= operators.  These operators are m
be used together in a consistent manner to indicate the mathematical notion of complete or
ordering.  They are not intended to be used as a convenient short-hand for other purposes.

class POINT is
readonly attr x,y:INT;
create(x,y:INT):SAME is ... -- same as before
plus(s:POINT):POINT  is  return #POINT(x + s.x, y + s.y); end;

p1:POINT := #POINT(3,5);
p2:POINT := #POINT(4,6);
p3:POINT := p1 + p2;  --  p3 is set to the point 7,11



96 Operator Redefinition : 7.2 Operator expressions

ls.

.

n terms

O

exp t

exp
7.2  Operator  expressions

The following table shows how the standard operators are directly converted into  routine cal

Below are the routines that correspond to unary operators, for arithmetic and logical negation

In addition to the unary and binary operators, there are additional operators that are defined i
of a combination of the unary and binary operators3.

The form’[expression list]’ is translated into a call on the routineaget. For instance,

This is described in more detail later.

3.  Earlier versions of Sather 1.0 defined separate routines for each of these operators.

Operator  Routine  Operator Routine

expr1 + expr2 expr1.plus( expr2) expr1 ^ expr2 expr1.pow( expr2)

expr1 - expr2 expr1.minus( expr2) expr1 % expr2 expr1.mod( expr2)

expr1 * expr2 expr1.times( expr2) expr1 < expr2 expr1.is_lt( expr2)

expr1 / expr2 expr1.div( expr2) expr1 = expr2 expr1.is_eq( expr2)

Table 1: Binary Operators

Unary Operator Routine

- expr expr.negate

~ expr expr.not

Table 2: Unary Operators

perator Translation Operator Translation

r1 <= expr2 expr2.is_lt( expr1).not expr1 /= expr2 expr1.is_eq( expr2).no

r1 >= expr2 expr1.is_lt( expr2).not expr1 > expr2 expr2.is_lt( expr1)

Table 3: Compound Operators

a := [3,5]; -- Equivalent to a := aget(3,5); Used in the array class
f := arr[2]; -- Equivalent to f := arr.aget(2); Used outside the array



Operator Redefinition : 7.2 Operator expressions 97

 paren-

. Sym-
rouping.

 are

es

lua-

 least
Grouping

In addition to the above mentioned operators, it is possible to group expressions using plain
theses, which have the highest precedence.

7.2.1   Operator precedence

The precedence ordering shown below determines the grouping of the syntactic sugar forms
bols of the same precedence associate left to right and parentheses may be used for explicit g
Evaluation order obeys explicit parenthesis in all cases.

Points to note

• The >, >=  and /= operators are not directly translated into their own routine. Rather, they
defined in terms of is_lt and is_eq.

• Each of these transformations is applied after the component expressions have themselv
been transformed.

• ‘out ’ and ‘inout ’ modes may not be used with the syntactic sugar expressions.

• The ‘<=’ and ‘>’ expressions do not reverse the original left to right order of argument eva
tion.

• and ’ andor ’ are not listed as syntactic sugar for operations inBOOL’; this allows short-cir-
cuiting the evaluation of subexpression.

• The aget and aset routines are meant to support array like indexed access and require at
one index argument.

Strongest .      ::     []    ()

^

~       Unary -

*      /     %

+        Binary -

<    <=    =    /=    >=    >

Weakest and     or

Table 4:



98 Operator Redefinition : 7.3 Array Access Routines

esn’t

e rou-

l for
bject.
Syntactic sugar example

Here’s a formula written with syntactic sugar and the calls it is textually equivalent to.  It do
matter what the types of the variables are; the sugar ignores types.

7.3  Array Access Routines

Sather supports the standard array access syntax of square brackets.  For instance:

However, the array bracket notation is not built into the array class. It is just a short hand for th
tinesaget andaset

Thus, classes which are not arrays can make use of the array notation as they please:

In order for a class to actually have an array portion, it must inherit fromAREF{T}   (if it is a refer-
ence class) orAVAL{T}  if it is an immutable  class.  The array setting notation is not as usefu
immutable classes,  since any modification of an immutable class must return a whole new o

-- Written using syntactic sugar
r := (x^2 + y^2).sqrt;

-- Written without sugar
r := (x.pow(2).plus(y.pow(2))).sqrt

a:ARRAY{INT} := |1,2,3|;
a[2] := 5; -- Sets the third element of the array to 5
#OUT+a[0]; -- Prints out ’1’
c:ARRAY2{INT} := ||1,2,3|,|4,5,6|,|7,8,9||;
#OUT + c[2,2]; -- Prints out ’9’

a[2] := 5; -- equivalent to a.aset(2,5);
#OUT+a[1]; -- equivalent to #OUT+a.aget(1);

class INT is
-- The standard integer class

   aget(i:INT):BOOL is -- returns the ’i’th bit of the integer
end;



Immutable Classes : 8.1 Defining Immutable Classes 99

be mod-
pes such
utable
eculiar-

e their
 When
 whole
asses is
 types).
ariable

 num-
be used.
 stan-

 class-
 the at-
escribe
Immutable Classes

Sather  has special support for classes that define immutable objects.  Such objects cannot 
ified after they have been created, and are said to have value semantics. Many of the basic ty
as integers and floating point numbers (the INT and FLT classes) are implemented using imm
classes.   This chapter illustrates how immutable classes may be defined, and highlights the p
ities in their usage that may trip up a beginning user.

At a fundamental level: immutable classes define objects which, once created, never chang
value. A variable of an immutable type may only be changed by re-assigning to that variable.
we wish to only modify some portion of an immutable class, we are compelled to reassign the
object.  For experienced C programmers the difference between immutable and reference cl
similar to the difference between structs (immutable types) and pointers to structs (reference
Because of that difference, reference objects can be referred to from more than one v
(aliased), while immutable objects cannot.

This section illustrates the definition of immutable types using a simple version of the complex
ber class, CPX. We also describe the benefits of immutable classes and when they  should 
Finally, we close with a description of a how  to transparently replace in immutable class by a
dard reference class which implements value semantics.

8.1  Defining Immutable Classes

In most ways,  defining and using immutable classes is similar to defining and using  reference
es. Immutable classes consist of a collection of attributes and functions that can operate on
tributes.   Since we have already described reference classes in considerable detail, we will d
immutable classes in terms of their differences from reference classes.



100 Immutable Classes : 8.1 Defining Immutable Classes

he ver-
anner

e ’new’
e point
s to be

d this
thing
t rather
8.1.1   Immutable Class Example

We illustrate the use of immutable classes through the example of the complex class  CPX. T
sion shown here is a much simplified version of the library class. The key point to note is the m
in which attribute values are set in the create routine.

The complex class may then be used in the following manner.

8.1.2   Creating a new object

Unlike reference classes, instances of an immutable class are not explicitly allocated using th
expression.  A variable of an immutable class always has a value associated with it, from th
of declaration.  In the example above, the return variable of the create routine ,’res’  simply ha
declared.

8.1.3   Initial value of immutable objects

The initial value of an immutable object is defined to have all its fields set to the ’void’ value an
is defined to be the ’void’ value of the immutable object.  Note that this ’void’ value means some
different than it does for a reference class.  It does not mean that the object does not exist, bu
that all its fields have the ’void’ value.

immutable class CPX  is
readonly attr real,imag:FLT;

create(re,im:FLT):SAME is
-- Returns a complex number with real and imaginary parts set
res:SAME;
res := res.real(re);
res := res.im(im);
return res;

end;

plus(c:SAME):SAME is
-- Return a complex number, the sum of ’self’ and c’.
return  #SAME(real+c.real,imag+c.imag);

end;
end; -- immutable class CPX

 b:CPX := #(2.0,3.0);
 d:CPX := #(4.0,5.0);
 c:CPX := b+d;



Immutable Classes : 8.1 Defining Immutable Classes 101

rn true

 mean?
ct, with
plicit

alue
e sig-

pe is

 of

OL
Void value of  the basic classes:

The initial values for the built-in immutable classes are defined above.  These values will retu
for the ’void’ test.

8.1.4   Attribute access routines

Since an immutable object cannot change its value, what does assigning to an attribute
Sather’s immutable classes define attribute assignment to create a copy of the original obje
the attribute modified.  Thus the attribute declaration ’attr re:FLT ’  of the CPX  class has an im
attribute setting routine with the signature:

which returns a copy of the original CPX  object in which the attribute ’re’ has the new v
’new_re_value’. Contrast this with a reference class, in which the setting routine would have th
nature

The syntax of the setting routines of immutable classes is a common source of confusion.

8.1.5    Points to note

• There must be no cycle of immutable types such that each type has an attribute whose ty
in the cycle. In the following example, the class PAIR has a FIRST_PART that contains a
PAIR - leading to an infinite loop and an infinite size structure.

• Accessing an attribute of a void immutable object will always work. Accessing an attribute
a void reference object results in a fatal error

• The ’void’ value for the basic classes are useful values - false is the ’void’ value for the BO
class, and 0 for the number classes.

Class Initial Value Class Initial Value

INT 0 CHAR ’\0’

FLT 0.0 FLTD 0.0d

BOOL false

re(new_re_part:FLT):SAME

re(new_re_part:FLT);

immutable class PAIR is
attr  first:FIRST_PART;
attr second:SECOND_PART; ...

immutable class FIRST_PART is
attr begin:PAIR;...



102 Immutable Classes : 8.2 Using Immutable Classes

haviour

table.
 in the
mple,

 circum-
head and
f aliasing
mbine
ge im-
an im-
n this

g an ab-
tag.
n.

fer-

 class-

evious
ace
8.2  Using Immutable Classes

Immutable classes behave differently from reference classes both in terms of their abstract be
(value semantics) and in terms of their implementation.

To begin with, immutable classes cannot suffer from aliasing problems, since they are immu
You can get the same effect with reference classes by not providing any modifying operations
interface - any operation that would modify the object, returns a new object instead. For exa
take a look at the  STR class

Immutable classes may have several efficiency advantages over reference classes in certain
stances. Since they are usually stored on the stack, they have no heap management over
need not be garbage collected. They also don’t use space to store a tag, and the absence o
makes more C compiler optimizations possible. For a small class like CPX, all these factors co
to give a significant win over a reference class implementation. On the other hand, copying lar
mutable objects onto the stack can incur significant overhead. Unfortunately the efficiency of 
mutable class appears directly tied to how smart the C compiler is; “gcc” is not very bright i
respect.

Note that when an immutable class is passed as an argument to a function which is expectin
stract type, the compilerboxes it i.e. it is given a temporary reference class wrapper with a type-
Thus, immutable objects behaves exactly like an immutable reference objects in this situatio

Rules of Thumb

So, when should you use an immutable class? Here are a few rules of thumb.

• You want the class to have immutable semantics. You could still consider an immutable re
ence class.

• The class is small - the exact speed trade-offs have not been investigated, but immutable
es have so far been used when there are a fewer than a handful of  attributes.

• There are going to be a large number of objects of that class. This goes along with the pr
point. For instance, if you are going to have large arrays of complex numbers, then the sp
that would be required for an object pointer and an object tag may be considerable.



Closures : 9.1 Creating and Calling Closures 103

n-
sibly in-

rn

s argu-

ntu-
Closures

Routine and iterclosures are similar to the ‘function pointer’ and ‘closure’ constructs of other la
guages. They bind a reference to a method together with zero or more argument values (pos
cludingself ).    The type of a closure begins with the keywordsROUT or ITER  and  followed by
the modes and types  of the underscore arguments, if any, enclosed in braces (e.g. ‘ROUT{A, out
B, inout C} ’, ’ITER{once A, out B, C}’ ). These are followed by a colon and the retu
type, if there is one (e.g. ‘ROUT{INT}:INT ’, ’ITER{once INT}:FLT’ ).

9.1  Creating and Calling Closures

9.1.1   Creating a closure

A closure is created by an expression that binds a routine or an iterator, along with some of it
ments. The outer part of the expression is ‘bind(...) ’. This surrounds a routine or iterator call in
which any of the arguments orself  may have been replaced by the underscore character ‘_’. Such
unspecified arguments areunbound.  Unbound arguments are specified when the closure  is eve
ally called.

Out and inout arguments must be specified in the closure type. If the routine hasinout  or out ar-
guments as show below, they are mentioned in the type of the closure:

The routine’swap’  swaps the values of the two arguments,’x’ and’y’ .  ’r’ is a closure for
binding the’swap’  routine.

a:ROUT{INT}:INT :=  bind(3.plus(_))
b:ITER:INT := bind(3.times!);

swap(inout x, inout y:INT) is  tmp::= x;  x := y; y:=tmp; end;

r:ROUT{inout INT, inout INT} := bind(swap(_,_));



104 Closures : 9.1 Creating and Calling Closures

or
 speci-
 argu-

s

 integer.
ociated
-

tine is

 takes
9.1.2   Calling a closure

Each routine closure defines a routine named ‘call ’ and each iterator closure defines an iterat
named’call!’ . These have argument and return types that correspond to the closure type
fiers. Invocations of these features behave like a call on the original routine or iterator with the
ments specified by a combination of the bound values and those provided tocall  or call! . The
arguments tocall andcall!   match the underscores positionally from left to right .

The previously defined closures are invoked as shown

 In the following example, we define a bound routine that takes anINT  as an argument and return
an INT .

The variable  br is typed as a bound routine which takes an integer as argument and returns an
The routine 1.plus, which is of the appropriate type, is then assigned to br. The routine ass
with  br may then be invoked by the built in functioncall . Just as we would when calling the rou
tine INT::plus(INT) , we must supply the integer argument to the bound routine.

9.1.3   Binding overloaded routines

When binding a routine which is overloaded, there might be some ambiguity about which rou
meant to be bound

When binding theplus routine, it might not be obvious which routine is intended

In case of ambiguity, the right method must be determined by the context in which the binding
place.

#OUT+ a.call(4); -- Prints out 7, where a is bind(3.plus(_)
sum:INT := 0;
loop  sum := sum + b.call!; end;
#OUT+sum; -- Prints out 3 (0+1+2)

br:ROUT{INT}:INT := bind(1.plus(_));
#OUT+br.call(9); -- Prints out ’10’

class FLT is
   plus(f:FLT):FLT -- add self and ’i’ and return the result
   plus(i:INT):FLT; -- add self and ’f’ (after converting ’i’ to FLT)
end;

b ::= bind(_.plus(_));



Closures : 9.1 Creating and Calling Closures 105

licitly

 by the

rou-

ch
en
ted.
Binding in an assignment

If there is ambiguity about which method is to be bound, the type of the variable must be exp
specified

Binding in a call

A method may also be bound at the time a call is made. The type of the closure is determined
type of the argument in the call.

We can call the reduction function as follows:

The second argument to the functionreduce  expects aROUT{FLT,FLT}:FLT  and this type was
used to select whichplus  routine should be bound.   When there could be doubt about which 
tine is actually being bound, it is very good practice to specify the type explicitly

9.1.4   Points to note

• out  andinout  arguments must be left unbound. This is a reasonable restriction, since su
arguments must return a value to the calling context. If such an argument were bound, wh
the closure is invoked, variables that existed at the point of closure binding would be affec
Such variables might not even be alive at the point where the closure is actually invoked.

b:ROUT{FLT,FLT}:FLT := bind(_.plus(_)); -- Selects the first ’plus’

reduce(a:ARRAY{FLT}, br:ROUT{FLT,FLT}:FLT):FLT is
  res:FLT := 0.0;
  loop el:FLT := a.elt!; res := br.call(res,el); end;
  return res;
end;

a:ARRAY{FLT} := |1.0,7.0,3.0|;
#OUT + reduce(a,bind(_.plus(_)));
-- Prints ’11.0’, the sum of the elements of ’a’

r:ROUT{FLT,FLT}:FLT := bind(_.plus(_));
#OUT+reduce(a,r);



106 Closures : 9.1 Creating and Calling Closures

ft
.

or this
d.  The
9.1.5   Binding some arguments

When a routine closure is created, it can preset some of the values of the arguments.

In the example above,br2  binds the first argument of foo  to 10 and the second argument is le
unbound. This second argument will have to be supplied by the caller of the bound routinebr1
binds neither argument and hence when it is called, it must supply both arguments.

Here we double every element of an array by applying a routine closurer  to each element of an ar-
ray.

9.1.6   Leaving self unbound

 bound routines are often used to apply a function to arbitrary objects of a particular class. F
usage, we need the self argument to be unbound. This illustrates how self may be left unboun
type of self must be inferred from the type context (ROUT{INT} ).

In the following example we will make use of theplus  routine from theINT  class.

class MAIN is

foo(a:INT, b:INT):INT is return(a+b+10) end;

main is
br1:ROUT{INT,INT}:INT := bind(foo(_,_));
br2:ROUT{INT}:INT := bind(foo(10,_));
#OUT+br1.call(4,3)+","+br2.call(9); -- Should print 17 and  29

end;
end;

r :ROUT{INT}:INT := bind(2.times(_));
loop

a.set!(r.call(a.elt!))
end

r :ROUT{INT} := bind(_.plus(3));
#OUT + r.call(5);               -- prints  ‘8’

 ... from the INT class
plus(arg:INT):INT is        ... definition of plus

main is
  plusbr1:ROUT{INT,INT}:INT:=bind(_.plus(_)); -- self and arg unbound
  br1res:INT := plusbr1.call(9,10); -- Returns 19
  plusbr2:ROUT{INT}:INT := bind(3.plus(_)); -- Binding self only
  br2res:INT := plusbr2.call(15); -- Returns 18
  plusbr3:ROUT{INT}:INT := bind(_.plus(9)); -- Binding arg only
  br3res:INT := plusbr3.call(11); -- Returns 20
  #OUT+br1res+","+br2res+","+br3res; -- 19,18,20
end;



Closures : 9.2 Further Examples of Closures 107

annot
hat fea-
 at

ispen-
, much

 other
Some

lement
 In the above example,plusbr1  leaves both self and the argument toplus unbound. Note that
we must specify the type of  self when creating the bound routine, otherwise the compiler c
know which class the routine belongs to (the type could also be an abstract type that defines t
ture in its interface). plusbr2  binds  self to3, so that the only argument that need be supplied
call time is the argument to the  plus.plusbr3  binds the argument ofplus  to15 , so that the only
argument that need be supplied at call time is  self for the routine.

9.2  Further Examples of Closures

Just as is the case with C function pointers,  there will be programmers who find closures ind
sible and others who will hardly ever touch them. Since Sather’s closures are strongly typed
of the insecurity associated with function pointers in C disappears.

9.2.1   Closures for Applicative Programming

Closures are useful when you want to write Lisp-like "apply” routines in a class which contains
data .  Routines that use routine closures in this way may be found in the class ARRAY{T}. 
examples of which are shown below.

The following routine which takes a routine closure as an argument and uses it to select an e
from a list

every(test:ROUT{T}:BOOL):BOOL is
-- True if every element of self satisfies ‘test’.
loop

e ::= elt!; -- Iterate through the array elements
if ~test.call(e) then return false end
-- If e fails the test, return false immediately

end;
return true

end;

select(e:ARRAY{INT}, r:ROUT{INT}:BOOL):INT is
 -- Return the index of the first element in the array ’e’ that

  -- satisfies the predicate ’r’.
  -- Return -1 if no element of ’e’ satisfies the predicate.
  loop i:INT := e.ind!;
       if r.call(e[i]) then  return i end;
  end;
  return -1;
end;



108 Closures : 9.2 Further Examples of Closures

oices.
ociated
The  selection routine may be used as shown below:

9.2.2   Menu Structures

Another  common use of function pointers is in the construction of an abstraction for a set of ch
TheMENUclass shown below maintains a mapping between strings and routine closures ass
with the strings.

a:ARRAY{INT} := |1,2,3,7|;
br:ROUT{INT}:BOOL := bind(_.is_eq(3));
#OUT + select(a,br);  -- Prints the index of the first element of ’a’
                      -- that is equal to ’3’. The index printed is ’2’

class MENU is

  private attr menu_actions:MAP{STR,ROUT};
-- Hash table from strings to closures

  private attr default_action:ROUT{STR};

  create(default_act:ROUT{STR}):SAME is
    res:SAME := new;
    res.menu_actions := #MAP{STR,ROUT};
    res.default_action := default_act;
    return(res)
  end;

  add_item(name:STR, func:ROUT) is menu_actions[name] := func end;
  -- Add a menu item to the hash table, indexed by 'name'

  run is
     loop
       #OUT+">";
       command: STR := IN::get_str; -- Gets the next line of  input
       if command = "done" then break!
       elsif menu_actions.has_ind(command) then

  menu_actions[command].call;
       else

  default_action.call(command);
       end;
     end;
   end;
end;



Closures : 9.2 Further Examples of Closures 109
We use this opportunity to create a textual interface for the calculator described on page 60:

The main routines of the calculator computation are:

This  calculator can be started by a simple main routine:

class CALCULATOR is

   private attr stack:A_STACK{INT};
   private attr menu:MENU;

   create:SAME is res ::= new; res.init; return res; end;

   private init is  -- Initialize the calculator attributes
      stack := #;
      menu := #MENU(bind(push(_)));
      menu.add_menu_item("add",bind(add));
      menu.add_menu_item("times",bind(times));
   end;

   run is menu.run; end;
   ....

push(s:STR) is
-- Convert the value 's' into an INT and push it onto the stack

      -- Do nothing if the string is not a valid integer
      c: STR_CURSOR := s.cursor;
      i: INT := c.int;
      if c.has_error then #ERR+"Bad integer value:"+s;
      else  stack.push(i); end;
   end;

   add is -- Add the two top stack values and push/print the result
      sum:INT := stack.pop+stack.pop;
      #OUT+sum+"\n";
      stack.push(sum);
   end;

   times is -- Multiply the top stack values and push/print the result
      product:INT := stack.pop*stack.pop;
      #OUT+product+"\n";
      stack.push(product);
   end;
end;  -- class CALCULATOR

class MAIN is  main is c: CALCULATOR := #;   c.run;  end;end;



110 Closures : 9.2 Further Examples of Closures
After compiling the program, we can then run the resulting executable

9.2.3   Iterator closures

An iterator closure is created that may be used to extract elements of a map that satisfy the
selection criteria defined by ‘select ’.

This creates an iterator closure that returns  successive odd integers, and then prints the
first ten.

pts/1 samosa:~/Sather>a.out
>3
>4
>add
7
>10
>11
>times
110
>done
pts/1 samosa:~/Sather>

select:ROUT{T}:BOOL;
select_elt:ITER{MAP{K,T}}:T;
...
select_elt := bind(_.filter!(select));

odd_ints :ITER{INT}:INT;
odd_ints := bind(1.step!(_,2));
loop

#OUT + odd_ints.call!(10);
end



Exceptions : 10.1 Throwing Exceptions with raise 111

le, a ro-
er un-

g from

e point
eptions

on,

ral, the
the er-
ndard

.

ht.  Ex-
ode, and
Exceptions

Exceptions are used to escape from method calls under unusual circumstances.  For examp
bust numerical application may wish to provide an alternate means of solving a problem und
usual circumstances such as ill conditioning.  Exceptions bypass the ordinary way of returnin
methods and may be used to skip over multiple callers until a suitable handler is found.

There are two aspects to indicating errors using exceptions - how the error is indicated at th
where it occurs.  This is usually referred to as throwing the exception. The other aspect of exc
is how the error message is handled, which is referred to as catching the exception.

10.1  Throwing Exceptions with raise

Exceptions are explicitly raised byraise statements. The raise statement specifies an expressi
which is evaluated to obtain the exception object.

In the example above, the object happens to be a string that indicates the problem. In gene
exception object must provide enough information for the error handling mechanism.  Since 
ror handling mechanism can discriminate between different objects of different types, it is sta
practice to use the type of the exception object to indicate the type of the error that occurred

10.2  Catching Exceptions with protect

Exceptions are passed to higher contexts until a handler is found and the exception is caug
ceptions are caught using protect statements.  The protect statement surrounds a piece of c

 add_if_positive(i:INT) is
    if i < 0 then
       raise "Negative value:"+i+"\n";
    end;
 end;



112 Exceptions : 10.3 Usage to avoid

g that

pecifier
 fol-

to cat-
 In fact,

e

her

except
 may
provides an appropriate method of handling any exceptions that might occur when executin
piece of code.

When there is an uncaught exception in a protect statement, the system finds the first type s
listed in the ‘when’ lists which is a supertype of the exception object type. The statement list
lowing this specifier is executed and then control passes to the statement following theprotect
statement.

In the protect clause, the exception raised may be referred to by the built in expression’excep-
tion’ 4, which refers to the exception object.  The type of the exception object can be used 
egorize the exception and to discriminate between exceptions when they are actually caught. 
thewhen clauses may be viewed as atypecase  (see page 70) on the exception object.

Points to note

• No statements may follow araise statement in a statement list because they can never b
executed.

• If there is noelse  clause in aprotect  statement, and none of the types in thewhen branch-
es matches the type of the exception object,  then the exception is passed to the next hig
protect statement

10.3  Usage to avoid

Exceptions can be significantly slower than ordinary routine calls, so they should be avoided 
for truly exceptional (unexpected) cases.  Using exceptions to implement normal control flow

4.   In fact, you can look at the tail half of the protect as a typecase on the exception object.

 protect
      foo;
  when $STR then #ERR+"An error in foo!:"+exception.str;
  when INT then #ERR+"INT error="+exception; -- ’exception’ of type INT
  else

-- Some other error handling
  end;



Exceptions : 10.3 Usage to avoid 113

f

ne and
e,   this
n ex-
eces-

EE ex-
rror is
er, this
be tempting, but should be avoided. For instance, in theSTR_CURSOR class, we can make use o
exceptions for parsing. It might be tempting to write code like the following

   The above code determines whether a boolean is present in the string by trying to read o
treating  an error state as evidence that there is no boolean.  While it is perfectly correct cod
is an example of what you should not do.  The implementation of a function should not rely o
ceptions for its normal functioning.  Doing so is extremely inefficient and can result in an unn
sarily complicated flow of control.

10.3.1   Alternatives to Exceptions

The alternative to using exceptions is to use a sticky error flag in the class, as is done by IE
ceptions and the currentFILE  classes. This has problems such as the fact that the outermost e
logged, not the most immediate one, and it is very easy to forget to test for  the error. Howev
method has a much lower overhead and is suitable in certain cases.

10.3.2   A more elaborate example

Consider the following routine, which tries to read a boolean value from a string:

 test_bool:BOOL is
    protect
        current_state ::= save_state;
        b ::= get_bool;
        restore_state(current_state);
     when STR_CURSOR_EX then return(false); end;
     return(true);
  end;

get_bool(file_name:STR):BOOL is
f:FILE := FILE::open_for_read(file_name);
if f.error then raise #FILE_OPEN_EXC(file_name); end;
s:STR := f.str;  -- Read the file into a string
f.close;          -- Close the file
res:BOOL;
bool ::= "";
i:INT := 0;
loop until!(~(s[i].is_alpha) or (s[i].is_space) or i >= s.size);

bool := bool + s[i]; i := i + 1;
end;
case bool
when "true","t","True","T","TRUE" then  return true;
when "false","f","False","F","FALSE" then return false;
else

raise #PARSE_BAD_BOOL_EXC(s);
end;

end;



114 Exceptions : 10.3 Usage to avoid

oes not
 caught
In the above routine there are two possible errors - either the file could not be opened or  it d
contain a valid boolean.  The two cases can be distinguised at the point  when the exception is

The classes that implement these exceptions can be fairly simple

The other exception class is very similar.

protect
   file_name:STR; ... set to a value
   b:BOOL := get_bool(s);
when FILE_OPEN_EXC then #ERR+"Could not
open:"+exception.file_name+"\n";
when PARSE_BAD_BOOL_EXC then
    #ERR+"Error in reading boolean:"+exception.str+"\n";
end;

class FILE_OPEN_EXC is
readonly attr str:STR:
create(file_name:STR):SAME is

res::=new; res.str := file_name; return res;
end;

end;



Safety Features : 11.1 Preconditions 115

.  The
tures

ition of
ndition
ntract
 method
por-

f doc-
sted to
 code.

er must
n ar-

eval-

s are
Safety Features

Methods definitions may include optional pre-  and post-conditions.  Together with ‘assert ’ and
’invariant’ these features allow the earnest programmer to annotate the intention of code
Sather compiler provides facilities for turning on or off the runtime checking these safety fea
imply.  Classes may also define a routine named ‘invariant ’, which is a post condition that ap-
plies to all public methods.

These safety features are associated with the notion of programming contracts.  The precond
a method is the contract that the method requires the caller to fulfill.  It is a statement of the co
of the world that the method needs to find, in order to work correctly. The postcondition is a co
that the method guarantees, if its precondition has been met.  It is a statement of the state the
will leave the world in, when it is finished executing.  These programming contracts are very im
tant in the creation of robust, reusable code.

In addition to providing a level of checking, these safety features are also an invaluable form o
umentation.  Since preconditions and postconditions must actually execute,  they can be tru
be accurate and up-to-date, unlike method comments which may easily fall out of sync with the

11.1  Preconditions

A precondition states the assumptions that a method makes.  It is the contract that the call
fullfil in order for the routine to work properly.  Preconditions frequently include checks that a
gument is non-zero or non-void.

The optional ‘pre ’ construct of method definitions contains a boolean expression which must 
uate totrue  whenever the method is called; it is a fatal error if it evaluates tofalse .The expres-
sion may refer toself  and to the routine’s arguments.  For iterators, pre and post condition



116 Safety Features : 11.2 Postconditions

ator is

tion.
er the

 noth-
 placed

ontract.

ust

f
 by the
st con-
puted

e

checked before and after every invocation  of the iterator (not just the first or last time the iter
called).

Note that it is usually not  appropriate to place conditions on the internal state in the precondi
This is an inappropriate conduct, since it may be impossible for the caller to determine wheth
conduct can be properly fulfilled.

The test on ’start’ is actually verifying something about the internal state of the object, and has
ing to do with the caller of the routine.  Tests such as the one above are more appropriately
in assertions.

11.2  Postconditions

Post conditions state what a method guarantees to the caller.  It is the method’s end of the c
Post conditions are also stated as an optional initial construct in a method.

The optional ‘post ’ construct of method definitions contains a boolean expression which m
evaluate to true whenever the method returns; it is a fatal error if it evaluates tofalse . The expres-
sion may refer toself  and to the method’s arguments.

It is frequently useful to refer to the values of the argumentsbefore the call, as well as the result o
the method call.  A problem arises because the initial argument values are no longer known
time the method terminates, since they may have been arbitrarily modified.  Also, since the po
dition is outside the scope of the method body, it cannot easily  refer to values which are com
before the method executes.  The solution to this problem consists of usingresult expressions
which provide the return value of the method andinitial expressions which are evaluated at th
time the method is invoked.

class POSITIVE_INTERVAL is
readonly attr start, finish:INT;
create(start, finish:INT)

-- Ensure that the interval is positive on positive numbers
pre start > 0 and finish > 0 and finish-start >= 0

is
res ::= new;
res.start := start;
res.finish := finish;
return res;

end;
end; -- class POSITIVE_INTERVAL

move_by(i:INT) pre start > 0  is ...

class VECTOR is
...
norm:FLT; -- norm of the vector

normalize post norm = 1.0 is ...
   -- Normalize the vector. The norm of the result must be 1.0



Safety Features : 11.2 Postconditions 117

ial

ndition
the rou-

ues and
y

e

rs are

ehav-
11.2.1 initial expressions

initial expressions may only appear in thepost  expressions of methods. The argument to the init

expression must be an expression with a return value and must not itself  containinitial  expres-
sions. When a routine is called or an iterator resumes, it evaluates eachinitial expression from
left to right. When the postcondition is checked at the end, eachinitial  expression returns its pre-
computed value.

11.2.2 result expressions

Result expressions are essentially a way to refer to the return value of a method in a postco
(the post condition is outside the scope of the routine and hence cannot access variables in 
tine).

Result expressions may only appear within the postconditions of methods that have return val
may not appear withininitial  expressions. Aresult  expression returns the value returned b
the routine or yielded by the iterator. The type of aresult expression is the return type of th
method in which it appears (INT , in the above example).

11.2.3   Example

The above routine maintains an (always positive) running sum in ’sum’. Only positive numbe
added to the sum, and the result must always be bigger than the argument.

11.2.4 pre and post conditions in iterators

The behavior of pre- and post- conditions in iterator definitions is a natural extension of their b
ior in routine definitions.  Thepre  clause must be true each time the iterator is called and thepost
clause must be true each time it yields. Thepost  clause is not evaluated when an iterator quits.

add(a:INT):INT post initial(a)>result is ..

sum:INT post result > 5 is . -- Means that the value return must be > 5

class CALCULATOR is
readonly attr sum:INT;  -- Always kept positive

add_positive(x:INT):INT pre x > 0 post result >= initial(x) is
         return sum + x; end;



118 Safety Features : 11.3 Assertions

y check

y ’arr’ .
positive.

reated.
e ubiq-

nt.
 or
11.3  Assertions

Assertions are not part of the interface to a routine.  Rather, they are an internal consistenc
within a piece of code, to ensure that the computation is proceeding as expected.

11.3.1 assert statements

assert statements specify a boolean expression that must evaluate totrue ; otherwise it is a fatal
error.

In the above piece of code, we expect the class to only be storing postive values in the arra
To double check this, when adding the elements together, we check whether each element is 

11.4  Invariants

A class invariant is a condition that should never be violated in any object, after it has been c
Invariants have not proven to be as widely used as pre- and post- conditions, which are quit
uitous in Sather code.

11.4.1    The invariant  routine

If a routine with the signature ‘invariant:BOOL ’, appears in a class, it defines a class invaria
It is a fatal error for it to evaluate tofalse  after any public method of the class returns, yields,
quits.

private attr arr:ARRAY{INT};
...
sum_of_elts is

--
sum:INT := 0;
loop e ::= arr.elt!;

assert e > 0;
sum := sum + e;

end;
return sum;

end;



Safety Features : 11.4 Invariants 119

least 1.
want to

nd an

ecked

is
Consider a class with a list (we use the library class A_LIST) whose size must always be at 
Such a situtation could arise  if the array usually contains the same sort of elements and we 
use the first element of the array as a prototypical element

If the ’delete_last’ operation is called on the last element, then the assertion will be violated a
error will result.

The invariant is checked at the end of every public method.  However, the invariant  is not ch
after a private routine.  If we have the additional routines

Now we can call ’delete_and_add’

The private call to ’internal_delete_last’does violate the invariant, but it is not checked, since it 
a private routine.

class PROTO_LIST is
private attr l:A_LIST{FOO};

create(first_elt:FOO):SAME is
res ::= new;
res.l := #;
res.l.append(first_elt);
return res;

end;

invariant:BOOL is return l.size > 0 end;

delete_last:FOO is return l.delete_elt(l.size-1); end;

proto:FOO := #;   -- Some FOO object
a:PROTO_LIST := #(FOO);
last :FOO := a.delete_last;

-- At runtime, an invariant violation will occur
-- for trying to remove the last element.

delete_and_add is f :FOO
res ::= internal_delete_last;
l.append(res);
return res;

end;

private internal_delete_last:FOO is
return l.delete_elt(l.size-1);

end;

proto:FOO := #;
a:PROTO_LIST := #(FOO);
last:FOO := a.delete_and_add;  -- does not violate the class invariant



120 Safety Features : 11.4 Invariants



Built-in classes : 12.1 Fundamental Classes 121

ntation
 in the

tly and

 hold

 refer-

rray

 iters

e

Built-in classes

This section provides a short description of classes that are a part of every Sather impleme
and which may not be modified. The detailed semantics and precise interface are specified
class library documentation.

12.1  Fundamental Classes

There are a handful of classes that are specially recognized by the compiler and  are implici
explicitly used in most Sather code.

12.1.1 $OB

‘$OB’  is automatically a supertype of every type. Variables declared to be of  this type may
any object. It has no features.

12.1.2   Array support

Sather objects may have an array portion, which is specified by including  either the primitive
ence or value array

• ‘AREF{T}’  is a reference array class. Any reference class which includes it obtains an a
of elements of typeT in addition to any attributes it has defined. In such classes,new has a
single integer argument that specifies the size of the array portion. It defines routines and
named: ‘asize ’, ‘ aget ’, ‘ aset ’, ‘ aclear ’, ‘ acopy ’, ‘ aelt! ’, ‘ aset! ’, and ‘aind! ’.
Array indices start at zero.

• ‘ARRAY{T} ’ includes from ‘AREF’ and defines general purpose array objects. They may b
directly constructed by array  creation expressions.

• ‘AVAL{T} ’ is the immutable class analog of ‘AREF’. Classes which include ‘AVAL’ must de-
fineasize  as an integer constant which determines the size of the array portion.



122 Built-in classes : 12.2 Tuples

urpose

param-

is t type,
rsive
s, it re-
l error

is ns true
 fatal

nts.

ha , this is
f all at-

dentical

ty

st   Useful

de and ca-
tions
 fatal er-
12.2  Tuples

Tuples are not really a fundamental class, but are  commonly  used for a very fundamental p
- multiple return values.

‘TUP’ names a set of parameterized immutable types called tuples, one for each number of 
eters. Each has as many attributes as parameters and they are named ‘t1 ’, ‘ t2 ’, etc. Each is declared
by the type of the corresponding parameter (e.g. ‘TUP{INT,FLT} ’ has attributes ‘t1:INT ’ and
‘ t2:FLT ’). It defines ‘create ’ with an argument corresponding to each attribute.

12.3  The SYS Class

SYS defines a number of routines for accessing system information:

Routine Description

_eq(ob1, ob2:$OB):BOOL Tests two objects for equality.  If the arguments are of differen
it returns ‘false ’.  If both objects are immutable, this is a recu
test on the arguments’ attributes.  If they are reference type
turns ‘true ’ if the arguments are the same object.  It is a fata
to call with external, closure, or void reference arguments.

_lt(ob1, ob2:$OB):BOOL Defines an arbitrary total order on objects.  This never retur
if ‘ is_eq ’ would return true with the same arguments.  It is a
error to call with external, closure, or void reference argume

sh(ob:$OB):INT Defines an arbitrary hash function.  For reference arguments
a hash of the pointer; for immutable types, a recursive hash o
tributes.  Hash values for two objects are guaranteed to be i
when ‘is_eq’ would return true, but the converse is not true.

pe(ob:$OB):INT Returns the concrete type of an object encoded as an ‘INT ’.

r_for_type(i:INT):STR Returns a string representation associated with the integer.
for debugging in combination with ‘type ’ above.

stroy(ob:$OB) Explicitly deallocates an object. Sather is garbage collected 
sual use of ‘destroy ’ is discouraged.  Sather implementa
provide a way of detecting accesses to destroyed objects (a
ror).

Table 5: Operation in the SYS class



Built-in classes : 12.4 Object Finalization: $FINALIZE 123

e-

pen at
lization
s are

ronment
he rare

compiler.
t easy
 typing
itial val-

 in a

ed by
ported

es as
12.4  Object Finalization: $FINALIZE

$FINALIZE  defines the single routinefinalize .  Any class whose objects need to perform sp
cial operations before they are garbage collected should subtype from$FINALIZE .  Thefinal-
ize  routine will be called once on such objects before the program terminates.  This may hap
any time, even concurrently with other code, and no guarantee is made about the order of fina
of objects which refer to each other.  Finalization will only occur once, even if new reference
created to the object during finalization.  Because few guarantees can be made about the envi
in which finalization occurs, finalization is considered dangerous and should only be used in t
cases that conventional coding will not suffice.

12.5  Basic Classes and Literal Forms

The basic Sather classes such as integers and booleans are not treated specially  by the 
However, they do have language support in the form of convenient literal forms that permi
specification of values.    These literal forms all have a concrete type derived from the syntax;
of literals is not dependent on context. Each of these basic classes  also has a default void in
ue.

Type Initial value Description

BOOL false Immutable objects which represent boolean values.

CHAR ’\0’ Immutable objects which represent characters.  The number of bits
‘CHAR’ object is less than or equal to the number in an ‘INT ’ object.

STR "" (void ) Reference objects which represent strings for characters.  ‘void ’ is a repre-
sentation for the null string.

INT 0 Immutable objects which represent efficient integers. The size is defin
the  implementation but must be at least 32 bits.  Bit operations are sup
in addition to numerical operations.

INTI 0i Reference objects which represent infinite precision integers.

FLT 0.0 Immutable objects which represent single precision floating point valu
defined by the IEEE-754-1985 standard.

FLTD 0.0d Immutable objects for  double precision floating point values.



124 Built-in classes : 12.5 Basic Classes and Literal Forms

d by the
p-
-circuit-

 single

ntation
e codes
12.5.1    Booleans and the BOOL class

BOOL objects represent boolean values (page 123). The two possible values are represente
boolean literal expressions: ‘true ’ and ‘false ’.  Boolean objects support the standard logical o
erations.  Note that these logical operations are evaluated in the standard way, and not short
ed.  The Sather expressions "and" and "or" provide a short circuit logical operations.

12.5.2   Characters and the CHAR class

CHAR objects represent characters (page 123).Character literal expressions begin and end with sin-
gle quote marks. These may enclose either any single ISO-Latin-1 printing character except
quote or backslash or an escape code starting with a backslash.

• ’\a’  is analert such as a bell,

• ’\b’  is thebackspace character,

• ’\f’  is theform feed character,

• ’\n’  is thenewline character,

• ’\r’  is thecarriage returncharacter,

• ’\t’  is thehorizontal tab character,

• ’\v’  is thevertical tab character,

• ’\\’  is thebackslash character,

• ’\’’  is thesingle quotecharacter

• ’\"’  is thedouble quote character.

 A backslash followed by one or more octal digits represents the character whose octal represe
is given. A backslash followed by any other character is that character. The mapping of escap
to other characters is defined by the Sather implementation.

Examples: a:BOOL := true
b ::= false;
c:BOOL := a.and(b);
if a.and(b).or(d) then
end;

if  b.has_value and b.get_value > 3 then
 -- The short circuit and will only evaluate b.get_value

    -- if b.has_value is true
end;

Examples: c:CHAR := ’a’
new_line:CHAR := ’\n’;
code_16:CHAR := ’\016’;



Built-in classes : 12.5 Basic Classes and Literal Forms 125

A
llowing

beyond
ral can

d by

inary is
d by the

als
le

ay be

l form
metic
12.5.3   The string class STR

STR objects represent strings.String literal expressions begin and end with double quote marks.  
backslash starts an escape sequence as with character literals. All successive octal digits fo
a backslash are taken to define a single character.  Individual string literals  may not extend 
a single line, but successive string literals are concated together. Thus, a break in a string lite
also be used to force the end of an octal encoded character. For example:"\0367"  is a one charac-
ter string, while"\03""67"  is a three character string. Such segments may be separate
whitespace.

12.5.4   Integers and the INT class

INT  objects represent machine integers.  Integer literals can be represented in four bases: b
base 2, octal is base 8, decimal is base 10 and hexadecimal is base 16. These are indicate
prefixes: ‘0b ’, ‘ 0o ’, nothing, and ‘0x ’ respectively. Underscores may be used within integer liter
to improve readability and are ignored.INT  literals are only legal if they are in the representab
range of the Sather implementation, which is at least 32 bits.

Underscores may be used to separate the digits of an integer to improve readability - this m
particularly useful for very long binary numbers.

12.5.5   Infinite precision integers and the INTI class

 Infinite precision integers are are implemetned by the INTI class and supported by a litera
which is essentially the same as that of integers, but with a trailing ’i’.  All the standard arith
operations are defined on infinite precision integers.

Examples: s:STR := "a string literal"
d:STR := "concat" "enation\015"
-- d  is  "concatenation\015"

Examples: a:INT := 14;
b:INT := -4532
c:INT := 39_8322_983_298
binary:INT := 0b101011;
bin:INT := -0b_101010_1010
octal:ITN := 0o37323
hex_num:INT:= 0x_ea_75_67

Examples: b:INTI := -4532i
infinite_hex:INTI := 0x373254i



126 Built-in classes : 12.6 Library Conventions

epre-
al is of

ating
 legal

n used
  This
resent-

y ex-
sting
n is

h as
s.

ce
12.5.6   Floating point numbers: the FLT and FLTD classes

Syntax:

flt_literal_expression  [- ] decimal_int . decimal_int [e [- ] decimal_int]  [ d  ]

FLT andFLTD objects represent floating point numbers according to the single and double r
sentations defined by the IEEE-754-1985 standard (see also page 123).  A floating point liter
typeFLT unless  suffixed by ‘d’ designating  aFLTD literal. The optional ‘e’ portion is used to spec-
ify a power of 10 by which to multiply the decimal value. Underscores may be used within flo
point and other numeric literals to improve readability and are ignored. Literal values are only
if they are within the range specified by the IEEE standard.

Sather does not do implicit type coercions (such as promoting an integer to floating point whe
in a floating point context.)  Types must instead be promoted explicitly by the programmer.
avoids a number of portability and precision issues (for example, when an integer can’t be rep
ed by the floating point representation.

The following  two expressions are equivalent.  In the first, the ‘d’ is a literal suffix denoting the type.
In the second, ‘3.14 ’ is the literal and ‘.fltd ’ is an explicit conversion.

12.6  Library Conventions

In addition to ‘create ’, there are a number of other naming conventions:

• Classes which are related should reflect this in their names.  For example, there are man
amples in the library of an abstraction, classes implementing the abstraction, and code te
implementations of the abstraction.  For example, in the standard library the set abstractio
named$SET, H_SET  is a hash table implementation, and the test code isTEST_SET.

• Some classes implement an immutable, ‘mathematical’ abstraction (eg.integers), and others
implement mutable "object" abstractions that can be modified in place (eg. arrays).  For most
objects, the mutable, object semantics are natural and efficient. However, for classes suc
sets, the semantics may be different from those of the traditional mathematical set entitie

• Classes with immutable semantics are given their ‘mathematical’ names: STR,VEC, $SET.
When separate abstractions exist to handle value and reference semantics,  the methodvalue
will be provided in the reference version to provide an immutable snapshop of the referen
class.

Examples: f:FLT := 12.34
fd:FLTD := 3.498_239e-8d

3.14d -- A double precision literal
3.14.fltd -- Single, but converted

⇒



Built-in classes : 12.6 Library Conventions 127

ample,

encap-
The ‘

ions of

, two
• Conversions from a typeFOO to a typeBAR occur in two ways: by defining an appropriate
‘create(f:FOO):BAR ’ routine inBAR as seen above, or be defining a routine ‘bar:BAR ’
in FOO.  For example, in the standard library conversion of aFLT to aFLTD is done by calling
the routine ‘fltd:FLTD ’ defined inFLT.

• Methods which return aBOOL (calledpredicates),  usually have the prefix ‘is_ ’.  For exam-
ple, ‘is_prime ’ tests integers for primality.

• Abstract classes that require a single method should be named after that method.  For ex
subtypes of$HASH define the method ‘hash ’.

• If there is a single iterator in a container class which returns all of the items, it should be
named ‘elt! ’.  If there is a single iterator which sets the items, it should be named ‘set! ’.
In general, iterators should have singular (‘elt! ’) rather than plural (‘elts! ’) names if the
choice is arbitrary.

12.6.1   Object Identity

Many languages provide built-in pointer and structural equality and comparison.  To preserve 
sulation, in Sather these operations must go through the class interface like every method.  =’
symbol is syntactic sugar for a call to ‘is_eq ’ (page 96).  ‘is_eq:BOOL ’ must be explicitly de-
fined by the type of the left side for this syntax to be useful.

TheSYS class (page 122) can be used to obtain equality based on pointer or structural not
identity.  This class also provides built-in mechanisms for comparison  and hashing.

IS_EQ

Classes which define their own notion of equality should subtype from$IS_EQ .  This class is a
common parameter bound in container classes.  In the standard library, we have

Many classes define a notion of equality which is different than pointer equality.  For example
STR strings may be equal although, in general, strings are not unique.

abstract class $IS_EQ is
is_eq(e:$OB):BOOL;

end;

class STR < $IS_EQ is...
is_eq(arg:$OB):BOOL is ... end;
...

end; -- class STR .



128 Built-in classes : 12.6 Library Conventions

ue.

onven-
d

 abstract
u-
le, the

n.  For
that an

n-

-

Programmer defined hash functions and $HASH

Many container classes need to be able to compute hash values of their items. Just as with ‘is_eq ’,
classes may subtype from$HASH to indicate that they know how to compute their own hash val
$HASH is defined in the library to be

Objects that can be copied and $COPY

To preserve class encapsulation, Sather does not provide a built-in way to copy objects.  By c
tion, objects are copied by a class-defined routine ‘copy ’, and classes which provide this shoul
subtype from$COPY.  $COPY is defined in the standard library.

12.6.2   Nil and void

Reference class variables can be declared without being allocated.  Unassigned reference or
type variables have thevoid  value, indicating the non-existence of an object. However, for imm
table types this unassigned value is not distinguished from other legitimate values; for examp
void  of typeINT  is the value zero.

It is often algorithmically convenient to have a sentinel value which has a special interpretatio
example, hash tables often distinguish empty table entries without a separate bit indicating 
entry is empty.  Becausevoid  is a legitimate value for immutable types,void  can’t be used as this
sentinel value.  For this reason, classes may define a ‘nil ’ value to be used to represent the no
existence of an immutable object.  Such classes subtype from$NIL and define the routines
‘nil:SAME ’ and ‘is_nil: BOOL ’.

The ‘nil ’ value is generally a rarely used  or illegal value.  ForINT , it is the most negative repre
sentable integer.  For floating point types, it isNaN.  ‘is_nil ’ is necessary becauseNaN is defined
by IEEE  to not be equal to itself.

abstract class $HASH is
hash:INT;

end;

.abstract class $COPY is
copy:SAME;

end;

abstract class $NIL is
nil:SAME;
is_nil:BOOL;

end; -- anstract class $NIL



Interfacing with Fortran : 13.1 Overview 129

 a large
nds of
aries

mecha-
 a Sather
anner.

Fortran.

s. Sec-
ovides
 Sather
n 13.5

ability
ses are
ry pro-
guage
Interfacing with Fortran

Providing a type-safe Sather interface to Fortran 77 is desirable for several reasons. There is
body of well debugged and well tested high performance Fortran source code for various ki
numerical computations. Many vendors provide versions of low level numerical Fortran libr
tuned for particular hardware platforms. Fortran 77 BLAS have become ade facto standard for the
elementary vector and matrix operations. The external Fortran interface provides a standard 
nism for Fortran procedures and data to be accessed from Sather and vice versa. It enables
programmer to exploit the wealth of available numerical software in a type safe and portable m

Several important issues need to be resolved to provide interoperability between Sather and 
The issues are:

• name binding
• datatype mapping
• parameter passing

Section 13.1 introduces the Sather/Fortran interface and provides a few illustrative example
tion 13.2 talks about binding Sather entities to corresponding Fortran entities. Section 13.3 pr
a mapping of "basic" Sather types to Fortran types. Section 13.4 explains how arguments in a
call are passed to a Fortran procedure or function that implements the feature. Finally, sectio
talks about various portability issues.

13.1  Overview

Sather 1.1 provides an interface to a superset of Fortran 77 (ANSI X3.9-1978). The interoper
with Fortran code is achieved with the help of external Fortran classes. External Fortran clas
used to implement a strongly typed bidirectional Sather/Fortran interface. The extended libra
vides a set of built-in classes corresponding to all Fortran 77 types. Signatures of all inter-lan
calls must contain only these built-in classes as argument or return types.



130 Interfacing with Fortran : 13.1 Overview

y
akes it
elow

es
struc-

 defini-
s. The
spond-

 Sather

es.  Ex-
lly im-
n code.
erface

utines
ortran
 imple-
binding
 Sather

ents and
es and
e called
13.1.1   External Fortran Call Example

The keywords ’external’ and’FORTRAN’ preceding ’class’ indicate that some class features ma
be implemented externally in Fortran and some other features are compiled in a way that m
possible to call them from Fortran. An example of a simple call to a Fortran function is given b

F_INTEGER is a built-in type representing Fortran integers. A full list of builtin-in Fortran typ
will be given in section Datatype Mapping on page 136. Standard libraries provide a set of con
tors and conversion routines for conversion from Sather to Fortran types and vice versa. The
tion of feature’foo’ in external class FOO looks similar to abstract signatures in abstract classe
implementation of external classes methods without bodies is assumed to be given in a corre
ing language (Fortran in the case of ’foo’.) Such abstract signatures specify the interface from
code to Fortran code.

13.1.2   Overall Organization

External Fortran classes are used to provide both Sather/Fortran and Fortran/Sather interfac
ternal Fortran classes can contain methods of two kinds: bodyless routines indicating externa
plemented features and methods with code bodies some of which could be called from Fortra
External Fortran classes cannot be instantiated and exist only to provide a bidirectional int
from Sather to Fortran.

Only routines may have no body in the external Fortran classes (not iterators). Bodyess ro
specify the interface for Sather code (both in external and "regular" Sather classes) to call F
code. They have Sather signatures corresponding to the Fortran functions and subroutines
menting these features.  Calls to such routines are compiled using the Fortran style name 
and parameter passing convention. The full correspondence between Fortran 77 types and
built-in Fortran classes is given in section Datatype Mapping on page 136.

Methods with bodies in external Fortran classes serve a dual purpose. Methods whose argum
return types are a combination of Sather and external Fortran types are merely helper routin
iterators whose semantics is the same as that of regular routines and iterators. They could b

external FORTRAN class FOO is
   foo(a:F_INTEGER,b:F_INTEGER):F_INTEGER;
   -- a feature with a missing body is implemented externally
   -- in Fortran.
   -- Fortran definition:
   -- INTEGER FUNCTION foo(A,B)
   -- INTEGER A
   -- INTEGER B
   -- ...
end;

-- a call to an externally defined Fortran function
i:F_INTEGER := FOO::foo(#F_INTEGER(1), #F_INTEGER(2));
-- #F_INTEGER(1) creates a variable of Fortran type F_INTEGER and
--  initializes it to 1,
-- #F_INTEGER(2) does a similar job,but initializes a new variable to 2



Interfacing with Fortran : 13.1 Overview 131

rameter

 (e.g.
 com-
 freely

outines
passing
ns on
 either
ed.

ortran
abstract
re com-
r hand,

e repre-
conven-
from any Sather or external classes and such calls support the Sather name binding and pa
passing convention. Code for such methods can contain all sorts of calls without restrictions.

If all argument types and a return type, if any, in a routine with a body are built-in Fortran types
F_INTEGER, F_REAL, etc.) , such routines are meant to be callable from Fortran. They are
piled using the Fortran name binding and parameter passing convention. In fact, they could be
substituted for Fortran 77 subroutines and functions that perform the same functions. Such r
could be also called from Sather code, but these calls will also support the Fortran parameter 
convention which is often less efficient relative to regular Sather calls. There are no restrictio
the implementation of these function: they can freely use internally any methods implemented
in Sather or Fortran. Routines which are meant to be called from Fortran cannot be overload

In the diagram, arrows indicate the direction of calls. For example, an arrow connecting F
classes with bodyless routines in External classes indicate calls in the regular Sather code to 
routines in the external Fortran classes. The type of the arrow demonstrates that such calls a
piled using the Fortran style call name binding and parameter passing convention. On the othe
calls from routines with bodies in the external Fortran classes into regular Sather classes ar
sented by a solid arrow which denotes the Sather call name binding and parameter passing 
tion.

Sather
classes

Fortran
code

External Fortran class

bodiless
routines

Methods with
bodies

’Fortran’
routines

’Sather’
methods

Sather interface to
  Fortran

Fortran interface
to Sather

helpers

Sather

Fortran

Call name binding and
parameter passing convention

Mapping of Sather
bodiless routines to
Fortran

Arrows indicate call
directions



132 Interfacing with Fortran : 13.1 Overview

gular
ng and
uld be
al For-

n in-

ly
of the
assing

s.
ther
In this example, a Fortran function implementing ’foo’ is called in Sather code as if it were a re
Sather routine: FOO::foo(i,a,c). However, the call is generated using the Fortran name bindi
parameter passing convention. Calls to ’bar’ are compiled in a similar fashion; however, it co
called from both Sather or external Fortran code. Finally, ’helper’ has both Sather and extern
tran types as arguments and therefore could be called from Sather code only.

Points to note

• External Fortran class routines without bodies (abstract signatures) provide Sather/Fortra
terface.

• Routines with bodies could be called from Fortran if and only if their signatures contain on
built-in Fortran types. Such routines can be also called from Sather. However, regardless 
way they are called, they always support the Fortran style name binding and parameter p
convention.

• Methods with bodies whose signatures have non-Fortran types are regular Sather method
They could be used as helper methods for the interface classes. They always support Sa
style name binding and parameter passing.

-- This is a Fortran definition for FOO
INTEGER FUNCTION FOO(I,A,C)
INTEGER I
REAL A
CHARACTER C
....
END

external FORTRAN class FOO is
   -- this routine is implemented externally in Fortran and could
   -- be called in Sather like this: tmp::=FOO::foo(i,a,c)
   foo(i:F_INTEGER,a:F_REAL,c:F_CHARACTER):F_INTEGER;

   -- this routine could be called from both Sather and Fortran
   -- all calls to bar (either from Sather or Fortran) use the
   -- Fortran 77 parameter passing convention
   bar(i:F_INTEGER,a:F_REAL) is
      ...
   end;

   -- this routine can only be called in Sather since
   -- argument size has a Sather type
   helper(arr:F_ARRAY{F_INTEGER}, size:INT) is
      ...
      t::=foo(i,a,c);  --call uses Fortran parameter passing convention
      bar(t,a);        --Fortran convention, but implemented in Sather
   end;
end;



Interfacing with Fortran : 13.2 Name Binding 133

 Fortran
m For-
 spec-

y very
 in an

rability
nerated

tegies
pilers.
 f77

m in-

ce, the
enating
me to a
 end to
conven-

olved to
e is no
es in a

n some
13.2  Name Binding

Symbols for Sather calls to Fortran code need to be generated in exactly the same way as a
77  compile would. This is also necessary for the names of routines intended to be called fro
tran. This is difficult to ensure in a portable way since neither Sather nor Fortran 77 language
ification prescribes any symbol binding convention and the name mangling strategy is usuall
sensitive to particular Fortran platforms. Sather 1.1 attempts to solve the name biding problem
easy to use, but sufficiently general manner.

13.2.1   Difficulties

Various naming issues have to be resolved to provide seamless platform independent interope
between Sather and Fortran. Neither Sather nor Fortran specifies a way to mangle symbols ge
for the linking stage. Moreover, various Fortran compilers adopt vastly different naming stra
and, in general, it is impossible to link together object files generated by different Fortran com
Unfortunately, this is the case even for relatively mainstream platforms: for instance, AT&T
compiler name mangling is very different from that of Sun’s f77 compiler.

This is an incomplete list of various Fortran 77 naming  practices

• long names may be truncated at various lengths

• Fortran names may have one (most common) or two underscores appended

• Fortran names are usually forced to lower case

• external names (external procedures and common blocks) may be mangled differently fro
ternal names (various number of trailing underscores, etc.)

The Sather symbols may be generated using quite different naming conventions. For instan
ICSI Sather 1.1 compiler generates symbols for Sather routine and iterator names by concat
a class name (including class parameters) with a routine name, truncating the resulting na
length specified at the compiler configuration/installation step and appending a number at the
make the name unique. Other Sather implementations are free to choose any name binding 
tion.

The set of problems we have to deal with is the same set of problems that needs to be res
provide interoperability between Fortran and such an "old" language as C. To this day, ther
standard or even a concrete proposal to resolve F77/C, HPF/C or F95/C name binding issu
platform independent fashion.

The Sather 1.1 implementation deals with the naming issues in a more fundamental fashion, i
respects,  than any of the mentioned external interface proposals.



134 Interfacing with Fortran : 13.2 Name Binding

ompiler
noth-
nform
brary

t (con-
 man-
 name
rovide

port

n

r
r com-

bind"
h For-
5/C in-
be for
e always
t least a
lar prob-

ith this

 low-

se-

nge

ith a
an name
tions
piler

valid
 F95/
d be-
13.2.2   Implementation

The name mangling strategy for external Fortran names generated by Sather is set at the c
configuration time. Thus, to move a mixed language program or library from one platform to a
er, it is only necessary to reconfigure the Sather compiler at the compiler installation time to i
it about the naming convention of the Fortran compiler on the new platform. All user and li
code will continue working as is.

There are at least three potential ways to insure the portability of name binding. The simples
ceptually, not practically!) way is to keep a list of all known Fortran compilers and used name
gling conventions. The Sather compiler should be able to implement any of the possible
binding strategies. This solution was adopted (not implemented!) by the HPFF proposal to p
HPPF/C interoperability. Problems with this approach:

• works only with the existing compilers for other languages. A new compiler cannot be sup
unless major modifications to the existing tools are performed.

• adds lots of complexity to the Sather compiler as it must know many things about commo
Fortran compilers

• moving to a new Fortran platform may potentially require large modifications to the Sathe
compiler internals as the mangling decisions for special cases are hardcoded in the Sathe
piler

Another solution that tries to simplify Sather compiler complexity is to add a "Fortran name 
directive to the Sather language. This directive would specify an actual binding name for eac
tran routine meant to be called from Sather and each Sather routine callable from Fortran. F9
teroperability proposal partially adopts this approach. This solution, however tedious it may 
the user, may be unavoidable for Fortran to interface other languages since Fortran names ar
converted to lowercase and to call an external routine whose name in the symbol table has a
single uppercase letter a new language construct needs to be added to Fortran. This particu
lem, however, may be avoided for Sather. Nevertheless, there are some serious problems w
approach:

• the burden is entirely on the user’s shoulders. He/she needs to be aware about too many
level name binding details

• the "name bind" directive pollutes the code with things that are irrelevant for the program 
mantics

• it is a pain to port a program to a different Fortran platform: name binding will need to cha
accordingly

Finally, a completely general solution is to provide a Sather compiler at configuration time w
stand alone function that would take the Sather name as an input and generate a biding Fortr
as output that conforms to all conventions of the current Fortran platform. A library of such func
for most common platforms could be distributed with the compiler, and to port the Sather com
to an exotic Fortran platform, only a single function will need to be written (or modified given a 
Fortran platform with a similar functionality.) This approach was considered as superior in the
C Interoperability Technical Report (ISO/IEC JTC1/SC22/WG5 N1147), but it was not accepte
cause of the F95 compiler implementation difficulties.



Interfacing with Fortran : 13.2 Name Binding 135

dopts
n For-

 (mod-
g either
ime:

xternal

llation

func-
 gen-
 of a
. To
 added

tion
Sather 1.1 tries to shield the user completely from the horrors of low-level mangling details. It a
the third and most general strategy. In addition, it also provides simple hooks for most commo
tran mangling conventions.

Most Fortran compilers simply append an underscore as a prefix or suffix to the textual name
ulo  necessary truncation) . The same behavior for external names could be achieved by settin
one or both configuration variables in the CONFIG file for a particular platform at installation t

In this example, the Fortran binding name is generated from the routine name used in the e
Fortran class by appending ’_’.

If this is not sufficient, a general Fortran name mangling function can be specified at insta
time:

When FORTRAN_BIND_FUNC configuration variable is set to true, a general name binding 
tion BIND_FORTRAN::bind_name(name:STR):STR is invoked whenever Fortran symbols are
erated. It, in turn, can call any user supplied mangling function capturing the peculiarity
particular Fortran platform. BIND_FORTRAN class contains most common binding functions
port the system to an exotic Fortran environment, a single name binding routine needs to be
to BIND_FORTRAN.

Class BIND_FORTRAN resides in the Fortran library. The following Fortran name binding func
simply appends an underscore to the textual name:

FORTRAN_APPEND_UNDERSCORE:true;
FORTRAN_PREFIX_UNDERSCORE:false;

FORTRAN_BIND_FUNC:  true;

class BIND_FORTRAN is
   -- contains various functions binding Fortran names for exotic
   -- architectures. "bind_name" should always call the appropriate
   -- function and FORTRAN_FUNC_BIND in CONFIG should be set to true
   bind_name(name:STR):STR is
      res:STR;
      -- various Fortran mangling routines should be plugged in here
      res := append_underscore(name);
      return res;
   end;

   append_underscore(s:STR):STR is
      return s+"_";
   end;
end;



136 Interfacing with Fortran : 13.3 Datatype Mapping

e types
 used
n sca-
lso pro-
ons or
ility for

e
rts

or-
a-

.

.

ts
e

.
t

d
r
re,

-

r-
13.3  Datatype Mapping

The extended Sather 1.1 library provides a set of built-in classes interfacing to Fortran. Thes
are "binary" compatible with their Fortran 77 counterparts. Only these built-in classes may be
in signatures of routines implemented in Fortran or Sather routines called from Fortran. Fortra
lar types can be used alone or as parametrizations for built-in Fortran array classes. Sather a
vides a convenient way for packaging Sather routines and passing them to Fortran functi
subroutines that expect externally defined subroutines as arguments. There is also a fac

Fortran 77 Sather class Features

integer F_INTEGER binary compatible with Fortran 77 integers and can b
used whenever Fortran integer type is expected. Suppo
arithmetic and relational operations, construction from
and convention to INT

real F_REAL represents Fortran 77 reals and can be used whenever F
tran real type is expected. Supports arithmetic and rel
tional operations, construction from and convention to
FLT

logical F_LOGICAL binary compatible with Fortran 77 logical. Supports logi-
cal operations and constructors from Sather BOOL type

double
precision

F_DOUBLE binary compatible with Fortran 77 double precision type
Supports a set of features simialr to F_REAL

complex F_COMPLEX binary compatible with Fortran 77 complex type. Suppor
arithmetic operations and creation from Sather CPX typ
(although the binary representation is quite different from
CPX)

double
complex

F_DOUBLE_CO
MPLEX

binary compatible with Fortran 77 double complex type
Supports a set of features similar to F_COMPLEX, bu
uses double precision arithmetic.

character,
character*1

F_CHARACTER binary compatible with both Fortran 77 character an
character*1 types. As an optimizations, inside Sathe
space it is represented by a single byte and is, therefo
more efficient than corresponding Fortran 77 types.

character*n F_STRING binary compatible with Fortran 77 character*n type (in
cluding character*1). Intra Sather calls are slightly more
efficient than corresponding Fortran/Fortran, Sather/Fo
tran or Fortran/Sather calls.

Table 6: Built-in Scalar Types



Interfacing with Fortran : 13.3 Datatype Mapping 137

way to

E,
 to
ALAR
eterized

s with
ough
NT and
e about

ntly by
le guar-
 double
bsolute

ry
e
ys,

n
hat

e
er-
r-
Sather to provide exception handlers for Fortran subroutines with alternate returns (Fortran’s 
handle exceptional or abnormal conditions).

13.3.1   Scalar Types

There are eight built-in scalar types: F_INTEGER, F_REAL, F_LOGICAL, F_DOUBL
F_COMPLEX, F_DOUBLE_COMPLEX, F_CHARACTER, and F_STRING. They correspond
Fortran 77 types as shown in the table. All scalar Fortran types are subtypes of $F_SC
($F_SCALAR is used as a bound for array parametrizations to ensure that arrays are param
with scalar types only).

It is important to distinguish between external Fortran interface types and "regular" Sather type
similar semantics. For example, Sather type INT is different from Fortran F_INTEGER, alth
both abstract the meaning of integers. There is no sub- or super-typing relationship between I
F_INTEGER and these types cannot be used interchangeably. No assumption could be mad
the relative amounts of memory the Sather and Fortran types need. This is defined differe
Sather and Fortran 77 language specifications. For instance, the only relevant Fortran 77 ru
antees that integer, logical, and real Fortran types occupy the same amount of memory, and
precision and complex types occupy twice as much (the language does not specify the a
amounts). Sather, on the other hand, does not specifically support these assumptions.

Fortran 77 Sather Types Features

Various
array types

F_ARRAYn{T<
$F_SCALAR}
where n = 1,2,..

Can be parametrized by any scalar Fortran types, bina
compatible with the corresponding Fortran 77 arrays: us
the same layout. Can be constructed using Sather arra
matrix and vector classes. arr:F_ARRAY{F_INTEGER}
corresponds to INTEGER arrr(*) in Fortran.

Table 7: Array Types

Fortran 77 Sather Type Features

External
subroutines
passed as
arguments

F_ROUT{} Used to bind Fortran routines, strongly type checked. Ca
be passed as arguments to external Fortran routines t
expect externally defined subroutines as parameters.

Alternate
returns
(exception
handling)

F_HANDLER Implements Fortran exception handling in Sather. Can b
passed as an arguments to Fortran subroutines with alt
nate returns (Fortran’s way to handle exceptional or abno
mal conditions.)

Table 8: Fortran Routine and Exception Handler Types



138 Interfacing with Fortran : 13.3 Datatype Mapping

never a
etriza-

ield a
to be
TEGER
 Such
ar and
F_INTEGER

F_INTEGER is a Sather 1.1 class representing Fortran 77 integer type. It can be used whe
Fortran 77 integer is expected: calls to routines implemented in Fortran, Fortran array param
tions, etc. The Sather 1.1 library defines the following features for F_INTEGER

F_INTEGER could be created using a Sather INT type. An existing F_INTEGER could also y
corresponding Sather INT value. Although the intended use for F_INTEGER variables is 
passed as arguments to and from external Fortran routines, some simple operations on F_IN
variables are built-in and could be performed in Sather directly without going through Fortran.
operations are the regular arithmetic operations (+ -* /) and logical operations. Syntactic sug
operator precedence rules are same as those for Sather types.

Fortran 77 Sather class Features provided by the library

INTEGER F_INTEGER create(x:INT):F_INTEGER  -- construct from INT
int:INT                                  -- INT version of self
str:STR                                  -- string representation
zero:SAME                           -- zero and
nil:SAME                              -- nil values
is_nil:BOOL                          -- true if self is nil
plus(i:SAME):SAME
minus(i:SAME):SAME
times(i:SAME):SAME
div(i:SAME):SAME
is_eq(i:SAME):BOOL
is_lt(i:SAME):BOOL

Table 9: F_INTEGER



Interfacing with Fortran : 13.3 Datatype Mapping 139

issing
This example uses an external function defined in Fortran to implement a factorial function m
in the F_INTEGER interface:

*     A Fortran function that implements factorial of N
      INTEGER FUNCTION FACTORIAL(N)
      INTEGER N
      FACTORIAL = 1
      DO 10, I=1,N
         FACTORIAL = FACTORIAL * I
 10   CONTINUE
      END

external FORTRAN class USEFUL_FUNCTIONS is
   factorial(i:F_INTEGER):F_INTEGER;
   -- a function implemented in Fortran that returns factorial of i
end;

class MAIN is
   main is
      i:F_INTEGER := #(4);
      a:F_INTEGER := USEFUL_FUNCTIONS::factorial(i);
      #OUT + "This " + a.str + " should be 24\n";
   end;
end;



140 Interfacing with Fortran : 13.3 Datatype Mapping

nd re-

xtend
F_REAL

F_INTEGER, F_REAL represents Fortran 77 real type. Sather syntactic sugar for arithmetic a

lational operations and operator precedence rules apply to F_REAL. Now, we can e
USEFUL_FUNCTIONS class with a power routine for F_REAL:

Fortran 77 Sather class Features provided by the library

REAL F_REAL create(x:FLT):F_REAL         -- construct from FLT
flt:INT                                   -- FLT version of self
str:STR                                  -- string representation
zero:SAME                           -- zero and
nil:SAME                              -- nil values
is_nil:BOOL                          -- true if self is nil
plus(i:SAME):SAME
minus(i:SAME):SAME
times(i:SAME):SAME
div(i:SAME):SAME
is_eq(i:SAME):BOOL
is_lt(i:SAME):BOOL

Table 10: F_REAL

external FORTRAN class USEFUL_FUNCTIONS is
   -- external Fortran function that raises x to power y
   power(x:F_REAL,y:F_REAL):F_REAL;
end;



Interfacing with Fortran : 13.3 Datatype Mapping 141

ational

 with
r). In
 to con-
F_DOUBLE

F_DOUBLE represents Fortran 77 double type. Sather syntactic sugar for arithmetic and rel

operations and operator precedence rules apply to F_DOUBLE.

F_LOGICAL

F_LOGICAL is a Sather class representing Fortran 77 logical type. It is "binary" compatible
Fortran’s "logical" type (Sather BOOL has a vastly different representation in ICSI 1.1 compile
particular, F_LOGICAL occupies the same amount of space as Fortran integer and real types
form to Fortran 77 rules.

Fortran 77 Sather class Features provided by the library

REAL F_REAL create(x:FLTD):F_REAL       -- construct from FLTD
fltd:INT                                 -- FLTD version of self
str:STR                                  -- string representation
zero:SAME                           -- zero and
nil:SAME                              -- nil values
is_nil:BOOL                          -- true if self is nil
plus(i:SAME):SAME
minus(i:SAME):SAME
times(i:SAME):SAME
div(i:SAME):SAME
is_eq(i:SAME):BOOL
is_lt(i:SAME):BOOL

Table 11: F_DOUBLE

Fortran 77 Sather class Features provided by the library

LOGICAL F_LOGICAL create(x:BOOL):F_LOGICAL -- construct from INT
bool:BOOL                              -- INT version of self
str:STR                                     -- string representation
not:SAME
is_eq(B:SAME):BOOL
f_or(b:SAME):SAME
f_and(b:SAME):SAME

Table 12: F_LOGICAL



142 Interfacing with Fortran : 13.3 Datatype Mapping

er op-
to

ugh
X has
es for
ructors
Logical operations are called f_or and f_and to avoid name collisions with short-circuited Sath
erators ’and’ and ’or’. The following function implementing exclusive or can be added 
USEFUL_FUNCTIONS

F_COMPLEX

F_COMPLEX is a Sather class binary compatible with Fortran 77 COMPLEX type. Altho
F_COMPLEX provides a constructor that accepts a variable of Sather CPX type, F_COMPLE
a binary representation quite different from that of CPX. F_COMPLEX provides a set of featur
setting and returning the values of the real and imaginary parts. It also provides useful const
and supports a set of arithmetic operations.

This is a possible implementation of  addition of F_COMPLEX numbers:

xor(a:F_LOGICAL,b:F_LOGICAL):F_LOGICAL is
   return (a.not.f_and(b)).f_or(a.f_and(b.not));
end;

Fortran 77 Sather class Features provided by the library

COMPLEX F_COMPLEX re:F_REAL                            -- return real part
re(x:F_REAL)                       -- set real part
im:F_REAL                          -- return imaginary part
im(x:F_REAL)                      -- set imaginary part
create(c:CPX):SAME            -- create new and
                                              -- initialize to value of c
create(re:F_REAL,im:F_REAL):SAME
create(re:FLT,im:FLT):SAME
create(fc:F_COMPLEX):SAME
cpx:CPX                                -- Sather comlplex type
str:STR                                  -- string representation
zero:SAME                           -- zero and
nil:SAME                              -- nil value
is_nil:BOOL                          -- true if self is nil
plus(c:SAME):SAME
minus(c:SAME):SAME
times(c:SAME):SAME
div(c:SAME):SAME
is_eq(c:SAME):BOOL

Table 13: F_COMPLEX

plus(c:F_COMPLEX):F_COMPLEX is
   return #F_COMPLEX(re+c.re,im+c.im);
end;



Interfacing with Fortran : 13.3 Datatype Mapping 143

 the
 many

but

an 77
 Sather
haracter

g which
Since the
ss
riables
 a single
F_DOUBLE_COMPLEX

Similar to F_COMPLEX, F_DOUBLE_COMPLEX is a Sather class binary compatible with
Fortran double complex type. Double complex type is an extension to Fortran 77 supported by
F77 compiler. F_DOUBLE_COMPLEX class provides functionality similar to F_COMPLEX, 
works with double precision floating point representations.

F_CHARACTER

F_CHARACTER is binary compatible with Fortran 77 types character and character*1. Fortr
character and character*1 types are, in fact, instances of character*n types with n set to 1. In
terms, they are strings with size always set to one. For parameter passing purposes, Fortran c
and character*1 variables behave exactly as generic character*n types (the length of the strin
is always one is passed as an extra parameter for each character or character*1 argument). 
goal for F_CHARACTER is binary compatibility with Fortran, this is how F_CHARACTER cla
behave when a call crosses the language boundary. However, as long as F_CHARACTER va
stay within the Sather space, they are represented and passed to routines more efficiently, as

Fortran 77 Sather class Features provided by the library

double
complex

F_DOUBLE_
COMPLEX

re:F_DOUBLE                     -- return real part
re(x:F_DOUBLE)                 -- set real part
im:F_DOUBLE                    -- return imagianry part
im(x:F_DOUBLE)               -- set imaginary part
create(c:CPXD):SAME        -- create new and
                                              -- initialize to value of c
create(re:F_DOUBLE,im:F_DOUBLE):SAME
create(re:FLTD,im:FLTD):SAME
create(fc:F_DOUBLE_COMPLEX):SAME
cpxd:CPXD                           -- CPXD version of self
str:STR                                  -- string representation
zero:SAME                           -- zero and
nil:SAME                              -- nil value
is_nil:BOOL                          -- true if self is nil
plus(c:SAME):SAME
minus(c:SAME):SAME
times(c:SAME):SAME
div(c:SAME):SAME
is_eq(c:SAME):BOOL

Table 14: F_DOUBLE_COMPLEX



144 Interfacing with Fortran : 13.3 Datatype Mapping

er are

both
, but

e sec-
te argu-
 Sather
 whole,

 A set
re
pes. For
byte. As a result, simple character operations performed on F_CHARACTER class in Sath
more efficient than their Fortran versions!

F_STRING

F_STRING is binary compatible with Fortran 77 character*n types. Note, that 
F_CHARACTER and F_STRING can be used to interface with Fortran character*1 type
F_CHARACTER yields better performance for computations performed in Sather.

F_STRING is internally represented by a tuple: the first field points to the string itself, and th
ond records the string length. An inter-language call requires that both be passed as separa
ments. The section Parameter Passing on page 151 provides more information on this. Inside
however (calls using the Sather parameter passing convention), F_STRING is passed as a
which is slightly more efficient than the Fortran calls.

13.3.2   Fortran Array Classes

Providing a convenient array interface is an important goal for Sather/Fortran interoperability.
of parametrized classes F_ARRAY{T<$F_SCALAR}, and F_ARRAYn{T<$F_SCALAR}, whe
n=2,3... are used for this purpose. Array classes can be parametrized by any of the scalar ty

Fortran 77 Sather class Features provided by the library

character
character*1

F_CHARACTER create(c:CHAR):SAME        -- create new and
                                              -- initialize to value of c
char:CHAR                           -- CHAR version of self
str:STR                                  -- STR version of self
zero:SAME                           -- zero
is_eq(c:SAME):BOOL
is_lt(c:SAME):BOOL

Table 15: F_CHARACTER

Fortran 77 Sather class Features provided by the library

character*n F_STRING create(s:STR):SAME             -- create new and
                                              -- initialize to value of s
create(n:INT):SAME            -- new of size n
create(c:CHAR):SAME        -- create from c
address:C_CHAR_PTR       -- the "string" part
size:INT                                -- string length
str:STR                                  -- STR version of self

Table 16: F_STRING



Interfacing with Fortran : 13.3 Datatype Mapping 145

arly,

nform
cessive
te that
ion
, matrix
RAY2

tion pro-

simple
lows:
example, F_ARRAY{F_INTEGER} corresponds to a Fortran 77 integer array type. Simil
F_ARRAY2{F_REAL} represents a Fortran 77 two-dimensional array of real numbers.

F_ARRAY classes must be binary compatible with the Fortran 77 arrays and therefore they co
to the Fortran array layouts. For instance, this requires that in a two dimensional arrays suc
elements of a column are in a contiguous memory locations (i.e. column major layout.)  No
regular Sather arrays (ARRAY{}, ARRAY2{}, etc.) support C-like row-major layout. Thus, creat
of Fortran arrays based on Sather arrays may require a layout change. On the other hand
classes provided by the Sather Math library have the same layout as Fortran arrays. F_AR
classes provide constructors from MAT classes that have reference semantics - thus the crea
cedure is fairly inexpensive.

Combining materials from this chapter, and using Fortran array types, we can construct a 
Sather interface to standard Fortran BLAS single precision matrix multiplication routine as fol

    SUBROUTINE SGEMM (TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
    CHARACTER*1        TRANSA, TRANSB
    INTEGER            M, N, K, LDA, LDB, LDC
    REAL               ALPHA, BETA
    REAL               A( LDA, * ), B( LDB, * ), C( LDC, * )

external FORTRAN class BLAS is
   sgemm(transa:F_CHARACTER, transb:F_CHARACTER, m,n,k:F_INTEGER,

 alpha:F_REAL, a:F_ARRAY2{F_REAL}, lda:F_INTEGER,
 b:F_ARRAY2{F_REAL}, ldb:F_INTEGER,beta:F_REAL,
 C:F_ARRAY2{F_REAL},ldc:F_INTEGER);

   -- this corresponds to the fortran BLAS signature
end;

class TEST_BLAS is
   main is
      fa,fb,fc:F_ARRAY2{F_REAL};
      sa,sb,sc:MAT;

      initialize(sa,sb,sc);
      fa := #(sa);  -- these creations has "reference" semantics
      fb := #(sb);
      fc := #(sc);

      dim:F_INTEGER := #(fa.size);
      TEST_BLAS::sgemm(#('N'),#('N'),#(sa.nr),#(sb.nc),#(sa.nc),#(1.0),
      fa,#(sa.size1),fb,#(sb.size1),#(0.0),fc,#(sc.size1));
      -- at this point, both fc and sc have a multiplication result
   end;

   initialize(sa:MAT,sb:MAT,sc:MAT) is
      -- initialization code ...
   end;
end;



146 Interfacing with Fortran : 13.3 Datatype Mapping

om the

r than
mul-
er op-
l be as
bout

r-
Fortran
We can go one step father and hide the details of Fortran implementation of sgemm entirely fr
user:

This code shows that using high-performance Fortran BLAS in Sather is, in fact, much easie
in Fortran! The internal workings of BLAS could be buried in the libraries. As a result, matrix 
tiplication is expressed as easily as "a*b" in the example. If the code is compiled with compil
timizations on, the Sather inlining stage eliminates an extra routine call, and the end result wil
efficient as calling "sgemm" from Fortran directly. However, we get away with not specifying a
a dozen parameters in the most general case.

In the given example, the space for the multiplication result ’fc’ needs to be allocated in Sather (Fo
tran 77 has no means for a dynamic memory allocation). This is also necessary even when 
arrays are returned by functions.

Points to note

• Fortran arrays have a different layout from standard Sather arrays. In particular, in
F_ARRAY2, consecutive elements in array columns occupy consecutive storage, while
ARRAY2 has a row-major layout.

• MAT classes have the same layout as Fortran arrays, and conversion from MAT to
F_ARRAY2 is very light-weight (reference semantics)

class MAT is
  .....
  various methods from MAT class
  .....
  times(m:SAME):SAME is
      -- multiply self by m and return the resulting matrix
      -- For efficiency, uses high-performance Fortran 77 BLAS sgemm
      res:MAT := #(nr,m.nc); -- storage for result
      fa,fb,fc:F_ARRAY2{F_REAL};
      fa := #(self);
      fb := #(m);
      fc := #(res);
      -- now, call the Fortran BLAS sgemm
      TEST_BLAS::sgemm(#('N'),#('N'),#(nr),#(m.nc),#(nc),#(1.0),
      fa,#(size1),fb,#(m.size1),#(0.0),fc,#(res.size1));
      -- at this point, both fc and res have a multiplication result
      return res;
  end;
end;

-- now it is really easy to multiply matrices!
a,b,c:MAT;
c := a*b;



Interfacing with Fortran : 13.3 Datatype Mapping 147

irable to
e neces-
ion to
 speed
s them

ran pa-
 external
 ways,
ped and
 rou-
 and for

laced
between

 two ar-
arrays:
13.3.3   F_ROUT and F_HANDLER Types

Passing Routines as Arguments, F_ROUT{}

Fortran 77 supports passing procedures as arguments to subroutines and functions. It is des
be able to package a Sather routine and pass it as an argument to Fortran code. It may prov
sary for example, when Fortran numerical code expects a differentiation or integration funct
be passed as an argument. Since we would like to exploit Sather flexibility and development
whenever possible, a natural thing to do is to write such integration routines in Sather and pas
to numerical Fortran code.

Sather 1.1 provides a way to bundle any routine in the External class that supports the Fort
rameter passing convention and pass it as a functional argument to Fortran code that expects
procedures as parameters. A Fortran routine type F_ROUT{} serves this purpose. In many
F_ROUTs are similar to Sather routine closures. Just as routine closures, they are strongly ty
provide similar creation facilities. However, unlike routine closures, all arguments in the Fortran
tine used for creation must be left unbound. This is necessary to adhere to Fortran semantics
performance considerations.

’#F_ROUT(...)’ is a creation expression that surrounds a Fortran calls with all arguments rep
by the underscore character ’_’. For example, this code may be used to compute a distance 
two points on the plane whose coordinates are represented by Fortran complex numbers:

In the above example, an externally implemented Fortran subroutine process_points expects
rays of complex numbers and a function that will be applied to corresponding elements in the 

external FORTRAN class STAT is
   distance(point1:F_COMPLEX, point2:F_COMPLEX,res:F_REAL) is
      -- this routine is compiled using the Fortran parameter
      -- passing convention and name binding. It could be called
      -- from either Sather or Fortran
      x1:FLT := point1.re.flt; y1:FLT := point1.im.flt;
      x2:FLT := point2.re.flt; y2:FLT := point2.im.flt;
      res := #F_REAL(((x1-x2).square + (y1-y2).square).sqrt);
   end;

   -- this routine is implemented externally in Fortran
   process_points(array1:F_ARRAY{F_COMPLEX}, array2:F_ARRAY{F_COMPLEX},
               func:F_ROUT{F_COMPLEX,F_COMPLEX,F_REAL),size:F_INTEGER);
end;

    SUBROUTINE PROCESS_POINTS(ARRAY1,ARRAY2,FUNC,SIZE)
    COMPLEX ARRAY1(*), ARRAY2(*)
    EXTERNAL FUNC
    INTEGER SIZE

    REAL RES
    DO 10 I=1,SIZE
      CALL FUNC(ARRAY1(I),ARRAY2(I),RES)
      PRINT *, RES
10  CONTINUE
    END



148 Interfacing with Fortran : 13.3 Datatype Mapping

ay:

 vari-

side

ing

right-
y as

possi-

s
ions.

ions.
We can pass a routine defined in Sather to Fortran subroutine process_points the following w

Variables of F_ROUT type behave similarly to ROUT variables. It is possible to assign to such
ables, pass them as parameters, etc.:

Points to note

• F_ROUT type specifiers are very similar to routine closure type specifiers, but all types in
F_ROUT{} must be Fortran types.

• All call arguments in #F_ROUT() must remain unbound (Fortran 77 does not support bind
subroutine or function arguments)

• F_ROUT variables could be assigned to just like other Sather variables. The types of the 
hand side and the left-hand sides of such assignments are strongly checked the same wa
for other assignments.

• Unlike Sather routine closures, there may be no subtyping relationship between different
F_ROUT types (this is because all Fortran types are concrete). Assignments or calls are 
ble only when the types are exactly the same.

• #F_ROUT() could be used just as well to bind externally defined Fortran routines (routine
without bodies). These could be passed back to Fortran or used in Sather without restrict

• Type inferencing for F_ROUT creations works exactly as that for closure creation express

• F_ROUT arguments cannot be passed as"out" or "inout" arguments.

-- This code appears in some STAT feature
array1, array2:F_ARRAY{F_COMPLEX}
-- some code to initialize array1 and array2

rout:F_ROUT{F_COMPLEX,F_COMPLEX,F_REAL} := #F_ROUT(distance(_,_,_));
process_points(array1,array2,rout); -- call Fortran code

rout:F_ROUT{F_COMPLEX,F_COMPLEX,F_REAL} := #F_ROUT(distance(_,_,_));

rout1:F_ROUT{F_COMPLEX,F_COMPLEX,F_REAL);
rout1 := rout;  -- F_ROUT assignment: lhs and rhs types are the same



Interfacing with Fortran : 13.3 Datatype Mapping 149

nding
tances.

onding
ansfer
 For ex-
 0, ex-
asterisk
ents.

 by the
eption

 passed
tructor
n han-
Exceptional Condition Handling, F_HANDLER

It is possible in Fortran to anticipate exceptional conditions and have different flow paths depe
on whether the called subroutine has terminated properly, or has detected abnormal circums
This is achieved using the alternate RETURN facility.

In the given example, the argument list of the call to subroutine FOO includes 2 labels corresp
to the exception handler entries. If an exceptional condition of some sort arises, FOO will tr
control to the appropriate exception handler (passed as an argument) rather than the caller.
ample, if the value of argument I is 0, the control is transferred to exception handler 1, if J is
ception handler 2 handles the exception. The exception handlers are indicated by the dummy 
arguments in the subroutine argument list. Only subroutines are allowed to have such argum

Since alternate returns are a part of Fortran, they may be present in the interfaces provided
Fortran libraries. It is, therefore, desirable to call such subroutines from Sather and provide exc
handlers written in Sather for such calls.

The F_HANDLER class captures the essence of the Fortran exception handlers and could be
in as an argument to a subroutine with alternate returns. F_HANDLER provides a single cons
create(rout:ROUT):SAME. The argument is a bound routine with no arguments since Fortra

*       A call to a subroutine with "alternate returns"
*       This is a Fortran’s way to handle exceptional conditions
*       If, for some reason, FOO detects an abnormality
*       it can choose to return to exception handlers
*       (passed as labels 100 and 200), rather than to the caller
        CALL FOO(I,J,*100,*200)
1       ....

*       Handle exceptions
*       Exception Handler 1
100     ....
        GO TO 1
200     Exception Handler 2
        ....
        GO TO 1

*       A subroutine with alternate returns
*       Two exception handlers are passed in (marked by *)
*       RETURN 1 transfers control to the first handler, and
*       RETURN 2 transfers control to the second handler
*       "Normal" RETURN transfers control to the caller
        SUBROUTINE FOO(I,J,*,*)
        ...
*       Detect abnormal conditions and transfer control to
        the appropriate exception handlers
        IF (I.EQ.0) RETURN 1
        IF (J.EQ.0) RETURN 2
        END



150 Interfacing with Fortran : 13.3 Datatype Mapping

ather

ly. For
rd Sather
ception

ler 2"
dlers do not have any arguments. Now, we will call the Fortran subroutine FOO, but supply S
exception handlers at the moment of the call.

When this code is executed, it prints: "Sather handler for Fortran exception 2".

F_HANDLER mechanism allows to integrate Fortran and Sather exceptions even more close
example, we can use Sather exception handlers that catch Fortran exceptions to raise standa
exceptions that are caught by the  Sather protect mechanism. Essentially, this turns Fortran ex
into regular Sather exceptions:

This code produces: "Sather exception for FORTRAN->Sather exception redirected by hand

class HANDLERS is
   h(i:INT) is
      #OUT + "Sather handler for Fortran exception "+i.str +"\n";
   end;
   create:SAME is return new; end;
end;

external FORTRAN class FOO is
   foo(i:F_INTEGER,j:F_INTEGER,handler1:F_HANDLER, handler2:F_HANDLER);
   -- note that foo can’t have a return value - this is a Fortran
   -- restriction on subroutine with alternate returns
end;

-- code that calls Fortran FOO
handlers:HANDLERS := #;
handler1:F_HANDLER := #(bind(handlers.h(1))); -- create first handler
handler2:F_HANDLER := #(bind(handlers.h(2))); -- create second handler
FOO::foo(#(1),#(0),handler1,handler2);

class HANDLERS is
   r_h(i:INT) is
      raise "FORTRAN->Sather exception redirected by handler #"+i.str;
   end;
   create:SAME is return new; end;
end;

external FORTRAN class FOO is
   foo(i:F_INTEGER,j:F_INTEGER,handler1:F_HANDLER, handler2:F_HANDLER);
   -- note that foo can’t have a return value - this is a Fortran
   -- restriction on subroutine with alternate returns
end;

-- code that calls Fortran FOO
handlers:HANDLERS := #;
redirect_handler1:F_HANDLER := #(bind(handlers.r_h(1)));
redirect_handler2:F_HANDLER := #(bind(handlers.r_h(2)));
protect
   FOO::foo(#(1),#(0),redirect_handler1,redirect_handler2);
when STR then
   #OUT + "Sather exception for "+exception+\n";
end



Interfacing with Fortran : 13.4 Parameter Passing 151

an

.
an ex-

 passing
ortran

pes) are
er sig-
ed. For

ge 154
rate pa-

ons
LEX
ument

ts: a
Points to note

• Only routines that have no return value can have F_HANDLER arguments. This is a Fortr
restriction: only subroutines (not functions) can have alternate returns.

• F_HANDLER can be created from a standard closure with no arguments or return value:
ROUT. An attempt to use closures of other types (like ROUT{INT}) is reported as an error
This restriction is also necessitated by the semantics of alternate returns in Fortran. Fortr
ception handlers do not permit arguments.

• F_HANDLER types cannot be passed as "out" or "inout" arguments.

13.4  Parameter Passing

Some routines and calls in external Fortran classes are compiled using the Fortran parameter
convention. This section describes how this is achieved. Routines without bodies in external F
classes and Fortran routines (routines whose return types and all arguments are Fortran ty
compiled as described below. The explanation is done in terms of mapping the original Sath
natures to C prototypes. All Fortran types are assumed to have corresponding C types defin
example, F_INTEGER class maps onto F_INTEGER C type. Section Portability Issues on pa
describes how this could be achieved in a portable fashion. The examples are used to illust
rameter passing only - the actual binding of function names is irrelevant for this purpose.

13.4.1   Return Types

Routines that return F_INTEGER, F_REAL, F_LOGICAL, and F_DOUBLE map to C functi
that return corresponding C types. A routine that returns F_COMPLEX or F_DOUBLE_COMP
is equivalent to a C routine with an extra initial arguments preceding other arguments in the arg
list. This initial argument points to the storage for the return value.

A routine that returns F_CHARACTER is mapped to a C routine with two additional argumen
pointer to the data, and a string size, always set to 1 in the case of F_CHARACTER.

F_COMPLEX foo(i:F_INTEGER,a:F_REAL);
-- this Sather signature is equivalent to
void foo(F_COMPLEX* ret_val, F_INTEGER* i_address, F_REAL* a_address)

F_CHARACTER foo(i:F_INTEGER, a:F_REAL);
-- this Sather signature maps to
void foo(F_CHARACTER* address, F_LENGTH size, F_INTEGER* i_address,
F_REAL* a_address);



152 Interfacing with Fortran : 13.4 Parameter Passing

l ar-

 type
is ap-

CTER
f string

 return
ran code.
 to con-

wo
Similarly, a routine returning F_STRING is equivalent to a C routine with two additional initia
guments, a data pointer and a string length.1

13.4.2   Argument Types

All Fortran arguments are passed by reference. In addition, for each argument of
F_CHARACTER or F_STRING, an extra parameter whose value is the length of the string 
pended to the end of the argument list.

Additional string length arguments are passed by value. If there are more than one F_CHARA
or F_STRING arguments, the lengths are appended to the end of the list in the textual order o
arguments:

Sather signatures that have F_HANDLER arguments correspond to C integer functions whose
value represents the alternate return to take. The actual handlers are not passed to the Fort
Instead, code to do the branching based on the return value is emitted by the Sather compiler
form to the alternate return semantics.

Arguments of type F_ROUT are passed as function pointers.

Thus, the entire C argument list including additional arguments consists of:

• one additional argument due to F_COMPLEX or F_DOUBLE_COMPLEX return type, or t
additional arguments due to F_CHARACTER or F_STRING return type

• references to "normal" arguments corresponding to a Sather signature argument list

1.  The current Sather 1.1 implementation disallows returning Fortran strings of size greater than 32 bytes. This
restriction may be lifted in the future releases.

F_STRING foo(i:F_INTEGER, a:F_REAL);
-- this Sather signature maps to
void foo(F_CHARACTER* address, F_LENGTH size, F_INTEGER* i, F_REAL* a);

foo(i:F_INTEGER,c:F_CHARACTER,a:F_REAL):F_INTEGER
-- this is mapped to
F_INTEGER foo(F_INTEGER* i_address,F_CHARACTER*c_address,F_REAL*
a_address,F_LENGTH c_length);
-- all calls have c_length set to 1

foo(i:F_INTEGER,s:F_STRING,a:F_REAL):F_INTEGER
-- this is mapped to
F_INTEGER foo(F_INTEGER* i_address,F_CHARACTER* s_address,F_REAL*
a_address,F_LENGTH s_length);
-- propoer s_length is supplied by the caller

foo(s1:F_STRING,i:F_INTEGER,s2:F_STRING,a:F_REAL);
-- this is mapped to
void foo(F_CHARACTER* s1_address,F_INTEGER* i_address,F_CHARACTER*
s2_address, F_REAL a_address,F_LENGTH s1_length, F_LENGTH s2_length);



Interfacing with Fortran : 13.4 Parameter Passing 153

na-

e
e

 until the
lls.

conse-
s
tions.)

s is pre-
involve
tran. In
rologue
 value/
that are

bvious.
• additional arguments for each F_CHARACTER or F_STRING argument in the Sather sig
ture

The following example combines all rules:

13.4.3   OUT and INOUT Arguments

Sather 1.1 provides the extra flexibility of’out’ and’inout’ argument modes for Fortran calls. Th
Sather compiler ensures that the semantics of’out’ and ’inout’ is preserved even when calls cross th
Sather language boundaries. In particular, the changes to such arguments are not observed
call is complete - thus the interlanguage calls have the same semantics as regular Sather ca

This additional mechanism makes the semantics of some arguments visually explicit and 
quently helps catch some bugs caused by the modification of ’in’ arguments (all Fortran argument
are passed by reference, and Fortran code can potentially modify all arguments without restric
A special compiler option may enable checking the invariance of Fortran’in’ arguments2.

In the case of calling Fortran code, the Sather compiler ensures that the value/result semantic
served by the caller - the Sather compiler has no control over external Fortran code. This may 
copying’inout’ arguments to temporaries and passing references to these temporaries to For
the case of Sather routines that are called from Fortran, the Sather compiler emits a special p
for such routines to ensure the value/result semantics for the Fortran caller. In summary, the
result semantics for external calls to Fortran is ensured by the caller, and for Sather routines 
meant to be called by Fortran it is implemented by the callee.

This example suggests how a signature for a routine that swaps two integers:

Note that using argument modes in this example makes the semantics of the routine more o

2.  The ICSI Sather 1.1 compiler currently does not implement this functionality.

foo(s1:F_STRING, i:F_INTEGER, a:F_REAL, c:F_CHARACTER):F_COMPLEX
-- is mapped to
void foo(F_COMPLEX* ret_address, F_CHARACTER* s1_address, F_INTEGER*
i_address, F_REAL* a_address, F_CHARACTER* c_address, F_LENGTH
s1_length, F_LENGTH c_length);
-- all Sather calls have c_length set to 1

SUBROUTINE SWAP(A,B)
INTEGER A,B

-- a Sather signature may look like
swap(inout a:F_INTEGER, inout b:F_INTEGER);



154 Interfacing with Fortran : 13.5 Portability Issues

he in-

an

rtabil-
rtability

ts the
odule

rface
r, it is

ECI-
 and
ingly
/for-
In the following example, compiling the program with all checks on may reveal a bug due to t
correct modification of the vector sizes:

In addition to extra debugging capabilities,’in’ arguments are passed slightly more efficiently th
’out’  and’inout’ arguments.

Points to note

• F_ROUT and F_HANDLER types cannot be"out" or "inout" arguments.

13.5  Portability Issues

This section discusses the portability of the Sather/Fortran interface. Various name binding po
ity issues where covered in section Name Binding on page 133. Issues relevant to code po
are addressed here.

13.5.1   Portability of the Interface Implementation Code

It is important to distinguish between portability of the Sather compiler module that implemen
Sather/Fortran interface and the portability of the code it generates. The Fortran 77 interface m
is written entirely in Sather and is integrated with the ICSI Sather compiler. The Fortran inte
should be available on all platforms where the ICSI Sather compiler is available. In particula
available on most UNIX platforms.

13.5.2   Portability of the Generated Code

The Fortran 77 standards says that all Fortran 77 types except for COMPLEX, DOUBLE PR
SION, and CHARACTER of any flavor occupy a single "unit" of storage space. COMPLEX
DOUBLE PRECISION types take two "units" of storage. This may need to be adjusted accord
when porting the Sather compiler to a different platform. A modification to "System/Common

SUBROUTINE ADD_VECTORS(A,B,RES,size)
REAL A(*),B(*),RES(*)
INTEGER SIZE

-- Sather signature
add_vectors(a,b,res:F_ARRAY{F_REAL}, size:F_INTEGER)
-- size is an ’in’ parameter and cannot be modified by Fortran code



Interfacing with Fortran : 13.5 Portability Issues 155

n stor-

ouble
o be ed-
ed as
tran.h" may be necessary. "System/Common/fortran.h" contains a set of definitions for Fortra
age types used by the Sather/Fortran interface:

This proves to be adequate for most UNIX platforms. On the Cray, however, both float and d
types occupy the same storage, and to conform to Fortran 77 specification, fortran.h needs t
ited to define F_DOUBLE as "long double". For the Macintosh, however, it should be defin
"short double."

This is a full set of C types that are used by the interface as return and argument types:

Array types are represented as pointer to corresponding scalar types.

typedef long int    F_INTEGER;
typedef long int    F_LOGICAL;
typedef float       F_REAL;
typedef double      F_DOUBLE;
typedef char        F_CHARACTER;
typedef long int    F_LENGTH;
typedef struct {
  F_REAL re, im;
} F_COMPLEX_struct;
typedef F_COMPLEX_struct F_COMPLEX;
...

F_INTEGER
F_LOGICAL
F_REAL
F_DOUBLE
F_CHARACTER
F_STRING
F_LENGTH
F_COMPLEX
F_HANDLER

F_ROUT

integer or integer*4
logical
real
double
character or character*1
character*n
string length (same as F_INTEGER)
complex
call argument for a subroutine
with alternate returns
a routine passed as argument



156 Interfacing with Fortran : 13.5 Portability Issues



Interfacing with ANSI C : 14.1 Overall Organization 157

rview
nded

es, and
ribes the

ypes
s
contain
t iter-
 contain
 than C
be over-

jects of
aming

textual
asses.

 flexi-
Interfacing with ANSI C

This chapter describes interfacing with ANSI C , X3.159-1989. Section 14.1 gives a short ove
of the C interface functionality. Section 14.2 introduces built-in C types provided by the exte
Sather library. Section 14.3 talks about user defined external C types, constants, attribut
shared elements. Section 14.4 covers parameter passing issues, and finally section 14.5 desc
inline C facility.

14.1  Overall Organization

An external class which interfaces to ANSI C is designated with the language identifier ‘C’. T
defined by external C classes are calledexternal C types. Similar to external Fortran types, signature
without bodies (abstract signatures) are allowed in external C types. Such signatures must 
only built-in or user defined C types and they are implemented externally in ANSI C. Abstrac
ator signatures are not allowed in external C classes. Routines with bodies whose signatures
only C types may be called from C. Routines with bodies whose signatures use types other
types are regular Sather routines and are not accessible from C. External C routines cannot 
loaded.

In contrast with the external Fortran classes, external C classes may have attributes and ob
external C types may exist. All attributes must also be of C types. The C interface provides a n
facility that allows interoperability with the existing C header files.

Global C variables can be accessed as shared attributes of external C classes.

C symbols are generated by applying a platform specific C name binding convention to the 
external C routine names. It is also possible to explicitly specify name binding for external C cl

Finally, it is possible to inline ANSI C code into Sather sources. This allows for even greater
bility in achieving Sather/C interoperability.



158 Interfacing with ANSI C : 14.2 Built-in C classes

lasses
her and
mple,

t-in C
pes is

st
 array

d after
e collec-
t cas-
14.2  Built-in C classes

The following C types are built into the extended library:

Variable of the built-in types are binary compatible with the corresponding C types. These c
define appropriate creation routines which may be used for convenient casting between Sat
C types. Also, many basic operations on the built-in C types are provided by the library. For exa
it is not necessary to call external C code to add two C_INT variables. All operations on buil
types defined by the library have the ANSI C semantics. Syntactic sugar for the built-in C ty
defined exactly as for "regular" Sather classes.

‘AREF{T}’ defines a routine ‘array_ptr:C_PTR’ which may be used to obtain a pointer to the fir
item in the array portion of Sather objects. The external routine may modify the contents of this
portion, but must not store the pointer; there is no guarantee that the pointer will remain vali
the external routine returns. This restriction ensures that the Sather type system and garbag
tor will not be corrupted by external code while not sacrificing efficiency for the most importan
es.

Sather Class ANSI C type Sather Class ANSI C type

C_CHAR char C_UNSIGNED_CHAR_PTR unsigned char *

C_UNSIGNED_CHAR unsigned char C_SIGNED_CHAR_PTR signed char *

C_SIGNED_CHAR signed char C_SHORT_PTR short *

C_SHORT short C_INT_PTR int *

C_INT int C_LONG_PTR long *

C_LONG long C_UNSIGNED_SHORT_PTR unsigned short *

C_UNSIGNED_SHORT unsigned short C_UNSIGNED_INT_PTR unsigned int *

C_UNSIGNED_INT unsigned int C_UNSIGNED_LONG_PTR unsigned long *

C_UNSIGNED_LONG signed long C_FLOAT_PTR float *

C_FLOAT float C_DOUBLE_PTR double *

C_DOUBLE double C_LONG_DOUBLE_PTR long double *

C_LONG_DOUBLE long double C_SIZE_T size_t

C_PTR void * C_PTRDIFF_T ptrdiff_t

C_CHAR_PTR char *

-- "basic" operations may be done in Sather
a:C_LONG := #(10);
b:C_LONG := #(5);
c::= a + b;
#OUT + c.str + " should be 15\n";



Interfacing with ANSI C : 14.3 User-defined External C types 159

 from

ses im-
be cre-
 shared

e as for

sent, the
Sim-
 be

 STR
d C no-
er com-
ted and
The following example shows how a Sather array could be passed to external C functions:

The second call is type-safe. It exploits the constructor for C_INT_PTR that allows creation
ARRAY{INT}.

14.3  User-defined External C types

User-defined external C classes are used for multiple purposes. C routines in external C clas
plement Sather/C and C/Sather call interfaces. In addition, objects of external C types could 
ated and passed to or received from C. C global variables are accessed from Sather as
attributes of external C classes.

14.3.1   Constants and C binding names

Constants are allowed in external C classes. The rules for constant initialization are the sam
constants in "regular" Sather classes.

There are two constant features of external C classes that have a special semantics. If pre
STR constant ‘C_name’ may be used to force a particular C declaration for an external C type. 
ilarly the STR constant ‘C_header’ may be used to specify a list of C header files that should
included  in each file in which the C declaration appears.

The STR constant ’C_name’ provides a C binding name for the type in which it occurs. The
constant ’C_header’ must be initialized to a space separated list of header files (the standar
tation <foo.h> is allowed). Note that if constants C_name and C_header are absent, the Sath
piler generates layouts for the external C objects. If they are present, no layouts are genera

/* ANSI C prototypes for functions called from Sather */
void clear(void* p, int size);
void better_clear(int *, int size);

external C class PROCESS_ARRAYS is
   -- routines implemented externally in C that zero
   -- all elements in an integer array of a specified size
   clear(p:C_PTR, size:C_INT);
   better_clear(p:C_INT_PTR, size:C_INT);
end;

-- This code demonstrates how to call external C routines
a:ARRAY{INT} := #(10);
-- this call just passes an array portion and avoids typecheking
-- This is not recommended ("a" could be of type ARRAY{CHAR} and the
-- call would still compile resulting in a runtime error)
PROCESS_ARRAYS::clear(a.arr_ptr, #(a.size);

-- this is a better sequence achieving the same result
-- if "a" is not an array of integers, an error is reported
PROCESS_ARRAYS::better_clear(#C_INT_PTR(a), #(a.size));



160 Interfacing with ANSI C : 14.3 User-defined External C types

nsibility
rovided

 corre-
the necessary types must be defined in the specified header files. In this case, it is the respo
of the programmer to ensure that attribute names are exactly as the structure filed names p
by the header files.

Examples

In this example, the Sather compiler generates the layout for the external objec BARt. The
sponding C layout and prototypes of C functions that are called from Sather are below:

external C class BAR is
   attr bar_attr_int:C_INT;
   attr bar_attr_float:C_FLOAT;

   -- the constructor is defined in C
   create_bar:BAR;
   -- this routine that does some processing of bar is also
   -- defined in   C
   process_bar(bar:BAR);
end;

-- create an object of type BAR by calling an external
-- C constructor
bar:BAR := BAR::create_bar;

-- now pass "bar" back to C from processing
BAR::process_bar(bar);

typedef struct {
   int integer_field;
   float float_field;
} *C_BAR;
/* Note that C names for the type and struct fields could be
   different from the corresponding names in Sather */

C_BAR create_bar();
void process_bar(C_BAR bar);



Interfacing with ANSI C : 14.3 User-defined External C types 161

ize

in-
This is a similar example, but an existing C header file is used with Sather code:

The C header "bar.h" contains the following:

This creates a Sather type ‘X_WIDGET’ which may be used to declare variables, parameter
classes, and so forth. Furthermore, the C declaration used for variables of type ‘X_WIDGET’ will
be ‘struct XSomeWidget *’. Any generated C file containing any variable of this type will also 
clude ‘<widgets.h>’

external C class BAR is
   const C_name:STR := "C_BAR";   -- C binding name for the type
   const C_header:STR := "bar.h <stdlib.h>";

   attr integer_field:C_INT;
   attr float_field:C_FLOAT;

   -- the constructor is defined in C
   create_bar:BAR;
   -- this routine that does some processing of bar is also
   -- defined in C
   process_bar(bar:BAR);
end;

-- code that creates an object of type BAR by calling an external
-- C constructor and then passes the object back to C
bar:BAR := BAR::create_bar;

-- now pass "bar" back to C from processing
BAR::process_bar(bar);

typedef struct {
   int integer_field;
   float float_field;
} *C_BAR;
/* Note that C names for the type must be exactly as the binding C
   name specified by the C_name attribute.
   also, struct field names must be exactly the same as attribute
   names in the external C class*/

C_BAR create_bar();
void process_bar(C_BAR bar);

external C class X_WIDGET is
const C_name:STR:=

"struct XSomeWidget *";
const C_header:STR:=

"<widgets.h>";
end; -- external class X_WIDGET



162 Interfacing with ANSI C : 14.3 User-defined External C types

 layout
, then at-
ttribute

. It is the

s. Such
, shared
14.3.2   Attributes and C structs

Attributes and C structs

Attributes may be placed in external C classes; they are interpreted as fields of a C struct. If the
of the class is generated by Sather (C_name and C_header symbolic constants are absent)
tributes can have any names. If a C layout from a header file specified by C_header is used, a
textual names must be exactly the same as a struct filed names from a corresponding C type
responsibility of the programmer to ensure this correspondence.

Points to note

• External C class attributes may only have built-in or user-defined external C types.

• Class constants do not contribute anything to the class layouts; all attributes do.

14.3.3   Shared Attributes and C globals

Global C variables may be accessed from Sather as shared attributes of external C classe
shared attributes must have names corresponding to those of C globals. Similar to constants
attributes do not contribute to the storage needed to layout the class objects.

external C class FOO is
   C_name:STR := "FOO";
   C_header:STR := "foo.h";

   shared foo:FOO:
   attr val:C_INT;

   -- this is implemented in C
   create_foo:FOO;
end;

-- accessing a global C variable
FOO::foo := FOO::create_foo;
FOO::foo.val := #(10);

#ifndef _FOO_H_
#define _FOO_H_

typedef struct {
   int val;
} *FOO;

FOO create_foo();
#endif  _FOO_H_

/* in some C file */
FOO foo;



Interfacing with ANSI C : 14.4 Parameter Passing 163

passing
 case

types, a

od-
not be

mitting
y emit-

ne will
 writer

 or by

ng ‘
14.4  Parameter Passing

The ANSI C standard prescribes that a copy is made of each call argument and all argument-
is done strictly by value. To conform to ANSI C, all "in" arguments are passed by value. In the
of the built-in C types, a copy of a variable is passed. In the case of user defined external C 
pointer to the object is copied and passed by value.

In addition, for extra flexibility, Sather supports"out" and"inout" argument modes for external C
routines."out" and "inout" arguments are passed by a pointer to a local, which may be legally m
ified by the called routine. The Sather implementation guarantee that such modifications can
observed until the routine returns. For C routines called from Sather this is guaranteed by e
special code for the caller. For Sather routines that may be called from C, this is guaranteed b
ting special function prologues for the callee.

14.5  Inlining C Code

Sometimes it isn't possible to decide at the time the external C class is written whether a routi
be implemented in the C code with a macro. This presents a portability problem, because the
of the external class can’t know ahead of time whether the routine will be obtained by linking
a header file. Such petulant cases can be dealt with by the call ‘SYS::inlined_C’. The argument must
be a string literal, and is placed directly into the generated code, except that identifiers followi#’
that correspond to locals and arguments are translated into the appropriate C names.



164 Interfacing with ANSI C : 14.5 Inlining C Code



Statement and Expression Catalogue : 15.1 Statements 165

 of them
re in the
a conve-

n the
tination

ble from
ted, this
Statement and
Expression Catalogue

This chapter presents a catalogue of statements and expressions in Sather and descriptions
that originated in the specification.  In some cases, these definitions are duplicated elsewhwe
text.  However, they have been included here, sometimes with more elaborate examples, as 
nient reference.

15.1  Statements

15.1.1   Assignment statements

Assignment statements are used to assign objects to variables or attributes. The expression o
right hand side must have a return type which is a subtype of the declared type of the des
specified by the left hand side. When a reference object is assigned to a location, only areferenceto
the object is assigned. This means that later changes to the state of the object will be observa
the assigned location. Since immutable and closure objects cannot be modified once construc
issue is not relevant to them.

An assignment can also  declare new local variables  using the::= syntax.

Examples: a:=5
b(7).c := 5;
A::d := 5;
[3] := 4;
e[7,8] := 5;
g:INT := 5;
h ::= 5;



166 Statement and Expression Catalogue : 15.1 Statements

 Acces-
e right

 a

ent are
 the cor-
se state-
ment list

nto
The operation of assignment statements on attributes is described in the section on Attribute
sor Routines.  They are often syntactic sugar for function calls with one argument, which is th
hand side.

See

• Type inference in assignment statements on Section 2.7 on page 33.

• Attribute assignment sugar on Section 2.6 on page 31.

• Array element assignment on Section 7.3 on page 98.

• Immutable class attribute assignment on Section 8.1.4 on page 101.

15.1.2 case statements

Multi-way branches are implemented bycase statements. There may be an arbitrary number ofwhen
clauses and an optionalelse clause. The initialexpression construct is evaluated first and may have
return value of any type. This type must define one or more routines named ‘is_eq’ with a single
argument and a boolean return value.The expressions tested in the branches of the if statem
the  expressions of successive when lists. The first one of these calls to returns true causes
responding statement list to be executed and control passed to the statement following the ca
ment. If none of the when expressions matches and an else clause is present, then the state
following the else clause is executed

There is one difference between thecase statement and the equivalentif statement.  If none of the
branches of anif statement match and noelse clause is present, then execution just continues o
the next statement after theif statement.  However, if none of the branches of thecase statement
matches and there is noelse clause, then a fatal run-time error will result.

Points to note

• It is a fatal error if no branch matches and there is noelse clause.

See

• Statement description in Section 2.5.2 on page 28.

Example: case i
when 5,6 then ...
when j then
else ...
end;



Statement and Expression Catalogue : 15.1 Statements 167

olean
valu-
ns of

return
t

tion is

ught by
15.1.3 if statements

if statements are used to conditionally execute statement lists according to the value of a bo
expression. Eachexpression that is tested must return a boolean value. The first expression is e
ated and if it is true, the following statement list is executed. If it is false, then the expressio
successiveelsif clauses are evaluated in order. The statement list following the first of these to 
true is executed. If none of the expressions return true and there is anelse clause, then its statemen
list is executed.   Note that the else clause is not compulsory.

See

• Statement description in Section 2.5.1 on page 27.

15.1.4  protect statements

Exceptions may be explicitly raised by a program  or generated by the system. Each excep
represented by anexception object whose type is used to select a handler from aprotect statement.
Execution of aprotect statement begins with the statement list following the ‘protect’ keyword.
These statements are executed to completion unless an exception is raised which is not ca
some nestedprotect.

When there is an uncaught exception in a protect statement, the system finds the first
type specifier listed in the ‘when’ lists which is a supertype of the exception object type.
The statement list following this specifier is executed and then control passes to the state-
ment following the protect statement. An exception expression  may be used to access
the exception object in these handler statements. If none of the specified types are super-
types, then the statements in an ‘else’ clause are executed if it is present. If it is not
present, the same exception object is raised to the next most recently entered protect
statement which is still in progress. It is a fatal error to raise an exception which is not
handled by some protect statement. protect statements may only contain iterator calls if
they also contain the surrounding loop statement. protect statements without  an else
clause must have at least one when.

Example: if a>5 then foo
elsif a>2 then bar
else error
end;

Example: protect < some statements >
when $STR  then
    #ERR+exception.str;
when FOO then
    #ERR+exception.foobar;
else
end;



168 Statement and Expression Catalogue : 15.1 Statements

ral.

tate is
closed

re not
ent

ith the
,
 and no

.

 a return

 are
typing).

turned.
See

• Statement description in Section 10.2 on page 111 and the chapter on exceptions in gene

15.1.5 loop statements

Iteration is done with loop statements, used in conjunction with iterator calls. An execution s
maintained for each textual iterator call. When a loop is entered, the execution state of all en
iterator calls is initialized. When an iterator is first called in a loop, the expressions forself and for
eachonce argument are evaluated left to right. Then the expressions for arguments which a
once (in or inout before the call,out or inout after the call;  are evaluated left to right. On subsequ
calls, only the expressions for arguments which are notonce are re-evaluated.self and anyonce
arguments retain their earlier values. The expressions forself and foronce arguments may not them-
selves contain iterator calls (such iters would only execute their first iteration.)  .

When an iterator is called, it executes the statements in its body in order. If it executes ayield state-
ment, control is returned to the caller. Subsequent calls on the iterator resume execution w
statement following theyield statement. If an iterator executesquit or reaches the end of its body
control passes immediately to the end of the innermost enclosing loop statement in the caller
value is returned.

See

• Statement description in Section 3.1.1 on page 39 and the chapter on iterators in general

15.1.6 return statements

return statements are used to return from routine calls. No other statements may follow areturn
statement in a statement list because they could never be executed. If a routine doesn’t have
value then it may return either by executing areturn statement without anexpressionportion or by
executing the last statement in the routine body.

If a routine has a return value, then itsreturn statements must specify expressions whose types
subtypes of the routine’s declared return type (see the chapter on Abstract Classes and Sub
Execution of thereturn statement causes the expression to be evaluated and its value to be re

Example: f: INT:=4; --Compute b factorial
res: INT := 1;
i :INT := 1;
loop until!(i > f);
    res:= res * i;
    i := i + 1;
end;

Examples: foo(a: INT): INT is
  return a*10;  end;



Statement and Expression Catalogue : 15.1 Statements 169

age 59.

e  may
ample)

lds

e object
d and
e
 vari-

 assign
f the

e

It is a fatal error if the final statement executed in a routine with a return type is not areturn or raise
statement.

15.1.7 typecase statements

The typecase statement is described in the chapter on Abstract Classes and Subtyping on p

An operation that depends on the runtime type of an object held by a  variable of abstract typ
be performed inside a typecase statement. The variable in the typecase (’a’ in the above ex
must name a local variable or an argument of a method. If thetypecase appears in an iterator, then
the mode of the argument must beonce; otherwise, the type of object that such an argument ho
could change.

On execution, each successive type specifier is tested for being a supertype of the type of th
held by the variable. The statement list following the first matching type specifier is execute
control passes to the statement following thetypecase. Within each statement list, the type of th
typecase variable is taken to be the type specified by the matching type specifier unless the
able’s declared type is a subtype of it, in which case it retains its declared type. It is not legal to
to thetypecase variable within the statement lists. If the object’s type is not a subtype of any o
type specifiers and anelse clause is present, then the statement list following it is executed.

 It is a fatal error for no branch to match in the absence of anelse clause. The declared type of th
variable is not changed within theelse statement list. If the value of the variable isvoid when the
typecase is executed, then its type is taken to be the declared type of the variable.

See

• Statement description in Section 5.6 on page 70.

Example: typecase a
when INT then ...
when FLT then ...
when $A then ...
else ....
end;



170 Statement and Expression Catalogue : 15.2 Expressions

.

alue is
ents in
15.1.8 yield statements

yield statements are used to return control to a loop and may appear only in iterator defi-
nitions. The yield statement must be followed by a value if the iterator has a return value
and must be absent if it does not. The value yielded must be a subtype of the return type
of the iterator. Execution of a yield statement causes the expression to be evaluated and its
value to be returned to the caller of the iterator in which it appears.  Yield is not permitted
within a protect statement (see Section 15.1.4 on page 167).  Yield causes assignment to out
and inout arguments in the caller

In the example above the iterator yields  odd numbers upto the specified value, "n".

See

• Statement description in Section 3.2.1 on page 42 and the chapter on iterators in general

15.1.9 quit statements

quit statements are used to terminate loops and may only appear in iterator definitions. No v
returned from an iterator when it quits, and no assignment takes place to out or inout argum
the caller. No statements may follow a quit statement in a statement list.

See

• Statement description in Section 3.3 on page 47 and the chapter on iterators in general.

15.2  Expressions

We describe below a few special expressions used in Sather -void, void() and the short circuit bool-
ean operationsor andand.

Examples: odd_upto!(n: INT): INT is
   i: INT := 0;
   loop until!(i = n);
      if i.is_odd then yield i end;
      i := i + 1;
    end;
end;



Statement and Expression Catalogue : 15.2 Expressions 171

ject - it
or the

nd ar-

ly le-

g.

y calls
r, quite
15.2.1 void expressions

A void expression returns a value whose type is determined from context.void is the value that a
variable of the type receives when it is declared but not explicitly initialized. The value ofvoid for
objects (except for immutable objects) is a special value that indicates the absence of an ob
is essentially the NULL pointer.  Immutable objects are described in their own chapter, but f
sake of reference:

For other immutable types the void value is determined by recursively setting each attribute a
ray element tovoid.1  For numerical types, this results in the appropriate version of ‘zero’.

void expressions may appear

• as the initializer for a constant or shared attribute. In fact, for most built-in classes, the on
gal constant value is the void value e.g.
const a: POINT := void;

• as the right hand side of an assignment statement

• as the return value in areturn or yield statement

• as the value of one of the expressions in acase statement

• as the exception object in araise statement (see the chapter on Exceptions)

• as an argument value in a method call

• in a creation expression. In this last case, the argument is ignored in resolving overloadin

void expressions may not appear:

• as the left argument of the dot ‘.’ operator.

It is a fatal error to access object attributes of a void variable of reference type or to make an
on a void variable of abstract type.  Calls on a void variable of an immutable type are, howeve
legal (otherwise you would not be able to dot into a false boolean or a zero valued integer!)

1.  The other built-in basic types are defined as arrays of BOOL and all have their values set to void by this rule.

Class Initial Value Class Initial Value

INT 0 CHAR ’\0’

FLT 0.0 FLTD 0.0d

BOOL false

a: POINT := #POINT(3,3);
-- ILLEGAL (and silly) a.void



172 Statement and Expression Catalogue : 15.2 Expressions

lue is

s. The
he

. The
he
15.2.2 void test expressions

Void test expressions evaluate their argument and return a boolean value which is true if the va
void .

15.2.3 Short circuit boolean expressions: and and or

and expressions compute the conjunction of two boolean expressions and return boolean value
first expression is evaluated and iffalse, false is immediately returned as the result. Otherwise, t
second expression is evaluated and its value returned.

or expressions compute the disjunction of two boolean expressions and return boolean values
first expression is evaluated and iftrue, true is immediately returned as the result. Otherwise, t
second expression is evaluated and its value returned.

See

• Expression description in Section 15.2.3 on page 172.

15.2.4 exception expressions

exception expressions may only appear within the statements of the when and else clauses in
protect statements. They return the exception object that caused the when branch to be tak-

Example: void(x)

p: POINT;
#OUT + void(p);   -- Prints out true
p := #POINT(3,5);
#OUT + void(p);   -- Prints out false
p := void;
#OUT + void(p);   -- Prints out true;
b: BOOL;
#OUT + void(b);   -- Prints out true
b := false;
#OUT + void(b);          -- Prints out true!
-- Even though b has been assigned, it has the void value

Example if (3>a and b>6) or (c="Goo") then
     #OUT+"Success!"
end;

Example: protect
   .... some code
when STR then #OUT+exception.str end;
when ...
else ...
end;



Statement and Expression Catalogue : 15.2 Expressions 173
en in the most tightly enclosing protect statement. The return type is the type specified in
the corresponding when clause (Section 15.1.4 on page 167). In an else clause the return
type is ‘$OB’.

See

• The description of the protect statement in Section 10.2 on page 111.



174 Statement and Expression Catalogue : 15.2 Expressions



pSather 1.1
Jerome  Feldman

September 15, 1996

The parallel and distributed extensions of Sather, collectively referred to as
pSather, were designed hand-in-hand with the serial language.  In addition to de-
scribing the language features of pSather, this document presents  a particular ap-
proach to object-oriented parallel programming.





Introduction : 177

ly the
r, col-
 several
eatures
ovide
f this
 can be
eneral-
ystem
xtensive

 parallel
rtions of
project
be even
ther is

tures for

lel exe-
s much
SI we
totype.
e most
alabil-

uch as
think
writing
ther is
 and
ge.  Al-
Introduction

 Parallel programming is often viewed as much harder than serial programming. Unfortunate
general perception is correct, parallel programming is difficult. The parallel features of Sathe
lectively known as pSather, have been under development and experimental use at ICSI for
years and have recently been integrated into the general distribution. Some of the simplest f
are supported on all platforms, even those with no parallel capabilities. This is mainly to pr
compatibility with parallel platforms. Unfortunately, to make any interesting use of pSather or o
tutorial you need access to a platform that supports pSather threads. A current list of these
found on the pSather home page http://www.icsi.berkeley.edu/~sather/. Because there is no g
ly accepted portable thread interface, it is a significant effort to port pSather to a new parallel s
and there are separate compilation flags for each of these. The platforms that have the most e
history are various Solaris implementations and these are used for the examples here.

There are many approaches to parallel programming languages and dozens of proposals for
(or concurrent) OO languages. The design goals of pSather are the same as for the serial po
the language. The most important criteria are execution efficiency, safety and reusability. The 
has, from the outset, been based on the belief that Sather’s constructs and methodology will 
more valuable in the more challenging domain of parallel computing. Extending Sather, pSa
an explicit imperative object-oriented language.

The underlying model remains one large shared address space, although there are also fea
placement of objects and threads for greater efficiency. The currentcluster model assumes that the
underlying system has a specified number of clusters, each of which might support the paral
cution of multiple threads. The presumption is that the communication costs across clusters i
greater than within a cluster. The motivating example is a network of SMP workstations. At IC
have been using a low-latency Myrinet/active-message network of quad Sparc10s as a pro
There is also an ethernet implementation, but the latencies make this impractical for all but th
loosely coupled parallel programs. An implementation on the Meiko CS-2  allows us to test sc
ity to larger systems.

We believe that pSather effectively supports all the standard styles of parallel programming s
data parallel, task parallel, actor, etc. and this tutorial will provide some indication of how we 
this should go. The focus of the language design was to provide convenient constructs for 
libraries of parallel and distributed objects.The most fundamental additional extension to Sa
the notion of multiplethreads of execution.Threads are not first-class objects in pSather. This
other design decisions are discussed in a variety of papers accessible through the web pa



178 Introduction :

are not
the lan-
eating
at con-

ptually
the par,
ly these
the ab-
des the
 locks
ion, @,
 support
her 1.2
ta and
though there are facilities for mutual exclusion (at most one thread active in an object), these 
mandatory and many pSather programs depend upon multiple active threads. In general, 
guage attempts to provide the library designer and application programmer with tools for cr
systems that achieve maximum performance, but also supports parallel computing styles th
centrate on simplicity and safety.

The parallel extensions to Sather that constitute pSather are currently divided into three conce
distinct extensions. The Threaded Extension (Section 1.2) is the most basic and introduces 
fork and parloop constructs. Programs that require no synchronization can be coded using on
mechanisms.The Synchronization Extension  (Section 1.3)is the most complex and includes 
stract class $LOCK and its descendants and the various forms of the lock statement. It inclu
powerful GATE construct  (Section 1.4)that combines the semantics of futures, events, and
found in other languages. The Distributed Extension (Section 1.5)adds the placement annotat
and the with...near statement. These do not affect the semantics of a correct program, but can
greatly improved performance on distributed platforms such as a network of workstations. Sat
will extend these ideas with the Zone Extension, which supports a much richer model of da
thread locality.



The Threaded Extension : 17.1 Introduction 179

m and
pabil-
 can be
aded
be se-
ss a

con-

nt. Fork
the
The Threaded
Extension

17.1  Introduction

The most basic parallel extension to serial Sather adds only threads and the ability to fork the
wait for a collection of threads to complete execution. Although this extension provides no ca
ities for coordinating access to shared data or waiting for events, a wide range of problems
coded in this extension. ICSI compilers starting with 1.1 will compile programs using the thre
extension on all platforms; on platforms without thread support, the various threads will each 
rially run to completion. We will start with some simple “Hello World” variants and then discu
range of medium sized tasks that use only the threaded extension capabilities.

17.1.1   Hello Worlds

 We will give two example “Hello World” programs to illustrate some of the basic pSather 
structs. The simplest one uses the two most basic pSather constructs,par andfork. Here there are
two explicit threads forked within the par .. end statement

Eachfork statement establishes a separate thread of control executing the enclosed stateme
statements can only occur withinpar .. end brackets. Control passes to the statement following 

class MAIN is
   main is
      par

     fork #OUT+"Hello World #1" +'\n' end;
     fork #OUT+"Hello World #2" +'\n' end;

      end;
   end;
end; -- class MAIN



180 The Threaded Extension : 17.1 Introduction

 order
 order.

se can
s can

e most
 it is to

ill be
n the
fer-
enient

a-

akes no
 from
 exam-

e com-

ant to
anger
ut says
ecution
g reli-

ut it we
end after the termination of all of the statements forked within the brackets. There is no fixed
of execution of the forked statements; even this tiny program might print the greetings in either

 This program can be compiled and run on any Sather platform in the usual way, but of cour
only execute in parallel on systems with thread support. The list of supported pSather platform
be found in the web page. There is a whole range of command line options for pSather, th
important of which is the platform. It is easiest to develop code on a single processor, even if
eventually run on a large system. For Solaris, there are currently two platform designators:

Solaris/1cluster  -- this treats a uni- or multi-processor workstation as one shared memory

Solaris/smp  -- this treats a workstation with k processors as k distinct clusters

The command line to compile the initial program, stored as hello.sa, could be:

   cs -Solaris/1cluster -o hello hello.sa

The distinction between the two Solaris platforms is not important for the first example, but w
in our second version of "Hello World". This version introduces the third and last construct i
Threaded Extension,parloop. Using fork statements within a par .. end bracket, one can fork dif
ent threads of any variety; if all of the threads are essentially the same, it is often more conv
to use a parloop.

Here there will be separate threads forked for each value of i and this value will be passed as a p
rameter to the respective thread. The annotation@i afterdo is part of the Distributed Extension to
be discussed in Section 1.5. It specifies that thread 1 is to be started on cluster 1, etc. This m
sense on a platform with only one cluster like Solaris/1cluster and a run-time error will result
trying to run a distributed code on such a platform. When compiled appropriately, the second
ple will print its greetings, but almost certainly not in order.

Suppose that we wanted to be sure that the Hellos were printed in order without serializing th
putation. One way would be to use a global ARRAY{STR} indexed by the same loop variablei. Each
thread could insert its greeting and the array printed after the parloop completes. You might w
try this. Notice that this depends on multiple threads writing to a single object; there is no d
here because each thread writes to a disjoint piece of the array. This fixes the output order, b
nothing about the order of execution of the threads. In general there is no guarantee on the ex
order and interleaving of pSather threads and this can be a significant problem in constructin
able code. The synchronization extensions discussed in the next section help significantly, b
still usually fall back on known patterns.

class MAIN is
   main is
      parloop i::=0.upto!(3) do@i

     #OUT + ("Hello World # " + i + '\n')
      end;
   end;
end; -- class MAIN



The Threaded Extension : 17.2 Realistic Examples Using Threads 181

 testing
ts of the
 obvious
f the

 com-
f rea-
ifferent
tions
o better
pilers

can be
f a pro-

mputa-
17.2  Realistic Examples Using Threads

 The ICSI pSather group has developed various small and medium sized examples for use in
and benchmarking the system. Several of these use only the par, fork, and parloop construc
threads extension and these can serve as additional examples at this elementary level. One
benchmark is matrix multiplication . The following is the complete code for the parallel part o

example - just a parloop over the rows of the first multiplicand. This is, of course, very naive
pared to the sophisticated loop parallelization of modern FORTRAN compilers. For a variety o
sons beyond the scope of this tutorial, pSather and other OO languages take an entirely d
approach to the problems of parallelization. From the OO perspective, low-level optimiza
should be encsapsulated in classes. For standard matrix/vector operations, Sather can do n
than the well developed FORTRAN packages such as BLAS and does not try. ICSI Sather com
from 1.1 on provide a FORTRAN interface which is for just such purposes.

From the perspective of the tutorial, the interesting thing is how many standard benchmarks 
coded using only the threaded extension. Here is another typical example, the control loop o
gram to compute heat flow expansion over time.<Fleiner thesis>

Here the parloop runs over the number of clusters in the current platform, breaking up the co
tion into that number of pieces by columns of the underlyingheat_of array. Again, because there

class MMULT is
   mult(a,b,c:MATRIX{FLT}) is
      parloop x::=b.rows.times!;
      do

      loop y::=b.rows.times!;
        loop z::=b.cols.times!;
        a[y,x]:=a[y,x]+b[z,x]*c[y,z];
        end;
      end;

      end;
   end;
end;

   heat_step is
      cl_size:=cluster_size;   -- just for formating
      t::=t1;
      t1:=t2;
      t2:=t;
      parloop p::=cl_size.times!;
      do

     loop x::=((cols*p)/cl_size).upto!(cols*(p+1)/cl_size-1);
        loop y::=rows!;
           t1[x,y]:=heat_of(t2,x,y);
        end;

        end;
      end;
   end;



182 The Threaded Extension : 17.2 Realistic Examples Using Threads

 of par-
te pro-
are no interactions and each thread treats a disjoint subarray, life is easy. This simplistic way
titioning the problem is appropriate for a platform like Solaris/smp where clusters are separa
cessors sharing physical memory. We will later see some more sophisticated partitioning.



The Synchronization Extension : 18.1 Barrier Synchronization and sync 183

ed
lso ex-
liter-

ads in
ync con-
ing phi-
d in the
hmark
nisms.

t of the
ive. Ac-

ity of
 single
 In the
chunks"
h uses
uch
The Synchronization
Extension

18.1   Barrier Synchronization and sync

The simplest synchronization primitive is thesync statement, which causes all the threads fork
within a par or parloop block to suspend until every thread in the block has terminated or is a
ecuting async command. This is called barrier synchronization in the computational science 
ature for obvious reasons. One important feature of thesync statement, in contrast with stopping
and restarting the threads, is that the participating threads all retain their state. After all thre
the block meet the sync criterion, the unterminated ones are resumed. One basic use of the s
struct is to assure that all threads in a parloop are set up before any of them execute; the din
losophers example in Section 1.3.3 does this. We will see another use of the sync comman
chunk maximum example of the next section. A realistic example can be found in the benc
program <Fleiner thesis>. The next two sections introduce more sophisticated control mecha
The sync construct just has a collection of threads wait for one another. The lock statemen
next section provides various ways to control access to data among threads, but is still pass
tive signaling between threads requires the GATE construct, described in Section 1.4.

18.2  The lock Statement and the MUTEX
Class

All of the other synchronization constructions in pSather use various forms of thelock statement.
We will start with the simplest form of the lock construct and gradually increase the complex
both the form of lock statement and the classes of objects to be locked. The basic form with a
unconditional mutual-exclusion lock suffices for many cases and should be considered first.
following example, we suppose that a large vector has been stored as a number of separate "
using a library class DVEC. We talk later about the design of such distributed classes, whic
the convention of an iterator,chunks!, for iterating the separate pieces of a distributed object, s



184 The Synchronization Extension : 18.2 The lock Statement and the MUTEX Class

imum
ical

r each
d.
hosen

,

 have a
ly one
c-
en the

ht have
s no
d be-
as a DVEC. The code below is from an artificial example where the task is to print both the max
value in theDVEC vec and the number of instances of it in each chunk. This makes prototyp
uses of aMUTEX big_lk, the lock statement and the sync command of Section 1.3.1.

Theparloop forks a thread for each chunk of data and also provides a consecutive index fo
thread/chunk pair. The variablesch, i, dx, m, and ct are all instantiated separately for each threa
Each thread computes the maximum value in its chunk and its multiplicity. The way we have c
to calculate the global maximum uses a global variable,big, and the accompanying mutex,big_lk.
After each thread computes its local maximum, it compares it with the current global maximumbig.
If the local one is bigger, it should become the global maximum.

But there is a synchronization problem. It could happen that several threads simultaneously
local maximum larger than the current global winner. Using the lock statement ensures that on
thread at a time will try to updatebig. An additional subtlety is that, even after acquiring unique a
cess tobig, a thread can not assume that its local maximum still exceeds the global one. Betwe
time a thread checks the relative values and when it acquires the lock, another thread mig
changedbig. This is the kind of problem that makes parallel programming tricky and there i
good way around it while preserving performance. A helpful heuristic is to think about a threa
ing interrupted indefinitely between any two statements.

class MAIN is
   main is
      vec:DVEC:=#DVEC(3,4); -- 3 chunks of size 4
      counts:ARRAY{INT}:=#(vec.num_chunks); -- max of chunk

      big::= -FLT::infinity;-- initialize
      big_lk::=#MUTEX;

      vec.init;-- kludge for example only
      parloop

   ch::=vec.chunks!;-- Iterate over each chunk
   idx::=0.up!;-- Places for result of each thread
   do;
      m::= -FLT::infinity;
      ct::=0;
      loop
        el::=ch.elt!;-- Iterate over elements,1
        if m=el then ct:=ct+1
        elsif m<el then m:=el; ct:=1
        end;
      end;
   if big<m then lock big_lk then big:=big.max(m) end end;
   sync;-- Wait for all threads

   if m=big then counts[idx]:=ct end;
    end; -- parloop

    #OUT + "The maximum value is: " + big + '\n';
    loop i::=0.for!(vec.num_chunks) ;

   #OUT + "Chunk "+i + " has "+counts[i]+" instances"+'\n';
    end;
  end; -- main
end; -- class MAIN



The Synchronization Extension : 18.2 The lock Statement and the MUTEX Class 185

nd the
 a

l array
 lock

instead

ne that
reads
n one
ey know
rmance
utamire

the user
nments
Sather
What is

s
xplicit
t

n up-
n

esis>
to need
various
ent de-
priate

 The im-
hreads
ation,
 Now, after each thread has tried its luck at being the global maximum, they all wait at thesync state-
ment barrier for the others. When all are finished, the true global maximum has been found a
various threads can output the number of occurrences of this in their chunk. Because we usedsync
statement, all of the threads resume with context retained, including the local count,ct, which is the
desired result. Rather than print the results in execution order, they are all stored in a globa
which is printed after the parloop. We will see many more examples of the MUTEX, sync and
constructs. Section 1.3.4 discusses when one would choose a read-write lock, RW_LOCK, 
of a MUTEX to control access to a global object.

18.2.1   Memory Consistency, Round One

The synchronization extension of pSather plays another important role in the language, but o
usually remains implicit. What we have discussed above is how a MUTEX can keep two th
from making conflicting updates to the same object. A more subtle problem can arise whe
thread updates a value and one or more other threads want to use the new value; how can th
when the write has completed? Essentially the same problem arises in modern high perfo
processors as an aspect of cache consistency and is the subject of considerable work <Sto
thesis>. For pSather, the critical requirement is to supply a clean assignment semantics that 
can rely upon and that all compilers must implement.  Part of the semantics is that all assig
are atomic, it will never happen that only part of an write command is executed. Furthermore, 
guarantees that any update executed by a thread will always be observable by that thread. 
trickier is how to specify exactly when other threads will know about such an update.

To understand this, we need to define notions ofimport andexport. Both of these are available a
explicit commands in the SYS class, but using them directly is unusual. An example using e
import andexport statements is shown in Section 1.4.2. Anexport. operation suspends the curren
thread until all of the updates that it has done are publicly known.  Animport operation suspends
the executing thread until all publicly known updates are made in its context. It follows that a
date is guaranteed to be seen by all threads that do animport after the updating thread has done a
export. It turns out that this can be  implemented efficiently on most  platforms, <Fleiner th
tells all.This often doesn’t help the programer that much because the he/she would still seem 
to know when to issue these import and export commands. However, pSather already has 
synchronization constructs like the par statment of  the previous section and the lock statem
scribed in this section. The key idea is to associate implicit imports and exports with the appro
pSather constructs. These are spelled out in a chart on page 82 of the language description.
portant point for now is that one can not assume anything about the relative timing of various t
that is not specified by some synchronization constructs. But, given the explicit synchroniz
your intuition about memory consistency is preserved.



186 The Synchronization Extension : 18.3 Conjunctive Locking

mmon
ical re-
d and

ill need
atically

blem.
cks are

h chop-
rts the
 that all
junctive
ft and
cks. The

peting
ble set
there
 before
 of our
18.3  Conjunctive Locking

One of the fundamental issues in synchronization is the treatment of multiple locks. A very co
cause of deadlock is when two or more threads compete for multiple locks. There are theoret
sults that prove that no deadlock can arise from this situation if all the locks are linearly ordere
threads always acquire locks according to this order. Sometimes the pSather programmer w
to carefully arrange the fixed order, but most cases (and a good bit more) are handled autom
by the conjunctive lock construct. This is illustrated with the classical dining philosophers pro
The setting is a round table with one chopstick between each two diners. Since two chopsti
needed for eating the diners need some way to manage the required resources.

This example is complete and can be run and modified. We use a separate MUTEX for eac
stick and it is natural to make these an array. The main routine initializes this array and sta
parloop which forks off a separate thread for each philosopher. The sync command ensures
the threads are established before any start running;  this is often needed for fairness. The con
lock is in the code for each philosopher. Each one tries to conjunctively lock the mutex to its le
its right and, when it succeeds, prints its message and ends the lock statement, freeing the lo
pSather lock implementation guarantees the absence of deadlock (or livelock) among the com
threads and also a weak form of fairness. No thread will compete indefinitely for an achieva
of locks without eventually winning and getting to execute. Although it is not illustrated here, 
is also an explicit unlock statement that can be used to release one of the conjunctive locks
the entire body completes. More details on all this can be found in <Fleiner thesis>. Several
later examples rely on conjunctive locks so we won’t bother you with more at this point.

class MAIN is
   attr chopsticks:ARRAY{MUTEX}; -- need two adjacent ones to eat

   main is
      chopsticks:=#(7);
      loop chopsticks.set!(#MUTEX) end;

      parloop i::=0.upto!(6)
      do  sync; -- wait for all to start

       philosopher(i)
      end; -- parloop;
   end; -- main

   philosopher(k:INT) is
     loop 3.times!;

     lock chopsticks[k], chopsticks[(k+1).mod(7)]
     then #OUT + ( "philosopher  " + k + "  is eating.\n" )
     end; -- lock

     end; -- loop
   end; -- philosopher
end; -- MAIN



The Synchronization Extension : 18.3 Conjunctive Locking 187

seful
 many
nother

m are

e max-

ad that
e maxi-

nst both
 be

LOCK

ss

ock

d dead-
lative

priority
refore
tuple
18.3.1   Read-Write Locks, three kinds

So far we have seen only mutual exclusion (MUTEX) locks. For many applications, it is very u
to have other forms of locking, such as the classical read-write locks. The idea is to allow
threads to lock as a reader, but to restrict modification (writer) to one thread at a time. This is a
classic concept and is captured in pSather by the classesRW_LOCK, WR_LOCK,and
FRW_LOCK. There are also a number of other kinds of lock objects in pSather and all of the
subtypes of the built-in abstract class$LOCK.

Consider again the example of Section 1.3.2 that computed the number of occurrences of th
imum value in each chunk of a distributed vector. The global maximum,big, was protected by a lock
big_lk:MUTEX and accessed using the statement:

if big<m then lock big_lk then big:=big.max(m) end end;

The first conditional did not need to be locked because the test is atomic. Now suppose inste
we needed to calculate the number of occurrences of the second largest value rather than th
mum. The obvious code for this again  has each chunk thread compare its local values agai
big and the second value, saynext. The problem is that this multiple test is not atomic and can’t
done unprotected by a lock. But we don’t need exclusive access tobig andnext for checking pur-
poses, just a guarantee that no changes will occur during our multiple tests. Enter the WR_
construct. Suppose that we modify the example of 1.3.2 to have a second FLT,next, and a
WR_LOCK,next_lk. Then the global update code fragment becomes:

Actually, testing justm>next would suffice, but we will ignore this. Not only does the cla
WR_LOCK subtype from $LOCK but it defines two methods,reader andwriter, that have return
type $LOCK. There are several other methods with return type $LOCK and they play an important
role in pSather. Here thereader lock protects the two tests from changes. Any attempt to write-l
the variablenext_lk will wait until all reads have completed. The localBOOL update is set if up-
dates are needed. We must exit the reader lock before attempting to get the writer lock to avoi
lock. There are two other variants of reader-writer locks defined in pSather; they differ in the re
priority given to readers and writers awaiting the same lock. For aRW_LOCK, readers are given
priority. An WR_LOCK gives priority to writers and a (fair)FRW_LOCK treats readers and writers
the same. Which of these is best for the example above? Writing, in this case, should have 
because this will sometimes eliminate extra lock-and-modify execution by other threads. The
a WR_LOCK is best. For our realistic example, we present the first of three stories involving 
spaces.

 lock next_lk.reader then
    if (m>big) or (m>next) then update:=true end
 end;
 if update then
    lock next_lk.writer  then
       if m>big then next:=big; big:=m
       elsif (m>next and m<big) then next:=m end
    end;
 end; -- if update



188 The Synchronization Extension : 18.3 Conjunctive Locking

this idea
90>,
impler
xample
.152.
pred-
tuples
n each

r con-
-

 of rdp
k spac-
sted.
rictly
 mul-
th rdp
18.3.2   Tuple Space, Round 1

 One very general parallel construct is a tuple-space. The most famous language based on 
is Linda <Carriero, N. and D. Gelerntner, How to Write Parallel Programs, MIT PRESS, 19
which includes pattern matching on tuples as a fundamental construct. We will examine a s
case where matching only happens on the first element of a tuple, which must be a STR. Our e
follows that of Foster<Designing and Building Parallel Programs, Addison-Wesley, 1995>, p
His terminology is a bit confusing. The final ’p’ in rdp and inp can be thought of suggesting a 
icate for the nonblocking cases.  The two versions of ’in’ commands can be thought of pulling 
into worker objects and out of the tuple space. This version also allows only one tuple type i
tuple-space; this is consistent with Sather's strong typing. Thus:

class TSPACE{TT<$TUP} is...

Foster includes five basic operations:

insert(tup:TT) --  put a new tuple into the space, duplicates Ok

rd(s:STR):TT   --  blocking read, wait for match to appear

rdp(s:STR):TT  -- return void if no match

in(s:STR):TT   -- blocking move, wait then erase and read

inp(s:STR):TT  -- non-blocking move, return void if no match

   In round 1, we consider the non-blocking case for which we need only insert, inp and rdp. Fo
creteness suppose that the tuples are to be stored in anA_LIST.  In practice, one would use a more
efficient container class. Then the code is very straightforward; the built-inWR_LOCK construct
provides the basic functionality needed for writers (insert, inp) and readers (rdp). Any number
operations can run in parallel, but insert and inp modify the tuple space and thus require a loc
erw.writer. Using aWR_LOCK maximizes the chance that a tuple will be present when reque
Using aFRW_LOCK instead would not change the code, but would have the semantics of st
obeying the arrival order of operations. However, this arrival order is usually not consistent in a
tiple processor system; small variations in load or initial conditions can change the order. Bo



The Synchronization Extension : 18.3 Conjunctive Locking 189
and inp search for a tuple with a matching key. Theinp search  iterates over indices usingind!  be-
causeA_LIST::remove_index(INT)  requires the index.

abstract class $TUP is
   t1:STR; -- all tuples have a STR key
end; -- class $TUP
------------------------------------------------------------------
class TSPACE{ TT < $TUP } is
   attr b:A_LIST{TT};
   attr spacerw:WR_LOCK;    -- insert is mutator, rd*,in* are visitors

   create:SAME  is
      res::=new;
      return(res.init);
   end;

   init:SAME is
      b:=#;
      spacerw:=#;
      return self
   end;

   insert(tup:TT) is
      lock spacerw.writer then

       b.append(tup);
      end; -- spacerw lock;
   end;

   rdp(s:STR):TT is
      el:TT;
      lock spacerw.reader then

      loop el:=b.elt!; if el.t1=s then break! end
      end;

      end; -- lock spacerw
      if el.t1=s then return el else return void end;
   end;

   inp(s:STR):TT is
      i:INT;
      el:TT;
      lock spacerw.writer then -- mutator

     loop i:=b.ind!;
       if b.aget(i).t1=s then
          el:=b.aget(i);
          b.remove_index(i);
          break!
        end
      end;

      end; -- lock spacerw.writer
      if el.t1=s then return el else return void end;
   end;
 end; -- class TSPACE{TT<$TUP}



190 The Synchronization Extension : 18.3 Conjunctive Locking

es of
an be
cking

ivation
 way to
are ex-
ight or
. For
 other

 event
e that
ample

r events

anches.
ed con-
al lan-
>. It is
allel en-
 when
eously
K ob-

plest,
njunc-
e pre-
ter can
18.3.3   Disjunctive Locking

There are two orthogonal dimensions of functionality in pSather locking, the various subtyp
$LOCK and the different forms of the lock statement. We have seen how conjunctive locking c
employed to solve hard problems in coordinating access to multiple resources. Disjunctive lo
is our current solution to a wide range of thread termination and related problems. The mot
for the current design is discussed in <Fleiner thesis>. Briefly, there appears to be no good
safely terminate a thread from the outside. Threads can cleanly self-destruct, but only if they 
ecuting. Now it is frequently convenient to have threads suspended waiting for events that m
might not occur. This is standard well-known problem with a variety of proposed solutions
pSather, disjunctive locking is by far the best. As always, the construct is finding a variety of
applications.

The protoypical use of disjunctive locking would be in a procedure that was waiting for some
or new data that might not materialize. At a higher level, a control program, probably the on
forked the waiting thread, knows when the waiter should terminate. We can’t present a real ex
yet, because we first need to introduce gates, which are the basic pSather constructs fo
(among other things). Schematically, the code would look like:

The general construct also allows one to prepend a boolean condition to any of the when br
Each time through the loop these conditions are all evaluated and any branch whose prepend
dition is false will be disabled. The idea of disjunctive guarded commands appears in sever
guages, most prominently Ada<Barhes, J.G.P., Programming in Ada, Addison -Wesley, 1994
natural to incorporate these features into the pSather lock statement because, in a truly par
vironment, an event that is not locked might well change between the time it is triggered and
it gets handled. As we will see in the next section, pSather provides mechanisms that simultan
resume a thread that is waiting for some event and grant it a lock on the corresponding $LOC
ject.

Thus there are four increasingly flexible parallel cordination mechanisms in pSather. The sim
barrier synchronization, was described in Section 1.3.1. Mutual exclusion mechanisms and co
tive locking were discussed in Sections 1.3.2-3. Three variations on reader-writer locks wer
sented in Section 1.3.4. All of these and the event coordination constructions of the next chap
be used disjunctively as described in this section.

   loop
      lock
      when terminate then return
      when event then action
      end;
   end; -- loop



The Synchronization Extension : 18.4 GATE and GATE{T} classes 191

ons and
mmers
 are in

ls can
classes
ic
e func-
e 80 of
.

he
nality
nctions
tor(gate),
 was an
ch more

r con-
 opera-
ny
 provid-

ean-
cribed

eeded
18.4  GATE and GATE{T} classes

The Sather gate construct is the most complex and powerful feature of the language extensi
will be discussed in this section and the next one. Our hope is that most application progra
will be able to do fine using only the constructs described above, once the pSather libraries
place. But for writing efficient and reusable libraries and for novel applications, the power too
make all the difference. The Sather 1.1 specification discusses gates in conjunction with the 
FUTURE andATTACH and the abstract class $ATTACH. These are minor variations on the bas
concept and can be ignored for tutorial purposes. We will present the various aspects of gat
tionality separately and then give examples of how they can be combined. The table on pag
the 1.1 specification is complete and accurate, but is not very helpful in understanding gates

18.4.1   Gates as Synchronizers and Queues

We will first describe the more generalGATE{T} construct and then define how it specializes to t
datalessGATE version. In early versions of pSather, gates were called monitors but the functio
has changed very little. Monitors were used, as gates can be, to collect results returned by fu
forked as separate threads. Since several such threads could return values to the same moni
there needed to be some discipline for how the multiple values were stored. The FIFO queue
obvious choice and, as often happens, the queue functionality of gates came to be used mu
widely than anyone anticipated.

An object of typeGATE{T} can be created and used rather like any other paramterized Sathe
tainer, but has a number of  features built-in. One important feature is that the usual queue
tions:set(T), get:T, enqueue(T), and dequeue:T are guaranteed to be atomic. In addition, a
attempt to get or dequeue a value from an empty queue will suspend until a value is present,
ing a simple "futures" capability. Objects of type GATE define the same operations, but with m
ings appropriate for queues that have only counts, not a collection of values. This is all des
adequately in the specification.

As a first example, we point out that a subset of the typed gate functionality is just what is n
for a simple message passing mechanism. Consider the following class.

class PORT{MSG} is
   attr channel:GATE{MSG}; -- GATE is a queue

   create:SAME is
      res::=new;
      res.channel:=#;
      return res   end;

   send(datum:MSG) is channel.enqueue(datum) end;

   receive:MSG is  return channel.dequeue  end; -- blocks when empty
end; -- class PORT



192 The Synchronization Extension : 18.4 GATE and GATE{T} classes

l see

ples
when
nd this

s

s. As a
ce
s a
nction-
This implements a typed message port with the usual properties. Thesend operation is non-blocking
and thereceive blocks until there is a message and atomically pulls it off the queue. We wil
some more elaborate message channels in later examples.

SinceGATE subtypes from$LOCK, we could have used a gate instead of a mutex in the exam
of sections 1.3.2 and 1.3.3. This is not normally useful in itself, but becomes quite powerful 
combined with the other features of gates. Our current focus is on the queue functionality a
contains two functions that have return type $LOCK,empty andnot_empty. Lock statements can
include conditionsgate.empty or gate.non_empty. A GATE{T} satisfies the empty condition
when there are zero elements in its queue. An untypedGATE satisfies the empty condition when it
counter equals zero. There is also a non-locking functionsize:INT which returns the size of the
queue.

The synchronization features of gates can be used build other classes with similar capabilitie
simple example, here is a classPSTACK{T}. The PSTACK class is a parallel computing interfa
to the standard Sather array-based stack. It guarantees atomicity of operations and also hapop
method that suspends when called on an empty stack. It is worth examining how the gate fu
ality supports this.

.

class PSTACK{T} is                        -- pop waits if empty
   private attr s:A_STACK{T};
   private attr ct:GATE;

   create: SAME is
      res ::= new;
      res.s := #A_STACK{T};
      res.ct:=#GATE;
      return(res);
   end;

   is_empty: BOOL pre ~void(self) is return(s.size = 0) end;

   push(e: T) pre ~void(self)  is
      lock ct then
         s.push(e);

 ct.enqueue;
      end;
   end;

   pop: T pre ~void(self) is
      lock ct.not_empty then

 ct.dequeue;
         return(s.pop);
      end;
   end;

   top: T pre ~void(self) and ~is_empty is  return(s.top)  end;

   size: INT  pre ~void(self) is return(s.size) end;
end; -- class PSTACK{T}



The Synchronization Extension : 18.4 GATE and GATE{T} classes 193

e
ks
or mul-
er. In
nd lock

re able
s clean

define
erstand-

puting
 the gen-
e whole
ses. An-
 All of the required functionality is conveniently packaged using one untyped gate,ct. Thepush and
pop methods are both destructive and require mutual exclusion. The gatect does this, but it is also
used as a blocking counter of the size of the stack. Recall thatenqueue increments the counter of
an untyped gate and thatdequeue decrements a non-zero counter and blocks on zero. Here thepush
method does the appropriate enqueue; notice that this is whilect is locked against other threads. Th
pop method starts with a lock onct.not_empty; this blocks on an empty stack and atomically loc
ct  as soon as some other thread has pushed a value on to it. All of the coordination required f
tiple users and for conjunctive and disjunctive locking is handled by the run-time lock manag
general, the programmer just needs to understand that pSather has a very flexible event a
mechanism, but only for a restricted set of event types under $LOCK. In our example, we we
to represent the events and locks required for the task by pSather primitives and the result wa
and efficient code. There will be additional examples below. For wizards, there is a way to 
custom classes that subtype from $LOCK. This can be done in Sather, but requires some und
ing of the lock manager details and is discussed in Section 1.6, Advanced Topics.

Our next example illustrates a pSather solution to another classic and important parallel com
problem, producers and consumers. We describe code for one producer and one consumer,
eral case is essentially the same and would make a good exercise. In order to help visualize th
mechanism, this example is present as a monolithic program rather than encapsulated clas
other good exercise would be to use the PORT class described earlier in this section.

class MAIN is
   attr channel:GATE{INT};-- queue aspect of GATE exploited
   attr prod_cnt:GATE;-- used to count live producer

   main is
      channel:=#;
      prod_cnt:=#;
      par

      prod_cnt.enqueue; fork producer  end; -- one producer
      fork consumer end;

      end
   end; -- main

   producer is
      loop i::=3.upto!(8);

       channel.enqueue(i*i)
      end;
      prod_cnt.dequeue;   -- done, decrement producer count
   end;

   consumer is
     loop

     -- disjunctive lock, here mutually exclusive branches
     lock
       when channel.not_empty then #OUT+channel.dequeue+ '\n'
       when channel.empty,  prod_cnt.empty  then  return
     end; -- lock

     end -- loop
   end; -- consumer
 end; -- MAIN



194 The Synchronization Extension : 18.4 GATE and GATE{T} classes

rs
e
locking
dd-

ls that
eal
ication
 when
inel val-
 channel
use we
revisit

ch only
locking
aiting

 a sus-
uent, a
anded

es one

and
Here there are two gates employed. A typed gate,channel, is the queue of data between produce
and consumers. An untyped gate,prod_cnt, will count the number of active producers. As in th
stack example we map a task condition - no active producers - onto an event handled by the 
mechanism -prod_cnt.empty. The main program just forks a producer and a consumer while a
ing 1 to theprod_cnt. Our producer sends its squares to the communication channel and signa
it is finished by decrementingprod_cnt. The consumer is a bit more complex and is our first r
example of a disjunctive lock. The first disjunct is the normal case where data in the commun
channel is printed. The classical problem is that the consumer function has no way to know
production has ceased. There are various unattractive solutions such as putting special sent
ues in the data stream. Here the second disjunct waits for both the absence of data on the
and the signal that there are no active producers. Again, this only works out so nicely beca
mapped problem conditions onto pSather primitives. For our last example of this section, we 
the tuple space problem and add blocking reads and moves in an efficient way.

18.4.2   Tuple Space, Round Two

In section 1.3.4 we described a reduced version of the tuple space example from Foster in whi
the non-blocking read and move operations were implemented. The more general case with b
read (rd) and move (in) is considerably more complex because we want to avoid any busy w
or polling.  Our solution follows a standard  pSather pattern with each blocking read becoming
pended thread waiting on some event. If we assume that blocked reads are relatively infreq
good solution is to treat these specially and leave the unblocked case efficient. The exp
TSPACE class has a wish list, wish,  that holds elements of type WISH, each of which captur
or more blocked rd/in requests.  The class WISH is quite simple.

The full tuple space implementation is captured in the classTSPACE, which appears in the next
three codeblocks. Most of the code from the earlier version is preserved. In addition, theMUTEX
wishlk controls mutual exclusion towish. Since there is no guarantee that a blocked rd/in comm

class WISH{TT} is
   attr key:STR;
   attr claimed:BOOL;-- an "in" will snarf this wish
   attr que:GATE{TT};

   create(s:STR):SAME is
      res::=new;
      res.key:=s;
      res.claimed:=false;
      res.que:=#;
      return res
   end;
end; -- class WISH



The Synchronization Extension : 18.4 GATE and GATE{T} classes 195

ion.
est

d
synchro-

e wish
will ever be satisfied, there should be some way to clean up a tuple space and the GATEdie is used
to signal waiting threads that it is time to quit.

   The non-blockingrdp andinp methods do not need to change at all from our previous solut
The blocking versions,rd andin, each start with a call to the non-blocking counterpart. If the requ
is found, thereis no loss of efficiency. Similarly for theinsert method; if there are no unsatisfie
wishes, the code is the same as the base case. The extra work is all in the wish list, and the 
nization problems can also be isolated there. Since any ofinsert, in, or rd can modify the wish list,
access to it is controlled by the MUTEXwishlk. Consider first therd method. If there is no match
in the tuple space, a search of the wish list is done. Of course if there is also no match on th

class TSPACE{ TT < $TUP } is
  private attr b:A_LIST{TT};
  private attr wish:A_LIST{WISH{TT}};-- WISH has key:STR, que:GATE{TT}
  private attr spacerw:RW_LOCK;-- insert, in* mutates space, rd* visits
  private attr wishlk:MUTEX;
  private attr die:GATE;

   create:SAME  is
      res::=new;
      return(res.init);
   end;

   init:SAME is
      b:=#;
      wish:=#;
      spacerw:=#;
      wishlk:=#;
      die:=#;
      return self
   end;

   insert(tup:TT) is
      i:INT:=0;
      w:WISH{TT}:=#("*");    -- initialize;

      lock wishlk then -- #OUT+  wish.size  + '\n';
      loop i:=wish.ind!;
         if wish.aget(i).key= tup.t1 then
            w:=wish.aget(i);
            break!
         end
      end;
      if w.key=tup.t1 then-- if no matching wish, skip all this
         w.que.set(tup);-- enables waiting rd/in threads
         lock
         when w.que.no_threads
         then  wish.remove_index(i); -- zap the wish list entry
            if w.claimed then return end -- don't insert tuple
         when die.not_empty then return
         end; -- lock when
      end; -- if w.key=s

      end; -- lock wishlk

      lock spacerw.writer then-- OK, tuple gets added to space
       b.append(tup);

      end; -- spacerw lock;
   end;-- insert



196 The Synchronization Extension : 18.4 GATE and GATE{T} classes

atching
try is
ssible

andled

ck-
normal
 entry

eeded
list then a new wish entry must be created and appended. It could also happen that there is a m
wish entry, but a previousin call has staked a claim to the tuple-to-come and so a new wish en
also needed in this case. All of this is expressed in the two statements within the wishlk. It is po
that, while this thread was making its wish another thread inserted a matching tuple. This is h
by again tryingrdp.

 The final code segment ofrd implements the wait for a matching tuple  using a disjunctive lo
statement.The second when branch waits for a global signal to die. The first branch is the 
case and relies upon the properties of the pSather GATE{T} construct. Notice that a wish list
has three attributes:key:STR, claimed:BOOL, andque:GATE{TT} where TT is the tuple type.
The GATE construct supports multiple threads waiting for a value and this is just what is n
here. The first when branch can be taken as soon as a value (here a tuple) is assigned tow.que and
this value is returned as the result of the original blocked read.

   rd(s:STR):TT is
      v:TT:=void;
      el:TT:=rdp(s);
      if ~(el=v) then return el end;

      w:WISH{TT}:=#("*");-- initialize to non-match;
      lock wishlk then

      loop w:=wish.elt!; if w.key=s then break! end end;
      if ~(w.key =s) or w.claimed then w:=#(s); wish.append(w)

end;
      end; -- lock wishlk

      el:=rdp(s);-- maybe got in while making wish
      if ~(el=v) then return el end;

      lock
      when w.que.not_empty then return w.que.get
      when die.not_empty then return void
      end; -- lock
   end;

   rdp(s:STR):TT is
      el:TT;
      lock spacerw.reader then

      loop el:=b.elt!;
         if el.t1=s then break! end
      end;

      end; -- lock spacerw
      if el.t1=s then return el else return void end;
   end;



The Synchronization Extension : 18.4 GATE and GATE{T} classes 197

an
e

hen
, inser-
 this is
s are

 global
ng for

n
method
ode
The additional code required for the blockingin command is quite similar to this. The search for 
unclaimed matching tuple is identical, except that thein' commands mark the tuple as claimed. Th
disjunctive lock that implements waiting is also the same as inrd

 It is theinsert method that involves most of the extra complexity for dealing with the wish list, w
present. The first loop searches for an existing wish index with the same key; if there is none
tion reverts to our previous case. If there is a matching wish, this insertion is its answer and
indicated by settingw.que to have a value of the tuple being inserted. Now, one or more thread
waiting for this GATE{TT} to be set and they will all be enabled. Theinsert routine now waits for
these all to finish with a disjunctive lock. As in the other cases, the second branch catches the
command to quit. The first disjunct matches the condition that there are no threads still waiti
w.que. The current wish is removed in any case and, if the tuple has been claimed, then theinsert
routine returns. If all of the waiting operations wererd then the current tuple will not have bee
claimed and will be added to the main tuple store by the last code segment.  The only other 
is done which sets theGATE:die as the signal for waiting threads to return. This completes the c

   in(s:STR):TT is
      v:TT:=void;
      el:TT:=inp(s);
      if ~(el=v) then return el end;

      w:WISH{TT}:=#("*");-- initialize to non-match;
      lock wishlk then

      loop w:=wish.elt!; if w.key=s then break! end end;
   if ~(w.key =s) or w.claimethen w:=#(s); wish.append(w)

end;
      w.claimed:=true;--  wish will be snarfed

      end; -- lock

      el:=inp(s);-- maybe got in while making wish
      if ~(el=v) then return el end;

      lock
      when w.que.not_empty then return w.que.get
      when die.not_empty  then return void
      end; -- lock
   end;

  inp(s:STR):TT is
      i:INT:=0;
      el:TT;-- non match;
      lock spacerw.writer then-- mutator

       loop i:=b.ind!;
          if b.aget(i).t1=s then
             el:=b.aget(i);
             b.remove_index(i);
             break!
          end
       end;

      end; -- lock spacerw.writer
      if el.t1=s then return el else return void end;
   end;

   done is die.set end;
end; -- class TSPACE{TT<$TUP}



198 The Synchronization Extension : 18.5 GATES and attached threads

f con-
on 1.5.

ith the
se. In
iable
cs is
 orig-
 with
e. We
 to the
ent, re-

 are

 in

he other
ecific

typed
 return a
g code

-
nstead
e
-
her

ertainly
r this
 flex-
y done
for the tuple space example from the perspective of functionality. There will be a third round o
sideration of this task when we discuss performance and the distributed extension in Secti

18.5   GATES and attached threads

Both the typed and untyped gate classes have another area of functionality that interacts w
queue and $LOCK properties described in the previous section. We consider first the typed ca
certain programming styles, it is common to fork a (value returning) function linked to a var
that will eventually hold the result of the forked function, in the ’future’. The obvious semanti
that any access to such a future value will block until there is a value present. Historically, the
inal motivations for the pSather gate (originally monitor) construct was very much concerned
future values. In our terminology, a thread was ’attached’ to the gate that would receive its valu
considered it important to allow multiple threads to be attached to the same gate and this led
idea of a typed gate as a queue of values. It was also clear that, in a true parallel environm
trieving a future must be atomic. The remaining three methods of the gate (and $ATTACH, etc.)
classes:has_thread:BOOL, gate.threads:$LOCK, and gate.no_threads:$LOCK  deal with
these issues.

 TheBOOL function,has_thread, is non-blocking and just gives a snapshot of whether there
any threads attached to this gate. The other two methods have return type $LOCK and participate in
the full range of lock constructs. As expected,gate.threads will lock until gate has at least one
thread attached andgate.no_threads will lock until there are no attached threads. Notice that
these cases, as well asempty andnot_empty, the gate itself is also locked. Thepar ... end syntax
was not included in earlier versions of pSather because this can be expressed in terms of t
primitives. You might want to try this; the answer will appear later in the text. There is a sp
syntax for attaching a thread to a gate:

 gate :- expression

The :- notation is intended to convey the notion of incomplete (future) assignment. For un
gates, everything is analogous. The procedure that is attached to an untyped gate must not
value; on completion the counter of the untyped gate is incremented. In both cases, the callin
can either test if the method has returned (gate.size>0), block until this happens (gate.get or
gate.enqueue) or lock on this condition (lock gate.not_empty ...). This provides a rich set of pro
gramming options for dealing with threads doing speculative computation., etc. For example, i
of enclosing a set of forked functions in apar ... end bracket, one could attach them all to som
untyped gate,g, and then code:lock g.no_threads then end.Thesync command discussed in Sec
tion 1.3.1 can also be used; executing async in a thread attached to a gate synchronizes with all ot
threads attached to the same gate.

There is currently much less use of the attach statement, futures, et. al. than we anticipated. C
the fork andparloop mechanisms are clearer when they apply. It is too early to know whethe
trend will continue or whether we will start developing patterns that rely heavily on these more
ible mechanisms. We will present two artificial examples that give an idea of what can be easil



The Synchronization Extension : 18.5 GATES and attached threads 199

rnative
ous ap-
er with

ced
er
u-
its
 com-

licit

il they
 loop,

b-

ontrol
hread)
mecha-
he di-

inate
ding a
with these mechanisms. Suppose that we wanted to fork off a number of threads to try alte
ways of solving the same problem, this might be searching a data base or the internet or vari
proaches to an AI task. Our toy example just has different threads looking for a random numb
a particular property; it is the control that is of interest.

TheGATE{INT}, num, will have the worker threads attached to it and their answers will be pla
on its queue when available. TheBOOL, stop, is a global signal for the other workers to stop aft
an answer has been found. TheINT, win, is the thread number of the winning worker, this will us
ally vary even on a uniprocessor platform. Themain program starts four workers and gives each 
integerid. The forking thread is not blocked (as it would be with par ... end) and could do other
putation. In this case it just waits (num.dequeue) for the first answer, sets thestop flag, exports it,
and prints the first answer.  Since the worker threads might be on separate clusters, the expex-
port is needed to make the flag visible to all the workers.

The worker threads each initialize the random number generator differently and then loop unt
find a number divisible by 71 or find out that another worker has done so. At the start of the
each thread does an explicitimport to make sure that it has a current copy ofstop. In this simple
case the whole program terminates sostop isn’t really needed. But termination is an important pro
lem in general and we will return to this case in the next section.

The next example is a slight modification of this one that illustrates an important additional c
option in pSather. Normally, any nested set of calls (whether forked or called in the same t
must be completely unwound when the result is found and needs to be returned. The gate 
nisms make it easy to employ a kind of ’continuation passing’ control technique that allows t
rect return of a result to the top-level caller. It turns out that intermediate threads can term
without causing any difficulty. The task is the same - several threads are given the task of fin

class MAIN is
   attr num:GATE{INT};
   attr stop:BOOL;
   attr win:INT;

   main is
      i:INT;
      num:=#;
      stop:=false;
      loop i:=0.upto!(3);

       num :- worker(i);
      end;
      stop:=true; SYS::export;  -- make this known
      #OUT + num.dequeue + "   thread " + win  + '\n';
   end;  -- main

   worker(id:INT):INT  is
      RND::seed(31463*(id+43));
      loop  SYS::import;  -- stop is a global, import its value

       if stop then return(0) end;
       ans::=RND::int(0,10000);
       if ans.mod(71)=0 then win:=id; return ans end;

      end; --loop
   end; -- worker
  end; -- class MAIN



200 The Synchronization Extension : 18.5 GATES and attached threads

threads
we ret
wo val-

ds.

queues
inuation
 another
ibility
te before

sk is to
.

s. The
8.>,
e ob-

essages
random number divisible by 71. The difference is that here we separate the attachment of 
from the return of answers We also fix a coordination bug in the previous example. Before 
urned the id of the winning thread separately from the answer and could not be sure that the t
ues corresponded. Here we return a tuple (val, thread) and avoid that problem.

There is one additional untyped gate,dum, which is a dummy used for attaching the worker threa
Theworker code is changed so that it takes two parameters, itsid and the gate,g,  to which the an-
swer should be returned and it now has no return value. When a worker finds an answer, it en
a tuple with  the answer and its id on the gate given to it as a parameter and returns. The cont
idea isn’t used here, but a worker could pass on the answer gate (and possibly task state) to
thread and terminate or do other work, for example return additional answers. Another poss
would be to have a worker that was attached to a typed gate enqueue results on the same ga
its final return.

A use of the attach construct in a real application can be found in Ben Gomes’ thesis. The ta
analyze a neural network graph and partition it segments that are placed on separate cluster

18.5.1   Tasks, Actors, etc.

One popular style of parallel programing employs the metaphor of cooperating active agent
pure form of this is given in the various Actor formulations <Agha,G., Actors, MIT Press,198
but it cccurs in many other forms. In pSather, it is fairly simple to create and manipulate activ
jects; the major issue is that the strong compile-time type system of Sather requires typed m

class MAIN is
   attr num:GATE{TUP{INT,INT}};  -- answer is (val,thread)
   attr dum:GATE;
   attr stop:BOOL;

   main is
      num:=#; dum:=#;
      stop:=false;
      i:INT;
      loop i:=0.upto!(3);

 dum :- worker(i,num);
      end;
      ans::=num.dequeue;
      #OUT + ans.t1 + "   thread " + ans.t2  + '\n';
      stop:=true; SYS::export;
   end;  -- main

   worker(id:INT, g:GATE{TUP{INT,INT}})  is
      RND::seed(31463*(id+43));
      ans:TUP{INT,INT}:=#(0,id);
      loop SYS::import;

 if stop then return end;
 try::=RND::int(0,10000);
 if try.mod(71)=0 then g.enqueue(ans.t1(try)); return end;

      end; --loop
   end; -- worker
end; -- class MAIN



The Synchronization Extension : 18.5 GATES and attached threads 201

hen dis-
. Since

cts of
ality
ks
e

simpli-
ly.  Ele-
he

at-
d
, but one
or run-time case statements. We will first present a general tasking package in pSather and t
cuss how this could be modified and extended to support various paradigms of programing
tasks should be free running once created, the central idea is to use theattach or :- statement to start
a single thread within the object that is the actor or task. Tasks will communicate using obje
the simplePORT class, which was the first example in Section 1.4.1. The core tasking function
will be encapsulated in a partial classTASK, listed in the table below. Various specific kinds of tas
will  have their own class, each of which includesTASK; examples are given in the following cod
table. Since all different types of task must communicate, we define an abstract class $TASK, which
expresses the common interface of all tasks. The abstract definition listed in the table is over-
fied  in assuming that all messages are of type STR; we will discuss the general case short
ments of abstract singature include a routine,connect executed in a receiving task, that connects t
outport of some source to theinport of self and a reader of theoutport that needs to be public for
connect to work.  Our design requires that each task type provided a subroutine,body, that is its
main program. A discussion of theTASK class follows the table.

The partial classTASK will be included in the various specific task types. It has two public 
tributes,inport andoutport, which are for now of typePORT{STR}. The private shared gate is use
to attach all tasks of a given type. In pSather 1.1 there is no way to operate on these threads

abstract class $TASK is
   connect(sender:$TASK);
   outport: PORT{STR};             -- real case is more general
   body;
end; -- class $TASK
-------------------------------------------------------------------
partial class TASK < $TASK is
   attr inport,outport: PORT{STR};
   private shared all:GATE;         --  all tasks of this type.

   create:SAME is
      res::=new;
      res.inport:=#;
      res.outport:=#;
      return res
   end; -- create

   start:SAME is
      if void(all) then all:=# end;
      all:-body;
      return self
   end;

   stub body;
   send(datum:STR) is
      outport.send(datum)
   end; -- send

   receive:STR is                   -- blocks until data present
      return inport.receive
   end; -- receive

   connect(sender:$TASK) is         -- useage: receiver.connect(sender)
      sender.outport.channel:=inport.channel
   end;
end; -- class TASK



202 The Synchronization Extension : 18.5 GATES and attached threads

p-
ody,
d gate,
end and
ct meth-
eiver. A

brou-

ne extra
diom
can test or lock on whether there any threads attached to the gate,all. We have chosen to have a se
aratestart routine so thecreate is straightforward. Recall that every task class must define a b
specified as a stub here. The start method attaches a thread executing the body to the shareall
,and returns self; this makes it convenient to create and start a task in one expression. The s
receive methods just wrap the same methods in the PORT class of Section 1.4.1.  The conne
od is used to set the output channel of a sender to be the input channel (a gate) of the rec
minimal example of task useage is provided in the following table.

The SOURCE class is described below

These are all tied together by the MAIN class

 There are two tiny task classes,SINK andSOURCE, each of which includesTASK and subtypes
from $TASK, in the usual Sather fashion. The sink class consists only of the required body su
tine. It loops with a (blocking) receive command, included fromTASK. If it sees a period in its input
it prints a new -line and returns. The source task is a bit more complicated because it needs o
attribute,ok:GATE, which will be its starting signal. The creation code is the standard Sather i

class SINK  < $TASK is include TASK;
   body is
      s:STR;
      loop

 s:=receive;     -- waits for data
 #OUT + s;
 if s ="." then #OUT +'\n'; break! end

      end
   end;
end; -- class SINK

class SOURCE < $TASK is include TASK create -> task_create;
   attr ok:GATE;

   create:SAME is
      res::=task_create;
      res.ok:=#;             -- the extra attr
      return res
   end;

   body is
      ok.get;                -- wait for signal
      send("Hello ");
      send("World");
      send(".");
   end;end; -- class SOURCE

class MAIN is
   main is
      source:SOURCE:=#SOURCE.start;
      sink:SINK:=#SINK.start;
      sink.connect(source);
      source.ok.set;
   end;
end; -- class MAIN



The Synchronization Extension : 18.5 GATES and attached threads 203

nel
tting the

x-

 actor
ng task
 AR-
aylor
 in mes-
nments
ge. The
niform
tport

 build
age be
 strong

the level
 define

ass

s
inds of
stract in-

 gen-
w
at
fier.
the first
es
, augmenting thecreate routine of the parent class. Thebody subroutine just waits for a starting
signal and then sends three famous strings, again using a method included fromTASK. Finally, there
is a littlemain program that first creates and starts the two tasks,source andsink. We don’t want
source to start generating before it is connected which is why we have it wait onok. As an exercise,
you might want to changeSOURCE so its body waits for a starting message on its input chan
instead. The main program just connects the sink to the source and signals ok. Because se
gateok is a synchronization operation, the implicit export/import (cf. page 7) assures that thecon-
nect will be complete beforesource starts spewing text. Hopefully, people will rarely need to e
plicitly consider this kind of consistency issue.

18.5.2   Discussion and Extensions

 The core task functionality just presented provides a framework for building up other task or
based mechanisms. Even the existing code allows multiple sources to connect to a receivi
port. It is straightforward to allow multiple inport and outport channels, for example by using an
RAY{PORT}. This is almost all that we need to capture the core programming model used by T
as the basis for his book<op.cit>, p.12-13. Taylor also allows references to ports to be passed
sages, supporting dynamic communication channels. Our task class already allows new assig
to the outport(s) of a task, but there is not yet a way to pass anything but strings in a messa
strong typing places constraints on how we can deal with various kinds of messages in a u
way. We will outline one simple solution, retaining the simplification of a single inport and ou
per task.

  In this example, we will introduce a version of the task realization that can really be used to
significant systems. The main simplification in our first solution was requiring that each mess
a string. We clearly want messages of many types and this must be reconciled with Sather's
static typing. The saving grace is that all types of message should behave the same way at 
of task communiction, differences only matter inside the body of tasks. This suggests that we
a general message type,MSG, with one attribute ( here datum) of type $OB; the tiny class for this
is included in the next code table. The only change in the partial classTASK is that the three instanc-
es ofSTR are replaced byMSG and this modification is not shown. For our example, the cl
SOURCE requires no change at all and is also not repeated.

 The most important change is in the abstract class, $TASK, which was just a hack in the previou
example. We now can specify a compete and general interface for tasks. As we will see, all k
tasks can communicate using all kinds of messages with these general mechanisms. The ab
terface specifies the functionality needed by any task ; any class that includesTASK and supplies a
body will comply with the interface. It is easy to convert our previous example to use the more
eralMSG class. Consider the revised code for theSINK class, included in the code table. The ne
body code obviously needs a variable (m) of typeMSG as well as the string from before. Recall th
the data field ofMSG is datum; the local variablemd is needed beacuse typcase takes an identi
The code has two typecase branches, but ignore the second branch for now. The code in 
branch is unchanged, the new version ofSINK just needs an extra level of indirection since the m-



204 The Synchronization Extension : 18.5 GATES and attached threads

econd
sage isn't itself a string but has a string datum. If this were the only added functionality in the s
task example, the main program would require no change.

The $TASK abstraction is show below

The SINK class is defined as

The RFCONN class is

class MSG is
   attr datum:$OB;

   create(dd:$OB):SAME is
      res::=new;
      res.datum:=dd;
      return res
   end;
end; -- class MSG

abstract class $TASK is
   connect(sender:$TASK);
   outport: PORT{MSG};             -- now more general
   create:SAME;
   start:SAME;
   send(datum:MSG);
   receive:MSG;
   body;
end; -- class $TASK

class SINK  < $TASK is include TASK;
   body is
      m:MSG; s:STR;
      loop

 m:=receive; md::=m.datum;
 typecase md
 when STR then s:=md;
    #OUT + s;
    if s ="." then #OUT +'\n'; break! end
 when RFCONN then
    connect(md.sender)
 end; --typecase

      end
   end;
end; -- class SINK

class RFCONN is
   attr sender:$TASK;

   create(s:$TASK):SAME is
      res::=new;
      res.sender:=s;
      return res
   end;
end; -- class RFCONN



The Synchronization Extension : 18.5 GATES and attached threads 205

 allow
systems
estab-

d branch

age.
one
this. This
sed and
also re-
l be dis-

erence
5 was
e being
hieve.
ith the
ed by
h group

k and
 meth-
bject

st con-
EX will
r their
 guard

ng to
ng style
Using
lusion
t, using
These are all tied together by the main routine

However, now that we have messages of arbitrary type, we can fulfill our earlier promise to
connections to be established by message. This is an important capability and can support 
with very dynamic connectivity. It is quite easy to do this with the mechanisms that we have 
lished. Again we need a tiny class to define a message type, hereRFCONN for request-for-connec-
tion, shown in the code table above.  It simply has one attribute of type $TASK, the sending task
that needs to be connected to the inport of some receiver. We can now understand the secon
of the typecase statement in theSINK class. If aSINK object gets anRFCONN message, it executes
its connect method which sets theoutport of the task listed as the desired sender in the mess
The revisedmain program illustrates how this might be used. Rather than directly link our 
source to the one sink as before, the main program constructs and sends a message to do 
is no improvement in the example, but should illustrate how connection requests can be pas
carried out within the design. This almost completes the requirements for Foster's tasks. He 
quires that a task be placeable on different processors;  the pSather mechanisms for this wil
cussed in Section 1.5.

The tasking and rendevous mechanisms of Ada are similar to the above with the major diff
being guarded disjunctive method call. In fact, the disjunctive locking construct of Section 1.3.
partially based on the Ada guarded select statement . Rendevous ( both the caller and calle
blocking) does not seem like a good style for pSather’s goals, but it is straightforward to ac
One way to implement this in pSather would be to use explicit message passing, possibly w
task mechanisms of this section. An implementation closer to Ada syntax could be achiev
grouping the various accessible methods (corresponding to Ada entries) and associating eac
with a MUTEX object. There would be one such MUTEX  object for each select/accept bloc
a single MUTEX variable that corresponded to the current state (~ which select statement) . A
od would start by locking the contolling MUTEX.  Recall that the natural state of a pSather o
is passive; if no active threads are running the object is, in effect, waiting for a rendevous. Fir
sider the case where there is only one select statement in the Ada code, then a single MUT
ensure that exactly one of the entries executes at a time and callers of any others will wait fo
rendevous. A guarded select would be modeled by a guarded lock statement that exits if its
fails. Multiple select statements would map to multiple MUTEXes, with the one correspondi
the current state  being assigned to the controlling variable. There is a standard pSather codi
that is quite similar. A collection of methods is collected into a class without an active thread. 
classes can call these methods in either blocking or non-blocking ( :- ) mode. If mutual exc
over some subset of methods is desired, these all start by locking on a shared MUTEX. In fac
the advanced techniques of Section 1.6.3, one can define rendevous locks in Sather.

class MAIN is
   main is
      source:SOURCE:=#SOURCE.start;
      sink:SINK:=#SINK.start;
      msg:MSG:=#(#RFCONN(source));
      sink.inport.send(msg);      -- unSathery, but simple
      source.ok.set;
   end;
end; -- class MAIN



206 The Synchronization Extension : 18.5 GATES and attached threads

ed by
asily
nal re-
lly done

ard com-
 bound
ument

s vari-

aming a
 gen-
Another widespread paradigm appears in the various forms of Actor systems, as exemplifi
Agha’s book<MIT Press, 1988>.  Most of the required functionality for Actors can be built e
from the task and messaging facilities described in the this section. The interesting additio
quirement is that an actor can change its behavior after processing a message. This is typica
with abecome  <behavior> statement. One can get some of this effect by simply having the body
in your task class be a case statement that depends on some state variable. This is the stand
piled language approximation, but we can do something much more interesting using Sather’s
routines. The body of the task class can be written with a function closure which has one arg
of the of the typeMSG , say :

 body_var: ROUT{MSG};

 Then the actor "becoming" another behavior is modeled by asigning a function closure to thi
able :

 body_var:= bind( behavior6 )

and, obviously enough, the basic body code is:

body_var.call( receive );

 With appropriate message types defined, we could easily have an actor receive a message n
new behavior. It would not be obvious how to debug this kind of code, but it does illustrate the
erality of the constructs.



Performance and The Distributed Extension : 19.1 Introduction 207

s chap-
lop and
ged to
bounded
re data
 and to
livious
 SMP
 major
re and
 pos-

 which
ts offer
H. 8>. If
uently
elieve

hin this
l oper-
ns with
o of ???

rrently
 con-
Sather
study-
Performance and The
Distributed Extension

19.1  Introduction

Performance is the raison d’etre of parallel processing, but has not yet been mentioned in thi
ter. This is consistent with the pSather design philosophy that attempts to allow users to deve
test their programs without concern for implementation details. The programmer is encoura
code for the basic abstract machine consisting of a large shared address space and an un
number of threads of control. Sharing is determined by the rules of the language, not by whe
happens to reside. We believe that this will make it relatively easy to develop complex codes
port them between platforms. Of course there are performance penalties to pay for this ob
view of the underlying platform. On some architectures, the penalty might be tolerable; a single
(symmetric multi-processor) or the Cray T3E provides an effective shared memory. There are
efforts <Soutamire thesis> to achieve efficient emulation of shared memory through hardwa
low-level software without help from the compiler or programmer, if these succeed it should be
sible to develop efficient pSather code using only the mechanisms described above.

Hardware shared memory, or its equivalent, provides a best case on the kind of platform for
pSather is appropriate. There is also a maximum latency beyond which the pSather construc
no performance advantage over general message passing systems such as MPI<Foster, C
the ratio between local and remote operations exceeds 4 orders of magnitude (which it freq
does) then only the most loosely coupled computations can be parallelized efficiently. We b
that pSather can be effective with latency ratios up to several hundred and that systems wit
range will continue to be important. Two paradigm examples are the Meiko CS-2, where loca
ations are ??? faster than remote ones and our Myrinet network of quad-Sparc 10 workstatio
a ratio of about ???. In contrast, our ethernet realization with the same workstations has a rati
and can not be used for most of the problems that interest us.

Achieving good performance is the central research goal of the pSather project. There are cu
four doctoral projects focusing on different aspects of this. Claudio Fleiner is looking at how
ventional and novel compiler optimizations can be employed in pSather. Ben Gomes is using p
in a system for mapping neural network applications to parallel machines. Boris Vaysman is 



208 Performance and The Distributed Extension : 19.2 Placement and the @ operator.

esenta-
d will

n. Both
mount of

into sev-
ries. For
y to ref-
cy esti-
ocate
d all of
daptive
is.

be con-
usters
e where

n @ is
expres-
 @exp

putes’
ral dif-
al, the @

 on one

e pred-

ecribed
t to the
, given

te an
ing class library design, and is especially concerned with execution time adaptation and repr
tion change. David Stoutamire’s thesis focuses on locality and storage management an
introduce the ’zone extension’ that generalizes the current cluster based distributed extensio
the current cluster version and the new zone system share the basic idea that a moderate a
placement information supplied by the user can help a great deal in producing good code.

19.2  Placement and the @ operator.

The current pSather system has a built-in knowedge that the address space might be broken 
eral pieces, called clusters, and that it is expensive to reference data across cluster bounda
reasonable performance in a portable design, assume that it is hundreds of times more costl
erence a remote cluster. There are ways to incorporate detailed  platform dependent laten
mates, but that is beyond this tutorial. With penalties of this magnitude it is important to all
objects and threads well. There is a large literature on programmer placement strategies an
this appears to be useable in our context. From the pSather perspective, automatic and a
placement strategies should be encapsulated in classes and we have done some work on th

The language primitives for placement are quite simple. Any expression of the language can 
joined with the text ’@exp’ where exp must evaluate to an integer from 0 to the number of cl
-1. The preceeding expression is then evaluated on the corresponding cluster. In the usual cas
no @ is specified, execution continues in the current cluster. If the expression to the left of a
a create expression, the created object will reside on the cluster specified after the @. If the 
sion to the left of @ contains calls or other subexpressions, these will be evaluated before the
is calculated and thus will be on the current cluster. This is quite different than the ’owner com
rule often built into parallel languages. One expression might involve objects resident on seve
ferent clusters and remote access is sometimes the best strategy.  As described in the manu
opertor can also be used with the fork and parloop statements.

 For repeated computations, it is always better to copy data so that the inner loop all happens
cluster. To aid in this, PSather includes three location tests on objects. The methodwhere(expres-
sion):INT returns the  number of the cluster on which the value of the expression resides. Th
icatenear  returns true if the value of its argument is on the executing cluster;far returns true if its
argument is not on the executing cluster. The treatment of void and immutable arguments is d
in the table on page 85 of the specification. The two most basic patterns are moving the objec
operation and vice-versa. The schematic code for bringing the object to the code goes like this
a variable v:T

      local_v:T:=v;

      if far(v) then local_v := v.copy end;

Of course, if we are modifying the variable v, just modifying the copy won’t suffice. To execu
operation on the cluster where the object in variable v resides, one writes



Performance and The Distributed Extension : 19.2 Placement and the @ operator.

 some
ve la-
nd one
coded to
e ex-

, using
 vari-
t made

te one
cal
m sets
e class
     operation@where(v);

For our first real examples, we return to two of our earlier sample programs. It turns out that
code that works fine with low-latency shared memory becomes awful on a platform with relati
tencies in the hundreds. In Section 1.4.2, there were two variations on disjunctive search a
issue was to stop other threads once one had found an answer. Each worker thread was 
check a global flag,stop, on each iteration. This seems harmless, but could totally dominate th
ecution time. The following revision illustrates some issues in coding for costly clusters.

 The major difference in the main program is that workers are each forked to a different cluster
the syntaxworker(i)@i. To avoid costly checks of a shared signal, each worker should check a
able on its own cluster. Earlier versions of pSather had a primitive storage class, spread, tha
it easy to do this case but was not general enough for all of our requirements. We will illustra
standard pattern here and discuss others later. In this solution, each worker thread creates a lostop
variable and registers it with the main program.  Whan an answer is found, the main progra
all the flags. The only complication is that this requires a reference object, here realized by th
REFBOOL, suggesting a boxed boolean. Thus the test in each worker is onstop.val. The code as

class REFBOOL is
   attr val:BOOL;
   create:SAME  is return new end;
end; -- class REFBOOL
-------------------------------------------------------------------
class MAIN is
   attr num:GATE{INT};
   attr stops:ARRAY{REFBOOL};
   attr win:INT;

    main is
      i:INT;
      num:=#;
      stops:=#(clusters);
      loop i:=clusters!;

      num :- worker(i)@i;  -- workers to clusters
      end;
      ans::= num.dequeue;
      loop i:=clusters!; #OUT + i + '\n';

     stops[i].val:=true;
      end;
      SYS::export;
      #OUT +ans  + " thread " + win  + '\n';
   end;  -- main

   worker(id:INT):INT  is
      stop:BOOL;
      stops[id]:=stop;
      sync;            -- everyone gets to start
      RND::seed(81463*(id+43));
      loop SYS::import;

      if stop then return(0) end;
      ans::=RND::int(0,10000);
      if ans.mod(71)=0 then win:=id; return ans end;

      end; --loop
   end; -- worker
end; -- class MAIN



210 Performance and The Distributed Extension : 19.2 Placement and the @ operator.

 in each
VEC,
Sath-
ogram.
jects

ributed
y move
given might still be too slow if theimport in each loop was costly, the obvious fix is toimport and
test only every Nth step.

As a second example, let’s reconsider the program of Section 1.3.2 that computed the count
chunk of some DVEC of the overall maximum value. We are now able to define the class D
which was left implicit in the earlier example. It turns out that our earlier example was very un
ery code; one expects functionality to be encapsulated in object methods, not in the main pr
The following example is over-simplified, but is characteristic of our approach to distributed ob
in pSather. A major goal is to leverage the exisitng serial Sather classes, here VEC. A dist
vector, or DVEC, should have the same interface as the serial version allowing users to easil
code to a parallel platform. Distributed object classes always have a directory,dir, that points to the



Performance and The Distributed Extension : 19.2 Placement and the @ operator.

total of

n’t use
erface.
ks. The

r. Since
re each
part of the d-object that is on each cluster. Here there is just one chunk per cluster  and a 
num_chunks. The only other attribute is the fixed shunk size,ch_size.

 The code is all straightforward. Notice that in thecreate routine, the individual chunks of type VEC
are created on separate clusters and thus live there. Thechunks! iter used in our earlier example
yields references to these distributed chunks; this isn’t very efficient and the other methods do
it. The example includes two of the many methods that are needed to duplicate the VEC int
Both first require that the two vectors be aligned, i.e., have the same number and size of chun
predicate for testing this is also part of the public interface. Theplus routine first creates a new
DVEC, which itself is distributed over all the clusters. Then theparloop forks off threads to compute
the separate chunks of the result on separate clusters. The code for the dot product is simila
the answer is the sum of the dot products of the chunks, some coordiantion is needed. He

class DVEC is
   private attr dir:ARRAY{VEC};-- directory is array of chunks
   private attr num_chunks:INT;
   private attr ch_size:INT;

   create(num,csize:INT):SAME is
      res::=new;
      res.num_chunks:=num;
      res.ch_size:=csize;
      res.dir:=#ARRAY{VEC}(num);
      loop j::=0.upto!(num-1); res.dir[j]:=#VEC(csize)@j  end;
      return res
   end;

   chunks!:VEC is-- Iterate over chunks
      loop j::=0.upto!(num_chunks-1); yield (dir[j]) end
   end;

   plus(v1:SAME):SAME is
      assert(aligned(v1));
      res::=#DVEC(num_chunks,ch_size);
      parloop j::=0.upto!(num_chunks-1) do@j

 res.dir[j]:= dir[j].plus(v1.dir[j])
      end;
      return res
   end; -- plus

   dot(v1:SAME):FLT is
      assert(aligned(v1));
      res:ARRAY{FLT}:=#(num_chunks);
      parloop j::=0.upto!(num_chunks-1) do@j

 res[j]:= dir[j].dot(v1.dir[j])
      end;
      r::=0.0;
      loop j::=0.upto!(num_chunks); r:=r+res[j] end;
      return r;
   end;

   aligned(v1:SAME):BOOL is
      if (num_chunks=v1.num_chunks and ch_size=v1.ch_size)
      then return true else return false end
   end;  --aligned
end; -- class DVEC



212 Performance and The Distributed Extension : 19.2 Placement and the @ operator.

r
ition so
plexity
 more

non-
an be

nts out,
lel ma-
in an
thread stores its local dot product in an entry of the shared array,res, and the total is computed afte
all subcomputations complete. Of course not all operations on distributed data structures part
nicely, but it seems to be possible to provide functional interfaces to the user and bury the com
in the library methods. It was this insight that led us to believe that OO methods will be even
impostant for parallel computing than they are for serial tasks.

19.2.1   Tuple Spaces, Round Three

In Section 1.4.1 we saw a fairly complex class TSPACE {TT <$TUP} that implmented the full 
blocking version of the tuple space example from Foster <op. cit.>. Here we show how this c
extended to the distributed case with no changes at all in the class TSPACE. As Foster poi
the key to a tuple ( an STR) provides a natural way to distribute the tuple space over paral
chines. If we simply hash on the key then with high probability the tuple space will be spilt 



Performance and The Distributed Extension : 19.2 Placement and the @ operator.

 does

e

 the re-
rch, we
at kind
nction
efficient way. The following block contains the complete code for the class DSPACE, which
this. The interface is identical to that of the underlying uni-processor class TSPACE.

Everything is very simple, almost mechanical. A DSPACE has a private attr,tspace, which is an
array of TSPACE, here 4 of them. The privatehash function tells which of the tuple spaces to us
and the various methods just call their uni-cluster counterparts. Thedone method must notify all the
clusters when it is time to stop. Much of the Sather and pSather design has been driven by
quirement that extensions to functionality be as simple as this. In our current and future resea
plan to provide interfaces, like the tuple space one here, that shelter the user from knowing wh
of implementation is being emplyed and libraries that adaptively change representation as a fu
of load.

class DSPACE{ TT < $TUP } is
   private attr tspace: ARRAY{TSPACE{ TT}};
   const n:INT:=4;-- number of subtables

   create:SAME  is
      res::=new;
      res.tspace:=#(n);
      return(res.init);
   end;
   init:SAME is
      loop i::=0.upto!(n-1); tspace[i]:=#TSPACE{ TT}@i  end;
      return self
   end;

   private hash(s:STR):INT is
      return s.hash.mod(n);-- number of subspaces
   end; -- hash

   insert(tup:TT) is k::=hash(tup.t1);
      tspace[k].insert(tup)@k
   end;

   rdp(s:STR):TT is k::=hash(s);
      return tspace[k].rdp(s)@k
   end;

   rd(s:STR):TT is k::=hash(s);
      return tspace[k].rd(s)@k
   end;

   inp(s:STR):TT is k::=hash(s);
      return tspace[k].inp(s)@k
   end;

   in(s:STR):TT is k::=hash(s);
      return tspace[k].in(s)@k
   end;

   done is
      loop k::=0.upto!(n-1); tspace[k].done@k end;
   end;
end; -- class DSPACE{TT<$TUP}



214 Performance and The Distributed Extension : 19.3 Addresses and the with ... near construct

e large
 number
quires

 little
 know if
 extra
cts can
piler

the ex-
e ha-

e com-
n. The

At
lause is
rammer
ghout
 of us-
 are set,
hematic
19.3  Addresses and the with ... near
construct

We have come this far without saying anything about how pSather produces the illusion of on
shared address space on a platform, such as a network of workstations, where the reality is a
of distinct address spaces. There is still no need for implementation detail, but the fact this re
some kind of address translation must be taken into account for peak performance. Thenear andfar
predicates allow a programmer to test locality at execution time and act accordingly. But a
thought makes it clear that there must be some penalty paid because the compiler does not
a reference type variable will refer to an object that is near or far. This could obviously involve
storage, additional tests, etc. Moreover, the uncertainty about the locality of referenced obje
interfere with in-lining and other code optimizations. In short, it can be very useful for the com
to know at compile time that certain variables hold object that will be on the same cluster as 
ecuting thread. It is possible that flow analysis could determine enough of this to suffice, but w
ven’t convinced ourselves that this is the case.

What we have done is include into pSather a construct that allows the programmer to tell th
piler that the objects in certain reference variables will be near for a given block of computatio
syntax of this follows a common Sather pattern:

with <id list> near

        <statement list>

else <statement list>

end;

 The id list is a list of identifiers, and possiblyself, that are guaranteed to be near for the block.
the start of the block, all of these are tested and, if any are not either near or void, the else c
executed if present. It is a fatal error if the else clause is needed and is not present. The prog
has also promised the compiler that the contents of all these identifiers will remain near throu
the block. Obviously enough, checking this could be costly enough to wipe out the advantage
ing the construct. This is handled in the standard Sather fashion, when the appropriate flags
the nearness of named identifiers is checked. As a simple first example, we can expand the sc
code of the previous section.

     local_v:T:=v;

      if far(v) then local_v := v.copy end;

      with local_v  near  res:=local_v.ops end;



Performance and The Distributed Extension : 19.3 Addresses and the with ... near con-

plys a
e filter.

ould be
piler
For a real example, consider the following code from a picture processing program. that ap
supplied filter to each pixel. The procedue apply is started on each cluster and gets a copy of th
It then makes a local copy of the filter and uses with near to inform the compiler about it.

 We don’t have enough context to understand all the details, but the structure of the code sh
clear. Obviously the inner loop will run often and it is worth the set up costs to help the com
generate the best possible code.

class PHOTO is
   -- include S_PHOTO{SPREAD_AREF2{FLT}};
   -- include S_PHOTO{SPREAD_PEANO2{FLT}};
   -- include S_PHOTO{SPREAD_CHUNKS2{INT}};
   include S_PHOTO{BIN_CHUNKS2{INT}};

   apply(aa:FILTER) is
      t::=t1;
      t1:=t2;
      t2:=t;
      tmp::=t1;
      parloop
      do@clusters!;
         parloop p::=cl_size.times!;
         do
            i:INT;
            a:FILTER;
            if far(aa) then
               a:=aa.copy;
            else
               a:=aa;
            end;
            with a near
              loop
              x::=(t.ll2+(t.local.cs2*p/cl_size)).upto!(t.ll2+t.loc)
                  loop y::=t.ll1.upto!(t.ll1+t.local.cs1-1);
                     [x,y]:=pixel_for(t2,x,y,a);
                  end;
               end;
            end;
         end;
      end;
   end;
end;



216 Performance and The Distributed Extension : 19.3 Addresses and the with ... near construct



Advanced Topics : 20.1 Exceptions in pSather 217

 basic
Section
 settled
ode for
ex-
eption

ipline is

samong
this has
 con-
 is a co-
Advanced Topics

20.1  Exceptions in pSather

 Exception handling is complex under any conditions and parallelism only makes it worse. The
design decision for serial Sather was to have simple terminating exceptions as described in 
32.1.4 of the manual. For pSather, we considered a number of complex possibilities and then
on the simplest possible solution. Exception handling only works on a per-thread basis. The c
a thread can include standard Satherprotect statements. To the extent that these deal with any 
ceptions that are raised in that thread, computation can continue. It is a fatal error for an exc
to be raised in a thread and not handled by that thread. Even so it turns out that a stack disc
not enough to handle some of the cases that are discussed below.

20.1.1   Yielding inside locks

 The pSather primitives are powerful and as a consequence, there can be subtle interactiion
them. We have tried to preserve orthogonality and have as few restrictions as possible and 
worked out fairly well. One of the more complex issues involved yield statements within lock
structs and this was prohibited in earlier releases. Recall that a yield statement in Sather iter
routine and retains context for the return of control.

 Exception stacks become trees - Fleiner thesis.



218 Advanced Topics : 20.1 Exceptions in pSather



Advanced Topics : 20.2 User defined $LOCK classes 219

as
re-
e at-
E{T}

page 80
is is not
Sather

e from
 two
ple-
 in the
ifica-

 below
 may be
20.1.2   Implementation Considerations

20.1.3   Thread-safe libraries

20.2   User defined $LOCK classes

 As we have discussed, the various forms of the lock statement work for any subtype of $LOCK. In
Section 1.3 we discussedMUTEX and the various kinds of reader-writer locks. Section 1.4 w
largely about theGATE andGATE{ T} classes. As we mentioned briefly, there are two other p
built classes that are restrictions of the full GATE functionality. The ATTACH class supports th
tachment of multiple threads( cf. Section 1.4.2) but does not have return values. The FUTUR
classes do support return values, but only allow a single thread to be attached. The table on 
of the language description describes exactly which methods are available in each class. Th
an advanced topic, but is only the proverbial tip of the iceberg. It turns out that the current p
provides mechanism for a user to define his/her own $LOCK classes.

We now describe the interface that synchronization objects have to provide in order to subtyp
the type$LOCK and be usable in lock statements. At the end of this description we will provide
examples, namely the MUTEX implementation and the skeleton of the READER/WRITER im
mentation. Other examples and descriptions of synchronization objects are available online
pSather library code. This section is taken from Claudio Fleiner’s disseration, with minor mod
tions.

A synchronization object has an internal state that defines which threads may acquire1 this object.
The internal state may only change when the lock manager calls some of the functions defined
after a thread has acquired this object and before it is released again. Such a state change
visible to other threads only after the object has been unlocked.

1. We use the term acquiring a synchronization object as a synonym to locking an object to avoid confusion, as
locking an object has already a predefined meaning, which does not apply to all the synchronization objects de-
fined in the pSather library, like RENDEZVOUS and BARRIER locks.



220 Advanced Topics : 20.2 User defined $LOCK classes

ction
ne

rface
nnot be
 to sort

arantee
e id or

et an id
 ask for

ion ob-
ire this
The class$LOCK is the superclass for all synchronization objects.

Those functions must respect some special properties:

• None of those functions may block, use thelock statement or raise an exception.

• the functions must be ‘class thread safe’, but not ‘object thread safe’, that is, the same fun
may be called in different objects at the same time, but the system guarantees that only o
function is called per object at any time.

• The state of a synchronization object may only be changed within alock ... end block or with-
in one of the functions defined in the $LOCK interface.

• The functions should not have side effects outside their lock objects.

The THREAD_ID class used in this example is a standard pSather class with the lock inte
shown. A thread-id is, as far as the programmer is concerned, just an opaque value that ca
used for anything else. The interface provided allows one to use thread-id’s in hash tables and
them, and, for debugging purposes, it is also possible to print an id. However, there is no gu
about any special format of it, and the user should not depend on either the current size of th
a particular format or order. It does not , for example, guarantee that threads created later g
that is larger than threads created earlier. The only way for a thread  to create thread-id’s is to
its own id, or the get a nil id which is guaranteed to be different from all other id’s.

20.2.1   Reservable, Reserve and Free

These three functions are the most important ones and must be defined by all synchronizat
jects. All three functions have one parameter, namely the ID of the thread that tries to acqu

abstract class $LOCK is
primary:$LOCK;
reservable(tid:THREAD_ID):BOOL;
reserve(tid:THREAD_ID);
free(tid:THREAD_ID);
request_reservation(tid:THREAD_ID);
cancel_reservation(tid:THREAD_ID);
combinations:ARRAY{ARRAY{$LOCK}};
wait_for(tid:THREAD_ID):ARRAY{THREAD_ID};

end;

immutable class THREAD_ID < $IS_LT{THREAD_ID}, $HASH, $NIL, $STR is
nil:SAME;-- returns the nil id, which is different from all other thread id’s.
me:SAME;-- returns the id of the calling thread.
is_nil:BOOL;--returns true if self is the nil id.
is_eq(e:THREAD_ID):BOOL;-- true if e and self are the same id.
is_lt(e:THREAD_ID):BOOL;-- true if self is smaller than e.
hash:INT; -- returns a hash value useful for hash tables
str:STR;-- returns a string, useful for debugging

end;



Advanced Topics : 20.2 User defined $LOCK classes 221

 while

-

s the
lock. THREAD_ID's can be compared, the class also defines a hash value and astr:STR function
useful for debugging. See [http:...] for a more detailed description of this class.

Reservable returns true if the object can be acquired or locked by the thread passed as ID,
reserve actually acquires the object.free will release the lock again.

Those three functions are already enough to define the MUTEX class as shown below

20.2.2   Primary

With the exception of the simple locks likeMUTEX it is often necessary to have different lock ob
jects that work on the same lock, like thereader and thewriter of a reader/writer lock which form
a lock family. The system has to know which lock objects work together in this way.primary is used
by the system to get the "main" lock object of a family of lock objects. For all family member

class  MUTEX < $LOCK is

       attr  locked_by:THREAD_ID;-- ID of the thread that currently locks this MUTEX

attr  locked:INT;
-- number of times that the thread stored in locked_by has locked this MUTEX

        reservable(tid:THREAD_ID):BOOL is
-- returns true if either this MUTEX is not locked yet or already locked by the

   -- same thread that tries to lock it again
return  locked=0 or  locked_by=tid;

end ;

       reserve(tid:THREAD_ID)
-- locks this MUTEX for the threadtid

          pre  locked=0 or  locked_by=tid
is

locked:=locked+1;
locked_by:=tid;

end ;

free(tid:THREAD_ID)
-- frees the lock, but only the thread that locked it can unlock it again.

          pre  locked>0 and  locked_by=tid
is

  locked:=locked-1;
-- not really necessary, but makes the code cleaner
if  locked=0 then

locked_by:=THREAD_ID::nil;
end ;

end ;
end ;



222 Advanced Topics : 20.2 User defined $LOCK classes

ader/

e is in
methodprimary  has to return the same object. Below we show the implementation of the re
writer lock.

The fair reader lock delegates its functionality to the writer for convenience, so that all the cod
one location.

-- The fair reader/writer lock. The two attributes are just used to store the
-- reader and the writer part respectively.
class  FRW_LOCK < $RW_LOCK is

readonly attr  reader:$READER_LOCK;
readonly attr  writer:$WRITER_LOCK;
create: SAME is

r::= new;
r.writer:=#FRW_WRITER;
r.reader:=#FRW_READER(r.writer);
return  r;

end ;
end ;

class  FRW_READER < $READER_LOCKis
-- the reader delegates all calls to the writer. This way the code is concentrated
-- in one class to make maintenance easier.
private attr  w:$RW_WRITER;
primary:$RW_WRITER is return  w; end ;
create(wr:$RW_WRITER):SAME is

r::= new;
r.w:=wr;
return  r;

end ;
reservable(tid:THREAD_ID):BOOL is

return  w.r_reservable(tid); end ;
reserve(tid:THREAD_ID) is w.r_reserve(tid); end ;
free(tid:THREAD_ID) is w.r_free(tid); end ;

end ;



Advanced Topics : 20.2 User defined $LOCK classes 223

e
 imple-
The meat of the lock definition is in the writer

20.2.3   Request_reservation, Cancel_reservation

Each time a thread waits for a lock, the system calls the functionrequest_reservation, and, as soon
as the thread continues, it will callcancel_reservation for all locks, regardless of whether th
thread acquired some, all or none of the locks. Those functions are used as shown below to

class  FRW_WRITER < $RW_WRITER is
private attr  writer_id:THREAD_ID;
private attr  write_locks,read_locks:INT;
create: SAME is return new; end;
primary:$LOCK is return self ; end ;

-- the next three functions are used when working on the writer
-- They work exactly the same way as in the MUTEX class except that reservable has to
-- make the additional check that there is no reader that has acquired this lock
reservable(tid:THREAD_ID):BOOL is

return  (read_locks=0 and write_locks=0)
       or writer_id=tid;

end ;
reserve(tid:THREAD_ID) is

write_locks:=write_locks+1;
writer_id:=tid;

end ;
free(tid:THREAD_ID) is

write_locks:=write_locks-1;
if  write_locks=0 then

writer_id:=THREAD_ID::nil;
end ;

end ;

-- the next three functions do the work of the reader
-- A reader cannot acquire the lock unless there is a writer
-- (note that the same thread can acquire first the writer
-- and then the reader, but not the other way around).
r_reservable(tid:THREAD_ID):BOOL is

return  write_locks=0 or writer_id=tid;
end ;
r_reserve(tid:THREAD_ID) is

read_locks:=read_locks+1;
end ;
r_free(tid:THREAD_ID) is

read_locks:=read_locks-1;
end ;



224 Advanced Topics : 20.2 User defined $LOCK classes

its for

r ren-
es this
ment reader/writer locks with a priority for readers or writers, that is, as soon as a thread wa
the reader lock, no thread will be able to get the writer lock.

20.2.4   Combinations

This function defines which locks of a lock family have to be locked together, a feature used fo
dezvous locks. Below, we show how the rendezvous class defined in the pSather library us
function to define that the rendezvous main lockself  can either be locked by itself, or the locksr1
andr2  have to be locked simultaneously by one or two threads.

class  WR_WRITER < $RW_WRITER is
include  FRW_WRITER r_reservable->,
                   request_reservation->;
private attr  writers_waiting:FSET{THREAD_ID};
request_reservation(tid:THREAD_ID) is

writers_waiting:=writers_waiting.insert(tid);
end ;
cancel_reservation(tid:THREAD_ID) is

writers_waiting:=writers_waiting.delete(tid);
end ;
-- the reservable function does not change for writers, but readers can now only
-- reserve the lock if no writer is waiting. There is also the special case where the
-- same thread waits for a reader and a writer lock: in this case the reader
-- can actually reserve the lock. This happens for code like
-- lock  rw.reader,rw.writer then ...  end ;
-- and
-- lock when  rw.reader then  ...
-- when rw.writer then  ...
-- end ;
r_reservable(tid:THREAD_ID):BOOL is

return
(write_locks=0

and  (writers_waiting.size=0
or  (writers_waiting.size=1

and  writers_waiting.first_elt=tid)))
or  writer_id=tid;

end ;
end ;

combinations:ARRAY{ARRAY{$LOCK}} is
return  ||self|,|r1,r2||;

end ;



Advanced Topics : 20.2 User defined $LOCK classes 225

release
s is re-

hether
20.2.5   Wait_for

This function is used for deadlock detection and should return the list of threads that have to 
this lock before the thread passed as argument can eventually acquire it. The list of thread
turned as an array ofTHREAD_ID’s. 9  This functions the way could be used in theMUTEX class.

20.2.6   Summary

This table lists all functions and shows how often they are called by the lock manager and w
they may change the state of the lock object or not.

a.All functions, with the exception of primary  have a thread id as argument. This is the thread mentioned
in the column “description”, which is not necessarly the same as the thread that calls those functions.
b.The internal state of a lock object may also be changed by other functions, as long as this happens only
inside a lock ... end  block where this lock object has been locked.

wait_for(tid:THREAD_ID):ARRAY{THREAD_ID} is
if  locked>0 and tid/=locked_by then

return  |locked_by|;
end ;
return void ;

end ;

Function Descriptiona May
change
internal
stateb

Call pattern

reservable returns true if the thread may ac-
quire this lock

called whenever the object
may have changed its state

reserve acquires this lock for the given
thread

once to acquire a lock

free releases a lock yes once to release a lock

request_reservation used to prioritize certain locks in-
side a lock family

yes once for each lock object
when a thread enters a lock
statement

cancel_reservation used together with
request_reservation

yes once for each lock object
when a thread got the locks
or executes the else part.

combinations returns which locks of the lock
family have to be locked together

once

wait_for returns an array of threads that
have to release the lock before the
thread can get it

occasionally, but only if
deadlock detection is en-
abled



226 Advanced Topics : 20.2 User defined $LOCK classes



Appendix: Terminology : 21.1 Sather Terminology 227

t ori-
om the
-point
 to trans-

 and the
 formal
ection
.  The

r rea-

It is

{T}
m-

 re-
s a
-

tures
-

des)
one
Appendix: Terminology

This appendix provides a translation of some common terminology from other popular objec
ented language.   The terminology used in the Sather community has been derived mainly fr
languages that influenced the design, particularly Eiffel. This is not meant to be a point-by
comparison of the languages, or a showcase for Sather.  Rather, it is intended to help readers
late the terms they are used to into Sather lingo.

21.1  Sather Terminology

Some confusion may arise between the terminology used to describe parameterized classes
terminology used to describe methods.  Both functions and parameterized classes have
"placeholders" which are later instantiated.  We use the term "argument" exclusively in conn
with methods and the word "parameter" exclusively in connection with parametrized classes
adjectives "formal" and "actual" may be applied to either methods or arguments.

argument The operands of a method.
attr Keyword used to define an attribute of an object. Can be prefixed by private o

donly to determine its visibility.
attribute  An attribute of an object is part of the (potentially hidden) state of the object. 

defined by an attr feature.
actual argument The value of an argument when a method is actually invoked.
actual parameter Type that is plugged into a parameterized class. For example, when ARRAY

is used as an ARRAY{INT}, the actual parameter is INT, while the formal para
eter is T.

closure Also known as a method closure or a routine or iterator closure. Sometimes
ferred to by their old names of "bound routine" and "bound iterator".  Specifie
method call possibly with some arguments. Similar to function pointers or clo
sures in other languages.

conflict If two signatures conflict, they can’t be used together in the same class.  Signa
conflict if they would make the choice of which method was intended to be in
voked somehow unclear.  A formal definition is given on page...

conformance A signature conforms to another if all the argument and return types (and mo
would allow it to be substituted without causing type errors.  For example, for 



228 Appendix: Terminology : 21.2 Sather 1.0 to Sather 1.1

 mo-

nces
.
ype
’ to

oo(a:

n AR-

name.
t com-

for a
lass.

tances
r ex-
type to be a subtype of another it must provide conforming signatures for all
ethods.  A formal definition of signature conformance is on page...

const A feature prefix used to indicate an element of state shared between all insta
of a class that is assigned at the point of declaration and cannot be modified

dispatching When the compile-time type of ‘self’ is abstract in a method call, the runtime t
is used to select the class and method to call.  Also called ‘dynamic dispatch
emphasize that it occurs at runtime.  Compare ‘overloading’.

feature Any textual item in a class interface, including routines, attribute, iterators,
shareds, constants and include clauses

formal argument The textual name of the argument to a method. For instance, in the method f
INT), the formal name of the argument is "a".

formal parameter The textual name of the parameter in a parametrized class. For  instance, i
RAY{T}, the formal parameter of ARRAY is T.

method A routine or an iterator.
overloading Two methods are overloaded if they are in the same class and have the same 

Which method to call is resolved based on the argument types and number a
pile time.

parameter The type argument of a parametrized type. For instance, in the class AR-
RAY{INT}, INT is a parameter.  See also "actual parameter".

parameter type bound A restriction imposed on the actual parameter that may be substituted 
particular formal parameter.  A parameter type bound must be an abstract c
For example COLLECTION{T<$STR} imposes the restriction that any class
used to instantiate the formal parameter T must be a subtype of $STR.

shared Prefix of a feature that indicates a state element that is shared between all ins
of the class.  Can be annotated as private or readonly, to control visibility. Fo
ample: "private shared a:INT"

21.2  Sather 1.0 to Sather 1.1

There have been some recent changes in terminology that might result in some misused
terminology in this and in other documents.  Immutable classes were called value class-
es, routine closures were called bound routines, iterator closures were called bound itera-
tors and abstract classes were called types.



Appendix: Terminology : 21.3 C++ to Sather 229

ent

les
he

 it
ors

.

ust
ng
21.3  C++ to Sather

Sather provides a separation of subtyping and code inclusion, which means that many
single C++ concepts correspond to two distinct concepts in Sather.  Since Sather is gar-
bage collected, much of the related terminology also does not translate.

Base Class, Derived Class Not special terms in Sather - for code inclusion, we refer to the par
and child class.  For subtyping we refer to the supertype and the
subtype

Virtual Function Dispatching is not marked on a per-function basis.  Rather, variab
of abstract types are dispatched (for all their functions).  This is t
more traditional notion of object dispatching.

Abstract Base Class Abstract class

Constructor Create routine - however, a create routine is only special because
enjoys the special syntactic sugar of #.  There are no implicit creat

Destructor Sather is garbage collected, but there is provision for a ’finalize’
routine

Casting The typecase statement provides the equivalent of casting.  The
compiler provides run-time checks for casts that are not type-safe

Operator overloading Synactic sugar for operators

conversions, type promotion No implicit conversion routines are invoked.  All conversions  m
be performed explicitly including between different kinds of floati
point values

private No equivalent in Sather

protected private

friend No equivalent in Sather

static member shared

inline functions Cannot be stated explicitly. Routine and iterator inlining is
performed by the ICSI Sather compiler; some parameters may be
adjusted.

this self

enum Integer constants

union No equivalent in Sather

catch protect

switch case a  when 3 then ... etc.



230 Appendix: Terminology : 21.4 Java to Sather

n

21.4  Java to Sather

Java and Sather are probably more closely related than Java and C++.  Syntactic differenc-
es conceal this underlying similarity.  They are both strongly typed, garbage collected
and separate subtyping from code inclusion. However, Sather is geared at high perfor-
mance  and is a considerably richer language.

21.5  Modula-3 to Sather

The following is an attempt to convert some of the standard Modula-3 terms. But be-
ware, I’m not very familiar with Modula-3, so the table could well have serious  errors !

while, until, break, do, for while!, until!, break! . Much richer, programmer defined iteratio
mechanism. No equivalent of ’for’ or ’i++’

 goto No equivalent

function pointers Routine closures (aka bound routines)

Plain structs Immutable classes are similar, but are proper classes.

Interface classes Abstract classes

final No Sather equivalent

feature renaming Supported, but works quite differently in Sather

Enumeration
types

Same effect by using uninitialized integer constants (const a,b,c;)

Subrange types No built-in equivalent, could construct  immutable classes with
similar behavior

Ordinal types INTEGER, BOOLEAN and CHAR  are  INT, BOOL, CHAR

Arrays Any object can have an array portion.  Array access syntax [ ] is
syntactic sugar for aget and aset routines in a class.  Dimensionality
is determined by the aget and aset element access functions.  1D and
2D arrays in library as ARRAY{T} and ARRAY2{T}.   Higher
dimensions can be trivially constructed.



Appendix: Terminology : 21.6 Smalltalk to Sather 231
21.6  Smalltalk to Sather

Sather is a ’pure’ object oriented language like Smalltalk (all entities are objects). Howev-
er, Sather is at the other end of the type safety spectrum from langues such as Smalltalk
and Self.

Record Somewhat like  immutable classes without  only public attributes and
no other methods.  Sather is more  similar to Smalltalk - everything
is a pointer, and references are implicit, except for immutable clases

Sets SET{T} is a library class. Not built-in.

References All non-void variables indicate references, unless they are of an
immutable class.  All references are "traced"   See the note for
"Record"

Procedure Function.  Exceptions are not mentioned in the signature

Argument
Modes

VAR  is the same as inout, and VALUE  is similar to  the default ’in’
mode.  No equivalent of READONLY

Objects Similar to standard Sather classes.
 class POINT is  x,y: INT;  is_origin: BOOL end;

REFANY $OB. No equivalent for NULL

Generic Parametrized class.

Interface Abstract class.

Procedure Type Routine closure type. ROUT{FOO1,FOO2}: INT

Opaque Types No direct equivalent  Essentially abstract types

concrete type concrete type

typecase typecase, but with a slightly different syntax

try .. except protect ... when

try ... finally no equivalent

methods features

sending a method calling a function or iterator



232 Appendix: Terminology : 21.6 Smalltalk to Sather
code block A routine closure may provide an approximation, but routine
closures are more similar to function pointers with some packaged
argument. Locals are not packaged. Note that the most common use
of code blocks (for iteration constructs) is subsumed in Sather by
iters.

inheritance Code inclusion and subtyping

threads Sather does not support threads, but its elder sibling, pSather,
provides an extremely rich set of thread and synchronization
constructs for high performance parallel and distributed
programming.



Index
- (sugar for minus) 96
- (sugar for negate) 96
#ROUT See bound routines
$ in abstract class names 59
$COPY 128
$EMPLOYEE 63
$HASH 127, 128
$IS_EQ 127
$NIL 128
$OB 121

as default type bound 88
$SHIPPING_CRATE 62
% (sugar for mod) 96
* (sugar for times) 96
+ (sugar for plus)

See plus 96
/ (sugar for divide) 96
/= (not equal) 96
:: See double colon calls
::=

as declarative asignment 165
<

subytping> 66
< (sugar for is_lt) 96
<= (less than or equal) 96
= (sugar for is_eq) 127
= sugar for is_eq 96
-> (feature renaming) 53
> (greater than) 96
>= (greater or equal) 96
^ (sugar for pow) 96
~ (sugar for not) 96
‘e’ (floating point exponent) 126
‘is_’ routines 127
0b integer binary prefix 125
0o integer literal prefix 125
0x integer literal prefix 125

A

abstract class
definition 62

abstract classes 3
creation 62
example 59
separate subtyping 5
syntax and definition 59
See also subtyping, conformance 59

abstract methods 5
abstract types 3

See also conformance
accessing beyond array bounds 4
aclear 121
actors 7
aelt! 121
aget 4, 121

renaming example 87
aind! 121
alert character 124
aliased objects 6
and 19
applicative programming

using bound routines 106
AREF 121

access from C 158
example inclusion in ARRAY 87
include path for array portion 52
specifying array portion 87

argument evaluation
bound routines 104
in iterator calls 39, 168

argv, argc 36
ARRAY

creation from literal 87
example definition 87
inclusion from AREF 121

array
aelts!,aset!,ainds! 121
asize,aget,aset,aclear,acopy 121
definitions of AREF and AVAL 121
element assignment 85
in value class 87
objects with array portion 87
out of bounds errors 4
use in constants 19
use of iterators 48
See also aset, aget 121

array_ptr 158
aset 4, 85, 121

renaming example 87
aset! 121
asize 121

in array example 87
assert statements 118
assertions 118
assignment

array elements 85
233



234 Index
illegal in typecase 70, 169
assignments

and declarations 33
attributes 3

cycles of value types 101
AVAL 52, 87

See also array 87

B

backslash 124
use in string literal escape 125

backslash literal 124
backspace literal 124
bases for integer literals 125
Berkeley, University of California at 9
binary literals 125
BOOL 63, 123

literals 124
boolean literals 124
booleans

void value 171
bound routines 6

call 104
creation 103
example of apply 106
inout arguments 105
leaving self unbound 106
supplying unbound arguments 104
syntax and description 103
unbound arguments 103
use in call-backs 6

break! 40
browser

example of usage 38
bugs

accessing beyond array bounds 4
crashing 4
dangling references 4
deadlock 8
fencepost errors 5
heisenbugs 8
incorrect synchronization 8
race conditions 8

C

C 1, 2, 6, 9, 10
accessing Sather arrays 158
and garbage collection 158
interface to headers 159
interface to structs 159

interfacing to possible macros 163
C types

Sather equivalents 158
C++ 1, 2, 4, 5, 9
C_header 159
C_name 159
CALCULATOR

textual interface 109
call

matching signatures 75
call See bound routines
call by value See in mode 24
call-backs using bound routines 6
carriage return literal 124
case

example 28, 166
statement syntax 28, 166
when clauses 28, 166

Cecil 9
CHAR 123
char

Sather equivalent of C type 158
character literals 124

specifying special characters 124
Class calls See double colon calls 26
 class constants

See constants
class elements 15
class invariants See invariant
class variables See shareds 19
classes

See abstract, reference, value, partial 3
CLOS 9
closure 103
closures

relation to bound routines 6
See also bound routines

CLU 1, 9
Code inclusion 83
code inclusion

separation from subtyping 5
command line arguments 36
Common Lisp 1, 9
compiler

early versions 8
obtaining 2
pSather 8

complex numbers 6
concrete types 3
constants 3

arrays 19
examples 19
syntax and description 19

constructors. See also create 4
containers 48



Index 235
use of iters 5
contains

in array example 87
conventions, naming 126
conversions 127
$COPY 128
copy 128
Covariance

remedies 80
CPX 63

why a value type 6
See also complex numbers 63

crashing 4
create

use with C structs 163
creation

abstract classes 62
creation expressions

type inference 33
cursor objects 5
cycle

among constant initializers 20
of abstract types 64, 66
of value type attributes 101

D

‘d’ suffix. See floating point
dangling references 4
deadlock 8
declaration

type inference 33
declared type 3
destructors. See also allocation 4
disabling checking 4
div 96
dollar sign ‘$’ 59
dot product 48
double C type, Sather equivalent 158
double colon

calls 26
syntax and description
use in constants

double colon notation
class access 21

double precision
See also floating point 126

double quote literal 124
Dylan 9
dynamic dispatch 59, 65

E

efficiency of value class 6
Eiffel 1, 9
elements 15
else 167

in case statements 28, 166
in exceptions 167

elsif 167
elt! 127
EMPLOYEE definition 37
encapsulation 128
enumeration types 20
errors

See fatal errors
evaluation order

See also argument evaluation 104
exception object 167
exceptions

choice of handler 167
exception object 167, 172
performance 112
protect statements 167
raising an exception 111
syntax, description, examples 111

explicit placement 1, 8
exponent. See also floating point 126
expressions 4

exception 167
void tests 168, 172

external C types 157
C_name, C_header 159

F

false 124
fatal errors 4

assertion returns false 118
avoiding void accesses 168, 172
disabling checking 4
failed invariant 118
missing else in typecase 30, 166
typecase with no else 70, 169
uncaught exceptions 167

features 3
fencepost errors 5
finalization 4
finalize 123
float C type, Sather equivalent 158
floating point

‘d’ suffix and example 126
‘e’ exponent 126
FLT, FLTD, FLTI 126



236 Index
literal syntax and description 126
literals example 126
void value 171

FLT, FLTD, FLTI 63, 123
conversion to INT 126
See also floating point 126

form feed character literal 124
Fortran 1
function pointer

Sather equivalent 103
See also bound routine

G

garbage collection 4
and C routines 158
See also allocation 4

gcc 6
global variables 19

See also double colon calls
graph classes 6

H

$HASH 127, 128
hash 122, 128
hash tables 128
hashing 127
heisenbugs 8
hexadecimal literals 125
higher-order function 1

I

ICSI (International Computer Science Institute)
7, 9

ID 127
IEEE 754-1985 7

exception flags 7
Sather conformance 126

if statement 27, 167
Immutable 99
implementation inheritance. See include clauses

51
implicit calls 4

reader for shareds 31
reader routine 31, 79
writer routine 31, 79

implicit reader. See implicit calls
implicit type coercion 4
in

in iterator calls 45, 168
include clauses

multiple includes 51
separation from subtyping 5
syntax,example,definition 51

infinite precision integers See INTI
infix operators 4

See also operators
inheritance

separate subtyping and inclusion 5
See subtyping, include clauses

initial expressions 117
initialization

defaults for constants 20
dependancies among constants 20
errors in loops 5

inlined_C
dealing with possible macros 163

inout 170
assignment after quit 42, 170
assignment after yield 170
in bound routines 105
in iterator calls 45, 168
specification in bound type 103

INT 20, 63, 123
example iterators 48
from STR 57
iterators 48
literal instantiation 125

integer
different bases 125
infinite precision literals 125
literals 125
range 125
void value 171
See also INT and INTI

interface 3, 5, 22
International Computer Science Institute 9
International Computer Science Institute, See

ICSI 7
INTI 7, 123

literal instantiation 125
intialization

enumeration types 20
invariant 115

definition 118
invariants 118
$IS_EQ 127
is_eq 96, 122, 127

use by case statement 29, 166
is_geq 96
is_gt 96
is_leq 96
is_lt 96, 122
is_neq 96, 127



Index 237
is_nil 128
is_prime 127
ISO-Latin-1 124
iteration. See iterators 5
iterators 3, 5, 127

example definition 47, 48
in typecases 70, 169
pre conditions 117
quitting 42
rationale and history 5
termination by quit 42, 170
upto! 48
use with containers 48
yield statements 170
yield within protect 47, 170

iterators, naming 127

K

Karla 9
Karlsruhe 9

L

lingua-franca, iterators as 6
Lisp 1, 4, 9
lists, use of iterators 48
literal expressions 4
literals

arbitrary character 124
boolean 124
character 124
declared type 123
floating point 126
integers 125

binary 125

hex 125

octal 125
strings 125

octal characters 125
local variables

declaration 25
declaration and assignment 165
initialization 25
passing to C macro 163
scope 25
shadowing 25

locking
concept 8

long C types, Sather equivalent 158
loop

termination 5
termination by quit 42, 170

loop statements
defined 39

looping 5

M

mailing list 3
MAIN 14
main 14
MANAGER class definition 52
manual deallocation (See also allocation) 4
matrices 6, 8
MENU

closure example 108
methods

See also routines, iterators 3
minus 96
Mixin 56
ML 9
mod 96
mode

table of modes 24
Modula-3 9
multiple classes

per source file 14
 multiple inheritance

See include clauses, subtyping
multiple return values

See TUP

N

NaN 128
negate 96
newline character literal 124
newsgroup 3
$NIL 128
nil 128
not 96
Not a Number 128
numbers, void (unassigned) value 171

O

$OB 88, 121, 88
Oberon 9
object allocation

manual deallocation 4
Objective C 9



238 Index
objects 3
aliased 6
reference 6
value. See also value class 6

octal digits
in character literals 124

octal integer literals 125
once 45, 168

example usage in upto! 48
syntax, definition and example 44

once arguments
described 44

operator precedence 97
optimizations 5
or 19
out 62, 105, 170

arguments in bound routines 103
assignment after quit 42, 170
assignment after yield 45, 170
in iterator calls 45, 168

out arguments
in iterators 45

overloading 4
general rule and examples 71
matching signatures 75
rules 27

P

parallel Sather 7
parameters 91

as structured macro 83
parametrization

of abstract classes 91
type relations 91

parametrized class
example 35

partial classes 55
example of mixin 55
stubs 55

Pascal 9
placement 8
plus 4, 96
post conditions 116
postconditions

as safety feature 116
explanation of post 115
in iterators 115
initial 115
result 115

pow 4, 96
pre conditions

in iterators 117
precedence of operators 97

preconditions
checking in iterators 115
explanation of pre 115

predicates 127
private 3

and readonly 31
attributes 31
changing on include 87
example of include 87
in include syntax 51
in iter syntax 22
routines 32
use with shareds 31

protect
yield statements 47, 170

protect statements 167
pSather 1, 7
ptrdiff_t C type, Sather equivalent 158
public. See also private 3

Q

quit 39, 118, 168
example usage 47
leaving an iterator 42

quote marks in character literals 124

R

race conditions 8
raise 22

syntax definition 111
reader routine. See implicit calls 31
readonly 3

use with shareds 31
reference objects 6
renaming

example 87
reserved names

AREF 121
TUP 122

result
syntax, description, example 117

return 22
statement definition 168
syntax and description 168
type of 168
value returned 23

return value
type restrictions 170

routines 3
bound 6



Index 239
syntax,description,example 22
runtime system 4

S

safety features 115
SAIL 9
SAME 62, 64, 66, 88

in include clause 53
use in create 37

Sather tower 9
Sather-K 9
Scheme 1
School 9
scope

class names and parameters
feature names 16
local variables 25
method arguments 23

self
calls on 26
in class calls 26

Self (language) 9
$SET 126
set! 127
setjmp 7
sets 126
shadowing See scope
shared 3

reader, writer routines 31
shared attribute definition 22
shared memory 1, 8
short C type, Sather equivalent 158
signed C types

Sather equivalents 158
single precision. See floating point 126
single quote literal 124
size_t, Sather equivalent 158
Smalltalk 1, 4, 9
sort 87
source files 14
stack allocation 6
statements 3

assert 118
else 167
elsif 167
if 27, 167
lock 8
protect 167
raise 111
return 168
yield 170

static type inference 33
STR 7, 123

literal instantiation 125
to INT 57

STR_CURSOR
example 57

strings 7
literals 125
See also $STR, STR and str

C structs, interface from Sather 159
stub 55
subtype 5
subtyping

adding type-graph edges 64
conflict example 64
definition 5
description 64
See also abstract classes

subtyping clause
supertyping 66

sum! 48
summation

using an iterator 48
supertype 5
supertyping 66
supertyping clause 66
syntactic sugar 4

aget 4
aset 4
plus 4
pow 4

SYS 122
inlined_C 163

T

t1, t2 (TUP attributes) 122
tab character literal 124
templates, Sather equivalent 91
test code 126
TESTEMP definition 37
testing for void 168, 172
threads 7

and IEEE exceptions 7
times 96
tree classes 6
true 124
TUP 122

simple definition 35
type

implicit coercion 126
of literals 126
of void 171

type constraint clause
default of $OB 88
description 88



240 Index
type graph 64
bound routine edges 106
no implicit relations between parametriza-

tions 91
type inference

in # 33
static 33

type promotion 126
type specifier

bound routines 103
typecase 70, 169

with void object 70, 169

U

unary negation 96
unassigned variables 128
unbound arguments 103
underflow 7
underscores

in bound routines 103
in floating point literals 126
in integer literals 125

University of California at Berkeley 9
University of Karlsruhe 9
UNIX 2
unsigned C types, Sather equivalent of 158
until! 40
until...loop...end 5
upto! 48
user-interfaces and call-backs 6

V

value class
advantages 6
and array portion 87
attribute cycles 101
efficiency 6
nil 128
unassigned object 128

value objects. See also value class 6
value, call by. See in mode 24
variable declaration

type inference 33
variables

type of 3
type within a typecase 169

vertical tab literal 124
void 128

and nil 128
calls on, See double colon

in constant initialization 19
testing for 168, 172
type of 171
used in typecase 70, 169

void C type, Sather equivalent 158
void test expressions 168, 172

W

when
in case statements 28, 166
in exceptions 112, 167

while! 40
possible implementation 47

whitespace
between strings 125

world-wide web 2, 5, 6

X

X_WIDGET example C interface 161

Y

yield 118
example use in upto! 48
example use in while! 47
execution description 170
syntax,example,description 39, 168
within protect 47, 170

yield statements
defined 42

yielding a value 170

Z

zero 128
zero, use in constants 20


	A Language Manual For
	Sather 1.1
	And pSather 1.1
	A Language Manual For
	Sather 1.1
	Contents
	Introduction
	1.1 Acknowledgements
	1.2 How to read this Document
	1.3 Sources of Information
	1.4 Obtaining the Compiler
	1.4.1 How do I ask questions?

	1.5 Summary of Features
	1.5.1 Basic Concepts
	1.5.2 Garbage Collection and Checking
	1.5.3 No Implicit Calls
	1.5.4 Subtyping and Code Inclusion
	1.5.5 Iterators
	1.5.6 Closures
	1.5.7 Immutable and Reference Objects
	1.5.8 IEEE Floating-Point
	1.5.9 pSather
	Data placement


	1.6 History
	1.6.1 The Name
	1.6.2 Sather’s Antecedents
	1.6.3 References


	Classes and Objects
	2.1 Preliminaries
	2.1.1 Some basic classes
	2.1.2 Printing output
	2.1.3 Sather source files
	2.1.4 Hello World

	2.2 Defining Classes and Creating Objects
	2.2.1 Defining Simple Classes
	Object Creation: create and new
	Attribute access
	Points to note

	2.2.2 Checking whether an object has been created
	2.2.3 Types Introduced
	2.2.4 Hiding features: private and readonly
	Points to note


	2.3 Class Data: shared and const
	2.3.1 Shared Attributes - Restricted global variab...
	2.3.2 Class Constants
	Integer constants and Enumerated Types
	Points to note

	2.3.3 Accessing Class Data - the :: notation

	2.4 Routine definitions
	Using the return value
	2.4.1 Routine Arguments and Modes
	Multiple return values and out arguments
	inout arguments

	2.4.2 Local Variables - Scoping and Shadowing
	Points to note

	2.4.3 Routine calls
	2.4.4 Simple Overloading - Selecting a routine to ...

	2.5 Conditional Execution
	2.5.1 if statements
	2.5.2 case statements
	Points to note

	2.5.3 Short circuit boolean expressions: and and o...

	2.6 Attribute Accessor Routines
	2.6.1 Attribute assignment
	Replacing an attribute by a routine


	2.7 Static Type Inference
	2.7.1 Creation Expressions
	2.7.2 Assignments and ::=
	2.7.3 Arguments to a function call

	2.8 Class Parameters
	2.8.1 Arrays

	2.9 Command line arguments
	2.10 A Running Example: Employees
	EMPLOYEE definition
	TESTEMP definition
	Running the example

	2.11 Summary of Idioms

	Loops and Iterators
	3.1 Using iterators
	3.1.1 loop statements
	3.1.2 Built-in iterators

	3.2 Defining Iterators
	3.2.1 yield statements
	3.2.2 Explicitly leaving an iterator using quit
	3.2.3 Control flow within an iterator
	3.2.4 The once argument mode
	3.2.5 out and inout argument modes
	3.2.6 Argument evaluation in iterators
	3.2.7 Points to note
	Iterator usage
	Iterator definitions


	3.3 Iterator Examples
	Separating elements of a list


	Code Inclusion and Partial Classes
	4.1 Include Clauses
	Points to Note
	4.1.1 Renaming
	Points to note

	4.1.2 Multiple Inclusion
	4.1.3 Resolving conflicts

	4.2 Partial Classes and Stub routines
	Points to note
	4.2.1 Mixins: A Prompt Example


	Abstract Classes and Subtyping
	5.1 Abstracting over Implementations
	5.1.1 Implementing a Stack using an Array
	5.1.2 A Stack Calculator
	5.1.3 A Linked List Representation of a Stack
	5.1.4 Switching Representations:Polymorphism

	5.2 Abstract Class Definitions
	Example: An abstract employee
	More abstract class examples

	5.3 Subtyping
	Points to note about subtyping:
	5.3.1 The Type Graph
	5.3.2 Dynamic Dispatch and Subtyping
	An example: Generalizing Employees


	5.4 Supertyping
	5.4.1 Using supertyping

	5.5 Type Conformance
	5.5.1 Contravariant conformance
	What does not work
	What does work

	5.5.2 Subtyping = substitutability

	5.6 The typecase statement
	Points to note
	Typecase Example

	5.7 The Overloading Rule
	5.7.1 Extending Overloading
	Overloading based on Concrete Argument Types
	Overloading based on Abstract Argument Types
	The Demon of Ambiguity

	5.7.2 Permissible overloading
	Finding matching signatures
	Finding a most specific matching signature
	More examples

	5.7.3 Overloading as Statically resolved Multi-Met...
	5.7.4 Conflicts when subtyping
	5.7.5 Conflicts during code inclusion
	Conflicting Methods
	Conflicting Attributes

	5.7.6 Points to note
	5.7.7 Overloading in Parametrized Classes
	5.7.8 Why not use the return type to resolve confl...

	5.8 When Covariance Ails You
	5.8.1 But don’t animals eat food?
	5.8.2 Solution 1: Refactor the type hierarchy
	5.8.3 Solution 2: Eliminate the offending method
	5.8.4 Solution 3: Dynamically Determine the Type
	5.8.5 Solution 4: Parametrize by the Argument Type...


	Parametrized Classes and Arrays
	6.1 Parametrized concrete types
	6.1.1 Why Parametrize?

	6.2 Support for Arrays
	6.2.1 Array Access
	6.2.2 Array Classes: Including AREF and calling ne...
	6.2.3 Standard Arrays: ARRAY{T}
	Array Literals

	6.2.4 Multi-dimensional Arrays

	6.3 Type Bounds
	6.3.1 Why have typebounds?
	6.3.2 Supertyping and Type Bounds

	6.4 Parametrized Abstract Classes
	How are different parametrizations related?

	6.5 Overloading
	6.5.1 Overloading In the Parametrized Class Interf...
	6.5.2 Overloading Resolution within the Parametriz...


	Operator Redefinition
	7.1 Method Names for Operators
	7.2 Operator expressions
	Grouping
	7.2.1 Operator precedence
	Points to note
	Syntactic sugar example


	7.3 Array Access Routines

	Immutable Classes
	8.1 Defining Immutable Classes
	8.1.1 Immutable Class Example
	8.1.2 Creating a new object
	8.1.3 Initial value of immutable objects
	Void value of the basic classes:

	8.1.4 Attribute access routines
	8.1.5 Points to note

	8.2 Using Immutable Classes
	Rules of Thumb


	Closures
	9.1 Creating and Calling Closures
	9.1.1 Creating a closure
	9.1.2 Calling a closure
	9.1.3 Binding overloaded routines
	Binding in an assignment
	Binding in a call

	9.1.4 Points to note
	9.1.5 Binding some arguments
	9.1.6 Leaving self unbound

	9.2 Further Examples of Closures
	9.2.1 Closures for Applicative Programming
	9.2.2 Menu Structures
	9.2.3 Iterator closures


	Exceptions
	10.1 Throwing Exceptions with raise
	10.2 Catching Exceptions with protect
	Points to note

	10.3 Usage to avoid
	10.3.1 Alternatives to Exceptions
	10.3.2 A more elaborate example


	Safety Features
	11.1 Preconditions
	11.2 Postconditions
	11.2.1 initial expressions
	11.2.2 result expressions
	11.2.3 Example
	11.2.4 pre and post conditions in iterators

	11.3 Assertions
	11.3.1 assert statements

	11.4 Invariants
	11.4.1 The invariant routine


	Built-in classes
	12.1 Fundamental Classes
	12.1.1 $OB
	12.1.2 Array support

	12.2 Tuples
	12.3 The SYS Class
	12.4 Object Finalization: $FINALIZE
	12.5 Basic Classes and Literal Forms
	12.5.1 Booleans and the BOOL class
	12.5.2 Characters and the CHAR class
	12.5.3 The string class STR
	12.5.4 Integers and the INT class
	12.5.5 Infinite precision integers and the INTI cl...
	12.5.6 Floating point numbers: the FLT and FLTD cl...

	12.6 Library Conventions
	12.6.1 Object Identity
	IS_EQ
	Programmer defined hash functions and $HASH
	Objects that can be copied and $COPY

	12.6.2 Nil and void


	Interfacing with Fortran
	13.1 Overview
	13.1.1 External Fortran Call Example
	13.1.2 Overall Organization
	Points to note


	13.2 Name Binding
	13.2.1 Difficulties
	13.2.2 Implementation

	13.3 Datatype Mapping
	13.3.1 Scalar Types
	F_INTEGER
	F_REAL
	F_DOUBLE
	F_LOGICAL
	F_COMPLEX
	F_DOUBLE_COMPLEX
	F_CHARACTER
	F_STRING

	13.3.2 Fortran Array Classes
	Points to note

	13.3.3 F_ROUT and F_HANDLER Types
	Passing Routines as Arguments, F_ROUT{}
	Points to note
	Exceptional Condition Handling, F_HANDLER
	Points to note


	13.4 Parameter Passing
	13.4.1 Return Types
	13.4.2 Argument Types
	13.4.3 OUT and INOUT Arguments
	Points to note


	13.5 Portability Issues
	13.5.1 Portability of the Interface Implementation...
	13.5.2 Portability of the Generated Code


	Interfacing with ANSI C
	14.1 Overall Organization
	14.2 Built-in C classes
	14.3 User-defined External C types
	14.3.1 Constants and C binding names
	Examples

	14.3.2 Attributes and C structs
	Attributes and C structs
	Points to note

	14.3.3 Shared Attributes and C globals

	14.4 Parameter Passing
	14.5 Inlining C Code

	Statement and Expression Catalogue
	15.1 Statements
	15.1.1 Assignment statements
	See

	15.1.2 case statements
	Points to note
	See

	15.1.3 if statements
	See

	15.1.4 protect statements
	See

	15.1.5 loop statements
	See

	15.1.6 return statements
	15.1.7 typecase statements
	See

	15.1.8 yield statements
	See

	15.1.9 quit statements
	See


	15.2 Expressions
	15.2.1 void expressions
	15.2.2 void test expressions
	15.2.3 Short circuit boolean expressions: and and ...
	See

	15.2.4 exception expressions
	See



	Introduction
	The Threaded Extension
	17.1 Introduction
	17.1.1 Hello Worlds

	17.2 Realistic Examples Using Threads

	The Synchronization Extension
	18.1 Barrier Synchronization and sync
	18.2 The lock Statement and the MUTEX Class
	18.2.1 Memory Consistency, Round One

	18.3 Conjunctive Locking
	18.3.1 Read-Write Locks, three kinds
	18.3.2 Tuple Space, Round 1
	18.3.3 Disjunctive Locking

	18.4 GATE and GATE{T} classes
	18.4.1 Gates as Synchronizers and Queues
	18.4.2 Tuple Space, Round Two

	18.5 GATES and attached threads
	18.5.1 Tasks, Actors, etc.
	18.5.2 Discussion and Extensions


	Performance and The Distributed Extension
	19.1 Introduction
	19.2 Placement and the @ operator.
	19.2.1 Tuple Spaces, Round Three

	19.3 Addresses and the with ... near construct

	Advanced Topics
	20.1 Exceptions in pSather
	20.1.1 Yielding inside locks
	20.1.2 Implementation Considerations
	20.1.3 Thread-safe libraries

	20.2 User defined $LOCK classes
	20.2.1 Reservable, Reserve and Free
	20.2.2 Primary
	20.2.3 Request_reservation, Cancel_reservation
	20.2.4 Combinations
	20.2.5 Wait_for
	20.2.6 Summary


	Appendix: Terminology
	21.1 Sather Terminology
	21.2 Sather 1.0 to Sather 1.1
	21.3 C++ to Sather
	21.4 Java to Sather
	21.5 Modula-3 to Sather
	21.6 Smalltalk to Sather

	Index


