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PREFACE 

 This book is designed in accordance with the new guidelines and  

syllabi – 2003 of the Higher Secondary Mathematics – First Year, 

Government of Tamilnadu. In the era of knowledge explosion, writing a 

text book on Mathematics is challenging and promising. Mathematics 

being one of the most important subjects which not only decides the 

career of many young students but also enhances their ability of 

analytical and rational thinking and forms a base for Science and 

Technology. 

 This book would be of considerable value to the students who 

would need some additional practice in the concepts taught in the class 

and the students who aspire for some extra challenge as well.  

 Each chapter opens with an introduction, various definitions, 

theorems and results. These in turn are followed by solved examples 

and exercises which have been classified in various types for quick and 

effective revision. The most important feature of this book is the 

inclusion of a new chapter namely ‘Functions and Graphs’. In this 

chapter many of the abstract concepts have been clearly explained 

through concrete examples and diagrams. 

 It is hoped that this book will be an acceptable companion to the 

teacher and the taught. This book contains more than 500 examples 
and 1000 exercise problems. It is quite difficult to expect the teacher to 

do everything. The students are advised to learn by themselves the 

remaining problems left by the teacher. Since the ‘Plus 1’ level is 

considered as the foundation course for higher mathematics, the 

students must give more attention to each and every result mentioned in 

this book. 

 



  

The chief features of this book are  

 (i) The subject matter has been presented in a simple and lucid 

manner so that the students themselves are able to 

understand the solutions to the solved examples. 

 (ii) Special efforts have been made to give the proof of some 

standard theorems. 

 (iii) The working rules have been given so that the students 

themselves try the solution to the problems given in the 

exercise. 

 (iv) Sketches of the curves have been drawn wherever 

necessary, facilitating the learner for better understanding of 

concepts. 

 (v) The problems have been carefully selected and well graded. 

 The list of reference books provided at the end of this book will be 

of much helpful for further enrichment of various concepts introduced. 

 We welcome suggestions and constructive criticisms from learned 

teachers and dear students as there is always hope for further 

improvement. 

 K. SRINIVASAN 
 Chairperson 
 Writing Team 
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1. MATRICES AND DETERMINANTS 

1.1 Matrix Algebra 

1.1.1 Introduction 
 The term ‘matrix’ was first introduced by Sylvester in 1850. He defined a 
matrix to be an arrangement of terms. In 1858 Cayley outlined a matrix algebra 
defining addition, multiplication, scalar multiplication and inverses. Knowledge 
of matrix is very useful and important as it has a wider application in almost 
every field of Mathematics. Economists are using matrices for social 
accounting, input – output tables and in the study of inter-industry economics. 
Matrices are also used in the study of communication theory, network analysis 
in electrical engineering. 
 For example let us consider the marks scored by a student in different 
subjects and in different terminal examinations. They are exhibited in a tabular 
form as given below. 

 Tamil English Maths Science Social Science 

 Test 1 70 81 88 83 64 

 Test 2 68 76 93 81 70 

 Test 3 80 86 100 98 78 

 The above statement of marks can also be re-recorded as follows : 

First row 

Second row 

Third row 





        70            81            88                83          64

         68            76            93               81          70

         80            86           100               98                78        

 

 First  second Third Fourth Fifth 
 Column Column Column Column Column 

 This representation gives the following informations.  
 (i) The elements along the first, second, and third rows represent the test 

marks of the different subjects. 
 (ii) The elements along the first, second, third, fourth and fifth columns 

represent the subject marks in the different tests. 
 The purpose of matrices is to provide a kind of mathematical shorthand to 
help the study of problems represented by the entries. The matrices may 
represent transformations of co-ordinate spaces or systems of simultaneous 
linear equations. 
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1.1.2 Definitions: 
 A matrix is a rectangular array or arrangement of entries or elements 
displayed in rows and columns put within a square bracket or parenthesis. The 
entries or elements may be any kind of numbers (real or complex), polynomials 
or other expressions. Matrices are denoted by the capital letters like A, B, C… 
 Here are some examples of Matrices. 

A = 






    1     4

    2     5

    3         6      

  

 First Second 

 Column Column 

First Row 

Second Row 

Third Row 
B =  







       1         − 4       2

      6           9        4

       3         − 2            6      

  

 First Second Third 

   Column Column Column 
         C1 C2 C3 

First row (R1) 
Second row (R2) 
Third row (R3) 

Note : In a matrix, rows are counted from top to bottom and the columns are 
counted from left to right. 

 i.e. (i) The horizontal arrangements are known as rows. 
  (ii) The vertical arrangements are known as columns.  
 To identify an entry or an element of a matrix two suffixes are used. The 
first suffix denotes the row and the second suffix denotes the column in which 
the element occurs. 
 From the above example the elements of A are a11 = 1, a12 = 4, a21 = 2, 
a22 = 5, a31 = 3 and a32 = 6 

Order or size of a matrix 
 The order or size of a matrix is the number of rows and the number of 
columns that are present in a matrix. 

 In the above examples order of A is 3 × 2, (to be read as 3-by-2) and order 
of B is 3 × 3, (to be read as 3-by-3). 

 In general a matrix A of order m × n can be represented as follows :  
 
 
 
        A =  









a11        a12       …        a1j        …       a1n

…        …        …        …        …        …
…        …       …        …        …        …
ai1        ai2        …        aij        …        ain

…        …        …       …        …        …
am1       am2       …       amj       …       amn

  

                       jth  
                            column 

 
 
 

→ ith row 
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 This can be symbolically written as A = [aij]m × n. 

 The element aij belongs to ith row and the jth column. i being the row index 
and j being the column index. The above matrix A is an m × n or m-by-n matrix. 
The expression m × n is the order or size or dimension of the matrix. 

Example 1.1: Construct a 3 × 2 matrix whose entries are given by aij = i − 2j 

Solution: The general 3 × 2 matrix is of the form 

 A = [aij] = 








a11   a12

a21   a22

a31   a32

  where i = 1, 2, 3 (rows),     j = 1, 2 (columns) 

 It is given that aij = i − 2j 

a11 = 1 − 2 = − 1 a12 = 1 − 4 = − 3 

a21 = 2 − 2 = 0 a22 = 2 − 4 = − 2 

a31 = 3 − 2 = 1 a32 = 3 − 4 = − 1 

∴The required matrix is A = 








− 1   − 3

0    − 2

1    − 1
  

1.1.3 Types of matrices 
(1) Row matrix: A matrix having only one row is called a row matrix or a row 
vector. 

 Examples   (i) A = [aij]1 × 3 = [1   − 7   4] is a row matrix of order 1 × 3. 

   (ii) B = [bij]1 × 2 = [5    8] is a row matrix of order 1 × 2 

   (iii) C = [cij]1 × 1 = [100] is a row matrix of order 1 × 1 

(2) Column matrix: 

 A matrix having only one column is called a column matrix or a column 
vector. 

 Examples (i) A = [aij]3 × 1 = 








1

−7
4

  is a column matrix of order 3 × 1 

   (ii) B = [bij]2 × 1 = 



25

30
 is a column matrix of order 2 × 1 

   (iii) C = [cij]1 × 1 = [68] is a column matrix of order 1 × 1 

Note : Any matrix of order 1 × 1 can be treated as either a row matrix or a 
column matrix. 
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(3) Square matrix 

 A square matrix is a matrix in which the number of rows and the number of 
columns are equal. A matrix of order n × n is also known as a square matrix of 
order n. 

 In a square matrix A of order n × n, the elements a11, a22, a33 … ann are 
called principal diagonal or leading diagonal or main diagonal elements. 

 A = [aij]2 × 2  =  



2  4

6  8
  is a square matrix of order 2 

 B = [bij]3 × 3 = 









1   2   3

4   5   6

7   8   9

  is a square matrix of order 3. 

Note: In general the number of elements in a square matrix of order n is n2. We 
can easily verify this statement from the above two examples. 

(4) Diagonal Matrix: 

 A square matrix A = [aij]n × n is said to be a diagonal matrix if aij = 0 when 
i ≠ j 

 In a diagonal matrix all the entries except the entries along the main 
diagonal are zero. 

 For example A = [aij]3 × 3 = 









4   0   0

0   5   0

0   0   6

  is a diagonal matrix. 

 (5) Triangular matrix:   A square matrix in which all the entries above the 
main diagonal are zero is called a lower triangular matrix. If all the entries 
below the main diagonal are zero, it is called an upper triangular matrix. 

 A = 









3   2   7

0   5   3

0   0   1

  is an upper triangular matrix and B = 









2    0    0

4    1    0

8   − 5   7

  is a lower 

triangular matrix.  

(6) Scalar matrix: 

 A square matrix  A = [aij]n × n is said to be scalar matrix if    

aij = 


a      if      i = j
0      if      i ≠ j     
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 i.e.  A scalar matrix is a diagonal matrix in which  all the entries along the 
main diagonal are equal. 

 A = [aij]2 × 2 = 



5   0

0   5
   B =  [bij]3 × 3 = 









5    0    0

0    5    0

0    0    5

  are examples 

for scalar matrices. 
(7) Identity matrix or unit matrix: 
 A square matrix A = [aij]n × n is said to be an identity matrix if   

aij = 


1      if      i = j
0      if      i ≠ j   

  i.e. An identity matrix or a unit matrix is a scalar matrix in which entries 
along the main diagonal are equal to 1. We represent the identity matrix of 
order n as  In 

 I2  =  



1   0

0   1
  ,    I3 =  









1   0   0

0   1   0

0   0   1

  are identity matrices. 

(8) Zero matrix or null matrix or void matrix 
 A matrix A = [aij]m × n is said to be a zero matrix or null matrix if all the 
entries are zero, and is denoted by O    i.e. aij = 0 for all the values of i, j 

   [0   0],     






0   0
0   0
0   0

  ,     






0   0   0
0   0   0
0   0   0

 
 

are examples of zero matrices. 

(9) Equality of Matrices: 

 Two matrices A and B are said to be equal if  

 (i) both the matrices A and B are of the same order or size. 

 (ii) the corresponding entries in both the matrices A and B are equal. 

 i.e. the matrices A = [aij]m × n and B = [bij]p × q  are equal if m = p, n = q 
and  aij = bij for every i and j. 

Example 1.2 :  

 If 



x    y

z   w   = 



4   3

1   5   then find the values of x, y, z, w. 

Solution:   
 Since the two matrices are equal, their corresponding entries are also equal. 

 ∴x = 4    y = 3    z = 1    w = 5 
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(10) Transpose of a matrix: 
 The matrix obtained from the given matrix A by interchanging its rows 
into columns and its columns into rows is called the transpose of A and it is 

denoted by A′ or   AT. 

 If A = 








4     − 3

2      0
1      5

 then AT = 



4     2   1

− 3    0    5
  

 Note that if A is of order m × n then AT is order n × m. 
(11) Multiplication of a matrix by a scalar 
 Let A be any matrix. Let k be any non-zero scalar. The matrix kA is 
obtained by multiplying all the entries of matrix A by the non zero scalar k. 

 i.e. A = [aij]m × n ⇒ kA = [kaij]m × n 

 This is called scalar multiplication of a matrix. 
Note: If a matrix A is of order m × n then the matrix kA is also of the same 
order m × n 

 For example If A = 



1    7   2

− 6   3   9
  then  2A = 2 



1    7   2

− 6   3   9
 = 



2   14   4

− 12   6   18
  

(12) Negative of a matrix: 
 Let A be any matrix. The negative of a matrix A is – A and is obtained by 
changing the sign of all the entries of matrix A. 

 i.e. A = [aij]m × n ⇒ − A = [− aij]m × n 

 Let A = 



cosθ    sinθ

− sinθ   cosθ
  then      − A = 



− cosθ    − sinθ

sinθ    − cosθ
  

1.1.4 Operations on matrices 
(1) Addition and subtraction 
 Two matrices A and B can be added provided both the matrices are of the 
same order and their sum A + B is obtained by adding the corresponding entries 
of both the matrices A and B 
 i.e. A = [aij]m × n and B = [bij]m × n       then       A + B = [aij + bij]m × n 

  Similarly A − B = A + (− B)   = [aij]m × n + [− bij]m × n 

     = [aij − bij]m × n 

Note: 

 (1) The matrices A + B  and A − B have same order equal to the order of 
A or B. 
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 (2) Subtraction is treated as negative addition. 

 (3) The additive inverse of matrix A is − A. 

 i.e. A + (− A) = (− A) + A = O = zero matrix 

For example, if A = 








7    2

8    6

9   − 6
  and B = 









4   − 7

3    1

− 8    5
  

then A + B = 








7    2

8    6

9   − 6
  + 









4   − 7

3    1

− 8    5
  = 









7 + 4    2 − 7

8 + 3    6 + 1

9 − 8   − 6 + 5
   =  









11   − 5

11    7

1   − 1
  and 

A − B = A + (− B) = 








7    2

8    6

9   − 6
  + 









− 4     7

− 3   − 1

 8   − 5
 = 









7 − 4    2 + 7

8 − 3    6 − 1

9 + 8   − 6 − 5
  = 









3    9

5    5

17   − 11
  

(2) Matrix multiplication: 
 Two matrices A and B are said to be conformable for multiplication if the 
number of columns of the first matrix A is equal to the number of rows of the 
second matrix B. The product matrix ‘AB’ is acquired by multiplying every row 
of matrix A with the corresponding elements of every column of matrix B 
element-wise and add the results. This procedure is known as row-by-column 
multiplication rule. 

 Let A be a matrix of order m × n and B be a matrix of order n × p then the 
product matrix AB will be of order m × p    

 i.e.   order of A is m × n,          order of B is n × p 

 Then the order of AB is m × p = 



number of rows

of matrix A   ×  



number of columns

of matrix B  

 The following example describes the method of obtaining the product 
matrix AB 

 Let   A = 



2   1   4

7   3   6  
2 × 3

     B = 






6   4   3
3   2   5
7   3   1

 
3 × 3

 

 It is to be noted that the number of columns of the first matrix A is equal to 
the number of rows of the second matrix B. 
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 ∴ Matrices A and B are conformable,   i.e. the product matrix AB can be 
found. 

   AB = 



2   1   4

7   3   6    






6   4   3
3   2   5
7   3   1

  

  











    2    1    4    6   
                3   

                  7   
     

    2    1    4    4   
                2   

                  3   
     

    2    1    4    3   
                5   

                  1   

 

    7    3    6    6   
                3   

                  7   
     

    7    3    6    4   
                2   

                  3   
     

    7    3    6    3   
                5   

                  1   

 

 =  



(2) (6) + (1) (3) + (4) (7)    (2) (4) + (1) (2) + (4) (3)     (2) (3) + (1) (5) + (4) (1)

(7) (6) + (3) (3) + (6) (7)    (7) (4) + (3) (2) + (6) (3)     (7) (3) + (3) (5) + (6) (1)
  

 =  



12 + 3 + 28      8 + 2 + 12        6 + 5 + 4

42 + 9 + 42      28 + 6 + 18      21 + 15 + 6
            ∴  AB = 



43    22    15

93    52    42
 

 It is to be noticed that order of AB is 2 × 3, which is the number of rows of 
first matrix A ‘by’ the number of columns of the second matrix B. 
Note : (i) If AB = AC, it is not necessarily true that B = C. (i.e.) the equal 

matrices in the identity cannot be cancelled as in algebra. 
  (ii) AB = O does not necessarily imply A = O or B = O  

         For example,   A = 



1   − 1

− 1    1
  ≠ O  and B = 



1  1

1  1   ≠ O 

         but AB = 



1   − 1

− 1    1
   



1  1

1  1   = 



0  0

0  0   = O 

  (iii) If A is a square matrix then A.A is also a square matrix of the 

same order. AA is denoted by A2. Similarly  A2A = AAA = A3 

   If I is a unit matrix, then I = I2 = I3 = … = In. 

1.1.5 Algebraic properties of matrices: 
(1) Matrix addition is commutative: 

 If A and B are any two matrices of the same order then A + B = B + A. 
This property is known as commutative property of matrix addition. 

(2) Matrix addition is associative: 

 i.e. If A, B and C are any three matrices of the same order 
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 thenA+(B + C) = (A+B)+C. This property is known as associative property 
of matrix addition. 

(3) Additive identity: 
 Let A be any matrix then A + O = O + A = A. This property is known as 
identity property of matrix addition. 
 The  zero matrix O is known as the identity element with respect to matrix 
addition. 
(4) Additive inverse: 
 Let A be any matrix then A + (− A) = (− A) + A = O. This property is 
known as inverse property with respect to matrix addition. 
 The negative of matrix A i.e. − A is the inverse of A with respect to matrix 
addition. 
(5) In general,  matrix multiplication is not commutative  i.e. AB ≠ BA 
(6) Matrix multiplication is associative i.e. A(BC) = (AB)C 
(7) Matrix multiplication is distributive over addition 
 i.e.  (i) A(B + C) = AB + AC     (ii) (A + B)C = AC + BC 
(8) AI = IA = A where I is the unit matrix or identity matrix. This is known as 
identity property of matrix multiplication. 

Example 1.3:    If A = 



1   8

4   3     B = 



1   3

7   4    C = 



− 4    6

3   − 5
    

 Prove that (i) AB ≠ BA (ii) A(BC) = (AB)C   
   (iii) A(B + C) = AB + AC (iv) AI = IA = A 
Solution: 

 (i)  AB = 



1   8

4   3    



1   3

7   4   = 



(1) (1) + (8) (7)    (1) (3) + (8) (4)

(4) (1) + (3) (7)    (4) (3) + (3) (4)   

    = 



1 + 56    3 + 32

4 + 21   12 + 12    =  



57   35

25   24    … (1) 

   BA = 



1   3

7   4    



1   8

4   3   = 



(1) (1) + (3) (4)    (1) (8) + (3) (3)

(7) (1) + (4) (4)    (7) (8) + (4) (3)   

    = 



1 + 12    8 + 9

7 + 16   56 + 12   = 



13   17

23   68    … (2) 

  From (1) and (2) we have AB ≠ BA 

 (ii) (AB)C = 



57   35

25   24    



− 4    6

3   − 5
  … from (1) 

    = 



(57) (− 4) + (35) (3)    (57) (6) + (35) (− 5)

(25) (− 4) + (24) (3)    (25) (6) + (24) (− 5)
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    = 



− 228 + 105    342 − 175

− 100 + 72     150 − 120
  

∴  (AB)C = 



− 123    167

− 28     30
   … (3) 

 BC = 



1   3

7   4    



− 4    6

3   − 5
  

  = 



(1) (− 4) + (3) (3)    (1) (6) + (3) (− 5)

(7) (− 4) + (4) (3)    (7) (6) + (4) (− 5)
  = 



− 4 + 9    6 − 15

− 28 + 12   42 − 20
  

 BC = 



5   − 9

− 16    22
  

 A(BC) = 



1   8

4   3    



5   − 9

− 16    22
  

  = 



(1) (5) + (8) (− 16)  (1) (− 9) + (8) (22)

(4) (5) + (3) (− 16)  (4) (− 9) + (3) (22)
  = 



5 − 128     − 9 + 176

20 − 48     − 36 + 66
  

 A(BC) = 



− 123   167

− 28    30
  … (4) 

 From (3) and (4) we have, (AB)C = A(BC) 

 (iii) B + C = 



1   3

7   4   + 



− 4    6

3   − 5
  = 



1 − 4    3 + 6

7 + 3    4 − 5
  = 



− 3    9

10   − 1
  

  A(B + C) = 



1   8

4   3    



− 3    9

10   − 1
  = 



− 3 + 80    9 − 8

− 12 + 30   36 − 3
  

  A(B + C) = 



77    1

18   33      … (5) 

  AB = 



57   35

25   24  … from (1) 

  AC = 



1   8

4   3   



− 4    6

3   − 5
  = 



− 4 + 24    6 − 40

− 16 + 9   24 − 15
  = 



20   − 34

− 7    9
  

  AB + AC = 



57   35

25   24   + 



20   − 34

− 7    9
  = 



57 + 20   35 −  34

25 − 7    24 + 9
  

   = 



77    1

18   33      … (6) 
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 From equations (5) and (6) we have A(B + C) = AB + AC 

 (iv)    Since order of A is 2 × 2,  take I = 



1  0

0  1  . 

 AI = 



1  8

4  3    



1  0

0  1   = 



1(1) + 8(0)   1(0) + 8(1)

4(1) + 3(0)   4(0) + 3(1)   = 



1 + 0   0 + 8

4 + 0   0 + 3   

  = 



1   8

4   3   = A … (7) 

 IA = 



1  0

0  1    



1  8

4  3   = 



1(1) + 0(4)   1(8) + 0(3)

0(1) + 1(4)   0(8) + 1(3)   = 



1 + 0   8 + 0

0 + 4   0 + 3   

  = 



1  8

4  3   = A … (8) 

 ∴ From(7) and (8)        AI = IA = A 

Example 1.4:   If A = 



2  3

4  5      find A2 – 7A – 2I 

Solution: A2 = AA = 



2  3

4  5    



2  3

4  5   = 



4 + 12    6 + 15

8 + 20   12 + 25   

   A2 = 



16   21

28   37     … (1)  

   − 7A = − 7 



2  3

4  5   = 



− 14   − 21

− 28   − 35
  … (2) 

   − 2I = − 2



1  0

0  1    =  



− 2    0

0   − 2
  … (3) 

 (1) + (2)  + (3) gives   A2 − 7A − 2I = A2 + (− 7A) + (− 2I) 

    = 



16   21

28   37   + 



− 14   − 21

− 28   − 35
  + 



− 2    0

0   − 2
  

  i.e.  A2 − 7A − 2I = 



16 − 14 − 2   21 − 21 + 0

28 − 28 + 0   37 − 35 − 2
   =  



0  0

0  0   = O 

Example 1.5:    If A = 



1  4

0  3   and B = 



5  0

3  9  ,   

                   show that (A + B)2 ≠ A2 + 2AB + B2 
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Solution:  A + B = 



1  4

0  3   + 



5  0

3  9   = 



1 + 5   4 + 0

0 + 3   3 + 9   = 



6   4

3  12   

 (A + B)2 = (A + B) (A + B) = 



6   4

3  12    



6   4

3  12   = 



36 + 12    24 + 48

18 + 36   12 + 144   

 (A + B)2 = 



48   72

54  156   … (1) 

 A2 = A.A = 



1  4

0  3    



1  4

0  3   = 



1 + 0   4 + 12

0 + 0    0 + 9   = 



1  16

0   9   

 B2 = B.B = 



5  0

3  9    



5  0

3  9    = 



25 + 0    0 + 0

15 + 27   0 + 81   = 



25   0

42  81   

 AB = 



1  4

0  3   



5  0

3  9   = 



5 + 12   0 + 36

0 + 9   0 + 27   = 



17  36

9  27   

 2AB = 2



17   36

9   27    =  



34   72

18   54   

 A2 + 2AB + B2 = 



1   16

0    9  +



34   72

18   54  +



25    0

42   81  =



1 + 34 + 25   16 + 72 + 0

0 + 18 + 42   9 + 54 + 81   

 A2 + 2AB + B2 = 



60    88

60   144   … (2) 

 From (1) and (2) we have 

 (A + B)2 ≠ A2 + 2AB + B2 

Example 1.6:    Find the value of x     if      [2x   3] 



1   2

− 3   0
   



x

3   = O 

Solution:  [2x − 9     4x + 0]  



x

3   = O (Multiplying on first two matrices) 

  ⇒ [ ](2x − 9)x + 4x(3)   = O    ⇒   [2x2 − 9x + 12x]  = O 

  ⇒ [2x2 + 3x] = O 

 i.e. 2x2 + 3x = 0  ⇒  x(2x + 3) = 0 

 Hence we have x = 0,    x = 
− 3
2   

Example 1.7:    Solve: X + 2Y = 



4    6

− 8   10
    ;    X − Y = 



1    0

− 2   − 2
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Solution:     Given X + 2Y = 



4    6

− 8   10
  … (1) 

   X − Y = 



1    0

− 2   − 2
  … (2) 

(1) − (2)    ⇒   (X + 2Y) − (X − Y) =  



4    6

− 8   10
  − 



1    0

− 2   − 2
  

   3Y = 



3    6

− 6   12
  ⇒ Y = 

1
3   



3    6

− 6   12
  

  ⇒ Y = 



1   2

− 2   4
  

 Substituting matrix Y in equation (1) we have 

   X + 2 



1   2

− 2   4
  = 



4    6

− 8   10
  

  ⇒ X + 



2   4

− 4   8
  = 



4    6

− 8   10
  

  ⇒ X = 



4    6

− 8   10
  − 



2   4

− 4   8
  = 



2    2

− 4    2
  

   ∴  X = 



2    2

− 4    2
  and Y = 



1   2

− 2   4
  

EXERCISE 1.1 
  (1) Construct a 3 × 3 matrix whose elements are   (i) aij = i + j   (ii) aij = i × j 

 (2) Find the values of x, y, z if  



x    3x − y

2x + z   3y − w
  = 



0   − 7

3    2a
  

 (3) If   



2x    3x − y

2x + z   3y − w
  = 



3   2

4   7      find x, y, z, w 

 (4) If A = 



2    1

4   − 2
 ,  B = 



4   − 2

1    4
  and C = 



− 2   − 3

1    2
  find each of the 

following 

  (i) − 2A + (B + C) (ii) A − (3B − C) (iii) A + (B + C) (iv) (A + B) + C 

  (v) A + B (vi) B + A (vii) AB (viii) BA 
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 (5) Given A = 








1   2    3

− 1   3    4

2   0   − 1
   B = 









2    0    1

2   − 1   − 2

1    1   − 1
  and C = 









1    1   − 1

2    1   − 2

1   − 1    1
  

verify the following results: 

  (i) AB ≠ BA (ii) (AB) C = A(BC)         (iii) A(B + C) = AB + AC 

 (6) Solve : 2X + Y + 








− 2    1   3

5   − 7   3
4    5   4

 = O   ;    X − Y  = 








4   7    0

− 1   2   − 6

− 2   8   − 5
  

 (7) If A=



3   − 5

− 4    2
 , show that A2 − 5A − 14 I = O where I is the unit matrix 

of order 2. 

 (8) If A = 



3   − 2

4   − 2
  find k so that A2 = kA − 2I  

 (9) If A = 






1    2   2
2    1   2
2    2   1

 ,    show that A2 − 4A − 5I = O  

 (10) Solve for x if   






x2   1

2    3
  + 



2x   3

1   4   = 



3   4

3   7    

 (11) Solve for x if    [x   2   − 1] 








1    1    2

− 1   − 4    1

− 1   − 1   − 2
  






x
2
1

  = [0] 

 (12) If A = 



1  2

2  0    B = 



3   − 1

1    0
  verify the following: 

  (i) (A + B)2 = A2 + AB + BA + B2 (ii) (A − B)2 ≠ A2 − 2AB + B2 

  (iii) (A + B)2 ≠ A2 + 2AB + B2 (iv) (A − B)2 = A2 − AB − BA + B2 

  (v) A2 − B2 ≠ (A + B) (A − B)  

 (13) Find matrix C if A = 



3   7

2   5    B = 



− 3    2

4   − 1
  and 5C + 2B  = A 

 (14) If A = 



1   − 1

2   − 1
  and B = 



x    1

y   − 1
  and (A + B)2 = A2 + B2, find x and y. 
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1.2 Determinants 
1.2.1 Introduction: 
 The term determinant was first introduced by Gauss in 1801 while 
discussing quadratic forms. He used the term because the determinant 
determines the properties of the quadratic forms. We know that the area of a 
triangle with vertices (x1, y1) (x2, y2) and (x3, y3) is 

 
1
2   [ ]x1(y2 − y3) + x2 (y3 − y1) + x3 (y1 − y2)   … (1) 

 Similarly the condition for a second degree equation in x and y to represent 

a pair of straight lines is      abc + 2fgh − af2 − bg2 − ch2 = 0    … (2) 
 To minimize the difficulty in remembering these type of expressions, 
Mathematicians developed the idea of representing the expression in 
determinant form.  

The above expression (1) can be represented in the form   
1
2 









x1   y1   1

x2   y2   1

x3   y3   1
. 

Similarly the second expression (2) can be expressed as 






a   h   g
h   b    f
g    f    c

  = 0. 

 Again if we eliminate x, y, z from the three equations  
 a1x + b1y + c1 z = 0     ;    a2x +b2y + c2z = 0    ;    a3x + b3y +c3z = 0, 

 we obtain a1(b2 c3 − b3 c2) − b1 (a2 c3 − a3 c2) + c1 (a2 b3 − a3 b2) = 0 

 This can be written as 








a1   b1   c1

a2   b2   c2

a3   b3   c3

 = 0. Thus a determinant is a particular 

type of expression written in a special concise form. Note that the quantities are 
arranged in the form of a square between two vertical lines. This arrangement is 
called a determinant. 
Difference between a matrix and a determinant 
 (i) A matrix cannot be reduced to a number. That means a matrix is a 

structure alone and is not having any value. But a determinant can be 
reduced to a number. 

 (ii) The number of rows may not be equal to the number of columns in a 
matrix. In a determinant the number of rows is always equal to the 
number of columns. 
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 (iii) On interchanging the rows and columns, a different matrix is formed. 
In a determinant interchanging the rows and columns does not alter 
the value of the determinant. 

1.2.2 Definitions: 
 To every square matrix A of order n with entries as real or complex 
numbers, we can associate a number called determinant of matrix A and it is 
denoted by | A |  or  det (A)  or   ∆. 
 Thus determinant formed by the elements of A is said to be the determinant 
of matrix A. 

 If A = 



a11   a12

a21   a22
  then its   | A | = 



a11   a12

a21   a22
  = a11 a22 − a21a12 

 To evaluate the determinant of order 3 or above we define minors and 
cofactors. 
Minors: 
 Let | A | = | |[aij]  be a determinant of order n. The minor of an arbitrary 

element aij is the determinant obtained by deleting the ith row and jth column in 
which the element aij stands. The minor of aij is denoted by Mij. 

Cofactors: 
 The cofactor is a signed minor. The cofactor of aij is denoted by Aij and is 

defined as  Aij = (− 1)i + j Mij. 

 The minors and cofactors of a11, a12, a13 of a third order determinant 









a11   a12   a13

a21   a22   a23

a31   a32   a33

  are as follows: 

 (i) Minor of a11 is M11 = 



a22   a23

a32   a33
  = a22a33 − a32 a23.  

    Cofactor of a11 is  A11 = (−1)1 + 1   M11 = 



a22   a23

a32   a33
  = a22a33 − a32 a23 

 (ii) Minor of a12 is M12 = 



a21   a23

a31   a33
  = a21 a33 − a31a23 

      Cofactor of a12 is  A12 = (−1)1+2 M12 = − 



a21   a23

a31   a33
= − (a21a33 − a23 a31) 
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 (iii) Minor of a13 is M13 = 



a21   a22

a31   a32
  = a21 a32 − a31 a22 

  Cofactor of a13 is  A13 = (− 1)1 + 3 M13 = 



a21   a22

a31   a32
  = a21 a32 − a31 a22 

Note: A determinant can be expanded using any row or column as given below: 

 Let A =  








a11   a12   a13

a21   a22   a23

a31   a32   a33

  

 ∆ = a11 A11 + a12 A12 + a13 A13    or    a11 M11 − a12 M12 + a13 M13 
(expanding by R1) 

 ∆ = a11 A11 + a21A21 + a31 A31     or     a11 M11 − a21 M21 + a31 M31 
(expanding by C1) 

 ∆ = a21 A21 + a22 A22 + a23 A23    or     − a21 M21 + a22 M22 − a23 M23 
(expanding by R2) 

Example 1.8:   
 Find the minor and cofactor of each element of the determinant 









3    4    1

0   − 1   2

5   − 2   6
  

Solution: Minor of 3 is M11 = 



−1    2

− 2   6
  = − 6 + 4 = − 2 

   Minor of 4 is M12 = 



0   2

5   6   = 0 − 10 = − 10 

   Minor of 1 is M13 = 



0   − 1

5   − 2
  = 0 + 5 = 5 

   Minor of 0 is M21 = 



4    1

− 2   6
  = 24 + 2 = 26 

   Minor of − 1 is M22 = 



3   1

5   6   = 18 − 5 = 13 

   Minor of 2 is M23 = 



3    4

5   − 2
  = − 6 − 20 = − 26 
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   Minor of 5 is M31 = 



4    1

− 1   2
  = 8 + 1 = 9 

   Minor of − 2 is M32 = 



3   1

0   2   = 6 − 0 = 6 

   Minor of 6 is M33 = 



3    4

0   − 1
  = − 3 − 0 = − 3 

   Cofactor of 3 is A11 = (− 1)1 + 1 M11 = M11 = − 2 

   Cofactor of 4 is A12 = (− 1)1 + 2 M12 = − M12 = 10 

   Cofactor of 1 is A13 = (− 1)1 + 3 M13 = M13 = 5 

   Cofactor of 0 is A21 = (− 1)2 + 1 M21 = − M21 = − 26 

   Cofactor of − 1 is A22 = (− 1)2 + 2 M22 = M22 = 13 

   Cofactor of 2 is A23 = (− 1)2 + 3 M23 = − M23 = 26 

   Cofactor of 5 is A31 = (− 1)3 + 1 M31 = M31 = 9 

   Cofactor of − 2 is A32 = (− 1)3 + 2 M32 = − M32 = − 6 

   Cofactor of 6 is A33 = (− 1)3 + 3 M33 = M33 = − 3 

Singular and non-singular matrices: 
 A square matrix A is said to be singular if | A | = 0 
 A square matrix A is said to be non-singular matrix, if | A | ≠ 0. 

 For example, A = 






1   2   3
4   5   6
7   8   9

  is a singular matrix. 

 Q  | A | = 






1   2   3
4   5   6
7   8   9

  = 1



5   6

8   9   − 2 



4   6

7   9   + 3 



4   5

7   8   

    = 1(45 − 48) − 2 (36 − 42) + 3(32 − 35) 
    = − 3 + 12 − 9 = 0 

 B = 






1   7   5
2   6   3
4   8   9

  is a non-singular matrix. 

 Q  | B | = 






1   7   5
2   6   3
4   8   9

  = 1 



6   3

8   9   − 7  



2   3

4   9   + 5 



2   6

4   8   
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    = 1(54 − 24) − 7(18 − 12) + 5 (16 − 24) 
    = 1(30) − 7(6) + 5(− 8) 
    = − 52 ≠ 0 
 ∴ The matrix B is a non-singular matrix. 

1.2.3 Properties of Determinants 
 There are many properties of determinants, which are very much useful in 
solving problems. The following properties are true for determinants of any 
order. But here we are going to prove the properties only for the determinant of 
order 3. 

Property 1: 
 The value of a determinant is unaltered by interchanging its rows and 
columns. 
Proof: 

 Let ∆ = 








a1   b1   c1

a2   b2   c2

a3   b3   c3

. 

 Expanding ∆ by the first row we get, 
 ∆ = a1(b2 c3 − b3 c2) − b1(a2 c3 − a3 c2) + c1 (a2b3 − a3 b2) 

  = a1b2c3 − a1b3c2 − a2b1c3 + a3b1c2 + a2b3c1 − a3b2c1  … (1) 

 Let us interchange the rows and columns of ∆.  Thus we get a new 
determinant. 

 ∆1 = 








a1   a2   a3

b1   b2   b3

c1   c2   c3

. Since determinant can be expanded by any row or any 

column we get  
 ∆1 = a1(b2c3 − c2b3) − b1 (a2c3 − c2a3) + c1(a2b3 − b2a3) 

  = a1b2c3 − a1b3c2 − a2b1c3 + a3b1c2 + a2b3c1 − a3b2c1 … (2) 

 From equations (1) and (2)   we have ∆ = ∆1    Hence the result. 
Property 2: 
 If any two rows (columns) of a determinant are interchanged the 
determinant changes its sign but its numerical value is unaltered. 
Proof: 

 Let ∆ = 








a1   b1   c1

a2   b2   c2

a3   b3   c3
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 ∆ = a1(b2 c3 − b3 c2) − b1(a2 c3 − a3 c2) + c1 (a2b3 − a3 b2) 

 ∆ = a1b2c3 − a1b3c2 − a2b1c3 + a3b1c2 + a2b3c1 − a3b2c1  … (1) 

 Let ∆1 be the determinant obtained from ∆ by interchanging the first and 
second rows.   i.e.  R1 and R2. 

  ∆1 = 








a2   b2   c2

a1   b1   c1

a3   b3   c3

  

 Now we have to show that ∆1 = − ∆. 

 Expanding ∆1 by R2, we have,  

 ∆1 = − a1(b2c3 − b3c2) + b1(a2c3 − a3c2) − c1(a2b3 − a3b2) 

  = − [a1b2c3 − a1b3c2 + a2b1c3 + a3b1c2 + a2b3c1 − a3b2c1] … (2) 

 From (1) and (2) we get ∆1 = − ∆. 

 Similarly we can prove the result by interchanging any two columns. 

Corollary: 

 The sign of a determinant changes or does not change according as there is 
an odd or even number of interchanges among its rows (columns). 

Property 3: 

 If two rows (columns) of a determinant are identical then the value of the 
determinant is zero. 

Proof: 

 Let ∆ be the value of the determinant. Assume that the first two rows are 
identical. By interchanging R1 and R2 we obtain − ∆ (by property2). Since R1 
and R2 are identical even after the interchange we get the same ∆. 

 i.e. ∆ = − ∆    ⇒     2∆ = 0     i.e.     ∆ = 0 

Property 4: 

 If every element in a row (or column) of a determinant is multiplied by a 
constant “k” then the value of the determinant is multiplied by k. 

Proof: 

 Let ∆ = 








a1   b1   c1

a2   b2   c2

a3   b3   c3
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 Let ∆1 be the determinant obtained by multiplying the elements of the first 

row by ‘k’ then ∆1 = 








ka1   kb1   kc1

a2    b2    c2

a3    b3    c3

. 

 Expanding along R1 we get, 

 ∆1 = ka1 (b2c3 − b3c2) − kb1(a2c3 − a3c2) + kc1(a2b3 − a3b2) 

  = k[a1b2c3 − a1b3c2 − a2b1c3 + a3b1c2 + a2b3c1 − a3b2c1] 

 ∆1 = k∆. Hence the result. 

Note: 
 (1) Let A be any square matrix of order n. Then kA is also a square matrix 

which is obtained by multiplying every entry of the matrix A with the 
scalar k. But the determinant k |A| means every entry in a row (or a 
column) is multiplied by the scalar k. 

 (2) Let A be any square matrix of order n then | kA | = kn| A |. 
Deduction from properties (3) and (4) 
 If two rows (columns) of a determinant are proportional i.e. one row  
(column) is a scalar multiple of other row (column) then its value is zero. 
Property 5: 
 If every element in any row (column) can be expressed as the sum of two 
quantities then given determinant can be expressed as the sum of two 
determinants of the same order with the elements of the remaining rows 
(columns) of both being the same. 

Proof: Let ∆ = 









α1 + x1   β1 + y1   γ1 + z1

b1    b2    b3

c1    c2    c3

   

 Expanding ∆ along the first row, we get 

 ∆ = (α1 + x1) 



b2   b3

c2   c3
  − (β1 + y1) 



b1   b3

c1   c3
  + (γ1 + z1) 



b1   b2

c1   c2
  

  = 








α1



b2   b3

c2   c3
 − β1



b1   b3

c1   c3
 + γ1



b1   b2

c1   c2
  

+  








x1



b2   b3

c2   c3
 − y1



b1   b3

c1   c3
 + z1



b1   b2

c1   c2
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  = 









α1   β1   γ1

b1   b2   b3

c1    c2   c3

  + 








x1   y1   z1

b1   b2   b3

c1   c2   c3

  

 Hence the result. 

Note: If we wish to add (or merge) two determinants of the same order we add 
corresponding entries of a particular row (column) provided the other entries in 
rows (columns) are the same. 

Property 6:  

 A determinant is unaltered when to each element of any row (column) is 
added to those of several other rows (columns) multiplied respectively by 
constant factors. 

 i.e. A determinant is unaltered when to each element of any row (column) 
is added by the equimultiples of any parallel row (column). 

Proof: 

 Let ∆ = 








a1   b1   c1

a2   b2   c2

a3   b3   c3

  

 Let ∆1 be a determinant obtained when to the elements of C1 of ∆ are 
added to those of second column and third column multiplied respectively by l 
and m. 

 ∆1= 








a1 + lb1 + mc1    b1     c1

a2 + lb2 + mc2    b2     c2

a3 + lb3 + nc3     b3    c3 
  

  = 








a1   b1   c1

a2   b2   c2

a3   b3   c3

  + 








lb1  b1    c1

lb2   b2   c2

lb3   b3   c3

  + 








mc1   b1   c1

mc2   b2   c2

mc3   b3   c3

    (by property 5) 

  = 








a1   b1   c1

a2   b2   c2

a3   b3   c3

  + 0 + 0  



Q 

C1 is proportional to C2 in the second det.
C1 is proportional to C3 in the third det.    

 Therefore ∆1 = ∆.        Hence the result. 
Note: 
 (1) Multiplying or dividing all entries of any one row (column) by the 

same scalar is equivalent to multiplying or dividing the determinant 
by the same scalar. 
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 (2) If all the entries above or below the principal diagonal are zero (upper 
triangular, lower triangular) then the value of the determinant is equal 
to the product of the entries of the principal diagonal. 

 For example,  let us consider 

 | A | = 






3   2   7
0   5   3
0   0   1

  = 3(5 − 0) − 2(0 − 0) + 7(0 − 0) = 15 

 The value of the determinant A is 15. 
 The product of the entries of the principal diagonal is 3 × 5 × 1 = 15. 

Example 1.9:    Solve  








x − 1     x     x − 2

0     x − 2    x − 3

0     0    x − 3
  = 0 

Solution: Since all the entries below the principal diagonal are zero, the value 
of the determinant is  (x − 1) (x − 2) (x − 3)   
 ∴  (x − 1) (x − 2) (x − 3) = 0    ⇒   x = 1,   x = 2,   x = 3 

Example 1.10:     Solve for x if   



x   5

7   x  + 



1    − 2

− 1    1
  = 0 

Solution :   



x   5

7   x  + 



1    − 2

− 1    1
  = 0 

  ⇒ (x2 − 35) + (1 − 2) = 0  ⇒  x2 − 35 − 1 = 0  ⇒  x2 − 36 = 0 

  ⇒ x2 = 36   ⇒   x = ± 6 

Example 1.11:      Solve for x if     






0   1   0
x   2   x
1   3   x

  = 0 

Solution: 

 (0) 



2   x

3   x   − 1 



x   x

1   x   + (0) 



x   2

1   3  = 0          ⇒     0 − 1[x2 − x] + 0 = 0 

 − x2 + x = 0   i.e. x(1 − x) = 0   ⇒   x = 0,  x = 1 

Example 1.12:  Evaluate (i)  






1   a   b + c
1   b   c + a
1  c    a + b

     (ii) 






x + 2a    x + 3a    x + 4a
x + 3a    x + 4a    x + 5a
x + 4a    x + 5a    x + 6a

  

Solution: 

 (i)   Let ∆ = 






1   a   b + c
1   b   c + a
1  c    a + b

  = 






1   a    a + b + c
1   b    a + b + c
1  c    a + b + c

  C3 → C3 + C2 
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    =  0  [Q  C1 is proportional to C3] 

(ii)  Let ∆ = 






x + 2a    x + 3a    x + 4a
x + 3a    x + 4a    x + 5a
x + 4a    x + 5a    x + 6a

 = 






x + 2a    a    2a
x + 3a    a     2a
x + 4a    a    2a

   
C2 → C2 − C1

C3 → C3 − C1
 

    = 0    [Q  C2 is proportional to C3] 

Example 1.13:   Prove that 






2x + y     x     y
2y + z     y     z
2z + x     z    x

  = 0 

Solution:  






2x + y     x     y
2y + z     y     z
2z + x     z    x

  = 






2x   x   y
2y   y   z
2z   z   x

  + 






y   x   y
z   y   z
x   z   x

  

  = 0 + 0       



Q 

C1 is proportional to C2 in the first det.
C1 is identical to C3 in the second det.   

  = 0 

Example 1.14:    Prove that 







1   a   a2

1   b   b2

1   c   c2

  = (a − b) (b − c) (c − a) 

Solution: 

 







1   a   a2

1   b   b2

1   c   c2

  = 







0      a − b      a2 − b2

0      b − c     b2 − c2

1       c       c2

  
R1 → R1 − R2

R2 → R2 − R3
 

  

  = (a − b) (b − c) 








0    1    a + b

0    1    b + c

1    c     c2
      

Take (a − b) and (b − c)
 from R1 and R2 
respectively.

  

  = (a−b) (b−c) [ ](1) (b + c) − (1) (a + b)  = (a−b) (b−c) (c−a) 

Example 1.15:    Prove that 






1     1     1
1    1 + x     1
1     1     1 + y

  = xy 

Solution: 






1     1     1
1    1 + x     1
1     1     1 + y

  = 






1   1   1
0   x   0
0   0   y

   

 
R2 → R2 − R1

R3 → R3 − R1

  

    = xy  [Q  upper diagonal matrix] 
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Example 1.16:  Prove that  







1/a2    bc    b + c

1/b2    ca    c + a

1/c2    ab    a + b

  = 0 

 







1/a2    bc    b + c

1/b2    ca    c + a

1/c2    ab    a + b

  = 
1

abc 






1/a    abc   a(b + c)
1/b    abc   b(c + a)
 1/c   abc   c(a + b)

  
Multiply R1, R2, R3

 by a, b, c
 respectively

  

  = 
abc
abc   







1/a    1    a(b + c)
1/b    1    b(c + a)
1/c    1    c(a + b)

  Take abc from C2 

  = 
1

abc  






bc    1    a(b + c)
ca    1    b(c + a)
ab    1    c(a + b)

  Multiply C1 by abc 

    = 
1

abc   






bc    1    ab + bc + ca
ca    1    ab + bc + ca
ab    1    ab + bc + ca

  C3 → C3 + C1 

    = 
(ab+bc+ca)

abc   






bc  1  1
ca  1  1
ab  1  1

 Take (ab + bc + ca) from C3 

    = 
(ab + bc + ca)

abc   (0)     [Q C2 is identical to C3] 

    = 0 

Example 1.17:  Prove that 







b2c2    bc    b + c

c2a2    ca    c + a

a2b2    ab    a + b

  = 0 

Solution:   Let ∆ = 







b2c2    bc    b + c

c2a2    ca    c + a

a2b2    ab    a + b

  

 Multiply R1, R2 and R3 by a, b and c respectively  

   ∆ = 
1

abc    







ab2c2    abc    ab + ac

bc2a2    abc    bc + ab

ca2b2    abc    ca + bc
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  = 
(abc)2

abc    






bc    1    ab + ac
ca    1    bc + ab
ab    1    ca + bc

     Take abc from C1 and C2 

  = abc 






bc    1    ab + bc + ca
ca    1    ab + bc + ca
ab    1    ab + bc + ca

  C3 → C3 + C1 

  = abc (ab + bc + ca) 






bc    1    1
ca    1    1
ab    1    1

 Take (ab + bc + ca) from C3 

  = abc (ab + bc + ca)  (0)                 [Q C2 is identical to C3]    

   = 0 

Example 1.18 :    Prove that 








a+b+c    −c    −b

−c    a+b+c    −a

−b    −a    a+b+c
  = 2(a+b) (b+c) (c+a) 

Solution:  

       








a+b+c     −c     −b

−c     a+b+c     −a

−b     −a     a+b+c
=







a + b     a + b    − (a + b)
 − (b + c)     b + c     b + c

− b     − a     a + b + c

 
R1 → R1 + R2

R2 → R2 + R3
 

 

  = (a + b) (b + c) 








1    1    −1

−1     1    1

−b   −a   a+b+c
    

Take (a + b), (b + c)
from R1 and R2
respectively

  

  = (a + b) (b + c) 








0     2     0

− 1     1     1

− b    − a    a + b + c
  

R1 → R1+ R2
 
 

 

  = (a + b) (b + c) × (− 2) 



− 1     1

− b    a + b + c
  

  = (a + b) (b + c) × (− 2) [ ]− (a + b + c) + b   
  = (a + b) (b + c) × (− 2) [− a − c] 
 ∆ = 2(a + b) (b + c) (c + a) 

Example 1.19:  Prove that 







a2 + λ     ab     ac

ab     b2 + λ     bc

ac     bc     c2 + λ

  = λ2 (a2 + b2 + c2 + λ) 
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Solution:  Let ∆ = 







a2 + λ     ab     ac

ab     b2 + λ     bc

ac     bc     c2 + λ

      

 Multiply R1, R2 and R3,by a, b and c respectively 

   ∆ = 
1

abc    







a(a2 + λ)     a2b     a2c

ab2     b(b2 + λ)     b2c

ac2     bc2     c(c2 + λ)

  

 Take a, b and c from C1, C2 and C3 respectively  

 ∆ = 
abc
abc   







a2 + λ     a2     a2

b2     b2 + λ     b2

c2     c2     c2 + λ

  

  = 







a2+b2+c2+λ    a2+b2+c2+λ    a2+b2+c2+λ

b2     b2+λ     b2

c2     c2     c2+λ

  
R1→ R1 + R2 + R3

 
 

  

  = (a2 + b2 + c2 + λ) 









1     1     1

b2    b2 + λ     b2

c2     c2     c2 + λ
  

  = (a2 + b2 + c2 + λ) 









1     0    0

b2    λ    0

c2    0    λ
  

C2 → C2 − C1

C3 → C3 − C1
  

  = (a2 + b2 + c2 + λ)  



λ   0

0   λ
      

 ∴  







a2 + λ     ab     ac

ab     b2 + λ     bc

ac     bc     c2 + λ

  = λ2(a2 + b2 + c2 + λ) 

EXERCISE 1.2 

 (1) Find the value of the determinant 








2     6     4

− 5    − 15    − 10
1     3     2

  without usual 

expansion. 
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 (2) Identify the singular and non-singular matrix 

  (i) 








1     4     9

4     9     16
9    16    25

  (ii) 








1     2     3

4     5     6

− 2    − 4    − 6
  

 (3) Solve   (i)  








2    x    4

3    2    1
1    2    3

  = − 3        (ii) 








4     3     9

3    − 2    7
4     4     x

 = − 1 

 (4) Evaluate  (i)   









a − b    b − c    c − a

b − c    c − a    a − b

c − a   a − b     b − c

    (ii)   








1    ab    c(a + b)

1    bc    a(b + c)
1    ca    b(c + a)

  

 (5) Prove that 









a − b − c     2a     2a

2b     b − c − a     2b

2c     2c     c − a − b

  = (a + b + c)3 

 (6) Prove that 








1 + a     1     1

1     1 + b     1
1     1     1 + c

  = abc 



1 + 

1
a + 

1
b + 

1
c   

   where a, b, c are non zero real numbers and hence evaluate the  

  value of 








1 + a     1     1

1     1 + a     1
1     1     1 + a

  

 (7) Prove that 







1    a    a3

1    b    b3

1    c    c3

  = (a − b) (b − c) (c − a) (a + b + c) 

 (8) If x, y, z are all different and 







x    x2    1 − x3

y    y2    1 − y3

z    z2    1 − z3

  = 0  

  then show that xyz = 1 

 (9) Prove that   (i)  







1    a    a2

1    b    b2

1    c    c2

 = 








1    a    bc

1    b    ca

1    c    ab
 

                      (ii) 








y + z    x    y

z + x    z    x
x + y    y    z

 = (x + y + z)  (x − z)2 
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 (10) Prove that   

  (i) 








b+c    c+a     a+b

q+r    r+p    p+q

y+z   z+x     x+y
=2 









a    b    c

p    q    r
x    y    z

  (ii)  







−a2   ab   ac

ab   −b2   bc

ac   bc     −c2

  = 4a2b2c2   

   (iii) 








a    b    c

b    c    a
c    a    b

= 3abc − a3 − b3 − c3  

  (iv)  








a     b     c

a − b    b − c    c − a
b + c    c + a    a + b

  = a3 + b3 + c3 − 3abc 

1.2.4 Factor method 
Application of Remainder theorem to determinants 

Theorem: 

 If each element of a determinant (∆) is polynomial in x and if ∆ vanishes  
for  x = a then (x − a) is a factor of ∆. 

Proof: 

 Since the elements of ∆ are polynomial in x, on expansion ∆ will be a 
polynomial function in x. (say p(x)). For x = a, ∆ = 0  

 i.e. p(x) = 0 when x = a,    i.e. p(a) = 0 

 ∴ By Remainder theorem (x − a) is a factor of p(x). 

 i.e. (x − a) is a factor of ∆. 

Note: 

 (1) This theorem is very much useful when we have to obtain the value of 
the determinant in ‘factors’ form. Thus, for example if on putting  
a = b in the determinant ∆ any two of its rows or columns become 
identical then ∆ = 0 and hence by the above theorem a − b will be a 
factor of ∆. 

 (2) If r rows (column) are identical in a determinant of order n (n ≥ r) 

when we put x = a, then (x − a)r − 1 is a factor of ∆. 

 (3) (x + a) is a factor of the polynomial f(x) if and only if x = − a is a root 
of the equation f(x) = 0. 
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Remark: In this section we deal certain problems with symmetric and cyclic 
properties. 

Example 1.20:   Prove that 







1    a    a3

1    b    b3

1    c    c3
 = (a − b) (b − c) (c − a) (a + b + c) 

Solution: 

   Let ∆ = 







1   a   a3

1   b   b3

1   c   c3

. Put a = b,  ∆ = 







1  b   b3

1  b  b3

1  c  c3

 = 0  [Q R1 is identical to R2] 

 ∴ (a − b) is a factor of ∆. 

 Similarly we observe that ∆ is symmetric in a, b, c, by putting b = c, c = a, 
we get ∆ = 0. Hence (b − c) and (c − a) are also factors of ∆. ∴ The product  
(a−b) (b−c) (c − a) is a factor of ∆. The degree of this product is 3. The product 

of leading diagonal elements is 1. b . c3. The degree of this product is 4. 
 ∴ By cyclic and symmetric properties, the remaining symmetric factor of 
first degree must be k(a + b + c), where k is any non-zero constant. 

 Thus 







1    a    a3

1    b    b3

1    c    c3
 = (a − b) (b − c) (c − a) k(a + b + c)  

 To find the value of k, give suitable values for a, b, c so that both sides do 
not become zero. Take a = 0, b = 1, c = 2. 

 ∴ 






1    0    0
1    1    1
1    2    8

 = k(3) (− 1) (− 1) (2)  ⇒  k = 1 

 ∴ ∆ = (a − b) (b − c) (c − a) (a + b + c) 
Note: An important note regarding the remaining symmetric factor in the 
factorisation of cyclic and symmetric expression in a, b and c 
 If m is the difference between the degree of the product of the factors 
(found by the substitution) and the degree of the product of the leading diagonal 
elements and if 
 (1) m is zero then the other symmetric factor is a constant (k) 
 (2) m is one then the other symmetric factor of degree 1 is k(a + b + c) 
 (3) m is two then the other symmetric factor of degree 2 is  

  k(a2 + b2 + c2)+l (ab+bc+ca) 
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Example 1.21:   

       Prove by factor method 







1   a2   a3

1   b2    b3

1    c2   c3

 = (a − b) (b −c) (c−a) (ab + bc + ca) 

Solution: 

  Let ∆ =  







1  a2  a3

1  b2  b3

1  c2  c3

 Put a= b     ∆ = 







1   b2    b3

1   b2    b3

1   c2    c3

 = 0      [Q R1 ≡ R2] 

 ∴ (a − b) is a factor of ∆. 

 By symmetry on putting b = c and c = a we can easily show that  

∆ becomes zero and therefore (b − c) and (c − a) are also factors of ∆. 

 This means the product (a − b) (b − c) (c − a) is a factor of ∆. The degree 

of this product is 3. The degree of the product of leading diagonal elements b2c3 

is 5.   

 ∴ The other factor is  k(a2 + b2 + c2) + l(ab + bc + ca) 

 ∴






1   a2   a3

1   b2   b3

1   c2   c3

= [ ]k(a2 + b2 + c2) + l(ab + bc + ca)  (a − b) (b − c) (c − a) 

 To determine k and l give suitable values for a, b and c so that both sides 

do not become zero. Take a = 0,  b = 1  and c = 2 

 






1    0    0
1    1    1
1    4    8

 = [ ]k (5) + l(2)   (− 1) (− 1) (2) 

 ⇒ 4 = (5k + 2l) 2    ⇒    5k + 2l = 2 … (1) 

 Again put a = 0, b = − 1 and c = 1 

 








1    0     0

1    1    − 1
1    1     1

 = [ ]k(2) + l(− 1)   (+ 1) (− 2) (1) 

 ⇒ 2 = (2k − l) (− 2)  ⇒  2k − l =  − 1 … (2) 

 On solving (1) and (2) we get k = 0 and l = 1 
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 ∴ ∆ =  (ab + bc + ca) (a − b) (b − c) (c − a) 

  = (a − b) (b − c) (c − a) (ab + bc + ca) 

Example 1.22: Prove that 







(b + c)2     a2     a2

b2     (c + a)2     b2

c2     c2     (a + b)2

 = 2abc (a + b + c)3 

Solution: 

 Let ∆ = 







(b + c)2     a2     a2

b2     (c + a)2     b2

c2     c2     (a + b)2

    Put a = 0    we get 

 ∆ = 







(b + c)2     0     0

b2     c2    b2

c2     c2    b2

 = 0    [Q C2 is porportional to C3]    

 ∴ (a − 0) = a is a factor of  ∆. 

 Similarly on putting b = 0, c = 0, we see that the value of ∆ is zero. 

 ∴ a, b, c are factors of ∆. Put a + b + c = 0, we have 

 ∆ = 







(− a)2     a2     a2

b2     (− b)2     b2

c2     c2     (− c)2

 = 0             

 Since three columns are identical, (a + b + c)2 is a factor of ∆. 

 ∴ abc (a + b + c)2 is a factor of ∆ and is of degree 5. The product of the 

leading diagonal elements (b + c)2 (c + a)2 (a + b)2 is of degree 6. 
 ∴ The other factor of ∆ must be k(a + b + c). 

 ∴  







(b + c)2     a2     a2

b2     (c + a)2     b2

c2     c2     (a + b)2

 = k abc (a + b + c)3 

 Take the values a = 1,  b = 1 and c = 1 

 ∴ 






4    1    1
1    4    1
1    1    4

 = k(1) (1) (1) (3)3  ⇒  54  =  27k  ⇒  k = 2 

 ∴  ∆ = 2abc (a + b + c)3 
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Example 1.23: Show that 






x    a    a
a    x    a
a    a    x

 = (x − a)2 (x + 2a) 

Solution: 

 Let ∆ = 






x    a    a
a    x    a
a    a    x

   Put  x = a       ∴  ∆ = 






a    a    a
a    a    a
a    a    a

 = 0           

 Since all the three rows are identical (x − a)2 is a factor of ∆. 

 Put x = − 2a. 

 ∆ = 








− 2a     a     a

a     − 2a     a

a     a     − 2a
 = 









0     a     a

0    − 2a     a

0     a     − 2a
 = 0    [C1 → C1 + C2 + C3] 

 (x + 2a) is a factor of ∆. 

 ∴ (x − a)2 (x + 2a) is a factor of ∆ and is of degree 3. The degree of the 
product of leading diagonal element is also 3. Therefore the other factor must be 
k. 

 ∴  






x    a    a
a    x    a
a    a    x

 = k(x − a)2 (x + 2a). 

 Equate x3 term on both sides,  1 = k      ∴  






x    a    a
a    x    a
a    a    x

 = (x − a)2 (x + 2a) 

Example 1.24:  Using factor method, prove 






x+1     3     5
2     x+2     5
2     3     x+4

 = (x−1)2 (x + 9) 

Solution:                   Let ∆ =  






x + 1     3     5
2     x + 2     5
2     3     x + 4

 

 Put x = 1,   ∆ = 






2    3    5
2    3    5
2    3    5

 = 0 

 Since all the three rows are identical, (x − 1)2 is a factor of ∆. 



 34

 Put x = −9 in ∆, then ∆ = 








− 8   3   5

2   −7   5

2   3   −5
=









0   3   5

0  −7   5

0   3   −5
 = 0   [QC1→C1 +C2+C3] 

 ∴ (x + 9) is a factor of ∆. 

 The product (x − 1)2 (x + 9) is a factor of ∆ and is of degree 3. The degree 
of the product of leading diagonal elements (x + 1) (x + 2) (x + 4) is also 3. 
 ∴ The remaining factor must be a constant “k” 

 ∴  






x + 1     3     5
2     x + 2     5
2     3     x + 4

 = k(x − 1)2 (x + 9). Equating x3 term on both 

sides we get k = 1 

 Thus ∆ = (x − 1)2 (x + 9) 
EXERCISE 1.3 

 (1) Using factor method show that 







1    a    a2

1    b    b2

1    c    c2

 = (a − b) (b − c) (c − a) 

 (2) Prove by factor method 








b + c    a − c    a − b

b − c    c + a    b − a

c − b    c − a    a + b
 = 8abc 

 (3) Solve using factor method 






x + a     b     c
a     x + b     c
a     b     x + c

 = 0 

 (4) Factorise  








a     b     c

a2    b2    c2

bc    ca    ab
 

 (5) Show that 







b + c    a    a2

c + a    b    b2

a + b    c    c2

 = (a + b + c) (a − b) (b − c) (c − a) 

1.2.5 Product of determinants 
 Rule for multiplication of two determinants is the same as the rule for 
multiplication of two matrices. 
 While multiplying two matrices “row-by-column” rule alone can be 
followed. The process of interchanging the rows and columns will not affect the 
value of the determinant. Therefore we can also adopt the following procedures 
for multiplication of two determinants. 
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 (1) Row-by-row multiplication rule 
 (2) Column-by-column multiplication rule 
 (3) Column-by-row multiplication rule 
Note: The determinant of the product matrix is equal to the product of the 
individual determinant values of the square matrices of same order. 
 i.e. Let A and B be two square matrices of the same order. 
 We have | AB | = | A |    | B | 
 This statement is verified in the following example. 

Example 1.25:  If A = 



cosθ    − sinθ

sinθ     cosθ
, B = 



cosθ     sinθ

− sinθ    cosθ
 are two square matrices  

             then show that | AB |  =  | A |   | B | 
Solution: 

 Given that A = 



cosθ    − sinθ

sinθ     cosθ
 and B = 



cosθ     sinθ

− sinθ    cosθ
 

   AB =  



cosθ    − sinθ

sinθ     cosθ
  



cosθ     sinθ

− sinθ    cosθ
 

    = 






cos2θ + sin2θ     cosθ sinθ − sinθ cosθ

sinθ cosθ − cosθ sinθ     cos2θ + sin2θ
  =  



1    0

0    1  

   | AB | = 



1    0

0    1  = 1 … (1) 

   | A | = 



cosθ    − sinθ

sinθ     cosθ
  =  cos2θ + sin2θ = 1 

   | B | = 



cosθ     sinθ

− sinθ    cosθ
 = cos2θ + sin2θ = 1 

  | A |    | B | = 1 × 1 = 1 … (2) 
 From (1) and (2)                     | AB |  =  | A |    | B | 

Example 1.26:   Show that 






o   c   b
c   o   a
b   a   o

2

 = 







b2 + c2     ab     ac

ab     c2 + a2     bc

ac     bc     a2 + b2

 

Solution:   L.H.S. = 






o   c   b
c   o   a
b   a   o

2

 = 






o   c   b
c   o   a
b   a   o

  






o   c   b
c   o   a
b   a   o

 

    = 







o + c2 + b2     o + o + ab     o + ac + o

o + o + ab     c2 + o + a2     bc + o + o

o + ac + o     bc + o + o     b2 + a2 + 0
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    = 







c2 + b2     ab     ac

ab     c2 + a2     bc

ac     bc     b2 + a2

  = R.H.S. 

Example 1.27:  Prove that 



a1    b1

a2    b2

2 

=  






a1

2 + a2
2     a1b1 + a2b2

a1b1 + a2b2     b1
2 + b2

2  

Solution: 

 L.H.S. = 



a1    b1

a2    b2

2

= 



a1    b1

a2    b2
  



a1    b1

a2    b2
 

  = 



a1    a2

b1    b2
 



a1    b1

a2    b2
    



Interchange rows and

columns of the first determinant   

  = 






a1

2 + a2
2     a1b1 + a2b2

a1b1 + a2b2     b1
2 + b2

2  

Example 1.28: Show that 







2bc − a2     c2     b2

c2     2ca − b2     a2

b2     a2     2ab − c2

 = 






a    b    c
b    c    a
c    a    b

2

 

Solution: 

 R.H.S. = 






a    b    c
b    c    a
c    a    b

2 

= 






a    b    c
b    c    a
c    a    b

  






a    b    c
b    c    a
c    a    b

 

  = 






a    b    c
b    c    a
c    a    b

 × (− 1) 






a    b    c
c    a    b
b    c    a

; 
Interchanging R2 and R3
in the  2nd determinant   

  = 






a    b    c
b    c    a
c    a    b

  








− a    − b    − c

c     a     b
b     c     a

 

  = 







− a2+bc + cb     − ab + ab + c2    − ac + b2 + ac

− ab + c2 + ab    − b2 + ac + ac    − bc + bc + a2

− ac + ac + b2    − bc + a2 + bc    − c2 + ab + ba

 

  = 






2bc − a2     c2     b2

c2     2ac − b2     a2

b2     a2     2ab − c2

 = L.H.S. 
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1.2.6 Relation between a determinant and its co-factor determinant 

 Consider ∆ = 








a1    b1    c1

a2    b2    c2

a3    b3    c3

 

 Let A1, B1, C1 … … be the co-factors of a1, b1, c1 … … in ∆ 

 ∴ The cofactor determinant is  








A1    B1    C1

A2    B2    C2

A3    B3    C3

 

 Let ∆ be expanded by R1   ∴ ∆ = a1 



b2    c2

b3    c3
 − b1 



a2    c2

a3    c3
 + c1 



a2    b2

a3    b3
 

 ⇒ ∆ = a1 (co-factor of a1) + b1 (co-factor of b1) + c1 (co-factor of c1) 
 ⇒ ∆ = a1A1 + b1 B1 + c1 C1 
 i.e. The sum of the products of the elements of any row of a 
determinant with the corresponding row of co-factor determinant is equal 
to the value of the determinant. 
 Similarly ∆ = a2A2 + b2B2 + c2C2        ∆ = a3A3 + b3B3 + c3C3 
 Now let us consider the sum of the product of first row elements with the 
corresponding second row elements of co-factor determinant i.e. let us consider 
the expression 
 a1A2 + b1B2 + c1C2 

    = − a1 



b1    c1

b3    c3
 + b1 



a1    c1

a3    c3
 − c1 



a1    b1

a3    b3
 

    = − a1(b1c3 − b3c1) + b1(a1c3 − a3c1) − c1(a1b3 − a3b1) 
    = 0 
 ∴ The expression a1A2 + b1B2 + c1C2 = 0 
 Thus we have 
   a1A3 + b1B3 + c1C3 = 0  ;  a2A1 + b2B1 + c2C1 = 0 ; a2A3 + b2B3 + c2C3 = 0 
 a3A1 + b3B1 + c3C1 = 0 ; a3A2 + b3B2 + c3C2 = 0 

 i.e. The sum of the products of the elements of any row of a 
determinant with any other row of co-factor determinant is equal to 0 
Note: Instead of rows, if  we take columns we get the same results. 
 ∴ ∆ = a1A1 + a2A2 + a3A3  
      ∆ = b1B1 + b2B2 + b3B3  
      ∆ = c1C1 + c2C2 + c3C3  
 Thus the above results can be put in a tabular column as shown below. 



 38

 Row-wise Column-wise 

 R1 R2 R3   C1 C2 C3 
r1 ∆ 0 0  c1 ∆ 0 0 
r2 0 ∆ 0  c2 0 ∆ 0 
r3 0 0 ∆  c3 0 0 ∆ 

  Where ri’s ci’s are ith row  and ith column of the original determinant Ri’s, Ci’s 

are ith row and ith column respectively of the corresponding co-factor determinant. 

Example 1.29:  If A1, B1, C1 are the co-factors of a1, b1, c1 in ∆ = 








a1    b1    c1

a2    b2    c2

a3    b3    c3

  

                     then show that   








A1    B1    C1

A2    B2    C2

A3    B3    C3

 = ∆2 

Solution:  








a1    b1    c1

a2    b2    c2

a3    b3    c3

  








A1    B1    C1

A2    B2    C2

A3    B3    C3

 

  = 








a1A1 + b1B1 + c1C1 a1A2 + b1B2 + c1C2  a1A3 + b1B3 + c1C3

a2A1 + b2B1 + c2C1    a2A2 + b2B2 + c1C2    a2A3 + b2B3 + c2C3

a3A1 + b3B1 + c3C1    a3A2 + b3B2 + c3C2    a3A3 + b3B3 + c3C3

 

  = 








∆    0     0

0    ∆    0

0     0    ∆
 = ∆3 

 i.e.  ∆ ×  








A1    B1    C1

A2    B2    C2

A3    B3    C3

 = ∆3      ⇒  








A1    B1    C1

A2    B2    C2

A3    B3    C3

 = ∆2 

EXERCISE 1.4 

 (1) Show that 






1    a    a
a    1    a
a    a    1

2

 = 







1 − 2a2     − a2     − a2

− a2     − 1     a2 − 2a

 − a2     a2 − 2a     − 1

 

 (2) Show that 







1   x   x2

1   y   y2

1   z   z2

 







a2   1   2a

b2   1   2b

c2   1   2c

 =







(a − x)2   (b − x)2    (c − x)2

(a − y)2   (b − y)2    (c − y)2

(a − z)2   (b − z)2    (c − z)2
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2. VECTOR ALGEBRA 
2.1 Introduction: 
 The development of the concept of vectors was influenced by the works of 
the German Mathematician H.G. Grassmann (1809 − 1877) and the Irish 
mathematician W.R. Hamilton (1805 − 1865). It is interesting to note that both 
were linguists, being specialists in Sanskrit literature. While Hamilton occupied 
high positions, Grassman was a secondary school teacher. 
 The best features of Quaternion Calculus and Cartesian Geometry were 
united, largely through the efforts of the American Mathematician J.B. Gibbs 
(1839 − 1903) and Q. Heariside (1850 − 1925) of England and new subject 
called Vector Algebra was created. The term vectors was due to Hamilton and it 
was derived from the Latin word ‘to carry’. The theory of vectors was also 
based on Grassman’s theory of extension. 
 It was soon realised that vectors would be the ideal tools for the fruitful 
study of many ideas in geometry and physics. Vector algebra is widely used in 
the study of certain type of problems in Geometry, Mechanics, Engineering and 
other branches of Applied Mathematics. 
 Physical quantities are divided into two categories – scalar quantities and 
vector quantities. 
Definitions: 
 Scalar : A quantity having only magnitude is called a scalar. It is not 

related to any fixed direction in space. 
   Examples : mass, volume, density, work, temperature, 

distance, area, real numbers etc. 
 To represent a scalar quantity, we assign a real number to it, which gives 
its magnitude in terms of a certain basic unit of a quantity. Throughout this 
chapter, by scalars we shall mean real numbers. Normally, scalars are denoted 
by a, b, c… 
 Vector : A quantity having both magnitude and direction is called a 

vector. 
   Examples : displacement, velocity, acceleration, momentum, 

force, moment of a force, weight etc. 
Representation of vectors: 
 Vectors are represented by directed line segments such that the length of 
the line segment is the magnitude of the vector and the direction of arrow 
marked at one end denotes the direction of the vector. 
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 A vector denoted by a
→

   = AB
 −→

  is 
determined by two points A, B such that the 
magnitude of the vector is the length of the  

 
Fig. 2. 1 

line segment AB and its direction is that from A to B. The point A is called 

initial point of the vector AB
→

  and B is called the terminal point. Vectors are 

generally denoted by a
→

 , b
→

 , c
→

 … (read as vector a, vector b, vector c, … ) 

Magnitude of a vector 

 The modulus or magnitude of a vector a
→

  = AB
→

  is a positive number 

which is a measure of its length and is denoted by | |a
→

  = | |AB
→

  = AB The 

modulus of a
→

  is also written as ‘a’ 

  Thus   | |a
→

  = a  ;   | |b
→

   = b  ;    | |c
→

  = c 

   | |AB
→

  = AB   ;   | |CD
→

  = CD   ;   | |PQ
→

  = PQ 

 Caution: The two end points A and B are not interchangeable.  

 Note: Every vector AB
→

 has three characteristics: 

 Length : The length of AB
→

 will be denoted by | |AB
→

 or AB. 

 Support : The line of unlimited length of which AB is a segment is 

called the support of the vector AB
→

 , 

 Sense : The sense of AB
→

  is from A to B and that of BA
→

  is from B to 
A. Thus the sense of a directed line segment is from its initial 
point to the terminal point. 

Equality of vectors: 

 Two vectors a
→

  and b
→

  are said to be equal, written as a
→

  = b
→

 , if they 
have the 

 (i) same magnitude (ii) same direction 
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 In fig (2.2) AB || CD and AB = CD 

 AB
→

  and CD
→

  are in the same direction 

 Hence AB
→

  = CD
→

  or a
→

  = b
→

  

 
Fig. 2. 2 

2.2 Types of Vectors 
Zero or Null Vector: 
 A vector whose initial and terminal points are coincident is called a zero or 

null or a void vector. The zero vector is denoted by O
→

  
 Vectors other than the null vector are called proper vectors. 
Unit vector: 
 A vector whose modulus is unity, is called a unit vector. 

 The unit vector in the direction of a
→

  is denoted by â  (read as ‘a cap’). 

Thus | |â   = 1 

 The unit vectors parallel to a
→

  are ± â  

Result:  a
→

  = | a
→

 | â   [i.e. any vector = (its modulus) × (unit vector in that 
direction)] 

  ⇒ â  = 
a
→

| |a
→

   ;  ( )a
→

 ≠ O
→

 

 In general    unit vector in any direction = 
vector in that direction
modulus of the vector  

Like and unlike vectors: 
 Vectors are said to be like when they have the same sense of direction and 
unlike when they have opposite directions. 

 
like vectors 

 
unlike vectors 

Fig. 2. 3 
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Co-initial vectors: 
 Vectors having the same initial point are called co-initial vectors. 
Co-terminus vectors: 
 Vectors having the same terminal point are called co-terminus vectors. 
Collinear or Parallel vectors: 
 Vectors are said to be collinear or parallel if they have the same line of 
action or have the lines of action parallel to one another. 
Coplanar vectors: 
 Vectors are said to be coplanar if they are parallel to the same plane or they 
lie in the same plane. 
Negative vector: 

 The vector which has the same magnitude as that of a
→

  but opposite 

direction is called the negative of a
→

 and is denoted by − a
→

 . Thus if AB
→

  = a
→

  

then BA
→

  = − a
→

 . 
Reciprocal of a vector: 

 Let a
→

  be a non-zero vector. The vector which has the same direction as 

that of a
→

 but has magnitude reciprocal to that of a
→

 is called the reciprocal of 

a
→

  and is written as ( )a
→ − 1

  where 



( )a

→  − 1
= 

1
a  

Free and localised vector: 
 When we are at liberty to choose the origin of the vector at any point, then 
it is said to be a free vector. But when it is restricted to a certain specified point, 
then the vector is said to be localised vector. 

2.3 Operations on vectors: 
2.3.1 Addition of vectors: 

Let  OA
→

  = a
→

 , AB
→

  = b
→

  Join OB. 

 Then OB
→

  represents the addition (sum) of the 

vectors a
→

 and b
→

 .  

 This is written as OA
→

 + AB
→

  = OB
→

  

 Thus  OB
→

   =  OA
→

 + AB
→

  = a
→

  + b
→

  

 
Fig. 2. 4 
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 This is known as the triangle law of addition of vectors which states that, if 
two vectors are represented in magnitude and direction by the two sides of a 
triangle taken in the same order, then their sum is represented by the third side 
taken in the reverse order. 
 Applying the triangle law of addition of vectors in 
∆ABC, we have  

  BC
→

  + CA
→

  = BA
→

  

 ⇒ BC
→

  + CA
→

  = − AB
→

  

 ⇒ AB
→

  + BC
→

  + CA
→

  = 0
→

  
 

Fig. 2. 5 
 Thus the sum of the vectors representing the sides of a triangle taken in 
order is the null vector. 
Parallelogram law of addition of vectors: 

 If two vectors a
→

  and b
→

  are represented in 
magnitude and direction by the two adjacent sides 

of a parallelogram, then their sum c
→

  is 
represented by the diagonal of the parallelogram 
which is co-initial with the given vectors. 

 Symbolically we have  OP
→

 + OQ
→

 =OR
→

   
Fig. 2. 6 

 Thus if the vectors are represented by two adjacent sides of a 
parallelogram, the diagonal of the parallelogram will represent the sum of the 
vectors. 
 By repeated use of the triangle law we can find the sum of any number of 
vectors. 

 Let  OA
→

  = a
→

 , AB
→

  = b
→

 , BC
→

  = c
→

 , CD
→

 = d
→

 , DE
→

  = e
→

  
be any five vectors as shown in the fig  (2.7). We 
observe from the figure that each new vector is 
drawn from the terminal point of its previous one. 

 OA
→

  + AB
→

  + BC
→

  + CD
→

  + DE
→

  = OE
→

  
 Thus the line joining the initial point of the 
first vector to the terminal point of the last vector is 
the sum of all the vectors. This is called the polygon 
law of addition of vectors. 

 
Fig. 2. 7 
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Note : It should be noted that the magnitude of a
→

  + b
→

  is not equal to the sum 

of the magnitudes of a
→

  and b
→

 . 

2.3.2 Subtraction of vectors: 

 If a
→

  and b
→

  are two vectors, then the subtraction of b
→

  from a
→

   is 

defined as the vector sum of a
→

  and − b
→

  and is denoted by a
→

  − b
→

  . 

  a
→

  − b
→

  = a
→

  + ( )− b
→

 

 Let OA
→

  = a
→

  and AB
→

  = b
→

  

 Then   OB
→

  = OA
→

  + AB
→

  = a
→

  + b
→

  

 To subtract b
→

  from a
→

 , produce BA to B′ 

such that AB = AB′.   ∴  AB′
→

  = − AB
→

  = − b
→

   
Fig. 2. 8 

Now by the triangle law of addition  

 OB′
→

  = OA
→

  + AB′
→

  = a
→

  + ( )− b
→

 = a
→

  − b
→

  
Properties of addition of vectors: 
Theorem 2.1: 

 Vector addition is commutative i.e., if a
→

  and b
→

  are any two vectors then  

a
→

 + b
→

 = b
→

 + a
→

  

Let    OA
→

  = a
→

  ,   AB
→

  = b
→

  

 In ∆OAB,  OA
→

  + AB
→

  = OB
→

    
(by triangle law of add.) 

 ⇒ a
→

  + b
→

  = OB
→

  … (1) 
 Complete the parallelogram OABC             

  CB
→

   = OA
→

  = a
→

  ;   OC
→

  = AB
→

  = b
→

     
 

Fig. 2. 9 

 In ∆OCB, we have  OC
→

  + CB
→

   = OB
→

         i.e. ⇒ b
→

  + a
→

  = OB
→

  … (2) 

 From (1) and (2) we have a
→

  + b
→

  = b
→

  + a
→

  

 ∴ Vector addition is commutative. 
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Theorem 2.2: 
 Vector addition is associative 

i.e.   For any three vectors a
→

 , b
→

 , c
→

  

 ( )a
→

 + b
→

 + c
→

  = a
→

  + ( )b
→

 + c
→

   

Proof : 

 Let  OA
→

  = a
→

  ;    AB
→

  = b
→

   ;   BC
→

  = c
→

  
 Join  O and B  ;  O and C   ;   A and C  

Fig. 2. 10 

 In ∆OAB, OA
→

  + AB
→

  = OB
→

  

  ⇒ a
→

  + b
→

  = OB
→

  … (1) 

 In ∆OBC, OB
→

  + BC
→

  = OC
→

  

  ⇒ ( )a
→

 + b
→

 + c
→

  = OC
→

  … (2) [using (1)] 

 In ∆ABC, AB
→

  + BC
→

  = AC
→

  

  ⇒ b
→

  + c
→

  = AC
→

  … (3) 

 In ∆OAC OA
→

  + AC
→

  = OC
→

  

  ⇒ a
→

  + ( )b
→

 + c
→

 = OC
→

  … (4) [using (3)] 

 From (2) and (4), we have ( )a
→

 + b
→

 + c
→

  = a
→

  + ( )b
→

 + c
→

 

 ∴ vector addition is associative. 
Theorem 2.3: 

 For every vector a
→

 ,    a
→

  + O
→

  = O
→

 + a
→

 = a
→

  where O
→

  is the null 
vector.   [existence of additive identity] 
Proof: 

 Let OA
→

  = a
→

  

  Then a
→

  + O
→

  = OA
→

  + AA
→

   =  OA
→

  = a
→

  

   ∴ a
→

  + O
→

  = a
→

  

  Also O
→

  + a
→

  = OO
→

  + OA
→

  = OA
→

  = a
→
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   ∴  O
→

  + a
→

  = a
→

  

 ∴ a
→

  + O
→

  = O
→

  + a
→

  = a
→

  
Theorem 2.4: 

 For  every vector a
→

,  there corresponds a vector − a
→

  such that 

 a
→

 +( )− a
→

 = O
→

  = ( )− a
→

+ a
→

    [existence of additive inverse] 

Proof:   Let OA
→

  = a
→

 . Then AO
→

  = − a
→

  

   ∴ a
→

  + ( )− a
→

  = OA
→

  + AO
→

  = OO
→

  = O
→

   

   ( )− a
→

  + a
→

  = AO
→

  + OA
→

  = AA
→

  = O
→

   

 Hence a
→

  + ( )− a
→

  = ( )− a
→

  + a
→

  = O
→

  

2.3.3 Multiplication of a vector by a scalar 

 Let  m be a scalar and a
→

 be any vector, then m a
→

 is defined as a vector 

having the same support as that of a
→

 such that its magnitude is | m | times the 

magnitude of a
→

 and its direction is same as or opposite to the direction of a
→

 
according as m is positive or negative. 

Result : Two vectors a→ and b
→

 are collinear or parallel if and only if a→ = m b
→

 
for some non-zero scalar m. 

 For any vector a
→

  we define the following: 

  (1) a
→

  = a
→

        ;          (− 1) a
→

  = − a
→

          ;          0 a
→

  = O
→

  

Note:   If  a
→

  is a vector then 5 a
→

  is a vector whose magnitude is 5 times the 

magnitude of a
→

  and whose direction is same as that of a
→

 . But − 5 a
→

  is a 

vector whose magnitude is 5 times the magnitude of a
→

  and whose direction is 

opposite to a
→

 . 
Properties of Multiplication of vectors by a scalar 
 The following are properties of multiplication of vectors by scalars. 

 For vectors a
→

 , b
→

  and scalars m, n we have 
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 (i) m( )− a
→

  = (− m) a
→

  = − ( )m a
→

   (ii)  (− m) ( )− a
→

  = m a
→

  

 (iii) m( )n a
→

   = (mn) a
→

  = n( )m a
→

   (iv) (m + n) a
→

  = m a
→

  + n a
→

  

Theorem 2.5 (Without Proof) : 

 If a
→

  and b
→

  are any two vectors and m is a scalar  

 then m( )a
→

 + b
→

 = m a
→

  + m b
→

 . 

Result :   m( )a
→

 − b
→

 = m a
→

  − m b
→

  

2.4 Position vector 
 If a point O is fixed as the origin in space 

(or plane) and P is any point, then OP
→

  is 
called the position vector (P.V.) of P with 
respect to O. 

 From the diagram OP
→

  = r
→

   

 Similarly OA
→

  is called the position 

vector (P.V.) of A with respect to O and OB
→

  
is the P.V. of B with respect to O. 

 
Fig. 2. 11 

Theorem 2.6: AB
→

  = OB
→

  − OA
→

  where OA
→

  and OB
→

  are the P.Vs of A and B 
respectively. 

Proof:  Let O be the origin. Let a
→

  and b
→

  be the position vectors of points  
A and B respectively 

 Then  OA
→

  = a
→

   ;  OB
→

  = b
→

  

 In ∆OAB, we have by triangle law of 
addition 

 OA
→

  + AB
→

  = OB
→

  

⇒ AB
→

  = OB
→

  − OA
→

  =  b
→

  − a
→

  

i.e. AB
→

  = (P.V of B) − (P.V of A) 

 
Fig. 2. 12 
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Note :  In AB
→

 , the point B is the head of the vector and A is the tail of the 
vector. 

   ∴ AB
→

  = (P.V. of the head) − (P.V. of the tail).   Similarly BA
→

  = OA
→

  − OB
→

  

 The above rule will be very much useful in doing problems. 

Theorem 2.7: [Section Formula – Internal Division] 

 Let A and B be two points with position vectors a
→

  and b
→

  respectively 
and let P be a point dividing AB internally in the ratio m : n. Then the position 
vector of P is given by 

 OP
→

  = 
n a
→

 + m b
→

m + n    

Proof: 
 Let O be the origin. 

 Then  OA
→

  = a
→

  ;   OB
→

  = b
→

   
Fig. 2. 13 

 Let the position vector of P with respect to O be r
→

     i.e. OP
→

  = r
→

  

 Let P divide AB internally in the ratio m : n 

 Then  
AP
PB  = 

m
n     ⇒  n AP = m PB      ⇒ n AP

→
  = m PB

→
  

  ⇒ n ( )OP
→

 − OA
→

  = m ( )OB
→

 − OP
→

     ⇒  n ( )r
→

 − a
→

  = m ( )b
→

 − r
→

 

  ⇒ n r
→

  − n a
→

  = m b
→

  − m r
→

           ⇒  m r
→

  + n r
→

  = m b
→

  + n a
→

  

  ⇒ (m + n) r
→

  = m b
→

  + n a
→

  

               r
→

 = 
m b

→
 + n a

→

m + n   

Result (1):  If P is the mid point of AB, then it divides AB in the ratio 1 : 1. 

 ∴ The P.V. of P is 
1 . b

→
 + 1. a

→

1 + 1   = 
a
→

 + b
→

2  
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 ∴ P.V. of the mid point P of AB is  OP
→

  = r
→

  = 
a
→

 + b
→

2  

Result (2): Condition that three points may be collinear 

Proof:  Assume that the points A, P and B (whose P.Vs are a
→

 , r
→

  and b
→

  
respectively) are collinear 

 We have r
→

  = 
m b

→
 + n a

→

m + n  

   (m + n) r
→

  = m b
→

  + n a
→

  

 ⇒  (m + n) r
→

  − m b
→

  − n a
→

  = 0 
 In this vector equation, sum of the scalar coefficients in the  
 L.H.S.  = (m + n) − m − n = 0 
 Thus we have the result, if A, B, C are collinear points with position 

vectors a
→

 , b
→

 , c
→

  respectively then there exists scalars x, y, z  such that  

x a
→

  + y b
→

  + z c
→

  = O
→

  and x + y + z = 0 
 Conversely if the scalars x, y, z are such that x + y + z = 0 and  

x a
→

  + y b
→

  + z c
→

  = O
→

  then the points with position vectors  a
→

 , b
→

  and c
→

  
are collinear. 
Result 3: [Section formula – External division] 

 Let A and B be two points with position vectors a
→

  and b
→

  respectively 
and let P be a point dividing AB externally in the ratio m : n. Then the position 
vector of P is given by 

  OP
→

  = 
m b

→
 − n a

→

m − n
 

Proof: 
 Let O be the origin. A and B are the two 

points whose position vectors are a
→

  and b
→

  

 Then  OA
→

   =   a
→

   ;   OB
→

   =  b
→

  
 

Fig. 2. 14 

 Let P divide AB externally in the ratio m : n. Let the position vector of P 

with respect to O be r
→

  i.e. OP
→

  = r
→
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We have  
AP
PB  = 

m
n   ⇒ n AP = m PB 

⇒ n AP
→

  = − m PB
→

  






AP

→
 & PB

→

are in the opposite direction
  

⇒ n ( )OP
→

 − OA
→

   = − m ( )OB
→

 − OP
→

     ⇒   n( )r
→

 − a
→

 =  m( )r
→

 − b
→

 

⇒ n r
→

  − n a
→

  = m r
→

  − m b
→

  ⇒ m b
→

  − n a
→

  = m r
→

  − n r
→

  

⇒ m b
→

  − n a
→

  = (m − n) r
→

     

r
→

 = 
m b

→
 − n a

→

m − n
 

Theorem 2.8:  The medians of a triangle are concurrent. 
Proof: 
 Let ABC be a triangle and let D, E, F be the mid points of its sides BC, CA 
and AB respectively. We have to prove that the medians AD, BE, CF are 
concurrent. 

 Let O be the origin and a
→

 , b
→

 , c
→

  be the position vectors of A, B, C 
respectively. 
 The position vectors of D, E, F are 

 
b
→

 + c
→

2   , 
c
→

 + a
→

2   , 
a
→

 + b
→

2   

 Let G1 be the point on AD dividing it 

internally in the ratio 2 : 1  
Fig. 2. 15 

 ∴  P.V. of G1 = 
2OD

→
 + 1OA

→

2 + 1  

   OG1
→

  = 
2







b
→

 + c
→

2  + 1 a
→

3   =  
a
→

 + b
→

 + c
→

3    (1) 

 Let G2 be the point on BE dividing it internally in the ratio 2 : 1 

 ∴  OG2
→

  = 
2 OE

→
 + 1 OB

→

2 + 1  
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   OG2
→

  = 
2







c
→

 + a
→

2  + 1. b
→

3   =  
a
→

 + b
→

 + c
→

3    (2) 

 Similarly if G3 divides CF in the ratio 2 : 1 then 

   OG3
→

  = 
a
→

 + b
→

 + c
→

3    (3) 

 From (1), (2), (3) we find that the position vectors of  the three points  
G1, G2, G3 are one and the same. Hence they are not different points. Let the 

common point be denoted by G. 

 Therefore the three medians are concurrent and the point of  
concurrence is G. 

Result:  
 The point of intersection of the three medians of a triangle is called the 
centroid of the triangle. 

 The position vector of the centroid G of ∆ABC is OG
→

  = 
a
→

 + b
→

 + c
→

3   

where a
→

 , b
→

 , c
→

  are the position vectors of the vertices A, B, C respectively 
and O is the origin of reference. 

Example 2.1: If a
→

 , b
→

 , c
→

  be the vectors represented by the three sides of a 

triangle, taken in order, then prove that a
→

  + b
→

  + c
→

  = O
→

  
Solution: 
 Let ABC be a triangle such that  

 BC
→

  = a
→

 , CA
→

  = b
→

  and AB
→

  = c
→

  

 a
→

  + b
→

  + c
→

  = BC
→

  + CA
→

  + AB
→

  

  = BA
→

  + AB
→

   (∴ BC
→

  + CA
→

  = BA
→

   

  = BB
→

    = O
→

    

 
Fig. 2. 16 

Example 2.2: 

 If a
→

  and b
→

  are the vectors determined by two adjacent sides of a regular 
hexagon, find the vectors determined by the other sides taken in order. 
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Solution: 
 Let ABCDEF be a regular hexagon  

 such that  AB
→

  = a
→

  and BC
→

  = b
→

  
 Since AD || BC such that AD = 2.BC 

 ∴  AD
→

  = 2 BC
→

  = 2 b
→

  

 In ∆ABC, we have AB
→

  + BC
→

  = AC
→

  

 ⇒ AC
→

  = a
→

  + b
→

  

 In ∆ACD,  AD
→

  = AC
→

  + CD
→

  
 

Fig. 2. 17 

 ∴   CD
→

  = AD
→

  − AC
→

    =  2 b
→

  − ( )a
→

 + b
→

 = b
→

  − a
→

  

  DE
→

  = − AB
→

  = − a
→

  

   EF
→

  = − BC
→

  = − b
→

  

   FA
→

  = − CD
→

  = − ( )b
→

 − a
→

 = a
→

  − b
→

  

Example 2.3: 

 The position vectors of the points  A, B, C, D are a
→

 , b
→

 , 2 a
→

  + 3 b
→

 ,  

a
→

  − 2 b
→

  respectively. Find DB
→

  and AC
→

  

Solution:  Given that  

 OA
→

  = a
→

    ;    OB
→

  = b
→

    ;   OC
→

  = 2 a
→

  + 3 b
→

    ;   OD
→

  = a
→

  − 2 b
→

  

 DB
→

  = OB
→

 − OD
→

  =  b
→

  − ( )a
→

 − 2 b
→

 = b
→

  − a
→

  + 2 b
→

  = 3 b
→

  − a
→

  

 AC
→

  = OC
→

  − OA
→

  

  = ( )2a
→

 + 3b
→

 − a
→

  

  = a
→

  + 3 b
→

  
Example 2.4:  Find the position vector of the points which divide the join of the 

points A and B whose P.Vs are  a
→

  − 2 b
→

  and 2 a
→

  − b
→

  internally and 
externally in the ratio 3 : 2 
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Solution: 

 OA
→

  = a
→

  − 2 b
→

   ;  OB
→

  = 2 a
→

  − b
→

  

 Let P divide AB internally in the ratio 3 : 2 

 P.V. of P = 
3 OB

→
 + 2OA

→

3 + 2   =  
3( )2 a

→
 − b

→
 + 2( )a

→
 − 2 b

→

5   

  = 
6 a
→

 − 3 b
→

 + 2 a
→

 − 4 b
→

5   =  
8 a
→

 − 7 b
→

5   =  
8
5  a

→
  − 

7
5  b

→
  

Let Q divide AB externally in the ratio 3 : 2 

 P.V. of Q = 
3 OB

→
 − 2OA

→

3 − 2
  = 

3( )2 a
→

 − b
→

 − 2( )a
→

 − 2 b
→

1   

  = 6 a
→

  − 3 b
→

  − 2 a
→

  + 4 b
→

   =  4 a
→

  + b
→

  

Example 2.5: If a
→

  and b
→

  are position vectors of points A and B respectively, 
then find the position vector of points of trisection of AB. 

Solution: 
Let P and Q  be the points of 
trisection of AB 
Let AP = PQ = QB = λ (say) 
P divides AB in the ratio 1 : 2 

 

 
Fig. 2. 18 

 P.V. of P  = OP
→

  = 
1.OB

→
 + 2.OA

→

1 + 2  = 
1. b

→
 + 2. a

→

3  =  
b
→

 + 2 a
→

3  

Q is the mid-point of PB 

 P.V. of Q = 
OP
→

 + OB
→

2 =

b
→

 + 2 a
→

3  + b
→

2   = 

b
→

 + 2 a
→

 + 3 b
→

3
2    = 

2 a
→

 + 4 b
→

6  

  = 
a
→

 + 2 b
→

3    

Example 2.6: By using vectors, prove that a quadrilateral is a parallelogram if 
and only if the diagonals bisect each other. 
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Solution: 
Let ABCD be a quadrilateral  

First we assume that ABCD is a parallelogram 

To prove that its diagonals bisect each other 

Let O be the origin of reference. 

∴ OA
→

  = a
→

 , OB
→

  = b
→

 , OC
→

  = c
→

 , OD
→

  = d
→

  

Since ABCD is a parallelogram AB
→

  = DC
→

  
Fig. 2. 19 

  ⇒ OB
→

  − OA
→

  = OC
→

 − OD
→

     ⇒    b
→

  − a
→

   =  c
→

  − d
→

  

  ⇒ b
→

  + d
→

  = a
→

  + c
→

          ⇒    
b
→

 + d
→

2   = 
a
→

 + c
→

2   

 i.e. P.V. of the mid-point of BD = P.V. of the mid-point of AC. Thus, the 
point, which bisects AC also, bisects BD. Hence the diagonals of a 
parallelogram ABCD bisect each other. 

 Conversely suppose that ABCD is a quadrilateral such that its diagonals 
bisect each other. To prove that it is a parallelogram.  

 Let a
→

 , b
→

 , c
→

 , d
→

  be the position vectors of its vertices A, B, C and D 
respectively. Since diagonals AC and BD bisect each other. 

 P.V. of the mid-point of AC = P.V. of the mid-point of BD 

  ⇒ 
a
→

 + c
→

2   = 
b
→

 + d
→

2    ⇒  a
→

  + c
→

  =  b
→

  + d
→

  … (1) 

  ⇒ b
→

  − a
→

  = c
→

  − d
→

   i.e.  AB
→

   =  DC
→

  

 Also (1)  ⇒ d
→

  − a
→

  = c
→

  − b
→

      i.e.     AD
→

   =  BC
→

  

 Hence ABCD is a parallelogram. 

Example 2.7:  

 In a triangle ABC if D and E are the midpoints of sides AB and AC 

respectively,  show that BE
→

  + DC
→

  = 
3
2  BC

→
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Solution: 

For convenience we choose A as the origin. 

Let the position vectors of B and C be b
→

  and 

c
→

  respectively. Since D and E are the  
mid-points of AB and AC, the position vectors 

of D and E are 
b
→

2  and 
c
→

2  respectively. 
 

Fig. 2. 20 

 Now BE
→

  = P.V. of E − P.V. of B   =   
c
→

2  − b
→

  

  DC
→

  = P.V. of C − P.V. of D   =   c
→

  − 
b
→

2  

  ∴  BE
→

  + DC
→

  = 
c
→

2  − b
→

  + c
→

  − 
b
→

2       =    
3
2  c

→
  − 

3
2  b

→
  

   = 
3
2  ( )c

→
 − b

→
                 =  

3
2  [P.V. of C − P.V. of B] 

   = 
3
2  BC

→
  

Example 2.8: Prove that the line segment joining the mid-points of two sides of 
a triangle is parallel to the third side and equal to half of it. 
Solution: 
 Let ABC be a triangle, and let O be the 
origin of reference. Let D and E be the 
midpoints of AB and AC respectively. 

Let OA
→

  = a
→

 ,   OB
→

  = b
→

 ,  OC
→

  = c
→

  

P.V. of D = OD
→

  = 
a
→

 + b
→

2     
Fig. 2. 21 

 P.V. of E  = OE
→

  = 
a
→

 + c
→

2   

 Now DE
→

  = OE
→

  − OD
→

 = 







a
→

 + c
→

2  − 







a
→

 + b
→

2   
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   = 
a
→

+ c
→

− a
→

− b
→

2  = 
1
2  ( )c

→
− b
→

  = 
1
2  ( )OC

→
 − OB

→
  = 

1
2  BC

→
  

 ∴ DE
→

  = 
1
2  BC

→
     ⇒     DE || BC 

      Also  DE
→

  = 
1
2  BC

→
     ⇒ | |DE

→
  =  

1
2  | |BC

→
   ⇒   DE  =  

1
2  BC 

 Hence DE || BC and DE = 
1
2  BC. 

Example 2.9: Using vector method, prove that the line segments joining the 
mid-points of the adjacent sides of a quadrilateral taken in order form a 
parallelogram. 
Solution:  
  Let ABCD be a quadrilateral and let P, Q, 
R, S be the mid-points of the sides AB, BC, 
CD and DA respectively. 
  Then the position vectors of P, Q, R, S are  

 
a
→

 + b
→

2  , 
b
→

 + c
→

2  , 
c
→

 + d
→

2  , 
d
→

 + a
→

2   

respectively.  
Fig. 2. 22 

 In order to prove that PQRS is a parallelogram it is sufficient to show that   

PQ
→

  = SR
→

  and PS
→

  = QR
→

  

 Now  PQ
→

  = P.V. of Q − P.V. of P =  







b
→

 + c
→

2  − 







a
→

 + b
→

2  = 
c
→

 − a
→

2   

 SR
→

  = P.V. of R − P.V. of S  = 







c
→

 + d
→

2  − 







d
→

 + a
→

2  = 
c
→

 − a
→

2   

 ∴  PQ
→

  = SR
→

  
 ⇒PQ || SR and PQ = SR 
 Similarly we can prove that PS = QR and PS || QR 
 Hence PQRS is a parallelogram. 
Example 2.10 :  

  Let a
→

 , b
→

 , c
→

  be the position vectors of three distinct points A, B, C. If 

there exists scalars l, m, n (not all zero) such that l a
→

 +m b
→

 +n c
→

 = 0 and l + m 
+ n = 0 then show that A, B and C lie on a line. 
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Solution: 
 It is given that l, m, n  are not all zero. So, let n be a non-zero scalar. 

 l a
→

  + m b
→

  + n c
→

  = 0     ⇒   n c
→

   =  − ( )l a
→

 + m b
→

 

 c
→

  = − 
( )l a

→
 + m b

→

n     ⇒   c
→

   =  − 
( )l a

→
 + m b

→

− (l + m)
  = 

l a
→

 + m b
→

l + m   

 ⇒ The point C divides the line joining A and B in the ratio m : l 
  Hence A, B and C lies on the same line. 

Note : a
→

 , b
→

  are collinear vectors⇒ a
→

 = λ b
→

  or b
→

  = λ a
→

  for some scalar λ 

Collinear points:  If A, B, C are three points in a plane such that AB
→

  = λ BC
→

  

or AB
→

  = λAC
→

  (or)  BC
→

  = λAC
→

  for some scalar λ, then A, B, C are 
collinear. 
Example 2.11:  Show that the points with position vectors  

       a
→

  − 2 b
→

  + 3 c
→

 , − 2 a
→

  + 3 b
→

  − c
→

  and  4 a
→

  − 7 b
→

  + 7 c
→

  are collinear. 

Solution:  

 Let A, B, C be the points with position vectors 

  a
→

  − 2 b
→

  + 3 c
→

 , − 2 a
→

  + 3 b
→

  − c
→

  and  4 a
→

  − 7 b
→

  + 7 c
→

  respectively. 

 OA
→

  = a
→

  − 2 b
→

  + 3 c
→

 ,  OB
→

  = −2 a
→

  + 3 b
→

 − c
→

 , OC
→

  = 4 a
→

  − 7 b
→

  + 7 c
→

  

 AB
→

  = OB
→

 − OA
→

   =  ( )− 2 a
→

 + 3 b
→

 − c
→

  − ( )a
→

 − 2 b
→

 + 3 c
→

  

  = − 2 a
→

  + 3 b
→

  − c
→

  − a
→

  + 2 b
→

  − 3 c
→

   =  −  3 a
→

  + 5 b
→

  − 4 c
→

  

 BC
→

  = OC
→

  − OB
→

   =  ( )4 a
→

 − 7 b
→

 + 7 c
→

  − ( )− 2 a
→

 + 3 b
→

 − c
→

  

  = 4 a
→

  − 7 b
→

  + 7 c
→

  + 2 a
→

  − 3 b
→

  + c
→

   =  6 a
→

  − 10 b
→

  + 8 c
→

  

Clearly BC
→

  = 6 a
→

  − 10 b
→

  + 8 c
→

   =  − 2 ( )− 3 a
→

 +5 b
→

 − 4 c
→

  =  − 2( )AB
→

  

 ⇒ AB
→

  and BC
→

  are parallel vectors but B is a point common to them. 

So AB
→

  and BC
→

  are collinear vectors. Hence A, B, C are collinear points. 
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EXERCISE 2.1 

 (1) If a
→

  and b
→

  represent two adjacent sides AB
→

  and BC
→

  respectively of 

a paralleogram ABCD. Find the diagonals AC
→

  and BD
→

 . 

 (2) If PO
→

  + OQ
→

  = QO
→

  + OR
→

 , show that the points P, Q, R are collinear. 
 (3) Show that the points with position vectors  

  a
→

  − 2 b
→

  + 3 c
→

 , − 2 a
→

  + 3 b
→

  + 2 c
→

  and − 8 a
→

  + 13 b
→

  are collinear. 

 (4) Show that the points A, B, C with position vectors − 2 a
→

  + 3 b
→

  + 5 c
→

 ,  

a
→

  + 2 b
→

  + 3 c
→

  and 7 a
→

  − c
→

  respectively, are collinear. 
 (5) If D is the mid-point of the side BC of a triangle ABC, prove that  

AB
→

  + AC
→

  = 2AD
→

  

 (6) If G is the centroid of a triangle ABC, prove that GA
→

 +GB
→

 +GC
→

  = O
→

  

 (7) If ABC and A′B′C′ are two triangles and G, G′ be their corresponding 

centroids, prove that AA′
→

   + BB′
→

  + CC′
→

  = 3GG′
→

  
 (8) Prove that the sum of the vectors directed from the vertices to the  

mid-points of opposite sides of a triangle is zero 
 (9) Prove by vector method that the line segment joining the mid-points of 

the diagonals of a trapezium is parallel to the parallel sides and equal to 
half of their difference. 

 (10) Prove by vector method that the internal bisectors of the angles of a 
triangle are concurrent. 

 (11) Prove using vectors the mid-points of two opposite sides of a 
quadrilateral and the mid-points of the diagonals are the vertices of a 
parallelogram. 

 (12) If ABCD is a quadrilateral and E and F are the mid-points of AC and 

BD respectively, prove that AB
→

  + AD
→

  + CB
→

  + CD
→

  = 4 EF
→

  
2.5 Resolution of a Vector 
Theorem 2.9 (Without Proof) : 

 Let a
→

  and b
→

  be two non-collinear vectors and r
→

  be a vector coplanar 

with them. Then r
→

  can be expressed uniquely as  r
→

  = l a
→

  + m b
→

  where l, m 
are scalars. 
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Note : We call l a
→

  + m b
→

  as a linear combination of vectors a
→

  and b
→

 , where 
l, m are scalars. 
Rectangular resolution of a vector in two dimension 
Theorem 2.10 :  
 If P is a point in a two dimensional plane which has coordinates (x, y)   

 then OP
→

  = x i
→

  + y j
→

 , where i
→

  and j
→

  are unit vectors along OX and 
OY respectively. 
Proof: 
   Let P(x, y) be a point in a plane with 
reference to OX and OY as  
co-ordinate axes as shown in the 
figure. 
   Draw PL perpendicular to OX. 
   Then OL = x and LP = y 

   Let i
→

 , j
→

  be the unit vectors along 
OX and OY respectively. 

 

 
Fig. 2. 23 

 Then OL
→

  = x i
→

  and LP
→

  = y j
→

  

 Vectors OL
→

  and LP
→

  are known as the components of OP
→

  along x-axis 
and y-axis respectively. 
 Now by triangle law of addition 

  OP
→

  = OL
→

  + LP
→

   =  x i
→

 + y j
→

   =  r
→

   (say) 

  ∴   r
→

  = x i
→

 + y j
→

  

 Now  OP2 = OL2 + LP2  =  x2 + y2 

 ⇒ OP = x2 + y2   ⇒  | |r
→

   =  x2 + y2  

 Thus, if a point P in a plane has coordinates (x, y) then 

 (i) r
→

  = OP
→

  = x i
→

  + y j
→

  

 (ii) | |r
→

  = | |OP
→

  = | |x i
→

 + y j
→

  = x2 + y2  

 (iii) The component of OP
→

  along x-axis is a vector x i
→

  and the 

component of OP
→

  along y-axis is a vector y j
→
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Components of a vector AB
→

  in terms of coordinates of A and B 
  Let A(x1, y1) and B(x2, y2) be any two 

points in XOY plane. Let i
→

 and j
→

  be 
unit vectors along OX and OY 
respectively. 

  AN = x2 − x1 ,   BN =  y2 − y1 

  ∴   AN
→

  = (x2 − x1) i
→

  ,   NB
→

   

                 = (y2 − y1) j
→

  

  Now by triangle law of addition 

 

 
Fig. 2. 24 

 AB
→

  = AN
→

  + NB
→

  = (x2 − x1) i
→

  + (y2 − y1) j
→

  

 Component of AB
→

  along x-axis = (x2 − x1) i
→

  

 Component of AB
→

  along y-axis = (y2 − y1) j
→

  

 AB2 = AN2 + NB2  =  (x2 − x1)2 + (y2 − y1)2 

 ⇒    AB = (x2 − x1)2 + (y2 − y1)2   

 which gives the distance between A and B. 

Addition, Subtraction, Multiplication of a vector by a scalar and equality 
of vectors in terms of components: 

  Let      a
→

  = a1 i
→

  + a2 j
→

  and   b
→

  = b1 i
→

  + b2 j
→

  

We define 

 (i) a
→

  + b
→

  = 



a1 i

→
 + a2 j

→
  + 



b1 i

→
 + b2 j

→
  = (a1 + b1) i

→
  + (a2 + b2) j

→
  

  (ii) a
→

  − b
→

  = 



a1 i

→
 + a2 j

→
  − 



b1 i

→
 + b2 j

→
  = (a1 − b1) i

→
  + (a2 − b2) j

→
  

 (iii)  m a
→

  = m 



a1 i

→
 + a2 j

→
   = ma1 i

→
  + ma2 j

→
       where m is a scalar 

 (iv) a
→

  = b
→

   ⇒  a1 i
→

  + a2 j
→

   =  b1 i
→

  + b2 j
→

   ⇒  a1 =  b1 and a2 = b2 

Example 2.12: Let O be the origin and P(− 2, 4) be a point in the xy-plane. 

Express OP
→

  in terms of vectors i
→

  and j
→

 . Also find | |OP
→
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Solution:  The position vector of P,  OP
→

   =  − 2 i
→

  + 4 j
→

  

   | |OP
→

  = | |− 2 i
→

 + 4 j
→

  = (− 2)2 + (4)2  = 4 + 16  = 20  

    = 2 5  
Example 2.13: Find the components along the coordinates of the position 
vector of P(− 4, 3) 
Solution: 

 The position vector of P = OP
→

  = − 4 i
→

  + 3 j
→

  

 Component of OP
→

  along x-axis is − 4 i
→

  

 i.e. component of OP
→

  along x-axis is a vector of magnitude 4 and its 
direction is along the negative direction of x-axis. 

 Component of OP
→

  along y-axis is 3 j
→

  

 i.e. the component of OP
→

  along y –axis is a vector of magnitude 3, having 
its direction along the positive direction of y-axis. 

Example 2.14: Express AB
→

  in terms of unit vectors i
→

  and j
→

 , where the 

points are A(− 6, 3) and  B(− 2, − 5). Find also | |AB
→

  

Solution: 

 Given OA
→

  = − 6 i
→

  + 3 j
→

   ;   OB
→

  = − 2 i
→

  − 5 j
→

  

   ∴ AB
→

  = OB
→

  − OA
→

   =  ( )− 2 i
→

 − 5 j
→

  − ( )− 6 i
→

 + 3 j
→

  

    = 4 i
→

  − 8 j
→

  

   | |AB
→

  = | |4 i
→

 − 8 j
→

  = (4)2 + (− 8)2  = 16 + 64  = 80  

    = 4 5  

Theorem 2.11 (Without Proof) : 

 If a
→

 , b
→

 , c
→

  are three given non-coplanar vectors then every vector r
→

  in 

space can be uniquely expressed as r
→

  = l a
→

  + m b
→

  + n c
→

  for some scalars l, 
m and n 
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Rectangular Resolution of a vector in three dimension 
Theorem 2.12: 

 If a point P in space has coordinate (x, y, z) then its position vector r
→

  is 

x i
→

  + y j
→

  + z k
→

  and | |r
→

  = x2 + y2 + z2  where i
→

, j
→

, k
→

 are unit vectors 
along OX, OY and OZ respectively. 
Proof: 
 OX, OY, OZ are three mutually 

perpendicular axes. i
→

, j
→

, k
→

 are unit 
vectors along OX, OY, OZ respectively. 
Let P be any point (x, y, z) in space and let 

OP
→

  = r
→

 
 Draw PQ perpendicular to XOY 
plane and QR perpendicular to OX 
 Then  OR = x ; RQ = y ; QP = z 

 ∴ OR
→

  = x i
→

 ; RQ
→

  = y j
→

 ; QP
→

  = z k
→

 
 

Fig. 2. 25 

 Now OP
→

  = OQ
→

  + QP
→

  = OR
→

  + RQ
→

 + QP
→

  

   OP
→

  = x i
→

 + y j
→

 + z k
→

  ⇒ r
→

 = x i
→

 + y j
→

 + z k
→

 

 Thus if P is a point (x, y, z) and r
→

 is the position vector of P, then  

r
→

 = x i
→

 + y j
→

 + z k
→

 

 From the right angled triangle OQP,    OP2 =OQ2 + QP2 

 From the right angled triangle ORQ,   OQ2 =OR2 + RQ2 

            ∴ OP2 = OR2 + RQ2 + QP2  ⇒ OP2 = x2 + y2 + z2 

   ⇒ OP = x2 + y2 + z2  ⇒ r = x2 + y2 + z2  

   ∴r = | |r
→

  = x2 + y2 + z2  

2.6 Direction cosines and direction ratios 
 Let P(x, y, z) be any point in space with reference to a rectangular 
coordinate  system O (XYZ). Let α, β and γ be the angles made by OP with the 
positive direction of coordinate axes OX, OY, OZ respectively. Then cosα, 

cosβ, cosγ are called the direction cosines of OP
→

 . 
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In the fig 2.25     OQP   = 90° ; POZ   = γ   ∴ OPQ   = γ     (‡QP || OZ) 

  ∴ cosγ = 
PQ
OP  ⇒ cosγ = 

z
r   Similarly  cosα = 

x
r and cosβ = 

y
r  

 ∴ The direction cosines of OP
→

  are 
x
r,   

y
r,   

z
r      where r = x2 + y2 + z2  

Result 1:  Sum of the squares of direction cosines is unity. 

 cos2α + cos2β + cos2γ = 



x

r
2
 + 



y

r
2
 + 



z

r
2
  =  

x2 + y2 + z2

r2   

  = 
r2

r2   =  1 [ ‡  r2 = x2 + y2 + z2] 

  ∴ cos2α + cos2β + cos2γ = 1  
Result 2: Sum of the squares of direction sines is 2. 

  sin2α + sin2β + sin2γ = (1 − cos2α) + (1 − cos2β) + (1 − cos2γ) 

   = 3 − [cos2α + cos2β + cos2γ] =  3 − 1  = 2 

∴  sin2α + sin2β + sin2γ = 2 

Direction ratios: 
 Any three numbers proportional to direction cosines of a vector are called 
its direction ratios. (d. r’s). 

 Let        r
→

 = x i
→

 + y j
→

 + z k
→

 be any vector 

   ⇒   Direction cosines of r
→

 are 
x
r,   

y
r,   

z
r      where r = x2 + y2 + z2 

 ⇒  cos α = 
x
r   ;  cos β  = 

y
r   ; cos γ =  

z
r  where α, β, γ be the angles made 

by r
→

 with the coordinate axes  OX, OY, OZ respectively 

 ⇒  
x

cosα  = r ,  
y

cosβ  = r,   
z

cosγ  = r 

 ⇒   
x

cosα  = 
y

cosβ  = 
z

cosγ  = r 

 ⇒  x : y : z = cosα : cosβ : cosγ 
 i.e. the coefficients of i, j, k in the rectangular resolution of a vector are 
proportional to the direction cosines of that vector. 

 ∴ x,  y,  z   are the direction ratios of the vector r
→

 = x i
→

 + y l
→

 + z k
→
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Addition, Subtraction and Multiplication of a vector by a scalar and 
equality in terms of components: 

 Let a
→

  = a1 i
→

 + a2 j
→

 + a3 k
→

 and  b
→

 = b1 i
→

 + b2 j
→

 + b3 k
→

  be any two 

vectors. 
Then  

 (i)  a
→

  + b
→

 = ( )a1 + b1 i
→

 + ( )a2 + b2 j
→

 + ( )a3 + b3 k
→

  

 (ii)  a
→

  − b
→

 = ( )a1 − b1 i
→

 + ( )a2 − b2 j
→

 + ( )a3 − b3 k
→

 

 (iii)  m a
→

  = m



a1 i

→
 + a2 j

→
 + a3 k

→
  

    = ma1 i
→

 + ma2 j
→

 + ma3 k
→

     where m is a scalar 

 (iv)  a
→

  = b
→

 ⇔ a1 = b1, a2 = b2 and a3 = b3 

Distance between two points: 
 Let A (x1, y1, z1) and B(x2, y2, z2) be any two points 

  Then AB
→

  = OB
→

 − OA
→

  

    = 



x2 i

→
 + y2 j

→
 + z2 k

→
 − 



x1 i

→
 + y1 j

→
 + z1 k

→
 

    = (x2 − x1) i
→

 + (y2 − y1) j
→

 + (z2 − z1) k
→

 

 ∴The distance between A and B is  AB = | |AB
→

  

 | |AB
→

  = 



(x2 − x1) i

→
 + (y2 − y1) j

→
 + (z2 − z1) k

→
   

  = (x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2  

Example 2.15:  Find the magnitude and direction cosines of  2 i
→

 − j
→

 + 7 k
→

 
Solution: 

 Magnitude of 2 i
→

 − j
→

 + 7 k
→

 = | |2 i
→

 − j
→

 + 7 k
→

 = (2)2 + (− 1)2 + (7)2  

  = 4 + 1 + 49  = 54  = 3 6  

 Direction cosines of 2 i
→

 − j
→

 + 7 k
→

 are 
2

3 6
 ,  − 

1
3 6

 ,   
7

3 6
 

Example 2.16:  Find the unit vector in the direction of 3 i
→

 + 4 j
→

 − 12 k
→
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Solution:    Let a
→

  = 3 i
→

 + 4 j
→

 − 12 k
→

  

 | |a
→

  = | |3 i
→

 + 4 j
→

 − 12 k
→

= (3)2 + (4)2 + (− 12)2  

  = 9 + 16 + 144  = 169  = 13 

Unit vector in the direction of a
→

  is   â  = 
a
→

| |a
→

  = 
3 i
→

 + 4 j
→

 − 12 k
→

13   

Example 2.17:  Find the sum of the vectors i
→

 − j
→

 + 2 k
→

 and  2 i
→

 + 3 j
→

 − 4 k
→

 
and also find the modulus of the sum. 
Solution: 

  Let a
→

  = i
→

 − j
→

 + 2 k
→

 ,  b
→

  = 2 i
→

 + 3 j
→

 − 4 k
→

 

   a
→

  + b
→

  = ( )i
→

 − j
→

 + 2 k
→

  + ( )2 i
→

 + 3 j
→

 − 4 k
→

  = 3 i
→

 + 2 j
→

 − 2 k
→

 

   | |a
→

 + b
→

  = 32 + 22 + (− 2)2  = 9 + 4 + 4  

    = 17  
Example 2.18: If the position vectors of the two points A and B  

 are i
→

 + 2 j
→

 − 3 k
→

 and  2 i
→

 − 4 j
→

 + k
→

 respectively then find | |AB
→

  
Solution: 

 If O be the origin, then   OA
→

  = i
→

 + 2 j
→

 − 3 k
→

,  OB
→

  = 2 i
→

 − 4 j
→

 + k
→

 

   AB
→

 = OB
→

  − OA
→

   

   =  ( )2 i
→

 − 4 j
→

 + k
→

  − ( )i
→

 + 2 j
→

 − 3 k
→

  

    = i
→

 − 6 j
→

 + 4 k
→

 

   | |AB
→

  = (1)2 + (− 6)2 + (4)2 = 53 

Example 2.19:  Find the unit vectors parallel to the vector − 3 i
→

 + 4 j
→

 

Solution:  Let  a
→

  = − 3 i
→

 + 4 j
→

 

   | |a
→

  = (− 3)2 + 42  = 9 + 16   = 5 
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   â = 
a
→

| |a
→

  = 
1

 | |a
→

  a
→

   =  
1
5  ( )− 3 i

→
 + 4 j

→
 

  Unit vectors parallel to a
→

   are ±  â  = ±  



− 3

5    i
→

  + 
4
5 j

→
  

Example 2.20: Find the vectors of magnitude 5 units, which are parallel to the 

vector 2 i
→

 − j
→

 

Solution:  Let a
→

  = 2 i
→

 − j
→

 

   | |a
→

 = 22 + (− 1)2  = 5  

   â  = 
a
→

| |a
→

  = 
1
5

  ( )2 i
→

 − j
→

  =  
2
5

  i
→

 − 
1
5

  j
→

 

 Vectors of magnitude 5 parallel  to 2 i
→

 − j
→

 = ± 5 â  

    =   ± 5  




2

5
 i
→

 − 
1
5

 j
→

 =  ± ( )2 5 i
→

 − 5 j
→

 

Example 2.21: Show that the points whose position vectors  2 i
→

 + 3 j
→

 − 5 k
→

, 

3 i
→

 + j
→

 − 2 k
→

 and  6 i
→

 − 5 j
→

 + 7 k
→

 are collinear. 
Solution:  Let the points be A, B and C  and O be the origin.  Then 

 OA
→

  = 2 i
→

  + 3 j
→

  − 5 k
→

  ;   OB
→

 = 3 i
→

 + j
→

 − 2 k
→

 ; OC
→

 = 6 i
→

 − 5 j
→

 + 7 k
→

 

∴ AB
→

 = OB
→

  − OA
→

  = ( )3 i
→

  + j
→

  − 2 k
→

  − ( )2 i
→

  + 3 j
→

  − 5 k
→

  

  = i
→

 − 2 j
→

 + 3 k
→

 

 AC
→

  = OC
→

  − OA
→

   = ( )6 i
→

  − 5 j
→

  + 7 k
→

  − ( )2 i
→

  + 3 j
→

  − 5 k
→

  

 AC
→

  = 4 i
→

 − 8 j
→

 + 12 k
→

  = 4 ( )i
→

  − 2 j
→

  + 3 k
→

  

  = 4 AB
→

  

 Hence the vectors AB
→

  and AC
→

  are parallel. Further they have the 
common point A. 
 ∴ The points A, B, C are collinear. 



 67

Example 2.22:  If the position vectors of A and B are 3 i
→

 − 7 j
→

 − 7 k
→

 and  

     5 i
→

+4 j
→

+3 k
→

 , find AB
→

  and determine its magnitude and direction cosines. 
Solution: 
 Let O be the origin. Then 

   OA
→

  = 3 i
→

 − 7 j
→

 − 7 k
→

,  OB
→

  = 5 i
→

 + 4 j
→

 + 3 k
→

 

   AB
→

  = OB
→

  − OA
→

   =  ( )5 i
→

 + 4 j
→

 + 3 k
→

 − ( )3 i
→

 − 7 j
→

 − 7 k
→

  

   AB
→

  = 2 i
→

 + 11 j
→

 + 10 k
→

 

   | |AB
→

  = (2)2 + (11)2 + (10) 2  = 15 

  The direction cosines are 
2
15 ,  

11
15 ,  

10
15 

EXERCISE  2.2 

 (1) Find the sum of the vectors 4 i
→

 + 5 j
→

 + k
→

, − 2 i
→

 + 4 j
→

 − k
→

 and 

 3 i
→

 − 4 j
→

 + 5 k
→

 . Find also the magnitude of the sum. 

 (2) If a
→

 = 3 i
→

 − j
→

 − 4 k
→

,  b
→

 = − 2 i
→

 + 4 j
→

− 3 k
→

 and c
→

= i
→

+ 2 j
→

− k
→

   

find | |2 a
→

 − b
→

 + 3 c
→

  

 (3) The position vectors of the vertices A, B, C of a triangle ABC are 
respectively 

  2 i
→

 + 3 j
→

 + 4 k
→

,  − i
→

 + 2 j
→

− k
→

 and 3 i
→

− 5 j
→

+ 6 k
→

 
  Find the vectors determined by the sides and calculate the length of the 

sides. 
 (4) Show that the points whose position vectors given by  

  (i) − 2 i
→

 + 3 j
→

 + 5 k
→

, i
→

 + 2 j
→

 + 3 k
→

,  7 i
→

 − k
→

 

  (ii) i
→

 − 2 j
→

 + 3 k
→

,  2 i
→

 + 3 j
→

 − 4 k
→

 and − 7 j
→

 + 10 k
→

 are collinear. 

 (5) If the vectors a
→

 = 2 i
→

 − 3 j
→

 and b
→

 = − 6 i
→

 + m j
→

 are collinear, find the 
value of m. 

 (6) Find  a unit vector in the direction of i
→

 + 3  j
→
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 (7) Find the unit vectors parallel to the sum of 3 i
→

 − 5 j
→

 + 8 k
→

  

  and − 2 j
→

 − 2 k
→

 

 (8) Find the unit vectors parallel to 3 a
→

 − 2 b
→

 + 4 c
→

 where a
→

=3 i
→

− j
→

 −4 k
→

, 

   b
→

 = − 2 i
→

 + 4 j
→

 − 3 k
→

,  c
→

 = i
→

 + 2 j
→

 − k
→

 
 (9) The vertices of a triangle have position vectors  

  4 i
→

 + 5 j
→

 + 6 k
→

, 5 i
→

 + 6 j
→

 + 4 k
→

, 6 i
→

 + 4 j
→

 + 5 k
→

. Prove that the 
triangle is equilateral. 

 (10) Show that the vectors 2 i
→

 − j
→

 + k
→

,  3 i
→

 − 4 j
→

 − 4 k
→

 ,  i
→

 − 3 j
→

 − 5 k
→

 
form a right angled triangle. 

 (11) Prove that the points 2 i
→

 + 3 j
→

 + 4 k
→

,  3 i
→

 + 4 j
→

 + 2 k
→

,  4 i
→

+2 j
→

 + 3 k
→

 
form an equilateral triangle. 

 (12) If the vertices of a triangle have position vectors i
→

 + 2 j
→

 + 3 k
→

,  

  2 i
→

 + 3 j
→

 + k
→

 and 3 i
→

 + j
→

 + 2 k
→

, find the position vector of its 
centroid. 

 (13) If the position vectors of P and Q are i
→

 + 3 j
→

 − 7 k
→

  

  and 5 i
→

 − 2 j
→

 + 4 k
→

 , find PQ
→

  and determine its direction cosines. 
 (14) Show that the following vectors are coplanar 

  (i) i
→

 − 2 j
→

 + 3 k
→

,    − 2 i
→

 + 3 j
→

 − 4 k
→

,  − j
→

 + 2 k
→

 

  (ii) 5 i
→

 + 6 j
→

 + 7 k
→

,   7 i
→

 − 8 j
→

 + 9 k
→

,  3 i
→

 + 20 j
→

 + 5 k
→

 

 (15) Show that the points given by the vectors 4 i
→

 + 5 j
→

 + k
→

, − j
→

 − k
→

, 

  3 i
→

 + 9 j
→

 + 4 k
→

 and − 4 i
→

 + 4 j
→

 + 4 k
→

 are coplanar. 

 (16) Examine whether the vectors i
→

 + 3 j
→

 + k
→

 ,  2 i
→

 − j
→

 − k
→

  

  and 7 j
→

 + 5 k
→

 are coplanar. 
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3. ALGEBRA 
3.1 Partial Fractions: 
Definitions: 

Rational Expression:  An expression of the form 
p(x)
q(x)  where p(x) and  

q(x)  ≠ 0 are polynomials in x is called a rational expression. 

The expressions   
5x  − 2

x
2
 + 3x + 2

 ,   
3x

2 
+ 2x-1

x
2
 + x − 22

 are examples for rational 

expressions. 
Proper Fraction:  A proper fraction is one in which the degree of the 
numerator is less than the degree of the denominator. 

 The expressions  
3x + 1

x
2
 + 4x +3

 ,  
7x

2
 + 9

x
3
 + x

2
 – 5

    are examples for proper 

fractions. 
Improper Fraction: An improper fraction is a fraction in which the degree of 
the numerator is greater than or equal to the degree of the denominator. 

 The expressions 
x
3
 + 5x

2
 + 4

x
2
 + 2x + 3

  , 
x
2
 – x + 1

x
2
 + x + 3

   are examples for improper 

fractions. 
Partial Fraction: 

 Consider the sum of 
7

x – 2   and  
5

x – 1   

 We simplify it as follows: 

    
7

x – 2   +  
5

x– 1  = 
7(x – 1) + 5(x – 2)

(x – 2) (x − 1)
  = 

7x – 7 + 5x – 10
(x – 2) (x – 1)    = 

12x – 17
(x – 2) (x – 1)  

 Conversely the process of writing the given fraction 
12x – 17

(x – 2) (x – 1)  as 

7
x – 2  + 

5
x – 1  is known as splitting into partial fractions (or) expressing as 

partial fractions. 
 A given proper fraction can be expressed as the sum of other simple 
fractions corresponding to the factors of the denominator of the given proper 
fraction. This process is called splitting into Partial Fractions. If the given 

fraction 
p(x)
q(x)  is improper then convert into sum of a polynomial expression and 

a proper rational fraction by dividing  p(x)  by  q(x). 
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Working Rule : 

 Given the proper fraction  
p(x)
q(x)  .   Factorise q(x) into prime factors. 

Type 1: Linear factors, none of which is repeated. 
 If a linear factor ax + b is a factor of the denominator q(x) then 

corresponding to this factor associate a simple fraction 
A

ax + b , where A is a 

constant (A ≠ 0). 
   i.e., When the factors of the denominator of the given fraction are all linear 
factors none of which is repeated, we write the partial fraction as follows : 

 
x + 3

(x + 5) (2x + 1)  = 
A

x + 5  + 
B

2x + 1   where A and B are constants to 

be determined. 

Example 3.1: Resolve into partial fractions 
3x + 7

x
2
 – 3x + 2

   

 The denominator x
2
 – 3x + 2 can be factorised into linear factors. 

     x
2
  – 3x + 2 = x

2
 – x – 2x + 2 = x (x – 1) – 2 (x – 1) = (x – 1) (x – 2) 

 We assume  
3x + 7

x
2
 – 3x + 2

   =  
A

x – 1   +  
B

x – 2   where A and B are constants. 

 ⇒ 
3x + 7

x
2
 − 3x + 2

  = 
A(x − 2) + B(x − 1)

(x − 1) (x − 2)
  

 ⇒ 3x + 7 = A(x − 2) + B(x − 1) …(1) 
 Equating the coefficients of like powers of x, we get 
 Coefficient of x : A + B = 3 … (2) 
 Constant term : − 2A − B = 7 … (3) 
 Solving (2) and (3) we get 
   A = − 10 
   B = 13 

  ∴  
3x + 7

x
2
 − 3x + 2

  = 
− 10
x − 1

   +  
13

x − 2
  = 

13
x − 2

   −  
10

x − 1
  

Note: The constants A and B can also be found by successively giving suitable 
values for x. 
 To find A, put x = 1  in (1) 
  3(1) + 7 = A(1 − 2) + B(0) 
  10 = A (− 1) 
  A = − 10 
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 To find B, put x = 2 in (1) 
 3(2) + 7 = A(0) + B(2 − 1) 
 B = 13 

 ∴  
3x + 7

x
2
 − 3x + 2

  = 
− 10
x − 1

   +  
13

x − 2
  

 
3x + 7

x
2
 − 3x + 2

  = 
13

x − 2
   −  

10
x − 1

  

Example: 3.2: Resolve into partial fractions  
x + 4

(x
2
 − 4) (x + 1)

  

 The denominator (x
2
 − 4) (x + 1) can be further factored into linear factors 

 i.e.  (x
2
 − 4) (x + 1)  =  (x + 2) (x − 2) (x + 1)   

 Let 
x + 4

(x
2
 − 4) (x + 1)

  = 
A

x + 2  + 
B

x − 2
  + 

C
x + 1 , where A, B and C are 

constants to be determined. 

 
x + 4

(x
2
 − 4) (x + 1)

  = 
A(x − 2) (x + 1) + B(x + 2) (x + 1) + C(x + 2) (x − 2)

(x + 2) (x − 2) (x + 1)
  

 ⇒   x + 4 = A(x − 2) (x +1) + B(x + 2) (x + 1) + C(x + 2) (x − 2)  … (1) 
 To find A, put x = − 2 in (1) 
 − 2 + 4 = A (− 2 − 2) (− 2 + 1) + B(0) + C(0) 
 2 = 4A  ⇒      A = 1/2 
 To find B, put x = 2 in (1),     we get B = 1/2 
 To find C, put x = − 1 in (1),  we get C = − 1 

  ∴ 
x + 4

(x
2
 − 4) (x+ 1)

  = 
1/2

(x + 2)   +  
1/2

(x − 2)
   +  

(− 1)
x + 1  

 ⇒ 
x + 4

(x
2
 − 4) (x+ 1)

  = 
1

2(x + 2)   +  
1

2(x − 2)
   −  

1
x + 1  

Type 2: Linear factors, some of which are repeated 
 If a linear factor ax + b occurs n times as a factor of the denominator of the 
given fraction, then corresponding to these factors associate the sum of n simple 
fractions, 

 
A1

ax + b   +  
A2

(ax + b)2   +  
 A3

(ax + b)3  + … + 
An

(ax + b)n
  

 Where A1, A2, A3, … An are constants. 
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Example  3.3: Resolve into partial fractions 
 9

(x − 1) (x + 2)
2  

 Let 
 9

(x − 1) (x + 2)
2  = 

A
x − 1

   +  
B

x + 2   +  
C

(x + 2)
2  

 ⇒  
 9

(x − 1) (x + 2)
2  = 

A(x + 2)
2
 + B(x − 1) (x + 2) + C(x − 1)

(x − 1) (x + 2)
2   

 ⇒ 9 = A(x + 2)
2
 + B(x − 1) (x + 2) + C(x − 1) … (1) 

 To find A,   put   x = 1  in (1) 

  We get   9 = A (1 + 2)
2
     ⇒  A = 1 

 To find C, put  x = − 2  in (1) 
  We get 9 = C (− 2 − 1)   ⇒ C = − 3 

 In (1), equating the coefficient of x
2
 on both sides we get 

   A + B = 0 
  ⇒ 1 + B = 0     ⇒ B = − 1 

  ∴ 
 9

(x − 1) (x + 2)
2   = 

1
x − 1

   −  
1

x + 2   −  
3

(x + 2)
2  

Type 3: Quadratic factors, none of which is repeated 

 If a quadratic factor ax
2
 + bx + c which is not factorable into linear factors 

occurs only once as a factor of the denominator of the given fraction, then 

corresponding to this factor associate a partial fraction 
Ax + B

ax
2
 + bx + c

  where A 

and B are constants which are not both zeros. 

 Consider  
2x

(x + 1) (x
2
 + 1)

  

  We can write this proper fraction in the form
2x

(x + 1) (x
2
 + 1)

  = 
A

x + 1 +
Bx + C

x
2
 + 1

  

 The first factor of the denominator x + 1 is of first degree, so we assume its 

numerator as a constant A. The second factor of the denominator x
2
 +1 is of 2

nd
 

degree and which is not factorable into linear factors. We assume its numerator 
as a general first-degree expression Bx + C. 

Example 3.4: Resolve into partial fractions   
x
2
 − 2x − 9

(x
2
 + x + 6) (x + 1)
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 Let  
x
2
 − 2x − 9

(x
2
 + x + 6) (x + 1)

  = 
Ax + B

x
2
 + x + 6

   +  
C

x + 1  

 ⇒  
x
2
 − 2x − 9

(x
2
 + x + 6) (x + 1)

  = 
(Ax + B) (x + 1) + C(x

2
 + x + 6)

(x
2
 + x + 6) (x + 1)

  

 ⇒ x
2
 − 2x − 9 = (Ax + B) (x + 1)  + C(x

2
 + x + 6) … (1) 

 To find C   put   x = − 1  in (1) 
  We get   1 + 2 − 9 = C(1 − 1 + 6)  ⇒  C  = − 1 
 To find B, put  x = 0  in (1) 
  We get − 9 = B + 6C 
   − 9 = B − 6            ⇒    B = − 3 

To find A,  Put    x = 1 in (1) 
  1 − 2 − 9 = (A − 3) (2) + (− 1) (8)   ⇒  − 10 = 2A − 14 
  A = 2 

 ∴    
x
2
 − 2x − 9

(x
2
 + x + 6) (x + 1)

  = 
2x − 3

x
2
 + x + 6

   −  
1

x + 1  

Example 3.5: Resolve into partial fractions 
x
2
 + x + 1

x
2
 − 5x + 6

  

Solution: 
 Here the degree of the numerator is same as the degree of the denominator, 
i.e. an improper fraction. 

 On division     
x
2
 + x + 1

x
2
 − 5x + 6

  = 1 + 
6x − 5

x
2
 − 5x + 6

  … (1) 

 Let 
6x − 5

x
2
 − 5x + 6

  = 
A

x − 2
   +  

B
x − 3

  

  6x − 5 = A(x − 3)  +  B(x − 2) 
 By putting x = 2,  − A = 12 − 5    ⇒  A = − 7 
 By putting x = 3,     B = 18 − 5    ⇒   B = 13 

  ∴  
x
2
 + x + 1

x
2
 − 5x + 6

  = − 
7

x − 2
   +  

13
x − 3

  

 ∴  (1)  ⇒ 
x
2
 + x + 1

x
2
 − 5x + 6

  = 1 − 
7

x − 2
  + 

13
x − 3
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EXERCISE 3.1 
Resolve into partial fractions 

 (1) 
1

(x − 1) (x + 1)
  (2) 

7x − 1

6 − 5x + x
2         (3)   

x
2
 + x + 1

(x − 1) (x − 2) (x − 3)
  

 (4) 
1

(x − 1) (x + 2)
2  (5) 

x − 2

(x + 2) (x − 1)
2  (6) 

x + 1

(x − 2)
2
 (x + 3)

  

 (7) 
x
2
 − 6x + 2

x
2
(x + 2)

  (8) 
2x

2
 − 5x − 7

(x − 2)
3   (9) 

x
2
 − 3

(x + 2) (x
2
 + 1)

  

 (10) 
x + 2

(x + 1) (x
2
 + 1)

  (11) 
7x

2
 − 25x + 6

(x
2
 − 2x − 1) (3x − 2)

  (12) 
x
2
 + x + 1

x
2
 + 2x +1

  

3.2 Permutations: 
Factorial: 
 The continued product of first n natural numbers is called the  

“n factorial” and is denoted by n! or  n   

  i.e.    n! = 1 × 2 × 3 × 4 × … × (n − 1) × n 
  5 ! = 1 × 2 × 3 × 4 × 5  = 120 
Zero Factorial: 
 We will require zero factorial in the latter sections of this chapter. It does 
not make any sense to define it as the product of the integers from 1 to zero. So, 
we define 0! = 1. 
Deduction: 
  n ! = 1 × 2 × 3 × 4 × … × (n − 1) × n 
   = [1 × 2 × 3 ×  4 × … × (n − 1)]n 
   = [ ](n − 1)!  n 

 Thus, n! = n [ ](n − 1)!   
For example, 
  8 ! = 8(7 !) 

3.2.1 Fundamental Principles of Counting: 
 In this section we shall discuss two fundamental principles viz., principle 
of addition and principle of multiplication. These two principles will enable us 
to understand permutations and combinations and form the base for 
permutations and combinations. 
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Fundamental Principle of Multiplication: 
 If there are two jobs such that one of them can be completed in m ways, 
and when it has been completed in any one of these m ways, second job can be 
completed in n ways; then the two jobs in succession can be completed in  
m × n ways. 
Explanation: 
 If the first job is performed in any one of the m ways, we can associate 
with this any one of the n ways of performing the second job: and thus there are 
n ways of performing the two jobs without considering more than one way of 
performing  the first; and so corresponding to each of the m ways of performing 
the first job, we have n ways of performing the second job. Hence, the number 
of ways in which the two jobs can be performed is m × n. 
Example 3.6: In a class there are 15 boys and 20 girls. The teacher wants to 
select a boy and a girl to represent the class in a function. In how many ways 
can the teacher make this selection? 
Solution : 
 Here the teacher is to perform two jobs : 

(i) Selecting a boy among 15 boys, and 
(ii) Selecting a girl among 20 girls 

         The first of these can be performed in 15 ways and the second in 20 ways. 
 Therefore by the fundamental principle of multiplication, the required 
number of ways is 15 × 20 = 300. 
Fundamental Principle of Addition: 
 If there are two jobs such that they can be performed independently in  
m and n ways respectively, then either of the two jobs can be performed in  
(m + n) ways. 
Example 3.7: In a class there are 20 boys and 10 girls. The teacher wants to 
select either a boy or a girl to represent the class in a function. In how many 
ways can the teacher make this selection? 
Solution: 
 Here the teacher is to perform either of the following two jobs : 
 (i) selecting a boy among 20 boys. (or) 
  (ii) Selecting a girl among 10 girls 
         The first of these can be performed in 20 ways and the second in 10 ways. 
 Therefore, by fundamental principle of addition either of the two jobs can 
be performed in (20 + 10) = 30 ways. 
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 Hence, the teacher can make the selection of either a boy or a girl in 30 
ways. 
Example 3.8: A room has 10 doors. In how many ways can a man enter the 
room through one door and come out through a different door? 
Solution: 
 Clearly, a person can enter the room through any one of the ten doors. So, 
there are ten ways of entering into the room. 
 After entering into the room, the man can come out through any one of 
the remaining 9 doors. So, he can come out through a different door in 9 ways. 
 Hence, the number of ways in which a man can enter a room through one 
door and come out through a different door = 10 × 9 = 90. 
Example 3.9: How many words (with or without meaning) of three distinct 
letters of the English alphabets are there? 
Solution: 
 Here we have to fill up three places by distinct letters of the English 
alphabets. Since there are 26 letters of the English alphabet, the first place can 
be filled by any of these letters. So, there are 26 ways of filling up the first 
place. 
 Now, the second place can be filled up by any of the remaining 25 letters. 
So, there are 25 ways of filling up the second place. 
 After filling up the first two places only 24 letters are left to fill up the 
third place. So, the third place can be filled in 24 ways. 
 Hence, the required number of words 

   = 26 × 25 × 24 = 15600 
Example 3.10: 
   How many three-digit numbers can be formed by using the digits 1, 2, 3, 4, 5. 
Solution : 
 We have to determine the total number of three digit numbers formed by 
using the digits 1, 2, 3, 4, 5. 
 Clearly, the repetition of digits is allowed. 
 A three digit number has three places viz. unit’s, ten’s and hundred’s. Unit’s 
place can be filled by any of the digits 1, 2, 3, 4, 5. So unit’s place can be filled 
in 5 ways. 
 Similarly, each one of the ten’s and hundred’s place can be filled in 5 ways. 

 ∴ Total number of required numbers 

   = 5 × 5 × 5 = 125 
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Example 3.11: There are 6 multiple choice questions in an examination. How 
many sequences of answers are possible, if the first three questions have  
4 choices each and the next three have 5 each? 
Solution: 
 Here we have to perform 6 jobs of answering 6 multiple choice questions. 
 Each of the first three questions can be answered in 4 ways and each one of 
the next three can be answered in 5 different ways. 
 So, the total number of different sequences 
    = 4 × 4 × 4 × 5 × 5 × 5 = 8000 
Example 3.12: How many three-digit numbers greater than 600 can be formed 
by using the digits 4, 5, 6, 7, 8? 
Solution: 
 Clearly, repetition of digits is allowed. Since a three-digit number greater 
than 600 will have 6, 7 or 8 at hundred’s place. So, hundred’s place can be 
filled in 3 ways. 
 Each of the ten’s and one’s place can be filled in 5 ways. 
 Hence, total number of required numbers 
    = 3 × 5 × 5 = 75 
Example 3.13: How many numbers divisible by 5 and lying between 5000 and 
6000 can be formed from the digits 5, 6, 7, 8 and 9? 
Solution: 
 Clearly, a number between 5000 and 6000 must have 5 at thousand’s place. 
Since the number is divisible by 5 it must have 5 at unit’s place. 
 Now, each of the remaining places (viz. Hundred’s and ten’s) can be filled in 
5 ways. 
 Hence the total number of required numbers 
    = 1 × 5 × 5 × 1 = 25 
Example 3.14: How many three digit odd numbers can be formed by using the 
digits 4, 5, 6, 7, 8, 9 if : 
 (i) the repetition of digits is not allowed? 
 (ii) the repetition of digits is allowed? 
Solution: 
 For a number to be odd, we must have 5, 7 or 9 at the unit’s place. 
 So, there are 3 ways of filling the unit’s place. 
 (i) Since the repetition of digits is not allowed, the ten’s place can be filled 

with any of the remaining 5 digits in 5 ways. 
 Now, four digits are left. So, hundred’s place can be filled in 4 ways. 
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 So, required number of numbers 

    = 3 × 5 × 4 = 60 
 (ii) Since the repetition of digits is allowed, so each of the ten’s and 

hundred’s place can be filled in 6 ways. 

 Hence required number of numbers = 3 × 6 × 6 = 108 
EXERCISE 3.2 

 1. In a class there are 27 boys and 14 girls. The teacher wants to select 
1 boy and 1 girl to represent a competition. In how many ways can 
the teacher make this selection? 

 2. Given 7 flags of different colours, how many different signals can be 
generated if a signal requires the use of two flags, one below the 
other? 

 3. A person wants to buy one fountain pen, one ball pen and one pencil 
from a stationery shop. If there are 10 fountain pen varieties, 12 ball 
pen varieties and 5 pencil varieties, in how many ways can he select 
these articles? 

 4. Twelve students compete in a race. In how many ways first three 
prizes be given? 

 5. From among the 36 teachers in a college, one principal, one vice-
principal and the teacher-in charge are to be appointed. In how many 
ways this can be done? 

 6. There are 6 multiple choice questions in an examination. How many 
sequences of answers are possible, if the first three questions have 4 
choices each and the next three have 2 each? 

 7. How many numbers are there between 500 and 1000 which have 
exactly one of their digits as 8? 

 8. How many five-digit number license plates can be made if 
  (i) first digit cannot be zero and the repetition of digits is not 

allowed. 
  (ii) the first digit cannot be zero, but the repetition of digits is 

allowed? 
 9. How many different numbers of six digits can be formed from the 

digits 2, 3, 0, 7, 9, 5 when repetition of digits is not allowed? 
 10. How many odd numbers less than 1000 can be formed by using the 

digits 0, 3, 5, 7 when repetition of digits is not allowed? 
 11. In how many ways can an examinee answer a set of 5 true / false 

type questions? 
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 12. How many 4-digit numbers are there? 
 13. How many three – letter words can be formed using a, b, c, d, e if : 
  (i) repetition is allowed  (ii) repetition is not allowed? 
 14. A coin is tossed five times and outcomes are recorded. How many 

possible outcomes are there? 

3.2.2. Concept of Permutations: 
 The word permutation means arrangement. 
 For example, given 3 letters a, b, c suppose we arrange them taking 2 at a 
time. 
 The various arrangements are ab, ba, bc, cb, ac, ca. 

 Hence the number of arrangements of 3 things taken 2 at a time is 6 and this 
can be written as 3P2 = 6.    

Definition: 

 The number of arrangements that can be made out of n things taking r at a 
time is called the number of permutations of n things taken r at a time. 

Notation: 

 If n and r are positive integers such that 1≤ r ≤ n, then the number of all 
permutations of n distinct things, taken r at a time is denoted by the symbol P(n, 
r) or nPr. 

 We use the symbol nPr throughout our discussion. Thus nPr = Total number 
of permutations of n distinct things taken r at a time. 

Note: In permutations the order of arrangement is taken into account; when the 
order is changed, a different permutation is obtained. 

Example 3.15: Write down all the permutations of the vowels A, E, I, O, U in 
English alphabets taking 3 at a time and starting with E. 
Solution:  The permutations of vowels A, E, I, O, U taking three at a time and 
starting with E are 
 EAI, EIA, EIO, EOI, EOU, EUO, EAO, EOA, EIU, EUI, EAU, EUA. 

 Clearly there are 12 permutations. 

Theorem 3.1: 
 Let r and n be positive integers such that 1 ≤ r ≤ n.  
 Then the number of all permutations of n distinct things taken r at a time is 

given by n(n − 1) (n − 2)… ( )n − r −1
−−−

   

 i.e.   nPr = n(n − 1) (n − 2) … ( )n − r −1
−−−
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Proof: 
 Let nPr denote the number of permutations of n things taken r at a time. 
 Clearly the total number of permutations required is same as the number of 
possible ways of filling up r blank spaces by n things. 

                       …       

 1 2 3  r 
 Let there be r blank spaces arranged in a row 

 The first place can be filled by any one of the n things in n ways. 

 If the first place is filled up by any one of the n things, there will be  
(n − 1) things remaining. Now  the  second place can be filled up by any one of 
the (n − 1) remaining things. 

 Here it can be filled up in (n − 1) ways. 

 Hence the first two places can be together filled in n(n − 1) ways. 

 Having filled up these two places, we have (n − 2) things remaining with 
which we can fill up the third place. So the third place can be filled up by any 
one of these things in (n − 2) ways. 

 Hence the first three places can be together filled in n(n − 1) (n − 2) ways. 

 Proceeding in this way, we find that the total number of ways of filling up 
the r spaces is 

 n(n − 1) (n − 2)… upto r factors 

 i.e. n(n − 1) (n − 2) …  ( )n − r −1
−−−

   

 ∴ nPr = n(n − 1) (n − 2) … ( )n − r −1
−−−

   = n(n − 1) (n − 2) … (n − r + 1) 

Theorem 3.2: 

 Let r and n be positive integers such that 1 ≤ r ≤ n.   Then   nPr = 
n!

(n − r)!
  

Proof: 

 nPr = n(n − 1) (n − 2) … ( )n − r −1
−−−

   

  = 
n(n − 1) (n − 2)… ( )n − r −1

 −−−
   (n − r) ( )n − r +1

 −−−
 …2.1

(n − r) ( )n − r +1
 −−−

  … 2.1
    

   = 
n!

(n − r)!
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Theorem 3.3: 
 The number of all permutations of n distinct things, taken all at a time is n! 

Proof: nPr = n(n − 1) (n − 2) … ( )n − r −1
 −−−

   

 By putting r =  n,      nPn = n(n − 1) (n − 2) … ( )n − n −1
 −−−

   

   = n(n − 1) (n − 2) …( )n − n −1
 −−−

   

   = n(n − 1) (n − 2) … 1 
   = n! 

  ∴ nPn = n! 
Remark: We have already defined 0! = 1.  This can also be derived as follows. 

 We know that nPr = 
n!

(n − r)!
  

 By putting r  =  n,      nPn = 
n!

(n − n)!
  

  ⇒   n! = 
n!
0!    (Q nPn  = n!) 

  ⇒ 0! = 
n!
n!   =  1 

    0! = 1 

Example 3.16: Evaluate  8P3 

Solution:  8P3 = 
8!

(8 − 3)!
   =  

8!
5!  = 

(8 × 7 × 6) × 5!
5!   

    = 8 × 7 × 6 
    = 336 
Example 3.17 :   If  5Pr  = 6Pr−1,   find r 
Solution:  5Pr  = 6Pr−1 

  ⇒ 
5!

(5 − r)!
  = 

6!

( )6 − r − 1
 −−−

 !
  

  ⇒ 
5!

(5 − r)!
  = 

6 × 5!
(7 − r)!

  

  ⇒ 
5!

(5 − r)!
  = 

6 × 5!
{(7 − r) (6 − r)} (5 − r)!

  

  ⇒ 1 = 
6

(7 − r) (6 − r)
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  ⇒ (7 − r) (6 − r) = 6    ⇒   42 − 7r − 6r + r
2− 6  =  0 

  ⇒ r
2
 − 13r + 36 = 0    ⇒   (r − 9) (r − 4)  =  0 

  ⇒ r  = 9  or  r   =  4 

  ⇒ r = 4 (Q 5Pr  is meaningful for r ≤ 5) 
Example 3.18:   
 If nP4 = 360, find the value of n. 

Solution: nP4 = 360    ⇒     
n !

(n − 4) !
  = 6 × 5 × 4 × 3 

  ⇒ 
n !

(n − 4) !
  = 

6 × 5 × 4 × 3 × 2!
2!    =  

6!
2!  

  ⇒ n! = 6! 

  ⇒ n = 6 
Example 3.19:   
 If   9Pr  =  3024, find r. 
Solution:  9Pr = 3024 

  ⇒  = 9 × 8 × 7 × 6 = 9P4 

  ⇒ r = 4 
Example 3.20:  
 If (n − 1)P3 : nP4  =  1 : 9, find n. 

Solution: 
  (n − 1)P3 : nP4 = 1 : 9 

 ⇒ (n − 1) (n − 2) (n − 3) : n(n − 1) (n − 2) (n − 3) = 1 : 9 

 ⇒ i.e. 9(n − 1) (n − 2) (n − 3) = n(n − 1) (n − 2) (n − 3) 

 ⇒ n = 9 
Example 3.21:  In how many ways can five children stand in a queue? 
Solution: 
 The number of ways in which 5 persons can stand in a queue is same as the 
number of arrangements of 5 different things taken all at a time. 
 Hence the required number of ways 
    = 5P5 = 5!  = 120 

Example 3.22: How many different signals can be made by hoisting 6 
differently coloured flags one above the other, when any number of them may 
be hoisted at one time? 
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Solution: 
 The signals can be made by using at a time one or two or three or four or 
five or six flags. 
 The total number of signals when r-flags are used at a time from 6 flags is 
equal to the number of arrangements of 6, taking r at a time i.e. 6Pr 

 Hence, by the fundamental principle of addition, the total number of 
different signals 
  = 6P1 + 6P2 + 6P3 + 6P4 + 6P5 + 6P6  

  = 6 + (6 × 5) + (6 × 5 × 4) + (6  × 5 × 4 × 3) + (6 × 5 × 4 × 3  × 2)  

   + (6 × 5 × 4 × 3 × 2 × 1) 
  = 6 + 30 + 120 + 360 + 720 + 720  = 1956 
Example 3.23: Find the number of different 4-letter words with or without 
meanings, that can be formed from the letters of the word ‘NUMBER’ 
Solution: 
 There are 6 letters in the word ‘NUMBER’. 
 So, the number of 4-letter words 

   = the number of arrangements of 6 letters taken 4 at a time 
   = 6P4 

   = 360 

Example 3.24: A family of 4 brothers and 3 sisters is to be arranged in a row, 
for a photograph. In how many ways can they be seated, if  

 (i) all the sisters sit together. 

 (ii) all the sisters are not together. 

Solution : 

 (i) Since the 3 sisters are inseparable, consider them as one single unit. 

 This together with the 4 brothers make 5 persons who can be arranged 
among themselves in 5! ways. 

 In everyone of these permutations, the 3 sisters can be rearranged among 
themselves in 3! ways. 

 Hence the total number of arrangements required  = 5! × 3! = 120 × 6 = 720 

 (ii) The number of arrangements of all the 7 persons without any restriction 
=7! = 5040 

 Number of arrangements in which all the sisters sit together = 720 

 ∴ Number of arrangements required  =  5040 − 720  = 4320 
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3.2.3  Permutations of objects not all distinct: 
 The number of mutually distinguishable permutations of n things, taken all 
at a time, of which p are alike of one kind, q alike of second such that p + q = n, 

is  
n!

p! q!  

Example 3.25: How many permutations of the letters of the word ‘APPLE’ are 
there? 
Solution: 
 Here there are 5 letters, two of which are of the same kind. 
 The others are each of its own kind. 

 ∴ Required number of permutations is = 
5!

2! 1! 1! 1!   =  
5!
2!  = 

120
2    =  60 

Example 3.26: How many numbers can be formed with the digits 1, 2, 3, 4, 3, 
2, 1 so that the odd digits always occupy the odd places? 
Solution: 
 There are 4 odd digits 1, 1, 3, 3 and 4 odd places. 

 So odd digits can be arranged in odd places in 
4!

2! 2!  ways. 

 The remaining 3 even digits 2, 2, 4 can be arranged in 3 even places in 
3!
2!  

ways. 

 Hence, the required number of numbers = 
4!

2! 2!   × 
3!
2!   =  6 × 3 = 18 

Example 3.27: How many arrangements can be made with the letters of the 
word “MATHEMATICS”? 
Solution: 
 There are 11 letters in the word ‘MATHEMATICS’ of which two are M’s, 
two are A’s, two are T’s and all other are distinct. 

 ∴ required number of arrangements = 
11!

2! × 2! × 2!
   =  4989600 

3.2.4  Permutations when objects can repeat: 
 The number of permutations of n different things, taken r at a time, when 

each may be repeated any number of times in each arrangement, is n
r
 

 Consider the following example: 
 In how many ways can 2 different balls be distributed among 3 boxes? 
 Let A and B be the 2 balls. The different ways are 
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  Box 1 Box 2 Box 3 

  A  B     

  B  A     

     A  B  

     B  A  

  A     B  

  B     A  

        AB  

  AB        

     AB     

 i.e.  9 ways. By formula nr = 32 = 9 ways 
Example 3.28: In how many ways can 5 different balls be distributed among  
3 boxes? 
Solution: 
 There are 5 balls and each ball can be placed in 3 ways. 

  So the total number of ways = 3
5
  = 243 

Example: 3.29: In how many ways can 3 prizes be distributed among 4 boys, 
when (i)  no boy gets more than one prize? 
 (ii) a boy may get any number of prizes? 

 (iii) no boy gets all the prizes? 
Solution: 
 (i) The total number of ways is the number of arrangements of 4 taken 3 at 

a time. 
  So, the required number of ways = 4P3  = 4! = 24 

 (ii) The first prize can be given away in 4 ways as it may be given to 
anyone of the 4 boys. 

 The second prize can also be given away in 4 ways, since it may be obtained 
by the boy who has already received a prize. 
 Similarly, third prize can be given away in 4 ways. 
 Hence, the number of ways in which all the prizes can be given away 

         = 4 × 4 × 4  = 4
3
  = 64 
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 (iii) Since any one of the 4 boys may get all the prizes. So, the number of 
ways in which a boy get all the 3 prizes = 4. 

    So, the number of ways in which a boy does not get all the prizes = 64−4=60 
3.2.5  Circular Permutations: 
 We have seen that the number of permutations of n different things taken all 
together is n!, where each permutation is a different arrangement of the n things 
in a row, or a straight line. These permutations are called linear permutations or 
simply permutations. 
 A circular permutation is one in which the things are arranged along a circle. 
It is also called closed permutation. 
Theorem 3.4: 
 The number of circular permutations of n distinct objects is (n − 1)! 
Proof: 
 Let a1,    a2, … ,   an−1,  an  be n distinct objects. 
 Let the total number of circular permutations be x. 
 Consider one of these x permutations as shown in figure. 

Clearly this circular permutation provides n
near permutations as given below  

a1, a2, a3,  … , an − 1, an 

a2, a3, a4,  … , an , a1 
a3, a4, a5,  … , a1, a2 
… … … … 
… … … … 
an, a1, a2,      … ,  an − 2 , an − 1 

 

 
Fig. 3. 1 

 Thus, each circular permutation gives n linear permutations. 

 But there are x circular permutations. 
 So, total number of linear permutations is xn. 
 But the number of linear permutations of n distinct objects is n!. 

  ∴ xn = n! 

  ⇒ x = 
n!
n   

   x = (n − 1) ! 

 ∴ The total number of circular permutations of n distinct objects is (n − 1)! 
Note: In the above theorem anti-clockwise and clockwise order of arrangements 
are considered as distinct permutations. 
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Difference between clockwise and anti-clockwise arrangements: 
 Consider the following circular permutations: 

 
Fig. 3. 2 

 
Fig. 3. 3 

  We observe that in both, the order of the circular arrangement is a1, a2, a3, a4. 
 In fig (3.2) the order is anti-clockwise, whereas in fig. (3.3) the order is 
clockwise. 
 Thus the number of circular permutation of n things in which clockwise and  
anti-clockwise arrangements give rise to different permutations is (n − 1)! 
 If there are n things and if the direction is not taken into consideration, the 

number of circular permutations is 
1
2  (n − 1)! 

Example 3.30:   
 In how many ways 10 persons may be arranged in a    (i)  line    (ii)  circle? 
Solution: 
 (i) The number of ways in which 10 persons can be arranged in a line   

= 10P10   =  10! 

 (ii) The number of ways in which 10 persons can be arranged in a circle  
 = (10 − 1)! =  9! 

Example 3.31: In how many ways can 7 identical beads be stung into a ring? 

Solution: Since the arrangement is circular either clockwise arrangement or  
anti-clockwise arrangement may be considered. 

 ∴ The required number of ways  = 
1
2  (7 − 1)!  = 

6!
2   =  360 

Example 3.32: In how many ways can 5 gentlemen and 5 ladies sit together at a 
round table, so that no two ladies may be together? 
Solution: 
 The number of ways in which 5 gentlemen may be arranged is (5 − 1)! = 4! 
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 Then the ladies may be arranged among themselves in 5! ways. 

 Thus the total number of ways  = 4! × 5! = 24 × 120 = 2880 
Example 3.33: Find the number of ways in which 8 different flowers can be 
strung to form a garland so that 4 particular flowers are never separated. 
Solution: 
 Considering 4 particular flowers as one flower, we have five flowers, which 
can be strung to form a garland in 4! ways. 
 But 4 particular flowers can be arranged in 4! ways. 

 ∴ Required number of ways  =  4 ! × 4 ! = 576 
EXERCISE 3.3 

 1. Evaluate the following : 
   (i) 5P3 (ii) 15P3 (iii) 5P5 (iv) 25P20 (v) 9P5 

 2. If nP4 = 20 . nP3 ,  find n. 

 3. If  10Pr = 5040, find the value of r. 

 4. If  56P(r + 6)   : 54P(r + 3)   =  30800  :  1,  find r 

 5. If Pm stands for mPm , then prove that 1 + 1.P1 + 2.P2 + 3.P3 + … 

+ n.Pn = (n + 1)! 

 6. Prove that nPr = (n − 1)Pr + r . (n − 1)P(r − 1). 

 7. Three men have 4 coats, 5 waistcoats and 6 caps. In how many ways can 
they wear them? 

 8. How many 4-letter words, with or without meaning, can be formed, out 
of the letters of the word, ‘LOGARITHMS’, if repetition of letters is not 
allowed? 

 9. How many 3-digit numbers are there, with distinct digits, with each digit 
odd? 

 10. Find the sum of all the numbers that can be formed with the digits  
2, 3, 4, 5 taken all at a time. 

 11. How many different words can be formed with the letters of the word 
‘MISSISSIPPI’? 

 12. (i) How many different words can be formed with letters of the word 
‘HARYANA’? 

   (ii) How many of these begin with H and end with N? 
 13. How many 4-digit numbers are there, when a digit may be repeated any 

number of times? 
 14. In how many ways 5 rings of different types can be worn in 4 fingers? 
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 15. In how many ways can 8 students are seated in a   (i) line   (ii) circle? 
 16. In how many ways can a garland of 20 similar flowers are made? 

3.3 Combinations: 
 The word combination means selection. Suppose we are asked to make a 
selection of any two things from three things a, b and c, the different selections 
are ab, bc, ac. 
 Here there is no reference to the order in which they are selected. 
 i.e. ab and ba denote the same selection. These selections are called 
combinations. 
Definition: 
  A selection of any r things out of n things is called a combination of                  
n things r at a time. 

Notation: 
 The number of all combinations of n objects, taken r at a time is generally 

denoted by nCr or C(n,r)  or 



n

r  . We use the symbol  nCr   throughout our 

discussion. 

   Thus nCr = 

Number of ways of selecting
r objects from n objects  

Difference between Permutation and Combination: 
 1. In a combination only selection is made whereas in a permutation not 

only a selection is made but also an arrangement in a definite order is 
considered.  

 i.e. in a combination, the ordering of the selected objects is immaterial 
whereas in a permutation, the ordering is essential. 
 2. Usually the number of permutation exceeds the number of combinations. 
 3. Each combination corresponds to many permutations. 
Combinations of n different things taken r at a time: 
Theorem 3.5: 
 The number of all combinations of n distinct objects, taken r at a time is 

given by  nCr  =  
n!

(n − r) ! r!
  

Proof: Let the number of combinations of n distinct objects, taken r at a time be 
denoted by nCr. 
 Each of these combinations contains r things and all these things are 
permuted among themselves. 
 ∴ The number of permutations obtained is r ! 
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 Hence from all the nCr combinations we get nCr × r! permutations. 

 But this gives all the permutations of n things taken r at a time i.e. nPr . 

 Hence,  nCr . r ! = nPr 

   ∴ nCr = 
nPr
r!   

    = 
n!

(n − r)! r!
  



Q nPr = 

n!
(n − r)!

  

Properties 

 (1) nCn = 1           (2) nC0  = 1         (3) nCr  = nCn − r        0 ≤ r ≤ n 

Proof: 

 (1) We know that  nCr = 
n!

(n − r)! r!
  

  Putting r = n, we have nCn = 
n!

(n − n)! n!
  = 

n !
0! n!  

    = 1  
 (2) Putting r = 0, we have 

   nC0 = 
n!

(n − 0) ! 0!
   =  

n !
n!    =  1 

 (3) We have nCn − r = 
n!

(n − r)! ( )n − n − r
 −−−−

!

  = 
n!

(n − r)! r!
  

    = nCr 

Note: The above property can be restated as follows : 
 If x and y are non-negative integers such that x + y = n, then nCx = nCy 

 (4) If n and r are positive integers such that r ≤ n,  

       then nCr + nC(r − 1)  = (n+1)Cr 

Proof: We have 

  nCr + nC(r − 1) = 
n!

(n − r)! r!
   + 

n!

 ( )n − r − 1 
−−−−

! (r − 1)!
  

    = 
n!

(n − r)! r!
   +  

n!
(n − r + 1) ! (r − 1)!

  

    = 
n!

(n − r) ! r{(r − 1)!}
   +  

n!
(n − r + 1) {(n − r)! (r − 1)!}
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    = 
n!

(n − r)! (r − 1)!
     







1

r  +  
1

n − r + 1
  

    = 
n!

(n − r)! (r − 1)!
    







n − r + 1 + r

r(n − r + 1)
  

    = 
n!

(n − r)! (r − 1)!
    







n + 1

r(n − r + 1)
  

    = 
(n + 1) {n!}

(n − r + 1) (n − r)! r(r − 1)!
  

    = 
(n + 1)!

(n − r + 1)! r!
  

    = 
(n + 1)!

(n + 1 − r)! r!
  

    = (n + 1)Cr 

 (5) If n and r are positive integers such that 1 ≤ r ≤ n,  

      then  nCr = 
n
r  (n − 1)C(r − 1) 

Proof: 

   nCr = 
n!

(n − r)! r!
  

    = 
n(n − 1)!

[ ](n − 1) − (r − 1) ! r (r − 1)!
  

    = 
n
r    

(n − 1)!
[ ](n − 1) − (r − 1) ! (r − 1)!

  

    = 
n
r   (n − 1)C(r − 1) 

 (6)If 1 ≤ r ≤ n, then  n . (n − 1)C(r − 1) = (n − r + 1) . nC(r − 1)    

Proof: 

 We have  n . (n − 1)C(r − 1) = n 






(n − 1)!

[ ](n − 1) − (r − 1) ! (r − 1)!
  

    = 
n!

(n − r)! (r − 1)!
  

    = 
(n − r + 1)n!

(n − r + 1) (n − r)! (r − 1)!
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    = (n − r + 1)  



n!

(n − r + 1)! (r − 1)!
  

    = (n − r + 1)   




n!

( )n − r − 1 −−−− ! (r − 1)!
  

    = (n − r + 1) . nC(r − 1) 

 (7) For any positive integers x and y,  

   nCx = nCy ⇒   x = y   or   x + y = n 

Proof: We have  nCx = nCy               

  ⇒ nCx = nCy = nC(n − y)             [Q nCy = nC(n − y)] 

   ⇒x = y   or   x = n − y 

   ⇒x = y   or   x + y  =  n 

Note: If nCx = nCy  and x ≠ y,  then x + y = n 

Example 3.34: Evaluate the following : 

 (i) 6C3 (ii)  ∑
r = 1

5 
  5Cr 

Solution: 

 (i) 6C3 = 
6P3
3!    =  

6 × 5 × 4
1 × 2 × 3

   =  20 

 (ii)   ∑
r = 1

5 
  5Cr = 5C1 + 5C2 + 5C3 + 5C4 + 5C5  

   = 5 + 10 + 10 + 5 + 1 = 31 

Example 3.35:  If  nC4  = nC6 ,  find 12Cn 

Solution: 

  nC4 = nC6         ⇒   n =  4 + 6  =  10 

 Now 12Cn = 12C10 

   = 12C(12 − 10)  = 12C2   = 
12 × 11

1 × 2
  

   = 66 

Example 3.36:  If 15Cr  : 15C(r − 1)  =  11 : 5,  find r           
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Solution:  

 15Cr  : 15C(r − 1)  = 11 : 5   ⇒ 
15Cr

 15C(r − 1)
  = 

11
5   

  ⇒ 

15!
r!(15 − r)!

  
15!

(r − 1)! (15 − r + 1)!

  = 
11
5   

  ⇒ 
15!

r! (15 − r)!
  × 

(r − 1)! (16 − r)!
15!   = 

11
5   

  ⇒ 
(r − 1)! (16 − r) {(15 − r)!}

r(r − 1)! (15 − r)!
  = 

11
5  

  ⇒ 
16 − r

r   = 
11
5   

  ⇒ 5(16 − r) = 11r    ⇒  80 = 16r 

  ⇒ r = 5 
Example 3.37:Show that the product of r consecutive integers is divisible by r! 
Solution: 
 Let the r consecutive integers be n + 1, n + 2, n + 3, …, n + r 

   Hence their product = (n + 1) (n + 2) (n + 3) … (n + r) 

     = 
1.2.3… n. (n + 1) (n + 2) … (n + r)

1.2.3 … n
  

     = 
(n + r)!

n!   

    ∴ 
their product

r!   = 
(n + r)!

n! r!   

     = (n + r)Cr which is an integer. 

 ∴ The product of r consecutive integers is divisible by r! 

Example 3.38: Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove 
the following : 

 
nCr

 nC(r − 1)
   =  

n − r + 1
r   

Solution:  
nCr

 nC(r − 1)
  = 

n!
r!(n − r)!

n!
(r − 1)! (n − r +1)!
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     = 
n!

r! (n − r)!
   ×  

(r − 1)! (n − r + 1)!
n!   

     = 
(r − 1)! (n − r + 1) {(n − r)!}

r(r − 1)! (n − r)!
  

     = 
n − r + 1

r   

Example 3.39 : If nPr = nP(r + 1) and nCr = nC(r − 1) , find the values of n and r 

Solution: 

 nPr = nP(r + 1) ⇒ 
n!

(n − r)!
  = 

n!
(n − r − 1)!

  

  ⇒ 
1

(n − r) (n − r − 1)!
  = 

1
(n − r − 1)!

  

  ⇒ n − r = 1 … (1) 

 nCr = nC(r − 1) ⇒ 
n!

r! (n − r)!
  = 

n!
(r − 1)! (n − r + 1)!

  

  ⇒ 
n!

r(r − 1)! (n − r)!
  = 

n!
(r − 1)! (n − r + 1) {(n − r)!}

  

  ⇒ 
1
r  = 

1
n − r + 1

  

  ⇒ n − r + 1 = r 

  ⇒ n − 2r = − 1 … (2) 
   Solving (1) and (2) we get n = 3 and r = 2 

EXERCISE 3.4 

 1. Evaluate the following: 

 (i) 10C8 (ii) 100C98 (iii) 75C75 

 2. If   nC10 = nC12 ,  find 23Cn 

 3. If   8C r − 7C3 = 7C2,  find r 

 4. If 16C4 = 16Cr + 2, find rC2 

 5. Find n if   (i) 2 . nC3 = 
20
3   nC2     (ii) nC(n − 4) =70 

 6. If (n + 2)C8 : (n − 2)P4 = 57 : 16, find n. 

 7. If 28C2r : 24C(2r − 4) = 225 : 11, find r. 
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Practical problems on Combinations 
Example 3.40: From a group of 15 cricket players, a team of 11 players is to be 
chosen. In how many ways this can be done? 

Solution: 

 There are 15 players in a group. We have to select 11 players from the 
group. 

 ∴ The required number of ways = 15C11 

    15C11 =   
15 × 14 × 13 × 12

1 × 2 × 3 × 4
  = 1365 ways 

Example 3.41: How many different teams of 8, consisting of 5 boys and 3 girls 
can be made from 25 boys and 10 girls? 

Solution: 
 5 boys out of 25 boys can be selected in 25C5 ways. 

 3 girls out of 10 girls can be selected in 10C3 ways. 

 ∴ The required number of teams = 25C5  × 10C3  =  6375600 

Example 3.42:  How many triangles can be formed by joining the vertices of a 
hexagon? 

Solution: 

 There are 6 vertices of a hexagon. 

 One triangle is formed by selecting a group of 3 vertices from given                  
6 vertices. 
 This can be done in 6C3 ways. 

   ∴ Number of triangles = 6C3  = 
6!

3! 3!  =  20 

Example 3.43: 

 A class contains 12 boys and 10 girls. From the class 10 students are to be 
chosen for a competition under the condition that atleast 4 boys and atleast         
4 girls must be represented. The 2 girls who won the prizes last year should be 
included. In how many ways can the selection are made? 

Solution: 

 There are 12 boys and 10 girls. From these we have to select 10 students. 

 Since two girls who won the prizes last year are to be included in every 
selection. 
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 So, we have to select 8 students from 12 boys and 8 girls, choosing atleast          
4 boys and atleast 2 girls. The selection can be formed by choosing 
  (i) 6 boys and 2 girls 
  (ii) 5 boys and 3 girls 
  (iii) 4 boys and 4 girls 

 ∴ Required number of ways = (12C6 × 8C2) + (12C5 × 8C3) + (12C4 × 8C4) 

  = (924 × 28) + (792 × 56) + (495 × 70)  
  = 25872 + 44352 + 34650 
  = 104874 
Example 3.44:  How many diagonals are there in a polygon? 
Solution: A polygon of n sides has n vertices. By joining any two vertices 
of a polygon, we obtain either a side or a diagonal of the polygon. 



Number of line segments obtained by

 joining the vertices of a n sided
polygon taken two at a time

=Number of ways of selecting 2 out of n 

 = nC2 = 
n(n − 1)

2   

  Out of these lines, n lines are the sides of the polygon. 

 ∴ Number of diagonals of the polygon = 
n(n − 1)

2    −  n 

  = 
n(n − 3)

2   

Example 3.45  How many different sections of 4 books can be made from 10 
different books, if  (i)  there is no restriction 
    (ii) two particular books are always selected; 
    (iii) two particular books are never selected? 
Solution: 

(i) The total number of ways of selecting 4 books out of 10 = 10C4=
10!

4! 6! = 210 

(ii) If two particular books are always selected. 
     This means two books are selected out of the remaining 8 books 

   ∴ Required number of ways = 8C2 = 
8!

2! 6!   = 28 

 (iii) If two particular books are never selected 
  This means four books are selected out of the remaining 8 books. 

         ∴ Required number of ways  = 8C4  =  
8!

4! 4!  =  70 



 97

Example 3.46: 
  In how many ways players for a cricket team can be selected from a 
group of 25 players containing 10 batsmen, 8 bowlers, 5 all-rounders and 2 
wicket keepers? Assume that the team requires 5 batsmen, 3 all-rounder, 2 
bowlers and 1 wicket keeper. 
Solution: 
  The selection of team is divided into 4 phases: 
 (i) Selection of 5 batsmen out of 10. This can be done in 10C5 ways. 

 (ii) Selection of 3 all-rounders out of 5. This can be done in 5C3 ways. 

 (iii)Selection of 2 bowlers out of 8. This can be done in 8C2 ways. 

 (iv)Selection of one wicket keeper out of 2. This can be done in 2C1 ways. 

  ∴ The team can be selected in 10C5 × 5C3 × 8C2 × 2C1 ways 

    = 252 × 10 × 28 × 2 ways 
    = 141120 ways 
Example 3.47:  Out of 18 points in a plane, no three are in the same straight 
line except five points which are collinear. How many 
  (i) straight lines    (ii) triangles can be formed by joining them? 
Solution: 

 (i) Number of straight lines formed joining the 18 points,  
  taking 2 at a time  = 18C2  = 153 

  Number of straight lines formed by joining the 5 points,  
  taking 2 at a time = 5C2 = 10 

  But 5 collinear points, when joined pairwise give only one line. 

  ∴ Required number of straight lines = 153 − 10 + 1 = 144 

 (ii) Number of triangles formed by joining the 18 points,  
  taken 3 at a time = 18C3 = 816 

  Number of triangles formed by joining the 5 points,  
  taken 3 at a time = 5C3 = 10 

  But 5 collinear points cannot form a triangle when taken 3 at a time. 

  ∴ Required number of triangles = 816 − 10  = 806 

EXERCISE 3.5 
 1. If there are 12 persons in a party, and if each two of them shake hands 

with each other, how many handshakes happen in the party? 
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 2. In how many ways a committee of 5 members can be selected from  
6 men and 5 women, consisting of 3 men and 2 women? 

 3. How many triangles can be obtained by joining 12 points, five of, which 
are collinear? 

 4. A box contains 5 different red and 6 different white balls. In how many 
ways 6 balls be selected so that there are atleast two balls of each colour? 

 5. In how many ways can a cricket team of eleven be chosen out of a batch 
of 15 players if 

 (i) there is no restriction on the selection 
 (ii) a particular player is always chosen; 
 (iii) a particular player is never chosen? 
 6. A candidate is required to answer 7 questions out of 12 questions which 

are divided into two groups, each containing 6 questions. He is not 
permitted to attempt more than 5 questions from either group. In how 
many ways can he choose the 7 questions. 

 7. There are 10 points in a plane, no three of which are in the same straight 
line, excepting 4 points, which are collinear. Find the 

 (i) the number of straight lines obtained from the pairs of these points 
 (ii) number of triangles that can be formed with the vertices as these 

points. 

 8. In how many ways can 21 identical books on Tamil and 19 identical 
books on English be placed in a row on a shelf so that two books on 
English may not be together? 

 9. From a class of 25 students, 10 are to be chosen for an excursion party. 
There are 3 students who decide that either all of them will join or none 
of them will join. In how many ways can they be chosen? 

3.4 Mathematical Induction: 
Introduction: 
 The name ‘Mathematical induction’ in the sense in which we have given 
here, was first used by the English Mathematician Augustus De-Morgan  
(1809 − 1871) in his article on ‘Induction Mathematics’ in 1938. However the 
originator of the Principle of Induction was Italian Mathematician Francesco 
Mau Rolycus (1494 − 1575). The Indian Mathematician Bhaskara (1153 A.D) 
had also used traces of ‘Mathematical Induction’ in his writings. 
  “Induction is the process of inferring a general statement from the truth of 
particular cases”. 
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 For example, 4 = 2 + 2,   6 = 3 + 3,   8 = 3 + 5,    10 = 7 + 3 and so on. 
 From these cases one may make a general statement “every even integer 
except 2 can be expressed as a sum of two prime numbers. There are hundreds 
of particular cases where this is known to be true. But we cannot conclude that 
this statement is true unless it is proved. Such a statement inferred from 
particular cases is called a conjecture. A conjecture remains a conjecture until it 
is proved or disproved. 
 Let the conjecture be a statement involving natural numbers. Then a method 
to prove a general statement after it is known to be true in some particular cases 
is the principle of mathematical induction. 
 Mathematical induction is a principle by which one can conclude that a 
statement is true for all positive integers, after proving certain related 
propositions. 
The Principle of Mathematical Induction: 
 Corresponding to each positive integer n let there be a statement or 
proposition P(n). 
 If       (i)   P(1) is true,  
 and  (ii)   P(k + 1) is true whenever P(k) is true, 
 then P(n) is true for all positive integers n. 
 We shall not prove this principle here, but we shall illustrate it by some 
examples. 
Working rules for using principle of mathematical induction: 
  Step (1) : Show that the result is true for n = 1. 
  Step (2) : Assume the validity of the result for n equal to some 
arbitrary but fixed natural number, say k. 
  Step (3) : Show that the result is also true for n = k + 1. 
  Step (4) : Conclude that the result holds for all natural numbers. 

Example 3.48: Prove by mathematical induction n
2
 + n is even. 

Solution:  Let P(n) denote the statement    “n
2
 + n is even” 

Step (1): 
   Put n = 1 

   n
2
 + n = 1

2
 + 1 

    = 2, which is even 
   ∴ P(1) is true 
Step (2): 
  Let us assume that the statement be true for n = k 
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  (i.e.)  assume   P(k) be true. 

  (i.e.)  assume  “k
2
 + k is even” be true … (1) 

Step (3): 
  To prove P(k + 1) is true. 

  (i.e.) to prove (k + 1)
2
 + (k + 1) is even 

  Consider (k + 1)
2
 + (k + 1) = k

2
 + 2k + 1 + k + 1 

    = k
2
 + 2k + k + 2 

    = (k
2
 + k) + 2(k + 1) 

    = an even number + 2(k + 1), from (1) 
    = sum of two even numbers 
    = an even number 

   ∴ P(k + 1) is true. 
  Thus if  P(k) is true, then P(k + 1) is also true. 
Step (4): 
  ∴ By the principle of Mathematical induction, P(n) is true for all n∈N. 

  i.e. n
2
 + n is even for all n∈N. 

Example 3.49:  Prove by Mathematical induction 1 + 2 + 3 + …+ n = 
n(n + 1)

2  , 

n∈N 

Solution:  Let P(n) denote the statement :   “1 + 2 + 3 + … + n = 
n(n + 1)

2   ” 

  Put n = 1 

  P(1) is the statement :  1 = 
1 (1 + 1)

2   

   1 = 
1(2)

2   

   1 = 1 
   ∴ P(1) is true 
  Now assume that the statement be true for n = k. 
  (i.e.) assume P(k) be true. 

  (i.e.) assume 1 + 2 + 3 + … + k = 
k(k + 1)

2   … (1)  be true 

  To prove  P(k + 1) is true 

  (i.e.) to prove1 + 2 + 3 + … + k + (k + 1) = 
(k + 1) (k + 2)

2   is true, 

   [1 + 2 + 3 + … + k] + (k + 1) = 
k(k + 1)

2    +  (k + 1)       from (1) 
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    = 
k(k + 1) + 2(k + 1)

2   

    = 
(k + 1) (k + 2)

2   

  ∴ P(k + 1) is true. 
 Thus if P(k) is true, then P(k + 1) is true. 
 By the principle of Mathematical induction, P(n) is true for all n∈N 

  ∴ 1 + 2 + 3 + … + n = 
n(n + 1)

2    for all n∈N 

Example 3.50:  Prove by Mathematical induction 

   1
2
 + 2

2
 + 3

2
 + … + n

2
 = 

n(n + 1) (2n + 1)
6   for all n∈N 

Solution: 

 Let P(n) denote the statement  “1
2
 + 2

2
 + 3

2
 + … + n

2
 = 

n(n + 1) (2n + 1)
6  ” 

 Put n = 1 

  P(1) is the statement : 1
2
 = 

1(1 + 1) [ ]2(1) +1
6   

   1 = 
1(2) (3)

6   

   1 = 1 
   ∴ P(1) is true. 
 Now assume that the statement be true for n = k. 

 (i.e.)  assume P(k) be true. 

 (i.e.) 1
2
 + 2

2
 + 3

2
 + … + k

2
 = 

k(k + 1) (2k + 1)
6   … (1) 

 To prove : P(k + 1) is true 

 (i.e.) to prove: 1
2
+2

2
+3

2
+…+k

2
+(k+1)

2
 = 

(k + 1) (k + 2) (2k + 3)
6    is true. 

  [1
2
 + 2

2
 + 3

2
 + … + k

2
] + (k +1)

2
 = 

k(k + 1) (2k + 1)
6  + (k + 1)2 

   = 
k(k + 1) (2k +1) + 6(k + 1)2

6   

   = 
(k + 1) [ ]k(2k + 1) + 6(k + 1)

6   

   = 
(k + 1) (2k2 + 7k + 6)

6   
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  1
2
 + 2

2
 + 3

2
 + … + k

2
 + (k +1)

2
 = 

(k + 1) (k + 2) (2k + 3)
6   

   ∴  P(k + 1) is true 
  Thus if P(k) is true, then P(k + 1) is true. 
  By the principle of Mathematical induction, P(n) is true for all n∈N 

  (i.e.)  1
2
 + 2

2
 + … + n

2
 = 

n(n + 1) (2n + 1)
6   for all n∈N 

Example 3.51:  Prove by Mathematical induction   

   1.2 + 2.3 + 3.4 + … + n(n + 1) = 
n(n + 1) (n + 2)

3  , n∈N. 

Solution: 

  Let P(n) denote the statement “1.2+2.3 + 3.4 +…+ n(n + 1)= 
n(n + 1) (n + 2)

3  ” 

  Put n = 1 

  P(1) is the statement : 1(1 + 1) = 
1(1 + 1) (1 + 2)

3   

   1(2) = 
1(2) (3)

3   

   2 = 
2(3)

3   

   2 = 2 
   ∴  P(1) is true. 
 Now assume that the statement be true for n = k. 
 (i.e.) assume P(k) be true 

 (i.e.) assume 1.2 + 2.3 + 3.4 +…+ k(k + 1) = 
k(k + 1) (k + 2)

3     be true 

 To prove : P(k + 1) is true 
 i.e. to prove :     

 1.2 + 2.3 + 3.4 + …,+ k(k + 1) + (k + 1) (k + 2) = 
(k + 1) (k + 2) (k + 3)

3   

Consider   1.2 + 2.3 + 3.4 + …,+ k(k + 1) + (k + 1) (k + 2)  

    = [ ]1.2 + 2.3 + … + k(k+1)   + (k + 1) (k + 2) 

    = 
k(k + 1) (k + 2)

3    +  (k + 1) (k + 2) 

    = 
k(k + 1) (k + 2) + 3(k + 1) (k + 2)

3   

    = 
(k + 1) (k + 2) (k + 3)

3   
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  ∴ P(k + 1) is true 
  Thus if P(k) is true, P(k + 1) is true. 

  By the principle of Mathematical induction, P(n) is true for all n∈N. 

  1.2 + 2.3 + 3.4 + … + n(n + 1) = 
n(n + 1) (n + 2)

3   

Example 3.52: Prove by Mathematical induction 2
3n

 − 1 is divisible by 7, for 
all natural numbers n. 
Solution: 

 Let P(n) denote the statement “2
3n

  − 1 is divisible by 7” 

 Put n = 1 

 Then P(1) is the statement : 2
3(1)

 − 1 = 2
3
 − 1 

   = 8 − 1 
   = 7, which is  divisible by 7 

  ∴  P(1) is true 
  Now assume that the statement be true for n = k 

 (i.e.) assume P(k) be true.  (i.e.) “2
3k

 − 1 is divisible by 7” be true 

 Now to prove P(k + 1) is true.   (i.e.)  to prove 2
3 (k + 1)

 − 1 is divisible by 7 

Consider 2
3(k + 1)

 − 1 = 2
3k + 3

 − 1 

    = 2
3k

 . 2
3
 − 1  = 2

3k
 . 8 − 1 

    = 2
3k

 . 8 − 1 + 8 − 8 (add and subtract 8) 

    = (2
3k

 − 1) 8 + 8 − 1 

    = (2
3k

 − 1) 8 + 7 = a multiple of 7 + 7 
    = a multiple of 7 

  ∴ 2
3 (k + 1)

 − 1 is divisible by 7 

  ∴ P(k + 1) is true 
  Thus if P(k) is true, then P(k + 1) is true. 
  By the principle of Mathematical induction, P(n) is true for all n∈ N 

  ∴  2
3n

 − 1 is divisible by 7 for all natural numbers n. 

Example 3.53: Prove by Mathematical induction that a
n
 − b

n
 is divisible by 

(a−b) for all n∈ N 

Solution:  Let P(n) denote the statement “a
n
 − b

n
 is divisible by a − b”. 
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  Put n = 1 

  Then P(1) is the statement : a
1
 − b

1
 = a − b is divisible by a − b 

  ∴ P(1) is true. 
  Now assume that the statement be true for n = k. 

  (i.e.)  assume P(k) be true.   (i.e.) a
k
 − b

k
 is divisible by (a − b) be true. 

   ⇒ 
a

k
 − b

k

a − b
  = c (say) where c∈N 

   ⇒ a
k
 − b

k
 = c(a − b) 

   ⇒ a
k
 = b

k
 + c(a − b) … (1) 

  Now to prove P(k + 1) is true.  (i.e.) to prove : a 
k + 1

 − b
k + 1

 is divisible 

by a − b  

 Consider a
k + 1

 − b
k + 1

 = a
k
 . a − b

k
  b 

    = [ ]bk + c(a − b)    a − b
k
  b 

    = b
k
a + ac(a − b) − b

k
 b 

    = b
k
(a − b) + ac (a − b) 

    = (a − b) (b
k
 + ac) is divisible by (a − b) 

   ∴ P(k + 1) is true. 
  By the principle of Mathematical induction, P(n) is true for all n∈ N 

  ∴ a
n
 − b

n
 is divisible by a − b for all n∈ N 

EXERCISE 3.6 
Prove the following by the principle of Mathematical Induction. 

 (1) (2n + 1) (2n − 1) is an odd number for all n∈ N 

 (2) 2 + 4 + 6 + 8 + … + 2n = n (n + 1) 

 (3) 1 + 3 + 5 + … + (2n − 1) = n
2
 

 (4) 1 + 4 + 7 + … + (3n − 2) = 
n(3n − 1)

2   

 (5) 4 + 8 + 12 + … + 4n = 2n(n + 1) 

 (6) 1
3
 + 2

3
 + 3

3
 + … + n

3
 = 

n2 (n + 1)2

4  

 (7) 
1
2   +  

1
22   +  

1
23   +  …  +  

1
2n   =  1 − 

1
2n  
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 (8) In the arithmetic progression a, a + d, a + 2d, …  

  the n
th

 term is a + (n − 1)d 

 (9) 5
2n

 − 1 is divisible by 24 for all n∈ N 

 (10) 10
2n − 1

 + 1 is divisible by 11. 

 (11) n(n + 1) (n + 2) is divisible by 6 where n is a natural number. 

 (12) The sum Sn = n
3
 + 3n

2
 + 5n + 3 is divisible by 3 for all n∈ N 

 (13) 7
2n

 + 16n − 1 is divisible by 64 

 (14) 2
n
 > n for all n∈ N 

3.5 Binomial Theorem: 
Introduction: 

  A BINOMIAL is an algebraic expression of two terms which are 
connected by the operation ‘+’ (or) ‘−’ 

For example,  x + 2y, x − y, x
3
 + 4y, a + b  etc.. are binomials. 

Expansion of Binomials with positive Integral Index: 

  We have already learnt how to multiply a binomial by itself. Finding 
squares and cubes of a binomial by actual multiplication is not difficult. 

  But the process of finding the expansion of binomials with higher powers 

such as (x + a)
10

, (x + a)
17

, (x + a)
 25

 etc becomes more difficult. Therefore we 
look for a general formula which will help us in finding the expansion of 
binomials with higher powers. 

  We know that 

(x + a)
 1

=x + a = 1C0 x1a
0
 + 1C1 x0a1 

(x + a)
2
 =x

2
 + 2ax + a

2
 = 2C0x

2
a

0
 + 2C1x

1
a

1
 + 2C2x

0
a

2
 

(x + a)
3
 =x

3
 + 3x

2
a + 3xa

2
 + a

3
 = 3C0x

3
a

0
 + 3C1x

2
a

1
 + 3C2x

1
a

2
 + 3C3x

0
a

3
 

  (x+a)
4
=x

4
+4x

3
+6x

2
a

2
+4xa

3
+a

4
=4C0x

4
a

0
+4C1x

3
a

1
+4C2x

2
a

2
+4C3x

1
a

3
+4C4x

0
a

4
 

  For n = 1, 2, 3, 4 the expansion of (x + a)
n
 has been expressed in a very 

systematic manner in terms of combinatorial coefficients. The above 

expressions suggest the conjecture that (x + a)
n
 should be expressible in the 

form,  
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  (x + a)
n
  = nC0 x

n
a

0
 + nC1x

n  − 1
a

1
 + … + nCn− 1 x

1
 a

n  − 1
+ nCn x

0
a

n
 

  In fact, this conjecture is proved to be true and we establish it by using 
the principle of mathematical induction. 
Theorem 3.6: (Binomial theorem for a Positive Integral Index)  
Statement: For any natural number n  

 (x + a)
n
  = nC0 x

n
a

0
 + nC1x

n  − 1
a

1
 +… +  nCr xn − r ar + …  

+ nCn− 1 x
1
 a

n  − 1
+ nCn x

0
a

n
 

Proof: 
  We shall prove the theorem by the principle of mathematical induction.  
  Let P(n) denote the statement : 

  (x + a)
n
  = nC0 x

n
a

0
 + nC1x

n  − 1
a

1
 +… +  nCr xn − r ar + …  

+ nCn− 1 x
1
 a

n  − 1
+ nCn x

0
a

n
 

Step (1) : 
  Put n = 1    

  Then P(1) is the statement :  (x + a)
1
 = 1C0x

1
 a

0
 + 1C1 x

 1  − 1
 a

1
      

   x + a = x + a 
   ∴ P(1) is true 
Step (2): 
  Now assume that the statement be true for n = k 
  (i.e.) assume P(k) be true. 

  (x + a)
k
 =kC0x

k
 a

0
+kC1x

 k −1
a

1
 + kC2 x

 k −2
a

2
 +…+ kCr x

 k −r
a

r
 +…+ kCk x

0
a

k
   

be true  … (1) 
Step (3):  
  Now to prove P(k + 1) is true 
  (i.e.) To prove:  

 (x + a)
K + 1

 = (k + 1)C0x
k + 1

 + (k + 1)C1x
 (k + 1)  − 1

a
1
+(k + 1)C2x

 (k + 1) −2  
a

2
 + …  

   + (k + 1)Crx
 (k + 1) − r 

a
r
 + … + (k + 1)C(k + 1) a

k + 1 

Consider     (x + a)
k + 1

  =  (x + a)
k
 (x + a) 

  = [kC0x
k
 + kC1x

 k  − 1
a

1
 + kC2 x

 k  − 2
a

2
 + … + kC(r−1) x

k  − (r − 1)  
a

 (r − 1)
  

     + kCr x
k− r

a
r 

+ … + kCka
k
] (x + a) 
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  = [kC0x
k + 1 

+ kC1x
 k 

a
1
 + kC2x

 k  − 1
a

2
 + … + kCr−1 x

 k − r + 2 
a

 r − 1
  

     +  kCrx
k − r + 1

a
r
 + … + kCkxa

k
] 

     + [kC0x
k
a + kC1x

k− 1
a

2
  + kC2 x

k − 2
a

3
 + …+ kCr−1 x

k   − r +  1 
a

r
 

     + kCr x
k  − r

a
r + 1

 + … + kCka
k + 1

] 

 (x + a)
k + 1

 =  kC0x
k + 1 

+ (kC1 + kC0) x
k
.a  + (kC2 + kC1) x

 k  − 1 
a

2
  

     + … + (kCr + kCr − 1) x
k − r + 1

a
r
 + … + kCk  a

k +  1
   … (2) 

  We know that kCr + kCr− 1  = (k + 1)Cr
 

  Put  r = 1, 2, 3, … etc. 
 kC1 + kC0 = (k + 1)C1 

 kC2 + kC1 = (k + 1)C2  
 kCr + kCr−1  = (k + 1)Cr for 1 ≤ r ≤ k 
 kC0 = 1  =  (k + 1)C0 
 kCk = 1  =  (k + 1)C(k + 1) 
  ∴ (2) becomes 

  (x + a)
k + 1

 = (k + 1)C0 x
k + 1 

+ (k + 1)C1 x
k
a + (k + 1)C2 x

 k  − 1
a

2
  

+ … + (k + 1)Cr x
k +  1 − r

a
r
 + … + (k + 1)C(k + 1) a

k + 1 

  ∴ P(k + 1) is true 
  Thus if P(k) is true, P(k + 1) is true. 

  ∴ By the principle of mathematical induction P(n) is true for all n∈N 

  (x + a)
n
  = nC0 x

n
a

0
 + nC1x

n  − 1
a

1
 +… +  nCr xn − r ar + …  

+ nCn− 1 x
1
 a

n  − 1
+ nCn x

0
a

n 
       for all n∈N 

Some observations: 
 1. In the expansion 

  (x + a)
n
  = nC0 x

n
a

0
 + nC1x

n  − 1
a

1
 +… +  nCr xn − r ar + …  

  + nCn− 1 x
1
 a

n  − 1
+ nCn x

0
a

n
, the general term is nCr x

n − r ar.  

  Since this is nothing but the (r + 1)th term, it is denoted by Tr + 1 

  i.e.  Tr + 1  =  nCr x
n − r ar. 

 2. The (n + 1)
th

 term is  Tn + 1 = nCn xn − n an = nCn an, the last term. 

Thus there are (n + 1) terms in the expansion of (x + a)n 
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 3. The degree of x in each term decreases while that of “a” increases such 
that the sum of the powers in each term is equal to n. 

We can write (x + a)
n
 = ∑

r = 0

 n
   nCr x

 n  − r
a

r
 

 4. nC0, nC1, nC2, …, nCr, … , nCn  are called binomial coefficients. They 
are also written as C0,  C1 , C2, … , Cn. 

 5. From the relation nCr = nCn − r , we see that the coefficients of terms 
equidistant from the beginning and the end are equal. 

 6. The binomial coefficients of the various terms of the expansion of  

(x + a)
n

 for n = 1, 2, 3, … form a pattern. 

 Binomials Binomial coefficients 

  (x + a)
o
 1 

  (x + a)
1
 1 1 

  (x + a)
2
 1 2 1 

  (x + a)
3
 1 3 3 1 

  (x + a)
4
 1 4 6 4 1 

  (x + a)
5
 1 5 10 10 5 1 

  This arrangement of the binomial coefficients is known as Pascal’s 
triangle after the French mathematician Blaise Pascal (1623 – 1662). The 
numbers in any row can be obtained by the following rule. The first and last 
numbers are 1 each. The other numbers are obtained by adding the left and right 
numbers in the previous row. 

  1,    1 + 4 = 5,   4 + 6 = 10,    6 + 4 = 10,    4 + 1 = 5,    1 

Some Particular Expansions: 

  In the expansion 

  (x + a)
n
  = nC0 x

n
a

0
 + nC1x

n  − 1
a

1
 +…+  nCr xn − r ar +… 

+ nCn− 1 x
1
 a

n  − 1
+ nCn x

0
a

n … (1) 

 1. If we put   − a   in the place of  a  we get  

 ∴ (x − a)
n
 = nC0x

n
 − nC1 x

 n  − 1
a

1
 + nC2x

 n −2  
a

2 −… 

+ (−1)
r
 nCr x

 n  − r
a

r
 + … + (− 1)

n
 nCn  a

n
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  We note that the signs of the terms are positive and negative 
alternatively. 
 2. If we put  1  in the place of  a  in  (1)  we get, 

          (1 + x)
n
  =  1 + nC1x + nC2x

2
 + … + nCrx

r
 + … + nCnx

n
   … (2) 

 3. If we put   − x   in the place of  x  in (2) we get 

          (1 − x)
n
 = 1 − nC1 x + nC2x

2
 − … + (− 1)

r
 nCrx

r
 + … + (− 1)

n
 nCnx

n
  

Middle Term: 

 The number of terms in the expansion of (x + a)
n
 depends upon the index n. 

The index is either even (or) odd. Let us find the middle terms. 
Case (i) : n is even 
 The number of terms in the expansion is (n + 1), which is odd. 
 Therefore, there is only one middle term and it is given by Tn

2
  

+1
  

Case (ii) : n is odd 
 The number of terms in the expansion is (n + 1), which is even. 
 Therefore, there are two middle terms and they are given by Tn + 1

2
   and 

Tn + 3
2

  

Particular Terms: 
  Sometimes a particular term satisfying certain conditions is required in 

the binomial expansion of (x + a)
n
. This can be done by expanding (x + a)

n
 and 

then locating the required term. Generally this becomes a tedious task, when the 
index n is large. In such cases, we begin by evaluating the general term  
Tr+1 and then finding the values of r by assuming Tr+1 to be the required term. 

  To get the term independent of x, we put the power of x equal to zero and 
get the value of r for which the term is independent of x. Putting this value of  
r in Tr+1, we get the term independent of x. 

Example 3.54:Find the expansion of  : (i) (2x + 3y)
5
  (ii) 



2x2 − 

3
x

4
 

Solution: 

 (i) (2x + 3y)
5
 = 5C0 (2x)

5
 (3y)

o
 + 5C1 (2x)

4
 (3y)

1
 + 5C2 (2x)

3
 (3y)

2
 

     + 5C3 (2x)
2
 (3y)

3
 + 5C4 (2x)

1
 (3y)

4
 + 5C5 (2x)

0
 (3y)

5
 

    = 1(32)x
5
 (1) + 5(16x

4
) (3y) + 10(8x

3
) (9y

2
) 
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     + 10(4x
2
) (27y

3
) + 5(2x) (81y

4
)  +  (1) (1) (243y

5
) 

    = 32x
5
 + 240x

4
y + 720x

3
y
2
 + 1080x

2
y
3
 + 810xy

4
 + 243y

5
 

 (ii) 



2x2 − 

3
x

4
 = 4C0 (2x

2
)
4
  



− 

3
x

0
 + 4C1 (2x

2
)3 



− 

3
x

1
 

   + 4C2 (2x
2
)
2
 



− 

3
x

2
  + 4C3 (2x

2
)
1
 



− 

3
x

3
  + 4C4 (2x

2
)
0
 



− 

3
x

4
  

    = (1) 16x
8
(1) + 4(8x

6
) 



− 

3
x   +  6(4x

4
) 



9

x2   + 4(2x
2
) 



− 

27
x3   

     + (1) (1) 



81

x4    

    = 16x8 − 96x5 + 216x2 − 
216

x   + 
81

x4  

Example 3.55: Using binomial theorem, find the 7
th

 power of 11. 
Solution: 

11
7
 = (1 + 10)

7
 

  = 7C0 (1)
7
 (10)

0
+7C1 (1)

6
 (10)

1
+7C2(1)

5
(10)

2
+7C3(1)

4
(10)

3
+7C4 (1)

3
(10)

4
  

  + 7C5 (1)
2
 (10)

5
 + 7C6 (1)

1
 (10)

6
 + 7C7 (1)

0
 (10)

7 

  = 1+70+
7 × 6
1 × 2

 10
2
 +

7 × 6 × 5
1× 2 × 3

 10
3
+

7 × 6 × 5
1 × 2 × 3

  10
4
 + 

7 × 6
1 × 2

  10
5
 + 7(10)

6
 + 10

7
   

  = 1 + 70 + 2100 + 35000 + 350000  + 2100000 + 7000000 + 10000000  
  = 19487171 

Example 3.56:  Find the coefficient of  x
5
 in the expansion of 







x + 

1

x
3

17

  

Solution: 

  In the expansion of 






x + 

1

x
3

17

 , the general term is  

  Tr + 1 = 17Cr x
17 − r 

 






1

x
3

r

  

   = 17Crx
17 − 4r

 

 Let Tr + 1 be the term containing x
5
  

  then, 17 − 4r = 5      ⇒  r  =  3 



 111

   ∴ Tr + 1 = T3 + 1 

    = 17C3 x
17 − 4(3) 

 = 680x
5 

  ∴ coefficient of x
5
 = 680 

Example 3.57:  Find the constant term in the expansion of 






x − 

2

x
2

10

  

Solution: 

  In the expansion of 






x − 

2

x
2

10

     

   Tr + 1 = 10Cr ( )x
10− r

  






− 2

x
2

r
  

    = 10Cr x 

10 − r
2   

(− 2)r

x2r   = 10Cr (− 2)
r
 x 

10 − r
2  − 2r

  

    = 10Cr (− 2)
r
 x 

10 − 5r
2   

  Let Tr + 1 be the constant term  

  Then, 
10 − 5r

2   = 0  ⇒  r = 2 

 ∴ The constant term  = 10C2 (− 2)
2
 x

10 − 5(2)
2   

    = 
10 × 9
1 × 2

  × 4 × x
0
 

    = 180 

Example 3.58: If n∈ N, in the expansion of (1 + x)
n
 prove the following : 

 (i) Sum of the binomial coefficients = 2
n
 

 (ii) Sum of the coefficients of odd terms =  Sum of the  coefficients of even 

terms = 2
n − 1

 

Solution: The coefficients nC0, nC1, nC2, … , nCn  in the expansion of  

(1 + x)
n
 are called the binomial coefficients, we write them as C0, C1, C2, … Cn,  

   (1 + x)
n
 = C0 + C1x + C2x

2
 + … + Crx

r
 + … + Cnx

n
 

  It is an identity in x and so it is true for all values of x.  
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  Putting x = 1 we get 

   2
n 

=  C0 + C1 + C2 + … + Cn  … (1) 

   put x = − 1 

   0 = C0 − C1 + C2 − C3 + … (− 1)
n
 Cn 

   ⇒C0 + C2 + C4 + … = C1 + C3 + C5 + … 

It is enough to prove that  

 C0 + C2 + C4 + … = C1 + C3 + C5 + … = 2
n − 1

 

Let  C0 + C2 + C4 + … = C1 + C3 + C5 + … = k … (2) 

From (1), C0 + C1 + C2 + … + Cn = 2
n
 

 2k = 2
n 

From (2) 

 k = 2
n − 1

 

From (2),  C0 + C2 + C4 + … = C1 + C3 + C5 + … = 2
n − 1

 

EXERCISE 3.7 
 (1) Expand the following by using binomial theorem 

  (i) (3a + 5b)
5
 (ii) (a − 2b)

5
                 (iii) (2x − 3x

2
)
5
 

  (iv) 



x + 

1
y

11
  (v) (x

2
 + 2y

3
)
6
              (vi) ( )x y + y x

4
  

 (2) Evaluate the following: 

  (i) ( )2 + 1
5
  + ( )2 − 1

5
  (ii) ( )3 + 1

5
  − ( ) 3 − 1

5
  

  (iii) ( ) 1 + 5
5
  + ( )1 − 5

5
  (iv) ( ) 2 a + 3

6
  + ( ) 2 a − 3

6
  

  (v) ( )2 + 3
7
  − ( )2 − 3

7
  

 (3) Using Binomial theorem find the value of (101)
3
 and (99)

3
. 

 (4) Using Binomial theorem find the value of (0.998)
3
. 

 (5) Find the middle term in the expansion of  

  (i) 







3x − 
2x

2

3

8

     (ii)  



 

b
x + 

x
b

16
    

   (iii) 



a

x − x
16

     (iv) (x − 2y)13              (v) 






x + 

2

x
2

17
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 (6) Show that  the middle term of   

  (i) (1 + x)
2n

 is 
1.3.5.7 … (2n − 1)2

n
 x

n

n!  

  (ii) 



x + 

1
2x

2n

    is  
1.3.5. … (2n − 1)

n!   

  (iii) 



x − 

1
x

2n

   is  
(− 1)

n
 . 1.3.5.7. … (2n − 1)

n!    2n 

 (7) Find the coefficient of x
5
 in the expansion of 



x − 

1
x

11

  

 (8) Find the term independent of  x (constant term)  in the expansion of 

  (i)  



2x

2
 + 

1
x

12

      (ii) 





4x

2

3  − 
3
2x

9

      (iii) 






9x − 

b

cx
2

 17

  

 (9) In the expansion of (1 + x)
20

, the coefficient of r
th

 and (r + 1)th terms are 
in the ratio 1 : 6, find the value of r. 

 (10) If the coefficients of 5
th

, 6
th

 and 7
th

 terms in the expansion of (1 + x)
n
 

are in A.P., find n. 
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4. SEQUENCE AND SERIES 
4.1 Introduction 
 We hear statements such as “a sequence of events”, “a series of tests before 
the board examination”, “a cricket test match series”. In all these statements the 
words “sequence” and “series” are used in the same sense. They are used to 
suggest a succession of things or events arranged in some order. In mathematics 
these words have special technical meanings. The word ‘sequence’ is used as in 
the common use of the term to convey the idea of a set of things in order, but 
the word “series” is used in a different sense. 
 Let us consider the following example. 
 A rabbit and a frog are jumping on the same direction. When they started 
they were one metre apart. The rabbit is jumping on the frog in order to catch it. 
At the same time the frog is jumping forward half of the earlier distance to 
avoid the catch. The jumping process is going on. Can the rabbit catch the frog? 

 
Fig. 4. 1 

 Let a1, a2, a3, a4 … be the distances between the rabbit and the frog at the 
first, second, third, fourth instants etc,. The distance between the rabbit and the 
frog at the first instant is 1 metre. 

   ∴  a1 = 1  ;  a2  =  
1
2   ;  a3  =  

1
4  = 

1

22   ;    a4 = 
1
8  = 

1

23  

 Here  a1,  a2,  a3  …  form a sequence. There is a pattern behind the 
arrangement of a1,  a2,  a3  …  Now an has the meaning,  

 (i.e.) an is the distance between the rabbit and the frog at the nth instant 

 Further an = 
1

2n − 1
 . When an becomes 0 the rabbit will catch the frog. 

 As n →  ∞,  an → 0  

 i.e. the distance between the frog and the rabbit is zero when n → ∞ 
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 At this stage the rabbit will catch the frog. 
 This example suggests that for each natural number there is a unique real 
number. 

i.e. 1 2 3 … n 

 ↓ ↓ ↓  ↓ 

 a1 a2 a3  … an 

 = 1 = 
1
2  =  

1

21  = 
1
4   = 

1

22  … = 
1

2n − 1  

 Consider the following list of numbers 

 (a) 8,  15,  22,  29, ……              (b) 6,  18,  54,  162, …… 

 In the list (a) the first number is 8, the 2nd number is 15, the 3rd number is 
22, and so on. Each number in the list is obtained by adding 7 to the previous 
number. 

 In the list (b) the first number is 6, the 2 nd number is 18, the 3rd number is 
54 etc. Each number in the list is obtained by multiplying the previous number 
by 3. 

 In these examples we observe the following: 

 (i)  A rule by which the elements are written (pattern).  

 (ii) An ordering among the elements (order). 

 Thus a sequence means an arrangement of numbers in a definite order 
according to some rule. 

4.2 Sequence 
 A sequence is a function from the set of natural numbers to the set of real 
numbers. 

 If the sequence is denoted by the letter a, then the image of n ∈ N under 
the sequence a is a(n) = an. 

 Since the domain for every sequence is the set of natural numbers, the 
images of 1, 2, 3, … n … under the sequence a are denoted by a1, a2, a3 … an, 
… respectively.  Here a1, a2, a3 … an, … form the sequence. 

 “A sequence is represented by its range”. 

Recursive formula 

 A sequence may be described by specifying its first few terms and a 
formula to determine the other terms of the sequence in terms of its preceding 
terms. Such a formula is called as recursive formula. 
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 For example, 1, 4, 5, 9, 14, …, is a sequence because each term (except the 
first two) is obtained by taking the sum of preceding two terms. The 
corresponding recursive formula is an + 2 = an + an + 1 , n ≥ 1  here a1=1, a2= 4 

Terms of a sequence: 
 The various numbers occurring in a sequence are called its terms. We 
denote the terms of a sequence by a1, a2, a3, … , an, … , the subscript denote 

the position of the term. The nth term is called the general term of the sequence. 

For example, in the sequence 1,  3,  5,  7,  …  2n − 1,  …  

 the  1st term is 1,  2nd term is 3, … … and nth term is 2n − 1 
 Consider the following electrical circuit in which the resistors are indicated 
with saw-toothed lines. 

 
Fig. 4. 2 

 If all the resistors in the circuit are 1 ohm with a current of 1 ampere then 
the voltage across the resistors are 1, 1, 2, 3, 5, 8, 13, 21, … 
 In this sequence there is no fixed pattern. But we can generate the terms of 
the sequence recursively using a relation. Every number after the second is 
obtained by the sum of the previous two terms. 
 i.e.  V1 = 1 
   V2 = 1 
   V3 = V2 + V1 
   V4 = V3 + V2 
   V5 = V4 + V3 

   . 
   . 
   . 
   Vn = Vn − 1 + Vn − 2 

   . 
   . 
   . 
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 Thus the above sequence is given by the rule: 
   V1 = 1 
   V2 = 1 
   Vn = Vn − 1 + Vn − 2   ;   n ≥ 3 
 This sequence is called Fibonacci sequence. The numbers occurring in this 
sequence are called Fibonacci numbers named after the Italian Mathematician 
Leonardo Fibonacci. 
Example 4.1: 

 Find the 7th term of the sequence whose nth term is (− 1)n + 1 



n + 1

n   

Solution: 

 Given  an = (− 1)n + 1 



n + 1

n   

  substituting n = 7,  we get 

   a7 = (− 1)7 + 1 



8

7    =  
8
7  

4.3 Series 
 For a finite sequence 1, 3, 5, 7, 9 the familiar operation of addition gives 
the symbol 1 + 3 + 5 + 7 + 9 which has the value 25. 
 If we consider the infinite sequence 1, 3, 5, 7, … then the symbol  
1 + 3 + 5 + 7 + … has no definite value, because when we add more and more 
terms the value steadily increases. 1 + 3 + 5 + 7 + 9 + … is called an infinite 
series. Thus a series is obtained by adding the terms of a sequence. 
 If a1, a2, a3, … an … is an infinite sequence then a1 + a2 + … + an + …  is 

called an infinite series. It is also denoted by ∑
k = 1 

∞
    ak 

 If Sn = a1 + a2 + … + an then Sn is called the nth partial sum of the series 

∑
k = 1 

∞
    ak 

Example 4.2  Find the nth partial sum of the series ∑
n = 1 

∞
    

1

2n  

Solution: 

   Sn = 
1

21  + 
1

22  + … + 
1

2n  
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   and Sn + 1 = 
1

21  + 
1

22  + … + 
1

2n  + 
1

2n + 1  

   Sn + 1 = Sn + 
1

2n + 1  … (1) 

 Also we can write Sn + 1 as  

   Sn + 1 = 
1

21  + 
1

22  + … + 
1

2n  + 
1

2n + 1  

    = 
1
2  





1 + 

1
2 + 

1

22 + … + 
1

2n   

    = 
1
2  





1 + 





1

2 + 
1

22 + … + 
1

2n   

   Sn + 1 = 
1
2  [1 + Sn] … (2) 

From (1) and (2) Sn + 
1

2n + 1  = 
1
2  [1 + Sn] 

   2Sn + 
1

2n  = 1 + Sn 

   ∴ Sn = 1 − 
1

2n  

Note: This can be obtained by using the idea of geometric series also. We know 

that the sum to n terms of a geometric series is   Sn = 
a(1 − rn)
(1 − r)

  

 Here a = 
1
2  ,   n = n,   r = 

1
2  (< 1) 

   Sn = 

1
2 





1 − 



1

2
 
n

1 − 
1
2

   = 1 − 
1

2n  

EXERCISE 4.1 
 (1) Write the first 5 terms of each of the following sequences: 

  (i) an = (− 1)n − 1 5n + 1   (ii) an = 
n(n2 + 5)

4         (iii) an = − 11n + 10 

  (iv) an = 
n + 1
n + 2                 (v) an = 

1 − (− 1)n

3        (vi) an = 
n2

3n  
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 (2) Find the indicated terms of the following sequences whose nth term is 

  (i) an = 2 + 
1
n   ;  a5  ,  a7 (ii) an = cos 



nπ

2    ;  a4  ,  a5 

  (iii) an = 
(n + 1)2

n    ;  a7  ,  a10 (iv) an = (− 1)n − 1 2n + 1,  a5 ,  a8 

 (3) Find the first 6 terms of the sequence whose general term is  

  an = 


n2 − 1    if n is odd

n2 + 1
2     if n is even 

 

 (4) Write the first five terms of the sequence given by 

  (i) a1 = a2 = 2,   an = an − 1 − 1,   n > 2  

  (ii) a1 = 1,  a2 = 2, an = an − 1 + an − 2, n > 2 

  (iii) a1 = 1,  an = nan − 1 , n ≥ 2 

  (iv) a1 = a2 = 1,  an = 2an − 1 + 3an − 2, n > 2 

 (5) Find the nth partial sum of the series  ∑
n = 1 

∞
    

1

3n  

 (6) Find the sum of first n terms of the series ∑
n = 1 

∞
    5n 

 (7) Find the sum of 101th terms to 200th term of the series  ∑
n = 1 

∞
    

1

2n  

4.4 Some special types of sequences and their series 
(1) Arithmetic progression: 

 An arithmetic progression (abbreviated as A.P) is a sequence of numbers in 
which each term, except the first, is obtained by adding a fixed number to the 
immediately preceding term. This fixed number is called the common 
difference, which is generally denoted by d. 

 For example, 1, 3, 5, 7, … is an A.P with common difference 2. 
(2) Arithmetic series: 
 The series whose terms are in A.P is called an arithmetic series. 

 For example, 1 + 3 + 5 + 7 + …  is an arithmetic series. 
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 (3) Geometric progression  
 A geometric progression (abbreviated as G.P.) is a sequence of numbers in 
which the first term is non-zero and each term, except the first is obtained by 
multiplying the term immediately preceeding it by a fixed non-zero number. 
This fixed number is called the common ratio and it is denoted by the letter ‘r’.  

 The general form of a G.P.  is      a, ar, ar2, … ,   with a ≠ 0 and r ≠ 0,  the 
first term is ‘a’ 
 (4) Geometric series: 

 The series a + ar + ar2 + … + arn − 1 + … is called a geometric series 
because the terms of the series are in G.P. Note that the geometric series is finite 
or infinite according as the corresponding G.P. consists of finite (or) infinite 
number of terms. 
(5) Harmonic progression: 
 A sequence of non-zero numbers is said to be in harmonic progression 
(abbreviated as H.P.) if their reciprocals are in A.P. 

 The general form of H.P   is    
1
a ,   

1
a + d ,   

1
a + 2d  , … ,   where a ≠ 0. 

 nth term of H.P. is Tn = 
1

a + (n − 1)d
  

 For example the sequences 1, 
1
5 , 

1
9 , 

1
13 , … is a H.P., since their reciprocals 

1, 5, 9, 13, … are in A.P. 
Note: There is no general formula for the sum to n terms of a H.P. as we have 
for A.P. and G.P. 
Example 4.3  If the 5th and 12th terms of a H.P. are 12 and 5 respectively, find 
the 15th term. 
Solution: 

   Tn = 
1

a + (n − 1)d
  

 Given  T5 = 12  ⇒   
1

a + (5 − 1)d
   = 12   ⇒   

1
a + 4d  = 12 

   a + 4d = 
1

12   … (1) 

  and T12 = 5  ⇒   
1

a + (12 − 1)d
   =  5   ⇒   

1
a + 11d    = 5 

  ⇒ a + 11d = 
1
5  … (2) 
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  (2) − (1) 7d = 
7

60     ⇒   d = 
1
60  

  (1)    ⇒ a + 4 



1

60   = 
1

12  

   a + 
4

60  = 
1

12    ⇒  a  = 
1
12   −  

4
60  

   a = 
1

60  

   ∴ T15 = 
1

a + (15 − 1)d
   =  

1
1

60 + 14 × 
1
60

  

    = 
1

15
60

   =  
60
15  

   T15 = 4 

4.5 Means of Progressions 
4.5.1 Arithmetic mean 
 A is called the arithmetic mean of the numbers a and b if and only if  
a, A, b are in A.P. If A is the A.M between a and b then a, A, b are in A.P 
  ⇒ A − a = b − A 
  ⇒ 2A = a + b 

  ⇒      A = 
a + b

2   

 A1, A2, … , An are called n arithmetic means between two given numbers 
a and b if and only if a, A1, A2, … An, b are in A.P. 

Example 4.4 : Find the n arithmetic means between a and b and find their sum. 
Solution: 
 Let A1, A2, … , An be the n A.Ms between a and b. Then by the definition 
of A.Ms     a, A1, A2, … , An , b are in A.P 

 Let  the common difference be d. 
  ∴ A1 = a + d,  A2 = a + 2d, A3 = a + 3d, … , An = a + nd and b = a + (n + 1)d 

  ⇒ (n + 1)d = b − a 

   ∴ d = 
b − a
n + 1  

   ∴ A1 = a + 
b − a
n + 1   ;   A2 = a + 

2(b − a)
n + 1   … An = a + 

n(b − a)
n + 1   
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 Sum of n A.Ms between a and b is 

 A1 + A2 + … + An = 



a + 

b − a
n + 1   + 



a + 

2(b − a)
n + 1   + … + 



a + 

n(b − a)
n + 1  

  = na + 
(b − a)
n + 1  [1 + 2 + … + n] 

  = na + 
(b − a)
(n + 1)  . 

n(n + 1)
2    =  na + 

n(b − a)
2   

  = 
2na + nb − na

2    =  
na + nb

2   = n 



a + b

2   

Example 4.5: Prove that the sum of n arithmetic means between two numbers is 
n times the single A.M between them 

Solution: 

 Let A1, A2, … , An be the n A.Ms between a and b. 

 From the example (4.4) 

  A1 + A2 + A3 + … + An = n 



a + b

2   = n × (A.M between a and b) 

   = n (single A.M between a and b) 

Example 4.6: Insert four A.Ms between − 1 and 14. 

Solution: 

 Let A1, A2, A3, A4 be the four A.Ms between − 1 and 14. 

 By the definition − 1, A1, A2, A3, A4, 14 are in A.P. Let d be the common 
difference. 

∴ A1= − 1 + d, ; A2 = − 1 + 2d ; A3 = − 1 + 3d, ; A4 = − 1 + 4d ; 14  =  −1+5d 

 ∴ d = 3 

∴ A1= − 1 + 3 = 2 ; A2 = − 1+2 × 3 = 5 ; A3 = −1+3×3 = 8 ; A4= − 1 + 12 = 11 

 ∴ The four A.Ms are 2, 5, 8 and 11. 

4.5.2 Geometric Mean 

 G is called the geometric mean of the numbers a and b if and only if  
a, G, b are in G.P. 

  ⇒ 
G
a   = 

b
G  = r 

  ⇒ G2 = ab 

   G = ± ab  



 123

Note: 

 (1) If a and b are positive then G = + ab  

 (2) If a and b are negative then G = − ab  
 (3) If a and b are opposite sign then their G.M is not real and it is 

discarded since we are dealing with real sequences. 
 i.e. If a and b are opposite in signs, then G.M between them does not exist. 
Example 4.7: Find n geometric means between two given numbers a and b and 
find their product. 
Solution: 
 Let G1, G2, … , Gn be n geometric means between a and b.  

 By definition  a, G1, G2, … , Gn, b are in G.P.  Let r be the common ratio. 

 Then G1 = ar,   G2 = ar2, … , Gn = arn and b = arn + 1 

   rn + 1 = 
b
a                  ∴  r = 



b

a  

1
n + 1  

  ⇒ G1 = a 



b

a  

1
n + 1 ,     G2 = a



b

a  

2
n + 1   …  Gn = a



b

a  

n
n + 1  

The product is 

 G1 . G2 . G3 . Gn = a



b

a  

1
n + 1  . a



b

a  

2
n + 1  … a



b

a  

n
n + 1  

  = an 











b

a  

1 + 2 + … + n
n + 1   

  = an  











b

a  

n(n + 1)
2(n + 1)    =  an





b

a  

n
2  

  = (ab)

n
2  

Example 4.8:  Find 5 geometric means between 576 and 9. 

Solution: 

 Let G1, G2, G3, G4, G5 be 5 G.Ms between a = 576 and b = 9 

 Let the common ratio be r 

 G1 = 576r, G2 = 576r2 , G3 = 576r3 , G4 = 576r4,  G5 = 576r5,   9 = 576r6 
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  ⇒ r6 = 
9

576    ⇒   r = 



9

576  

1
6  = 



1

64  

1
6  

   r = 
1
2  

∴ G1 = 576r = 576 × 
1
2  = 288 G2 = 576r2 = 576 × 

1
4  = 144 

 G3 = 576r3 = 576 × 
1
8  = 72 G4 = 576r4 = 576 × 

1
16  = 36 

 G5 = 576r5 = 576 × 
1
32  = 18 

 Hence 288, 144, 72, 36, 18 are the required G.Ms between 576 and 9. 

Example 4.9: If b is the A.M of a and c (a ≠ c) and (b − a) is the G.M of  
a and  c − a,   show that a : b :  c = 1 : 3 : 5 
Solution: 
 Given b is the A.M of a and c     

 ∴ a, b, c are in A.P.   Let the common difference be d 

   ∴ b = a + d   … (1)  

   c = a + 2d     … (2) 

 Given (b − a) is the G.M of  a and (c − a) 

   ∴ (b − a)2 = a(c − a) 

   d2 = a(2d) From (1) and (2) 

  ⇒ d = 2a        [‡ d ≠ 0] 

  ∴  b  = a + d       c = a + 2d 
        b  = a + 2a c = a + 2(2a) 

      b = 3a           c  =  5a   

   ∴ a : b : c = a : 3a : 5a 
    = 1 : 3 : 5 
4.5.3 Harmonic mean 
 H is called the harmonic mean between a and b if a, H, b are in H.P 

 If a, H, b are in H.P then  
1
a ,  

1
H ,  

1
b  are in A.P 

  ⇒ 
1
H  = 

1
a + 

1
b

2      ;   
2
H  = 

1
a  + 

1
b  
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         H = 
2ab

a + b   

 This H is single H.M between a and b 
Definition: 
 H1, H2, … Hn are called n harmonic means between a and b if a, H1, H2, 
… Hn, b are in H.P. 
Relation between A.M., G.M. and H.M. 
Example 4.10:  If  a, b are two different positive numbers then prove that 
 (i) A.M., G.M., H.M. are in G.P.     (ii) A.M > G.M > H.M 
Proof: 

   A.M. = 
a + b

2     ;   G.M.  = ab   ;   H.M.  =  
2ab

a + b  

  (i) 
G.M
A.M  = 

ab
a + b

2

   =  
2 ab
a + b  … (1) 

   
H.M
G.M  = 

2ab
a + b

ab
   =  

2 ab
a + b  … (2) 

 From (1) and (2) 

   
G.M
A.M  = 

H.M
G.M  

  ∴   A.M,  G.M,  H.M are in G.P 

  (ii)A.M − G.M = 
a + b

2   − ab  = 
a + b − 2 ab

2   

    = 
( )a − b

2

2
 > 0 ‡ a > 0 ; b > 0 ; a ≠ b 

   A.M > G.M … (1) 

   G.M − H.M = ab   −  
2ab

a + b  

    = 
ab (a + b) − 2ab

a + b   = 
ab [ ]a + b − 2 ab

a + b   

    = 
ab ( )a − b

2

a + b    >  0 

   ∴   G.M  > H.M … (2) 
 From (1) and (2)                A.M. > G.M > H.M 
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EXERCISE 4.2 
 (1) (i) Find five arithmetic means between 1 and 19 

  (ii) Find six arithmetic means between 3 and 17 

 (2) Find the single A.M between 

  (i) 7 and 13 (ii) 5 and − 3 (iii) (p + q)  and (p − q) 

 (3) If b is the G.M of a and c and x is the A.M of a and b and y is the A.M 

of b and c, prove that 
a
x  + 

c
y  = 2 

 (4) The first and second terms of a H.P are 
1
3  and 

1
5  respectively, find the 

9th term. 

 (5) If a, b, c are in H.P., prove that 
b + a
b − a

  + 
b + c
b − c

  = 2 

 (6) The difference between two positive numbers is 18, and 4 times their 
G.M is equal to 5 times their H.M. Find the numbers. 

 (7) If the A.M between two numbers is 1, prove that their H.M is the square 
of their G.M. 

 (8) If a, b, c are in A.P. and a, mb, c are in G.P then prove that a, m2b, c are 
in H.P 

 (9) If the pth and qth terms of a H.P are q and p respectively, show that 

(pq)th term is 1. 

 (10) Three numbers form a H.P. The sum of the numbers is 11 and the sum 
of the reciprocals is one. Find the numbers. 

4.6 Some special types of series 
4.6.1 Binomial series 

Binomial Theorem for a Rational Index: 

 In the previous chapter we have already seen the Binomial expansion for a 
positive integral index n. (power is a positive integer)  

 (x + a)n = x n + nC1 x n − 1 a 1 + nC2x n − 2a2 +…+ nCrx
 n − r ar + … + nCnan 

 A particular form is 

 (1 + x)n = 1 + nx + 
n(n − 1)

2!   x2 +  
n(n − 1) (n − 2)

3!   x3 + … + x n 
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 When n is a positive integer the number of terms in the expansion is (n+1) 
and so the series is a finite series. But when it is not a positive integer, the series 
does not terminate and it is an infinite series. 
Theorem (without proof) 

For any rational number n other than positive integer 

 (1 + x)n = 1 + nx + 
n(n − 1)

1.2   x2 +  
n(n − 1) (n − 2)

1.2.3   x3 + … …  

provided | x | < | . 
 Here we require the condition that | x | should be less than 1.  

 To see this, put x = 1 and n = − 1 in the above formula for   (1 + x)n 

  The left side of the formula = (1 + 1)− 1 = 
1
2  ,  

   while the right side = 1 + (− 1) (1) + 
(− 1) (− 2)

2   12 + … 

    = 1 − 1 + 1 − 1 + … 
  Thus the two sides are not equal. This is because, x = 1 doesn’t satisfy | x | < 1.  
 This extra condition | x | < 1 is unnecessary, if n is a positive integer. 
Differences between the Binomial theorem for a positive integral index and 
for a rational index: 

 1. If n ∈ N, then (1 + x)n is defined for all values of x and if n is a 

rational number other than the natural number, then (1 + x)n is defined 
only when | x | < |. 

 2. If n ∈ N, then the expansion of (1 + x)n contains only n + 1 terms. If  
n is a rational number other than natural number, then the expansion 

of (1 + x)n contains infinitely many terms. 
Some particular expansions  

 We know that , when n is a rational index, 

  (1 + x)n = 1 + nx + 
n(n − 1)

2!   x2 + 
n(n − 1) (n − 2)

3!   x3 + …  (1) 

 Replacing x by − x,  we get  

  (1 − x)n = 1 − nx + 
n(n − 1)

2!  x2  −  
n(n − 1) (n − 2)

3!  x3 + … (2) 

 Replacing n by − n  in (1) we get 

   (1 + x)−n = 1 − nx + 
n(n + 1)

2!  x2− 
n(n + 1) (n + 2)

3!   x3 +… (3) 
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 Replacing x by − x in  (3), we get 

  (1 − x)−n = 1 + nx + 
n(n + 1)

2!   x2 + 
n(n + 1) (n + 2)

3!   x3 +…  (4) 

Note : 
 (1) If the exponent is negative then the value of the factors in the 

numerators are increasing uniformly by 1 
 (2) If the exponent is positive then the value of the factors in the 

numerators are decreasing uniformly by 1 
 (3) If the signs of x and n are same then all the terms in the expansion are 

positive. 
 (4) If the signs of x and n are different, then the terms alternate in sign 
Special cases 

  1. (1 + x)−1 = 1 − x + x2 − x3 + … 

  2. (1 − x)− 1 = 1 + x + x2 + x3 + …  

  3. (1 + x)− 2 = 1 − 2x + 3x2 − 4x3 + …  

  4. (1 − x)− 2 = 1 + 2x + 3x2 + 4x3 + … 

General term: 
 For a  rational number  n and | x |  < 1, we have 

   (1 + x)n = 1 + nx + 
n(n − 1)

1.2   x2 +  
n(n − 1) (n − 2)

1.2.3   x3 + … 

 In this expansion 
 First  term T1 = T0 + 1 = 1 

 Second term T2 = T1 + 1 = nx = 
n
1  x1 

 Third term T3 = T2 + 1  =  
n(n − 1)

1.2   x2 

 Fourth term  T4 = T3 + 1  =  
n(n − 1) (n − 2)

1.2.3   x3 etc. 

 (r + 1)th term :  Tr + 1 = 
n(n − 1) (n − 2) … (n − (r − 1))

1.2.3 … r
  xr 

The general term is  

 Tr + 1 = 
n(n − 1) (n − 2) …r factors

r!   xr =  
n(n − 1) (n − 2)…(n − r + 1)

r!   xr 

Example 4.11: Write the first four terms in the expansions of  

  (i) (1 + 4x)− 5   where | x | < 
1
4         (ii) (1 − x2) 

− 4    where | x | < | 
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Solution:  (i)  | 4x | =  4| x | < 4 



1

4   = 1   ∴   | 4x | < 1  

  ∴ (1 + 4x)− 5 can be expanded by Binomial theorem. 

 (1 + 4x)− 5 = 1 −( 5) (4x) + 
(5) (5 + 1)

1.2   (4x)2 −  
(5) (5 + 1) (5 + 2)

1.2.3    (4x)3 + … 

  = 1 − 20x + 15(16x2) − 35(64x3) + …  

  = 1 − 20x + 240x2 − 2240x3 + … 

 (ii) (1 − x2)
− 4

  can be expanded by Binomial theorem since | x2 |  <  1 

   = 1 + (4) (x2) + 
(4) (4 + 1)

1.2    (x2)
2
  +  

(4) (4 + 1) (4 + 2)
1.2.3    (x2)

3
 + …  

   = 1 + 4x2 + 10x4 + 20x6 + …  

Example 4.12:Find the expansion of 
1

(2 + x)4 where |x| < 2 upto the fourth term. 

Solution: 

 
1

(2 + x)4  = (2 + x) − 4  =  2− 4  



1 + 

x
2

− 4
  | x | < 2  ⇒  



 

x
2   < 1 

  = 
1

16   





1 − (4) 



x

2  + 
(4) (4 + 1)

1.2  



x

2

2
 − 

(4) (4 + 1) (4 + 2)
1.2.3  



x

2

3
+…   

  = 
1

16  





1 − 2x + 
(4) (5)

2  



x2

4  − 
(4) (5) (6)

1.2.3  
x3

8  + …   

  = 
1

16   −  
x
8  + 

5
32  x2 − 

5
32  x3 + …  

Example 4.13:Show that (1+x)n = 2n 





1 − n 



1 − x

1 + x  + n 



n + 1

2!  



1 − x

1 + x
2

 + …  

Solution:   Let y = 
1 − x
1 + x   

   R.H.S  = 2n 



1 − ny + 

n(n + 1)
2!  y2 + …   = 2n [1 + y] − n 

    = 2n  



1 + 

1 − x
1 + x

 
− n

  =  2n  



1 + x + 1 − x

1 + x
− n

   

    = 2n 



2

1 + x  
− n

   =  2n  



1 + x

2
 
n

  = (1 + x)n  =  L.H.S. 
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Approximation by using Binomial series 

Example 4.14: Find the value of 
3

126  correct to two decimal places. 
Solution: 

 
3

126  = (126)

1
3  = (125 + 1)

1
3   

  = 



125 



1 + 

1
125  

1
3 = (125) 

1
3   



1 + 

1
125  

1
3   

  = 5 



1 + 

1
3 . 

1
125 + …                Q  

1
125  < 1 

  = 5 



1 + 

1
3 (0.008)    by neglecting other terms 

  = 5[1 + 0.002666] 
  = 5.01  (correct to 2 decimal places) 

Example 4.15: If x is large and positive show that
3

x3+ 6 − 
3

x3 + 3 =
1

x2  (app.) 

Solution:  Since x is large, 
1
x   is small and hence 



1

x   < 1 

 
3

x3 + 6  − 
3

x3 + 3  = (x3 + 6) 

1
3  − (x3 + 3) 

1
3   =  x





1 + 

6

x3  

1
3   − x 





1 + 

3

x3  

1
3   

  = x 




1 + 

1
3 . 

6

x3  +…    − x 




1 + 

1
3 . 

3

x3 + …    

  = 




x + 

2

x2 + …   − 




x + 

1

x2 + …  = 
2

x2   −  
1

x2   +  …   

  = 
1

x2    (approximately) 

Example 4.16:   In the expansion (1 − 2x) 
− 

1
2 , find the coefficient of x8. 

Solution: We know that  

(1−x)−n=1+nx+
n(n + 1)

2!  x2+
n(n + 1) (n + 2)

3! x3+…+ 
n(n + 1) … (n + r − 1)

r!  xr+… 

General term  Tr + 1 = 
n(n + 1) … (n + r − 1)

r!   xr   

 Take       n = 
1
2  and replace x by 2x. 
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 Tr + 1 = 

1
2 



3

2  



5

2  … 



2r − 1

2
r!   (2x)r = 

1.3.5 … (2r − 1)

r!  2r   2r xr 

 ∴ coefficient of xr = 
1.3.5 … (2r − 1)

r!   

 put r = 8 

 ∴ coefficient of x8 = 
1.3.5.7.9.11.13.15

8!    

4.6.2. Exponential series 
    Exponential theorem (without proof) 
 For all real values of x, 

 



1 + 

1
1! + 

1
2! + … + 

1
n! + … 

x
  = 1 + 

x
1!  + 

x2

2!  + 
x3

3!  + …  

 But e = 1 + 
1
1!  + 

1
2!  + 

1
3!  + …  

 ∴ For all real values of x,      ex = 1 + 
x
1!  + 

x2

2!  + 
x3

3!  + …  

 Thus we have the following results: 

   e−x = 1 − 
x
1!  + 

x2

2!  − 
x3

3!  + … 

   
ex + e−x

2   = 1 + 
x2

2!  + 
x4

4!  + … 

   
ex − e−x

2   = x+ 
x3

3!  + 
x5

5!  + …  

   
e + e−1

2   = 1 + 
1
2!  + 

1
4!  + … 

   
e − e−1

2   = 
1
1!  + 

1
3!  + 

1
5!  + …  

4.6.3 Logarithmic Series: 

 If − 1 < x ≤ 1 then log(1 + x) = x − 
x2

2   + 
x3

3   − 
x4

4   + …  

 This series is called the logarithmic series.  
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 The other forms of logarithmic series are as follows: 

   log(1 − x) = − x − 
x2

2   − 
x3

3   − … 

   − log(1 − x) = x + 
x2

2   + 
x3

3   + … 

   log(1 + x) − log(1 − x) = 2 





x + 
x3

3  + 
x5

5  + …   

   
1
2  log 

1 + x
1 − x

  = x + 
x3

3   + 
x5

5   + … 

EXERCISE 4.3 
 (1) Write the first four terms in the  expansions of the following: 

  (i) 
1

(2 + x)4  where | x | > 2             (ii)  
1

3
6 − 3x

  where | x | <  2 

 (2) Evaluate the following: 

  (i)   
3

1003  correct to 2 places of decimals 

  (ii) 
1

3
128

   correct to 2 places of decimals 

 (3) If x is so small show that 
1 − x
1 + x  = 1 − x + 

x2

2    (app.)   

 (4) If x is so large prove that  x2 + 25   −  x2 + 9   =  
8
x   nearly. 

 (5) Find the 5th term in the expansion of (1 − 2x3)
11
2   

 (6) Find the (r + 1)th term in the expansion of (1 − x)−4   

 (7) Show that xn = 1 + n



1 − 

1
x   + 

n(n + 1)
1.2   



1 − 

1
x

2
  + … 


