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PREFACE

This book is designed in accordance with the new guidelines and
syllabi — 2003 of the Higher Secondary Mathematics — First Year,
Government of Tamilnadu. In the era of knowledge explosion, writing a
text book on Mathematics is challenging and promising. Mathematics
being one of the most important subjects which not only decides the
career of many young students but also enhances their ability of
analytical and rational thinking and forms a base for Science and
Technology.

This book would be of considerable value to the students who
would need some additional practice in the concepts taught in the class
and the students who aspire for some extra challenge as well.

Each chapter opens with an introduction, various definitions,
theorems and results. These in turn are followed by solved examples
and exercises which have been classified in various types for quick and
effective revision. The most important feature of this book is the
inclusion of a new chapter namely ‘Functions and Graphs’. In this
chapter many of the abstract concepts have been clearly explained
through concrete examples and diagrams.

It is hoped that this book will be an acceptable companion to the
teacher and the taught. This book contains more than 500 examples
and 1000 exercise problems. It is quite difficult to expect the teacher to
do everything. The students are advised to learn by themselves the
remaining problems left by the teacher. Since the ‘Plus 1’ level is
considered as the foundation course for higher mathematics, the
students must give more attention to each and every result mentioned in
this book.



The chief features of this book are

(i)

(ii)

(iii)

(iv)

v)

The subject matter has been presented in a simple and lucid
manner so that the students themselves are able to
understand the solutions to the solved examples.

Special efforts have been made to give the proof of some
standard theorems.

The working rules have been given so that the students
themselves try the solution to the problems given in the
exercise.

Sketches of the curves have been drawn wherever
necessary, facilitating the learner for better understanding of
concepts.

The problems have been carefully selected and well graded.

The list of reference books provided at the end of this book will be
of much helpful for further enrichment of various concepts introduced.

We welcome suggestions and constructive criticisms from learned

teachers and dear students as there is always hope for further
improvement.

K. SRINIVASAN
Chairperson
Writing Team



1)

)

®)

(4)

()

SYLLABUS

MATRICES AND DETERMINANTS : Matrix Algebra — Definitions, types,
operations, algebraic properties. Determinants - Definitions, properties,
evaluation, factor method, product of determinants, co-factor

determinants. (18 periods)

VECTOR ALGEBRA : Definitions, types, addition, subtraction, scalar
multiplication, properties, position vector, resolution of a vector in two and

three dimensions, direction cosines and direction ratios. (15 periods)

ALGEBRA : Partial Fractions - Definitions, linear factors, none of which
is repeated, some of which are repeated, quadratic factors (none of
which is repeated). Permutations - Principles of counting, concept,
permutation of objects not all distinct, permutation when objects can
repeat, circular permutations. Combinations, Mathematical induction,
Binomial theorem for positive integral index-finding middle and

particular terms. (25 periods)

SEQUENCE AND SERIES : Definitions, special types of sequences and
series, harmonic progression, arithmetic mean, geometric mean,
harmonic mean. Binomial theorem for rational number other than
positive integer, Binomial series, approximation, summation of Binomial
series, Exponential series, Logarithmic series (simple problems)
(15 periods)

ANALYTICAL GEOMETRY : Locus, straight lines — normal form,
parametric form, general form, perpendicular distance from a point,
family of straight lines, angle between two straight lines, pair of
straight lines. Circle - general equation, parametric form, tangent
equation, length of the tangent, condition for tangent. Equation of chord
of contact of tangents from a point, family of circles — concetric circles,

orthogonal circles. (23 periods)
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(8)
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(10)

TRIGONOMETRY : Trigonometrical ratios and identities, signs of
T-ratios, compound angles A + B, multiple angles 2A, 3A, sub multiple
(half) angle A/2, transformation of a product into a sum or difference,
conditional identities, trigonometrical equations, properties of
triangles, solution of triangles (SSS, SAA and SAS types only),
inverse trigonometrical functions. (25 periods)

FUNCTIONS AND GRAPHS : Constants, variables, intervals,
neighbourhood of a point, Cartesian product, relation. Function - graph
of a function, vertical line test. Types of functions - Onto, one-to-one,
identity, inverse, composition of functions, sum, difference product,
quotient of two functions, constant function, linear function, polynomial
function, rational function, exponential function, reciprocal function,
absolute value function, greatest integer function, least integer function,
signum function, odd and even functions, trigonometrical functions,
quadratic functions. Quadratic inequation - Domain and range.
(15 periods)

DIFFERENTIAL CALCULUS : Limit of a function - Concept, fundamental
results, important limits, Continuity of a function - at a point, in an
interval, discontinuous function. Concept of Differentiation -
derivatives, slope, relation between continuity and differentiation.
Differentiation techniques - first principle, standard formulae, product
rule, quotient rule, chain rule, inverse functions, method of substitution,
parametric  functions, implicit function, third order derivatives.
(30 periods)

INTEGRAL CALCULUS : Concept, integral as anti-derivative, integration of
linear functions, properties of integrals. Methods of integration -
decomposition method, substitution method, integration by parts.
Definite integrals - integration as summation, simple problems.
(32 periods)

PROBABILITY : Classical definitions, axioms, basic theorems, conditional
probability, total probability of an event, Baye’s theorem (statement only),
simple problems. (12 periods)
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1. MATRICESAND DETERMINANTS

1.1 Matrix Algebra

1.1.1 Introduction

The term ‘matrix’ was first introduced by Sylvester in 1850. He defined a
matrix to be an arrangement of terms. In 1858 Cayley outlined a matrix algebra
defining addition, multiplication, scalar multiplication and inverses. Knowledge
of matrix is very useful and important as it has a wider application in almost
every field of Mathematics. Economists are using matrices for socia
accounting, input — output tables and in the study of inter-industry economics.
Matrices are also used in the study of communication theory, network analysis
in electrical engineering.

For example let us consider the marks scored by a student in different
subjects and in different terminal examinations. They are exhibited in a tabular
form as given below.

Tamil English Maths Science Socia Science

Test1 70 81 88 83 64
Test 2 68 76 93 81 70
Test 3 80 86 100 98 78

The above statement of marks can also be re-recorded as follows :

First row 70 8l 88 83 64
Second row 68 76 93 81 70
Third row 80 86 100 98 78

First second Third Fourth Fifth

Column Column Column  Column Column

This representation gives the following informations.

(i) The elements along the first, second, and third rows represent the test

marks of the different subjects.

(ii) The elements along the first, second, third, fourth and fifth columns

represent the subject marks in the different tests.

The purpose of matrices is to provide a kind of mathematical shorthand to
help the study of problems represented by the entries. The matrices may
represent transformations of co-ordinate spaces or systems of simultaneous
linear equations.



1.1.2 Definitions:

A matrix is a rectangular array or arrangement of entries or elements
displayed in rows and columns put within a square bracket or parenthesis. The
entries or elements may be any kind of humbers (real or complex), polynomias
or other expressions. Matrices are denoted by the capital letterslike A, B, C...

Here are some examples of Matrices.

1 4 First Row 1 -4 2 First row (R1)
A= 2 5 Second Row B = 6 9 4 Second row (Rp)
3 6 Third Row 3 -2 6 Third row (R3)
First  Second First Second Third
Column Column Column Column Column

Ci C2 C3
Note : In a matrix, rows are counted from top to bottom and the columns are
counted from left to right.
i.e. (i) Thehorizontal arrangements are known as rows.
(i) Thevertica arrangements are known as columns.

To identify an entry or an element of a matrix two suffixes are used. The
first suffix denotes the row and the second suffix denotes the column in which
the element occurs.

From the above example the elements of A are aj1 = 1, ajo = 4, ap1 = 2,
a»=5a31=3andazx =6
Order or size of amatrix

The order or size of a matrix is the number of rows and the number of
columns that are present in a matrix.

In the above examples order of A is3 x 2, (to be read as 3-by-2) and order
of Bis3x 3, (to beread as 3-by-3).
In general amatrix A of order m x n can be represented as follows :

all a2 . alj s aln
A= a1 a2 .. & .. apn = i row
ami  am2 A Amn
.th
J
column



This can be symbolically written as A = [ajj]m x n.

The element a;; belongs to i" row and thejth column. i being the row index

and j being the column index. The above matrix A isan m x n or m-by-n matrix.
The expression m x n isthe order or size or dimension of the matrix.

Example 1.1: Construct a3 x 2 matrix whose entries are given by ajj =i - 2]

Solution: The general 3 x 2 matrix is of the form

a1 are
A =[aj] = a1 a2 wherei=1,2, 3(rows), j=1,2(columns)
agy azx
Itisgiventhat aj; =i - 2]
aj1=1-2=-1 a;p=1-4=-3 -1 -3
a=2-2=0 ax»p=2-4=-2  Therequired matrixisA= 0 -2
az1=3-2=1 agp=3-4=-1 1 -1

1.1.3 Typesof matrices

(1) Row matrix: A matrix having only onerow is called arow matrix or arow
vector.

Examples (i) A=[gjlix3=[1 -7 4]isarow matrix of order 1 x 3.
(i) B=[bjjJlix2=[5 8]isarow matrix of order 1 x 2
(iif) C=[cjjl1x 1 =[100] isarow matrix of order 1 x 1
(2) Column matrix:

A matrix having only one column is called a column matrix or a column
vector.

1

Examples (i) A =[ajlzx1= —7 isacolumn matrix of order 3 x 1
4

25
(i) B=[hjjl2x1= 30 isacolumn matrix of order 2 x 1

(ifi) C=[cjj]1x 1 =[68] isacolumn matrix of order 1 x 1

Note: Any matrix of order 1 x 1 can be treated as either a row matrix or a
column matrix.



(3) Square matrix

A sguare matrix is amatrix in which the number of rows and the number of
columns are equal. A matrix of order n X n is also known as a square matrix of
order n.

In a square matrix A of order n x n, the elements ai1, axp, azz ... anp are
called principal diagonal or leading diagonal or main diagonal elements.

A=laijlax2 = o o isasquaematrix of order 2
123

B=[bjlax3= 4 5 6 isasquarematrix of order 3.
7 89

Note: In general the number of elementsin a square matrix of order nis n%. We
can easily verify this statement from the above two examples.

(4) Diagonal Matrix:
A square matrix A = [ajj]n x n IS said to be a diagonal matrix if aj; = 0 when
e
In a diagona matrix al the entries except the entries along the main
diagonal are zero.
400

For example A =[ajjlax3= 0 5 O isadiagonal matrix.
006
(5) Triangular matrix: A sguare matrix in which all the entries above the

main diagonal are zero is called a lower triangular matrix. If all the entries
below the main diagonal are zero, it is called an upper triangular matrix.

327 2 00
A= 0 5 3 jsanuppertriangular matrixandB= 4 1 O jisalower
001 8 -5 7

triangular matrix.
(6) Scalar matrix:
A square matrix A = [gjln x n is sad to be scaar matrix if
_a it =]
4= 0 if i#j



i.e. A scalar matrix is adiagona matrix in which all the entries along the
main diagonal are equal.

A5 0 0
A =[ajlax2= 05 B = [bijlaxz= 0 5 0 areexamples
0 0 45

for scalar matrices.
(7) Identity matrix or unit matrix:

A square matrix A = [a&j]n x n IS said to be an identity matrix if

1 it 0=

4= 0 if izj

i.e. An identity matrix or a unit matrix is a scalar matrix in which entries
along the main diagonal are equal to 1. We represent the identity matrix of
ordernas Ip

10 100
lo = 01 I3= 0 1 0 areidentity matrices.
001
(8) Zero matrix or null matrix or void matrix
A matrix A = [ajj]m x n is said to be a zero matrix or null matrix if al the
entries are zero, and isdenoted by O  i.e. gjj = O for al the values of i, |
00 00O
[0 0, OO0, OO O areexamplesof zero matrices.
00 00O
(9) Equality of Matrices:
Two matrices A and B are said to be equal if
(i) both the matrices A and B are of the same order or size.
(if) the corresponding entries in both the matrices A and B are equal.
i.e. the matrices A = [gjjlmx nand B = [bjjlpx q aeequa if m=p,n=q
and gjj = bjj for every i andj.
Example 1.2 :
Xy 4 3
zw 15
Solution:
Since the two matrices are equal, their corresponding entries are also equal.

If then find the values of x, y, z, w.

x=4 y=3 z=1 w=5



(10) Transpose of a matrix:

The matrix obtained from the given matrix A by interchanging its rows
into columns and its columns into rows is called the transpose of A and it is
denoted by A’ or AT,

4 -3
IfA= 2 0 thenAT=
1 5
Notethat if A isof order mx nthen AT isorder nx m.
(11) Multiplication of a matrix by a scalar

Let A be any matrix. Let k be any non-zero scalar. The matrix kA is
obtained by multiplying all the entries of matrix A by the non zero scalar k.

i.e. A=[ajlmxn KA =[kajlmxn

Thisis called scalar multiplication of a matrix.

Note: If amatrix A isof order m x n then the matrix kA is aso of the same
order mx n

4 21
-3 05

1 72 1 72 2 14 4
For example If A = 639 then 2A =2 639 -12 6 18
(12) Negative of a matrix:
Let A be any matrix. The negative of amatrix A is— A and is obtained by

changing the sign of all the entries of matrix A.
i.e. A=[ajlmxn ~A=[-&jlmxn
cos® snb -cosB -sind

LetA= —-sin6 cosd then  -A= sin6 - cosb

1.1.4 Operations on matrices
(1) Addition and subtraction

Two matrices A and B can be added provided both the matrices are of the
same order and their sum A + B is obtained by adding the corresponding entries
of both the matrices A and B

i.e. A =[ajlmxnand B =[bjjlmxn  then A +B=[aj+bjjlmxn

Similarly A-B=A+(-B) =[ajlmxn*[-Dbijlmxn
= [&j = bijlmxn
Note:
(1) ThematricesA + B and A - B have same order equal to the order of
A or B.



(2) Subtraction istreated as negative addition.
(3) The additive inverse of matrix A is— A.
i.e. A+(-A)=(-A)+A =0 =zeromatrix

7 2 4 -7
For example, if A= 8 6 andB= 3 1
9 -6 -8 5
7 2 4 -7 7+4 2-7 11 -5
thenA+B=8 6 + 3 1 =8+3 6+1 = 11 7 ad
9 -6 -8 5 9-8 -6+5 1 -1
7 2 -4 7 7-4 2+7 3 9
A-B=A+(-B)=8 6 + -3 -1=8-3 6-1 =5 5
9 -6 8 -5 9+8 -6-5 17 -11

(2) Matrix multiplication:

Two matrices A and B are said to be conformable for multiplication if the
number of columns of the first matrix A is equal to the number of rows of the
second matrix B. The product matrix ‘AB’ is acquired by multiplying every row
of matrix A with the corresponding elements of every column of matrix B
element-wise and add the results. This procedure is known as row-by-column
multiplication rule.

Let A be a matrix of order m x n and B be a matrix of order n x p then the
product matrix AB will be of order mx p

i.e. order of Aismxn, orderof Bisnxp

number of rows number of columns

Then the order of ABismx p= of marix A % of matrix B

The following example describes the method of obtaining the product
matrix AB

Let A= 214 B -

@ A= 7356 -

2x3 3x3

N w o

4
2
3

= 01w

It isto be noted that the number of columns of the first matrix A isequal to
the number of rows of the second matrix B.



Matrices A and B are conformable, i.e. the product matrix AB can be
found.

6 4 3
AB = 5 ; g 325
731
21 46 2 1 4 4 2 1 4 3
3 2 5
7 3 1
7 36 6 7 36 4 7 36 3
3 2 5
7 3 1
@QE+OQ+@®M @A+OA+HE @O+OO+@HO
ME+EQ+E @ MA+FA+®F N+ OB+ 1)
12+3+28 8+2+12 6+5+4 43 22 15
T 42+9+42 28+6+18 21+15+6 AB= o5 52 a2

It isto be noticed that order of AB is2 x 3, which is the number of rows of
first matrix A ‘by’ the number of columns of the second matrix B.
Note: (i) If AB =AC, itisnot necessarily true that B = C. (i.e)) the equa
matrices in the identity cannot be cancelled asin algebra.
(i) AB = O does not necessarily imply A=0OorB=0

F e A= - Y soade= 11t 20

orexampe, —_1 1 z an —11 z
1-1 11 00

but AB= _ = =0

1 1 11 00
(iii) If A is a square matrix then A.A is also a square matrix of the
same order. AA is denoted by A2, Similarly A’A = AAA = A8

If | isaunit matrix, then1 =12=13= ... =",

1.1.5 Algebraic properties of matrices:
(1) Matrix addition is commutative:

If A and B are any two matrices of the same order then A + B =B + A.
This property is known as commutative property of matrix addition.

(2) Matrix addition is associative:
i.e. If A, B and C are any three matrices of the same order



thenA+(B + C) = (A+B)+C. This property is known as associative property
of matrix addition.
(3) Additiveidentity:

Let A be any matrix then A + O = O + A = A. This property is known as
identity property of matrix addition.

The zero matrix O is known as the identity element with respect to matrix
addition.

(4) Additiveinver se;

Let A be any matrix then A + (- A) = (- A) + A = O. This property is
known as inverse property with respect to matrix addition.

The negative of matrix A i.e. — A istheinverse of A with respect to matrix
addition.
(5) Ingeneral, matrix multiplication is not commutative i.e. AB # BA
(6) Matrix multiplication is associativei.e. A(BC) = (AB)C
(7) Matrix multiplication is distributive over addition

i.e. ()AB+C)=AB+AC (ii)(A+B)C=AC+BC
(8) Al =1A = A where | isthe unit matrix or identity matrix. Thisis known as
identity property of matrix multiplication.

18 13 -4 6
Examplel3: IfA= , 5, B= ., , C= 3 _5
Provethat (i) AB # BA (i) A(BC) = (AB)C
(iii)A(B+C)=AB +AC (iv)Al=1A=A
Solution:
: ag= 18 13 _DDO+E @) (DE)+(8) (4
® 43 747 @OE0) @+ @
_1+56 3+32 57 35
T 4+21 12+12 T 25 24 (D)
gaz £33 18 _@OM+E@ ME+EE
74 43 DDrA@ ME+AHE
_1+12 8+9 13 17
T 7+16 56+12 T 23 68 (2
From (1) and (2) we have AB # BA
iy 57 3 -4 6
(i) (AB)C= ... from (1)

25 24 3 -5
_ GNEH+HEHE) (57 (6) +(39) (-9)
(25) (-4) +(24) (3) (25) () +(24) (- 5)



-228+105 342-175
-100+72 150-120
-123 167
-28 30
13 -4 6
7 4 3 -5

(AB)C =

NE)

DEH+EE) OO+ (-5 _ -4+9 6-15

MNEH+HE) DO +@A (-5 -28+12 42-20

5 -9
-16 22
18 5 -9
43 -16 22
DE+@E) (16 1)(-9+(8) (22 5-128
@B+R)(-16 ) (-9+(3)(22) 20-48
-123 167
-28 30
From (3) and (4) we have, (AB)C = A(BC)
(i) B+C = 13 N -4 6 _ 1-4 3+6 _ -3
74 3 -5 7+3 4-5 10 -
18 -3 9 -3+80 9-8
4 3

A(BC)

A(BC)

AB+C) = 10 -1  -12+30 36-3
7 1

18 33

57 35
25 24
18 -4 6 -4+24 6-40 20

AC= 43 3 -5 7 _16+9 24-15 ~ -7

57 35 20 -34 57+20 35- 34

ABTACS 25 24 ¥ 7 9 7 25-7 24+9

771
18 33

A(B+C) =

AB = ... from (1)

10

-9+176
-36+66

)

. (5

-34
9

.. (6)



From equations (5) and (6) we have A(B + C) = AB + AC

10
(iv) Sinceorder of Ais2x 2, takel = 01

18 10 1(1)+80) 1(0)+8(1) 1+0 0+8

Al= 43 01 T 41)+3(0) 40)+3(1) ~ 4+0 0+3
18

=, 5 =A ()

10 18 1(1)+04) 1(8)+0(3) 1+0 8+0

A= 01 43 T oM)+1(4) 0@ +1(3) ~ 0+4 0+3
18

= 45 =A .. (®

From(7) and (8) Al=1A=A

23 ) 2
Example1.4: If A= 45 find A<-7A -2l

23 23 4+12 6+15

. . 2 _ — =
Solution: A= AA= 45 45 T g+20 12+25
, 1621 1
=~ 28 37 - @
al o283 _-14-21 5
= 45 ~ -28 -35 -2
o= —pt0 720 3
= 01 -~ 0 -2 - (3

(1) +(2) +(3) gives A%2-T7A -2 =A%+ (- 7A) + (- 2I)

1621 -14-21 -2 0
28 37 T -28 -35 0 -2
16-14-2 21-21+0 00

i 2_ - = = =
e AT-TA-2= sg_ 2840 37-35-2 - 00 ~°
o1s fac t4 agpe 20
Example15: IfA= 03 B= 39

show that (A + B)? # A% + 2AB + B2

11



SoI"AB—14 50_1+54+0_64
ution: A+B= 33 * 39 T 0+3 3+9 - 312

6 4 6 4 36+12 24+48

2 _
A+B)"=(A+B)(A+B)= 5315 312 = 18436 12+144

(A +B)° = 8 12 .. (D)
54 156
W2oaa_l4 14 _1+04+12 116
A= 03 03 ~0+0 049 0 9
2 pp. 50 50 _ 2540 040 25 0
B= 39 39 T 15427 0+81 T 4281
14 50 _5+12 0436 _ 17 36
AB= 03 39 T 049 0427 = 927
173 %72
2AB=2 g 27 = 18 54
n2eonpagto 116,372 25 0 1434425 16+72+0
0 9Vi18 54 T42 81 T0+18+42 9+54+81
A2+2AB+B2= 0 88 .. (2
60 144

From (1) and (2) we have
(A +B)?# A%+ 2AB + B2

X

12
Example 1.6: Findthevalueof x if [2x 3] 30 3 =0

X
Solution: [2x-9 4x+0] 3 = O (Multiplying on first two matrices)

[(2x- 9)x+4x(3)] =O [2x°-9x+ 12X =O
[2x°+3x] = O
ie2¢+3x=0 x(2x+3)=0
Hence we have x =0, x:_—z3

E|17'SOI'X2Y—46'XY—10
xample 1.7: veX+2Y= _g .0 3 X-Y= 5,

12



4 6

Solution: Given X +2Y = _8 10 ... (1)
10
X-Y = o o ..
4 6 1 0
@-© X+2Y)-(X-Y) = 810 " -2 -2
3 6 1 3 6
= 612 Y73 61
_ 12
Y= -2 4
Substituting matrix Y in equation (1) we have
12 4 6
X*2 54 % -8 10
2 4 4 6
X* 248 % -8 10
_ 4 6 24 22
X= 810 -48 7~ -4 2
2 2 2
X = _4 2 andY = P
EXERCISE 1.1

(1) Construct a3 x 3 matrix whose elementsare (i) ajj =i +]j (i) &j=1x]

2) Find the values of it =]
(2) Findthevaluesof x,y, zi 2x+z 3y-w 3 2a

@ X Y 32 i yaw
2X+z 3y-w 47 e
@) If A = i _;, B = ‘11 _Z and C = _i _g find each of the
following
(i)-2A +(B+C) (i)A-(3B-C) (iii)A+(B+C) (iv) (A +B)+C
(VA+B (vi)B+A (vii) AB (viii) BA

13



®)

(6)

()

®)

9)

(10)

(11)

(12)

(13)

(14

12 3 2 0 1 1 1-1
GvenA=-13 4 B=2-1-2 andC=2 1 -2

20 -1 1 1-1 1 -1 1
verify the following results:

(i) AB £ BA (i) (AB) C=A(BC) (iii) A(B +C) =AB +AC

-2 13 47 0
Solve:2X+Y+ 5 -7 3 =0; X-Y=-12 -6
4 5 4 -2 8 -5
3 -5 2 . . .
If A= 4 2 , show that A“ — 5A — 14 | = O where | is the unit matrix
of order 2.
3 _2 . 2
IfA= 4 -2 find k so that A< =kA - 2I
1 2 2
IfA=2 12, showthatA>-4A-51=0
2 21
Solvefor xif 21 2x3 34
vefor xi > 3 14 =37
1 1 2 x
Solveforxif [x 2 -1 -1 -4 1 2 =][Q]
-1 -1 -2 1
faz 22 B= 3 7L Vaity thefollowing
=50 =, o Veifythefollowing:

(i) (A +B)’>=A%2+AB +BA +B? (ii) (A -B)°#A%-2AB +B?
(i) (A+B)?2A%+2AB+B?  (iv)(A-B)?=A%2-AB-BA+B?
(v) A2-B2%% (A +B) (A - B)

Findmatrix CifA= o © B= ° 2 adsc+28 =A
1nd matrix | = 2 5 = 4 -1 an =

1 1 X 1 2 2 2 .
IfA = 5 -1 andB = y -1 and (A +B)“=A“+B“ findxandy.
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1.2 Determinants

1.2.1 Introduction:

The term determinant was first introduced by Gauss in 1801 while
discussing quadratic forms. He used the term because the determinant
determines the properties of the quadratic forms. We know that the area of a
triangle with vertices (X1, y1) (X2, ¥2) and (X3, y3) is

1

5 [xaly2-ya) +x2 (y3-yo) +x3 (y1 - y2)] . (2)

Similarly the condition for a second degree equation in x and y to represent
apair of straight linesis  abc + 2fgh - af® — bg® - ch®= 0 .. (2

To minimize the difficulty in remembering these type of expressions,
Mathematicians developed the idea of representing the expression in
determinant form.

x1 y11
The above expression (1) can be represented in the form % X2 y2 1.
X3 y3 1
a hg
Similarly the second expression (2) canbeexpressedas h b f =0.
gfc
Againif we eliminate x, y, z from the three equations
aiXx+by+c1z=0 ; axx+hbyy+cpz=0 ; azx+bgy+czz=0,
weabtainaj(by c3 - bz cy) — by (apcz—agco) + ¢ (apbz—agzhy) =0

ai by ¢
This can bewrittenas @ b2 C2 = 0. Thus a determinant is a particular
ag bz c3
type of expression written in a special concise form. Note that the quantities are
arranged in the form of a square between two vertical lines. This arrangement is
called a determinant.
Difference between a matrix and a determinant
(i) A matrix cannot be reduced to a number. That means a matrix is a
structure alone and is not having any value. But a determinant can be
reduced to a number.
(ii) The number of rows may not be equal to the number of columnsin a
matrix. In a determinant the number of rows is aways equal to the
number of columns.
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(iii) On interchanging the rows and columns, a different matrix is formed.
In a determinant interchanging the rows and columns does not alter
the value of the determinant.
1.2.2 Definitions:

To every sguare matrix A of order n with entries as real or complex
numbers, we can associate a number called determinant of matrix A and it is
denoted by |A | or det (A) or A.

Thus determinant formed by the elements of A issaid to be the determinant
of matrix A.

ail a2 . a1 a2
IfA= thenits |A |=
ax1 axp

a1 ap
To evaluate the determinant of order 3 or above we define minors and
cofactors.
Minors:
Let | A | = |[&;j]| be a determinant of order n. The minor of an arbitrary

=aijagp —axae

element g;; is the determinant obtained by deleting the i row and jth columnin
which the element g;j stands. The minor of &; is denoted by Mj;.
Cofactors:
The cofactor is a signed minor. The cofactor of a;j is denoted by Ajj and is
defined as Ajj = (- 2)' ¥ Mmj;.
The minors and cofactors of ajq, ajo, aj3 of a third order determinant
a1 a2 a3
a1 az a3 areasfollows:

a31 agzg2 ass
N Mi £ o is Moy = axp a3
(i) Minor of a1 isMq1 = agy as3 = appag3 — azz azs.
axp a3
: 1+1
Cofactor of ag1is A11=(-1 Mq1= = ayazz— azx a
11 11=(-1) 117 a3, ag 22833 ~ 832 A23
M £ 2o is Mas = a1 axz
(ii)Minor of ajpisM1o = as| ass =ap1 az3 ~ az1ax3
. a1 a3
Cofactor of azpis A= (-1)12 My = - ag, gy = (321263~ 223831)
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az1 ap

iii) Minor of aj3isM13=
(iii) 13iISM13= 50 4y,

=axax-az axp

a1 a2
Cofactor of ayzis Aiz= (- )1 *3Myz= =apjazp - az a
13is A1z =(-1) 187 gy ag — 321832783182
Note: A determinant can be expanded using any row or column as given below:

a1 a2 a3
Let A= ap1 a2 az3
azl azx ass
A=aj1 A1 +app App + g3 A1z or  agp M1g - ajp Mgz + ag3 M3
(expanding by R1)
A=aj; A1r+apnAx +az Az of ajg Mig - apy Mg + agp Map
(expanding by C,)
A=ap Ay +ap Axpt+aaAzz o —ap Mo +axp My - az Ma3
(expanding by R»)
Example 1.8:

Find the minor and cofactor of each element of the determinant
3 4 1

0 -12
5-26
. . . -1 2

Solution: Minor of 3isM11 = o 6 =-6+4=-2
. . 02
Minor of 4isM12 = 56 =0-10=-10
. . 0 -1
Minor of 1isMq3 = 5 _9 =0+5=5
. . 4 1
Minor of 0isMoq = 55 =24+2=26
. . 31
Minor of = 1isMoy = 5 6 =18-5=13
) . 3 4
Minor of 2isMo3 = 5 _o =-6-20=-26

17



Minor of 5isM3; = 1 =8+1=9
Minor of -2isM3> = g; =6-0=6

Minor of 6isM33 = 3_41 =-3-0=-3
Cofactor of 3isA1; = (DY My =My =-2
Cofactor of 4isA1z = (-1 " ?Mip=-M12=10
Cofactorof 1isA13 = (-1)'*3Mi3=M3=5
Cofactor of 0isAy; = (1% 1My =-My =-26

(-2 2Mzp=Mp=13
(- 1)**3Ma3= - M3=26
13" Mg =Mz =9

-3 *Mg=-Mgp=-6
(-1)°*3Mg3=Mgz=-3

Cofactor of - LisAop

Cofactor of 2isAo3

Cofactor of 5isAz

Cofactor of - 2isAzp

Cofactor of 6isAz3
Singular and non-singular matrices:
A sguare matrix A issaid to be singular if |A |=0
A sguare matrix A issaid to be non-singular matrix, if | A | # 0.

123
For example, A= 4 5 6 isasingular matrix.
789
"IAI“llgg _,56 _,46 .45
789 8 9 7 9 7 8
=1(45-48) - 2 (36 - 42) + 3(32 - 35)
=-3+12-9=0
175
B= 2 6 3 isanon-singular matrix.
489
"IBI‘;;g _163 7 2 3 +526
4809 8 9 4 9 4 8
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=1(54-24)-7(18-12) +5(16 - 24)
= 1(30) - 7(6) + 5(- 8)
=-52£0

The matrix B isanon-singular matrix.

1.2.3 Properties of Deter minants

There are many properties of determinants, which are very much useful in
solving problems. The following properties are true for determinants of any
order. But here we are going to prove the properties only for the determinant of
order 3.

Property 1:

The value of a determinant is unaltered by interchanging its rows and
columns,

Pr oof:
a; by ¢
LetA= & bp ¢ .
ag bz c3
Expanding A by the first row we get,
A = ag(byc3—bsgcp) —by(az ez~ agcp) + ¢y (abz —azby)
= ajboc3 — a1bscy — aghqc3 + agbiCy + axbscy — agbocy .. (1)

Let us interchange the rows and columns of A. Thus we get a new
determinant.
ap a2 ag
Ap= b1 b2 b3 . Since determinant can be expanded by any row or any
C1 C C3
column we get
A1 = ag(bacz — cobg) — by (agcs — czag) + c1(azbs — brag)
= ajbycz — ajbscy — ashics + agbico + asbscy — agbocy ...(2
From equations (1) and (2) wehave A=A; Hence the result.
Property 2:
If any two rows (columns) of a determinant are interchanged the
determinant changesits sign but its numerical value is unaltered.
Pr oof:
ap by ¢
LetA= & b2 c
ag bz c3
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A
A

Let A1 be the determinant obtained from A by interchanging the first and
second rows. i.e. R1and Ro.

ay(b2 c3 — b3 ¢2) — bi(az c3 — ag ¢2) + ¢1 (axhz ~ ag by)
a1bocz — a1bscy — aghqcs + agbicy + axbscy — agbocy .. (1)

a by ¢
A= a1 by
az b3z c3

Now we have to show that A; = - A.
Expanding A; by Ro, we have,
A1 = —ay(bacs - bscy) + bi(apcs — ascy) — ci(aghs — aghy)
- [a1boc3 — a1b3co + aghyc3 + agbico + aghscy — agbocy] ... (2)
From (1) and (2) weget A1 = - A.
Similarly we can prove the result by interchanging any two columns.
Corollary:

The sign of a determinant changes or does not change according asthere is
an odd or even number of interchanges among its rows (columns).

Property 3:

If two rows (columns) of a determinant are identical then the value of the
determinant is zero.

Pr oof:

Let A be the value of the determinant. Assume that the first two rows are
identical. By interchanging R and R> we obtain — A (by property2). Since Rq
and R areidentical even after the interchange we get the same A.

e A=-A 2A=0 ie A=0
Property 4.

If every element in arow (or column) of a determinant is multiplied by a
constant “K” then the value of the determinant is multiplied by k.

Pr oof:
ap by ¢
LetA= a by ¢
ag bz c3
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Let Ay be the determinant obtained by multiplying the elements of the first

ka; kb kcq
rowby ‘K thenA;= a2 b2 c2 |
az bz c3

Expanding along R1 we get,
A1 = kag (bacs - bscp) — kby(apcs — ase) + keg(agbs — agbo)
k[a1boc3 — ajbsco — asbqc3 + agbyCy + aghscy — aghbocq]
kA. Hence the resuilt.

A
Note:

(1) Let A beany square matrix of order n. Then kA is also a square matrix
which is obtained by multiplying every entry of the matrix A with the
scalar k. But the determinant k |A| means every entry in arow (or a
column) is multiplied by the scalar k.
(2) Let A beany square matrix of order nthen | kA | =K' A |.
Deduction from properties (3) and (4)

If two rows (columns) of a determinant are proportiona i.e. one row
(column) is a scalar multiple of other row (column) then itsvalueis zero.
Property 5:

If every element in any row (column) can be expressed as the sum of two
quantities then given determinant can be expressed as the sum of two
determinants of the same order with the elements of the remaining rows
(columns) of both being the same.

Op+X; Bi+yr vi+z1
Pr oof: LetA = b1 b b3
C1 C2 Cc3

Expanding A aong the first row, we get

by bz by bs b1 by
A= (atx) o o “Brtv) o o Ttz o o
by bs ~ by bs .\ b1 by
M cs lg 3 Mg o
by b3 b1 b3 by by

+ - +
X C2 C3 y1 C1 C3 a C1 C2
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o1 B1 y1 X1 Y1 21
= by by b3 + bp by bz

C1 C2 C3 C1 C2 C3
Hence the result.

Note: If we wish to add (or merge) two determinants of the same order we add
corresponding entries of a particular row (column) provided the other entriesin
rows (columns) are the same.

Property 6:

A determinant is unaltered when to each element of any row (column) is
added to those of severa other rows (columns) multiplied respectively by
constant factors.

i.e. A determinant is unaltered when to each element of any row (column)
is added by the equimultiples of any parallel row (column).

Pr oof:
ar bl C1
LetA= a by ¢
ag bz c3

Let Aq be a determinant obtained when to the elements of C; of A are

added to those of second column and third column multiplied respectively by |
and m.
ap+lbg+me; by ¢

A= a+lbp+mc; by c
ag+tlbg+ncs by c3

ap bl C1 |b1 b1 C1 mCq bl C1
= az by co + Ibp bp ¢ + mca b2 €2 (by property 5)
as b3 C3 |b3 b3 C3 mC3 b3 C3
ar bl C1 . . .
~ a b G - C, isproportional to Cy in the second det.
= %2 D2 &2 +0+0 - C, isproportional to Cginthethird det.
ag bz c3
Therefore A1 = A. Hence the result.

Note:
(1) Multiplying or dividing all entries of any one row (column) by the
same scalar is equivalent to multiplying or dividing the determinant
by the same scalar.
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(2) If all the entries above or below the principal diagonal are zero (upper
triangular, lower triangular) then the value of the determinant is equal
to the product of the entries of the principal diagonal.

For example, let us consider

327
|[A|= 05 3 =35-0-20-0+70-0=15
001
The value of the determinant A is 15.
The product of the entries of the principal diagonal is3 x5x 1 =15,
x-1 X X-2
Examplel19: Solve 0 x-2 x-3 =0
0 0 x-3
Solution: Since al the entries below the principal diagona are zero, the vaue
of the determinantis (x—1) (x-2) (x - 3)
x-D(x-2)(x-3)=0 x=1 x=2, x=3

. X 5 1 -2
Example 1.10:  Solvefor x if 75 T 11 =0
i X 5 1 -2
Solution : 7 5 11 =0

(¥-35)+(1-2)=0 x*-35-1=0 x*-36=0
X2 =36 X=+6

010
Example1.11: Solveforxif X 2 x =0
13 x
Solution:
2 x X X X 2 2
(0) 3 x -1 1 x +(0) 13 =0 0-1x“-x+0=0
-2 +x=0 i.ex(1-x)=0 x=0, x=1
1 a b+c Xx+2a x+3a x+4a
Example 1.12: Evaluate(i) 1 b c+a (i) x+3a Xx+4a x+5a
lc a+b Xx+4a x+5a Xx+6a
Solution:
1l ab+c 1l a atb+c
() LeeA= 1bc+a =1Db a+tb+c C3- C3+Cp
lc a+b lc a+b+c

23



= 0 [+ Cjisproportional to Cg]
X+2a x+3a x+4a X+2a a 2a

C, - Cr-C
(i) LetA= Xx+3a x+4a x+5 = x+3a a Z2a C2 CZ—Cl
x+4a x+5a x+6a x+4a a 2a <o~ B+
=0 [+ Cyisproportional to Cg]
2X+y Xy
Example1.13: Provethat 2y+z y z =0
2z+x 7z X
2X+y X Yy 2X Xy y Xy
Solution: 2y+z y z = 2yy z + 2y z
2z+xX 7z X 2z z X X zZ X

C1 isproportional to Co in the first det.

= 0+0 " Cypisidentical to Czin the second det.
=0
1 a a2
Example1.14: Provethat 1 b b®* =(a-b)(b-c)(c-a)
1 ¢ ¢
Solution:
2 2 _ 12
1l aa 0 a-b a"-b" RI_RI-Ry
1bb> = 0 b-c b-c® Ry-Rx-R3
1 ¢ c? 1 ¢ c?
0 1 a+b  Take(a-b)and(b-0)
=(@a-b)y(b-c) 0 1 b+c from Ry and R,
1 ¢ 2 respectively.
= (a-b) (b—c) [(1) (b +¢) - (1) (@ +b)] = (a-b) (b-c) (c-a)
1 1 1
Example1.15: Provethat 1 1+x 1 =xy
1 1 l+y
1 1 1 111
Solution: 1 1+4x 1 = 0x0 R2-Rx-Rg
1 1 1+y 00y Rz3-R3-Rg
Xy



Example 1.16:

1a® be
1/b?
1/c?

ca
ab

va? bc b+c

Provethat 1/b?
1/c?

b+c
c+a
a+b

1/a abc
1/b abc
1l/c abc

la 1
b 1

ca c+a
ab a+b

0

alb+c)
b(c + a)
c(a+b)
a(b +c)
b(c+a) TakeabcfromCo

Multiply R, Ro, R3
by a b, c
respectively

lc 1
bc 1
ca 1
ab 1

bc 1

ca 1

ab 1

_ (abtbc+ca)

- abc

_ (ab+bc+ca)

abc
=0
b’ be
%a® ca
a’®> ab

bc b+c

Example 1.17: Provethat

b2c?

c’a?

a?h?

Solution: LetA= ca c+a

ab a+b

c(a+hb)
a(b+c)
b(c + a)
c(a+b)
ab+bc+ca

ab+bc+ca Cz- C3+Cy
ab+bc+ca

bc 11

cal1l Take(ab+ bc+ ca)fromCs
ab11

)

Multiply C4 by abc

[~ Coisidentical to Cg]

b+c
c+a
a+b

Multiply R1, R and R3 by a, b and ¢ respectively

ab’c® abc ab+ac

_1 2.2
A_abc bc-a

abc bc+ab

ca’b?® abc ca+hc
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bc 1 ab+ac

2

= %CL ca 1 bc+ab  TakeabcfromCqandCy
ab 1 ca+hc

bc 1 ab+bc+ca
abc ca 1 ab+bc+ca Cz3 - C3+C;
ab 1 ab+bc+ca

bc 1 1
=abc(ab+bc+ca) ca 1 1 Take(ab+ bc+ ca)fromCs
ab 1 1
= abc (ab + bc+ca) (0) [~ Coisidentical to Cg]
=0
atbtc -c -b
Example1.18: Provethat -c atb+c -a  =2(at+b) (b+c) (c+a)
-b -a atbtc
Solution:
atb+tc  -c -b a+b a+b -(a+b) Ri- Ri+Rp
-C at+b+c -a = -(b+c) b+c b+c Ry - Ry +R3
-b -a atb+c -b -a a+b+c

1 1 -1 Tae(a+h), (b+0)
=(@+b)(b+c) -1 1 1 from Ry and Ry
-b -a atb+tc respectively

0 2 0 R-Ri+R;
=(a+b)(b+c) -1 1 1
-b -a a+b+c
-1 1

=@ G+ D L ..

=(@a+b)(b+c)x(-2)[-(@a+b+c)+D]
=(@t+b)(b+c)x(-2)[-a-(]
A=2@+b)(b+c)(c+a)

a2+ A ab ac
Example1.19: Provethat ab b2+A bc  =A2(@%+b%+c%+A)
ac bc 2+
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a2+)\ ab ac
Solution: LetA= ab b2+)\ bc

ac bc c2 + A
Multiply R1, Ro and R3,by a, b and c respectively
1 a(a2 +A) ab a’c
A =Zic ab®  b(b®+A) b
ac? bc? c(c2 +A)
Take a, b and c from Cq, C, and Cg respectively
b a%+\ al a2
_ anc 2 2 2
A=72he b b“+A b
2 c? A+
2,12, 2 2.2, .2 2.2, 2
a“tb™+c™+A  a"tb™+c™tA  atb™c™tA R, R;+R,+R3
= b? b24+A b?
¢ c? CP4A
1 1 1

@+b2+c2+N) b2 b2+ b
? c? c?+A

1 0O c Cooc
(22, 2 2 2 - L=
=@+b°+c +A) b A O Cs— Ca-C;
2
cc 0 A
A O
(a2 2.2
=@ +b"+c"+A) 0 A
a2+ ab ac
ab  b2+A  bc =A@ +bP+c2+N)
ac bc 2+A
EXERCISE 1.2
2 6 4
(1) Find the vaue of the determinant -5 -15 -10 without usua
1 3 2

expansion.
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)

©)

(4)

(%)

(6)

(7)

(8)

9)

Identify the singular and non-singular matrix

1 4 9 1 2 3
() 4 9 16 i) 4 5 6
9 16 25 -2 -4 -6
2 x 4 4 3 9
Solve (i) 3 2 1 =-3 (i) 3 -2 7 =-1
1 2 3 4 4 x
a-b b-c c-a 1 ab c(a+h)
Evaluate (i) b-c c-a a-b (i) 1 bc alb+c)
c-a a-b b-c 1 ca b(c+a)
a-b-c 2a 2a
Provethat 2b  b-c-a 2b  =(a+b+c)°
2c 2c c-a-b

l1+a 1 1 111
Provethat 1 1+b 1 =abc 1+5.+B+E
1 1 l+c
where a, b, ¢ are non zero rea numbers and hence evaluate the
1+a 1 1
vaueof 1 l1+a 1
1 1 l1+a

1 a a°
Provethat 1 b b® =(a-b)(b-c)(c-a)(a+b+c)
1 ¢ ¢
x ¥ 1-x°
If x,y, zareal differentand 'y y* 1-y3 =0
z 2 1-7
then show that xyz=1
1 aa 1 abe
Provethat (i) 1 b b> = 1 b ca
1 ¢ 2 1 ¢ ab
y+z X Yy
(i) z+X z X =(x+y+2) (x-2°
Xty vy z
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(10) Provethat

2

b+c c+a atb a b c -a” ab ac
(i) gtr r+p p+tq=2 p q r (i) ab -b? hc
y+zZ Z+X Xty Xy z ac be  -c2
a b c
(i) b ¢ a=3abc-ac-b>-c3
c ab
a b C
(v) a-b b-c c-a =a +Db%+c>-3abc
b+c c+a a+b

1.2.4 Factor method
Application of Remainder theorem to deter minants

Theorem:

= 4ab’c?

If each element of a determinant (A) is polynomia in x and if A vanishes
for x=athen (x - a) isafactor of A.

Pr oof:

Since the elements of A are polynomial in x, on expansion A will be a
polynomial functionin x. (say p(x)). Forx=a,A=0

i.e. p(X) =0whenx =a,

i.,e.p(@=0

By Remainder theorem (x — @) isafactor of p(x).

i.e. (x—a)isafactor of A.

Note:

(1) Thistheorem isvery much useful when we have to obtain the value of
the determinant in ‘factors’ form. Thus, for example if on putting
a = b in the determinant A any two of its rows or columns become
identical then A = 0 and hence by the above theorem a — b will be a

factor of A.

)

when we put x = a, then (x — a)" ~ Lisafactor of A.

©)

of the equation f(x) = 0.

29
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Remark: In this section we dea certain problems with symmetric and cyclic
properties.

1 a a°
Example 1.20: Provethat 1 b b® =(a-b)(b-c)(c-a)(a+b+c)
1 ¢ ¢
Solution:
1aa 1b b
LeeA= 1 b b® .Puta=b, A= 1bb® =0 [ Rjisidentica toRy]
1¢c 1ccd

(a-b) isafactor of A.

Similarly we observe that A is symmetricin a, b, ¢, by puttingb =c¢, ¢c = a,
we get A = 0. Hence (b — ¢) and (c — a) are dso factors of A.  The product
(a—b) (b—c) (c - a) isafactor of A. The degree of this product is 3. The product
of leading diagonal elementsis1.b. 3. The degree of this product is 4.

By cyclic and symmetric properties, the remaining symmetric factor of

first degree must be k(a + b + ¢), where k is any non-zero constant.

1 a a°

Thus 1 b b° =(a-b)(b-c)(c-ayk(a+b+c)
1 ¢ ¢
To find the value of k, give suitable values for a, b, ¢ so that both sides do

not become zero. Takea=0,b=1,c=2.
1 00

111 =k@-n-1D@ k=1
1 2 8
A=(a-b)(b-c)(c-a)(a+b+c)

Note: An important note regarding the remaining symmetric factor in the
factorisation of cyclic and symmetric expressionina, band c

If m is the difference between the degree of the product of the factors
(found by the substitution) and the degree of the product of the leading diagonal
elements and if

(1) miszero then the other symmetric factor is a constant (k)

(2) misonethen the other symmetric factor of degree Lisk(a+ b+ ¢)

(3) mistwo then the other symmetric factor of degree 2 is

k(@ + b? + c?)+ (ab+bc+ca)
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Example 1.21:

1 a° a°
Prove by factor method 1 b® b® =(a-b) (b-c) (c-a) (ab + bc + ca)
1
Solution:
1a as 1 b2 b
LetA= 1b2b% Puta=b A= 1b% b® =0 [-Ri=Rj
12 ¢ 1 ¢ ¢

(a-b) isafactor of A.

By symmetry on putting b = ¢ and ¢ = a we can easily show that
A becomes zero and therefore (b - ¢) and (c - a) are also factors of A.

This means the product (a — b) (b - ¢) (c - a) is afactor of A. The degree
of this product is 3. The degree of the product of leading diagona elements b%c®
isb.

The other factor is k(@ + b? + ¢?) + I(ab + bc + ca)
1a a
1 b? b =[k@®+b?+c?+I(ab+bc+ca)] (a-b)(b-c) (c-a)
1 ¢

To determine k and | give suitable values for a, b and ¢ so that both sides
do not become zero. Takea=0, b=1 andc=2

100
111=k®+Q]HEHE
1 4 8
4=(5k+2l)2 5k+2l =2 )
Againputa=0,b=-1andc=1
10 O
11 -1=k@+I(-)] +D(-2(®)
11 1
2=(2k-1 (-2 2k-1=-1 .. (2

Onsolving (1) and (2) wegetk=0and| =1
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A= (ab+bc+ca)(a-b)(b-c)(c-a)
=(@a-b)(b-c)(c-a)(ab+bc+ca)
(b+ (:)2 a° a°
Example 1.22: Provethat ~ b?>  (c+a)? b? =2abc(a+b+c)®
? ? (a+ b)2
Solution:
(b+ c)2 a® a°
LetA= b? (c+a)2 b? Puta=0 weget
? ? (a+ b)2
(b+c? 0 0
A= b? > b> =0 [+ Cyisporportional to Cg]
c? ? b’
(a-0)=aisafactor of A.
Similarly on putting b = 0, ¢ = 0, we see that the value of A is zero.
a, b, carefactorsof A. Puta+ b + ¢ =0, we have

-a)? a2 2
A= B> (-b?> > =0
2 2 (03

Since three columns areidentical, (a+b + (:)2 isafactor of A.
abc(a+b+ c)2 is afactor of A and is of degree 5. The product of the
leading diagonal elements (b + ¢)? (c + a)° (a + b)? is of degree 6.
The other factor of A must bek(a + b + c).

(b+c)2 a’ a®
B2 (c+a?® b® =kabc(@a+b+c)?
? ? (a+b)2
Takethevaluessa=1, b=1andc=1
41 1
1 4 1 =k1)@D)@D)E@E°> 54=27k k=2
11 4

A=2abc(a+b+c)3
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X a a
Example 1.23: Showthat a X a =(x- a)2 (x+2a)
a a x

Solution:
X a a a a a
LetA= a X a Put x=a A= a a a =0
a a x a a a

Since al the three rows are identical (x — a)2 isafactor of A.
Put x = - 2a.

-2a a a 0 a a
A= a -2a a =0 -2a a =0 [C;-Ci+Cr+C(Cq
a a -2a 0 a -2a

(x + 2a) isafactor of A.

(x - a)2 (x + 2a) is afactor of A and is of degree 3. The degree of the
product of leading diagonal element is also 3. Therefore the other factor must be
k.

X a a
a x a =k(x-a)?(x+2a).
a a x
X a a
Equate x> term on both sides, 1=k a x a =(x- a)2 (x+ 2a)
a a x
xt1 3 5
Example 1.24: Using factor method, prove 2 Xx+2 5  =(x-1)(x+9)
2 3 x+4
x+1 3 5
Solution: LeeA= 2 Xx+2 5

2 35
Puux=1, A= 2 3 5 =0
2 3 5

Since al the three rows are identical, (x - 1)2 isafactor of A.
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-83 5 035
Putx=-9inA,thenA= 2 -7 5 =0-7 5 =0 [ C;-Cq+Cy+Cq]
2 3-5 03-5
(x+9) isafactor of A.
The product (x—l)2 (x +9) isafactor of A and is of degree 3. The degree
of the product of leading diagonal elements (x + 1) (x + 2) (x + 4) isalso 3.
The remaining factor must be a constant “k”
x+1 3 5
2 x+2 5 =kx-1)7?(x+9). Equating x> term on both
2 3 x+4
sideswegetk=1

ThusA = (x - 1)% (x + 9)
EXERCISE 1.3
2

1 a a

(1) Using factor method showthat 1 b b? =(a-b)y(b-c)(c-a
1 ¢ ¢
b+c a-c a-b

(2) Proveby factor method b-c c+a b-a =8abc
c-b c-a a+b

x+a b c
(3) Solveusingfactormethod a x+b ¢ =0
a b x+c
a b c
(4) Factorise a® b® c?
bc ca ab
b+c a a°
(5) Showthat c+a b b? =(@a+b+c(a-b)(b-c)(c-a)
a+b ¢ ¢

1.2.5 Product of determinants

Rule for multiplication of two determinants is the same as the rule for
multiplication of two matrices.

While multiplying two matrices “row-by-column” rule alone can be
followed. The process of interchanging the rows and columns will not affect the
value of the determinant. Therefore we can aso adopt the following procedures
for multiplication of two determinants.
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(1) Row-by-row multiplication rule

(2) Column-by-column multiplication rule

(8) Column-by-row multiplication rule
Note: The determinant of the product matrix is equal to the product of the
individual determinant values of the square matrices of same order.

i.e. Let A and B be two square matrices of the same order.

Wehave| AB|=|A]| |B]

This statement is verified in the following example.
E o125 IfA = cosd -snd B= cosf sind

XampIe 2> A= 6ng co® 'C " -sin cosd

then show that |AB | = |A| |B |

are two square matrices

Solution:
Giventhat A = CQSe ~sind and B = co_se Sind
sin@  cosh -sinB cosd
_cosH -sind cosH sinB
AB= Gn8 co® —sind cosd
cof+sn’d  coBsnB-snBcosH 1 0
~ smBcosd-cosfsnd  cofB+sn?d 0 1
10
|AB| = 01 =1 ..
|A| = (;9:8 —C:;e = cof9+sn?0=1
IB| = _C;S:e :O';Z = co?0 +sin% = 1
|[A] |BI=1x1=1 .. (2
From (1) and (2) |AB| = |A] |B]
ocb?2 b*+c® ab ac
Example 1.26: Showthat ¢ 0 a = ab ?+a’ bc
bao ac bc a+b?
ochb?2 ocb och
Solution: LHS.= c oa = coa ¢€O0a
b ao bao bao
0+c®+b’> o+o0+ab o+ac+o
= o+0+ab c?+o0+a’ bc+o+o

o+ac+0 bc+o+o b2+al+0
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2+ b2

ab ac
= ab 2+ a2 bc =R.H.S.
ac bc  b2+a?
a; b 2 a12 + a22 ajbg + aghy
Example 1.27: Provethat by, - 5 5
a b2 aihby +aghy  bi“+ by
Solution:
a; by 2 a; by a; bp
LH.S.= ap bp " a by a b
_ @ & a by |nterchangerowsand
T by by ay by columns of the first determinant
a12 + a22 aiby + aghy
- ajbq + aghy b12 + bzz
2bc - a2 2 b? ab c?
Example1.28: Showthat ¢® 2ca-b®° a> = b c a
b2 a2 2ab - ¢2 cahb
Solution:
abc?2 abc abec
RH.S = b ca =b ca b c a
c ab c ab c¢cahb
_ z 2 ; 1 i g tc) _Interchanging Ry and R3
- x(=1) "inthe 2™ determinant
c ab b c¢c a
a b c -a -b -c
= b c a (o a b
c ab b c a
-a’+bc+cb -ab+ab+c® -ac+b’+ac
= —ab+c?+ab -b’+ac+ac -bc+bc+a?
—ac+ac+b® -bc+a’+bc -c?+ab+ba
2bc - a2 c? b?
= 2 2ac - b? a =L.H.S.
b? a 2ab - ¢?
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1.2.6 Relation between a determinant and its co-factor deter minant
ag b1 ¢
Consider A= & bz ¢
az bz c3
LetA1,B1,Cq ... ... be the co-factors of a, by, ¢ ... ... inA
AL B ¢

The cofactor determinantis A2 B2 Co
Az B3z C3

by o a C a by

LetAbeexpandedby Ry A=a bs cz L oag cs +C1 a bs

A = a; (co-factor of a1) + b1 (co-factor of by) + ¢q (co-factor of ¢y)
A=ajA1+b1B1+c1Cq
i.e. The sum of the products of the elements of any row of a
determinant with the corresponding row of co-factor determinant is equal
to the value of the deter minant.
Similarly A = apAo + bpBo + cCo A =azA3+ b3B3+c3C3
Now let us consider the sum of the product of first row elements with the
corresponding second row elements of co-factor determinant i.e. let us consider

the expression
a1A2 + b1Bo + ¢1Co
b1 ¢ ai C a; by
T g3 TPl ag g X oag bg
= - ay(bgc3 - bacy) + by(aicz - agcy) - ci(azbz - azby)
=0
The expression ajAs + b1B> + ¢1C> =0
Thuswe have
ajA3 +b1B3+¢c1C3=0 ; apA1+byB1+¢cyC1=0; apAz+boB3z+coC3=0
azA1+b3Br+c3C1=0 ; azAr+bgBr+c3C2=0

i.e. The sum of the products of the elements of any row of a
determinant with any other row of co-factor determinant isequal to 0
Note: Instead of rows, if we take columns we get the same results.
A=a1A1+a)Ar+ azA3
A =b1B1+ byBy + b3B3
A =c1Cq + cCr + c3C3
Thus the above results can be put in a tabular column as shown below.
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Row-wise Column-wise

Ri | R2 | Rs C | C | Cs
rn| A 0 0 CL | A 0 0
2 0 A 0 C2 0 A 0
ra 0 0 A c3 0 0 A
Whereri'sg's are i row and i column of the original determinant R;'s, C's
arei™ row and i™ column respectively of the corresponding co-factor determinant.
a b]_ C1
Example 1.29: If A1, B, C1 aretheco-factorsof ag, by, c1inA= & by ¢
a3 bz c3
A1 B1 G
thenshowthat A2 B2 C2 =a?
Az B3 C3

ag b 0 AL B C
Solution: & b2 ¢ Az B2 C;
a3 b3 c3 Az B3z C3
ajA1 +b1B1 +¢c1Cp agAx + 1B+ ¢c1C  ajAz + biB3 + ¢1C3
apA1+ By +coCp apAz + B +C1Cr @Az + Bz + coC3
azA1+ 3By +c3C1 agAz+bgBa+c3C2 agAz+bzBz+c3Cs

A 0O O
=0 A 0 =p3
0O 0 A
A1 Br C A1 B1 G
ie Ax Az By Cp =p3 Az Bz Cp =p?
Az B3 C3 A3 B3z Cs
EXERCISE 1.4
1 a 3_2 1—2&2 —a2 —a2
(1) Showthat @ 1 a = -g? -1 a’-2a
a a1 2 d-2a -1
1 x X2 a1 2a (a—x)2 (b—x)2 (c—x)2
(2 Showthat 1y y* b2 1 2b = (a-y)® (b-y)® (c-y)?
1z 7 > 1 2 (a—z)2 (b—z)2 (c—z)2
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2.VECTOR ALGEBRA

2.1 Introduction:

The development of the concept of vectors was influenced by the works of
the German Mathematician H.G. Grassmann (1809 - 1877) and the Irish
mathematician W.R. Hamilton (1805 - 1865). It is interesting to note that both
were linguists, being specialists in Sanskrit literature. While Hamilton occupied
high positions, Grassman was a secondary school teacher.

The best features of Quaternion Calculus and Cartesian Geometry were
united, largely through the efforts of the American Mathematician J.B. Gibbs
(1839 - 1903) and Q. Heariside (1850 - 1925) of England and new subject
called Vector Algebrawas created. The term vectors was due to Hamilton and it
was derived from the Latin word ‘to carry’. The theory of vectors was also
based on Grassman’ s theory of extension.

It was soon realised that vectors would be the ideal tools for the fruitful
study of many ideas in geometry and physics. Vector algebrais widely used in
the study of certain type of problemsin Geometry, Mechanics, Engineering and
other branches of Applied Mathematics.

Physical quantities are divided into two categories — scalar quantities and
vector quantities.

Definitions:
Scalar : A quantity having only magnitude is called a scalar. It is not
related to any fixed direction in space.
Examples : mass, volume, density, work, temperature,
distance, area, real numbers etc.

To represent a scalar quantity, we assign a real number to it, which gives
its magnitude in terms of a certain basic unit of a quantity. Throughout this
chapter, by scalars we shall mean real numbers. Normally, scalars are denoted
by a, b, c...

Vector : A quantity having both magnitude and direction is caled a

vector.
Examples : displacement, velocity, acceleration, momentum,
force, moment of aforce, weight etc.

Representation of vectors:

Vectors are represented by directed line segments such that the length of
the line segment is the magnitude of the vector and the direction of arrow
marked at one end denotes the direction of the vector.
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A vector denoted by a = AB s
determined by two points A, B such that the

magnitude of the vector is the length of the %

Fig. 2.1
line segment AB and its direction is that from A to B. The point A is called

initial point of the vector AB and B is called the terminal point. Vectors are
generally denoted by a,b,c.. (read as vector a, vector b, vectorc, ... )
M agnitude of a vector

The modulus or magnitude of a vector a = AB isa positive humber
which is a measure of its length and is denoted by |5| = |AI§| = AB The

modulusof a isalsowritten as'‘a’
Thus |§| =a, |B| =b ; |E| =c
|A§| =AB ; |cf>| =CD ; |Pé| =PQ
Caution: The two end points A and B are not interchangeable.
Note: Every vector AB has three characteristics:

Length : Thelength of AB will be denoted by|A§|orAB.

Support :  The line of unlimited length of which AB is a segment is
called the support of the vector AB ,

Sense : Thesenseof AB isfrom A toB and that of BA isfrom B to

A. Thus the sense of a directed line segment is from its initial
point to the terminal point.

Equality of vectors:

Two vectors a and b are said to be equal, written as a =b,if they
have the

(i) same magnitude (ii) same direction
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Infig (2.2) AB || CD and AB = CD B

AB and CD arein the same direction D

Hence AB =CD ora = b
C
Fig.2.2
2.2 Typesof Vectors
Zeroor Null Vector:
A vector whose initial and terminal points are coincident is called a zero or

null or avoid vector. The zero vector is denoted by o)

Vectors other than the null vector are called proper vectors.
Unit vector:

A vector whose modulusis unity, is called a unit vector.

The unit vector in the direction of a is denoted by a (read as ‘a cap’).
Thus |a] =1

The unit vectors parallel to a aexa

Result: a = |5 | a [i.e. any vector = (its modulus) x (unit vector in that
direction)]
(3+20)

Ingeneral |unit vector in any direction =

>
1
57 o

vector in that direction
modulus of the vector

Like and unlike vectors:

Vectors are said to be like when they have the same sense of direction and
unlike when they have opposite directions.
—

like vectors

unlike vectors
Fig.2.3
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Co-initial vectors:

Vectors having the sameinitial point are called co-initia vectors.
Co-terminusvectors:

Vectors having the same terminal point are called co-terminus vectors.
Collinear or Paralld vectors:

Vectors are said to be collinear or parallel if they have the same line of
action or have the lines of action parallél to one another.

Coplanar vectors:

Vectors are said to be coplanar if they are parallel to the same plane or they
liein the same plane.

Negative vector:

The vector which has the same magnitude as that of a but opposite
direction is called the negative of a and isdenoted by — a . Thusif AB = a

then BA =- a .
Reciprocal of a vector:

Let a be anon-zero vector. The vector which has the same direction as

that of a but has magnitude reciprocal to that of a iscaled the reciprocal of
- - - )-1 -\-1 1
a andlswrlttenas( a) where (a) =2

Freeand localised vector:

When we are at liberty to choose the origin of the vector at any point, then
it is said to be afree vector. But when it isrestricted to a certain specified point,
then the vector is said to be localised vector.

2.3 Operationson vectors:
2.3.1 Addition of vectors:

— — — — B
Let OA = a,AB = Db JoinOB. 2
_. 2 x\j —
Then OB represents the addition (sum) of the O b
vectors a and b . o = A
Thisiswrittenas OA + AB = OB Fig. 2. 4

Thus OB = OA+AB =a + Db



Thisis known as the triangle law of addition of vectors which states that, if
two vectors are represented in magnitude and direction by the two sides of a
triangle taken in the same order, then their sum is represented by the third side
taken in the reverse order.
Applying the triangle law of addition of vectorsin A
AABC, we have

BC +CA = BA
BC + CA =-AB £ > o
AB +BC +CA =0 Fig.2.5
Thus the sum of the vectors representing the sides of a triangle taken in
order isthe null vector.
Parallelogram law of addition of vectors:

If two vectors a and b are represented in Q R
magnitude and direction by the two adjacent sides
of a paralelogram, then their sum c s 3)
represented by the diagonal of the parallelogram
which is co-initial with the given vectors. :
L ettty Al ¢
Symbolically we have OP + OQ =OR Fig. 2.6

Thus if the vectors are represented by two adjacent sides of a
paralelogram, the diagona of the parallelogram will represent the sum of the
vectors.

By repeated use of the triangle law we can find the sum of any number of
vectors.

Let OA =a,AB =b,BC =¢c,CD=d,DE =¢e
be any five vectors as shown in the fig (2.7). We D C
observe from the figure that each new vector is
drawn from the terminal point of its previous one.

OA +AB +BC +CD + DE = OE
Thus the line joining the initial point of the
first vector to the terminal point of the last vector is

the sum of al the vectors. Thisis called the polygon
law of addition of vectors.

Fig. 2.7
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Note : It should be noted that the magnitude of a + b isnot equal to the sum

of the magnitudes of a adb .
2.3.2 Subtraction of vectors:

If a and b are two vectors, then the subtraction of b from a is

defined as the vector sumof a and- b and is denoted by a-b.

+(-8)

ol
S

a -

ol

Let OA =a andAB =

Then OB =OA +AB =a + Db

To subtract b from a , produce BA to B’
suchthat AB=AB. AB' =-AB =-b

Now by the triangle law of addition

o8 =0k +A8' =3 +(-5)=3 - B
Properties of addition of vectors;
Theorem 2.1:

Vector addition is commutativei.e., if a and b are any two vectors then

a+b=b+a

Let OA =a, AB =b G g B
INnAOAB, OA + AB = OB -
(by trianglelaw of add) >
a +b = OB .. (D)
Complete the parallelogram OABC 0] S A
a
CB =OA =a ; OC =AB =b Fig. 2.9
In AOCB, wehave OC + CB = OB ie b+a=0B..(Q

—

From(1)and 2) wehave a + b = b + a
Vector addition is commutative.



Theorem 2.2:
Vector addition is associative

—

i.e. For any three vectors a,b,

a+b)+¢ =a +\b+¢ 2
Pr oof :
Lt OA=a;: AB=b ; BC =¢c N
Join OandB : OandC ; AandC O 7 A
Fig. 2. 10
In AOAB, OA +AB = OB
a+b = OB (D
In AOBC, OB +BC = OC
(3 +b)+¢ = oC ... (2) [using ()]
In AABC, AB +BC = AC
b+c¢ = AC . (3
In AOAC OA +AC = OC
a +(B +E) = 0OC ... (4) [using (3)]

From (2) and (4), we have (a + B) +

vector addition is associative.
Theorem 2.3:

For every vector a, a +0
vector. [existence of additive identity]

Proof:

Let OA = a
Then a+0 =
a+0 =
Also O+a =
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c = a +(b+c)

O+a= a where O is the null

00 +OA =OA =a



Theorem 2.4:
For every vector a, there corresponds avector —a such that
a +(— 5) =0 = (— 5)+5 [existence of additive inverse]

Proof: Let OA = a .Then AO =- a

a +(—q) =OA +A0 =00 =0
(-5)+5 =AO +OA =AA =0
Hence a+(-3)-=(3)+a-=0

2.3.3 Multiplication of a vector by a scalar
Let mbe ascalar and a be any vector, then ma is defined as a vector
having the same support as that of a such that its magnitude is | m | times the

magnitude of a and its direction is same as or opposite to the direction of a
according as mis positive or negative.

-

Result : Two vectors a@ and b are collinear or paralld if and only if @ = mb
for some non-zero scalar m.

For any vector a wedefine the following:
Ma=a ; (-)a=-a : 0a =0
Note: If a isavector then5a isavector whose magnitude is 5 times the
magnitude of a and whose direction is same as that of a . But - 5a isa
vector whose magnitude is 5 times the magnitude of a and whose direction is

opposite to a.
Properties of Multiplication of vectorsby a scalar
The following are properties of multiplication of vectors by scalars.

For vectors a , b and scalars m, n we have
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(i)m(— 5) =(-m a =—(m5) (i) (- m) (— 5) =ma

(iii)m(né) =(m) a :n(ma) (iv)(m+n) a =ma +na
Theorem 2.5 (Without Proof) :

If a and b are any two vectorsand misascalar
thenm(§ + B):mg +mb .

Result : m(_ai - B) =ma -mb
2.4 Position vector

If apoint O isfixed as the origin in space B
(or plane) and P is any point, then OP is
called the position vector (P.V.) of P with N p
respect to O. r
From the diagram OP = T 4 > A
Similarly OA is caled the position Fig. 2. 11

vector (P.V.) of A with respect to O and OB
isthe P.V. of B with respect to O.

Theorem 2.6: AB = OB - OA where OA and OB arethe P.Vsof A and B
respectively.

Proof: Let O be the origin. Let a and b bethe position vectors of points
A and B respectively

— — — — B
Then OA =a ; OB =b N
In AOAB, we have by triangle law of b
addition
OA +AB = OB R
AB = OB -OA =b -a Fig. 2. 12
ie AB = (PVofB)-(PVofA)
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Note: In AB , the point B is the head of the vector and A is the tail of the
vector.

AB = (P.V. of the head) - (P.V. of thetail). Similally BA = OA - OB

The above rule will be very much useful in doing problems.
Theorem 2.7: [Section Formula — Internal Division]

Let A and B be two points with position vectors a and b respectively

and let P be a point dividing AB internally in the ratio m: n. Then the position
vector of Pis given by

OIES _na+mb m

m+n A
Pr oof: i
Let O betheorigin. I
Then OA =a; OB =b Y
Fig. 2. 13

L et the position vector of P with respect to O be Y ieOP=T
Let Pdivide AB internally intheratiom: n

AP . .
Then 55 =%  NAP=mPB nAP =m PB
n(Oﬁ—Oﬁ() :m(Oﬁ—Oﬁ) n(?—g) :m(B—?)
nr -na =mb -mr mr +nr =mb +na

(m+n)7 =mb +na

- mb +na
F="m+n

Result (1): If Pisthe mid point of AB, then it dividesAB intheratio 1: 1.
. 1.b+l.a a+b
TheP.V. of Pis 1+1 =" >
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o . . - _a+h
P.V. of the mid point P of AB is OoP =1 =—75

Result (2): Condition that three points may be collinear

—

Proof: Assume that the points A, P and B (whose P.Vs are a,r and b
respectively) are collinear

~ mb+na
We have r m+n

- -

mb +na

(m+n) Y

(m+n) ¥ -mb -na =0
In this vector equation, sum of the scalar coefficientsin the
LHS =(m+n)-m-n=0
Thus we have the result, if A, B, C are collinear points with position

vectors a, b, ¢ respectively then there exists scalars x, y, z such that

xa +yB +z¢ =0 andx+y+z=0
Conversely if the scalars x, ¥, z are such that x + y + z = 0 and

xa + yB +z¢ = O thenthe points with position vectors a,b andC
are collinear.
Result 3: [Section formula — External division]

Let A and B be two points with position vectors a and b respectively
and let P be a point dividing AB externally in the ratio m : n. Then the position
vector of Pis given by
N A B P

Pr oof:
Let O bethe origin. A and B are the two

points whose position vectors are a and b

Then OA = a ; OB = b Fig. 2. 14
Let P divide AB externally in the ratio m: n. Let the position vector of P

withrespecttoObe r ie OP = T
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P m
We have B = nAP = mPB

AP & PB
are in the opposite direction

(7-3)=m(7-5)

— —

nr —na =mr -mb mb -na =mr -nr

S5
~

o

jv)

I
o
>

~
1

I

3
~—~

O

(o9)

I
o
0

~—

3
(o
|
S5
QD
I
—~
3
|
>
=
-

m-n
Theorem 2.8: The medians of atriangle are concurrent.

Pr oof:
Let ABC be atriangle and let D, E, F be the mid points of its sides BC, CA
and AB respectively. We have to prove that the medians AD, BE, CF are

concurrent.

Let O be the origin and a,b,c bethe position vectors of A, B, C

respectively.
The position vectors of D, E, F are A (a)
b+c c+a a+b
2 2 2
Let G; be the point on AD dividing it
internally intheratio2: 1 Bk D Cw@
Fig. 2. 15
20D +10A
PV.of Gy =——%71
b+c -
_— 2773 tla a+b+c
0G; = 3 =" 3 (1)

Let G, be the point on BE dividing it internally intheratio 2 : 1

- 20E +10B
0G, = 2+1
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c+a

. 27 +1. b a+D+¢
0G, = 3 = 3 2
Similarly if G divides CFintheratio 2: 1 then
. a+b+c
OGz =— 3 3

From (1), (2), (3) we find that the position vectors of the three points
G,, Gy, G3 are one and the same. Hence they are not different points. Let the

common point be denoted by G.

Therefore the three medians are concurrent and the point of
concurrenceis G.
Result:

The point of intersection of the three medians of a triangle is called the
centroid of thetriangle.

a+b+c

w|Tl

The position vector of the centroid G of AABC is OG =

where a, b, ¢ arethe position vectors of the vertices A, B, C respectively
and O isthe origin of reference.

Example 2.1: If a, b, c bethevectors represented by the three sides of a

—

triangle, taken in order, then prove that a+b+c =0

Solution:
Let ABC be atriangle such that A
BC =a,CA=b adAB = ¢ 2 b
a+b+c =BC +CA +AB
B > C

_ ~ =4 ~ . ~ a
=BA +AB ( BC +CA =BA Fig. 2.16
=BB =0

Example 2.2:

If a and b are the vectors determined by two adjacent sides of a regular
hexagon, find the vectors determined by the other sides taken in order.

51



Solution:
Let ABCDEF be aregular hexagon E D

suchthat AB =a and BC = Db
Since AD || BC such that AD = 2.BC

AD = 2BC =2b , C
I" N
In AABC, wehave AB + BC = AC
AC = a +b »
INAACD, AD = AC +CD A2 h
Fig. 2. 17
Cb = AD -AC =2b —(E{+B =b -a
DE = -AB =-a
EF = -BC =-b
A=-co=-(5-3)=a-5

Example 2.3:
The position vectors of the points A, B, C, D are a,b,2a +3b,

a -2b respectively. Find DB and AC
Solution: Given that

(@]
Il

OA=a : OB=Db : O

|
|
N
ol
N NV
1l
ol
|
ol
+
N
ol
1
w
ol
|
ol

DE =OBE-0D = b —(
AC =0C - OA
- (32+3)-3
=a +3b

Example 2.4: Find the position vector of the points which divide the join of the

points A and B whose P.Vs are a -2b and2a - b internally and
externally intheratio 3: 2
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Solution:
OA =a -2b ; OB =2a - b
Let Pdivide AB internally intheratio 3 : 2

P.orp = SO T2OA (23 - 5) ;2(5 ~28)

_8a-7b _
5 B 5 B
Let Q divide AB externaly intheratio 3: 2

_6a-3b+2a-4b _8a

[G1EN]
ol

a -

uilloo

s 0n a2 -5)-o(i -25)

3-2
=6a -3b -2a +4b =4a +Db

Example 2.5: If a and b are position vectors of points A and B respectively,
then find the position vector of points of trisection of AB.

Solution:
Let P and Q be the points of
trisection of AB A p Q B )
Let AP=PQ=QB = A (say) Fig. 2. 18
PdividesAB intheratiol: 2
. 1OB+20A 1 b+2a b+2a
PV.of P =0P = 1+2 = 3 = 3
Q isthe mid-point of PB
B+2§+B b +2a +3b
OP + OB 3 3 2a +4b
_a+2b
- 3

Example 2.6: By using vectors, prove that a quadrilateral is a paralelogram if
and only if the diagonals bisect each other.
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Solution:
Let ABCD be a quadrilateral D(d) (@
First we assume that ABCD is a parallelogram
To prove that its diagonals bisect each other
Let O bethe origin of reference.

OA=a,0B=b,0C=c,0D =d A@ B (b)
] ) R R Fig. 2. 19
Since ABCD isaparalelogram AB = DC
OB -OA = OC - 0D b-a==¢-d

b+d = a+c¢c =

i.e. P.V. of the mid-point of BD = P.V. of the mid-point of AC. Thus, the
point, which bisects AC aso, bisects BD. Hence the diagonals of a
parallelogram ABCD bisect each other.

Conversely suppose that ABCD is a quadrilateral such that its diagonals
bisect each other. To provethat it is a parallelogram.

Leta, b, c,d bethe position vectors of its vertices A, B, C and D
respectively. Since diagonals AC and BD bisect each other.

P.V. of the mid-point of AC = P.V. of the mid-point of BD

—

a+c B+d N N N N
o = a+c¢=D +d ()
b-a=¢c-d ie AB = DC

Also (1) d-a=c¢c-b ie AD =BC

Hence ABCD is a parallelogram.
Example 2.7:

In a triangle ABC if D and E are the midpoints of sides AB and AC
respectively, show that BE + DC =g BC



Solution:
For convenience we choose A as the origin.

Let the position vectors of B and C be b and

¢ respectively. Since D and E are the
mid-points of AB and AC, the position vectors

- -

of Dand E are% and % respectively.

Now BE =PV.ofE-PV.0fB = % - b
— — B
DC =PV.of C-PV.ofD = C -+
. . ¢ - - b 3. 3o
BE + DC —j—b tCc -5 = EC_Eb
:% (6 - B) :% [P.V. of C- P.V. of B]
3 .
=3 BC

Example 2.8: Prove that the line segment joining the mid-points of two sides of
atriangleis parallel to the third side and equal to half of it.
Solution:
Let ABC be a triangle, and let O be the A (@)
origin of reference. Let D and E be the
midpoints of AB and AC respectively.

D E
Let OA =a, OB=b,0C-=C¢
_ a__a)+5 B(H) C(c)
PV.of D= 0D =~ Fig. 2. 21
P.V.ofE:OE:aJZrC
Now DE = OE - OD = azc—a;b
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_a+c-a-b 1 (a a) (= &)1 .z
- 2 —2 c-— —2 OC_OB) —2 BC
DE :% BC DE ||BC
1o Y T N 1
Also  DE =3 BC |DE|:§|BC| DE = 5 BC

1
Hence DE || BC and DE = 5 BC.

Example 2.9: Using vector method, prove that the line segments joining the
mid-points of the adjacent sides of a quadrilateral taken in order form a
parallelogram.
Solution:
Let ABCD be a quadrilateral and let P, Q, D(d) R c@
R, S be the mid-points of the sides AB, BC, « '
CD and DA respectively.
Then the position vectorsof P, Q, R, Sare

d d+a

a+b b+c c+ +
.2 y 2 ) 2 y 2 A({rf‘) P B(f}’)
respectively. Fig. 2. 22

In order to prove that PQRS is a parallelogram it is sufficient to show that
PQ = SR and PS = QR

Now PG = PV.ofQ-PV.ofP= =5 - 25— ===
" c+d d+a ¢c-a
PG = SR

PQ || SR and PQ = SR
Similarly we can prove that PS= QR and PS|| QR
Hence PQRS is a parallelogram.
Example2.10:

Leta, b, ¢ bethe position vectors of three distinct points A, B, C. If

there exists scalars |, m, n (not al zero) such that | a+mb +nc =0and| +m
+ n =0 then show that A, B and C lieon aline.
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Solution:
Itisgiventhat |, m, n arenot al zero. So, let n be anon-zero scalar.

la +mb +nc = 0 nc =—(Ia+mb)

~ (13+mB) 13+mb
n T —(+m) T~ I+m

ol
|
ol

The point C dividesthelinejoining A and B intheratiom: |
Hence A, B and C lieson the same line.

Note: a , b arecollinear vectors a =Ab or b =Aa for somescaar A

Collinear points: If A, B, C are three points in a plane such that AB = ABC

or AB = AAC (or) BC = AAC for some scalar A, then A, B, C are
collinear.

Example 2.11: Show that the points with position vectors

a -2b +SE,—2§ +3b -C and4a -7b +7¢ aecollinear.
Solution:
Let A, B, C be the points with position vectors

a -2b +3¢,-2a +3b - ¢ and 4a -7b +7¢ respectively.
OA =a -2b +3¢, OB =-2a +3b-¢c,0C =4a -7b +7¢

OB -OA = (—25 +3B—E) —(5—26’ +3E)

>
WL
I

=-2a +3b -¢c -a +2b -3¢ =-3a +5b -4c
BC =0oC - OB = (45—76 +76) —(—25 +3B—E)

— -

=4a -7b +7C +2a -3b +Cc =6a -10b +8¢
Clearly BC =6a -10b +8¢ = —2(—35 +5B—4E) = -2(aB)

AB and BC are paralel vectors but B is a point common to them.

So AB and BC arecollinear vectors. Hence A, B, C are collinear points.

57



)

)
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(4)

)

(6)
(7)

(8)
9)

(10)

(11)

(12)

EXERCISE 2.1

If 2 and b represent two adjacent sides AB and BC respectively of
aparalleogram ABCD. Find the diagonals AC and BD .

If PO + 0(3 = Q6 + OR , show that the points P, Q, R are collinear.
Show that the points with position vectors

a -2b +3¢ ,—25 +3b +2C and-8a +13b arecollinear.
Show that the points A, B, C with positionvectors—zg +3Db +53,

a +2b +3C and7a - ¢ respectively, are collinear.
If D isthe mid-point of the side BC of atriangle ABC, prove that

AB + AC =2AD

If G isthe centroid of atriangle ABC, provethat GA +GB +GC = O
If ABC and A'B'C’ aretwo triangles and G, G’ be their corresponding

centroids, provethat AA” + BB’ +CC' = 3GG'

Prove that the sum of the vectors directed from the vertices to the
mid-points of opposite sides of atriangleis zero

Prove by vector method that the line segment joining the mid-points of
the diagonals of atrapezium is paralel to the parallel sides and equal to
half of their difference.

Prove by vector method that the internal bisectors of the angles of a
triangle are concurrent.

Prove using vectors the mid-points of two opposite sides of a
quadrilateral and the mid-points of the diagonals are the vertices of a
parallelogram.

If ABCD is a quadrilateral and E and F are the mid-points of AC and

BD respectively, provethat AB + AD + CB + CD =4 EF

2.5 Resolution of a Vector
Theorem 2.9 (Without Proof) :

—

Let a and b be two non-collinear vectors and r be a vector coplanar

with them. Then T can be expressed uniquely as ¥ =la +mb wherel,m
are scaars.
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Note: Wecalla +mb asalinear combination of vectors a and b , where
I, mare scalars.
Rectangular resolution of a vector in two dimension
Theorem 2.10:
If Pisapoint in atwo dimensiona plane which has coordinates (X, y)

then OP =xi +yT ,where T and T are unit vectors along OX and

QY respectively.
Proof:
Let P(x, y) be apoint in a plane with Yt
reference to OX and OY as
cp—ordi nate axes as shown in the A P(x, y)
figure.
Draw PL perpendicular to OX.
ThenOL =xand LP=Yy >
oL O » L X
Let i , j bethe unit vectorsaong Fig. 2. 23

OX and OY respectively.
Then OL =xi and LP =y]j
Vectors OL and LP are known as the components of OP along x-axis

and y-axis respectively.
Now by triangle law of addition

OP = OL +LP =xi+y] =71 (s)

=l
o
o X
'_N_
+

<
- =
I
x
N
+

Now OF?

op = ey 7] =y
Thus, if apoint Pin aplane has coordinates (x, y) then
() r =0P =xi +yj
iy |71 =]oB| = ki +y7| =@+ y?
(iii) The component of OP along x-axis is a vector xi and the

component of OP along y-axisis a vector yT
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Components of a vector AB in terms of coordinates of A and B
Let A(xq, yp) and B(xy, y,) be any two

-~

e

points in XOY plane. Let T and | be B(x2y2)
unit vectors aong OX and OY A
r&pa:“ Vely' Alxpy) ra N

AN=X-X;, BN=y,-y;

AN =(x-%)1 , NB

0 L Y B

=02-v) | Fig. 2. 24

Now by triangle law of addition
AB = AN +NB =(p-x) T +(-yp) |
Component of AB along x-axis = (%0 =x9) 7

Component of AB along y-axis = Y2—-v1) T
AB? = AN? +NB? = (xp - x¢)? + (¥~ y1)°
AB = \/(Xz = x)? + (y5 - Y1)
which gives the distance between A and B.

Addition, Subtraction, Multiplication of a vector by a scalar and equality
of vectorsin terms of components:

- -

Let a = ai +a,j and b =b
We define

—

()a + b

aji +ay] + bji +by] =(aj+b) i +(ay+hy]
(ia - b = a;i +ay] - byi +byj] =(aj-by) i +(ay-by)J
(i) ma =m alT +a2T =malT +ma2T where mis ascalar
b alT +a2T = blT +b2T a= bjanday,=b,
Example 2.12: Let O be the origin and P(- 2, 4) be a point in the xy-plane.

iv) a

Express OP intermsof vectors i and | . Alsofind |Of>|
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Solution: Thepositionvectorof P, OP = -27 +4]

|oﬁ>| = |—2T +4T| =1/(- 22+ (4)? =\[4+ 16 =/20
= 2—\/—5
Example 2.13: Find the components along the coordinates of the position
vector of P(- 4, 3)
Solution:

The position vector of P= OP =-47 +3]
Component of OP along x-axisis— 47

i.e. component of OP aong x-axis is a vector of magnitude 4 and its
direction is along the negative direction of x-axis.

Component of OP aong y-axisis 3T

i.e. the component of OP along y —axis is a vector of magnitude 3, having
its direction along the positive direction of y-axis.

Example 2.14: Express AB in terms of unit vectors 7 and T , where the
pointsare A(- 6, 3) and B(- 2, - 5). Find also |AI§ |
Solution:

— - —

Given OA =-6i +3] ; OB =-27 -5j
-2

AB = OB - OA =( T—ST) —(—67 +3T)

=47 -87
|A§| = |4T -8T| =\/(4)2 + (- 8)2 =[16+ 64 =+/80
= 4[5

Theorem 2.11 (Without Proof) :

If a, b, c arethreegiven non-coplanar vectorsthen every vector r in

space can be uniquely expressedas? =la +mb +nc for somescaasl,
mand n
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Rectangular Resolution of a vector in three dimension
Theorem 2.12:

If a point P in space has coordinate (X, y, ) then its position vector T s

X7 +yT +2zK and |?| :\/x2+y2+z2 where 7, T K are unit vectors
along OX, OY and OZ respectively.

Proof: Z
OX, OY, OZ are three mutualy T,.? y
perpendicular axes. T, T kK are unit
vectors along OX, OY, OZ respectively. U P
Let P be any point (X, y, 2) in space and let =
OI3 = ? O :" S; Y
Draw PQ perpendicular to XOY 90‘ J
plane and QR perpendicular to OX R 4 4
Then OR=Xx;RQ=y;QP=2z T
= - = - = - X
OR =xi ;RQ =yj ; QP =zk Fig. 2. 25
Now OP = 0Q +QP =OR +RQ + QP
OP = xi +yT +zK r=xi +yT +zK

Thus if P is a point (X, y, 2 and T isthe position vector of P, then
T =x7 +y] +zK
From the right angled triangle OQP, OF? :OQ2 + QP2
From the right angled triangle ORQ, OQ2 =OR? + RQ2
OP’= OR’+RQ?+QP* OP’=x%+y°+7

OP= \WC+y2+Z r=\C+y?+7
r= |7] =\2rye2

2.6 Direction cosines and direction ratios

Let P(x, y, 2 be any point in space with reference to a rectangular
coordinate system O (XY Z). Let a, B and y be the angles made by OP with the
positive direction of coordinate axes OX, OY, OZ respectively. Then cosa,

cospB, cosy are called the direction cosines of OP .
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Inthefig2.25 |OQP =90°;|POZ =y |OPQ =y (+QP|0Z)
:@ =Y

cosy = 5p cow=% Similarly cosa=)F(andcosB "

—— ; B XYy z —af
Thedirection cosinesof OP are, 7, ; wherer = x2+y2+z2

Result 1: Sum of the sguares of direction cosinesis unity.

C032G+C032B+c052y - )F(2+¥2+%2=X2+r2+22
2
- r_2 =1 [ rP=x+y+7]

r

cos’ol + 0032[3 + coszy =1

Result 2: Sum of the squares of direction sinesis 2.
sin‘a + sinZB + sinzy =(1- coszcx) +(1- COSZB) +(1- coszy)
= 3—[c0320(+c032[3+c032y] =3-1=2
sina + sinZB + sinzy =2
Direction ratios:

Any three numbers proportional to direction cosines of a vector are called
itsdirection ratios. (d. r's).

Let r =xi +y] +zK beany vector

L . - X Z
Direction cosines of r are’y, % T Wherer=\lx2+y2+z2

X
r

cosa =7 ; cosfP =¥ ; COSY = % where a, 3, y be the angles made

by T with the coordinate axes OX, OY, OZ respectively

X y z
— =T, =r, T =r
cosa cosf3 cosy

X y z

= = =r
coso  cos  cosy

X:1Y:Z=cosd: Ccosf : cosy

i.e. the coefficients of i, j, k in the rectangular resolution of a vector are
proportional to the direction cosines of that vector.

x, y, z arethedirection ratiosof thevector 1 =x1i +yT +zK
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Addition, Subtraction and Multiplication of a vector by a scalar and
equality in terms of components:

Let a :alT +a2T +a3_R and b :blT +b2T +b3E be any two
vectors.

Then
(i) a+b = (a+by)T +(a+hy)] +(ag+bg)k
(ii) a-b = (a-b)T +(az-by)] +(ag-bg)kK
(iii) ma = m alT +a2T +a3E
= malT +ma2T +ma3l_€ where misascalar
(iv) a = b e-a=b,a=hyandag=hy

Distance between two points:
Let A (X1, Y1, 1) and B(Xy, Y», Z,) be any two points

Then AB OB - OA

Xpl +Yo] +2ok = X0 +y1] +71k

(X2 = Xq) i +(y2‘y1)T +(-279) k

The distance between A and B is AB = |AI§ |

(o=x) 1 +(¥a-Y1) | +@Z-2z) Kk
(%o = X0+ (¥ = y)? + (2 - 20)°

Example 2.15: Find the magnitude and direction cosines of 27 - T +7K
Solution:

|ng]

b7 -7 +7%| =N c o2 2
(AT =54 =28

Direction cosinesof 21 - j +7Kk aFGS\Z/E' _3\76' 3\7/6

MagnitudeonT - T +7K

Example 2.16: Find the unit vector in the direction of 37 + 4T - 12K



Solution: Let a =371

|5| =|3T-+4T—42?|=\h$2+<®2+<—132
=+/9+ 16 + 144 =+[169 =13

a 37 +4] -12K

N 13

H

+4JT> - 12K

. . . . e N
Unit vector inthedirectionof a is a =

Example 2.17: Find the sum of the vectors T- T +2K and 27 +3T - 4K
and also find the modul us of the sum.
Solution:

Let a=1i-]+2K, b =2

—>

ol

+ —(T—T+2E)+ 2T+3T—4E) =3

|a+b| @+ 2+ (2P =G ATE
- T

Example 2.18: If the position vectors of the two points A and B
aei +2] -3k and 27 -4] + K respectively then find |A§|
Solution:
If Obetheorigin, then OA =7 +2] -3K, OB =27 -4] + K

AB = OB - OA
- (27 -a7+%) - (7 +27 -3%)
= T—GT +4K

|ag| =7+ - 67+ @2 =53
Example 2.19: Find the unit vectors parallel to the vector - 3 T+ 4T

—

Solution: Let a =-37 +4T

|5| = \(-3%+42 =\9+16 =5
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a 1 - 1 - S
a=——=—— a :g(—3| +4 ]
al 4l
. - -3 4 -
Unit vectors parale to a aet a =1 T I tp]

Example 2.20: Find the vectors of magnitude 5 units, which are paralel to the
vector 27 - |

Solution: Let a =2

=i5%|—%1=i(2\/§|—\/31)
Example 2.21: Show that the points whose position vectors 27 + ST - 5K,

37 + T 2K and 67 —ST + 7K arecollinear.
Solution: Let the pointsbe A, B and C and O bethe origin. Then

j -2K;0C =67 -5] +7K
(2T+3T —5?)

OA =27 +3] -5k ; OB=3T

AB

]
OB - OA =(3T +7 —2?) -

=7 -27 +3Kk

AC = OC - OA =(6T -57 +7E) —(2T +37 —5?)
AC =47 -87 +12k =4(T -27 +3E)
= 4 AB

Hence the vectors AB and AC are paralel. Further they have the
common point A.
The points A, B, C are collinear.
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Example 2.22: If the position vectors of A and B ae3i - 7T -7K and

57 +4T +3K , find AB and determineits magnitude and direction cosines.
Solution:
Let O betheorigin. Then

OA =37 -7] -7K, OB =57 +4] +3K
AB = OB -OA = (5| +47] +3K —(37—7?—7?
AB =27 +11] +10K

|ag| =J@%+ @2+ 02 =15
N , 2 11 10
The direction cosines are 15 15 15

EXERCISE 2.2
(1) Find the sum of the vectors 4 T +5T +k,-27 +4T - k and
37 —4T +5K . Find also the magnitude of the sum.
(2 Ifa=37 -] -4K, b=-27 +4]-3kadc=71+2]-K
find [2a - b +3¢

(3) The position vectors of the vertices A, B, C of atriangle ABC are
respectively
27 +3] +4K, - i +2]-kad3i-5]+6K
Find the vectors determined by the sides and cal culate the length of the
sides.

(4) Show that the points whose position vectors given by

()-27 +37 +5K, i +2] +3K, 77 - Kk
(i) T -27 +3k, 27 +3] -4k and-7] +10K arecollinear.

(5) If the vectors a=27 —ST andb=-67 +mT are collinear, find the
value of m.

(6) Find aunit vector inthedirectionof i ++/3 |

67



()

©)

9)

(10)

(11)

(12)

(13)

(14)

(15

(16)

Find the unit vectors parallel to the sum of 37 - 5T +8K

and-27 -2k

Find the unit vectors parallel to 3a -2Db +4¢c where Q:ST—T -4K,
b=-27 +4T —3?, c=7 +2T -k

The vertices of atriangle have position vectors

47 +5] +6K,51 +6] +4K, 61 +4] +5K. Prove that the
triangleis equilateral.

Show that the vectors 27 - T + K, 37 —4T -4k, T —ST -5k
form aright angled triangle.

Prove that the points27 +3] +4Kk, 37 +4] +2Kk, 47 +2] +3K
form an equilateral triangle.

If the vertices of atriangle have position vectors T+ ZT +3K,

27 +3] + K and 37 + | + 2K, find the position vector of its
centroid.

If the position vectors of Pand Q are T+ ST -7k

and5 7 —ZT +4k , find PQ and determine its direction cosines.
Show that the following vectors are coplanar

()7 -2] +3K, -27 +3] -4k, -] +2kK

()57 +6] +7K, 71 -8] +9Kk, 37 +20] +5K

Show that the points given by the vectors4 i +5T +K,- T -k,
37 +9] +4Kk and-47 +4] +4K arecoplanar.

Examine whether thevectors i +3] + kK, 27 -] - K

and 7T +5K are coplanar.
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3. ALGEBRA
3.1 Partial Fractions:
Definitions:
Rational Expression: An expression of the form % where p(x) and
g(x) # 0arepolynomiasin xiscaled arational expression.
5X — 2 3x2 + 2x-1

The expressions ,
P xz+3x+2 x2+x—22

are examples for rational

expressions.
Proper Fraction: A proper fraction is one in which the degree of the

numerator is less than the degree of the denominator.
Th i x+ 1 L les f
e expressions , are examples for proper
P xz+4x+3 x5+xz—5 ) PSR

fractions.
Improper Fraction: An improper fraction is a fraction in which the degree of
the numerator is greater than or equal to the degree of the denominator.

X +5x"+4 X —x+1

The expressions , are examples for improper
P xz+2x+3 xz+x+3 P prop

fractions.
Partial Fraction:
- I’ _5
Consider thesumof 35 and {7

We simplify it asfollows:

7 5 7x=1)+5x-2) 7x-7+5x-10  12x-17
x—2 TXx1T x—2)(x-1) - x-2(x-1) "~ (x-2(x-1)
12x—17

Conversely the process of writing the given fraction *-2) (x=1) as

7 5 . L . . .
X—2 tx—1is known as splitting into partial fractions (or) expressing as
partial fractions.

A given proper fraction can be expressed as the sum of other simple
fractions corresponding to the factors of the denominator of the given proper
fraction. This process is caled splitting into Partial Fractions. If the given
pX)
a(x)
aproper rationa fraction by dividing p(x) by g(x).

fraction is improper then convert into sum of a polynomial expression and
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Working Rule:
pKX)
a() -
Type 1: Linear factors, none of which is repeated.

If a linear factor ax + b is a factor of the denominator q(x) then

Given the proper fraction Factorise g(x) into prime factors.

corresponding to this factor associate a ssimple fraction where A is a

_A
ax+b’
constant (A # 0).
i.e., When the factors of the denominator of the given fraction are al linear
factors none of which is repeated, we write the partial fraction asfollows:
X+ 3 A B
X+5) (2x+ 1) = X+5 Tox+1 where A and B are constants to

be determined.

. . ) 3xX+7
Example 3.1: Resolve into partial fractlons—z—x
X —3x+2
The denominator x2 — 3x + 2 can be factorised into linear factors.

x2 —3x+2:x2—x—2x+2:x(x—1)—2(x—1):(x—l) (x=2)

+
We assume 23)( r_ él + ?2 where A and B are constants.
X" =3x+2 X X
3x+7 _ Ax-2)+B(x-1)
X" = 3x+ 2 (x-1) (x-2)
AX+7 = Ax-2)+B(x-1) (D
Equating the coefficients of like powers of x, we get
Coefficient of x : A+B=3 .. (2
Congtant term  : -2A-B=7 .. (3
Solving (2) and (3) we get
A=-10
B =13
x+7 -10 13 13 10

XZ—3x+2_X—1 +X—2 :X—2 N x-1

Note: The constants A and B can aso be found by successively giving suitable
valuesfor x.
Tofind A, putx=1 in (1)

3(1)+7 = A(l-2)+B(0)
10 = A(-1)
A= -10
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Tofind B, put x=2in (1)
32+7=A0+B(2-1)

B =13
x+7 _-10 13
Coax+2 x-1 " x-2
+7  _ 13 10

X“-3x+2 X-2  x-1

+

Example: 3.2: Resolveinto partia fractions —2L

X -4 (x+1)
The denominator (x2 - 4) (x + 1) can be further factored into linear factors

e 0C-4)(x+1) = (x+2) (x-2) (x+1)
X+4 A B C
= + +
(xz—4)(x+1) ) - X+1,WhereA,BandCare
constants to be determined.

x+4

_AX-2) (x+1)+B(x+2) (x+1)+C(x+2) (x-2)
0C-4) (x+1) (x+2) (x=2) (x+1)
X+4=AKX-2) (x+1) +B(x+2) (x+ 1) +C(x+2) (x-2) ... (D
Tofind A, putx = -2in (1)
-2+4=A(-2-2)(-2+1)+B(0) +C(0)
2=14A A=172
TofindB, putx=2in(1), wegetB=1/2
TofindC, putx=-1in(1), wegetC=-1

x+4 12 12 (=)
C-d)(x+1) X+ T (x-2) T x+1
x+4 1 1 1

C-a)(x+1) 206+ T 2x-2) T x+1
Type 2: Linear factors, some of which arerepeated
If alinear factor ax + b occurs n times as a factor of the denominator of the
given fraction, then corresponding to these factors associate the sum of n simple
fractions,
A1 A2 A3 An
+ + + .
ax+b " (ax+b)?  (ax+h)® (ax + b)"

Where A1, Ao, Ag, ... A areconstants.
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. . . 9
Example 3.3: Resolveinto partial fractions——————

x-1) (x+2)
9 _A B ,_C
x-1) (x+2)° X=1 ~ X+2 7 (x4 2)°
9 AKX+ +B(xX- 1) (X+2) + Cx - 1)
(x-1) (x+2)° (x-1) (x+2)°
9= AKX+22+BXx-1)(x+2)+Cx-1) ... (1)
Tofind A, put x =1 in(1)
We get 9=A(1+2)2 A=1
Tofind C, put x=-2in(1)

We get 9=C(-2-1) C=-3
In (1), equating the coefficient of x2 on both sides we get
A+B=0
1+B=0 B=-
9 1 1 3
x-D)(x+2)° X=1  X*¥2 " (x42)°
Type 3: Quadratic factors, none of which isrepeated
If a quadratic factor ax2 + bx + ¢ which is not factorable into linear factors
occurs only once as a factor of the denominator of the given fraction, then

+
corresponding to this factor associate a partial fraction —9& where A
ax" +bx+c
and B are constants which are not both zeros.
Consider —sz—
X+ (X +1)
2x A Bx+C

We can write this proper fraction in the form = +
prop X+ K+ X174

The first factor of the denominator x + 1 is of first degree, so we assume its
numerator as a constant A. The second factor of the denominator x2 +1isof an
degree and which is not factorable into linear factors. We assume its numerator
asagenerd first-degree expression Bx + C.

x2 -2x-9

Example 3.4: Resolve into partial fractions —
(X"+x+6)(x+1)
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2
X —2X-9 Ax+ B C

= +
OC+x+6) (x+1)  x+x+6 X+l

X -2x-9  (AX+B) (x+ 1)+ C(C +x+6)
OC+x+6) (x+1) O +x+6) (x+ 1)
X% = 2x=9 = (AX+ B) (x+ 1) + C(<° + X + 6) (D)
TofindC put x=-1in(1)
Weget 1+2-9=C(1-1+6) c=-1
Tofind B, put x =0 in(1)
We get -9=B+6C
-9=B-6 B=-3
Tofind A, Pu x=1in(1)
1-2-9=(A-3)(2+(-1) (8 -10=2A-14
A=2
2
X -2x-9  2x-3 1
z A T x+1
(X +x+6)(x+1) X +x+6
x2+x+1
Example 3.5: Resolve into partial fractions—o————
X —-5X+6

Solution:

Here the degree of the numerator is same as the degree of the denominator,
i.e. animproper fraction.

on divis 4 x+1 1 6x -5 )
n division - =1+ — —
X —5Xx+6 X —5x+6
6x -5 A B

Let = +
X*-Bx+6 X-2  x-3
6x-5=A(X-3) + B(x-2)
By puttingx=2, —A=12-5 A=-7
By puttingx=3, B=18-5 B =13
x2+x+1 7 13
+

XZ—5X+6 = X-2 Xx-3

K ax+1 7 13

- =1- +
@) X~ -5x+6 132 *x-3
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EXERCISE 3.1
Resolve into partial fractions

P SN < P L5
(x-1) (x+1) 6 - 5X + X (x-1) (x-2) (x-3)
@) ——— O s () 2
x-1) (x+2) x+2)(x-1) x-2)" (x+3)

- X2 - Bx+2 © 2%~ Bx -7 o -3
X" (x+2) x-2) x+2) (X" +1)

X+ 2 7x2—25x+6 x2+x+1

W nedry P nex-2 P

3.2 Permutations:

Factorial:
The continued product of first n natural numbers is caled the

“nfactorial” and is denoted by n! or |n

1x2x3x4x ... .x(n-1)%xn
1x2x3x4x5 =120

e nl
51

Zero Factorial:

We will require zero factoria in the latter sections of this chapter. It does
not make any sense to define it as the product of the integers from 1 to zero. So,
we define 0! = 1.

Deduction:

n! = 1x2x3x4x..x(n-1)xn
= [1x2x3x 4x .. .x(n-1)]n
= [(n-D!]n

Thus, n = n[(n-1)]
For example,
8! = 87

3.2.1 Fundamental Principles of Counting:

In this section we shall discuss two fundamental principles viz., principle
of addition and principle of multiplication. These two principles will enable us
to understand permutations and combinations and form the base for
permutations and combinations.
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Fundamental Principle of Multiplication:

If there are two jobs such that one of them can be completed in m ways,
and when it has been completed in any one of these m ways, second job can be
completed in n ways; then the two jobs in succession can be completed in
m x n ways.

Explanation:

If the first job is performed in any one of the m ways, we can associate
with this any one of the n ways of performing the second job: and thus there are
n ways of performing the two jobs without considering more than one way of
performing the first; and so corresponding to each of the m ways of performing
the first job, we have n ways of performing the second job. Hence, the number
of waysin which the two jobs can be performedism x n.

Example 3.6: In a class there are 15 boys and 20 girls. The teacher wants to
select a boy and a girl to represent the class in a function. In how many ways
can the teacher make this selection?

Solution :
Here the teacher isto perform two jobs :
(i) Selecting aboy among 15 boys, and
(ii) Selecting agirl among 20 girls
Thefirst of these can be performed in 15 ways and the second in 20 ways.
Therefore by the fundamental principle of multiplication, the required
number of waysis 15 x 20 = 300.
Fundamental Principle of Addition:

If there are two jobs such that they can be performed independently in
m and n ways respectively, then either of the two jobs can be performed in
(m+ n) ways.
Example 3.7: In a class there are 20 boys and 10 girls. The teacher wants to
select either a boy or a girl to represent the class in a function. In how many
ways can the teacher make this selection?

Solution:
Here the teacher isto perform either of the following two jobs:
(i) selecting aboy among 20 boys. (or)
(ii) Selecting agirl among 10 girls
Thefirst of these can be performed in 20 ways and the second in 10 ways.

Therefore, by fundamental principle of addition either of the two jobs can
be performed in (20 + 10) = 30 ways.
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Hence, the teacher can make the selection of either a boy or agirl in 30
ways.
Example 3.8: A room has 10 doors. In how many ways can a man enter the
room through one door and come out through a different door?

Solution:

Clearly, a person can enter the room through any one of the ten doors. So,
there are ten ways of entering into the room.

After entering into the room, the man can come out through any one of
the remaining 9 doors. So, he can come out through a different door in 9 ways.

Hence, the number of ways in which a man can enter a room through one
door and come out through a different door = 10 x 9 = 90.

Example 3.9: How many words (with or without meaning) of three distinct
letters of the English alphabets are there?

Solution:

Here we have to fill up three places by distinct letters of the English
alphabets. Since there are 26 letters of the English alphabet, the first place can
be filled by any of these letters. So, there are 26 ways of filling up the first
place.

Now, the second place can befilled up by any of the remaining 25 letters.
So, there are 25 ways of filling up the second place.

After filling up the first two places only 24 letters are left to fill up the
third place. So, the third place can befilled in 24 ways.

Hence, the required number of words
=26 x 25 x 24 = 15600
Example 3.10:
How many three-digit numbers can be formed by using the digits 1, 2, 3, 4, 5.
Solution :

We have to determine the total humber of three digit numbers formed by
using the digits 1, 2, 3, 4, 5.

Clearly, the repetition of digitsis allowed.

A three digit number has three places viz. unit’s, ten’s and hundred’s. Unit's
place can be filled by any of the digits 1, 2, 3, 4, 5. So unit’s place can be filled
in 5 ways.

Similarly, each one of the ten’s and hundred’ s place can befilled in 5 ways.

Total number of required numbers

= bxb5x5=125
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Example 3.11: There are 6 multiple choice questions in an examination. How
many sequences of answers are possible, if the first three questions have
4 choices each and the next three have 5 each?

Solution:

Here we have to perform 6 jobs of answering 6 multiple choice questions.

Each of the first three questions can be answered in 4 ways and each one of
the next three can be answered in 5 different ways.

So, the total number of different sequences

=4x4x4x5x%x5x5=38000
Example 3.12: How many three-digit numbers greater than 600 can be formed
by using the digits 4, 5, 6, 7, 8?
Solution:

Clearly, repetition of digits is allowed. Since a three-digit number greater
than 600 will have 6, 7 or 8 at hundred's place. So, hundred’s place can be
filled in 3 ways.

Each of the ten’s and one's place can befilled in 5 ways.

Hence, total number of required numbers

=3x5x5=75
Example 3.13: How many numbers divisible by 5 and lying between 5000 and
6000 can be formed from the digits 5, 6, 7, 8 and 9?
Solution:

Clearly, a number between 5000 and 6000 must have 5 at thousand’s place.
Since the number isdivisible by 5 it must have 5 at unit’s place.

Now, each of the remaining places (viz. Hundred’s and ten’s) can befilled in
5 ways.

Hence the total number of required numbers

=1x5x5x1=25
Example 3.14: How many three digit odd numbers can be formed by using the
digits4,5,6,7,8,9if :

(i) therepetition of digitsis not alowed?

(ii) therepetition of digitsis allowed?
Solution:

For anumber to be odd, we must have 5, 7 or 9 at the unit’s place.

So, there are 3 ways of filling the unit’s place.

(i) Since the repetition of digits is not allowed, the ten's place can be filled

with any of the remaining 5 digitsin 5 ways.
Now, four digits are left. So, hundred’ s place can befilled in 4 ways.
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(i)

So, required number of numbers

=3x5x4=60

Since the repetition of digits is alowed, so each of the ten's and
hundred’ s place can be filled in 6 ways.

Hence required number of numbers=3 x 6 x 6 =108

10.

11.

EXERCISE 3.2

In a class there are 27 boys and 14 girls. The teacher wants to select
1 boy and 1 girl to represent a competition. In how many ways can
the teacher make this selection?

Given 7 flags of different colours, how many different signals can be
generated if a signa requires the use of two flags, one below the
other?

A person wants to buy one fountain pen, one ball pen and one pencil
from a stationery shop. If there are 10 fountain pen varieties, 12 ball
pen varieties and 5 pencil varieties, in how many ways can he select
these articles?

Twelve students compete in a race. In how many ways first three
prizes be given?

From among the 36 teachers in a college, one principal, one vice-
principal and the teacher-in charge are to be appointed. In how many
ways this can be done?

There are 6 multiple choice questions in an examination. How many
sequences of answers are possible, if the first three questions have 4
choices each and the next three have 2 each?

How many numbers are there between 500 and 1000 which have
exactly one of their digits as 8?

How many five-digit number license plates can be made if

(i) first digit cannot be zero and the repetition of digits is not
allowed.

(ii) the first digit cannot be zero, but the repetition of digits is
alowed?

How many different numbers of six digits can be formed from the
digits 2, 3,0, 7, 9, 5 when repetition of digitsis not allowed?

How many odd numbers less than 1000 can be formed by using the
digits 0, 3, 5, 7 when repetition of digitsis not allowed?

In how many ways can an examinee answer a set of 5 true / false
type questions?
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12.  How many 4-digit numbers are there?
13.  How many three — letter words can be formed using a, b, ¢, d, eif :
(i) repetitionisallowed (ii) repetition is not allowed?
14. A coin is tossed five times and outcomes are recorded. How many
possible outcomes are there?
3.2.2. Concept of Permutations:
The word permutation means arrangement.

For example, given 3 letters a, b, ¢ suppose we arrange them taking 2 at a
time.

The various arrangements are ab, ba, bc, cb, ac, ca.

Hence the number of arrangements of 3 things taken 2 at atime is 6 and this
can be written as 3P2 = 6.

Definition:

The number of arrangements that can be made out of n things taking r at a
timeis called the number of permutations of n thingstakenr at atime.
Notation:

If n and r are positive integers such that 1< r < n, then the number of al
permutations of n distinct things, taken r at atime is denoted by the symbol P(n,
r) or nPr.

We use the symbol nPr throughout our discussion. Thus nPr = Total number
of permutations of n distinct thingstaken r at atime.

Note: In permutations the order of arrangement is taken into account; when the
order is changed, a different permutation is obtained.

Example 3.15: Write down all the permutations of the vowels A, E, I, O, U in
English alphabetstaking 3 at atime and starting with E.

Solution: The permutations of vowels A, E, I, O, U taking three at atime and
starting with E are

EAl, EIA, EIO, EQI, EOU, EUO, EAO, EOA, EIU, EUI, EAU, EUA.
Clearly there are 12 permutations.

Theorem 3.1:
Let r and n be positive integerssuch that 1 <r <n.
Then the number of all permutations of n distinct thingstaken r at atimeis

givenby n(n-1) (n-2)... (n-r-1)
ie nPr=n(n-1)(n-2) .. (n-r-1)
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Pr oof:
Let nPr denote the number of permutations of n thingstakenr at atime.
Clearly the total number of permutations required is same as the number of
possible ways of filling up r blank spaces by n things.

I N N [

1 2 3 r

Let there be r blank spaces arranged in arow

Thefirst place can be filled by any one of the n thingsin n ways.

If the first place is filled up by any one of the n things, there will be
(n - 1) things remaining. Now the second place can be filled up by any one of
the (n - 1) remaining things.

Hereit can befilled upin (n — 1) ways.

Hence the first two places can be together filled in n(n — 1) ways.

Having filled up these two places, we have (n - 2) things remaining with
which we can fill up the third place. So the third place can be filled up by any
one of these thingsin (n — 2) ways.

Hence the first three places can be together filled in n(n - 1) (n - 2) ways.

Proceeding in this way, we find that the total number of ways of filling up
ther spacesis

nin-121) (n-2)... uptor factors
ienn-1)(n-2)... (n - r"—_l)

nPr=nin-1)(n-2) .. (n-r-1) =nn-1)(n-2) ... (n-r +1)
Theorem 3.2:

L n!
Let r and n be positiveintegerssuchthat 1 <r <n. Then nPr = -1

Pr oof:
nPr=nn-1)(n-2) ... (n-r-1)
nn-1)(n-2..(n-r=1) (n-r(h-r+1)..21
B n-r(n-r+1) .. 21

n!

(n=r)!
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Theorem 3.3:
The number of all permutations of n distinct things, taken al at atimeisn!

Proof: nPr = nin-1)(n-2)... (n-r-1)
By puttingr = n, nPn=nn-1)(n-2)...(n-n-1)

nn-1) (n-2) ...(n-n-1)

nn-H(n-2)...1

=nl
nPn = n!
Remark: We have already defined 0! = 1. This can aso be derived asfollows.
|
We know that nPr = —°
(n=r)!
. _ __n
By puttingr = n, nPn = (n-n)!
n!
nt =g ("> nPn =n!)
n!
o=y =1
o=1
Example 3.16: Evaluate 8P3
. 8! 8l (8x7x6)x5!
Solution: 8P3 = ©-3)! =5 = 5
=8%x7x%x6
= 336
Example3.17: If 5Pr =6P-1, findr
Solution: 5Pr = 6Pr-1
5 6!
G-t (6-r=1)
5/  6x5l
G- ~(@7-n)
5 6 x 5!
G-t {F7-n(@®-n}(E-)
6
1=7=n6-n
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(7-1)(6-1)=6  42-Tr-6r+r—=6 = 0

P-13r+36=0 (-9 (r-4) =0
r=9orr =14
r=4 (*- 5Pr ismeaningful forr <5)
Example 3.18:
If nP4 = 360, find the value of n.
Solution: nP4 = 360 (n—.4)! =6x5x4x3
n! 6x5x4x3x2l 6!
(n-4)! ~ 2! =2
nl = 6!
n==6
Example 3.19:
If 9Pr = 3024, findr.
Solution: 9Pr = 3024
=9x8x7x6=9P,
r=4
Example 3.20:
If(n-1)P3:nP4 = 1:9,findn.
Solution:

(n-1)P3:nP4=1:9
n-DH)(n-2)(n-3):nn-)(n-2)(n-3)=1:9
ie9n-1)(n-2)(n-3)=n(n-1) (n-2) (n-3)
n=9

Example 3.21: In how many ways can five children stand in a queue?
Solution:

The number of ways in which 5 persons can stand in a queue is same as the
number of arrangements of 5 different things taken al at atime.

Hence the required number of ways

= sP5=5 =120

Example 3.22: How many different signals can be made by hoisting 6
differently coloured flags one above the other, when any number of them may
be hoisted at one time?
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Solution:
The signals can be made by using at a time one or two or three or four or
fiveor six flags.

The total number of signals when r-flags are used at a time from 6 flags is
equal to the number of arrangements of 6, taking r at atimei.e. 6P
Hence, by the fundamental principle of addition, the total number of
different signals
= 6P1teP2+6P3+6P4+6P5+6P6
6+(6%x5)+(6x5%x4)+ (6 x5x4x3)+(6x5%x4x%x3 x2)
+(6x5x4x3x2x1)

= 6+30+ 120+ 360+ 720 + 720 = 1956
Example 3.23: Find the number of different 4-letter words with or without
meanings, that can be formed from the letters of the word ‘NUMBER'’

Solution:
There are 6 lettersin the word ‘NUMBER'.
So, the number of 4-letter words
the number of arrangements of 6 letterstaken 4 at atime
= 6P4
= 360
Example 3.24: A family of 4 brothers and 3 sisters is to be arranged in a row,
for a photograph. In how many ways can they be seated, if

(i) al the sisters sit together.
(i) all the sisters are not together.
Solution :
(i) Sincethe 3 sisters are inseparable, consider them as one single unit.

This together with the 4 brothers make 5 persons who can be arranged
among themselvesin 5! ways.

In everyone of these permutations, the 3 sisters can be rearranged among
themselvesin 3! ways.

Hence the total number of arrangementsrequired =5! x 31 =120 x 6 =720
(ii) The number of arrangements of al the 7 persons without any restriction
=7 = 5040
Number of arrangements in which all the sisters sit together = 720
Number of arrangements required = 5040 — 720 = 4320
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3.2.3 Permutations of objectsnot all distinct:

The number of mutually distinguishable permutations of n things, taken all
at atime, of which p are aike of one kind, q alike of second such that p + g =n,
.._n
Example 3.25: How many permutations of the letters of the word ‘ APPLE’ are
there?

Solution:
Herethere are 5 letters, two of which are of the same kind.
The others are each of its own kind.
| |
Required number of permutationsis=ﬁ = % = %) = 60

Example 3.26: How many numbers can be formed with the digits 1, 2, 3, 4, 3,
2, 1 so that the odd digits always occupy the odd places?

Solution:
Thereare 4 odd digits 1, 1, 3, 3 and 4 odd places.
|
So odd digits can be arranged in odd placesin % ways.

- . . 3
The remaining 3 even digits 2, 2, 4 can be arranged in 3 even places in 5,

ways.
4 3

Hence, the required number of numbers = oTo] X 5 =6x3=18

Example 3.27: How many arrangements can be made with the letters of the
word “MATHEMATICS'?

Solution:

There are 11 letters in the word ‘MATHEMATICS' of which two are M's,
two are A’s, two are T's and all other are distinct.

|
required number of arrangements =2— =~ —7 x121' X 2l

3.2.4 Permutations when objects can repeat:

The number of permutations of n different things, taken r at a time, when
each may be repeated any number of timesin each arrangement, is n

Consider the following example:

In how many ways can 2 different balls be distributed among 3 boxes?

Let A and B bethe 2 balls. The different ways are

= 4989600
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Box 1 Box 2 Box 3

[
[
[
[
]
[
] ]
[ [
[] []
i.e. 9ways. By formulan’ = F?=9 ways

Example 3.28: In how many ways can 5 different balls be distributed among
3 boxes?
Solution:

There are 5 balls and each ball can be placed in 3 ways.

So the total number of ways = 35 =243
Example: 3.29: In how many ways can 3 prizes be distributed among 4 boys,
when (i) no boy gets more than one prize?
(ii) aboy may get any number of prizes?
(iii) no boy gets all the prizes?
Solution:
(i) Thetotal number of waysis the number of arrangements of 4 taken 3 at
atime.
So, the required number of ways=4P3 =4! =24
(ii) The first prize can be given away in 4 ways as it may be given to
anyone of the 4 boys.
The second prize can also be given away in 4 ways, since it may be obtained
by the boy who has aready received a prize.
Similarly, third prize can be given away in 4 ways.
Hence, the number of waysin which all the prizes can be given away
=4x4x4 = 43 =64
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(iii) Since any one of the 4 boys may get all the prizes. So, the number of
waysin which aboy get all the 3 prizes= 4.
So, the number of waysin which aboy does not get al the prizes = 64-4=60
3.2.5 Circular Permutations:

We have seen that the number of permutations of n different things taken al
together is n!, where each permutation is a different arrangement of the n things
in arow, or astraight line. These permutations are called linear permutations or
simply permutations.

A circular permutation is one in which the things are arranged along acircle.
It isalso caled closed permutation.

Theorem 3.4

The number of circular permutations of n distinct objectsis (n — 1)!
Proof:

Letaj, ap, ..., an-1, ap bendistinct objects.

Let the total number of circular permutations be x.

Consider one of these x permutations as shown in figure.

Clearly this circular permutation providesn

near permutations as given below a5
a1, ap, ags, . an- 1, an
ap, ag, as, ey an, a1 @y .2 ay
a31 a41 a5; ey ai, a2 )
...... a, | a3
...... " .
an, a1, &, ..., an-2, an-1 7
1
Fig.3. 1

Thus, each circular permutation gives n linear permutations.
But there are x circular permutations.

So, total number of linear permutationsis xn.

But the number of linear permutations of n distinct objectsisn!.

xn = n!

n!

X =T
Xx = (n-1)!

Thetotal number of circular permutations of n distinct objectsis (n — 1)!

Note: In the above theorem anti-clockwise and clockwise order of arrangements
are considered as distinct permutations.
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Difference between clockwise and anti-clockwise arrangements:
Consider the following circular permutations:
a 3 a 3

ay a, a, a,

al al
Fig. 3.2 Fig.3.3
We observe that in both, the order of the circular arrangement is ay, a,, as, as.

In fig (3.2) the order is anti-clockwise, whereas in fig. (3.3) the order is
clockwise.

Thus the number of circular permutation of n things in which clockwise and
anti-clockwise arrangements give rise to different permutationsis (n — 1)!
If there are n things and if the direction is not taken into consideration, the

. o1
number of circular permutationsiss (n - 1)!

Example 3.30:

In how many ways 10 persons may bearrangedina (i) line (ii) circle?
Solution:

(i) The number of ways in which 10 persons can be arranged in a line

=10P10 = 10!
(ii) The number of ways in which 10 persons can be arranged in a circle
=(10-1)'=9

Example 3.31: In how many ways can 7 identical beads be stung into aring?

Solution: Since the arrangement is circular either clockwise arrangement or
anti-clockwise arrangement may be considered.

|
The required number of ways =% 7-1 = % = 360

Example 3.32: In how many ways can 5 gentlemen and 5 ladies sit together at a
round table, so that no two ladies may be together?

Solution:
The number of waysin which 5 gentlemen may be arranged is (5 - 1)! = 4!
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Then the ladies may be arranged among themselvesin 5! ways.
Thus the total number of ways = 4! x 5! =24 x 120 = 2880

Example 3.33: Find the number of ways in which 8 different flowers can be
strung to form a garland so that 4 particular flowers are never separated.

Solution:

Considering 4 particular flowers as one flower, we have five flowers, which
can be strung to form a garland in 4! ways.

But 4 particular flowers can be arranged in 4! ways.
Required number of ways = 4! x 41 =576
EXERCISE 3.3
1. Evauatethefollowing:
(i) sP3 (i) 15P3 (iii) 5Ps5 (iv) 25P20 (V) 9Ps5

2. If fP4=20.4P3, findn.

3. If 10Pr = 5040, find the value of r.

4. 1f 56P(r +6) 54Pr+3) = 30800 : 1, findr

5. If Pmstandsfor mPm , then provethat 1 + 1.P; + 2.P> + 3.P3 + ...
+n.Py=(n+1)!

6. Provethat nPr = (n- 1)Pr+r1. (n- 1)P(r - 1)

7. Three men have 4 coats, 5 waistcoats and 6 caps. In how many ways can
they wear them?

8. How many 4-letter words, with or without meaning, can be formed, out
of the letters of the word, ‘LOGARITHMS, if repetition of letters is not
alowed?

9. How many 3-digit numbers are there, with distinct digits, with each digit
odd?

10.Find the sum of all the numbers that can be formed with the digits
2,3,4,5taken dl at atime.

11.How many different words can be formed with the letters of the word
‘MISSISSIPPI’?

12. (i) How many different words can be formed with letters of the word

‘HARYANA'?
(ii) How many of these begin with H and end with N?

13.How many 4-digit numbers are there, when a digit may be repeated any
number of times?

14.1n how many ways 5 rings of different types can be worn in 4 fingers?
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15.In how many ways can 8 studentsare seated ina (i) line (ii) circle?
16.In how many ways can agarland of 20 similar flowers are made?

3.3 Combinations:

The word combination means selection. Suppose we are asked to make a
selection of any two things from three things a, b and c, the different selections
are ab, bc, ac.

Here thereis no reference to the order in which they are selected.

i.e. ab and ba denote the same selection. These selections are called
combinations.

Definition:

A sdlection of any r things out of n things is called a combination of

nthingsr at atime.

Notation:
The number of all combinations of n objects, taken r at a time is generally

denoted by hCr or C(n,r) or
discussion.

? . We use the symbol C; throughout our

Number of ways of selecting

ThusnCr = objects from n objects

Difference between Permutation and Combination:

1. In a combination only selection is made whereas in a permutation not
only a selection is made but also an arrangement in a definite order is
considered.

i.e. in a combination, the ordering of the selected objects is immaterial

whereas in a permutation, the ordering is essential.

2. Usually the number of permutation exceeds the number of combinations.

3. Each combination corresponds to many permutations.

Combinations of n different thingstaken r at atime;

Theorem 3.5:
The number of all combinations of n distinct objects, taken r at a time is
. _ n!
givenby 1C; = —(n—r) Il

Proof: Let the number of combinations of n distinct objects, takenr at atime be
denoted by hCr.

Each of these combinations contains r things and all these things are
permuted among themselves.
The number of permutations obtained isr !
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Hence from al the n,C; combinations we get hCy x r! permutations.
But this gives al the permutations of n thingstakenr at atimei.e. nPy .

Hence, nCr.rt = nPr
nPr
nCr = N
n! n!
T (n-n)r! : nF)r_(n—r)!
Properties

(DnCh=1 (2QnCo =1 A nCr =nCn-r 0<r<n
Pr oof:

!
(1)  Weknow that nCr = (n _nr.)' r

_ n! n!

Puttingr =n, wehave  nCp = (n-n)in! ~0nl
=1
(2) Puttingr =0, we have
n! n!
0 = oo T T 1
n! n!
(3) Wehave nCn-r = -—- =(n—r)! r!
(n=n)! (n— n—r)!
= nCr

Note: The above property can be restated as follows:
If x and y are non-negative integers such that x + y = n, then nCx = nCy
(4) If nand r are positive integers such that r < n,
then nCr + nCr - 1) = (n+1)Cr
Proof: We have
n! n!

nCr +nC(r - 1)= (n- r')! gt (n_ r_:__l')! -1
__ nl n!
T (n-nlr! * (n-r+21)! (-1
n! n!

- (n=r1)! r{(r -1} * (n—r+1){(n.— NH(r-11}
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n! 1 1
i

:(n—r)!(r—l)! rN n-r+1
n! n-r+1+r

:(n—r)!(r—l)! r(n-r+1)

_ n! n+1

T (-0l (r-1)! r(in-r+1)

_ (n+1){nl}

Tn-r+ D (n-0)lr(r-1)!

___(n+1)!

T (n-r+1)r!

___ (n+1)!

T (n+1-n)tr!

= (n+1)Cr

(5) If nand r are positive integerssuchthat 1 <r <n,
n
then nCr =1 (n-1)Cr - 1)

Pr oof:
!
nCr = —nr)! rl
_ nin-1)!
I (G VR (S [N (]
(n-1)!
[(n-1)- (-] (-2

=7 (n-1Cr-1)

=15

(=]

@)Ifl<sr<n,then n.(n-1)Cr-1)=(n-r+1).nCq-1)
Pr oof:
(n-1)!

Wehave n.n-1Cr-1=n [(n-1)- (-] (- D)
n!
T(-ntr-Dt
(n=r+1n!

:(n—r+1)(n—r)! (r-21)!
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n!
==r ) ST e - o

n!
=(n-r+l) (n-r=1)! (r - 1)

=(n-r+1).nCr -1
(7) For any positive integers x and y,

nCx = nCy X=y or Xx+y=n
Proof: Wehave nCx = nCy
nCx = nCy:nC(n—y) [ nCy:nC(n—y)]
X = y o Xx=n-y
X = y o x+y=n

Note: If nCx=nCy andx#y, thenx+y=n
Example 3.34: Evaluate the following :

5
(i) 6C3 (i) Y sCr
r=1
Solution:
) 6P3 6x5x4
(I) 603_ 3| _1X2X3 _20
. 5
(ii) > 5Cr = 5C1+5C2+5C3+5C4+5Cs
r=1

5+10+10+5+1=31
Example 3.35: If hC4 =nCs, find 12Ch
Solution:
nCa = nCé n=4+6 =10
Now 12Cn = 12C10

12x11
=12C(12-10) =12C2 =75

= 66
Example 3.36: If 15C; @ 15C(y - 1) = 11:5, findr

92



Solution:

15Cr 11
15Cr 115C(r-1)=11:5 m— 5
15!
r'(a5-r)! 1
15! - 5
r-1!'(15-r+21)!
15! Jr=nide-nt 11
rl (15-r)! 15! - 5
r-1D'@a6-n{@as-n1y 11
r(r=21)! (15-r)! -5
16-r 11
r - 5
5(16-r) = 11r 80 = 16r
r=5

Example 3.37: Show that the product of r consecutive integersisdivisible by r!
Solution:
Let ther consecutiveintegersben+1,n+2,n+3,...,n+r
Hence their product= (n+1) (n+2) (n+3) ... (n+r)
_123..n(n+1)(n+2)...(n+r)

123...n
_(n+n)!
- n
their product _ (n+r)!
r! - onir!

= (n+r)Cr Which isan integer.
The product of r consecutive integersis divisible by r!

Example 3.38: Let r and n be positive integers such that 1 < r < n. Then prove
the following :

nCr  n-r+1
nCr-1) =~ r
n!
oG ri(n-r)!
Solution: nCr-1) - ni

(r-121)! (ﬁ -r+1)!
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n! ><(r—l)!(n—r+1)!

“r(n-r) n!
=D n-r+H{(n-nt}
- rr=21!'(n-r)!

_h-r+1
- r
Example 3.39 : If nPr = nP(r + 1) and nCr = nC(r - 1) , find the values of nand r
Solution:
n! n!

nPr = nP(r + 1) n-n - (n—r.— 1)!
1 1
n-nnh-r-1)! ~(n-r-1)!
n-r =1 .. (1)
n! n!
nCr =nC(r - 1) nin-r! ~ -1 (n-r+1)
n! n!
rr-)'n-n!' ~— -0 (h-r+1){(n-n1
11
r n-r+1
n-r+1 =r
n-2r =-1 ...(2
Solving (1) and (2) wegetn=3andr =2
EXERCISE 3.4

1. Evaluate thefollowing:

(i) 10Cs (ii) 200Co8 (iii) 75C75
2. If nC10=nC12, find 23Ch

3. If gCr—-7C3=7Co, findr

4. 1f 16C4 = 16Cr + 2, find [ C2

5. Find nif (i)2.nC3=%) nC2 (i) nC(n - 4)=70

6. If (n+2)C8: (n-2)P4=57:16,findn.
7. 1f 28Cor 1 24C(2r - 4) =225: 11, find r.
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Practical problems on Combinations
Example 3.40: From a group of 15 cricket players, ateam of 11 playersisto be
chosen. In how many ways this can be done?
Solution:
There are 15 players in a group. We have to select 11 players from the
group.
The required number of ways = 15C11

15x14x13x 12
15C11 = 1x2x3x4 = 1365 ways
Example 3.41: How many different teams of 8, consisting of 5 boys and 3 girls
can be made from 25 boys and 10 girls?
Solution:
5 boys out of 25 boys can be selected in 25Cs ways.

3 girlsout of 10 girls can be selected in 10C3 ways.

The required number of teams = 25Cs x 10C3 = 6375600

Example 3.42: How many triangles can be formed by joining the vertices of a
hexagon?
Solution:

There are 6 vertices of a hexagon.

One triangle is formed by selecting a group of 3 vertices from given
6 vertices.

This can be done in gC3 ways.
|
Number of triangles = C3 :% =20

Example 3.43:

A class contains 12 boys and 10 girls. From the class 10 students are to be
chosen for a competition under the condition that atleast 4 boys and atleast
4 girls must be represented. The 2 girls who won the prizes last year should be
included. In how many ways can the selection are made?

Solution:
There are 12 boys and 10 girls. From these we have to select 10 students.

Since two girls who won the prizes last year are to be included in every
selection.
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So, we have to select 8 students from 12 boys and 8 girls, choosing atleast
4 boys and atleast 2 girls. The selection can be formed by choosing

(i) 6boysand2girls
(ii) 5boysand 3girls
(iii) 4 boysand 4 girls
Required number of ways = (12Cg % 8C2) + (12C5 % 8C3) + (12C4 % 8C4)
(924 x 28) + (792 x 56) + (495 x 70)
= 25872 + 44352 + 34650
= 104874
Example 3.44: How many diagonals are there in a polygon?
Solution: A polygon of n sides has n vertices. By joining any two vertices
of apolygon, we obtain either aside or adiagonal of the polygon.
Number of line segments obtained by

joining the verticesof ansided  =Number of ways of selecting 2 out of n
polygon taken two at atime

Out of these lines, n lines are the sides of the polygon.
Number of diagonals of the polygon = g(nz;l) -n
_ nh-3
- 2

Example 3.45 How many different sections of 4 books can be made from 10
different books, if (i) thereisno restriction

(i) two particular books are always selected;

(i) two particular books are never selected?
Solution:

|
(i) The total number of ways of selecting 4 books out of 10 = 1004%06, =210

(i) If two particular books are always selected.
This means two books are selected out of the remaining 8 books

|
Required number of ways = gCp = % =28

(iii) If two particular books are never selected
This means four books are selected out of the remaining 8 books.

|
Required number of ways = gCy = ﬁ =70
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Example 3.46:

In how many ways players for a cricket team can be selected from a
group of 25 players containing 10 batsmen, 8 bowlers, 5 all-rounders and 2
wicket keepers? Assume that the team requires 5 batsmen, 3 all-rounder, 2
bowlers and 1 wicket keeper.

Solution:
The selection of team is divided into 4 phases:
(i) Selection of 5 batsmen out of 10. This can be donein 10Cs ways.
(ii) Selection of 3 al-rounders out of 5. This can be donein 5C3 ways.
(iii)Selection of 2 bowlers out of 8. This can be donein gCo ways.
(iv)Selection of one wicket keeper out of 2. This can be donein 2Cq ways.
The team can be selected in 19Cs x 5C3 % gCo x 2C1 ways
= 252 x 10 x 28 x 2 ways
= 141120 ways

Example 3.47: Out of 18 points in a plane, no three are in the same straight
line except five points which are collinear. How many

(i) straightlines (ii) triangles can be formed by joining them?
Solution:
(i) Number of straight lines formed joining the 18 points,
taking 2 at atime = 18Co =153
Number of straight lines formed by joining the 5 points,
taking 2 at atime=5C> =10
But 5 coallinear points, when joined pairwise give only oneline.
Required number of straight lines=153 - 10+ 1 =144
(i) Number of triangles formed by joining the 18 points,
taken 3 at atime = 18C3 =816
Number of triangles formed by joining the 5 points,
taken 3at atime=5C3=10
But 5 callinear points cannot form atriangle when taken 3 at atime.
Required number of triangles= 816 — 10 = 806
EXERCISE 3.5

1. If there are 12 persons in a party, and if each two of them shake hands
with each other, how many handshakes happen in the party?
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. In how many ways a committee of 5 members can be selected from
6 men and 5 women, consisting of 3 men and 2 women?
. How many triangles can be obtained by joining 12 points, five of, which
are collinear?
. A box contains 5 different red and 6 different white balls. In how many
ways 6 balls be selected so that there are atleast two balls of each colour?
. In how many ways can a cricket team of eleven be chosen out of a batch
of 15 playersif
(i) thereisno restriction on the selection

(ii) aparticular player isaways chosen;

(iii) aparticular player is never chosen?
. A candidate is required to answer 7 questions out of 12 questions which
are divided into two groups, each containing 6 questions. He is not
permitted to attempt more than 5 questions from either group. In how
many ways can he choose the 7 questions.
. There are 10 points in a plane, no three of which are in the same straight
line, excepting 4 points, which are collinear. Find the

(i) the number of straight lines obtained from the pairs of these points
(i) number of triangles that can be formed with the vertices as these

points.

. In how many ways can 21 identica books on Tamil and 19 identica
books on English be placed in a row on a shelf so that two books on
English may not be together?
. From aclass of 25 students, 10 are to be chosen for an excursion party.
There are 3 students who decide that either al of them will join or none
of them will join. In how many ways can they be chosen?

3.4 Mathematical Induction:
Introduction:

The name ‘Mathematical induction’ in the sense in which we have given
here, was first used by the English Mathematician Augustus De-Morgan
(1809 - 1871) in his article on ‘Induction Mathematics' in 1938. However the
originator of the Principle of Induction was Italian Mathematician Francesco
Mau Rolycus (1494 - 1575). The Indian Mathematician Bhaskara (1153 A.D)
had also used traces of ‘Mathematical Induction’ in hiswritings.

“Induction is the process of inferring a general statement from the truth of
particular cases’.
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For example,4=2+2, 6=3+3, 8=3+5, 10=7+3andsoon.

From these cases one may make a genera statement “every even integer
except 2 can be expressed as a sum of two prime numbers. There are hundreds
of particular cases where this is known to be true. But we cannot conclude that
this statement is true unless it is proved. Such a statement inferred from
particular cases is called a conjecture. A conjecture remains a conjecture until it
is proved or disproved.

L et the conjecture be a statement involving natural numbers. Then a method
to prove a general statement after it is known to be true in some particular cases
is the principle of mathematical induction.

Mathematical induction is a principle by which one can conclude that a
statement is true for al positive integers, after proving certain related
propositions.

The Principle of Mathematical Induction:

Corresponding to each positive integer n let there be a statement or
proposition P(n).

If (i) P(1)istrue,

and (ii) P(k+ 1) istrue whenever P(K) istrue,

then P(n) istrue for al positive integersn.

We shall not prove this principle here, but we shall illustrate it by some
examples.

Working rulesfor using principle of mathematical induction:

Step (1) :  Show that the result istruefor n = 1.

Step (2) : Assume the validity of the result for n equal to some
arbitrary but fixed natural number, say k.

Step (3) :  Show that theresult isalso truefor n =k + 1.

Step (4) : Conclude that the result holds for al natural numbers.

Example 3.48: Prove by mathematical induction n2 +niseven.

Solution: Let P(n) denote the statement  “ n2 +niseven”

Step (1):
Putn = 1
n2en = 12+1
= 2, whichiseven
P(1) istrue
Step (2):

Let us assume that the statement be true for n = k
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(i.e) assume P(k) betrue.
(i.e) assume “k° + kis even’ betrue (D)
Step (3):
To prove P(k + 1) istrue.
(i.e) to prove (k + 1)2 +(k+1)iseven
Consider  (k+1)°+(k+1) = K+2k+1+k+1
K2+ 2k + K+ 2
(P +1) +2(k + 1)
an even number + 2(k + 1), from (1)

sum of two even numbers
an even number

P(k + 1) istrue.
Thusif P(K) istrue, then P(k + 1) isaso true.
Step (4):
By the principle of Mathematical induction, P(n) istruefor all n N.
i.,e.n"+nisevenforaln N.
Example 3.49: Prove by Mathematical induction1+2+3+ ...+ n= L n2+ 1 ,

n N

. +1
Solution: Let P(n) denote the statement: “1+2+3+...+n= n n2 K
Putn=1
+
P(1) isthe statement : 1= le—lz
12)
1= 2
=1
P(1) istrue

Now assume that the statement be true for n = k.

(i.e) assume P(k) be true.
. k(k+ 1
(i.e.) assume 1+2+3+...+k= 2 ... (1) betrue
To prove P(k+ 1) istrue
. K+ (k+2) .
(i.,e)toprovel +2+3+ ... +k+ (k+ 1= ﬁ_%_) istrue,

[1+2+3+...+|<]+(|<+1)=K%2 + (k+1)  from(1)
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k(k+1) +2(k+ 1)
B 2
_(k+D) (k+2)
B 2
P(k + 1) istrue.
Thusif P(K) istrue, then P(k + 1) istrue.
By the principle of Mathematical induction, P(n) istruefor all n N

+
1+2+3+...+n=mnz—12 foraln N

Example 3.50: Prove by Mathematical induction
nn+1) (2n+1)
12+22+32+ +n2: n n+162n+1 foraln N

Solution:
13 ”
Let P(n) denote the statement 12 + 22 + 32 +..+ n2 =J—L(—ln n: 162n *1
Putn=1
1(1+1)[2(1) +1
P(l)isthestatement:lzz ( )(_[3 (1) +1]
1(2) (3)
1= 6
1=1
P(1) istrue.
Now assume that the statement be true for n = k.
(i.e) assume P(K) be true.
. + +
(o) 124224374 i@ lli@]) e
To prove: P(k + 1) istrue
(i.e) to prove: 12+22+32+. . .+k2+(k+1)2 = (e D)k +62) (2+3) istrue.

k(k+1) (2k+1)
[12+2%+3%+ . +K] + (k+1)° = kk+162k+1 + (k+ 1)

_ k(k+1) (2k+1) +6(k + 1)
- 6

(k+ 1) [K(2k+ 1) + 6(k + 1)]
- 6

_ (k+1) (2k*+ 7k + 6)

- 6
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12+22+32+ +k2+(k+1)2 = (k+1) (k+62) (2k+3)
Pk + 1) istrue
Thusif P(K) istrue, then P(k + 1) istrue.
By the principle of Mathematical induction, P(n) istrueforal n N
. (n+1) (2n+1)
(i.e) 12+22+...+n2=nn 162n 1 foraln N
Example 3.51: Prove by Mathematical induction
nn+1) (n+2)
12+23+34+ . +nn+1) = NOXDO*2)

3 1
Solution:
Let P(n) denote the statement “1.2+42.3+ 3.4 +...+ n(n + 1)= A
Putn=1
' 1A+ (A+2)
P(1) isthestatement :  1(1+1) = 11 13 1+2
1p = 148
23)
2= 3
2=2
P(1) istrue.

Now assume that the statement be true for n=k.
(i.e.) assume P(k) betrue

: k(k+1) (k+2)
(i.e)assume 1.2+23+34+...+kk+1) = kk+13 k+2 be true

Toprove: P(k+ 1) istrue
i.e. to prove:
12+23+34+ .+ k(k+ 1) + (k+ 1) (k+ ) = KRR (2 3)

Consider 1.2+23+34+ ... +tk(k+1)+(k+1)(k+2
[L2+23+ ... +k(k+1)] +(k+ 1) (k+2)

k(k + 13Hk+2) + (k+1) (k+2)

_ kk+1)(k+2)+3(k+1) (k+2)
- 3

_ (k+1D) (k+2) (k+3)

- 3
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Pk + 1) istrue
Thusif P(K) istrue, P(k + 1) istrue.
By the principle of Mathematical induction, P(n) istruefor all n N.

+1 + 2
12+23+34+ ... +nn+1) = OFL0O+2) 20

Example 3.52: Prove by Mathematical induction 23n - lisdivisible by 7, for
all natural numbersn.

Solution:
Let P(n) denote the statement “2°" — 1 is divisible by 7"
Putn=1
Then P(1) isthe statement : 23(1) -1= 23 -1
= 8-1

7, whichis divisible by 7
P(1) istrue
Now assume that the statement be true for n =k
(i.e.) assume P(K) betrue. (i.e)*“ 23k - lisdivisbleby 7’ betrue

Now to prove P(k + 1) istrue. (i.e) to prove 23 k+1)_ lisdivisibleby 7
Consider 22K _q-%*3
=K B =% g1
=% 8_1+48-8  (add and subtract 8)
-2*-18+8-1
= (23k— 1) 8+ 7=amultipleof 7+ 7
= amultiple of 7
3K+ D) _ 1 isdivisbleby 7

P(k + 1) istrue
Thusif P(K) istrue, then P(k + 1) istrue.
By the principle of Mathematical induction, P(n) istrueforal n N

2 n_ lisdivisible by 7 for all natural numbersn.
Example 3.53: Prove by Mathematical induction that a" - b" is divisible by
(a-b)foraln N
Solution: Let P(n) denote the statement “a” - b" is divisible by a - b,
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Putn=1

Then P(1) is the statement : a -b” = a-bisdivisblebya-b
P(1) istrue.

Now assume that the statement be true for n = k.

(i.e) assume P(K) betrue. (i.e) <~ b¥isdivisible by (a - b) be true.

k k
a-b
a-b - c (say) wherec N
A-b¢ = ca-b)
k _ k
a = b +ca-b) .. (D

Now to prove P(k + 1) istrue. (i.e.) to prove: a k+1_ bk *1 isdivisible

bya-b
Consider ak+1—bk+1 ak.a—bkb

[0+ c@a-b)] a-b“b

ba + ac(a - b) - bb

b(a-b) + ac (a- b)

(a-b) (b + ac) is divisible by (a- b)

P(k + 1) istrue.
By the principle of Mathematical induction, P(n) istrueforal n N

a' - b isdivisblebya-bforaln N
EXERCISE 3.6
Prove the following by the principle of Mathematical Induction.
(1) 2n+1)(2n-1)isanodd numberforaln N
(2) 2+4+6+8+...+2n=n(n+1)
(3) 1+3+5+..+(@2n-1)=n°

4 1+4+7+...+(3n—2)=m%2

(5) 4+8+12+...+4n=2n(n+1)
n? (n+ 1)?
(6) 13+23+33+...+n3=%

1 1 1 1 1
Mz+p+@+tx3=1%
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(8) Inthearithmetic progressiona, a+d,a+ 2d, ...

the nth termisa+ (n-1)d

© 52" - 1isdivisbleby 24foraln N

10) 102" L+ 1isdivisibleby 11.

(11) n(n+1) (n+ 2)isdivisible by 6 where nisanatural number.
(12 Thesum&zn3+3n2+5n+3isdivisib|eby3foral|n N
(13) 7°"+ 16n - 1isdivisible by 64

(14) 2">nfordln N

3.5 Binomial Theorem:
Introduction:
A BINOMIAL is an algebraic expression of two terms which are
connected by the operation *+’ (or) ‘-’
For example, X+ 2y, X -y, x3+4y, a+b etc.. are binomids.

Expansion of Binomialswith positive Integral Index:

We have aready learnt how to multiply a binomial by itself. Finding
squares and cubes of a binomial by actual multiplication is not difficult.

But the process of finding the expansion of binomials with higher powers
such as (x + a)lo, (x+ a)17, (x+a) 25 etc becomes more difficult. Therefore we
look for a general formula which will help us in finding the expansion of
binomials with higher powers.

We know that
(x+a) 1:x +a=1Cq xlaO +1C1 xVat

(x+ a)2 =x2 + 2ax + a2 = 2C0x2a0 + zclxlal + 2C2x0a2

(x+ a)3 :x3 + 3x2a + 3xa2 + a3 = 3Cox3a0 + 3C1x2a1 + 3C2xla2 + 3C3x0a3

(x+a)4:x4+4x3+6x2a2+4x513+514:400x4<310+4C1x3a1+4ngzaz+4C:3x1:'313+4C4x0a4
Forn=1, 2, 3, 4 the expansion of (x + a)n has been expressed in avery
systematic manner in terms of combinatorial coefficients. The above
expressions suggest the conjecture that (x + a)n should be expressible in the
form,

105



(x+a)" =nCo 12l + nCix" ~ e 4 nCn 1 xta™ "L nenxla”
In fact, this conjecture is proved to be true and we establish it by using
the principle of mathematical induction.

Theorem 3.6: (Binomial theorem for a Positive Integral Index)

Statement: For any natural number n

n_0 n—lal+

(x+a)" =nCox"a  +nCix ra

a+..

+nCp- 1 xa? "5 nensla”

oo+ NCrx""

Pr oof:
We shall prove the theorem by the principle of mathematical induction.
Let P(n) denote the statement :
x+a)" = nCoxna0+ e “lal e+ ncrx A
+nCpe 1 a” " e nenyZa”

Step (1) :

Putn=1
Then P(1) isthe statement : (x + a)1 = e’ + ey xt T Lat
X+a=x+a
P(1) istrue
Step (2):
Now assume that the statement be true for n =k
(i.e) assume P(k) be true.
(x+ a)k =kCoxk ao+k01x k=11, kCp x K224 4 kCr x KTy 4 KkCk o
betrue ... (1)
Step (3):
Now to prove P(k + 1) istrue
(i.e) Toprove

(k+1) -1.1 (k+1)-2 2

K+1 k+1
(x+a) = (k+1)Cox + (k+ 1)C1X a +(k +1)Cox a+..

k+1)-r_r k+1
+(k+1)Crx( ) a+..+k+1)Ck+1a
Consider  (x+a)<* 1 = (x+a)(x+a)

= [kCoxk+ kClxk “Lly kCy xK ™22

+kCr KT+ kaak] (x+ a)

+ .. +kC(r_1)xk ~r=1 a(r_l)
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= [kCoxk+1+kClxka1+kngk 124 +kCr_1xk_r+2ar_l
+ kCrxk_ Lt kaxak]
+[kCoxka+ kC1xk_ 12 +kngk_2a3+ o kCr_lxk Sre Ly
+kCr KT +kaak+]]
x+a Tl = ke T4 (ke + keg) Xa + (kCp + ke x K T L a?
b (G ARG o)X T sk T
We know that kCr+kC|’_1 = (k+ ]_)Cr
Put r=1,23, ... etc.
kC1+kCp = (k+1)C1
kC2 +kC1 = (k+1)C2
kCr + kCy-q1 = (k+1)Cr forl<r<k
kCo=1 = k+1Co
kCk =1 = k+1)Ck+1)
(2) becomes
k+1 k+1 k k-12
(x+a) =  k+1CoX “T+k+pCixa+tk+1Cox a
k+ 1-
+...+ k+1Cr X rar+...+(k+1)C(k+1)ak+1

P(k + 1) istrue
Thusif P(K) istrue, P(k + 1) istrue.
By the principle of mathematical induction P(n) istrueforall n N

-11

(x+a)" =nC0xna0+nC1xn a +..+nCrx"Ta+ ...

#nCn-1xta" "+ nen Qa" foraln N
Some obser vations:

1. Intheexpansion

(x+a)" :nCoxna0+nC1xn R e Ta

+nCp-1 xta" "L nen xoan, the general termisnC, X"~ " a'.

Since thisis nothing but the (r + 1)th term, it isdenoted by Ty 4+ 1
ie Try1 = nCx" 4.

2. The(n+ 1)th termis Th+1 = nChX' "a"=nCpa", thelast term.

Thusthere are (n + 1) termsin the expansion of (x + a)"
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. The degree of x in each term decreases while that of “a’ increases such
that the sum of the powersin each term isequal to n.

We can write (x + a)" = g nCx" " 'd
r=0

. nCp, nCq, nCy, ..., nCy, ... , nCp are caled binomia coefficients. They

are also writtenasCg, C1,Co, ..., Ch,

. From the relation nC; = nCp, -  , we see that the coefficients of terms

equidistant from the beginning and the end are equal.

. The binomia coefficients of the various terms of the expansion of

(x+ a)nfor n=1,2, 3, ... formapattern.

Binomials Binomial coefficients
(x+a)° 1
(x+ a)1 1 1
(x+2)° 1 2 1
(x+a)° 1 3 3 1
(x+a) 1 4 6 4 1
(x+a)° 1 5 10 10 5 1

This arrangement of the binomia coefficients is known as Pascal’s

triangle after the French mathematician Blaise Pascal (1623 — 1662). The
numbers in any row can be obtained by the following rule. The first and last
numbers are 1 each. The other numbers are obtained by adding the left and right
numbersin the previous row.

1, 1+4=5 4+6=10, 6+4=10, 4+1=5 1

Some Particular Expansions:

(x+ a)n =nCop xna0 + nClxn

In the expansion

-11 -
a +.+nCrx"""a +...

+nChe 1 a" " e nena ... (1)

. Ifweput —a intheplaceof a weget
(x-a)"=nCox" - nCy x" _1al+nC2xn_2 a’-..

+-0'nex" T+ L+ " e, &
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We note that the signs of the terms are positive and negative
aternatively.

2. Ifweput 1 intheplaceof a in (1) we get,
(l+x)n = 1+nC1x+nC2x2+ oLt nCrxr + ... +nCnxn ... (2
3. Ifweput -x intheplaceof x in(2) we get
(l—x)n: 1-nCyix+ nC2x2— o+ (- 1)rnCrxr +...+(- 1)n nCnxn
Middle Term:

The number of terms in the expansion of (x + a)n depends upon the index n.
Theindex is either even (or) odd. Let us find the middle terms.
Case(i) : niseven

The number of termsin the expansion is (n + 1), which is odd.

Therefore, thereis only one middle term and it is given by Tg +1
Case(ii) : nisodd

The number of termsin the expansion is (n + 1), which is even.

Therefore, there are two middle terms and they are given by Tn+1 and

2

Tn+3

2
Particular Terms:

Sometimes a particular term satisfying certain conditions is required in

the binomial expansion of (x + a)n. This can be done by expanding (x + a)n and
then locating the required term. Generally this becomes a tedious task, when the

index n is large. In such cases, we begin by evaluating the genera term
Tr+1 and then finding the values of r by assuming T,+1 to be the required term.

To get the term independent of x, we put the power of x equal to zero and

get the value of r for which the term is independent of x. Putting this value of
r in Tr4+1, we get the term independent of x.

4
Example 3.54:Find the expansion of : (i) (2x + 3y)5 (i) 2 - 3

X
Solution:
(i) (2x+3y)°=5C0 (29° (3)° +5C1 (20 (3y)" +5C2 (29° (3y)°
+5C3 (297 (3y)° + 5C4 (20 3y)" + 505 (29° (3y)°
= 1(32)x° (1) + 5(16x) (3y) + 10(8x) (%)
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+10(44) (27y°) + 5(20) 8Ly + (1) (1) (243y°)

= 32> + 240y + 72060y + 1080x%y° + 810y + 243y°

4 0 1

y 3 24 3 2 3
(i) 2¢-% =4C02)" -% +aC1(>)® -
2

3 4

22 21 3
+4C2 (2X7) -3 +4C3(2X)" - X
- 0 16¢W +4e5) -2 + oy 3 +ad) -

33 2.0
x t4Ca(2)" -

f@ &

- 168 - 96C + 2162 - 22 + &
X

Example 3.55: Using binomial theorem, find the 7th power of 11.
Solution:

117 = (1+10)’
7.0 6,1 5. 2 4, 3 3. 4
=7Co (1) (10)"+7C1 (1)" (100" +7C2(1)"(10)"+7C3(1) (10)"+7C4 (1) "(10)
2,5 1, .6 0, 7
+7C5(1)" (10)” + 7Cg (1) (200" + 7C7 (1)~ (10)
_ /x6, 2 7x6x5 3 7x6x5 4 7x6 5 6 .4/
= L7045 107+ o 2107+ o 2 107+ 107+ 7(10)° + 10

=1+ 70+ 2100 + 35000 + 350000 + 2100000 + 7000000 + 10000000
= 19487171

17
) - . . 1
Example 3.56: Find the coefficient of x5 in the expansion of x+—3
X

Solution:
1 Y
Inthe expansionof x+-—3 ,thegenera termis
X

17-r 1"
Tr+1=17Cr X 3
17-4r
= 17GrX
Let T, + 1 bethe term containing x5
then, 17-4r =5 r =3
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Tre1=T3+1

= 17Caxt T4 —ggox®

coefficient of x5 = 680

10
Example 3.57: Find the constant term in the expansion of /X - —22
X

Solution:

5 10
In the expansion of /x -3
X

r
-r -2
Tz 100 ()T 2F

10-r r 10-r
-2 r
10Crx 2 KX—Zr)—=1oCr(-2) x 2

-2r

10-5r
10Cr (-2) x 2
Let T, + 1 bethe constant term
10-5r

Then, 2 =0 r=2
10-52)
The constant term = 10C2(-2)"x 2
= M X 4 x x0
1x2
= 180

Example3.58: If n N, in the expansion of (1 + x)n prove the following :
(i) Sum of the binomial coefficients = "
(ii) Sum of the coefficients of odd terms = Sum of the coefficients of even
terms=2""1
Solution: The coefficients nCg, nCq, nCo, ... , nCy in the expansion of

a+ x)n are called the binomial coefficients, we write them as Cp, C1, Co, ... Cp,
1+%)" = Co+Cix+Cpl+.. +CX + ... +CpxX"

Itisanidentity inx and so it istruefor all values of x.
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Putting x = 1 we get
n

2 = Cg+Cp1+Co+..+Cp .. (1)
putx = -1
0 = Cp-C1+Co-Cz+...(-1)"Cn
Co+tCo+Cyg+...= C1+C3+Cx+...
It is enough to prove that
Co+Cp+Cq+.. =Cp+Cg+Cg+..=2""1
Let Co+tCo+Cyg+... =C1+C3+Cs+...=k ... (2
From(1), Co+C1+Co+... +Cp ="
2k =2" From (2)
K =2n—l
From (2), Co+Cp+Cq+.. =Cp+Cg+Cg+..=2""1
EXERCISE 3.7
(1) Expand the following by using binomial theorem
(i) (3a+ 5b)° (i) (a- 2b)° (iif) (2x - 3)°
() x+y ™ We+2d® i) (R

)

©)
(4)
®)

Evaluate the following:

OW2+)° +(2-2° @ EE+)” -(+3-1)°
(i) (1+5)° +(1-45)°  (v) (2/a+3)° +(2/a-3)°
W @2+\3)" - (2-+3)"

Using Binomial theorem find the value of (101)° and (99)°,

Using Binomial theorem find the value of (0.998)°.
Find the middle term in the expansion of

28 16
(i) 3-S5 iy 2+%
a 16 13 2 17
(i) 3~ /x (iv) (x-2y) (v) x+32
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(6)

()
©)

9)

(10)

Show that the middle term of

n n
1.357...(2n-12 x
(i) (1+xis (n! )

2n
(i) x+ %( . 135, ..r.ﬂ(zn 1)

17 (-p".1357...(2n-1
(i) x-5% s Al 2

11
Find the coefficient of x5 in the expansion of x - )—1(

Find the term independent of x (constant term) in the expansion of
12 2 9 17

.21 X3 b

(i) 2xX"+5 (i) 3 "o (iii) 9x——2CX

In the expansion of (1 + x)zo, the coefficient of rth and (r + 1)th terms are
intheratio 1: 6, find thevalue of r.

If the coefficients of 5th, 6th and 7th terms in the expansion of (1 + x)n
arein A.P., find n.
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4. SEQUENCE AND SERIES

4.1 Introduction

We hear statements such as “a sequence of events’, “a series of tests before
the board examination”, “a cricket test match series’. In all these statements the
words “sequence” and “series’ are used in the same sense. They are used to
suggest a succession of things or events arranged in some order. In mathematics
these words have special technical meanings. The word ‘ sequence’ isused asin
the common use of the term to convey the idea of a set of thingsin order, but
the word “series’ isused in adifferent sense.

L et us consider the following example.

A rabbit and a frog are jumping on the same direction. When they started
they were one metre apart. The rabbit is jumping on the frog in order to catch it.
At the same time the frog is jumping forward half of the earlier distance to
avoid the catch. The jJumping processis going on. Can the rabbit catch the frog?

z g = 5

: - : Z

= £ ] =

i ] = [T

[—

R a 1 as 1
| F| 2 R:{(—DF_\ 8 Rﬁ
® . o *——e--
: R, L F, % REDF,

Fig. 4.1

Let a1, ap, a3, a4 ... be the distances between the rabbit and the frog at the
first, second, third, fourth instants etc,. The distance between the rabbit and the
frog at the first instant is 1 metre.

a2 1 ol i 111
1 = ’ 2 = 1 3 = - ’ - -

2 4752 8 753
Here a;, ap, ag ... form a sequence. There is a pattern behind the

arrangement of a3, ap, ag ... Now a, hasthe meaning,
(i.e) an isthe distance between the rabbit and the frog at the M instant

Further a, = ﬁ . When a, becomes 0 the rabbit will catch the frog.
2

i.e. the distance between the frog and the rabbit is zero whenn — o

114



At this stage the rabbit will catch the frog.

This example suggests that for each natural number there is a unique real
number.

i.e 1 2 3 n
l ) ) l
al ap as dn
1 B A A N 1L
27 ol 4 92 on-1
Consider the following list of numbers
(@ 8, 15, 22, 29, ...... (b) 6, 18, 54, 162, ......

In the list (a) the first number is 8, the 2" number is 15, the 3 number is
22, and so on. Each number in the list is obtained by adding 7 to the previous
number.

In the list (b) the first number is 6, the 2™ number is 18, the 3 number is
54 etc. Each number in the list is obtained by multiplying the previous number
by 3.

In these examples we observe the following:

(i) A rule by which the elements are written (pattern).

(ii) An ordering among the elements (order).

Thus a sequence means an arrangement of numbers in a definite order
according to somerule.

4.2 Sequence

A sequence is a function from the set of natural numbers to the set of red
numbers.

If the sequence is denoted by the letter a, then theimage of n N under
the sequence aisa(n) = ap.

Since the domain for every sequence is the set of natural numbers, the
images of 1, 2, 3, ... n ... under the sequence a are denoted by ay, a, a3 ... ap,
... respectively. Hereay, ap, az ... an, ... form the sequence.

“A sequenceis represented by itsrange’.

Recursive formula

A sequence may be described by specifying its first few terms and a
formula to determine the other terms of the sequence in terms of its preceding
terms. Such aformulais called as recursive formula.
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For example, 1, 4,5, 9, 14, ..., is a sequence because each term (except the
first two) is obtained by taking the sum of preceding two terms. The
corresponding recursive formulaisan+2=an+an+1,N=1 herea;=1, ay=4
Terms of a sequence:

The various numbers occurring in a sequence are caled its terms. We
denote the terms of a sequence by aj, a», as, ... , an, ... , the subscript denote
the position of the term. The n" term is called the general term of the sequence.
For example, inthesequencel, 3, 5, 7, ... 2n-1, ...

the 1% termiis 1, 2" termis 3 ... ... andntermis2n-1

Consider the following electrical circuit in which the resistors are indicated
with saw-toothed lines.

VC) ? ?|3 %5 §2 |3

If al the resistors in the circuit are 1 ohm with a current of 1 ampere then
the voltage acrosstheresistorsare 1, 1, 2, 3, 5, 8, 13, 21, ...

In this sequence there is no fixed pattern. But we can generate the terms of
the sequence recursively using a relation. Every number after the second is
obtained by the sum of the previous two terms.

i.e. Vi=1
V2:l
V3 =Vo+V;
V4 =V3+V>
V5 =Vy+V3

Vhn=Vp-1+Vp-2
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Thus the above sequence is given by the rule:
Vi=1
v2=1
Vn=Vn-1+Vn-2 ; n=23
This sequence is called Fibonacci sequence. The numbers occurring in this

sequence are called Fibonacci numbers named after the Italian Mathematician
Leonardo Fibonacci.

Example 4.1:
Find the 71" term of the sequence whose n termis (- 2)" 1 %l
Solution:
Given an=(-1"*1 %L
substituting n =7, weget
=t 3 =3
4.3 Series

For a finite sequence 1, 3, 5, 7, 9 the familiar operation of addition gives
the symbol 1 + 3 + 5+ 7 + 9 which has the value 25.

If we consider the infinite sequence 1, 3, 5, 7, ... then the symbol
1+3+5+7+... has no definite value, because when we add more and more
terms the value steadily increases. 1 + 3+ 5+ 7 + 9 + ... is called an infinite
series. Thus a seriesis abtained by adding the terms of a sequence.

If a;, ap, ag, ... an ... isaninfinitesequencethena; +ax + ... +ap+ ... is

(o]
called aninfinite series. Itisalsodenoted by Y ax
k=1
If Sy=a; +ax+ ... + ag then S, is called the nth partial sum of the series

(0]
> &
k=1
[oe)
Example 4.2 Find the n" partial sum of theseries 5
n=1 2
Solution:
1 1 1
Sn = ; +? + ... +?

117



1 1 1 1
andSnJ,lzg +? +..+, +2n+1

1
$H1=&+§ﬁi (1)

Also we canwrite S, + 1 as

1.1 1. 1
S1"']-_2].-’-224-' +2n 2n+1
I S S S |
_2 2 22 . 2n
I S S S &
2 2 92 © T oh
1
Sne1=3 [1+5] e
1 1
From () and (2) Sn+ s =5 [1+S]
1 _
ZSn+2n =1+,
1
&=l-§
Note: This can be obtained by using the idea of geometric series also. We know
a(l-r"

that the sum to n terms of a geometric seriesis S, =

1 1
Here =5, n=n, r=§(<1)

(-1

1 1n
2 1- 3 1
Sﬂ = l =1- ?
1-3
EXERCISE 4.1

(1) Writethefirst 5 terms of each of the following sequences:

2
()an=(-1" " 1sn*? aoan:ﬂm—i@- (iii) an = - 11n + 10

4
. n+1 1-(-n"
V) an=p13 Wa=""5 1t (an=5
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(2) Find theindicated terms of the following sequences whose nM term is

. 1 .. nm
(an=2+y ; a5, a7 (iian=cos &> ; a4, as
2
(n+1) . _
(ian=""7" a7, a0 (Va=(-1)""12""" a5, ag

(3) Findthefirst 6 terms of the sequence whose general termis
n-1 if nisodd

an= n?+1 e
2 if niseven

(4) Writethefirst five terms of the sequence given by
lap=ax=2, an=ap-1-1, n>2
(iDa;=1, ax=2,ap=ap-1+ap-2,n>2
(iia; =1, ah=napn-1,n=2
((Viapg=a2=1, an=2an-1+3an-2,n>2

(0]

(5) Findthe n'" partial sum of the series ¥

an
n=13

o0
(6) Findthe sum of first ntermsof the series 3 5"
n=1

0
(7) Find the sum of 101" terms to 200" term of the series >

n=1
4.4 Some special types of sequences and their series
(1) Arithmetic progression:

An arithmetic progression (abbreviated as A.P) is a sequence of humbersin
which each term, except the first, is obtained by adding a fixed number to the
immediately preceding term. This fixed number is called the common
difference, which is generally denoted by d.

For example, 1, 3,5, 7, ... isan A.P with common difference 2.

(2) Arithmetic series:
The serieswhose terms arein A.Pis called an arithmetic series.
For example, 1 +3+5+ 7+ ... isan arithmetic series.

2"
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(3) Geometric progression

A geometric progression (abbreviated as G.P.) is a sequence of numbersin
which the first term is non-zero and each term, except the first is obtained by
multiplying the term immediately preceeding it by a fixed non-zero number.

Thisfixed number is called the common ratio and it is denoted by the letter ‘r’.
2

Thegeneral formof aG.P. is a, ar,ar, ..., withaz0andr #0, the
firsttermis‘a’
(4) Geometric series:
2 n-1

The seriesa+ ar + ar“ + ... + ar + ... is called a geometric series
because the terms of the series are in G.P. Note that the geometric seriesisfinite
or infinite according as the corresponding G.P. consists of finite (or) infinite
number of terms.

(5) Harmonic progression:

A sequence of non-zero numbers is said to be in harmonic progression
(abbreviated as H.P.) if their reciprocalsarein A.P.

1 1

The general form of H.P is 1

a' at+d’ a+2d -+ whereazO.
th . 1
n termofH.P.|sTn=m
111 . . . .
For example the sequences 1,§,§,§, ... isaH.P., sincetheir reciprocals

1,5,9 13, ... aeinA.P.

Note: Thereis no general formula for the sum to n terms of a H.P. as we have
for A.P. and G.P.

Example 4.3 If the 5™ and 12" terms of a H.P. are 12 and 5 respectively, find
the 15" term.

Solution:
1
T”_a+(n—1)d

- _ 1 1 _
Given Tg =12 a+t(G-1d =12 a+4d‘12
a+4d:1—12 .. (D

1 1

and T12—5 a+(12_1)d - 5 a+11d —5
a+11d=% .. (2
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;
1 1
D a+4—0 =1
LA 1 1 4
arso ~ 12 a=72 T 60
_1
=750
Tue = 1 ~ 1
15 — _ =
a+(15- 1)d %”4)(6_10
_1 _60
=15 ~ 15
60
T15:4

4.5 M eans of Progressions
4.5.1 Arithmetic mean
A is called the arithmetic mean of the numbers a and b if and only if
a, A, barein A.P. If A isthe A.M betweenaand bthena, A, barein A.P
A-a=b-A
2A =a+b
at+h
A="7

A1, Ag, ..., Ap are caled n arithmetic means between two given numbers
aandbif andonly if a, A1, Ao, ... Ap, barein A.P.
Example 4.4 : Find the n arithmetic means between a and b and find their sum.
Solution:
Let Aq, Ao, ..., An bethe n A.Ms between a and b. Then by the definition
of AMs a,Aq, Ao, ..., An,bareinA.P
Let the common difference be d.
Ai=a+d, Ap=a+2d,Az3=a+3d,..., Ap=a+ndandb=a+ (n+ 1)d

(n+1)d=b-a
b-a
d_n+l
_ b-a __ 2(b-a __ nb-3a)
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Sum of n A.Msbetweenaand bis

b-a 2(b-a nb-a
Ar+Ar+ ... +An= atyyy *t a+—(n+—12 +...+ a+in+—12
b-a
:na+§ml[1+2+...+n]
_ (b-a) n(n+1) _ n(b - a)
-na+(n+1). 2 = na+—
_2natnb-na _natnb  a+b
= 2 =72 "/

Example 4.5: Prove that the sum of n arithmetic means between two numbersis
n timesthe single A.M between them
Solution:

Let Aq, Ay, ..., Apbethen A.Msbetween a and b.

From the example (4.4)

+
Ai+Ar+Az3+...+Ap=n a2b =nx (A.M between aand b)

= n (single A.M between a and b)
Example 4.6: Insert four A.Ms between - 1 and 14.
Solution:
Let A1, Ap, Az, Az bethefour A.Ms between — 1 and 14.
By the definition — 1, A1, Ao, Az, A4, 14 arein A.P. Let d be the common
difference.
Ai=-1+d,;A2=-1+2d;A3=-1+3d,; A4=-1+4d; 14 = -1+5d
d=3
A1=-1+3=2;Ar=-1+2x3=5;A3=-1+3x3=8; A4=-1+12=11
Thefour AMsare2, 5,8 and 11.
4.5.2 Geometric Mean

G is caled the geometric mean of the numbers a and b if and only if
a, G, barein G.P.

G_b_
a -G '
G’=ab

G = z+[ab
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Note:
(1) If aandbarepositivethen G = ++/ab
(2) If aand b are negativethen G = -+[ab

() If a and b are opposite sign then their G.M is not real and it is
discarded since we are dealing with real sequences.

i.e. If aand b are opposite in signs, then G.M between them does not exist.

Example 4.7: Find n geometric means between two given numbers a and b and
find their product.

Solution:
Let Gy, Gy, ..., G be n geometric means between a and b.
By definition a, Gy, Go, ..., Gy, barein G.P. Let r be the common ratio.
ThenGy=ar, Gy=ar? ...,Gp=ar"andb=ar"*?1

b b L
n+l1_ B _Dbn+1
"= a = a
b ! b i b .
Gy = aan+1, (32:35 n+1 Gn=agl n+1
The product is
1 2 n

G1.6G2.G3.Gpy = ag n+1 .ag n+1 ag n+1

1+2+...+n

b
- n B n+1
= a a
nin+1) n
- P2m+1n _ b2
- a - a
n
= (ab)?
Example 4.8: Find 5 geometric means between 576 and 9.

Solution:
Let G, Gy, G3, Gy, G be5 G.Mshetweena=576andb=9
Let the common ratio ber

Gy = 5761, Gp = 57612, G3 = 576r° , G4 = 576r*, Ggs=576r°, 9=576r°
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9 9 ll
6_5_ =2 6-1656
1

1
Gy=576r=576x5 =288  Gp

576r2 = 576 x %1 =144

576r* = 576 x 1—16 =36

1
Gg=576r°=576x5 =72 G4

Gs = 576r° =576 x3—12 =18

Hence 288, 144, 72, 36, 18 are the required G.Ms between 576 and 9.
Example 4.9: If b isthe AM of aand c (a # ¢) and (b - a) is the G.M of
aand c-a, showthata:b: c=1:3:5
Solution:

Givenbisthe A.M of aand c

a, b, carein A.P. Let thecommon difference bbed
b=a+d .. (D
cza+2d ...(2

Given (b - a) isthe G.M of aand (c - a)
(b-a)? = a(c - a)

d? = a(2d) From (1) and (2)
d=2a [$d#0]

b=a+d c=a+2d

b=a+2a c=a+2(2a)

[b=3a] [c = 5al

a:b:c=a:3a:ba
=1:3:5
4.5.3 Harmonic mean
H is called the harmonic mean betweenaand b if a, H, barein H.P

. 1 1 1 )
If a, H, barein H.Pthen 2 H'b arein A.P

(ORI
Tl

1_a'b 2 _
H™ 2 ' H T

+

Q|
ol
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_2ab
“a+b

H

ThisH issingle H.M betweenaand b

Definition:
H1, Hy, ... H, are called n harmonic means between a and b if a, Hq, Ho,
... Hy, bareinH.P.

Relation between A.M., G.M. and H.M.
Example 4.10: If a, b are two different positive numbers then prove that
iH)AM.,GM,HM.aeinG.P. (ii)AM>GM>HM

Pr oof:
2ab
AM. = ;. G.M. —\/ab ;. HM. = a+b

2
GM iJab  2/ab
a+b

a+b

(i) AM = =3+D (D
2
2ab
HM a+b _2Jab .
GM = Jab _ a+b - (2)
From (1) and (2)
GM _HM
AM ~ GM
AM, GM, HM arein G.P
(ii)A.M—G.M:%b ~Jab :M
2
a-4/b
:@ >0 fa>0;b>0;a#b
AM > GM .. (D)

2ab
GM-HM =+fab -

_\ab(a+bh)-2ab _yab[a+b-2yab]

a+b a+b
2
_+/ab (y/a-Jb)
= a+h >0
GM >H.M ..
From (1) and (2) AM.>GM>HM
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)

©)

(4)

(®)

(6)

(7)

(8)

9)

(10)

EXERCISE 4.2
(i) Find five arithmetic means between 1 and 19
(ii) Find six arithmetic means between 3 and 17
Find the single A.M between
(i) 7and 13 (iil)5and -3 (i) (p+q) and(p-0q)
If bisthe G.M of aand cand xisthe A.M of aand band y isthe A.M

of band c, provethat%1 +§ =2

The first and second terms of a H.P are% and% respectively, find the

9" term.

b+a N b+c _ 5

b-a b-c ™

The difference between two positive numbers is 18, and 4 times their
G.M isequal to 5 times their H.M. Find the numbers.

If the A.M between two numbersis 1, prove that their H.M isthe square
of their G.M.

If a, b, carein H.P,, provethat

If a, b, carein A.P. and a, mb, c are in G.P then prove that a, nPb, c are
inH.P

If the p and ¢ terms of a H.P are q and p respectively, show that
(pq)th termis 1.

Three numbers form a H.P. The sum of the numbersis 11 and the sum
of thereciprocalsis one. Find the numbers.

4.6 Some special typesof series
4.6.1 Binomial series

Binomial Theorem for a Rational | ndex:

In the previous chapter we have already seen the Binomial expansion for a
positive integral index n. (power is a positive integer)

(x+a)"=x"+nCyx

N=lalincox" 22 +..+nCx" " "a + ... +nCyd"

A particular formis

(1+X)"=1+mx+— 5

(n-1) (n-1)(n-2)
nn X2+nn 3!n X3+. n

.t X
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When n is a positive integer the number of terms in the expansion is (n+1)
and so the seriesis afinite series. But when it is not a positive integer, the series
does not terminate and it is an infinite series.

Theorem (without proof)
For any rational number n other than positive integer

nn-1) > nn-1)(n-2) 3
12 X+ 123 X+ .

L+x"=1+nx+

provided | x| <.
Here we require the condition that | x | should be less than 1.
To seethis, put x = 1 and n = - 1 in the above formulafor (1 + x)"

The left side of theformula = (1 + 1)” 1:% ,
whiletherightside =1+ (-1) (1) +£_—1)%_—2) 12+ ...
=1-1+1-1+..
Thus the two sides are not equal. Thisis because, x = 1 doesn’t satisfy | x | < 1.

This extra condition | X | < 1 isunnecessary, if nisapositive integer.

Differences between the Binomial theorem for a positive integral index and
for arational index:

1. Ifn N, then (1 + X)" is defined for all values of x and if n is a
rational number other than the natural number, then (1 + x)" is defined
only when | x| <.

2. Ifn N, then the expansion of (1 + X)" contains only n + 1 terms. If
nis arational number other than natural number, then the expansion
of (1 + x)" contains infinitely many terms.

Some particular expansions
We know that , when nisarational index,

(L+x"=1+nx+ n(nZI b 2, n0- 1%!(n —2) 3, (1)
Replacing x by — x, we get

(1-x"=1-nx+ n(n2!— 1) X2 - n(n - 132!(n = 2) X (2
Replacing n by — n in (1) we get

(A+XM=1-nx+ n(an!r Do nn+ 1%!(n *2) By (3)
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Replacing x by — xin (3), we get
n(nz-;- 1) X2+n(n+1§!(n+2) By

1-X"=1+nx+

(4)
Note:
(1) If the exponent is negative then the value of the factors in the
numerators are increasing uniformly by 1
(2) If the exponent is positive then the value of the factors in the
numerators are decreasing uniformly by 1
(3) If thesigns of x and n are same then all the terms in the expansion are
positive.
(4) If thesignsof x and n are different, then the terms aternate in sign
Special cases
1 (1+x)_1 = 1-X+X -+ ..
2. (1—x)_1 = 1HX+HXHXCH
3. 1+X72=1-2x+3C-4C+ ...
4, (1—x)‘2 = 14+2X+3C+ACH+ ...
General term:
For a rational number nand | x| <1, we have

nn-1) nn-1(n-2)
15 X+ 12.3 Xt

1+x"= 1+nx+

In this expansion
First teemTq = Tg+1=1

SecondtermTQ:TlJrl:nx:% Xt
. -1
Thirdterm T3 = To 41 = ﬂ(q_zl X
_nn-1)(n-2) 3

Fourthterm T4 =T34+ = 123 X" etc.
-HD(n-2)...(n-(r-1
(r + l)th term : Tr +1 - n(n ) (nl 2‘)?’ (rn (r )) XI’

The genera termis

nn-H(n-2)..rfactors , nn-1H)(n-2)....n-r+1) ,
Tre1= r X = rl X

Example 4.11: Write the first four termsin the expansions of

(i) (1L +4x)~° where|x|<%1 (i) (1-x) "% where|x|<|
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Solution: (i) |4x|:4|x|<4%1 =1 [4x|<1

Q+4x) 5 can be expanded by Binomial theorem.

=1 (5)(4><)+£—M—15 (a2~ Q631 6+2) 51;35” @3+ ...

@a+ 4x)'
= 1 - 20x + 15(16%%) - 35(64°) + ...
= 1 - 20x + 240x% - 2240 + ...
@iy @a- xz)_ 4 can be expanded by Binomial theorem since | X | <1
EPPPNNCICES OIS LS AN

:1+4x2+10x +20x + ...

Example 4.12: Find the expansion of 1 )4 where |x| < 2 upto the fourth term.

(2+x
Solution:
-4
- -4 _ 54 X X
(2+X)4—(2+x) =2 1+5 [x|<2 > <1
_ 1 1- () 5 4 (4+1 x2 (4)(4+1)(4+2) x
=16 2 712 2 123 2
1 wwx _@E@e°,
=16 1- 2+ 4 123 8°
1 x5 3
“16 ~ 8 32X2 :«*,zx+

1-x n+1 1-x2
Example4.13:Show that (1+x)"=2" 1-n 75 +n 5 T35 * .-

. 1-x
Solution: Lety =7+
1 _
RHS=2" 1- ny+—(n—2y2+... =M [1+y] "
1-x —N l+x+1-x~—"N
— nN — nN
=2 1+1+x =2 1+x
2 ~N 1+x N
— N — 0N _ n _
=2" I =2" 5= =(1+x" = LHS
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Approximation by using Binomial series

Example 4.14: Find the value of 3\/126 correct to two decimal places.
Solution:

1 1
326 = (126)3 = (125+ 1)3
s
_ 1 3. 3 13
= 125 1+ 3=(129)3 1+3:
1 1
=5 1+§.1—25+... '.'1—25<1

=5 1+ % (0.008) by neglecting other terms

= 5[1 + 0.002666]
= 5.01 (correct to 2 decimal places)

3 3
Example 4.15: If xislarge and positive show that XoH 6 - x3+3% (app.)

. ' . 1. 1
Solution: Sincexislarge, 3 issmall andhence 3 <1

X
C+6 -\C+3 = (xC+6)3 -(C+3)3 = Xx1+3 3 -x 143
16 1 3
=X 1+%.73 +... -X 1+%.73+
= x+2+ RV _2 _1
X2 e X2 P X2 X2

= % (approximately)

1
Example 4.16: Inthe expansion (1 - 2x) 2 find the coefficient of x.
Solution: We know that

n(nZJ!r 1) 2,n(n+ l%!(n +2 5, ,N0+1) ”f!(n +r-1)

(1-X)""=1+nx+

+1)...(n+r-1
General term Tr+1:n(n )rl(nr )xr

Take n= % and replace x by 2x.
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135 2-1
22 2 2 135...(2r-1)
Tr+1= rl (=7 X
coefficient of X' = =5 - 2r-1
putr =8
coefficient of 58 = 1.3.5.7.%!11.13.15
4.6.2. Exponential series
Exponential theorem (without proof)
For all real values of x,
1.1 1 X L ox X
1+1!+2!+"'+n!+"' —1+1! tor gt
1 1 1
Bute:l+ﬁ tor t3r te
2 3

For all real values of X, eX=1+% +% +% + ..

Thus we have the following results:

2 3
= X X
er=l-Ti+y -3+
g+e* ¥ X
T leggt
A SIS
2 “ X3ty t
etel 1 1
2 “ltoityt

4.6.3 Logarithmic Series:

X3 4

If -1<x<1thenlog(l+X) =X~ +% =7 +..

This seriesis called the logarithmic series.
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The other forms of logarithmic series are as follows:

X

log(1-x) = -x-%5 -3 -

3
-log(1-x) :x+X§ +X§ + ...

N

3X5

log(1+x)-log(l1-x) =2 x+X§+§+

w

1+X XX
Iogl— =xt3 +5 +..

NI

x

EXERCISE 4.3
(1) Writethefirst four termsin the expansions of the following:

0) where|x|> 2 (i) 1

4
2+ 3\/6 -3

(2) Evaluatethe following:

where|x|< 2

(i) 3\/1003 correct to 2 places of decimals
(i) —
3'\/128
: 1-x X
(3) If xissosmall show that\ (755 =1-x+%5 (app.)

(4) If xissolarge provethat \/x2+25 - \x%+9 :§ nearly.

X

correct to 2 places of decimals

1
(5) Find the 5 term in the expansion of (1 - 2x°) 2

(6) Findthe(r + 1)th term in the expansion of (1 - x)'4

1 +1 12
(7) Showthatx"=1+n 1-% +mr172 1-3% +..
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