
Building AS/400 Client/Server Applications
with Java

Bob Maatta, Dan Murphy

International Technical Support Organization

SG24-2152-02

http://www.redbooks.ibm.com

International Technical Support Organization SG24-2152-02

Building AS/400 Client/Server Applications with Java

July 1999

© Copyright International Business Machines Corporation 1997, 1998, 1999. All rights reserved
Note to U.S Government Users - Documentation related to restricted rights - Use, duplication or disclosure is subject to restrictions
set forth in GSA ADP Schedule Contract with IBM Corp.

Third Edition (July 1999)

This edition applies to OS/400 Version 3, Release Number 2 and later.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. JLU Building 107-2
3605 Highway 52N
Rochester, Minnesota 55901-7829

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

Before using this information and the product it supports, be sure to read the general information in Appendix D,
“Special Notices” on page 413.

Take Note!

Contents

Contents . iii

Figures . ix

Tables . xvii

Preface . xix
The Team That Wrote This Redbook . xix
Comments Welcome . xx

Chapter 1. Object-Oriented Technology Overview .1
1.1 Before Object-Oriented Technology .1
1.2 Objects .2

1.2.1 Encapsulation of Objects. .3
1.3 Class Relationships .4

1.3.1 Specialization .4
1.3.2 Composition .6
1.3.3 Collaboration. .6

1.4 Polymorphism .7
1.5 Benefits of Object-Oriented Technology .7

Chapter 2. Introduction to VisualAge for Java .11
2.1 The VisualAge Family .11
2.2 VisualAge for Java Overview .12

2.2.1 VisualAge for Java Versions .12
2.2.2 Integrated Development Environment .14
2.2.3 Components and Features .14

2.3 Integrated Development Environment (IDE) .16
2.3.1 Java Support .16
2.3.2 Navigating within VisualAge for Java. .17
2.3.3 How It Fits Together .34
2.3.4 Building a Sample Application .39
2.3.5 Team Development .66
2.3.6 Applets and Applet Viewer .70
2.3.7 Editor, Debugger, and SmartGuides .73

2.4 Enterprise Access Builders (EAB) .82
2.4.1 Data Access Builder (DAX) .82

2.5 System Requirements and Prerequisites for Version 2.084
2.6 Migration from VisualAge for Java Version 1.0 to 2.085
2.7 Upgrades Available for VisualAge for Java 2.0 .87
2.8 Summary .88

Chapter 3. AS/400 Toolbox for Java .89
3.1 Introduction to the AS/400 Toolbox for Java .89

3.1.1 Installing the Toolbox .90
3.1.2 V4R3 Enhancements. .91
3.1.3 V4R4 Enhancements. .92
3.1.4 Supported Platforms .94
3.1.5 Application Developer Usage .95
3.1.6 AS/400 Host Servers. .95
3.1.7 AS400 Object, Infrastructure, and Sign-On .95

3.2 AS/400 Toolbox for Java and Host Servers .96
© Copyright IBM Corp. 1997, 1998, 1999 iii

3.2.1 Data Descriptions and Conversions . 97
3.2.2 AS/400 Data Types . 97
3.2.3 Record Level Conversions . 98
3.2.4 JDBC Specification . 99
3.2.5 Record-Level File Access . 101
3.2.6 Integrated File System . 101
3.2.7 Print. 102
3.2.8 Command . 103
3.2.9 Program Call . 103
3.2.10 Data Queue . 104

3.3 How the AS/400 System Fits into This Picture . 104
3.3.1 Security . 105
3.3.2 National Language Support . 105
3.3.3 Save and Restore Considerations . 106
3.3.4 Installation and Run-Time Considerations 106
3.3.5 Error Recovery Considerations . 106
3.3.6 Mapping AS/400 Data Types to Java Data Types 107

3.4 Introduction to Application Examples . 107
3.5 AS/400 Database Access . 107

3.5.1 JDBC Interface . 108
3.5.2 JDBC Performance Tips . 109
3.5.3 JDBC Application Example . 114
3.5.4 JDBCExample Class . 116
3.5.5 JDBCExampleDisplayAll Class . 124
3.5.6 Reusable GUI Part. 126
3.5.7 Stored Procedures . 127
3.5.8 JDBC Stored Procedure Application Example 128
3.5.9 StoredProcedureExample Class . 130
3.5.10 DDM Record-Level Access Application Example 137
3.5.11 RLAExample Class . 138
3.5.12 Distributed Program Call Feature . 143
3.5.13 Distributed Program Call (DPC) Application Example. 144
3.5.14 DPCExample Class . 147
3.5.15 Data Queues . 154
3.5.16 Data Queue Application Example. 157
3.5.17 DataQueueExample Class . 159

3.6 Network Print . 167
3.6.1 Print Example . 168
3.6.2 SpooledFileListExample Class. 169

3.7 Integrated File Systems Access. 172
3.7.1 Integrated File System Example . 173
3.7.2 IFSExample Class . 176

Chapter 4. AS/400 Toolbox for Java — GUI Classes 181
4.1 Overview of the GUI Classes . 181

4.1.1 AS/400 Panes . 181
4.1.2 JDBC . 183
4.1.3 Command Call . 184
4.1.4 Data Queues . 184
4.1.5 Error Events. 184
4.1.6 Jobs. 185
4.1.7 Messages . 185
4.1.8 Network Print . 186
iv Building AS/400 Client/Server Applications with Java

4.1.9 Program Call . 186
4.1.10 Record-Level Access . 186
4.1.11 Users and Groups . 187

4.2 JDBC Examples . 187
4.2.1 Using the AS/400 Toolbox Classes in the VCE 187
4.2.2 SQLResultSetTablePane . 188
4.2.3 SQLQueryBuilderPane. 194
4.2.4 SQLResultSetFormPane . 199
4.2.5 SQLResultSetModel . 202

4.3 Record Level Access GUI Examples . 205
4.3.1 RecordListFormPane . 205
4.3.2 RecordListFormPane Using the Keyed Access Example 208

4.4 Conclusion . 212

Chapter 5. AS/400 Toolbox for Java Modification 2 213
5.1 Upgrading the AS/400 Toolbox Contained in VisualAge for Java 2.0 . . . 213
5.2 XML. 217
5.3 PDML . 217

5.3.1 PDML Example . 218
5.4 The Graphical Toolbox . 219

5.4.1 Installing the Graphical Toolbox on Your Workstation 220
5.5 Java Plug-in for Operations Navigator . 221

5.5.1 Setting Up the GUI Builder. 222
5.5.2 Starting the GUIBuilder . 223
5.5.3 Creating the New Panel Definition . 224
5.5.4 Modifying the Databean to Retrieve Data from the AS/400 System 229
5.5.5 Testing the Application . 231
5.5.6 Adding an Operations Navigator Plug-in . 232
5.5.7 Modifying the Windows Registry . 236
5.5.8 Testing the Extension . 237
5.5.9 Adding a Second Panel to the PDML File 238
5.5.10 Modifying the SystemStatusEngine DataBean 239
5.5.11 Modifying the SystemStatusManager . 241

5.6 PCML Examples . 241
5.6.1 A Simple PCML Example . 243
5.6.2 Calling the DPCXRPG Program Using PCML 244
5.6.3 PCML Conclusion . 245

5.7 JDBC 2.0 . 246
5.7.1 JDBC Result Sets . 247
5.7.2 Using Scrollable and Updatable Result Sets 248
5.7.3 JDBC 2.0 Example. 249

5.8 Additional Classes . 253
5.8.1 SpooledFileViewer . 253
5.8.2 VSystemStatusPane . 260
5.8.3 Jobs and Job Logs. 262
5.8.4 Users and Groups . 263
5.8.5 IFS File Access . 265

Chapter 6. Enterprise Access Builder for Data (DAX) 267
6.1 Overview . 267
6.2 Building an Application Using the Data Access Builder (DAX) 268

6.2.1 Application Requirements . 268
6.3 Generating the Application Using DAX . 271
v

6.3.1 Understanding the Software Design . 271
6.3.2 Building the Application . 273

6.4 Building the Company Class . 279
6.5 Building a Custom GUI Using DAX Objects . 282
6.6 The Completed Application . 286
6.7 Summary . 287

Chapter 7. Remote Method Invocation . 289
7.1 What RMI Is. 289
7.2 Building an RMI Application . 291
7.3 Building a Simple AS/400 Application Using RMI 291

7.3.1 Defining Interfaces. 291
7.3.2 Implementing the Remote Server Objects 292
7.3.3 Running rmic on Remote Implementation Classes 294
7.3.4 Implementing the Client . 294
7.3.5 Making the Server Code Network Accessible 295

7.4 RMI JDBC Example . 296
7.4.1 Item Class . 301
7.4.2 Defining the Interface. 302
7.4.3 Implementing the Remote Server Objects 302
7.4.4 Creating the Stubs and Skeletons . 306
7.4.5 Implementing the Client . 309
7.4.6 Making the Server Code Network Accessible 312

7.5 Conclusion . 316

Chapter 8. IBM Enterprise Toolkit for AS/400 . 317
8.1 Using ET/400. 317
8.2 AS/400 Toolbox for Java Classes . 318
8.3 Distributed Program Call SmartGuide . 319
8.4 SmartGuide to Convert AS/400 Display Files to Java 319
8.5 Creating a Subfile SmartGuide . 324

8.5.1 Creating a Java Subfile Bean. 325
8.6 Support for Export, Compile, Run, and Debug AS/400 Programs. 330

8.6.1 Setup . 330
8.6.2 Export Support. 331
8.6.3 Compile Support . 331
8.6.4 Debug Support. 332
8.6.5 Debugging an AS/400 Java Program . 333

8.7 ET/400 System Requirements . 337
8.8 PTF Information. 338

Chapter 9. JavaBeans . 339
9.1 What JavaBeans Offer. 339

9.1.1 Visual Manipulation and Building . 339
9.1.2 Everything Java Offers and More . 339
9.1.3 Easy Packaging and Distribution . 340

9.2 The Basics of JavaBeans . 340
9.2.1 What It Actually Means to Be a Bean . 340

9.3 Creating a Simple JavaBean . 342
9.4 Creating a Program Call JavaBean . 345

9.4.1 Distributed Program Call Feature. 345
9.4.2 Application Description . 346
9.4.3 Creating a Program Call JavaBean . 348
9.4.4 Building an Application Using the DPCXRPG Bean 354
vi Building AS/400 Client/Server Applications with Java

9.4.5 Using the DPCXRPG Bean in the VCE . 357
9.5 Advanced JavaBeans Concepts . 361

9.5.1 What Makes a Good JavaBean . 363
9.5.2 References and More Information . 363

Chapter 10. Deployment Considerations and Tools 365
10.1 Java Archive Files . 365

10.1.1 JarMaker . 365
10.1.2 JarMaker Example . 367
10.1.3 AS400ToolboxJarMaker. 368
10.1.4 Example Usage . 371

10.2 Securing Applications with SSL . 371
10.2.1 Internet Security Elements . 371
10.2.2 Transaction Security and Secure Sockets Layer 372

10.3 Digital Certificates and Certificate Authority . 376
10.4 AS/400 Implementation of Digital Certificate Management 377

10.4.1 Configuring a Digital Certificate Environment 377
10.5 Using a Self-Signed Certificate for SSL . 378

10.5.1 Creating an Intranet Certificate Authority 378
10.5.2 Creating a Server Certificate with Your Intranet CA 382

10.6 Using a Server Certificate from an Internet CA 384
10.6.1 Receiving a Server Certificate for This Server 387

10.7 Downloading the SSL Java Packages . 387
10.8 Creating a KeyRing Class . 388
10.9 Modifying an Application to Use SSL with VisualAge 2.0 390

10.9.1 Importing the Required Classes . 391
10.9.2 Modifying the Program . 392
10.9.3 Testing the Changed Program . 394
10.9.4 Additional SSL Related Resources . 394

Appendix A. Example Programs .395
A.1 Downloading the Files from the Internet .396
A.2 Setting Up VisualAge for Java .396

A.2.1 AS/400 Toolbox for Java Classes .396
A.2.2 IBM Enterprise Data Access Libraries .397
A.2.3 IBM Enterprise Access Builder Library .397

Appendix B. AS/400 Source Listings .399
B.1 PARTS/PF .399
B.2 SPROC2/SQLRPGLE .399
B.3 SPROC3/SQLRPGLE .400
B.4 DPCXRPG/RPGLE .402
B.5 DQXRPG/RPGLE .404

Appendix C. GUI Builder Code .407
C.1 SystemStatusEngine.java .407
C.2 SystemStatusManager. .408
C.3 SystemStatus Registry. .408
C.4 SystemStatusEngine.java .409
C.5 SystemStatusManager. .412
vii Building AS/400 Client/Server Applications with Java

Appendix D. Special Notices .413

Appendix E. Related Publications .415
E.1 International Technical Support Organization Publications415
E.2 Redbooks on CD-ROMs .415
E.3 Other Publications .415

How to Get ITSO Redbooks . 417
IBM Redbook Fax Order Form .418

List of Abbreviations . 419

Index . 421

ITSO Redbook Evaluation . 427
viii Building AS/400 Client/Server Applications with Java

Figures

1. Traditional Application Development Scenario . 1
2. Updated Application Development Scenario . 2
3. Classes . 3
4. Instantiating Objects. 4
5. Class Hierarchy . 5
6. Inheritance . 5
7. Collaboration . 6
8. Object-Oriented Development Components . 8
9. Object-Oriented Technology Benefits . 9
10. Starting VisualAge for Java . 18
11. Welcome Dialog Window . 19
12. VisualAge for Java Workbench . 20
13. Project Icon . 21
14. Package Icon . 22
15. Class Icon . 22
16. Interface Icon . 22
17. Executable Class Icon . 22
18. VisualAge for Java Workbench . 23
19. Browser Selection . 23
20. Component Selection. 24
21. Project Browser Packages View . 25
22. Project Browser Classes View . 26
23. Project Browser Interfaces View . 27
24. Project Browser Managing View . 27
25. Project Browser Editions View . 28
26. Project Browser Problems View. 29
27. Package Browser Classes View . 30
28. Type Browser Browsing Class . 31
29. Type Browser Browsing Interface . 32
30. Type Browser Visual Composition View . 33
31. Type Browser BeanInfo View. 34
32. VisualAge for Java Concepts . 34
33. Class and Bean Difference . 35
34. Account Example . 36
35. Example Connection of Two Beans . 37
36. Single and Composite Beans Example . 37
37. Add Project Selection. 39
38. Add Project Example . 40
39. Add Package Example. 41
40. Add Class Example . 42
41. VCE Example. 43
42. Layout Example . 44
43. Composition Editor Selecting a Bean Category Example 45
44. Composition Editor Creating a Text Field Example . 45
45. Composition Editor Shortcut Keys . 47
46. Composition Editor Properties Window Example. 47
47. Composition Editor Property Editor Examples . 48
48. Composition Editor Tool Bar . 49
49. Composition Editor Multiple Bean Selection Example 50
50. Composition Editor Connection Example. 51
© Copyright IBM Corp. 1997, 1998, 1999 ix

51. Connecting Example .52
52. Connectable Features Example .53
53. Connection Property Editor Example .54
54. Connection Source Editor Example .54
55. VCE Example .56
56. Create Version Example .57
57. VCE Finished Example .58
58. Create Method Example .60
59. Finished Application Example .63
60. Breakpoint Example .64
61. VisualAge for Java Debugger .64
62. Examining Variables Example .65
63. Examining Call Stack Example .65
64. Team Development Configuration .68
65. Team Development Backup Procedures .69
66. Team Development Versions .69
67. Team Development Process. .70
68. SmartGuide — Create Applet .71
69. Sample Applet. .72
70. Applet Properties Example .73
71. Syntax Error Suggested Corrections Example .75
72. Search Example .76
73. VisualAge for Java Options Window .77
74. Scrapbook Example .79
75. Inspector Example .80
76. Java Host Server Overview. .97
77. JDBC Interface to the AS/400 System .100
78. JDBC Application .115
79. JDBC Example One Part .115
80. JDBC Example All Parts .116
81. The connectToDB Method Example .117
82. The getRecord Method Example .119
83. The updateRecord Method Example .121
84. The updateRecord Method Dynamic SQL Example .122
85. The dispose Method Example. .123
86. Non-Default Constructor Example .124
87. The populateListbox Method Example .125
88. JDBC Application Stored Procedures .128
89. Stored Procedure Example One Part .129
90. Stored Procedure Example All Parts. .129
91. Stored Procedure Example connectToDB Method .131
92. Stored Procedure Example getRecord Method .133
93. Stored Procedure Example populateListBox Method134
94. Stored Procedure Example dispose Method. .136
95. DDM Record Level Access .137
96. Distributed Data Management Record Level Access Example.137
97. Record Level Access Example connectToDB Method139
98. Record Level Access Example getRecord Method. .141
99. Record Level Access Example populateListBox Method142
100.Record Level Access Example dispose Method .143
101.Distributed Program Call Example .145
102.Distributed Program Call Example .145
103.Distributed Program Call Example connectToDB Method147
x Building AS/400 Client/Server Applications with Java

104.Distributed Program Call Example getRecord Method 148
105.Distributed Program Call Example populateListBox Method (Part 1 of 2) . . . 150
106.Distributed Program Call Example populateListBox Method (Part 2 of 2) . . . 151
107.Distributed Program Call Example updateRecord Method 153
108.Distributed Program Call Example dispose Method 154
109.Data Queue Application. 157
110.Data Queue Example . 157
111.Data Queue Example connectToDB Method. 159
112.Data Queue Example getRecord Method . 160
113.Data Queue Example initRecordFormat Method. 162
114.Data Queue Example populateListBox Method. 164
115.Data Queue Example updateRecord Method . 166
116.Data Queue Example dispose Method . 167
117.AS/400 Toolbox for Java Print . 168
118.Spooled File Example . 169
119.Spooled File Example connect Method . 170
120.Spooled File Example formatSpooledFile Method. 170
121.Spooled File Example getSpooledFileForUser Method. 172
122.AS/400 Toolbox for Java IFS. 173
123.Integrated File System Example (Directories/Files). 175
124.Integrated File System Example (File Viewer). 175
125.Integrated File System Example connect Method . 176
126.Integrated File System Example populateList Method 177
127.Integrated File System Example readFile Method. 178
128.AS400ListPane . 182
129.AS400DetailsPane. 182
130.AS400TreePane . 182
131.AS400ExplorerPane . 183
132.VJobList Graphical User Interface Component . 185
133.VUserList Graphical User Interface Component . 187
134.AS/400 Toolbox Classes in the VCE . 188
135.SQLResultSetTablePane Example . 189
136.ErrorDialogAdapter Dialog Box . 189
137.Building the Application with the VisualAge for Java VCE. 190
138.JDBC registerDriver. 191
139.Registering the AS/400 Toolbox JDBC Driver . 191
140.SQLConnection Methods. 192
141.Setting the SQLConnection URL Property . 192
142.Setting the SQLResultSetTablePane Connection Property. 193
143.Run Button Events. 193
144.Adding an ErrorListener. 194
145.SQLQueryBuilderPane Example . 195
146.SQLQueryBuilderPane Error Dialog . 196
147.SQLQueryBuilder Example in the VisualAge for Java VCE 197
148.Load Button Connections . 198
149.Setting the Tables Schema . 198
150.Run Button Connections . 199
151.SQLResultSetFormPane Example . 199
152.SQLResultSetFormPane Example Error . 200
153.SQLResultSetForm in the VCE . 201
154.Run Button for the SQLResultSetFormPane . 202
155.SQLResultSetTableModel Example . 203
156.SQLResultSetTableModel Error Dialog . 203
Figures xi

157.SQLResultSetModel in the VCE. .204
158.SQLResultSetTableModel Example Run Button .205
159.RecordListFormPane Example. .206
160.Record-Level Access Error Dialog .206
161.RecordListFormPane in the VCE .207
162.Run Button Connections. .208
163.RecordListFormPane Example. .209
164.Record-Level Access Error Dialog .209
165.RecordListFormPane in the VCE .210
166.Window Events Connections .211
167.Go Button Connections .211
168.Deleting the Old Packages .215
169.Importing the New Toolbox. .216
170.Adding the New AS/400 Beans to the VCE Palette .216
171.PDML Source Code .218
172.PDML Example Panel .219
173.The Operations Navigator Extension .221
174.The System Resources Panel .222
175.The addtoolbox.bat File .222
176.The adduitools.bat File .223
177.Loading the GUIBuilder Tool .223
178.The GUI Builder Windows .224
179.Modifying the PDML File Properties .225
180.Inserting a New Panel .225
181.Setting the Properties of System Resources Panel .226
182.The GUIBuilder after Adding and Modifying the First Label226
183.System Status Panel after Inserting the Labels .227
184.Completed SystemResources Panel .228
185.SystemStatusTester.java .231
186.System Information. .232
187.Correctly Installed Extension Showing the SystemStatus Menu Item237
188.System Resources Panel .238
189.Preview of the PoolAllocation Panel .239
190.Preview of the Tabbed Panel .239
191.System Resources Tab .241
192.Pool Allocation Tab. .241
193.PCML Architecture .242
194.A Simple PCML File .243
195.Calling a Program Using PCML .243
196.PCML Source File PcmlPgmCall.pcml .244
197.Java Code for PCML Program Call .245
198.Running the PCML Example .245
199.Scrollable Result Set Example .248
200.Updatable Result Set Example. .249
201.The connectToDB Method .250
202.JDBCExampleDisplayALL .251
203.The populateListBoxNextTen Method .251
204.The populateListBoxPrevTen Method .252
205.The populateFirstTen Method .253
206.Application Using the SpooledFileViewer Class. .254
207.The ESpooledFileViewer Class .255
208.The SampleViewer Class in the IDE .256
209.System and User Details Panel .257
xii Building AS/400 Client/Server Applications with Java

210.The JSplitPane . 257
211.Adding AS400 and VPrinterOutput Objects. 258
212.SampleViewer Class with Completed Connections. 259
213.Running the Application. 260
214.Example Using the VSystemStatusPanel Class . 261
215.A VJobList Example. 262
216.A VUserList Example. 263
217.The Properties for a Selected User . 264
218.Parts Order Management Window . 270
219.Parts Configuration Window . 271
220.UML Object Model . 272
221.DAX Generation Window. 274
222.Dax Generated Customer Window . 276
223.The Parts Attributes Window . 278
224.DAXProject Window . 280
225.The getCustomerManager Method . 280
226.The getDefaultDatastore Method. 281
227.The newOrder Method. 281
228.OrderMainApp in the Composition Editor Window . 282
229.OrderMainFrame Window . 284
230.Order Configuration in Visual Composition Editor . 285
231.Completed Application. 287
232.RMI Architecture . 290
233.Java Interfaces . 292
234.Defining the Interface. 292
235.Host RMI Code . 293
236.Registering with the RMI Security Manager . 294
237.Client Program. 295
238.JDBC RMI Application . 297
239.RMI Example — Get All Parts . 298
240.AS/400 RMI Example . 298
241.Java Package for the RMI Example . 299
242.RMI Application Design . 300
243.RMI Example Public Methods . 300
244.Item Class . 301
245.ItemDetail Class. 302
246.ItemEntryI Interface . 302
247.JDBCRmi Class . 302
248.JDBCRmi Main Method . 303
249.Initializing the JDBC Connection . 304
250.The getItem remote Method . 305
251.The getAll Method . 306
252.Creating the Stubs and Skeletons in VisualAge for Java 307
253.Completed Host Remote Application. 308
254.Exporting the Class Files . 309
255.Creating the Client Class . 309
256.RMIExample Main Method . 310
257.RMIExample CcnnectToDB Method . 310
258.RMIExample getRecord Method . 311
259.RMIExample populateListBox Method. 311
260.Populating the ListBox . 312
261.Setting the CLASSPATH Environment Variable . 313
262.Starting the RMI Registry. 313
Figures xiii

263.Starting the Host Application .314
264.Host Application Successful Start. .314
265.Running the JDBC RMI Application .315
266.ET/400 Tools .318
267.Convert DDS SmartGuide .320
268.DSP003 File in a 5250 Application .321
269.RPG03 Display File Source .322
270.DDS Conversion SmartGuide. .323
271.Converted DDS File .323
272.Java AWT Display in the VCE .324
273.Create an AS/400 Subfile SmartGuide .325
274.Create Subfile SmartGuide. .326
275.Select AS/400 Database File .326
276.Select Subfile Columns .327
277.Edit Subfile Columns .327
278.Generated Subfile Application .328
279.Subfile Application in the VCE .328
280.Get All Button Connections .329
281.Completed Subfile Application .329
282.AS/400 Properties .330
283.Compile Options .331
284.ET/400 Compile Dialog Box .332
285.Debugger AS/400 Logon .333
286.JDBCRmi Java Source .334
287.Setting a Breakpoint .335
288.Debugger Java Console .336
289.JDBCRmi Threads .336
290.Displaying Program Variables .337
291.Age Property Java Code Sample .341
292.FancyLabel Example .342
293.FancyLabel Class Definition .343
294.Listener Methods .343
295.FancyLabel Properties .344
296.FancyLabel Methods .344
297.VisualAge for Java VCE Connections .345
298.Distributed Program Call Example .346
299.Distributed Program Call Example .347
300.ET/400 Create Program Call .349
301.SmartGuide — Create AS/400 Program Call 1 .350
302.SmartGuide — Create AS/400 Program Call 2 .351
303.SmartGuide — Create AS/400 Program Call 3 .352
304.DPCXRPG Generated Methods .353
305.New connect Method .354
306.Class Description for DPCXRPG Object .354
307.The connectToDB Method .354
308.The getRecord Method (Part 1 of 2) .355
309.The getRecord Method (Part 2 of 2) .355
310.The populateListBox Method (Part 1 of 2) .356
311.The populateListBox Method (Part 2 of 2) .356
312.Building the Graphical User Interface .357
313.DPCXRPG Methods .358
314.Passing in the Parameter to the connect Method. .358
315.Cancel Button Processing .358
xiv Building AS/400 Client/Server Applications with Java

316.Get Part Button Processing . 359
317.Completing the Connections for the Get Part Button. 360
318.Get Part Connections . 360
319.Completed Application. 361
320.BeanInfo Indexed Property . 362
321.Using an Indexed Property . 363
322.Internet Security Elements. 372
323.Transaction Security . 373
324.Verifying Identity — Digital Certificates and Digital Signatures 374
325.AS/400 Tasks Page . 379
326.Create an Intranet Certificate Authority . 380
327.CA Certificate Created Successfully . 380
328.Certificate Authority Policy. 381
329.Setting the Created CA to Be Trusted by Host Servers. 382
330.Create a System Certificate Page . 383
331.Server Certificate Created Successfully Page. 384
332.Requesting a Certificate from VeriSign or Other Internet Certificate Authority385
333.Request a Server Certificate from an Internet CA . 386
334.Server Certificate Request Generated by DCM. 386
335.Receiving a Server Certificate Issued by an Internet CA. 387
336.The SSL Java Archives Viewed through Operations Navigator 388
337.Adding the CA Certificate to the KeyRing.class File 390
338.Importing the SSL Support into VisualAge for Java. 391
339.Importing a Modified KeyRing Class . 392
340.Morphing an AS400 Object . 393
341.Morph the AS400 Object to a SecureAS400 Object 393
342.The ErrorDialogAdaptor Message . 394
Figures xv

xvi Building AS/400 Client/Server Applications with Java

Tables

1. Connection Types . 38
2. System Requirements . 84
3. VisualAge for Java Updates. 87
4. AS/400 Toolbox for Java Versions. 89
5. AS/400 Data Types . 98
6. Record Level Conversions . 99
7. JDBC Classes . 100
8. PTF List for Record-Level Access . 101
9. Record-Level Access Public Classes. 101
10. Integrated File System Classes . 102
11. Printer Classes. 103
12. Command Classes. 103
13. Program Call Classes . 104
14. Data Queue Classes . 104
15. AS/400 Types Mapped to Java Types . 107
16. AS/400 Parts File . 108
17. General Properties . 110
18. Server Properties . 110
19. Format Properties . 111
20. Performance Properties . 111
21. Sort Properties . 113
22. Other Properties . 114
23. Parameter List . 146
24. Flag Operation Codes . 146
25. Flag Operation Codes . 146
26. Data Queue DQINPT Layout . 158
27. Data Queue DQOUPT Layout . 158
28. Labels to Add to the Panel . 227
29. Labels Required to Show the System Status Values. 228
30. The Contents of the Directory . 228
31. Attributes and Methods from the ActionDescription Class 234
32. ActionDescription Attributes . 234
33. Table Column Properties . 238
34. SystemStatusEngine Instance Variables . 240
35. Swing Components . 256
36. VCE Connections. 258
37. ABC Database Tables . 268
38. Database Tables Layout (Customer) . 269
39. Database Tables Layout (Parts) . 269
40. Database Tables Layout (Orders) . 269
41. Application Classes . 273
42. Customer Table . 275
43. Generated Classes . 277
44. Parts Table. 279
45. Orders Table . 279
46. Application Parts . 283
47. Application Connections. 286
48. Parameter List . 347
49. Flag Operation Codes . 348
© Copyright IBM Corp. 1997, 1998, 1999 xvii

50. Flag Operation Codes .348
51. AS/400 SSL Licensed Program Products .373
xviii Building AS/400 Client/Server Applications with Java

Preface

Java’s portability and its ability to produce Internet-enabled applications have
made it the hot new programming language. If you want to design and build
AS/400 client/server applications using Java, this redbook is the source for the
information you need. This guide offers you a fast start for using Java and the
AS/400 system.

This redbook focuses on two key products: VisualAge for Java Version 2.0 and
the AS/400 Toolbox for Java. It provides many practical programming examples
with detailed explanations of how they work. These examples are also available
for downloading from the redbook Web site.

The Team That Wrote This Redbook

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization Rochester Center.

Bob Maatta is a Senior Software Engineer from the United States at the IBM
International Technical Support Organization, in Rochester, Minnesota. He writes
extensively and teaches IBM classes worldwide on all areas of AS/400
client/server and application development. Before joining the ITSO in 1995, he
worked in the U.S. AS/400 National Technical Support Center as a Consulting
Market Support Specialist. He has over 20 years of experience in the computer
field and has worked with all aspects of personal computers since 1983. He is a
Sun Certified Java Programmer and a Sun Certified Java Developer.

Dan Murphy works in Hursley, England, at the Solution Partnership Centre (SPC)
assisting commercial developers to port to, and make the most of, the AS/400
system. He completed an honor’s degree in computer science at Brighton University
(England) in 1993, and joined IBM's AS/400 Support Group the same year. During
his five year tenure in the support group, Dan has been the team leader for both the
AS/400 Communications and Application Development support teams.

The authors of the previous editions of this book were:

Bob Maatta
ITSO Rochester

Markus Abegglen
DV Bern AG

Marshall Dunbar
Data Processing Services, Inc.

Craig Pelkie
Bits&Bytes Programming

Stuart Foster
IBM U.K.
© Copyright IBM Corp. 1997, 1998, 1999 xix

Paul Holm
Cheryl Pflughoeft
Kevin Roberts
Partners In Development, IBM Rochester

Roger Wong
IBM Hong Kong

Thanks to the following people for their invaluable contributions to this project:

Clif Nock
Doug Petty
Schuman Shao
David Wall
IBM Rochester Laboratory

Comments Welcome

Your comments are important to us!

We want our redbooks to be as helpful as possible. Please send us your
comments about this or other redbooks in one of the following ways:

• Fax the evaluation form found in “ITSO Redbook Evaluation” on page 427 to
the fax number shown on the form.

• Use the online evaluation form found at: http://www.redbooks.ibm.com/

• Send your comments in an internet note to: redbook@us.ibm.com
xx Building AS/400 Client/Server Applications with Java

Chapter 1. Object-Oriented Technology Overview

Java is an object-oriented language. This chapter reviews object-oriented
principles, but does not explain them in great detail. For a full introduction to
object technology, one of the best books on the subject is Object-Oriented
Technology: A Managers Guide, SH20-9092, by David A. Taylor.

This chapter contains information about the following subjects:

• Objects
• Classes
• Class relationships
• Polymorphism
• Benefits of object-oriented technology

1.1 Before Object-Oriented Technology

Remaining competitive in the business world means seeking a better, more
reliable software technology that actually delivers on its claims. The advent of
object technology has done just that. It has rapidly closed the gap between
hardware potential and software performance. As computers continue to gain in
speed and power, the implementation of object-oriented technology becomes
increasingly important.

Let us take a moment to review the traditional application development scenario.
Do you recognize the scenario in Figure 1?

Figure 1. Traditional Application Development Scenario

When our applications were designed about 20 years ago, they were designed to
segregate the procedures from the data. They did this by using techniques such
as information engineering (to normalize our databases) and functional
decomposition to split our functions down into manageable chunks of code.
Rarely, if ever, did we try to think of our small normalized database tables and our
small code modules/programs/subroutines as entities that benefit more by being
designed together.
© Copyright IBM Corp. 1997, 1998, 1999 1

On day one, our application was perfect. Our modules were small and discrete,
and our data was well normalized with clear and well-defined links between the
modules and the data. Three months passed and the users loved our application,
but then the first request came. This request was to extend the application a little.
And, the second request was to fix a small bug that had appeared. Maybe we
were lucky this time. The impact on our total application was simply to make a
couple of minor modifications to the code modules, and to add a couple of extra
links from a module to the database. However, they were not in the original
design.

Suppose this scenario continues for the next 20 years with a couple of changes
coming in every two to three months. Even the best AP/AD professional has great
difficulty in retaining anything similar to the original design. Given that our
programmers and designers have moved on two or three times from the original
team, it is easy to see how the next picture in this scenario has evolved. Do you
recognize the picture in Figure 2? Is this your application?

Figure 2. Updated Application Development Scenario

But wait a minute. From 20 years ago, we moved from 2GL to 3GL, 3GL to 4GL,
4GL to case, and case to uppercase and lowercase. Each of these transitions has
made an incrementally better impact on software quality and design, and on
programmer productivity. As an industry, we are still left trying to maintain these
creaking systems, add real value to business, provide a competitive advantage
with Web-based applications, and so on. The industry has been looking for a new
way to develop applications that simulate the real world better. The industry does
not do this by splitting data and functions apart and meshing them back together
again as we have done. Instead, it does this by keeping the data and procedures
together from analysis, through design, all the way to coding. This way of building
systems is the object-oriented way. Let us see what this actually means.

1.2 Objects

An object is a software package that contains a collection of related procedures
and data. In the object-oriented approach, procedures go by the name
methods/member functions. In keeping with traditional programming terminology,
the data elements are referred to as variables/member variables/data members
because their values change over time.
2 Building AS/400 Client/Server Applications with Java

1.2.1 Encapsulation of Objects
The act of grouping both data and the operations that affect that data into a single
object is known as encapsulation. Encapsulation is a powerful technique for
building better software because it provides neat, manageable units that can be
developed, tested, and maintained independently of one another. The knowledge
encapsulated within an object can be hidden from external view. Consequently,
the knowledge encapsulated within an object looks different from outside the
object than it does within it. As with each of us, objects have a private side. The
private side of an object is how it performs actions, and it can do them in any way
that is required. How it performs the operations or computes the information is
not a concern of other parts of the system. Using this principle, known as
information hiding, objects are free to change their private sides without affecting
the entire system.

Objects that share the same behavior are said to belong to the same class. A
class is a generic specification for an arbitrary number of similar objects. Objects
that behave in a manner specified by a class are called instances of that class. All
objects are instances of some class. Once an instance of a class is created, it
behaves the same as all other instances of its class. Upon receiving a message,
it can perform any operation for which it has methods. It may also call on other
instances, of the same or other classes, to perform still other operations on its
behalf. A program can contain as many or as few instances of a particular class
as required. See Figure 3.

Figure 3. Classes

In theory, a class is a template for objects. Once the template is defined, it can
stamp out as many objects (instances of the class) as desired. Each can take on
different values, but all use the same variables and work with the same methods.
This is how you can have a thousand different product objects but define the
method for computing the price in only one place. See Figure 4 on page 4.
Chapter 1. Object-Oriented Technology Overview 3

Figure 4. Instantiating Objects

To conclude, note these points:

• A class is a template that defines the methods and variables to be included in
a particular type of object.

• The descriptions of the methods and variables that support them are defined
only once in the definition of the class.

• The objects that belong to a class, called instances of the class, contain only
their particular values for the variables.

1.3 Class Relationships

It is important to understand the relationship among classes. There are only three
ways that classes can be connected together:

• Specialization
• Composition
• Collaboration

1.3.1 Specialization
By declaring one class to be a special case, or a subclass of another, the
subclass inherits all the method and variable definitions of its superclass. In the
class hierarchy shown in Figure 5 on page 5, vehicle is the superclass of all the
other subclasses, and car is a subclass of vehicle (because it is a type of
vehicle). Car is the superclass of its four subclasses (Hatchback, Station Wagon,
Sedan, and Sports). These last four classes are subclasses of car because they
are a type of car.
4 Building AS/400 Client/Server Applications with Java

Figure 5. Class Hierarchy

It is all well and good arranging classes into a hierarchy, but what features does
the hierarchy have and what benefits does this bring? The vehicle class abstracts
as much data and procedures common to all vehicle types, and implements these
data items (variables) and functions. In Figure 6, the vehicle class defines the
regno variable (registration number or plate number) and all the functions that act
on regno, for example, to set its value and to retrieve it (commonly called setters
and getters). These are defined only once at the vehicle class level, but they are
immediately inherited by the seven subclasses shown in this hierarchy. There is
no copying and pasting code, no retyping. It all happens automatically. This has a
dramatic effect on the amount of code needed to be written, on the quality of the
code, and on the downstream maintenance effort (because you amend it in one
place only, not in eight).

Therefore, in Figure 6, the sedan class has a variable and methods for trunk
capacity (which it defines itself), for trim (which it inherits from car), and for regno
(which it inherits from vehicle).

Figure 6. Inheritance
Chapter 1. Object-Oriented Technology Overview 5

1.3.2 Composition
Classes can also be defined as components of one another. A laser printer may
contain, among many other parts, a print engine, a roller, a cartridge, a paper
tray, and so on. Composition provides a convenient means of capturing the fact
that these parts all go together, and it allows them to be treated as a single
collective entity. Composition is especially useful for defining high-level objects
that hide the details of their inner workings. A division may consist of a specified
set of departments, several divisions can be combined into a business unit, and a
company may include any number of business units. It is important not to confuse
specialization with composition. They have different properties and serve
different functions. For example, the hierarchy defined by an organization is not
an inheritance hierarchy. Departments do not inherit properties from divisions,
and divisions do not inherit from business units. That is because they are
components of one another, not special cases of each other.

1.3.3 Collaboration
The final class relationship is one that triggers objects into action. A collaboration
between two objects is a request from one object to another to carry out one of its
services. The request takes the form of a message from the first object, called the
sender, to the second object, called the receiver. The message consists of the
name of a method defined by the receiver together with any information
(expressed as parameters or arguments) that the receiver needs to carry out that
method.

Collaborations, as demonstrated in Figure 7, provide the active element in object
technology. The other two relationships, important as they are, are merely
packaging rules that define how objects are composed. It is the passing of
messages among objects during the execution of a program that actually makes
the objects carry out their tasks.

Figure 7. Collaboration
6 Building AS/400 Client/Server Applications with Java

1.4 Polymorphism

Understanding how object-oriented software works leads to realizing its vast
benefits. One most important benefits is an abstraction known as polymorphism.
Simply put, polymorphism is the ability of two or more classes of an object to
respond to the same message, each in its own way. This means that an object
does not need to know to whom it is sending a message. It just needs to know
that many different kinds of objects are defined to respond to that particular
message. The only concern is sending the right message. It is up to the receiver
to interpret the request and do the correct thing.

Closely related to polymorphism is the concept of dynamic binding. This idea
stresses that because the sender of a message does not know anything about its
receiver, determining the identity of that receiver can be left until the program is
actually running. The advantage of dynamic binding is that it leaves all of your
options open until the moment the message is actually sent. In fact, fundamental
changes can be made in the way a system works just by adding new kinds of
objects, without recompiling any programs or modifying existing classes.

1.5 Benefits of Object-Oriented Technology

We know that object technology delivers speed improvements, so it is important
to recognize from where that added speed comes. Merely programming with
objects is not faster than other kinds of programming. The increased speed does
not come from programming faster, but from programming less. The critical factor
is to build up an inventory of reusable class definitions so that new applications
can be constructed largely by recombining existing classes. The more reuse that
is implemented, the greater the benefit is.

Encapsulation allows the building of entities that can be depended on to behave
in certain ways and know certain information. Such entities can be reused in
every application that can use this behavior and knowledge. While it is possible to
construct entities that are useful in many situations, using object-oriented design
tools only is not enough. More software can be reused from each application if
time is spent during the design phase by identifying and designing components
and frameworks. This is the result of abstracting re-usability from applications
while building them.

Components (Figure 8 on page 8) are entities that can be used in a number of
different programs. Items such as lists, arrays, and strings are components of
many different programs. The primary goal when designing components is to
make them general, so they can be components of as many different applications
as possible. Application developers that use components do not need to
understand the implementation of those components. They are reusable code in
its simplest form. Components are typically discovered when programmers find
themselves repeatedly writing similar pieces of code. Although each piece has
been written to accomplish a specific task, the tasks themselves have enough in
common that code written to accomplish them appears remarkably alike. When a
programmer takes the time to abstract the common elements from the disparate
pieces into one, and create a uniform, generally useful interface to it, a
component is born. Ultimately, programmers can aim for abstracting out common
functionality as they design a piece of software before they code similar pieces
again and again.
Chapter 1. Object-Oriented Technology Overview 7

Figure 8. Object-Oriented Development Components

Frameworks are skeletal structures of programs that must be fleshed out to build
a complete application. The goal when designing frameworks is to make them
refinable. The interface to the rest of the application must be as clear and precise
as possible. Application developers must be able to quickly understand the
structure of a framework, and how to write code that fits within the framework.
Frameworks are reusable designs as well as reusable code.

Applications are complete programs, similar to a fully-developed simulation, a
word processing system, a spread sheet, a calculator, or an employee payroll
system. The goal when designing applications is to make them maintainable. This
assures that the behavior of the application is kept appropriate and consistent
during its lifetime. Application developers must frequently make ingenious use of
components and frameworks to fit existing systems. Applications must be made
compatible with existing software, files, and peripherals so as not to render a
smoothly functioning system prematurely obsolete. This requirement makes the
design of useful components and frameworks all the more important. If an
application is successful, it is maintained and extended in the future. And if an
application-specific object has potentially a broader utility, you should consider
designing it as a component that can be reused by other applications.
8 Building AS/400 Client/Server Applications with Java

Figure 9. Object-Oriented Technology Benefits

A large by-product of the reuse concept is increased quality. If 90 percent of a
new application consists of proven, existing components, only the remaining 10
percent of the code has to be tested from scratch. This, in turn, leads to an
increase in maintenance ease. If there are only 10 percent as many defects to
begin with, there are a lot fewer bugs to check after the software is in the field.
Additionally, the encapsulation and information hiding provided by objects serves
to eliminate many kinds of defects and make others easier to find.

In summary, object-oriented technology simulates the real world. Objects are
software packages containing methods/functions (behavior) and variables (state).
Object-oriented technology delivers the following benefits:

• Faster application delivery
• Higher quality applications
• Easier maintenance
• Applications with advanced functions

These benefits are accomplished by implementing the following concepts:

• Inheritance down the class hierarchy (code reuse)
• Polymorphism (easier application changes)
• Encapsulation (easier application changes)
• Assembly from parts (building quality into the application)
Chapter 1. Object-Oriented Technology Overview 9

10 Building AS/400 Client/Server Applications with Java

Chapter 2. Introduction to VisualAge for Java

This chapter explains VisualAge for Java with a specific emphasis on the
components most likely to be used by an AS/400 development team. It discusses
the following topics:

• The VisualAge family
• VisualAge Java overview
• Integrated Development Environment (IDE)

– Java support
– Navigating within VisualAge for Java
– Visual Composition Editor (VCE)
– Team development
– Applet viewer
– Editor/Debugger/SmartGuides

• The Enterprise Access Builders (EAB)
• System requirements and prerequisites
• Migration from VisualAge for Java Version 1.0 to Version 2.0
• Upgrading VisualAge for Java 2.0

This chapter also discusses various processes and windows that you use in the
development of applications using VisualAge for Java. All development for this
redbook was performed using the Windows NT client of the Enterprise Edition of
VisualAge for Java Version 2.0. If you are using a different client or the
Professional Edition, there may be some slight differences in the processes and
windows discussed and shown here.

The source code for any of the examples discussed in this chapter is available on
the Internet. For download instructions, please refer to Section A.1, “Downloading
the Files from the Internet” on page 396.

2.1 The VisualAge Family

VisualAge for Java is one of the newest members of the family of VisualAge
products. These products cover the complete range of client/server application
development topologies, clients, servers, and languages.

The VisualAge family supports the following programming environments:

• VisualAge for Java
• VisualAge for Java e-Business Edition
• VisualAge Generator (4GL)
• VisualAge for COBOL
• VisualAge for RPG
• VisualAge for C++
• VisualAge for Smalltalk
• VisualAge for Basic
• VisualAge for PacBase
• VisualAge Financial Foundation
• VisualAge 2000
• VisualAge WebRunner
• VisualAge Data Atlas
• VisualAge ISPF
• VisualAge Team Connection
© Copyright IBM Corp. 1997, 1998, 1999 11

• VisualAge Tivoli
• VisualAge PL/I

In addition, the VisualAge product set supports application development across
the following client and server platforms.

Note: Not all VisualAge products support all the client and servers listed here.

• OS/2
• Windows 3.1 and 3.11
• Windows NT
• Windows 95/98
• AIX
• OS/390
• OS/400

VisualAge uses a construction-from-parts paradigm, which eases the migration to
client/server, object-oriented, and Web-based technologies. With the Visual
Composition Editor, which is available with VisualAge for Java, you can develop
programs by visually arranging and connecting prefabricated parts. You can also
create your own reusable parts.

For a complete description of each of the VisualAge family members and
supported environments, visit the VisualAge Family Web page at:
http://www.software.ibm.com/ad/

2.2 VisualAge for Java Overview

IBM VisualAge for Java is one of the first enterprise-wide, team enabled,
incremental application development environments for Java in the industry. It is
designed to connect Java clients to existing server data, transactions, and
applications. This enables developers to extend server-based applications to
communicate with Java clients on the Internet or intranet, rather than rewrite the
application from scratch. VisualAge for Java creates 100% pure Java compatible
applications, applets, and JavaBeans.

2.2.1 VisualAge for Java Versions
VisualAge for Java is available in four scalable packages:

• Entry

A free, scaled-down version of the Professional product, aimed at people who
want to see to believe. Try it, but it is limited to 500 classes. No documentation
is shipped with the product (documentation can be viewed through the
Support page on the Web). The user is licensed for "internal, non-commercial
use." Note these points:

– No support provided
– Free
– Five hundred class limit
– Does not support the AS/400 Toolbox for Java

• Professional Edition

Includes a robust editor, debugger, browser, and a powerful Visual
Composition Editor that uses IBM's award-winning VisualAge programming
12 Building AS/400 Client/Server Applications with Java

paradigm. The Professional Edition is included with the VisualAge Developer
Domain Subscription for Java. Note these advantages:

– Supports JDK 1.1.7 and Swing1.0.3
– Supports the AS/400 Toolbox for Java
– Includes the IDE and VCE features
– Includes JavaBeans for Easy Access to Data
– Includes Integration with VisualAge TeamConnection, ClearCase, and

PVCS
– Includes Open Tool Integrator APIs

• Professional Edition shipped with ADTS V4R4

The AS/400 V4R4 Application Development Toolset (ADTS) product includes
a customized version of VisualAge for Java 2.0. The customized version
contains all of the features of the normal Professional edition. It includes a
copy of the AS/400 Toolbox for Java Modification 1. In addition, it contains two
DH Andrews reports on Java, and a coupon for a one-year free membership to
the VisualAge Developer Domain.

• Enterprise Edition

The first enterprise-aware, incremental Java application development
environment designed to connect Java clients to existing server data,
transactions, and applications. It includes these features:

– Includes all Professional Edition support and features mentioned above
– Includes Java Team Programming Support
– Includes Enterprise Toolkits, High Performance Compiler, and a Remote

Debugger
– Includes Enterprise Access Builders
– Includes Servlet Builder
– Includes Automated Object to Relational Mapping
– Supports SanFrancisco, Tivoli, Lotus, and Component Broker
– Supports AIX Development Environment

Beyond the current batch-based Java tools available today, VisualAge for Java
provides:

• Superior enterprise connectivity
• Project-based team development
• A true incremental rapid application development environment for Java

VisualAge for Java is part of the VisualAge family of products and shares some of
the components from the other VisualAge products. For example, VisualAge for
Java shares the team environment repository and image concepts (and
implementation) with the VisualAge for Smalltalk product. It also shares the VCE
component, which is common across all development environments.

With VisualAge for Java, the developer can develop 100% compliant Java JDK
1.1 applications and applets all from the same development environment. This
enables customers and business partners to migrate to Java-based Web applets
at their own pace along an incremental path, including:

• Implementing Java extensions to their applications
• Developing whole Java applications
• Moving to client/server Java applications
• Developing Web-based Java applets
Chapter 2. Introduction to VisualAge for Java 13

2.2.2 Integrated Development Environment
The Integrated Development Environment incorporated within the product
enables the developer to code/compile/test/debug single lines of code, as well as
full-scale applications, enabling the application to scale with the business
requirement. The IDE is built around the industry leading ENVY/Developer team
development environment from OTI (an IBM subsidiary company). It is well
recognized within the object technology marketplace for its ability to provide
management facilities for small and large scale application development projects.

The IDE enables a developer to build and run applications, applets, and code
snippets interactively without needing to run the compile statement (JAVAC) from
the command line. All applications can be run from within the IDE without
exporting the Java source or class files. This is achieved through the provision of
a JDK 1.1 compliant Virtual Machine (VM) within the IDE. Because you can
interactively modify code and run it without compilation, developers can debug
code on the fly. They can spot errors in their code with the debugger, change it,
and continue without bringing the running application down—all within the
VisualAge for Java IDE.

VisualAge for Java is an open IDE. Developers can easily import and export Java
source and class files, as well as JavaBeans that may have been purchased by
the company or made available on the Internet. The JavaBeans support in
VisualAge for Java also enables a developer to import an existing JavaBean (for
example, from the Internet) into VisualAge for Java, modify the bean, and export
it again for use within another JDK 1.1 compliant development environment (for
example, Symantic Cafe and Borland JBuilder).

Version 1 of VisualAge for Java supports JDK 1.1.4. Version 2 supports JDK 1.1.7
(the most recent released version at the time of publication). Along with the
current JDK support, VisualAge for Java also supports all the most current
standards for Java development (for example, Java Database Connectivity
(JDBC) and so forth), which is discussed later. Because of the portability of JDK
1.1 compliant Java code, code that is developed using VisualAge for Java can
run without change on the native AS/400 Java Virtual Machine, which is now
available.

2.2.3 Components and Features
VisualAge for Java has two components that extend its capabilities to make
client/server programming easier. The Enterprise Access Builders (EAB) provide
components to aid connection to DB2 compliant data sources, Customer
Information Control System (CICS) transactions, and other programs. In addition,
the AS/400 Toolbox for Java provides a series of classes specifically designed to
access many AS/400 features (all without using Client Access/400 as a
prerequisite).

The initial release of the product runs on OS/2 Warp Version 4.0, Windows NT
4.0, or Windows 95/98.

VisualAge for Java Enterprise Edition Version 2.0 offers the following features:

• Support for JDK 1.1.7 and Swing 1.0.3

• An Integrated Development Environment (IDE) with visual programming
support for creating Java applets and Swing beans
14 Building AS/400 Client/Server Applications with Java

• Visual Composition Editor (VCE)

• Support for a team of programmers to share and maintain source code in a
single repository

• Wizards for string externalization to assist in building multi-lingual applications

• Complete support for object serialization

• Ability to import GUIs built in other Java development environments

• Support for JavaDoc output

• JavaBeans for easy access to data

• Integration with VisualAge TeamConnection, ClearCase, and PVCS

• Enterprise Toolkits for AS/400 and Workstation, including High Performance
Compilers for Java and a Remote Java Debugger (the Enterprise Toolkit for
OS/390 is not included in this product)

Note: IBM intends to deliver VisualAge for Java, Enterprise Edition for
OS/390. It will include a high-performance compiler for compiling class files
compatible with Java Development Kit (JDK) 1.1.7, remote debug capabilities
(Windows NT client only), and a performance analyzer (Windows NT client
only).

• Enterprise Access Builder for SAP R/3 using SAP R/3 BAPI business objects

• Enterprise Access Builder for Data for JDBC access to enterprise data

• Enterprise Access Builder for Java to C++ for access to C++ programs

• Enterprise Access Builder for RMI for creating distributed Java applications

• Enterprise Access Builder for Persistence for transforming relational schemas
into Enterprise JavaBeans components

• Enterprise Access Builder for interacting with existing applications and data

• IDL Development Environment for building CORBA-compliant applications

• Servlet Builder for creating and testing servlets

• Tool Integrators API for extending VisualAge for Java

• Wizards for building applications from San Francisco Application Components

• Domino AgentRunner tool for running and debugging your Lotus Domino
agents in the IDE

• Tivoli beans to make your Java applications "ready to manage" with Tivoli's
enterprise management software

• MigrationAssistant to help you migrate ActiveX controls to JavaBeans

• HTML documentation with advanced search capabilities

All of the preceding components use the JDK 1.1 and Java Virtual Machine
Support of VisualAge for Java. Note that the Professional Edition does not
include all of these mentioned features.
Chapter 2. Introduction to VisualAge for Java 15

2.3 Integrated Development Environment (IDE)

This section of the chapter covers the Integrated Development Environment (IDE)
component of VisualAge for Java.

2.3.1 Java Support
Java is a collection of classes built from the ground up, following object-oriented
(OO) principles. In Java, everything is an object except for the standard data
types inherited at the top of the hierarchy from the root class, object.

Java classes are contained in packages. The concept of a package in Java is a
useful way of grouping classes that are related. A Java package is similar in
concept to an AS/400 ILE service program.

JDBC is the Java standard to manipulate enterprise data stored in relational
databases. It is the Java equivalent to ODBC, a widely accepted standard
developed by Microsoft. JDBC provides a standard SQL database access
interface. Constructs such as database connections, SQL statements, result sets,
and database meta data are included. With JDBC, it is possible to develop Java
applications independently of the target relational database management system
(R-DBMS). Many vendors already provide (or will provide in the near future)
JDBC drivers targeted at accessing dozens of database management systems.
The AS/400 system is no exception and IBM Rochester provides a JDBC driver to
access DB2/400 Database as part of the AS/400 Toolbox for Java set of classes.

In conjunction with JDBC, JavaSoft has released a JDBC-to-ODBC bridge. Such
a bridge provides a way for Java applications developed to the JDBC standard to
gain access to any database using the existing ODBC drivers.

Remote Method Invocation (RMI) lets programmers create Java objects whose
methods can be invoked from another Java Virtual Machine. RMI is equivalent to
a Remote Procedure Call in the non-object world.

The JavaBeans API defines a portable, platform-neutral set of APIs for software
components. JavaBeans components can plug into existing component
architectures such as IBM's OpenDoc, Microsoft's OLE/COM/Active-X
architecture, or Netscape's LiveConnect.

Java Native Interface was known previously as the native method interface in
JDK 1.0. It provides the capability for a Java object to call a native platform
function typically written in C, C++, or any other language.

The internationalization support allows the development of localized applets and
applications. The global Internet demands global software that can be developed
independently of the countries or languages of its users, and be localized for
multiple countries or regions. JDK 1.1 provides a rich set of Internationalization
APIs for developing global applications. These APIs are based on the Unicode
2.0 character encoding and include the ability to adapt text, numbers, dates,
currency, and user-defined objects to any country's conventions.

Java Archive (JAR) is a platform-independent file format that aggregates many
files into one, similar in concept to a ZIP file. Multiple Java applets and their
requisite components (class files, images, and sounds) can be bundled in a JAR
file and subsequently downloaded to a browser in a single HTTP transaction,
16 Building AS/400 Client/Server Applications with Java

which greatly improves the download speed. The JAR format also supports
compression, which reduces the file size and further improves the download time.
In addition, the Applet author can digitally sign individual entries in a JAR file to
authenticate their origin. It is fully backward-compatible with existing applet code
and is fully extendible, being written in Java.

The Core Java JDK 1.1 API includes the following packages:

• Java.lang

This package contains all the classes and interfaces of the base Java
language.

• Java.util

This package contains various utility classes and interfaces, including random
numbers, system properties, and other useful classes.

• Java.io

This package provides the input/output classes and the interfaces for files and
streams.

• Java.net

This package is composed of classes and interfaces for handling network
operations such as TCP/IP, Sockets, and URL.

• Java.awt

This package allows for the definition of GUI constructs that are portable to
multiple windowing systems. This is the only package in the core API to
include sub-packages. The following sub-packages are part of the Java.awt
package:

– Java.awt.image

Provides the classes necessary to handle images in various formats, such
as GIF and JPEG.

– Java.awt.peer

Provides hidden classes that map their Java.awt equivalents and are
designed to implement the GUI constructs on specific platforms such as
Apple's Macintosh, Microsoft's Windows 95/98/NT, or UNIX's Motif.

• Java.applet

This package is designed to provide the behavior specifically for applets.

For a full description of the Java class library and core API, visit the JavaSoft JDK
Web site at: http://www.java.sun.com:80/products/jdk/1.1/docs/index.html

2.3.2 Navigating within VisualAge for Java
This section introduces the fundamental elements of the VisualAge for Java IDE
that are accessed from the Workbench window in the IDE. It covers:

• Starting VisualAge for Java

• The Workbench and its hierarchy:

– Projects
– Packages
– Classes
Chapter 2. Introduction to VisualAge for Java 17

– Interfaces
– Managing
– All Problems

• Browsers:

– Project
– Package
– Class

2.3.2.1 Starting VisualAge for Java
During the installation of VisualAge for Java, an item is added to the Windows
taskbar — IBM VisualAge for Java for Windows. This item has a number of
sub-items, and selecting IBM VisualAge for Java starts VisualAge for Java.
Follow a similar process if you are using the OS/2 or Windows NT client (see
Figure 10).

Figure 10. Starting VisualAge for Java

During the start-up process, VisualAge for Java loads the development image.
Since this image can be 8MB or larger (typically in the 15MB to 25MB range), the
start-up process can take one to two minutes because the entire image must be
loaded into memory. The development image is also known as the workspace
and these two terms are used interchangeably in this chapter. If this is the first
time VisualAge for Java is started, the first window displayed is the Welcome
dialog window (see Figure 11 on page 19).
18 Building AS/400 Client/Server Applications with Java

Figure 11. Welcome Dialog Window

The Welcome dialog window provides a single point to perform most of the simple
tasks. However, as you gain more experience using VisualAge for Java, you may
decide to stop this window from appearing at start-up. To do so, click on the
corresponding check box. If you wish to reactivate the Welcome dialog window
later, refer to Figure 73 on page 77.

Select Go to the Workbench and press OK to go to the Workbench window. The
window shown in Figure 12 on page 20 appears.
Chapter 2. Introduction to VisualAge for Java 19

Figure 12. VisualAge for Java Workbench

The Workbench is the main window into the workspace. You organize your work
from the Workbench. From here, you can open several other windows to help
with your tasks. As you open windows, navigate in them, create source code, and
perform other tasks, the workspace is modified. From the Workbench, you can
open specialized windows (called browsers) on individual program elements in
the workspace.

The Workbench window is split into a number of areas that are common across
most of the VisualAge for Java windows:

• Title bar

Contains the title and current user.

• Menu bar

Provides access to all functions.

• Tool bar

Provides fast access to most used menu items.

• Tool tip

Shows the meaning of the toolbar buttons.

Title bar Menu bar Tool bar Tool tip

Notebook tab

Hierarchy pane

Source pane

Status line

Pane title bar

Pane title bar
20 Building AS/400 Client/Server Applications with Java

• Notebook tab

Provides a view of the four fundamental components of VisualAge for Java
(projects, packages, classes, and interfaces), as well as a tab for managing
them and one for displaying any unresolved problems.

• Hierarchy pane

Typically displays the component being browsed in context with its contained
components. For example, a project browser shows all of its packages and
each package is expandable to show all of the classes/interfaces it contains,
and so forth.

• Source pane

If a method is highlighted in the hierarchy pane, the method source code is
displayed in the source pane. Similarly, if a class/interface is highlighted in the
hierarchy pane, the class/interface definition is displayed in the source pane.
Any source code can be edited directly in the source pane.

• Pane title bar

Maximizes or resizes the corresponding pane when double-clicked (works
with any pane in VisualAge for Java).

• Status line

Provides feedback to the user on the current action/mouse position/selection,
and so forth.

2.3.2.2 Component Hierarchy
Source code is stored as structured objects in the following hierarchy of
VisualAge program elements:

Projects
Packages

Types (Classes or Interfaces)
Methods or constructors

You are probably already aware of the package, class or interface, and method or
constructor components that are part of the standard Java language. In addition,
VisualAge for Java includes a higher grouping level called projects, which
enables the grouping together of various packages. Each higher level component
can have multiple lower level components. For example, a project can contain
one or more packages.

Various icons are used in each of the browsers to depict each component.
Examples of the icons used are shown in Figure 13 through Figure 17. Details
about Icons used in VisualAge for Java can be found in the on-line help under
Reference —> Integrated Development Environment —> IDE Symbols (see
Section 2.3.7.6, “VisualAge for Java Help” on page 82).

Figure 13. Project Icon
Chapter 2. Introduction to VisualAge for Java 21

Figure 14. Package Icon

Figure 15. Class Icon

Figure 16. Interface Icon

Figure 17. Executable Class Icon

2.3.2.3 Workbench Window
In the Workbench window, the TeamLab project is expanded to show its
packages. One of these packages, the TeamLab Package, is expanded to show
its classes and interfaces (classes only in this case). One of these classes, the
DPCExample Class, is expanded to show its methods. One of its methods, the
connectToDB (String, String, String) method, is selected and its source is shown
in the source pane (see Figure 18 on page 23).
22 Building AS/400 Client/Server Applications with Java

Figure 18. VisualAge for Java Workbench

2.3.2.4 Component Browsers
This section discusses the three component browsers used extensively within
VisualAge for Java (projects, packages and types, which includes classes and
interfaces). You can open each of these browsers by selecting the menu
Workspace from the menu bar. There, you select the menu item of the browser
you want to open (see Figure 19).

Figure 19. Browser Selection

You are prompted to choose one of the corresponding components, either
project, package, or type. The browser appears after you make a selection from
that window (see Figure 20 on page 24).
Chapter 2. Introduction to VisualAge for Java 23

Figure 20. Component Selection

Figure 20 shows the information and functions that the Component Selection
window provides. They include:

• Title bar

Indicates which browser you are about to open.

• Search line

Provides a search including wildcards.

• Component selection

Displays all components from which to choose by clicking on one of them.

• Package selection

If a component exists in more than one package, you decide here from which
of the packages the component should be taken. This applies only for types,
since packages and projects must have unique names in your workspace.

Select the component and press OK to open the browser.

There are other ways to open a browser directly. For example, right-click a
component shown on the hierarchy pane of the Workbench (see Figure 12 on
page 20) and select Open from its pop-up menu. After that, the corresponding
browser opens. Since Open is the default response for double-clicking, you
receive the same result.

Search line

Title bar

Component selection

Package selection
24 Building AS/400 Client/Server Applications with Java

2.3.2.5 Project Browser
The project browser displays details of all the components within the project,
including the packages, classes, interfaces, methods, comments, and source
code. If you select a project, package, type, or method, you can display or edit
the comments or source code directly in the source pane (see Figure 21).

Figure 21. Project Browser Packages View

The project browser window has seven different views that you can access by
pressing their notebook tabs:

• Packages view

Provides detailed information about all packages, types, and methods within
the project. All of this information can be displayed and edited in the source
pane (see Figure 21).

• Classes view

Provides detailed information about the class hierarchy, all classes, and their
methods within the project (see Figure 22 on page 26).
Chapter 2. Introduction to VisualAge for Java 25

Figure 22. Project Browser Classes View

• Interfaces view

Provides detailed information about all interfaces and their methods within the
project (see Figure 23 on page 27).
26 Building AS/400 Client/Server Applications with Java

Figure 23. Project Browser Interfaces View

• Managing view

Is only available in Enterprise Edition. Provides detailed information about
package group members (project team members) and ownership of types
within the project. All of this information can be managed in the corresponding
pane (see Figure 24).

Figure 24. Project Browser Managing View
Chapter 2. Introduction to VisualAge for Java 27

• Editions view

Provides detailed information about all versions and editions of packages,
types and methods within the project. It enables the developer to manage
multiple versions and editions of packages, classes, interfaces, and methods
(see Figure 25).

Figure 25. Project Browser Editions View

• Problems view

Provides detailed information about all unresolved problems within the project.
All of this information can be managed in the corresponding pane (see Figure
26 on page 29).
28 Building AS/400 Client/Server Applications with Java

Figure 26. Project Browser Problems View

• IDLs view

Is only available in the Enterprise Edition. It provides detailed information
about all IDLs (Interface Definition Language) within the project.

2.3.2.6 Package Browser
The package browser displays details of all the components within the package,
including the class hierarchy, classes, interfaces, methods, comments, and
source code. If you select a package, type, or method, you can display or edit the
comments or source code directly in the source pane. In the hierarchy pane, you
can switch between a tree and graph layout.

The views in this browser have a slightly different layout, but they work basically
the same way as the corresponding views of the project browser. The only
difference is that you navigate within a package and not within a project. For this
reason, the number of upper panes is reduced to two, and there is more space for
class and method names (see Figure 27 on page 30).
Chapter 2. Introduction to VisualAge for Java 29

Figure 27. Package Browser Classes View

2.3.2.7 Type Browser
The type browser is a little different in its implementation when compared with the
project and package browsers. The type browser is used to display classes and
interfaces (types) in the upper pane and their methods, comments, and source
code in the lower pane (see Figure 28 on page 31).
30 Building AS/400 Client/Server Applications with Java

Figure 28. Type Browser Browsing Class

The hierarchy view and editions view work in the same way as the other two
browsers. In the hierarchy pane, you can switch between the tree and graph
layout. When displaying interfaces with the type browser, you only have two
views, one for methods and one for editions (see Figure 29 on page 32).
Chapter 2. Introduction to VisualAge for Java 31

Figure 29. Type Browser Browsing Interface

In addition to the browsers, there are two additional views, one for the Visual
Composition Editor and one for BeanInfo:

• Visual Composition view

Provides a VCE for the design of classes (see Figure 30 on page 33).
32 Building AS/400 Client/Server Applications with Java

Figure 30. Type Browser Visual Composition View

• BeanInfo view

Provides all information about the features that have been defined for the
class (if any), and also allows the BeanInfo to be modified (see Figure 31 on
page 34).

Free-form surface

Parts palette

Bean/part

methods

Run
Debug

Connections

Frame
Chapter 2. Introduction to VisualAge for Java 33

Figure 31. Type Browser BeanInfo View

2.3.3 How It Fits Together
VisualAge for Java uses three basic components to build reusable JavaBeans
and to use JavaBeans that may have been built by other tool vendors. These
three components are the VCE, the Features editor, and the Script editor (see
Figure 32).

Figure 32. VisualAge for Java Concepts

VisualAge for Java comes with a large number of reusable beans or parts that are
stored either in the VisualAge image/workspace or that can be brought into the
image/workspace from the repository (sometimes called the Parts/Beans
Warehouse). Once a class or bean is in the image, a developer can use the VCE
to connect multiple beans together to perform the required function.
34 Building AS/400 Client/Server Applications with Java

This product can also be used to develop reusable beans, or modify existing
beans. This is achieved by using a combination of the Feature editors for
properties, methods, and events, and the Script editor for actually writing the
Java code that is invoked by the various features.

2.3.3.1 JavaBeans and Classes
As discussed in Chapter 1, “Object-Oriented Technology Overview” on page 1, a
class is a template for objects that have similar behavior (methods) and data
elements (variables, properties). To use classes in visual builders (for example,
VisualAge for Java, Symantic Cafe), the class needs to have features defined for
it that allow it to be connected to other beans within a visual development
environment (see Figure 33).

Figure 33. Class and Bean Difference

JavaBeans add standardized features and object introspection mechanisms to
classes, which allow builder tools to query components (classes or groups of
classes) about their properties, behavior, and events. They also allow visual
builders to connect beans together that are implemented to the same JavaBeans
standard.

Individual JavaBeans vary in functionality, but most share certain common
defining features. These include:

• Introspection — Allow a builder tool to analyze how a bean works.

• Events — Allow beans to fire events, and inform builder tools about the
events they can fire and the events they can handle.

• Properties — Allow beans to be manipulated programmatically.

• Methods — Allow beans to perform functions implemented by the underlying
classes methods.

• Customizing — Allow a user to alter the appearance and behavior of a bean.

• Persistence — Allow beans that are customized in an application builder to
have their state saved and restored.
Chapter 2. Introduction to VisualAge for Java 35

Figure 34. Account Example

In Figure 34, an account class is defined with functions/methods and variables. In
addition to the account class definition, bean features are defined for the
following definitions:

• Variable/Property

– AccountHolderName
– AccountBalance

• Method

– WithdrawCash
– DepositCash

• Event

– GoneOverdrawn

In this example, there is probably a one-to-one relationship between the
accountHolderName and accountBalance Bean properties with instance
variables of the same name (defined in the class). There also is the
withdrawCash and depositCash methods with bean method features of the same
name. However, in addition to these four features, the bean has an event,
goneOverdrawn, which is fired from within the withdrawCash method. Other
JavaBeans can listen for this event before taking action. For example, an
OverDrawnAccounts object may listen for account objects to fire this event. When
the account object fires the goneOverdrawn event, the OverDrawnAccounts
object senses this automatically (because it is listening) and takes appropriate
action (sends a letter informing the account holder of the account status and
charges that apply).
36 Building AS/400 Client/Server Applications with Java

Figure 35. Example Connection of Two Beans

In Figure 35, there are two classes packaged as beans. The bean (for example, a
push button) on the right side has a connection to the bean (for example, a list
box) on the left. When the clicked event occurs, the list box performs the add
function. In VisualAge for Java, this connection is made through a series of
simple steps that connect the two beans together.

Beans can either be a single bean made up of individual beans/classes, or they
can be composite beans made up of two or more classes/beans. In Figure 36, the
push button is a single bean, where the window is a composite bean made up of
a push button and a list. The same concept applies also to non-visual
classes/beans. For example, an array contains a number of strings.

Figure 36. Single and Composite Beans Example

The previous discussion has introduced the concepts (albeit, in overview) of
visual builders and of JavaBeans. In VisualAge for Java, you visually construct
many modules of your application by connecting various JavaBeans using the
Visual Composition Editor (VCE), VisualAge's visual builder.
Chapter 2. Introduction to VisualAge for Java 37

There are three basic types of connections that the Visual Composition Editor
provides (see Table 1). The return value is supplied by the connection's
normalResult property.

Table 1. Connection Types

A property-to-property connection links two property values together. This causes
the value of one property to change when the value of the other changes. A
connection of this type appears as a bi-directional, dark blue line with dots at
either end. The solid dot indicates the target, and the hollow dot indicates the
source. When the part is constructed in the running application, the target
property is set to the value of the source property. These connections never take
parameters.

An event-to-method connection calls the target method whenever the source
event occurs. An event-to-method connection appears as a uni-directional, dark
green arrow with the arrow head pointing to the target.

A parameter connection supplies a parameter value to a method by passing
either a property's value or the return value from another method. This
connection appears as a bi-directional, violet line with dots at either end. The
solid dot indicates the target, and the hollow dot indicates the source. In addition,
the parameter names are included in the connection's pop-up menu. The
parameter is always the source of the connection because the parameter cannot
store any values. If you connect the parameter as the target, VisualAge reverses
the direction of the connection to make the parameter the source.

The Visual Composition Editor uses a dashed line to give you a visual clue so
that you know when a parameter connection is needed. For example, if you
connect an event to a method that requires parameter values, the connection line
between the event and the method is dashed.

A connection is directional, meaning that it has a source and a target. The
direction in which you draw the connection determines the source and target. The
part on which the connection begins is the source, and the part on which it ends
is the target. When you make an event connection, the Visual Composition Editor
draws an arrow on the connection line between the two parts. The arrow points
from the source to the target. If information can pass through the connection in
both directions (as it can in property-to-property connections), a hollow circle
indicates the source, and a solid circle indicates the target.

Often, it does not matter which part you choose as the source or target, but there
are connections where direction is important. For example, in an event
connection, the event is always the source. If you try to make an event the target,
VisualAge automatically reverses it for you.

If you want to ... Connection Type Color Return Value

Cause one data value to
change to another

Property-to-property Dark blue None

Call a behavior whenever
an event occurs

Event-to-method Dark green Yes

Supply an input argument Parameter Purple None
38 Building AS/400 Client/Server Applications with Java

If the target of the connection takes input parameters, the connection line initially
appears dashed to show that it is incomplete. Many events pass data through the
connection to the target. The connection line may appear solid even if the target
takes one input parameter and you have not otherwise provided one.

The target of a connection can have a return value. If it does, you can treat the
return value as a no-set property of the connection and use it as the source of
another connection. This return value appears in the connection menu for the
connection as normalResult.

2.3.4 Building a Sample Application
The objective of this section is to build a simple application using VisualAge for
Java. The sample application enables an end user to add parts to a list as if the
user is ordering them in a parts order application.

Earlier in this chapter, VisualAge for Java was started, and you navigated past
the Welcome dialog window to the Workbench window.

To follow along in building the application, from the Workbench window, now
perform the following steps:

1. Select the Selected menu item.
2. Select the Add sub-menu item.
3. Select the Project... sub-menu item.

Note: In all future scripts, selected sub-menu items are formatted as shown in
the following example:

Selected—>Add—>Project...

In your workbench window, this action appears as shown in Figure 37.

Figure 37. Add Project Selection

The SmartGuide Add Project window is shown (see Figure 38 on page 40).
Note that you can also add existing projects from a repository.

4. Type the name of your Project, Team01Project, and click Finish.
Chapter 2. Introduction to VisualAge for Java 39

Figure 38. Add Project Example

A project named "Team01Project" is created. You return to the Projects view of
the Workbench window, and the Team01Project is highlighted.

2.3.4.1 Opening the Team01Project
To open the project, perform these steps:

1. Bring up the Team01Project's pop-up menu (click the right mouse button).
2. Select Open.

The Team01Project window opens. The title of this window is "Team01Project
(mm/dd/yy hh:mm:ss am) [UserID]". The time stamp element of the window title is
an indication of the date/time when this edition of the project was created. If the
Team01Project window does not open up maximized, maximize it now. You can
see and edit more information and you need less mouse-action if you always
work with maximized windows.

2.3.4.2 Adding a New Package to the Team01Project Project
To add a new package, perform the following tasks:

1. Right-click inside the Packages pane.
2. Select Add—>Package... from the pop-up menu.

The project name to which this package should be added is already filled in.

3. Enter Team01Lab1 as the package name, and click Finish to create it.
40 Building AS/400 Client/Server Applications with Java

See Figure 39. Note that you can also add existing packages from a repository.

Figure 39. Add Package Example

A new package, Team01Lab1, is created in the Team01Project. The new package
is shown highlighted in the Packages pane of the Team01Project window.

2.3.4.3 Adding a New Class to a Package
To add a new class, follow these steps:

1. Select the Types—>Add—>Class... menu item.
2. Enter Team01OrderEntry as the class name.
3. Enter java.awt.Frame as the superclass name.

If you navigated as described before, the project and package name are already
entered. Otherwise, you need to type them into the corresponding Fields. Note
that class names are case sensitive, and by convention, start with a capital letter.
You are about to create a visual class, and most visual classes have
java.awt.Frame as their superclass.

To create the class, perform these steps:

1. Select the Browse the Class when finished check box.
2. Select the Compose the class visually check box.
3. Click the Finish button.

See Figure 40 on page 42.
Chapter 2. Introduction to VisualAge for Java 41

Figure 40. Add Class Example

A new class, Team01OrderEntry, is created in the package Team01Lab1 in the
project Team01Project. The new class is shown in the types pane of the Team01
Project window, and the VCE for the Team01OrderEntry class is opened and in
focus.

The title of the window is Team01OrderEntry (mm/dd/yy hh:mm:ss am) in Team01
Lab1 [UserID]. The suffix time-stamp element of the window title is an indication
of the date/time when this edition of the class was created. You can also see the
package to which the class belongs to (see Figure 41 on page 43).
42 Building AS/400 Client/Server Applications with Java

Figure 41. VCE Example

Take a moment to review the window in Figure 41. There are various components
in the VCE:

• Frame — The frame being built, usually in the top left corner of the free-form
surface.

• Free-form surface — The white space surrounding the frame being built. The
free-form surface is used to drop other parts that are not visible in the frame
you are actually building (for example, a timer or another frame).

• Parts palette — The area on the left of the VCE window that contains:

– Categories menu — Select a category of beans (for example AWT or
Swing).

– Tool area — Select either the selection tool or the choose bean tool.

– Arrow buttons — If there is not enough space to show all beans, navigate
up and down the beans of a selected group using the arrow buttons.

– Bean area — Select any bean by clicking its symbol. Now you are ready to
drop it onto the design area.

Group menu

Bean area

Arrow button

Tool area
Chapter 2. Introduction to VisualAge for Java 43

2.3.4.4 Adding the Visual Components to the Window
The completed application for this section looks similar to Figure 42.

Figure 42. Layout Example

Note: Do not be too concerned with the placement and alignment of parts as you
are building the window. We will make it look better later.

Increase the size of the window at this point. This makes it easier to add parts. To
size a part, follow this sequence:

1. Click on the part to select it. There is a block in each corner, which indicates
that it is selected. These are called re-size handles.

2. Move the mouse pointer over one of these re-size handles. Press and hold the
left mouse button to drag the part to its desired size.

Next, we build the graphical user interface by selecting beans from the parts
palette and placing them on the window. Use the completed window shown in
Figure 42 as a guide.

To build the interface, perform the following steps:

1. Add the following elements:

• One text field
• Two buttons
• One list
• Two labels

Note: Use the tool tip to recognize the beans in the parts palette. Move the
mouse pointer over the top of the part and view the on-line help.

2. Make sure that the AWT category from the category selection is selected (see
Figure 43 on page 45).
44 Building AS/400 Client/Server Applications with Java

Figure 43. Composition Editor Selecting a Bean Category Example

To add a TextField to the frame, follow these steps:

1. Move the cursor over the bean area and left-click on the TextField bean.

This loads the cursor with the TextField bean. Note the category and bean
name indicated on the status line and the cursor changing into a crosshair
when moved into the design area (see Figure 44).

Figure 44. Composition Editor Creating a Text Field Example

2. Move the cursor into the design area, onto the frame, near to the upper left
edge. Left-click to drop the TextField into position.

The field is now drawn inside the frame and selected. You can recognize a
selected object by its resize handles (see Figure 44). To deselect an object,
simply click onto an empty spot in free-form surface around the frame.

To resize an object in the design area, follow these steps:

1. Move the cursor exactly over one of the handles.
2. Click on it and drag it to the desired direction.

The cursor changes into a two-headed arrow, as soon as you are in the
resizing mode (see Figure 44).

Repositioning is similar to resizing. To reposition an object, run these steps:

1. Move the cursor exactly over one of the lines that surrounds the selected
object.

2. Click on the line and drag the object to the desired place.

1 Click to select 3 Drop by clicking;

2 Crosshair while bean loaded and moving

4 Resizing

5 Repositioning

select text field
Chapter 2. Introduction to VisualAge for Java 45

The cursor changes into a four-headed arrow, as soon as you are in the
repositioning mode (see Figure 44 on page 45).

Resize the TextField to the desired length. Follow these steps:

1. Drag the middle right resize handle to the right.
2. Reposition it by dragging the field to the desired position.

The result of these actions is a new text field on the frame (see Figure 44 on
page 45).

To add the buttons, perform these tasks:

1. Select the Button bean from the bean area.
2. Drop it onto the upper right side of the frame.
3. Drop another button just below the first one.

To add the list, follow these steps:

1. Select the List bean.
2. Drop it onto the lower left side of the frame under the text field.
3. Resize the list by dragging the lower right handle to the lower right corner.

To add the label, complete these steps:

1. Select the Label bean.
2. Drop it just above the text field you created earlier.
3. Drop another Label bean above the list.

Note: If you want to create an object multiple times inside the design area (two
buttons and two labels in our example), there are other, more efficient ways to do
this. For example, pressing the Control key during the selection of a bean from
the bean area causes the cursor not to be unloaded when the bean is dropped.
This way you can add several beans of the same type while only selecting it
once. To unload the cursor, left-click on the selection tool, or directly select
another bean from the bean area. Another way to create multiple beans of the
same type is to select an object of the same type from the design area by clicking
on it once. Now you can copy the selected object using three different ways:

• From the menu bar, select Edit—>Copy, then Edit—>Paste (slow). Now your
cursor is loaded with the same bean that you selected before, and you are
ready to drop it onto the design area.

• Use the shortcut keys indicated near the menu items from the Edit menu
(fast). In our example, press Ctrl+C and Ctrl+V.

• Press and hold down the Ctrl key, and drag the selected Object to a new
position (very fast).

Becoming familiar with shortcut keys improves your speed in visual programming
greatly. The most frequently used actions all have shortcut keys (see Figure 45
on page 47).
46 Building AS/400 Client/Server Applications with Java

Figure 45. Composition Editor Shortcut Keys

2.3.4.5 Making the Frame Look Good
In this section, we improve the appearance of the frame. First, we work with the
labels. Move the cursor over the Label1 just above the TextField1 and
double-click.

This action opens the properties window where all of the properties (features) of
the bean can be set. There is a drop-down menu under the title bar, where the
name of the selected bean appears. In the properties window, there are two
columns. The left one indicates the property name, and the right one displays its
current value.

Note: Whenever you cannot find a property, make sure that the Show expert
features check box is checked (see Figure 46).

Figure 46. Composition Editor Properties Window Example

Use the delete key for a shortcut

Properties and features

Property values

Check box for

Selected bean

expert features
Chapter 2. Introduction to VisualAge for Java 47

Now we are going to change two property values for bean Label1 in the
properties window. Change the text Label1 to "Part" and the bean name Label1 to
"LabelPart".

Note: It is helpful to change a bean’s name. It is much easier to search for a
LabelPart than for a Label9 out of 15 labels inside the Java source code, which is
generated later. Giving the label a bean name that refers to the corresponding
object makes it also easier to determine which label belongs to which object. This
applies to any bean you build in the VCE, as well as for buttons, text fields,
frames, and so on.

To change the Label1 property value, perform these steps:

1. Click on the property value for the text property.
2. Overwrite Label1 with "Part".
3. Click on the property value for beanName.
4. Overwrite Label1 with "LabelPart".
5. Click on the X on the upper right corner to close the property window.

When changing the text property, you see a small button on the right end of the
property value. If pressed, it brings up the text property editor, which can be used
to externalize strings. We do not need this option in our examples. Simply
overwriting the text does the job for us. Note that for different property types, you
have different property value editors. For example, consider a color property
value editor, a boolean property value editor, or a font property value editor (see
Figure 47).

Figure 47. Composition Editor Property Editor Examples

The label we changed before should now appear as Part and have the name
LabelPart. Check this by selecting (clicking) the bean again, and see which text
appears in the status line. Following the same procedure, you can now change all

Color property value editor

Font property value editor

Boolean property value editor
48 Building AS/400 Client/Server Applications with Java

the other beans in the design area. Keep the property window open while you
select one bean after the other. The changed values are saved, even if the
property window is not closed. To change the background color, use the color
property value editor as shown in Figure 47 on page 48.

To complete property changes, perform these steps:

1. Open the property window for the Team01OrderEntry (double-click on the title
bar of the frame).

2. Change its title to "Order Entry Window".
3. Change its background to "lightGray".
4. Select TextField1 and change its beanName to "Part".
5. Change its background to "White".
6. Select the Label2 and change its beanName to "LabelListParts".
7. Change its text to "List of Parts".
8. Select the List1 and change its beanName to "ListParts".
9. Change its background to "White".
10.Select the Button1 and change its beanName to "ButtonAdd".
11.Change its label to "Add".
12.Select the Button2 and change its beanName to "ButtonExit".
13.Change its label to "Exit".

After this exercise, your frame looks almost the same as the one in Figure 42 on
page 44. It is a good idea to save the work now. To save your work, perform either
of the following options:

• From the menu bar, choose Bean—>Save Bean.
• Press Ctrl+S.

Now an information window appears that illustrates the saving process.
VisualAge for Java is saving the designed frame and generating the Java source
code for it. Switch to the Methods view of the type browser and look at the
generated class and methods. You can display the source code of a method by
clicking on the methods name in the upper pane. The source code is displayed in
the lower pane.

Switch back to the VCE view since there is some resizing, repositioning and
alignment work left to do. Look at the tool bar before completing the frame (see
Figure 48).

Figure 48. Composition Editor Tool Bar

You can learn the function of each smarticon by moving the cursor slowly over it
and viewing the help text inside the tool tip. It shows you which action will be
taken when the smarticon is clicked. Depending on which object or how many
objects are selected, the smarticons are enabled or disabled. For now, we need
to use the green alignment, red distribution, and blue match tools.

You can select multiple objects when sizing, positioning, or aligning the
components. To select multiple objects, hold down the Ctrl key and left-click
sequentially all of the desired objects. If you are working with multiple object
selections, the last selected object is always the reference object for all of the
Chapter 2. Introduction to VisualAge for Java 49

other objects in your selection. The size and position of the reference object
affects the size and position of all the other objects in your selection. This applies
when you are resizing or repositioning the reference object or when you are using
one of the alignment, distribution, or match tools. You recognize the reference
object by its filled (black) resize handles, while the other objects in the selection
have hollow (white) handles (see Figure 49).

Figure 49. Composition Editor Multiple Bean Selection Example

To size the Part and ListParts beans, complete these steps:

1. Select, resize, and reposition the ListParts bean until you are satisfied with
the width and position of it.

2. Hold down the Ctrl key and click on the beans in this order: Part and
ListParts.

3. Click on the Match Width smarticon.

The result of this action is that the width of the Part bean matches the width of the
ListParts bean.

To align the beans, perform these steps:

1. Hold down the Ctrl key and click on the beans in this order: LabelPart, Part,
LabelListParts, and ListParts.

2. Click on the Align Left and the Distribute Vertically smarticons.

Observe the beans that are aligned to the left with the ListParts bean and equally
distributed in vertical direction inside the frame.

To resize the ListParts label, follow this sequence:

1. Select and resize the LabelListParts bean so that its entire text can be seen.
2. Deselect the LabelListParts bean by clicking on the white space around the

frame.

To align the buttons, complete these steps:

1. Hold down the Ctrl key and click on the beans in this order: Button Add and
Button Exit.

2. Click on the Align Left and Distribute Vertically smarticon.

Reference object Affected objects
50 Building AS/400 Client/Server Applications with Java

To run the application, perform the following tasks:

1. Click on the Run smarticon. The application is saved, generated, and started.
The developed frame appears.

2. Close the window to return to the VCE.

You now know all you need about designing a GUI with the VCE. You can
experiment with the techniques described in this chapter to become familiar with
the VCE. Using your style and GUI building skills, design the window according to
your own preferences. After this, you are ready to test the application. It does not
have any functionality built in yet, but you can see how it appears.

2.3.4.6 Adding the Function
First, you need to make the Exit button work. If a user presses the Exit button, the
frame should close in the same way as if the X button in the top right corner of the
frame was clicked. The only visible connection at this time provides exactly that
function. To find out what a connection stands for, left-click on the line connecting
the two objects together and view the text displayed in the status line (see Figure
50). Select the connection from the frame bean to the dispose() method.

Figure 50. Composition Editor Connection Example

You need to build the same kind of connection to make the Exit button work.
Whenever you want to connect an object, select it and right-click to display its
pop-up menu. Selecting Connect brings up the features available to you as
defined in the bean. They are displayed in the connection source pop-up window.

For the Exit button, find the actionPerformed feature, which listens or watches for
the default action being performed for the part. For a button, the default action is
the button being pressed or clicked. After selecting the connection source, a
dashed line with the spider on its end is shown. The spider allows you to connect
objects (beans) together by moving over the design area and selecting a target
object for the connection with a left-click. The target object to which you can
connect is marked by a dashed box.

Select the frame as the target in this example. As soon as you select that object,
the connection target pop-up window is displayed. From this window, choose the
desired feature of the target object. In this case, you want the frame to be closed
or disposed, so select the dispose() feature. As a result of this, a green
connection is displayed between the Exit button and the frame (see Figure 51 on
page 52).

Connection Source object for connection (frame)

Target object for connection (methods tag)Connection description
Chapter 2. Introduction to VisualAge for Java 51

To connect the Exit button to the Frame dispose method, perform these steps:

1. Move the cursor over the Exit button and left-click to select it.
2. With the cursor still over the Exit button, right-click to bring up the button’s

pop-up menu.
3. Select Connect—>actionPerformed.
4. Move the spider to the title bar of the frame and left-click.
5. From the target feature window, select dispose().
6. Click on OK.
7. Run the application and test the function of the Exit button.

Figure 51. Connecting Example

To explain all of the possible ways of creating a connection, we delete and rebuild
the connection two more times. These changes do not have any effect on the
function of the Exit button. Yet it still works in the same way.

To re-create the Exit connection, complete these tasks:

1. Click on the connection from the Exit button to the frame.
2. Press Delete to delete the connection.
3. Select the Exit button and right-click to bring up its pop-up menu.
4. Select Connect—>actionPerformed.
5. Move the spider to an empty spot in the free-form surface, and left-click on it.
6. From the target feature pop-up window, select Connectable Features... and

choose dispose(). See Figure 52 on page 53.
7. Click on OK.

Start connection Spider Dashed box for target
End connection
52 Building AS/400 Client/Server Applications with Java

Figure 52. Connectable Features Example

This connection points to the border of the design area. Compare the text shown
in the status line for this connection with the previous one. Notice that there is no
difference between them. Select the Connectable Features whenever you want to
investigate a bean in the VCE. This works for both the starting and ending
features of a connection.

Note, that depending on the type of bean selected, you can choose between the
properties, methods, and events that you want to connect. If you cannot find a
feature, make sure that the Show expert features check box is checked. You can
also change an existing connection by double-clicking on it. This action brings up
the connection properties window. There you can change source and target
features and set parameters for the connection if required. Note that this window
also has a check box for expert features (see Figure 53 on page 54).
Chapter 2. Introduction to VisualAge for Java 53

Figure 53. Connection Property Editor Example

The third way to create a connection is to connect a source feature directly to the
methods source code. This can be achieved by selecting Event to Code... from
the connection target pop-up window. That brings up a source editor from which
you can select the source event, the target method, and the target methods class.
For the frame that you are designing, you can also create a new method for the
target feature in the connection. The source editor also appears when you
double-click on a methods tag (grey box with methods name) inside the design
area. For all details of the source editor, see Figure 54.

Figure 54. Connection Source Editor Example
54 Building AS/400 Client/Server Applications with Java

To create the connection again, perform the following steps:

1. Click on the connection from the Exit button to the design area.
2. Press Delete to delete the connection.
3. Select the Exit button, and right-click to bring up its pop-up menu.
4. Select Connect—>actionPerformed.
5. Move the spider to an empty spot of the free-form surface, and left-click on it.
6. From the target feature pop-up window, select Event to Code..., which brings

up a source editor.
7. From the Method class drop-down list, select Frame.
8. From the Method drop-down list, select dispose().
9. Click on OK.
10.Press Ctrl+S to save your work.

Note that the connection also shows its resize handles when selected. You can
change the source and target of a connection by selecting one of the resize
handles at the end (a spider is shown) and moving it onto another object. With the
resize handles in the middle (four-headed arrow is shown), you can drag the line
of the connection to any desired spot in the design area. This way, you can
improve the readability of your visual design in case you have many connections
to draw. Try to create parallel lines and avoid crossing them as much as possible,
for less a less confusing, more clear design.

Since our frame does not have its own dispose() method, we have to choose the
dispose method from the superclass, which is java.awt.Frame. In this source
editor, you can also display, edit, and create methods for your bean. The result of
the previous actions is a connection that looks the same as the first one that was
generated by the VCE. The only difference is its starting point, the Exit button.

You are now ready to visually perform the function to add text entries from the
TextField to the list. To do so, perform the following steps:

1. Move the cursor over the Add button and left-click to select it.
2. With the cursor still over the Add button, right-click to bring up the Buttons

pop-up menu.
3. Select Connect—>actionPerformed.
4. Move the spider to ListParts and left-click.

The connection target pop-up window appears.

What happens when the Add button is pressed? You want to add a text/string to
the list that was entered in the TextField. Select add(String) from the pop-up
window. A dashed green connection is displayed between the Add button and the
list.

You have now completed half of this connection. You told VisualAge that when
the Add button is pressed, a string should be added to the list. However, you did
not specify which string to add. To complete the connection, follow these steps:

1. Move the cursor over the dashed green connection from the Add button to the
ListParts.

2. Left-click over the connection to select it. Selection handles are shown along
the connection to show that it has been selected.

3. With the cursor still over the connection (but not on a selection handle),
right-click to bring up the Connections pop-up menu.

4. Select Connect—>Item.
Chapter 2. Introduction to VisualAge for Java 55

5. Move the spider over Part.
6. Left-click and select text.

A purple arrow joins the Part to the green connection. Do not forget that
VisualAge applies color to each connection depending on its type.

You have now completed the window for this section. Test it out by pressing the
Run smarticon. Enter some values in the Part, and check if the Add button adds
them to the ListParts. Also try using the Exit button. Figure 55 shows the
completed VisualAge frame (your window may look similar).

Figure 55. VCE Example

2.3.4.7 Creating a Version for Your Application
Until now, you have been working inside an open edition of the project, package,
and class. When your example proves to work in the tests, you may want to make
a version out of it. By doing this, you can extend our application inside a new
edition and return to the last version whenever you need.

To version the application, perform these steps:

1. Left-click on the Hierarchy tab.

The class hierarchy is displayed showing the Team01OrderEntry class and its
super-classes.

2. Press the Show Edition Names smarticon.

The class Team01OrderEntry is followed by a time stamp, which indicates that
this is an open edition of the class.

3. Left-click on Team01Lab1.Team01OrderEntry to select it.

4. Select the Classes—>Manage—>Version... menu item

5. Make sure the Automatic radio button is selected and press OK (see Figure
56 on page 57).
56 Building AS/400 Client/Server Applications with Java

Figure 56. Create Version Example

Your class now has a version. Instead of the time stamp, the class name is
followed by its version number. To develop the class further, you need to create
another open edition of it in one of two ways:

• Select the class and from the menu bar: Classes—>Manage—>Create Open
Edition.

• Wait to be automatically prompted for that action the next time you save the
class with any new changes.

To create an open edition, complete these tasks:

1. Left-click on Team01Lab1.Team01OrderEntry to select it.
2. Select the Classes—>Manage—>Create Open Edition menu item from the

menu bar.

The new open edition of Team01OrderEntry is created. You are ready for the next
enhancements. To go back to any version of the class later, select the class from
the same screen. Then, select the Classes—>Replace With—>Another
Edition... Choose the desired edition from the window containing all of the
available editions.

1. Select

3. Versioning window

2. Select Manage—>Version
Chapter 2. Introduction to VisualAge for Java 57

2.3.4.8 Extending the Application
The application is now extended. Perform the following actions:

1. Add a quantity field.

2. Modify the behavior so that the Add button invokes a script to concatenate the
part and quantity details, and displays them in the list.

3. Add a Delete button to delete existing entries in the list.

4. Enable or disable the Delete button when an item is selected or deselected in
the list.

5. Add a Java script breakpoint and modify code when the breakpoint is invoked.

The completed development window should appear similar to the window shown
in Figure 57.

Figure 57. VCE Finished Example

Click on the Visual Composition tab to get back to the VCE view. Complete this
series of steps:

1. Add a Delete button to the window:

a. Select the Button bean from the bean area and drop it between the
ButtonAdd and the ButtonExit.

b. Double-click this button to bring up its properties window.

c. Change the beanName property to ButtonDelete.

d. Change the label property to Delete.

e. Change the enabled property to false.

f. Allow the properties window to remain open.

2. Add a TextField that allows the quantity of parts to be input (called the
Quantity) later:

a. Select the Text Field bean from the bean area and drop it level with and a
little to the right of the Part.

b. Resize and reposition this field until you are satisfied with the result.
58 Building AS/400 Client/Server Applications with Java

c. In the properties window, change the beanName property to "Quantity" and
the background property to "white".

Note: Do not close the properties window.

3. Add a label and change its text property to Quantity:

a. Select the Label bean from the bean area, and drop it above the Quantity.

b. In the properties window, change the beanName property to
"LabelQuantity" and the text property to "Quantity".

c. Left align the LabelQuantity with Quantity, and middle align it with Part.

d. Close the properties window.

You can add items from the text fields Part and Quantity to the ListParts by using
a script in this section. Therefore, the current connection from the ButtonAdd
(actionPerformed) to the ListParts (add(String)), taking the text property from the
Part, is no longer needed. To delete it, follow this sequence:

1. Move the cursor to the green connection from the ButtonAdd to the ListParts.
2. Select the connection by left-clicking on it.
3. As soon as you see the resize handles of the connection appear, press the

Delete key.
4. Click on Yes when prompted by the confirmation message.

The connection and any connections it supported are deleted.

2.3.4.9 Writing a New Java Method
To add both the part and quantity text to the list, write a method to concatenate
the two text fields together. For this, you must switch to the Methods view.

To create a new method, perform these tasks.

1. Click on the notebook tab for Methods.
2. On the tool bar, press the Create Method or Constructor smarticon.
3. Check the Create a new method radio button.
4. In the Method Name entry field of the Method Properties window, type String

formatLine (String aPart, String aQuantity).
5. Click on the Finish button.

See Figure 58 on page 60.
Chapter 2. Introduction to VisualAge for Java 59

Figure 58. Create Method Example

A new method called formatLine is created that takes two string parameters
(aPart and aQuantity) and returns a string (the concatenated string). At the
moment, it returns null, but you want it to return the concatenated string. Replace
the null-value by an expression that concatenates the string aPart with a string
containing a single blank character and the string aQuantity.

To update the formatLine method, complete these steps:

1. Inside the source pane, double-click on the word null.
2. Type aPart + " " + aQuantity.
3. Press Ctrl+S to save the method.

The method’s source should appear as shown in the following example:

/**
* This method was created in VisualAge.
* @return java.lang.String
* @param aPart java.lang.String
* @param aQuantity java.lang.String
*/
public String formatLine(String aPart, String aQuantity) {

return aPart + " " + aQuantity;
}

Make sure that your source code matches this example. Left-click on the VCE
notebook tab to return to editing the frame.
60 Building AS/400 Client/Server Applications with Java

In the next step, you rebuild the connection for the function to be executed when
the Add button is pressed. Complete these steps:

1. Select the ButtonAdd and right-click.
2. From the popup menu, select Connect—>actionPerformed.
3. Move the cursor to the free-form surface and left-click.
4. Select Event to Code... from the pop-up menu.
5. In the source editor, select formatLine(String, String) from the Methods

drop-down list.
6. Click on OK.

Complete the last step as shown in Figure 54 on page 54, but choose the Method
Class Team01OrderEntry instead of Frame, and the Method formatLine(String,
String) instead of dispose(). A green dashed connection is shown from the
ButtonAdd to the methods tag formatLine() on the free-form surface. A dashed
connection means that the connection requires parameters that have not yet
been supplied. For this reason, you have to connect the text properties of Part
and Quantity to the connection by using these steps:

1. Select the dashed connection from the ButtonAdd to the formatLine(String,
String) methods tag and right-click on it.

2. From the pop-up menu, select Connect—>aPart and move the spider over
the Part.

3. Left-click and select the text.

4. Select the connection again and right-click on it.

5. From the pop-up menu, select Connect—>aQuantity and move the spider
over Quantity.

6. Left-click and select the text.

This provides the new method formatLine(String, String) with its input
parameters. Now, you have to add the returned concatenated string to the
ListParts using these steps:

1. Select the connection again and right-click on it.
2. From the popup menu, select Connect—>normalResult and move the spider

over ListParts.
3. Left-click and select add(String).
4. Left-click the run smarticon to test the application.

You should be able to add parts to the list using the script that you just created.
Return back to the VCE.

In the next step, you build the connection for the function to be executed, when
the Delete button is pressed. Complete these tasks:

1. Left-click on the Delete button to select it, and right-click to bring up its
pop-up menu.

2. Select Connect—>actionPerformed.
3. Move the spider over ListParts.
4. Left-click and select remove(String).

There is a new dashed green connection from the Delete button to the Parts list.
Chapter 2. Introduction to VisualAge for Java 61

To supply the parameter for the connection, perform these steps:

1. Left-click on the Parts list to select it.

2. Right-click and select selectedItem property from the popup menu.

3. Move the spider over the middle of the connection from the ButtonDelete and
ListParts. A small dashed box indicates that here is a possible end-point for
the connection.

4. As soon as the small dashed box appears in the middle of the connection,
left-click and select the item feature.

The dashed green line should have changed to a solid green line.

Now, change the behavior of the Delete button. It should be enabled as soon as a
selection from the ListParts has been made. Perform the following steps:

1. Left-click on the ListParts to select it.

2. Right-click and select Connect—>Connectable Features... to bring up the
source feature selection window.

3. Select the itemStateChanged event. This event is fired when the selected
item changes.

4. Move the spider over the ButtonDelete, left-click and select the enabled
property. Now there is a dashed green connection between the ListParts and
the ButtonDelete. Set a boolean parameter for this connection to be
completed.

5. Double-click on the dashed green connection to open the connection
properties editor window.

6. Press the Set parameters button to open the constant parameter value
window.

7. Set the value to "True" and press OK twice.

This action enables the button when an item is selected from the ListParts. You
also want to disable the ButtonDelete whenever a part is deleted from the
ListParts. To do this, add another connection from and to the ButtonDelete using
these steps:

1. Select ButtonDelete, and right-click. Select Connect—>actionPerformed.
2. Move the spider over ButtonDelete, and left-click. Select enabled.
3. Double-click on the dashed green connection.
4. Press the Set parameters button.
5. Set the value to "False" and press OK twice.

In case the dashed green line does not change into a solid green line, set the
value to True and confirm by pressing OK. After that, change the value back to
False and confirm again. The line should now appear green and solid. This little
inconvenience does not have any effect on the way your class behaves. The
enabled property is set to false in any way, even if there is a dashed line.

Now, test the part by adding some part and quantity items to the list. Try to select
a few items from the list to see if you can delete them. The Delete button should
only be enabled when an item is selected in the list. Keep the test window running
and continue with the next section.
62 Building AS/400 Client/Server Applications with Java

2.3.4.10 Debugging, Setting Breakpoints, and Changes ‘On the Fly’
This section discusses the Debugger and some of the useful features it offers
when analyzing and debugging your applications.

To change the code on the fly, complete these steps:

1. Return to the VCE.
2. Press the Methods notebook tab to switch to the methods view.
3. Select the method formatLine(String, String) by left-clicking on it.
4. In the source pane, change the line that returns the concatenated string to:

return aPart + " : " + aQuantity;

5. Press Ctrl+S to save the method.
6. Select the test window and add another part or quantity item.

The code you changed was used to add this new part. Your test window should
look similar to the one shown in Figure 59.

Figure 59. Finished Application Example

Note that the last added part or quantity has an additional blank and column in
between the part and quantity, as defined in the formatLine(String, String)
method.

To set a breakpoint, follow this sequence:

1. Return to the Methods view of the type browser.
2. Edit the method formatLine(String, String).
3. Move the cursor to the line that returns the concatenated string.
4. Right-click the mouse and select Breakpoint.

A blue breakpoint marker is shown on the left of the line. This is the point where
the code stops prior to executing it and opens up a debugger window. If the blue
breakpoint marker does not appear, you probably were not in the first column or
you were on an incorrect line (see Figure 60 on page 64).
Chapter 2. Introduction to VisualAge for Java 63

Figure 60. Breakpoint Example

Add another part or quantity item to the running test window.

The debugger window appears. The code stops prior to executing the statement.
In the three upper panes, the left-hand pane (All Programs/Threads) shows a tree
view of all current threads when the debugger was invoked. The threads are
expanded with their call stacks with the most recent method at the top. The
center pane (Visible Variables) shows the variables that are accessible, and the
right pane (Value) shows the value of the currently selected variable. The bottom
pane (Source) shows the current line in the source code of the current method
(see Figure 61).

Figure 61. VisualAge for Java Debugger

Thread

Breakpoint

Call stack

Source pane

Value

Variable
64 Building AS/400 Client/Server Applications with Java

To view a variable, single left-click on the java.lang.String aPart variable in the
visible Variables pane.

The Value pane is updated and displays the string value of whatever you typed
into your Part. As you are aware, a string is an array of characters.

Expand the Part variable you have selected with a single left-click on the plus (+).
Then, expand the resulting char[] value entry. Select entry 0, then 1, then 2, and
so on.

When examining the single characters inside the array, you may recognize all of
the characters from your typed part appearing one after the other in the Value
pane (see Figure 62).

Figure 62. Examining Variables Example

Left-click on the next entry in the All Programs/Threads pane under the
Team01Lab1.Team01OrderEntry.formatLine(String, String) entry.

This should be one of the type connEtoCx(ActionEvent). Notice that the Visible
Variables, Value, and Source pane are all updated. In the Source pane, the actual
code that called the current method is highlighted (see Figure 63).

Figure 63. Examining Call Stack Example

You can also find the method that you are currently looking at in the Methods
view of the Team01OrderEntry type browser.

To change the code, perform these steps:

1. Reselect the top entry in the All Programs/Thread pane (not the thread
above), Team01Lab1.Team01OrderEntry.formatLine(String, String).

2. Modify the code so that the string " : " now reads " :- ". Save the method.

3. Left-click on the Breakpoints notebook tab to switch to the Breakpoints view.

4. Select the Methods—>Clear menu item from the menu bar to remove the
breakpoint.
Chapter 2. Introduction to VisualAge for Java 65

5. Switch back to the Debug view and left-click on the Resume smarticon in the
tool bar of the debugger window. The debugger window blanks out since that
thread has now run to completion.

6. Close the debugger window and navigate back to the running test window.

Your part or quantity entry is added, with the " :- " separator between the part and
quantity. This example shows that anywhere you have a method source window,
you can modify the method, save it, and run it immediately with the updated code.

To test the Delete button, complete these steps:

1. Select an entry in the ListParts of the running test window.
2. Press the Delete button.

The Delete button should be enabled as soon as an entry from the ListParts is
selected. The entry should be deleted and the Delete button should again be
disabled until you select another entry in the ListParts.

2.3.4.11 Closing the Application and Versioning
To version the application, follow this sequence:

1. Close the Team01Lab1.Team01OrderEntry type browser.
2. Switch to the Projects view of the workbench window.
3. Select the class expanding your project and package until Team01OrderEntry

is seen.
4. Select Selected—>Manage—>Version... from the menu bar.
5. Version the class. Either accept the default version name or enter your own.
6. Save the workspace by selecting File—>Save Workspace.

You should now have a working knowledge of the VisualAge for Java Integrated
Development Environment. You can now follow the AS/400 client/server
programming examples in Appendix A, “Example Programs” on page 395.

2.3.5 Team Development
Team development is enabled in VisualAge for Java with the incorporation of the
ENVY/Developer from OTI, an IBM Subsidiary company. Team development is
available as part of VisualAge for Java Enterprise Edition.

For an individual, this allows a developer the freedom to develop code
independently from the rest of the development team, yet still within the scope of
the overall project. A developer can recall at any time a history of individual
changes made to any component made within the developer's image/workspace,
plus the ability to retrieve prior versions of a component should this be
appropriate. This total flexibility in development allows a developer to try things
out in the knowledge that at any time, a prior frozen version of a component can
be recalled. The component to be recalled can be an individual method, an entire
class/interface, a package, or a complete project.

Version control within the team development provides the facilities to freeze the
development of a component (class, package, or project) so that no changes can
be made to that component. This is extremely useful when setting checkpoints for
components within a development cycle.

With the Enterprise Edition, multiple developers can, if appropriate, work on any
component (project, package, class, or method) concurrently. In a normal
66 Building AS/400 Client/Server Applications with Java

check-in, check-out philosophy, this is impossible, but within the VisualAge for
Java Enterprise Edition, this can be achieved. Despite this flexibility, component
integrity is never compromised. For further information, see the VisualAge for
Java documentation.

In the Professional Edition, each developer has a unique repository that stores
every component available, although the developer may only have a subset of
components in the image. However, in the Enterprise Edition every developer can
share a common repository allowing all of the work to be shared and accessed
concurrently, on-line and in real time.

Just as in the Professional Edition, the Enterprise Edition records all changes
made to any component and who made that change. In the Enterprise Edition,
there are facilities to enable the access control rights for individual developers to
every component within the repository.

Therefore, because of the ease of development with fallback facilities, the
development in a Rapid Application Development (RAD) type environment is
positively encouraged by the tool, with all the management controls should they
be necessary.

The configuration of VisualAge for Java places a development image/workspace
on the client and a repository on the client/file server in the Professional Edition.
In the Enterprise Edition, a shared repository has to be placed on a shared file
server. The repository holds a copy of every version of every component for the
development team, where the image/workspace contains only the requested
version of a sub-set of components. For example, Developer1 may work on GUI
projects, packages, and classes, where Developer2 may be work on AS/400
access projects, packages, and classes. The shared repository (the Enterprise
Edition) holds every edition and version of all these components. For example,
Developer2 image/workspace holds only the AS/400 access components, not the
GUI components.
Chapter 2. Introduction to VisualAge for Java 67

Figure 64. Team Development Configuration

In a team development environment (Figure 64), using the AS/400 IFS as the file
server for the repository code, changes made by a developer to any component
are written back immediately to the repository. Therefore, the component change
is immediately made available to all other developers who may be using the
component. On a nightly basis as part of the regular systems management
procedures, the repository should be backed up to external media.

When a developer starts VisualAge for Java, the image/workspace is copied from
disk into memory. The developer works with this copy of the image when adding,
deleting, or changing components. It is vital that the developer saves this
"in-memory" image to disk on a regular basis (for example, once per hour). It is
not catastrophic if the developer receives a GPF after an entire series of changes
since every component is still available in the repository. However, rebuilding the
image from scratch may be time consuming.

In addition, at regular intervals (for example, at lunch time and at the end of the
day), each individual developer should copy their working image/workspace to
the AS/400 system. These, again, should be backed up on a nightly basis.
68 Building AS/400 Client/Server Applications with Java

Figure 65. Team Development Backup Procedures

The team development facilities enable editing and creating versions of
components. This is a simple process where the developer can create a version
of a component at any time where a version is a frozen component that cannot be
changed. Figure 66 shows three separate versions of the component. The
developer can assign each version a unique name. In the example, the versions
are 1.0, 1.1, and 2.0. As with most things in VisualAge for Java, a component can
be any class/interface, package, or project. The developer explicitly versions
these components. Methods are the exception because every change to them
that is saved causes the creation of an new edition of the method.

Figure 66. Team Development Versions

The big question is: If a component is a version and a version is just another
name for a frozen component that cannot be changed, how do you change a
component? The answer to this is to create a new edition of the component. An
edition of a component is editable, but the original version of the component
remains in the repository should the developer need to go back to it at any time.
The process for creating, freezing, and changing a component (for example,
Class A) is described here:

1. Create Class A (it gets created as an edition):

• Write methods.
• Define variables.

2. Version Class A as Class A 1.0:

Class A is frozen and cannot be changed.
Chapter 2. Introduction to VisualAge for Java 69

3. Edition Class A:

Class A can now be edited again, but version 1.0 is still available should it
need to be restored.

4. Version Class A as Class A 2.0

See Figure 67.

Figure 67. Team Development Process

For more detailed information on team development related issues, please refer
to the redbook VisualAge for Java Enterprise Team, SG24-5245.

2.3.6 Applets and Applet Viewer
The VisualAge for Java Applet Viewer is incorporated into the IDE. This enables a
developer to develop Java applets and to test them without bringing up a
separate Web browser (for example, Netscape). The Applet Viewer is a primitive
viewer and should only be used for debugging purposes with the final testing
being performed in a real-life Web browser. However, because the Applet Viewer
comes with VisualAge for Java, it supports the level of the JDK supported by the
IDE (currently JDK 1.1.6). You may not be certain of this level of support in some
Web browsers. For example, the current level of Netscape supports most, but not
all, JDK 1.1.6 APIs.

VisualAge for Java has an applet creation SmartGuide that is accessed through
its Create Applet smarticon on the tool bar (See Figure 68 on page 71). The
applet creation SmartGuide walks the developer through the process of creating
an applet and completing the tasks that usually are hand-coded into the applet.
One of the windows that is displayed as part of the SmartGuide is included here
as an example of the type of information the applet creation SmartGuide can
process. The SmartGuide — Applet Properties window allows the setting of
applet/application and thread details. Many applets can be run as stand-alone
applets and stand-alone applications. In the latter case, a main() method needs
to be created. In addition, should the applet perform a long running task or
repeatable task (such as repeating animation), we advise that you write this as a
separate thread. Again, the SmartGuide provides the option of creating the applet
to use its own thread.

To create an applet, perform these steps:

1. Select the package Team01Lab1 from project Team01Project in the
workbench window.

2. Click the Create Applet smarticon on the tool bar.
70 Building AS/400 Client/Server Applications with Java

3. Enter SampleApplet for the Applet name and press the Finish button.
4. In the VCE, add a label in the design area.
5. Change the text property of the label to "Hello World," and adjust its width.
6. Save the Applet and switch to the Hierarchy view of the type browser.

Figure 68. SmartGuide — Create Applet

After the applet is saved, you can see its place in the class hierarchy in the type
browsers Hierarchy view. As you expect, the applet inherits its required methods
from java.applet.Applet (see Figure 69 on page 72).
Chapter 2. Introduction to VisualAge for Java 71

Figure 69. Sample Applet

To run the applet, follow these steps:

1. Select Run—>Check Class Path... from the applets pop-up menu.
2. Switch to the Applet view of the property browser by pressing the Applet

notebook tab.

Outside of the IDE, an HTML file is required to wrap the applet so it can run in a
Web browser. The HTML file specifies the width, height, parameters, and so on of
the applet. Within the VisualAge for Java IDE, this HTML file is not required since
the settings are automatically made for you in the applets properties. You can still
change the values proposed by the IDE on the Applet view of the property
browser. Note that this window also provides an interface to add or change
command line arguments, properties, and classpath information (see Figure 70
on page 73).
72 Building AS/400 Client/Server Applications with Java

Figure 70. Applet Properties Example

2.3.7 Editor, Debugger, and SmartGuides
In an object-oriented application development environment, developers need to
perform many similar tasks as procedural developers. In addition, they perform a
number of different tasks as part of a Rapid Application Development process.
Specific to Java, these tasks include add a project, package, or class
interactively.

A new project, package, or class can be added interactively. For example, a new
class can be created from many different places in the IDE including the
Workbench, Project Browser, Package Browser, and so on. Note the following
tasks:

• Add or change a method

Adding or changing a method is probably the most important task of an
application developer since this is the code that is actually executed in the
running application. VisualAge for Java provides the capability to change a
method at virtually any point. All browsers allow method source editing, and
the debugger also allows methods to be added and edited.

• Evaluate an expression

Wherever a method can be entered or edited, an expression can be
evaluated. For example, a developer may write a complex, concatenated line
Chapter 2. Introduction to VisualAge for Java 73

of Java code that needs to be tested. Instead of running the complete
application, in many cases, VisualAge for Java allows the code snippet to be
highlighted and run as is (provided it is a stand-alone piece of code).

For example, when debugging a method, the following code can be entered in
the method pane, selected, and run:

System.out.println("Hello World!")

Hello World is displayed on the console window (the standard output device of
the IDE).

• Invoke methods

As previously discussed, most code can be evaluated "on the spot" without
running an application. It follows from this that most methods can also be
evaluated/invoked "on the spot".

• Test, debug, set breakpoints

The debugger within the IDE is a powerful aid to the developer. It enables
breakpoints to be set, hop over or into methods, run methods to completion,
interactively patch code, and add new method classes while the running
thread is held.

• Patch code

As previously stated, code can be patched at any time within the development
cycle without losing the original code. This includes patching running code
that may have caused the debugger to be invoked.

• Compile class/method incrementally

Outside of the IDE, a developer must modify the class as a complete unit.
Therefore, if only one line of a method needs modifying, then the entire .JAVA
file needs to be edited and compiled. Within the VisualAge for Java IDE,
individual methods can be edited and saved incrementally without the need to
compile again the entire class that contains the method being changed.

• Maintain project database

The team development environment has already been introduced in this
chapter. This team development environment provides a complete project
database for the development team.

• Syntax check code

VisualAge for Java detects syntax errors that occur when code violates Java
syntax rules. For example, if you misspell a keyword or forget a semicolon, a
message dialog box informs you of the type of syntax error when you try to
save the code. In addition, the input cursor in the Source pane automatically
selects the piece of code that caused the problem. Better than that, it even
makes a proposal for the correction by giving you a list of known names to
choose from if there are any available (see Figure 71 on page 75).
74 Building AS/400 Client/Server Applications with Java

Figure 71. Syntax Error Suggested Corrections Example

2.3.7.1 The Editor Pane
The editing pane (also called the Method Source pane) allows the developer to:

• Perform editing operations.

• Undo/Redo:

This option is accessed from the Edit menu item.

• Search in the workspace (image) for highlighted text:

A developer can highlight some text and select Search from the pop-up menu
to search the workspace, project, package, or hierarchy for both references to
or declarations of the highlighted text. The search string can be declared as
Type, Field, Constructor, Text, or Method (see Figure 72 on page 76).
Chapter 2. Introduction to VisualAge for Java 75

Figure 72. Search Example

• Insert and remove breakpoints for debugging:

A breakpoint is inserted/removed by moving the cursor to the left margin of the
line requiring a breakpoint and double-clicking. In the IDE, this forces the
debugger window to appear just before execution of this line.

• Save your changes:

When changes are saved for a method, the entire method is syntax checked
before it is saved. At any time, the previous version can be restored.

• Cancel your changes:

If changes are made to a method and the developer selects another method to
change without saving the pending changes, a warning dialog is displayed
asking whether the pending changes should be saved.

• IDE setup:

The IDE has some default settings and these can be modified by selecting the
Window—>Options... from the workbench window (see Figure 73 on page
77).
76 Building AS/400 Client/Server Applications with Java

Figure 73. VisualAge for Java Options Window

2.3.7.2 The Debugger
In addition to the features mentioned in Section 2.3.4.10, “Debugging, Setting
Breakpoints, and Changes ‘On the Fly’” on page 63, we discuss other interesting
aspects of the debugger in VisualAge for Java. As you work in the integrated
development environment, you do not need to launch a special debugger virtual
machine or start the virtual machine in the debug mode. The debugger opens
automatically when you need it. It opens when:

• Execution hits a breakpoint that you inserted.
• An uncaught exception occurs.
• You select the debug smarticon on any tool bar.

You can use the debugger to step through code, and inspect and change
variables. You can also fix a bug by modifying the source from within the
debugger.

VisualAge activates the debugger when one of a program's threads encounters a
breakpoint. The top left pane (All Programs/Threads) displays the current thread
that was created when you started the applet/application and the debugger
invoked for whatever reason. In VisualAge, you create a thread (or multiple
threads) whenever you run a program or evaluate code in the Scrapbook. When
the debugger opens on a breakpoint, the threads pane displays the thread that
Chapter 2. Introduction to VisualAge for Java 77

caused the debugger to open. The entry consists of an internal identifier for the
thread and an indication of what caused the debugger to open. Displayed under
the thread is its program stack from which each entry corresponds to a method
that was called. Program stacks are in reverse chronological order (the most
recent method is the top entry). The debugger lets you manipulate thread
execution by dropping to a particular method. This is particularly useful if the
debugger opens on an uncaught exception, since it lets you back up and repeat
the steps that caused the exception to be thrown (see Figure 61 on page 64).

Stepping through Methods
With the navigation buttons of the debugger, you can step through the current
method. You can use the buttons to process the current statement (which is the
one that is automatically selected), step into it, execute until the method returns,
or resume processing the thread. When the debugger opens on a breakpoint, all
the navigation buttons are enabled. By contrast, if the debugger opens because
of an uncaught exception, the navigation buttons are disabled because the
current process hit a dead end. In this case, you must first drop the program
stack entry that throws the exception to reset the current status of processing.
The options include:

• Step Into

Steps into the current statement and invokes the method (if any). A new
program stack entry is added to the list, and the Source pane displays the
source of the method that you stepped into. Use this smarticon to follow a
method and determine what it does.

• Step Over

Executes the statement that is currently selected in the Source pane. The
values of local variables are updated.

• Run to Return

Executes all statements in the method that is currently selected in the All
Programs/Threads pane until the method is about to return and stops. All local
variables are updated.

• Resume

Continues processing. Select this smarticon to continue running the program.
If the program is resumed successfully, its thread is removed from the
debugger.

• Suspend

To examine a thread at any point while it is running, you must suspend it
manually by selecting this smarticon. Then, you can modify or step through its
methods and inspect its variables.

• Terminate

When you terminate a thread, it is removed from the Debugger browser and
cannot be suspended or resumed any more. The thread is terminated. To
restart the thread, you must restart the program from the beginning.
78 Building AS/400 Client/Server Applications with Java

2.3.7.3 Inspectors
You can use an inspector to view the state of objects or variables that hold
objects. With the inspector, you can:

• Inspect the result of evaluating a code fragment in the Scrapbook or in the
Variables pane of the debugger.

• Open a browser on the declarations of an object's class.
• Evaluate code fragments in the context of an object.
• Change the value of an object.

Perform the following example (for the Scrapbook window refer to Section
2.3.7.4, “Other VisualAge for Java Windows” on page 80):

1. Open a Scrapbook page by selecting Window—>Scrapbook from the
Workbench Window. Type the following code into that page:

String[][] info =
{{ "Red", "Number", "R of RGB" },
{ "Green", "Number", "G of RGB" },
{ "Blue", "Number", "B of RGB" }};

return info;

2. Now select all of the code (Ctrl+A), and left-click on the Inspect smarticon on
the tool bar. See Figure 74.

Figure 74. Scrapbook Example

The inspector appears and shows the array object stored in the info variable. The
title bar displays the identifier for the class of the inspected object, which is a two-
dimensional string array. The title bar also shows the context from which you
opened the inspector (from Page 1).

The Fields pane shows the elements of the array. The Value pane shows the
value of a selected field.

The info array maps to a table with three rows and three columns (indexed 0
through 2). The top-level items in the Fields pane map to the three rows. By
expanding items 0 through 2, you see that each row consists of three columns.
Select the second row in the first column (info[1][.0]).

It holds the parameter name Green. Internally, the string Green is represented as
an array of characters that you can view in more detail by expanding the tree in
Chapter 2. Introduction to VisualAge for Java 79

the Fields pane. The icon to the left of the character array indicates that the
internal representation is private (see Figure 75).

Figure 75. Inspector Example

You can change the value of fields while you are inspecting an object by following
these steps:

1. In the Fields pane, select the field that you want to modify.
2. In the Value pane, replace the text with the value that you want in the field.
3. Select Save from the pop-up menu.

The expression in the Value pane is evaluated. If the result can be assigned to
the object, it is. When the code resumes, it uses the value. If the result cannot be
assigned, the inspector displays an error message.

2.3.7.4 Other VisualAge for Java Windows
This section describes other windows available for VisualAge for Java.

The Scrapbook
The Scrapbook helps you organize code fragments and notes. You can run any
Java statement or expression from the scrapbook and control the context in
which it is compiled.

To open the scrapbook, select Scrapbook from any window pull-down menu. The
scrapbook appears with an empty page. From the scrapbook, you can run the
code fragment or open an inspector on the object that is returned as the result of
running the code. To open an inspector, select Inspect from the pop-up menu of
the selected code fragment (see Figure 74 on page 79).

For example, most programming languages and environments take developers
through the "Hello World" application as the first exercise in learning a new
language or environment. With VisualAge for Java, this can be achieved in under
a minute.
80 Building AS/400 Client/Server Applications with Java

Hello World in Under a Minute
Complete the following steps:

1. Select Window—>Scrapbook and type this statement:

System.out.println("Hello World!");

2. Select the line of code that you typed.

3. Press the run smarticon.

The console (the standard output device) appears and displays the string Hello
World!. The code is automatically compiled by the built-in Java compiler and run
by the built-in Java virtual machine.

The Console
The console is the standard output device (System.out) for Java programs that
you run in VisualAge.

The Repository Explorer
With the Repository Explorer, you can explore the repository to view program
components that are not present in the workspace/image.

The Log
The log displays messages and warnings from VisualAge.

2.3.7.5 SmartGuides/Wizards
The VisualAge for Java IDE comes with various SmartGuides (also known as
Wizards in other IDEs) that guide the developer through the repeatable process
of creating a component.

For example, the Class Creation SmartGuide takes the developer through the
standard process of creating a class including the following setup parameters:

• Which project is the class defined in?
• Which package is the class defined in?
• What is the class name?
• Which class is the superclass?
• What happens when the SmartGuide completes?

– Open a VCE (for example, if the class inherits from java.awt.Frame).
– Open a class browser.
– Do not open a browser.
– Which interfaces (if any) does the class implement?
– Which modifiers should be implemented?

• Public
• Abstract
• Final

– Should stub methods be generated?

There are a number of SmartGuides including class creation, interface creation,
method creation, and applet creation in the Professional Edition.

In VisualAge for Java Version 2.0 Enterprise Edition, you can find many different
SmartGuides, such as the San Francisco Wizard, SmartGuides for Data Access,
C++ Access, RMI and so on.
Chapter 2. Introduction to VisualAge for Java 81

2.3.7.6 VisualAge for Java Help
The VisualAge for Java IDE comes with extensive documentation consisting of
numerous HTML-Files that are mostly stored locally but can also contain links to
pages on the Internet. Therefore, it is advantageous to have access to the
Internet while searching for information. Help for VisualAge for Java can be
accessed by selecting a menu item from the Help menu. It starts your default
browser and displays the page that you chose. First, read the Help on Help
section to become familiar with how to use Help. Then, navigate through the
various topics on the left window to gain an idea of what can be found where
inside the documentation of VisualAge for Java. Try also the VisualAge for Java
Search, which works same as any search in the Internet.

2.4 Enterprise Access Builders (EAB)

The VisualAge for Java Enterprise edition includes the following Access Builder
components:

• Enterprise Access Builder for Data

This component allows access to any relational database that supports either
an ODBC driver or a JDBC driver.

• Enterprise Access Builder for Java to C++

This component allows access to C++ services by generating JavaBeans and
C++ code to allow interoperability between Java and C++.

• Enterprise Access Builder for RMI

This component is used for creating distributed Java applications. RMI allows
a Java object running on one virtual machine to send messages to another
Java object running on another Java virtual machine. These objects can even
be on different systems.

• Enterprise Access Builder for SAP R/3 with SAP R/3 BAPI business
objects

• Enterprise Access Builder for Persistence Enterprise Access Builder

This component is used for transforming relational schemas into Enterprise
JavaBeans components.

• Enterprise Access Builder for interacting with existing applications

Note: To use any of the Enterprise Access Builders, the corresponding features
have to be added to the workspace.

These subcomponents produce JavaBeans for access to transactions and
databases. In this redbook, we focus on the Data Access Builder.

2.4.1 Data Access Builder (DAX)
VisualAge for Java — Enterprise Access Builder for Data (referred to as Data
Access Builder (DAX)) is an application development tool that you can use to
create data access classes customized for your existing relational database
tables. It allows you to create object-oriented applications quickly and reliably by
generating the source code for you. These data access classes, which are
JavaBeans, can be used directly in your Java programs and by the VisualAge for
Java IDE.
82 Building AS/400 Client/Server Applications with Java

Some of the key features of the Data Access Builder are:

• JDBC to access your database

Data Access Builder generates code that uses JDBC to access your database.
You can use the JDBC driver in IBM DB/2, JDBC-ODBC bridge in JDK Version
1.1, or other JDBC drivers with the generated code.

• Flexibility in specifying source

Data Access Builder generates code from database tables, from database
views, or from SQL statements that you type.

• Quick and simple to use

You can simply specify a database table name. Data Access Builder can
access the table information and generate Java source code that allows you to
add, update, delete, or retrieve the data in that table.

• Data manipulation operations

Generated classes customized to your data help you perform common
database tasks such as adding, retrieving, updating, and deleting data.
Classes are also generated to allow you to use a cursor to fetch rows from
database queries that return result sets.

• Add your own methods

You can add your own methods by typing in SQL statements. Data Access
Builder generates the Java source code for you.

• Stored procedure support

You can use Data Access Builder to generate code that calls stored
procedures.

• Generate code for table joins

You can specify table joins using SQL statements, and Data Access Builder
can generate Java classes for them.

• Connection and transaction services

Separate services are provided for connection and disconnection from your
databases. In addition, commit and rollback methods are generated to handle
transaction services.

For more detailed information on DAX and examples of how to use it to build Java
applications and applets that access the AS/400 system, refer to Chapter 6,
“Enterprise Access Builder for Data (DAX)” on page 267.
Chapter 2. Introduction to VisualAge for Java 83

2.5 System Requirements and Prerequisites for Version 2.0

Table 2 defines the system requirements for VisualAge for Java depending on
which version you choose.

Table 2. System Requirements

Requirement/Version Professional Enterprise

Hardware Requirements Intel Pentium or higher
compatible processor

Intel Pentium or higher
compatible processor

48MB of RAM
(64MB recommended to
accommodate UNICODE
support)

64MB of RAM
(80MB recommended to
accommodate UNICODE
support)

Hardware Requirements Hard disk space: 190MB
minimum, 250MB or more
recommended

Hard disk space: 250MB
minimum, 300MB or more
recommended

CD-ROM drive CD-ROM drive

Mouse or pointing device Mouse or pointing device

Display: SVGA, 800x600
(1024x768 recommended)

Display: SVGA, 800x600
(1024x768 recommended)

Software Requirements Windows 95/98 OR
Windows NT 4.0 service
pack 3 OR OS/2 Warp 4.0

Windows 95/98 OR
Windows NT 4.0 service
pack 3 OR OS/2 Warp 4.0

Software Prerequisites A frames capable browser to
access the HTML-based
help and Web
documentation such as:

• Netscape Navigator
Version 4.04 or later

• Microsoft Internet Explorer
Version 4.01 or later

A frames capable browser to
access the HTML-based
help and Web
documentation such as:

• Netscape Navigator
Version 4.04 or later

• Microsoft Internet Explorer
Version 4.01 or later

TCP/IP communications
protocol configured and
running

TCP/IP communications
protocol configured and
running

The DB2 Universal
Database adapters are
included. To use the
Enterprise Access Builder
for Data with other relational
databases, the JDBC device
driver at JDK 1.1 level or
ODBC driver is required.
84 Building AS/400 Client/Server Applications with Java

2.6 Migration from VisualAge for Java Version 1.0 to 2.0

Before migrating from VisualAge for Java, Version 1.0 to the new Version 2.0, it is
absolutely necessary that you version all projects, packages, and types that you
want to migrate. It is advantageous to install the new product on a different
computer and keep the old version running until the migration process is
completed successfully. Once you finish the installation, you can import
versioned projects and packages from your older repository files. Refer to the
on-line help of the IDE, for instructions on importing from another repository. Note
that there are some differences between migrating from a stand-alone to a
stand-alone, and stand-alone to a team development environment. For detailed
information about installing and migrating, refer to the readme.txt file on the
CD-ROM containing VisualAge for Java Version 2.0.

For an overview of the migration process, see the following phases:

1. Making a decision about which Edition (Professional/Enterprise) and whether
a stand-alone or team environment should be used

2. Making a Version of all components that are to be migrated
3. Saving the old repositories
4. De-installing the old and installing the new product
5. Importing all the components to be migrated from the old repository
6. Checking and testing in the new environment

When projects and packages from the old repository are imported, add them into
your new workspace and find out if any problems are reported. Check the All
Problems view in your Workbench window. See if there are any unresolved
problems marked with a red X (see Figure 26 on page 29). Add any necessary
additional features into your Workspace, for example IBM Enterprise Toolkit for
AS/400 if the AS/400 Toolbox for Java was used in any of the old projects. Any
component that was used in any of the types in the old repository must be
present in the new work space. Otherwise, the IDE may report errors. This
applies also to your own JavaBeans, third-party class-libraries, and imported
classes. There may be some problems that can only be solved by changing the
types and methods affected.

Supported Languages
(Levels)

Java Developers Kit Version
1.1

Java-enabled browsers with
JDK 1.1 support

Note: Must be JDK 1.1.2 for
Swing-enabled apps

Java Developers Kit Version
1.1

Java-enabled browsers with
JDK 1.1 support

Note: Must be JDK 1.1.2 for
Swing-enabled apps

Requirement/Version Professional Enterprise
Chapter 2. Introduction to VisualAge for Java 85

Before testing your applications in the new workspace, eliminate all of the
reported problems and make sure that the classpath shown in the Class Path
view of the properties window (see Figure 70 on page 73) is correct. If this is not
the case, correct the classpath manually or remove the classpath information and
have it regenerated automatically by pressing the Compute Now button.

If your applications were based on JDK 1.1.5 or earlier, there may be some
warnings reported by a yellow signal for deprecated methods. Since your
applications should work correctly, you do not need to correct the methods and
types affected by these warnings. If you want to make all unresolved problems
disappear, replace the deprecated methods with the corresponding new methods.
Normally such a warning has the remark: method X with argument(Y) is

deprecated. This means that such a method is not to be used in the future. To find
the implementation of the deprecated method, start from the class where you
have the warning, up the hierarchy, until you find the implementation of that
method. One example is the method show(boolean). In this method, you find a
comment such as the one that appears in the following example:

/**
* @deprecated As of JDK version 1.1,
* replaced by <code>setVisible(boolean)</code>.
*/

You can replace all occurrences of the deprecated method with the new method
indicated in the comment. After saving the changes, the reported warning
disappears. An effective way to handle multiple changes of the same method is to
use the Find/Replace menu item from the Edit menu.

The following list shows the deprecated methods that had to be replaced when
migrating the examples in this redbook from VisualAge for Java Version 1.01 to
Version 2.0:

deprecated: java.awt.Component.show()
replaced by: java.awt.Component.setVisible(true)

deprecated: java.awt.Component.hide()
replaced by: java.awt.Component.setVisible(false)

deprecated: java.awt.Component.show(boolean)
replaced by: java.awt.Component.setVisible(boolean)

deprecated: java.awt.Component.layout()
replaced by: java.awt.Component.doLayout()

deprecated: java.awt.Component.size()
replaced by: java.awt.Component.getSize()

deprecated: java.awt.Component.reshape(int int int int)
replaced by: java.awt.Component.setBounds(int int int int)

deprecated: java.awt.Component.bounds()
replaced by: java.awt.Component.getBounds()

deprecated: java.awt.Component.resize(int int)
replaced by: java.awt.Component.setSize(int int)

deprecated: java.awt.Component.resize(java.awt.Dimension)
replaced by: java.awt.Component.setSize(java.awt.Dimension)

The old package COM.ibm.ivj.javabeans has been replaced by
com.ibm.ivj.eab.dab, which is now in the project named IBM Enterprise Data
Access Libraries. For example, if you have used the IMulticolumnListbox bean
or the IMessageBox bean in one of your projects, you need to replace the
package names of the classes. The procedure is the same when opening a
visually designed class with the VCE. You are prompted by a window showing
the possible classes from the new package to replace the old ones.

Note
86 Building AS/400 Client/Server Applications with Java

deprecated: java.awt.Component.locate(int int)
replaced by: java.awt.Component.getComponentAt(int int)

deprecated: java.awt.Component.location()
replaced by: java.awt.Component.getLocation()

deprecated: java.awt.Component.enable()
replaced by: java.awt.Component.setEnabled(true)

deprecated: java.awt.Component.disable()
replaced by: java.awt.Component.setEnabled(false)

deprecated: java.awt.Component.preferredSize()
replaced by: java.awt.Component.getPreferredSize()

deprecated: java.awt.Component.move(int int)
replaced by: java.awt.Component.setLocation(int int)

deprecated: java.awt.ComponentPeer.show()
replaced by: java.awt.ComponentPeer.setVisible(true)

deprecated: java.awt.ComponentPeer.hide()
replaced by: java.awt.ComponentPeer.setVisible(false)

deprecated: java.awt.ComponentPeer.reshape(int int int int)
replaced by: java.awt.ComponentPeer.setBounds(int int int int)

deprecated: java.awt.Container.layout()
replaced by: java.awt.Container.doLayout()

deprecated: java.awt.Container.locate(int int)
replaced by: java.awt.Container.getComponentAt(int int)

deprecated: java.awt.ScrollPane.layout()
replaced by: java.awt.ScrollPane.doLayout()

deprecated: java.awt.Rectangle.resize(int int)
replaced by: java.awt.Rectangle.setSize(int int)

deprecated: java.awt.Rectangle.move(int int)
replaced by: java.awt.Rectangle.setLocation(int int)

deprecated: java.awt.TextField.setEchoCharacter(char)
replaced by: java.awt.TextField.setEchoChar(char)

deprecated: java.awt.TextFieldPeer.setEchoCharacter(char)
replaced by: java.awt.TextFieldPeer.setEchoChar(char)

deprecated: java.awt.Choice.countItems()
replaced by: java.awt.Choice.getItemCount()

deprecated: java.awt.List.countItems()
replaced by: java.awt.List.getItemCount()

deprecated: java.awt.Menu.countItems()
replaced by: java.awt.Menu.getItemCount()

2.7 Upgrades Available for VisualAge for Java 2.0

Currently there are a number of upgrades available for VisualAge for Java 2.0.
Some of these upgrades provide additional features, while others improve the
core Java support. Table 3 highlights some of these upgrades.

Table 3. VisualAge for Java Updates

For more information and to download these updates, please see the IBM
VisualAge for Java home page at: http://www.software.ibm.com/ad/vajava

Select the link to the VisualAge for Java Developer Domain.

Update / Fix name Applies to Provides

Rollup 2 Professional and
Enterprise
Editions

JDK 1.1.7A
Swing 1.0.3
Windows 98 Support
Service fixes

Professional Edition
Update

Professional Integrated WebSphere test environment for
building JSP and Servlets

Enterprise Edition
Update

Enterprise All the features of the Professional Edition
Update.
EJB support: including EJB wizards, EJB
class management tools and a deployment
tool.
Chapter 2. Introduction to VisualAge for Java 87

Both the Professional and Enterprise Edition Updates require more workstation
resources. Be sure to review the documentation before downloading and
installing these updates.

2.8 Summary

In summary, VisualAge for Java is a member of the VisualAge family. It allows
application developers to develop applications and Web-based applets, servlets
and Java Server Pages using the Java language.

VisualAge for Java includes a powerful and full-function integrated development
environment. The IDE is JDK 1.1 compliant, allowing the edit/compile/test of Java
applications within the IDE prior to exporting the code for running in other JDK
1.1 compliant virtual machines and Web browsers. Because of its compliance
with the JDK 1.1 API, the VisualAge for Java environment supports Java APIs for
accessing remote components through the RMI and JDBC APIs. In particular,
with the AS/400 Toolbox, the AS/400 development environment is extremely rich.
This enables access to the most common application development building
blocks on the AS/400 system (files, data queues, programs, and so on).

Because of the portability of JDK 1.1 compliant Java code, code that is developed
using VisualAge for Java can run without change on the native AS/400 Java
Virtual Machine that is now available.

The IDE enables a developer to build and run applications and code snippets
interactively without running the compile statement (javac) from the command
line. All applications can run from within the IDE without the need to export the
Java source or class files. This is achieved through the provision of a JDK 1.1
compliant Virtual Machine (VM) within the IDE. Because you can interactively
modify code and run it without compilation, developers can debug code on the fly,
spot errors in their code with the debugger, change it, and continue without
bringing the running application down, all within the VisualAge for Java IDE.

VisualAge for Java is an open IDE. Developers can easily import and export Java
source, class files, and JavaBeans, which may have been purchased by the
company or made available on the Internet. The JavaBeans support in VisualAge
for Java also enables a developer to import an existing JavaBean (for example,
from the Internet) into VisualAge for Java, modify the bean, and export it again for
use within another JDK 1.1 compliant development environment (for example,
Symantic Cafe and Borland’s JBuilder).

VisualAge for Java has two components that extend its capabilities to make
client/server programming easier. The Enterprise Access Builders (EAB) provide
components to aid connection to DB2 compliant data sources, and other
programs. The AS/400 Toolbox for Java provides a series of classes specifically
designed to access many AS/400 features (all without using Client Access/400 as
a prerequisite).

The product will run on OS/2 Warp Version 4.0, Windows NT 4.0, or Windows
95/98.
88 Building AS/400 Client/Server Applications with Java

Chapter 3. AS/400 Toolbox for Java

This chapter covers the AS/400 Toolbox for Java. It includes the following topics:

• Introduction to the AS/400 Toolbox for Java
• Introduction to application examples
• JDBC performance tips
• JDBC example
• Reusable GUI part
• Stored procedures example
• Distributed Data Management Record Level Access example (DDM, RLA)
• Distributed Program Call Example (DPC)
• Data queues example
• Print example
• Integrated file system example

The source code for any of the examples discussed in this chapter is available on
the Internet. For download instructions, please refer to Section A.1, “Downloading
the Files from the Internet” on page 396.

3.1 Introduction to the AS/400 Toolbox for Java

The AS/400 Toolbox for Java is a library of Java classes that enables the Internet
programming model. The classes can be used by Java applications, applets,
servlets, and Java Server Pages to easily access AS/400 data and resources.
The toolbox does not require additional client support beyond what is provided by
the Java Virtual Machine and JDK.

The AS/400 Toolbox for Java is currently available from IBM with OS/400 V4R2 or
later as a no charge licensed program product (LPP) 576x-JC1. It is a fully
supported licensed program of the AS/400 system. Table 4 shows the version of
OS/400, the version of the toolbox shipped, and the minimum level of OS/400
that is supported as a server. The toolbox classes can be used to communicate
with this level of OS/400.

Table 4. AS/400 Toolbox for Java Versions

Additional support information can be found at the AS/400 toolbox home page at:
http://www.as400.ibm.com/toolbox

The toolbox provides support similar to functions available when using the Client
Access/400 APIs. It uses socket connections to the existing OS/400 servers as
the access mechanism for the AS/400 system. Each server runs in a separate job

Shipped with OS/400 Toolbox Shipped LPP Details Min OS level
supported

V4R2 Modification 0 5763JC1
V3R2M0

V3R2M0

V4R3 Modification 1 5763JC1
V3R2M1

V3R2M0

V4R4 Modification 2 5769JC1
V4R2

V4R2M0
© Copyright IBM Corp. 1997, 1998, 1999 89

on the AS/400 system and sends and receives architected data streams on a
socket connection.

The AS/400 Toolbox for Java is delivered as a Java package that works with
existing servers to provide an Internet-enabled interface to access and update
AS/400 data and resources.

The base API package contains a set of Java classes that represent AS/400 data
and resources. The classes do not have an end-user interface. They simply move
data back and forth between the client program and an AS/400 system under the
control of the client Java program. The Java classes in the base API package
have these functional responsibilities:

• Describe the public interface for access to AS/400 data and resources
• Manage a set of sockets connections to the server jobs
• Implement the public interface by creating and parsing the data streams

defined for the appropriate server

Access to the following AS/400 data and resources is provided:

• AS400 object, infrastructure, and sign-on
• JDBC access to DB2/400 data
• Record-level access to DB2/400 data
• Integrated file system
• Print functions
• Commands
• Program calls
• Data queues

The following functions do not directly access AS/400 data and resources, but
provide useful services for Java programmers accessing AS/400 data:

• AS/400 data types
• AS/400 data description
• Access to AS/400 messages generated from a command, program call, or

print operation

3.1.1 Installing the Toolbox
If you want to use the AS/400 Toolbox for Java classes inside the VisualAge for
Java Integrated Development Environment, you must import these classes inside
the IDE. VisualAge for Java Enterprise Edition simplifies this process. After you
install VisualAge for Java 2.0 Enterprise edition, the AS/400 Toolbox for Java
classes are already available in the repository as part of the IBM Enterprise
Toolkit for AS/400 project. If you want to use the Toolbox classes, follow these
steps:

1. From the workbench, click on File. Then click on Quick Start.
2. Click on Features—>Add Feature. Then, click OK.
3. Select IBM Enterprise Toolkit, and click OK.

This adds the toolbox classes to your workspace. The IBM Enterprise Toolkit for
AS/400 is listed under All projects.
90 Building AS/400 Client/Server Applications with Java

The alternative is to use these steps:

1. Install LPP 5763-JC1 (5769-JC1 for V4R4) on an AS/400 system or access
the Web site at: http://www.ibm.com/as400/toolbox

2. Download the classes to your workstation.
3. Import the classes into the VisualAge for Java IDE.

3.1.2 V4R3 Enhancements
With OS/400 V4R3, the AS/400 Toolbox for Java (5763JC1 V3R2M1) offers two
significant enhancements. Several new access classes are provided, as are the
graphical user interface (GUI) classes. New classes are provided to access the
following AS/400 resources:

• Digital certificates

Digital certificates are digitally signed statements used for secured
transactions over the Internet. Digital certificates can be used on AS/400
systems running on Version 4 Release 3 and later. To make a secure
connection using the secure sockets layer (SSL), a digital certificate is
required.

• Jobs

The AS/400 Toolbox for Java jobs classes allow a Java program to retrieve the
attributes of a job and list the active jobs. The job classes are:

– Job — Represents an AS/400 job object
– JobList — Represents a list of AS/400 jobs
– JobLog — Represents the job log of an AS/400 system

• Message queues

The MessageQueue class allows a Java program to interact with an AS/400
message queue. It acts as a container for the QueuedMessage class. The
getMessages() method, in particular, returns a list of QueuedMessage objects.
The MessageQueue class can perform these tasks:

– Set message queue attributes
– Get information about a message queue
– Receive messages from a message queue
– Send messages to a message queue
– Reply to messages

• Queued messages

The QueuedMessage class extends the AS400Message class. The
QueuedMessage class accesses information about a message on an AS/400
message queue. With this class, a Java program can retrieve:

– Information about where a message originated, such as the program, job
name, job number, and user

– The message queue
– The message key
– The message reply status

• Users and groups

The user and group classes allow a Java program to get lists of users and
groups on the AS/400 system and information about each user. You use a
UserList object to get a list of users and groups on the system. The only
Chapter 3. AS/400 Toolbox for Java 91

property of the UserList object that must be set is the AS400 object that
represents the AS/400 system from which the list of users is to be retrieved.

• User space

The UserSpace class represents a user space on the AS/400 system.
Required parameters are the name of the user space and the AS400 object
that represents the AS/400 system that has the user space. Methods exist in a
user space class to perform the following functions:

– Create a user space
– Delete a user space
– Read from a user space
– Write to user space
– Get the attributes of a user space (A Java program can get the initial value,

length value, and automatic extendible attributes of a user space.)
– Set the attributes of a user space (A Java program can set the initial value,

length value, and automatic extendible attributes of a user space.)

With the GUI classes, you can visually represent your AS/400 data and
resources. Please refer to Chapter 4, “AS/400 Toolbox for Java — GUI Classes”
on page 181, for more information and examples of using the new GUI classes
and the new access classes. You can also refer to redbook Building AS/400
Internet Based Applications with Java, SG24-5337, for more information and
examples of using the new access classes.

3.1.3 V4R4 Enhancements
The AS/400 Toolbox for Java Modification 2 (5769JC1 V4R2) adds significant
enhancements and new features to the AS/400 Toolbox for Java. The following
sections briefly summarize the enhancements. For details, refer to Chapter 5,
“AS/400 Toolbox for Java Modification 2” on page 213.

3.1.3.1 Additional or Modified Visual Classes
The Visual classes were enhanced to include:

• Spooled file viewer

The SpooledFileViewer is a new class that can be used to dynamically convert
an AS/400 spooled file into a graphical image that can be viewed on a client.
However, be aware that this class requires the OS/400 level to be V4R4 and
have the AFP Utilities licensed product installed.

• Jobs

VJobList and VJob objects can be added to AS/400 panes (such as the
AS400ExplorerPane) to display many different views of the jobs on a specified
AS/400 system.

• Permission

Permission classes enable a Java application to set or get various security
information related to an AS/400 object. The visual permissions information
can be obtained with VIFSFile and VIFSDirectory classes through an AS/400
plane.
92 Building AS/400 Client/Server Applications with Java

• System values

Adding a VSystemValue object to an AS/400 pane allows the user to view and
change system values. Different views of system values can be obtained by
adding them to different types of AS/400 panes.

• Users and groups

Groups and individual users can be viewed and modified with the
VUserAndGroup and VUserList classes. Some potentially useful methods are
the setUserInfo() and setGroupInfo() methods that are available with
VUsersAndGroup objects.

3.1.3.2 Additional or Modified Access Classes
The access classes were enhanced to include:

• SSL support

New for V4R4 is the ability for host servers to communicate using SSL
(Secure Sockets Layer) support. To provide this function in Java, the AS/400
Toolbox for Java now has a SecureAS400 Object. SSL conversations can only
take place between an AS/400 Toolbox for Java class and a V4R4 system that
has SSL enabled Host Servers. For details on how to use this new support,
see Section 10.2, “Securing Applications with SSL” on page 371.

• JDBC 2.0

The JDBC 2.0 specification is a core part of Java 2 (JDK 1.2). By using JDBC
2.0 on a client, it is possible to use scrollable cursors to traverse a result set.
In addition, JDBC 2.0 support enables an application to optimize data transfer
from a database server. A JDBC 2.0 application can control the number of
rows downloaded as a result of executing an SQL statement. For more
information on JDBC 2.0, see Section 5.7, “JDBC 2.0” on page 246.

• Data areas

Using the DataArea and associated classes allow a Java application to set,
retrieve, and monitor AS/400 Data Area objects. It supports character,
decimal, logical, and local data areas.

• Message file

The V4R4 Toolbox allows programs to use AS/400 message files. The
MessageFile class allows you to receive a message from an AS/400 message
file. The MessageFile class returns an AS400Message object that contains
the message.

• Permission

The permissions classes can be used to request and set permission
information associated with AS/400 IFS objects. For example, it is possible to
list the user profiles that have explicit authority to a file or directory.

• System status

Using the SystemStatus and SystemPool classes, you can dynamically
retrieve high-level information about the AS/400 work management status.
Using the SystemPool classes, you can even modify the pool sizes and other
work management related values.
Chapter 3. AS/400 Toolbox for Java 93

• System values

You can use SystemValue and SystemValueList objects to retrieve and set
system value objects. AS/400 security will always prevent an application from
changing a value to which it is not authorized.

3.1.3.3 Additional New Functions
AS/400 Toolbox for Java Modification 2 also offers these new functions:

• Graphical Toolbox and Panel Definition Markup Language (PDML)

The Graphical Toolbox is a tool and PDML is a powerful language that enables
you to define panel layouts. PDML is an extension to XML. This way, you can
avoid AWT and Swing programming. For more information on the PDML and
the Graphical Toolbox, see Section 5.3, “PDML” on page 217.

• Program Call Markup Language (PCML)

PCML is an alternative way to call AS/400 programs. It allows you to define an
interface using PCML, which is another extension to XML. PCML simplifies
calling AS/400 objects since it performs operations such as the parameter
conversions that are required when using a ProgramCall method. For more
information on PCML, see Section 5.6, “PCML Examples” on page 241.

• JarMaker and AS400ToolboxJarMaker

These two classes are used to reduce the size of a JAR or ZIP file. The
AS400ToolboxJarMaker is an extension to the JarMaker class. It knows about
AS/400 components, such as ProgramCall, so that specific components can
be extracted from an AS/400 Toolbox for Java archive. Using these tools, you
can reduce the size of deployment Java archives. See Section 10.1, “Java
Archive Files” on page 365, for more information about JarMaker.

3.1.3.4 Performance Enhancements
Many of the AS/400 classes have been coded to automatically detect if they are
running directly on an AS/400 system. With the exception of the JDBC and the
IFS classes, the toolbox classes can communicate more efficiently and make
direct calls to existing AS/400 APIs. Additional performance improvements can
be made if the AS/400 System Name property is set to localhost and the User ID
and password is set to *current. It is possible to use the
setMustUseSockets(boolean) method to prevent or allow the direct calling of
AS/400 APIs.

See Chapter 5, “AS/400 Toolbox for Java Modification 2” on page 213, for more
information on using the new AS/400 Toolbox for Java classes. For information
on SSL and the JarMaker tools, refer to Chapter 10, “Deployment Considerations
and Tools” on page 365.

3.1.4 Supported Platforms
The AS/400 Toolbox for Java is pure Java. It runs on any platform that fully
supports the Java JVM 1.1 specification. For Java applications, the Toolbox is
supported on the following platforms:

• IBM AS/400 V4R2 or later
• IBM OS/2 Warp 4.0
• IBM AIX 4.1.4
• Sun Solaris 2.5
94 Building AS/400 Client/Server Applications with Java

• Microsoft Windows 95/98
• Microsoft Windows NT

For Java applets, a Web browser that fully supports JVM 1.1 or later is required.
To use JDBC 2.0 support, Java 2 (JDK 1.2) is required.

The AS/400 Toolbox for Java requires both the TC1 LPP (TCP/IP Connectivity
Utilities for AS/400) and the Host Server option of OS/400 to be installed and
configured on the AS/400 system. The toolbox (modification 0 and modification 1)
can connect to V3R2, V3R7, V4R1, and V4R2 or later releases of OS/400.
Modification 2 can connect to V4R2 or later releases of OS/400.

3.1.5 Application Developer Usage
Any Java Integrated Development Environment (IDE) can be used with the
AS/400 Toolbox for Java. Java source can be kept on your client workstation or in
the AS/400 integrated file system and accessed using a network drive.

3.1.6 AS/400 Host Servers
The AS/400 host servers must be running. Use the AS/400 command STRHOSTSVR

*ALL to start the host servers. When working with DDM, the TCP/IP server for
DDM must be running. Use the AS/400 command STRTCPSVR *DDM to start the
TCP/IP server for DDM.

Ensure that the QUSER user profile is enabled and that the password has not
expired. QUSER is used by the servers at start-up time.

3.1.7 AS400 Object, Infrastructure, and Sign-On
An AS400 object manages the following elements:

• A set of socket connections to the AS/400 system

Each AS400 object contains one set of socket connections (up to one
connection for each service type). This allows the Java programmer to control
the number of connections to the AS/400 system. To optimize communications
performance, a Java program can create multiple AS400 objects for the same
AS/400 system. This allows multiple socket connections to the AS/400
system. Java programs that want to conserve AS/400 resources create only
one AS400 object. This reduces the number of connections and reduces the
amount of resources used on the AS/400 system.

• Sign-on behavior for the AS/400 system

This includes prompting the user for sign-on information, password caching,
and default user management.

• Prompting for sign-on information

Prompting for a user ID and password may occur when connecting to the
AS/400 system. Java programs can turn off prompting and graphical message
windows displayed by the AS400 object. An example is an application running
on a gateway on behalf of many clients. If prompts and messages are
displayed on the gateway machine, the user has no way of interacting with the
prompts.
Chapter 3. AS/400 Toolbox for Java 95

• Password caching

To minimize the number of times a user has to type sign-on information,
password caching can be used. The password cache applies to all AS400
objects that represent an AS/400 system within a Java virtual machine. This
means a cached password in one Java virtual machine is not visible to another
virtual machine. The cache is discarded when the last AS400 object is
destroyed. The sign-on dialog has a check box that gives the user the option
to not cache any given password. When an AS400 object is constructed, the
Java program has the option to supply the user ID and password. Passwords
supplied on constructors are not cached.

• Default user management

To minimize the number of times a user has to sign on, a default user ID can
be used. The default user ID is used when a user ID is not provided by the
Java program. The default user ID can be set either by the Java program or
through the user interface. If the default user ID is not established, the sign-on
dialog allows the user to set the default user ID. Once the default user ID is
established for a given AS/400 system, the sign-on dialog does not allow the
default user ID to be changed.

The Java program must provide an AS400 object when using an instance of a
class that accesses the AS/400 system. For example, the CommandCall object
requires an AS400 object before it can send commands to the AS/400 system.

3.2 AS/400 Toolbox for Java and Host Servers

This set of interfaces provides the infrastructure needed to create and maintain
socket connections to the AS/400 servers, send and receive data streams, and
handle a sign on. This group of classes includes a private AS/400 security
manager class that maintains a list of validated AS/400 systems and sign-on
information for the system. These classes use the sign-on server and the central
server to interact with the AS/400 system.
96 Building AS/400 Client/Server Applications with Java

Figure 76. Java Host Server Overview

3.2.1 Data Descriptions and Conversions
The data conversion APIs provide the capability to convert numeric and character
data between AS/400 and Java formats. Conversion may be needed when
accessing AS/400 data from a Java program. The data conversion APIs support
the conversion of various numeric formats and between various EBCDIC code
pages and unicode.

Two levels of support are provided by the data conversion APIs:

• Data types convert data between the AS/400 and Java format.

• Record-level conversion builds on data types to support converting all fields in
a record with a single method call. The RecordFormat class allows the
program to describe data that makes up a DataQueueEntry, ProgramCall
parameter, Record-level database access, or any buffer of AS/400 data. The
Record class allows the program to convert the contents of the record and
access the data by field name.

3.2.2 AS/400 Data Types
Table 5 on page 98 shows a set of classes, which represent AS/400 data as Java
data types to simplify the handling of AS/400 data for Java programmers. Each
class converts data between the AS/400 representation and the Java
representation of the data.
Chapter 3. AS/400 Toolbox for Java 97

Table 5. AS/400 Data Types

3.2.3 Record Level Conversions
The classes, which are shown in Table 6 on page 99, allow Java programs to
define AS/400 data in a way that is similar to how data is defined on the AS/400
system. These classes provide a way to define field descriptions and record
formats, which are used to describe AS/400 data. Data is accessed in a record

Class Description

AS400Bin2 Provides a converter between a Short object
and a signed two-byte binary number.

AS400Bin4 Provides a converter between an Integer
object and a signed four-byte binary number.

AS400UnsignedBin2 Provides a converter between an Integer
object and an unsigned two-byte binary
number.

AS400UnsignedBin4 Provides a converter between a Long object
and an unsigned four-byte binary number.

AS400Float4 Provides a converter between a Float object
and a four-byte floating point number.

AS400Float8 Provides a converter between a Double
object and an eight-byte floating point
number.

AS400PackedDecimal Provides a converter between a BigDecimal
object and a packed decimal format floating
point number.

AS400ZonedDecimal Provides a converter between a BigDecimal
object and a zoned decimal format floating
point number.

AS400Text Provides character set conversion between
Java String objects and AS/400 native code
pages.

AS400ByteArray Provides a converter between a byte array
and fixed-length byte array representing
AS/400 data that cannot be converted.

AS400Array Provides a composite data type representing
an array of AS400DataType objects.

AS400Structure Provides a composite data type representing
a structure of AS400DataType objects.

AS400JDBCBlob Provides access to binary large objects.

AS400JDBCBlobLocator Provides access to binary large objects.

AS400JDBCClob Provides access to character large objects.

AS400JDBCClobLocator Provides access to character large objects.

AS400JDBCInputStream Provides access to binary data using an
input stream.
98 Building AS/400 Client/Server Applications with Java

object using field names defined by the field description object of the associated
record format object.

Table 6. Record Level Conversions

3.2.4 JDBC Specification
The public classes and methods for the JDBC driver are implementations of the
interface defined by the Javasoft JDBC specification. The JDBC driver and
supporting classes are completely written in Java, and do not require any other
client code. As illustrated in Figure 77 on page 100, the JDBC driver provided by
the Toolbox can be used instead of a JDBC/ODBC bridge driver.
Chapter 3. AS/400 Toolbox for Java 99

Figure 77. JDBC Interface to the AS/400 System

No unique public interfaces are defined by the AS/400 Toolbox for Java
implementation of the interface. These classes use the database servers to
access the AS/400 system (see Table 7).

Table 7. JDBC Classes
100 Building AS/400 Client/Server Applications with Java

3.2.5 Record-Level File Access
AS/400 physical files can be accessed one record at a time using the public
interface of these classes. Files and members can be created, read, deleted, and
updated. The record format can be defined by the programmer at application
development time. Or, the format can be retrieved at runtime by the AS/400
Toolbox for Java support. These classes use the DDM server to access the
AS/400 system.

3.2.5.1 Record Level Access — Pre-V4R2M0
When using Record Level Access over an IP network, be aware that pre-V4R2
versions of OS/400 do not offer this support using native TCP/IP. You need to
perform additional setup before this option can work. On pre-V4R2 operating
systems, you need to download additional PTFs and perform extra steps as
described in the PTF cover letter. Table 8 contains a list of version-specific,
required PTFs. Download the PTF for the specified version only. You must obtain
the most recent supersede of a PTF if one is available.

Table 8. PTF List for Record-Level Access

The public classes in Table 9 are defined and implemented.

Table 9. Record-Level Access Public Classes

3.2.6 Integrated File System
The file system classes allow access to file objects that are in the AS/400
integrated file system (IFS). The original intent was to extend the file classes that
are in the Java.io package. However, this was prohibited by the design and
implementation of the Java.io classes. Instead, new classes were created to
represent a file object in the integrated file system. A program can open an input
or output stream on a file object, or read and write data from or to any specified
location in the file. These classes use the bytestream server to access the
AS/400 system (see Table 10 on page 102).

OS/400 Versions PROD ID / PTF

V3R1 5763SS1 / SF46301

V3R2 5763SS1 / SF46302

V3R6 5716SS1 / SF46306

V3R7 5716SS1 / SF46303

V4R1 5769SS1 / SF46313
Chapter 3. AS/400 Toolbox for Java 101

Table 10. Integrated File System Classes

3.2.7 Print
Print support in the Java language does not make it possible to plug in as a print
provider. The existing Java print classes use the client's native print provider. The
toolbox print support provides a set of classes that are similar to the native Java
classes, but use the AS/400 print services instead of the native print provider.

In addition, some print management classes are provided to enable management
of printers, output queues, and spooled files. These classes are listed Table 11 on
page 103. All classes use the network print server to access the AS/400 system.

The toolbox print support requires additional function in the network print server.
This function is provided by PTFs. At the time this redbook was published, the
PTFs were:

• For V4R3, 5769SS1—PTF SF48498
• For V4R2, 5769SS1—PTF SF46476
• For V4R1, 5769SS1—PTF SF41926, PTF SF42518, and PTF SF46470
• For V3R7, 5716SS1—PTF SF42316 and PTF SF42516
• For V3R2, 5763SS1—PTF SF42344 and PTF SF42515
102 Building AS/400 Client/Server Applications with Java

Table 11. Printer Classes

3.2.8 Command
Any AS/400 batch command can be run using command support. A list of AS/400
messages that are generated when the command is run can be retrieved after the
command completes. These classes use the distributed program call server to
access the AS/400 system (see Table 12).

Table 12. Command Classes

3.2.9 Program Call
Any AS/400 program can be called using program call support. Parameters may
be passed to the AS/400 program, and data can be returned by the AS/400
program to the Java calling program. These classes use the Distributed Program
Call server to access the AS/400 system (see Table 13 on page 104).
Chapter 3. AS/400 Toolbox for Java 103

Table 13. Program Call Classes

3.2.10 Data Queue
Both keyed and sequential data queues can be accessed using the public
interfaces of the data queues classes. Entries can be placed on a data queue or
removed. Data queues can be created or deleted on the AS/400 system. These
classes use the Data Queues server to access the AS/400 system.

The public classes in Table 14 are defined and implemented.

Table 14. Data Queue Classes

3.3 How the AS/400 System Fits into This Picture

The AS/400 system can be a repository for data, programs, HTML documents,
applets, and Java applications. An HTTP server running on the AS/400 system
can be used to serve Web pages and applets. The class files for Java
applications can reside in the integrated file system of the AS/400 system and
accessed using a mapped drive.

When an HTML document containing an applet is served from the AS/400
system, the class files are loaded from that AS/400 system. The applet can
access only that AS/400 system. For applications, the class files are located
104 Building AS/400 Client/Server Applications with Java

using the CLASSPATH environment variable. On a network station (or
comparable hardware), the CLASSPATH variable can be set to include the
toolbox class files. On a Windows (or other client operating system) workstation,
there are two options. The workstation can have a mapped drive to the AS/400
system (this requires Client Access), or the class files can be copied to the client.
In either case, the CLASSPATH environment variable must be appropriately set
to locate the class files.

No new function is needed on the AS/400 system to use the AS/400 Toolbox for
Java because the existing OS/400 servers are used. These servers are used:

• Database servers
• Distributed program call server
• Data queue server
• Network print server
• Bytestream server
• Sign-on server
• Central server
• DDM server

From the perspective of the AS/400 Toolbox for Java, the servers are a black-box
interface to perform functions on the AS/400 system. All requests directed toward
data or resources on the AS/400 system funnel through the servers.

3.3.1 Security
Each connection to the AS/400 system is validated for user ID and password. The
Toolbox classes enable a single sign on for multiple connections to the AS/400
system. Password expiration warnings and changing a password are supported.

AS/400 security is enforced using the same security model as Client Access/400.
The user must have a valid AS/400 sign on, and proper authority to the AS400
objects or resources. User ID and password are prompted if one is not provided
by the user. The user ID and password are verified on the AS/400 system. All
passwords are encrypted prior to sending them to the AS/400 system. To ensure
additional security, passwords are not passed between classes except between
the sign on GUI and the security class.

The servers run with the authorities of the user ID that is passed when the
connection is made. No authorities are adopted.

3.3.2 National Language Support
The AS/400 Toolbox for Java uses the internationalization support available with
JDK 1.1. Translatable information resides in property files at runtime. Resource
bundles are used to retrieve the proper text depending on the locale. Java
internationalization support is built on Java locale objects that are defined by a
country code, a language code, and a variant. The country codes are the
two-letter ISO-3166 standard. The language codes are the two-letter ISO-390
standard. JDK 1.1 supports 27 different locales including both single-byte and
double-byte locales, but no right-to-left languages. The AS/400 Toolbox for Java
does not attempt to add additional locales and is limited to the locales that Java
supports.
Chapter 3. AS/400 Toolbox for Java 105

3.3.3 Save and Restore Considerations
The Java classes and applets can reside in the IFS. There are no unique
considerations for saving and restoring these entities.

3.3.4 Installation and Run-Time Considerations
The AS/400 Toolbox for Java class files are used at development time by the
compiler and at application or applet runtime. The JDK set a precedent for how
class files are accessed at runtime. It is based on a thin client/browser model.
That is, the class files reside on a server and are brought to the client when an
applet or application is loaded. There is no functional requirement to install the
class files on the client.

For applets and applications loaded locally, the class files are located using the
codebase applet tag. When the HTML document containing the applet is served
from the AS/400 system (through the HTTP server), the class files are loaded
from that AS/400 system. The applet can access only that particular AS/400
system.

3.3.5 Error Recovery Considerations
The Java model for error processing is to throw exceptions instead of returning
return codes. The AS/400 Toolbox for Java follows this model. When an AS/400
Toolbox for Java class discovers an error, it throws an exception. Some
exceptions contain a documented return code value. Some exceptions allow
retrieving text that describes the error. The description for each AS/400 Toolbox
for Java API includes a list of exceptions that can be thrown by the API. The
application can catch these exceptions and handle them based on the API and
exception returned.

The AS/400 Toolbox for Java handles errors so that the degree of success of an
API is obvious to the application. This is a data integrity statement. The
application knows the state of the data of an API call based on the exception (or
lack of exception) generated.

In addition to throwing an exception, an error is logged to the AS/400 Toolbox for
Java error log in some cases. An error is logged for unexpected conditions (for
First Failure Support Technology (FFDC)), severe errors, and other places a
message can help the user recover from the error. Errors are only logged if
logging is turned on by the Java program.
106 Building AS/400 Client/Server Applications with Java

3.3.6 Mapping AS/400 Data Types to Java Data Types
Table 15 shows you how AS/400 data types map to Java data types.

Table 15. AS/400 Types Mapped to Java Types

3.4 Introduction to Application Examples

The remainder of this chapter covers application examples, including:

• AS/400 database access:

– JDBC
– JDBC stored procedures
– DDM Record Level Access
– Using distributed program call
– Using data queues

• Network print

• Integrated file system

3.5 AS/400 Database Access

The database access example applications shown in the remainder of this
chapter are for the most part functionally equivalent. They allow for the retrieval,
update, add, and delete of a record from a PARTS file on the AS/400 system. All
of these functions support the display of the entire PARTS file in a list box.

The PARTS file is defined as shown in Table 16 on page 108.

AS/400 Type Java Type

binary (1 – 4 digits) short

binary (5 – 9 digits) int

character String

date String

float (single precision) float

float (double precision) double

hex byte

packed decimal BigDecimal

zoned decimal BigDecimal

time String

timestamp String
Chapter 3. AS/400 Toolbox for Java 107

Table 16. AS/400 Parts File

A start time and end time are updated on the window so that different AS/400
access methods can be compared for performance. The examples were built
using IBM's VisualAge for Java development environment. The list box and the
message box widgets used in all of the examples are from IBM. Both of them can
be found in the project IBM Enterprise Data Access Libraries 2.0, package
com.ibm.ivj.eab.dab.

Complete listings of all RPG and DDS source code can be found in Appendix B,
“AS/400 Source Listings” on page 399.

Both the Java code and the AS/400 libraries are available for you to download
from the Internet. See Section A.1, “Downloading the Files from the Internet” on
page 396, for more information.

3.5.1 JDBC Interface
The AS/400 Toolbox for Java implements the standard JDBC interface for access
to data. JDBC defines a consistent set of classes and interfaces for
communication with a database server.

The advantages of using JDBC are that it is an industry standard and it is easy to
use. Being an industry standard allows the AS/400 developer to use generic Java
applets and applications and point them to the AS/400 system for data storage
and retrieval. Additionally, the Java developer can use the AS/400 system as a
server without worrying about AS/400 specific implementation issues. JDBC can
be easier to use than the other classes in the AS/400 toolbox because the driver
takes care of all data conversion issues. AS/400 data types are automatically
mapped to Java data types. The Java developer does not need to be concerned
with the actual data representation on the AS/400 system.

When using JDBC, you need to reference the following interfaces under the
java.sql package:

• Driver — Creates the connection and returns information about the driver
version.

• Connection — Represents a connection to a specific database.

• Statement — Runs SQL statements and obtains the results.

• PreparedStatement — Runs pre-compiled SQL statements.

• CallableStatement — Runs SQL stored procedures.
108 Building AS/400 Client/Server Applications with Java

• ResultSet — Provides access to a table of data generated by running an SQL
statement or databaseMetaData catalog method.

• ResultSetMetaData — Determines the types and properties of the columns in
a ResultSet.

• DatabaseMetaData — Provides catalog methods, which provide information
about the database.

• Blob — The representation (mapping) in the Java programming language of
an SQL BLOB. An SQL BLOB is a built-in type that stores a Binary Large
Object as a column value in a row of a database table.

• Clob — The representation (mapping) in the Java programming language of
an SQL CLOB. An SQL CLOB is a built-in type that stores a Character Large
Object as a column value in a row of a database table.

Accessing data on the AS/400 system using JDBC in your application involves
the following steps:

1. Register the AS/400 JDBC driver.
2. Connect to the database.
3. Define and Prepare SQL statements.
4. Execute SQL statements.
5. Obtain and process results of the statements.
6. Close the statements.
7. Close the database connection.

3.5.2 JDBC Performance Tips
JDBC from a Java program communicates with the same server program on the
AS/400 system as the Client Access/400 ODBC driver. Any server side tuning
suggestions for ODBC apply to JDBC. For more information on ODBC
performance related issues, please refer to redbook AS/400 Client/Server
Performance Using the Windows Clients, SG24-4526.

JDBC allows SQL statements to be sent to the AS/400 system for execution. If an
SQL statement is run more than one time, use a PreparedStatement object to
execute the statement. A PreparedStatement compiles the SQL once, so that
subsequent executions run quickly. If a plain Statement object is used, the SQL
must be compiled and run every time it is executed. Use Extended Dynamic
support. It caches the SQL statements in SQL packages on the AS/400 system.
Also turn on package cache, and cache SQL statements in memory.

Do not use a PreparedStatement object if an SQL statement is run only one time.
Compiling and running a statement at the same time has less overhead than
compiling the statement and running it in two separate operations.

Consider using JDBC stored procedures. In a client/server environment, stored
procedures can help reduce communication I/Os, and therefore, help improve
response time.

Use a just-in-time (JIT) compiler for your Java execution environment if possible.
The latest JIT technology allows Java programs to perform almost as well as
native code written in C or C++.

There are many properties that can be specified in the JDBC URL or in the JDBC
properties object. Several of these properties can significantly affect the
Chapter 3. AS/400 Toolbox for Java 109

performance of a JDBC client/server application and should be used where
possible. The properties control record blocking, package caching, and extended
dynamic support. Selected properties and their settings are listed in Table 17.
Other non-performance properties can be found in the Toolbox documentation.

Note: When using the properties for JDBC in your connection to the AS/400
system, all property keywords and values have to be coded in lowercase letters
(see the example in Figure 81 on page 117).

Table 17. General Properties

See Table 18 through Table 22 on page 114 for a complete list of the JDBC
properties (none of them are required).

Table 18. Server Properties

Property Description Choices Default

"user" Specifies the user name for connecting to the AS/400 server. If none is
specified, the user is prompted, unless the "prompt" property is set to
"false", in which case an attempt to connect will fail.

AS/400 user User is
prompted

"password" Specifies the password for connecting to the AS/400 server. If none is
specified, the user is prompted, unless the "prompt" property is set to
"false", in which case an attempt to connect will fail.

AS/400
password

User is
prompted

"prompt" Specifies whether the user should be prompted if a user name or
password is needed to connect to the AS/400 server. If a connection
cannot be made without prompting the user, and this property is set to
"false", an attempt to connect will fail.

"true" or "false" "true"

"secure" Specifies whether SSL (Secure Sockets Layer) should be used. "true" or false" "false"

Property Description Choices Default

"libraries" Specifies the AS/400 libraries to add to the server job's library list. The
libraries are delimited by commas or spaces, and "*LIBL" may be used
as a place holder for the server job's current library list. The library list
is used for resolving unqualified stored procedure calls and finding
schemas in databaseMetaData catalog methods. If "*LIBL" is not
specified, the specified libraries replace the server job's current library
list.

In addition, if no default schema is specified in the URL, the first library
listed in this property is also the default schema, which is used to
resolve unqualified names in SQL statements.

AS/400 libraries "*LIBL"

"trans-
action
isolation"

Specifies the default transaction isolation. "none", "read
committed",
"read
uncommitted",
"repeatable
read", or
"serializable"

"none"
110 Building AS/400 Client/Server Applications with Java

Table 19. Format Properties

Table 20. Performance Properties

Property Description Choices Default

"date
format"

Specifies the date format used in date literals within SQL statements. "mdy", "dmy",
"ymd", "usa",
"iso", "eur", or
"jis"

(server
job)

"date
separator"

Specifies the date separator used in date literals within SQL
statements. This property has no effect unless the "date format"
property is set to "julian", "mdy", "dmy", or "ymd".

"/" (slash),
"-" (dash),
"." (period),
"," (comma), or
"b" (space)

(server
job)

"decimal
separator"

Specifies the decimal separator used in numeric literals within SQL
statements.

"." (period) or ","
(comma)

(server
job)

"naming" Specifies the naming convention used when referring to tables. "sql" (for
example,
schema.table),
"system" (for
example,
schema/table)

"sql"

"time
format"

Specifies the time format used in time literals within SQL statements. "hms", "usa",
"iso", "eur", or
"jis"

(server
job)

"time
separator"

Specifies the time separator used in time literals within SQL statements.
This property has no effect unless the "date format" property is set to
"hms".

":" (colon),
"." (period),
"," (comma), or
"b" (space)

(server
job)

lob
threshold

Specifies the maximum LOB (large object) size (in kilobytes) that can
be retrieved as part of a result set. LOBs that are larger than this
threshold will be retrieved in pieces using extra communication to the
server. Larger LOB thresholds will reduce the frequency of
communication to the server, but will download more LOB data, even if
it is not used. Smaller LOB thresholds may increase the frequency of
communication to the server, but will only download LOB data as it is
needed.

"0" - "4194304" "0"

Property Description Choices Default

"block
criteria"

Specifies the criteria for retrieving data from the AS/400 server in blocks
of records. Specifying a non-zero value for this property reduces the
frequency of communication to the server, and therefore, increases
performance.

Ensure that record blocking is off if the cursor is going to be used for
subsequent UPDATEs. Otherwise, the row that is updated may not
necessarily be the current row.

"0" (no record
blocking)
"1" (block if FOR
FETCH ONLY is
specified)
"2" (block unless
FOR UPDATE is
specified)

"2"

"block
size"

Specifies the block size (in kilobytes) to retrieve from the AS/400 server
and cache on the client. This property has no effect unless the "block
criteria" property is non-zero. Larger block sizes reduce the frequency
of communication to the server, and therefore, increase performance.

"8", "16", "32",
"64", "128",
"256", or "512"

"32"
Chapter 3. AS/400 Toolbox for Java 111

"prefetch" Specifies whether to prefetch data upon executing a SELECT
statement. This increases performance when accessing the initial rows
in the ResultSet.

"true" or "false" "true"

"extended
dynamic"

Specifies whether to use extended dynamic support. Extended dynamic
support provides a mechanism for caching dynamic SQL statements on
the server. The first time a particular SQL statement is run, it is stored
in an SQL package on the server. On subsequent runs of the same SQL
statement, the server can skip a significant part of the processing by
using information stored in the SQL package. If this is set to "true", a
package name must be set using the "package" property.

"true" or "false" "false"

"package" Specifies the base name of the SQL package. Extended dynamic
support works best when this is derived from the application name.
Note that only the first seven characters are significant. This property
has no effect unless the "extended dynamic" property is set to "true". In
addition, this property must be set if the "extended dynamic" property is
set to "true".

SQL package ""

"package
criteria"

Specifies the type of SQL statements to be stored in the SQL package.
This can be useful to improve the performance of complex join
conditions. This property has no effect unless the "extended dynamic"
property is set to "true".

"default" (only
store SQL
statements with
parameter
markers in the
package)

"select" (store all
SQL SELECT
statements to be
stored in the
package)

"default"

"package
library"

Specifies the library for the SQL package. This property has no effect
unless the "extended dynamic" property is set to "true".

Library for SQL
package

"QGPL"

"package
cache"

Specifies whether to cache SQL packages in memory. Caching SQL
packages locally reduces the amount of communication to the server in
some cases. This property has no effect unless the "extended dynamic"
property is set to "true".

"true" or "false" "false"

"package
clear"

Specifies whether to clear SQL packages when they become full.
Clearing an SQL package results in removing all SQL statements that
have been stored in the SQL package. This property has no effect
unless the "extended dynamic" property is set to "true".

"true" or "false" "false"

"package
add"

Specifies whether to add statements to an existing SQL package. This
property has no effect unless the "extended dynamic" property is set to
"true".

"true" or "false" "true",
"false"

"package
error"

Specifies the action to take when SQL package errors occur. When an
SQL package error occurs, the driver optionally throws an
SQLException or post a warning to the Connection, based on the value
of this property. This property has no effect unless the "extended
dynamic" property is set to "true".

"exception",
"warning", or
"none"

"warning"

Property Description Choices Default
112 Building AS/400 Client/Server Applications with Java

Table 21. Sort Properties

Property Description Choices Default

"sort" Specifies how the server sorts records before sending them to the
client.

• "hex" (base the
sort on
hexadecimal
values)

• "job" (base the
sort on the
setting for the
server job)

• "language"
(base the sort
on the
language set
in the "sort
language"
property)

• "table" (base
the sort on the
sort sequence
table set in the
"sort table"
property)

"job"

"sort
language"

Specifies a three-character language ID to use for selection of a sort
sequence. This property has no effect unless the "sort" property is set
to "language".

Language ID (locale)

"sort table" Specifies the library and file name of a sort sequence table stored on
the AS/400 server. This property has no effect unless the "sort" property
is set to "table".

Qualified sort
table name

""

"sort
weight"

Specifies how the server treats case while sorting records. This
property has no effect unless the "sort" property is set to "language".

•"shared"
(upper- and
lower-case
characters are
sorted as the
same
character)

• "unique"
(upper- and
lower-case
characters are
sorted as
different
characters)

"shared"
Chapter 3. AS/400 Toolbox for Java 113

Table 22. Other Properties

3.5.3 JDBC Application Example
This example uses JDBC to access records in an AS/400 database. The client
program requests data from the AS/400 database by sending SQL statements to
the OS/400 host database server. The host server executes the SQL statement
and returns the results to the client program in an SQL result set. The JDBC
support handles all data conversions (see Figure 78 on page 115).

Property Description Choices Default

"access" Specifies the level of database access for the connection. • "all" (all SQL
statements
allowed)

• "read call"
(SELECT and
CALL
statements
allowed)

• "read only"
(SELECT
statements
only)

"all"

"errors" Specifies the amount of detail to be returned in the message for errors
that occur on the AS/400 server.

"basic" or "full" "basic"

"remarks" Specifies the source of the text for REMARKS columns in ResultSets
returned by databaseMetaData methods.

"sql" (SQL object
comment) or
"system"
(OS/400 object
description)

"system"

"translate
binary"

Specifies whether binary data is translated. If this property is set to
"true", the BINARY and VARBINARY fields are treated as CHAR and
VARCHAR fields.

"true" or "false" "false"

"trace" Specifies whether trace messages should be logged. Trace messages
are useful for debugging programs that call JDBC. However, there is a
performance penalty associated with logging trace messages, so this
property should only be set to "true" for debugging. Trace messages are
logged to System.out.

"true" or "false" "false"

"data
truncation"

Specifies whether data truncation exceptions are thrown. If this property
is set to "true", then data truncation exceptions are thrown if data needs
to be truncated when writing to the database. If this property is set to
"false", then no such data truncation exceptions are thrown. Either way,
data truncation warnings are posted if data needs to be truncated when
reading from the database.

"true" or "false" "false"
114 Building AS/400 Client/Server Applications with Java

Figure 78. JDBC Application

A single part record can be retrieved, updated, added, and deleted or all part
records can be displayed in a list box (see Figure 79). Two classes drive the
application: JDBCExample and JDBCExampleDisplayAll.

Figure 79. JDBC Example One Part
Chapter 3. AS/400 Toolbox for Java 115

Figure 80. JDBC Example All Parts

The JBCDExample class creates the main application window, connects and
disconnects the database, prepares the SQL statements, provides a GUI to
display, and enters and manipulates the values for a single part record. All of the
four basic database operations (Create, Read, Update, Delete) are implemented
in this class. It instantiates a JDBCExampleDisplayAll object when the Get All
Parts button is pressed.

3.5.4 JDBCExample Class
In this section, we investigate the key methods of the JDBCExample class.

3.5.4.1 Instance Variables
The following instance variables for accessing the database are declared for the
class:

private java.sql.Connection dbConnect;
private java.sql.PreparedStatement psAllRecord;
private java.sql.PreparedStatement psSingleRecord;
private java.sql.PreparedStatement psUpdateRecord;
private java.sql.PreparedStatement psAddRecord;
private java.sql.PreparedStatement psDeleteRecord;

3.5.4.2 The connectToDB Method
The connectToDB method is called when the Connect button is pressed. String
parameters representing the AS/400 system name, user ID, and password are
passed to the method.
116 Building AS/400 Client/Server Applications with Java

Figure 81. The connectToDB Method Example

Class: JDBCExample Method: connectToDB

Let us examine the method:

java.sql.DriverManager.registerDriver
(new com.ibmas400.access.AS400JDBCDriver());

• This statement loads the JDBC driver into the Java virtual machine. The
fully-qualified name of the AS/400 JDBC driver class is passed as a
parameter.

dbConnect = java.sql.DriverManager.getConnection
("jdbc:as400://" + systemName + "/apilib;naming=sql;errors=full;date
format=iso;extended dynamic=true;package=JDBCEx;package library=apilib",
userid, password);

• This statement creates a java.sql.Connection object called dbConnect. The
form of the DriverManager's getConnection method used here takes a URL,
user ID, and password parameters. The URL is formatted.

jdbc:as400://systemName/defaultLibraryName;parameter1=value1;
parameter2=value2;...

• The default library name is optional, as are the properties. We are using
APILIB as the default library, and specifying the use of the ISO format for date
fields. Error messages must contain all available information. We further
specify some parameters for the performance properties to use extended
dynamic.

public String connectToDB(String systemName, String userid, String password)
{

try
{

setCursor(java.awt.Cursor.getPredefinedCursor(java.awt.Cursor.WAIT_CURSOR));
java.sql.DriverManager.registerDriver(new com.ibm.as400.access.AS400JDBCDriver());
dbConnect = java.sql.DriverManager.getConnection("jdbc:as400://" + systemName +

"/apilib;naming=sql;errors=full;date format=iso;extended dynamic=true;" +
"package=JDBCExa;package library=apilib", userid, password);

psSingleRecord = dbConnect.prepareStatement("SELECT * FROM PARTS WHERE PARTNO = ?");
psAllRecord = dbConnect.prepareStatement("SELECT * FROM PARTS ORDER BY PARTNO");
psUpdateRecord = dbConnect.prepareStatement("UPDATE PARTS SET PARTDS = ?," +

" PARTQY = ?, PARTPR = ?, PARTDT = ? WHERE PARTNO = ?");
psAddRecord = dbConnect.prepareStatement("INSERT INTO PARTS (PARTDS, PARTQY," +

" PARTPR, PARTDT, PARTNO) VALUES(?, ?, ?, ?, ?)");
psDeleteRecord = dbConnect.prepareStatement("DELETE FROM PARTS WHERE PARTNO = ?");

}
catch (Exception e)
{

showException(e);
setCursor(java.awt.Cursor.getPredefinedCursor(java.awt.Cursor.DEFAULT_CURSOR));
return "Connect Failed.";

}
setCursor(java.awt.Cursor.getPredefinedCursor(java.awt.Cursor.DEFAULT_CURSOR));
return "Connected to AS/400.";

}

Chapter 3. AS/400 Toolbox for Java 117

psSingleRecord = dbConnect.prepareStatement("SELECT * FROM PARTS WHERE PARTNO =
?");

psAllRecord = dbConnect.prepareStatement("SELECT * FROM PARTS ORDER BY
PARTNO");

psUpdateRecord = dbConnect.prepareStatement("UPDATE PARTS SET PARTDS = ?," +
" PARTQY = ?, PARTPR = ?, PARTDT = ? WHERE PARTNO = ?");

psAddRecord = dbConnect.prepareStatement("INSERT INTO PARTS (PARTDS, PARTQY," +
" PARTPR, PARTDT, PARTNO) VALUES(?, ?, ?, ?, ?)");

psDeleteRecord = dbConnect.prepareStatement("DELETE FROM PARTS WHERE PARTNO =
?");

• These statements create five preparedStatement objects.
PreparedStatements are precompiled SQL statements that are more efficient
to execute than plain Statements when run repeatedly. The "?" is used as a
parameter marker, with the value set prior to running the PreparedStatement.
The first statement creates an object that selects a record from the parts file
that has a PARTNO field equal to a value defined later. The second statement
creates an object that selects all records from the parts file and orders the
result set by the PARTNO. The third statement creates an object that selects a
record from the parts file that has a PARTNO field equal to a value defined
later. If that record is found, it is updated with the four other parameters yet to
define. The fourth statement creates a new record in the parts file using five
parameters to define the values of the fields that the new record contains. The
fifth statement creates an object that selects a record from the parts file that
has a PARTNO field equal to a value defined later. If that record is found, it is
deleted from the parts file.

3.5.4.3 The getRecord Method
The getRecord method is called when the get part button is pressed. A string
parameter containing the part number is passed, along with the four text field
objects that are used to display values of other fields in the part record.
118 Building AS/400 Client/Server Applications with Java

Figure 82. The getRecord Method Example

Class: JDBCExample Method: getRecord

Let us explore this method:

java.sql.ResultSet rs = null;

• This line declares and initializes a variable, rs, to reference a ResultSet object.

psSingleRecord.setInt(1, Integer.parseInt(partNo.trim()));

• This line uses the preparedStatement method, setInt, to set the value of
parameter 1 to the integer value of the part number passed on the parameter
list. Note the trim() method, which cuts off leading and trailing blanks from the
parameter partNo. Like this, the statement does not throw an exception in
case the user entered a part number with leading or trailing blanks.

rs = psSingleRecord.executeQuery();

• This line executes the SQL defined by the psSingleRecord
PreparedStatement object and places the table of resulting records in a

public String getRecord(String partNo, java.awt.TextField partDesc, java.awt.TextField partQty,
java.awt.TextField partPrice, java.awt.TextField partDate)

{
java.sql.ResultSet rs = null;
try
{

psSingleRecord.setInt(1, Integer.parseInt(partNo.trim()));
rs = psSingleRecord.executeQuery();
if (rs.next())
{

partDesc.setText(rs.getString("PARTDS").trim());
partQty.setText(Integer.toString(rs.getInt("PARTQY")));
partPrice.setText(rs.getBigDecimal("PARTPR", 2).toString());
partDate.setText(rs.getDate("PARTDT").toString());

}
else
{

partDesc.setText("");
partQty.setText("0");
partPrice.setText("0.00");
partDate.setText("");
return "Record not found.";

}
}
catch (Exception e)
{

e.printStackTrace();
showException(e);
return "Error during SQL-Execution at SELECT.";

}
return "Record found.";

}

Chapter 3. AS/400 Toolbox for Java 119

ResultSet object referenced by rs. The method executeQuery() always returns
a result set.

if (rs.next()) {

• The next() method of the ResultSet attempts to position the cursor of the
result set to the next record from the result table. Because this is the first one
read from the result set, the method positions to the first record from the result
set and returns true. If there are no records to retrieve, the method returns a
false value.

partDesc.setText(rs.getString("PARTDS").trim());
partQty.setText(Integer.toString(rs.getInt("PARTQY")));
partPrice.setText(rs.getBigDecimal("PARTPR", 2).toString());
partDate.setText(rs.getDate("PARTDT").toString());

• These lines retrieve values of database fields and place them in their
corresponding screen fields. The ResultSet object has getter methods for
many Java data types. Here we use the following methods:

getString Returns the value of the column PARTDS as a String object.

getInt Returns the value of the column PARTQY as an integer.

getBigDecimal
Returns the value of the PARTPR field as a BigDecimal object.

getDate Returns the value of column PARTDT as a Date.

Note: In DB2 databases, it is likely that trailing blank characters are stored in the
fields. In a GUI, we do not want these characters to be displayed, so the trim()
method cuts them off from the database field PARTDS.

3.5.4.4 The updateRecord Method
This method is called first when the Update/Add part button is pressed. String
parameters containing the values of all entry fields on the screen are passed in.
These values are used to update the part record designated by the value of the
parameter part number. If the record does not exist yet, the addRecord method is
executed. This method does not have to return a result set. We are only
interested in the fact of whether the database operation was successful. Instead
of executeQuery(), the executeUpdate() method is used, which returns the
number of database records affected by the SQL statement.
120 Building AS/400 Client/Server Applications with Java

Figure 83. The updateRecord Method Example

Class: JDBCExample Method: updateRecord

Let us break apart this method:

psUpdateRecord.setString(1, partDesc.getText().trim());

• This line uses the preparedStatement method, setString, to set the value of
parameter 1 to the string value of the part description passed on the
parameter list. As before, the trim() method cuts off leading and trailing blanks.

int rowsUpdated = psUpdateRecord.executeUpdate();

• This line runs the SQL update statement and returns the number of rows
affected, which can be used for validation whether the update was successful.
Unlike the method executeQuery(), executeUpdate does not return a result
set.

return addRecord(partNo, partDesc, partQty, partPrice, partDate);

• In case that the update was not successful (rows Updated = zero), the method
addRecord is called and returns its result instead of the update method.

Instead of using a prepared statement, you can create a dynamic SQL statement
object to perform the same task. Performance improves if the PreparedStatement

public String updateRecord(String partNo, java.awt.TextField partDesc, java.awt.TextField partQty,
java.awt.TextField partPrice, java.awt.TextField partDate)

{
try
{

psUpdateRecord.setString(1, partDesc.getText().trim());
psUpdateRecord.setInt(2, Integer.parseInt(partQty.getText().trim()));
psUpdateRecord.setFloat(3, new

java.lang.Float(partPrice.getText().trim()).floatValue());
psUpdateRecord.setString(4, partDate.getText().trim());
psUpdateRecord.setInt(5, Integer.parseInt(partNo.trim()));
int rowsUpdated = psUpdateRecord.executeUpdate();
if (rowsUpdated > 0)
{

return java.lang.String.valueOf(rowsUpdated) + " Record updated.";
}
else
{

return addRecord(partNo, partDesc, partQty, partPrice, partDate);
}

}
catch (Exception e)
{

e.printStackTrace();
showException(e);
return "Error during SQL-Execution at UPDATE.";

}
}

Chapter 3. AS/400 Toolbox for Java 121

is used, assuming the update occurs more than one time during the user session.
The ad hoc SQL statement appears as shown in Figure 84.

Figure 84. The updateRecord Method Dynamic SQL Example

java.sql.Statement sUpdateRecord = dbConnect.createStatement();

• This line creates a dynamic SQL statement object called sUpdateRecord.

String updatestring = "UPDATE PARTS SET PARTDS = '" + partDesc.getText() + "',
PARTQY = " + partQty.getText() + ", PARTPR = " + partPrice.getText() + ",
PARTDT = '" + partDate.getText() + "' WHERE PARTNO = " + partNo;

• These lines build a String value for the update SQL statement. Standard SQL
syntax is used to update part fields with values passed on the parameter list
for the part number requested.

rowsUpdated = sUpdateRecord.executeUpdate(updatestring);

• This line runs the SQL update statement and returns the number of rows
affected, which can be used for validation whether the update was successful.

3.5.4.5 The addRecord Method
This method works basically the same way as the updateRecord method, except
that it uses a different preparedStatement (INSERT).

3.5.4.6 The deleteRecord Method
This method works basically the same way as the updateRecord method, except
that it uses a different preparedStatement (DELETE).

3.5.4.7 The dispose Method
This method is called when the application window is closed.

java.sql.Statement sUpdateRecord = dbConnect.createStatement();
String updatestring = "UPDATE PARTS SET PARTDS = '" + partDesc.getText() + "', PARTQY = " +

partQty.getText() + ", PARTPR = " + partPrice.getText() + ", PARTDT = '" +
partDate.getText() + "' WHERE PARTNO = " + partNo;

int rowsUpdated = 0;
try
{

rowsUpdated = sUpdateRecord.executeUpdate(updatestring);
}
catch (java.sql.SQLException SQLe) {}
if (rowsUpdated > 0)
{

return java.lang.String.valueOf(rowsUpdated) + " Record updated.";
}

122 Building AS/400 Client/Server Applications with Java

Figure 85. The dispose Method Example

Class: JDBCExample Method: dispose

Let us examine this method:

if (psSingleRecord != null)
{

psSingleRecord.close();
}

• These lines release the psSingleRecord PreparedStatement database and
JDBC resources immediately. The current ResultSet is closed as well. The
PreparedStatements should be tested for null, since we do not know whether

public void dispose()
{

try
{

if (psSingleRecord != null)
{

psSingleRecord.close();
}
if (psAllRecord != null)
{

psAllRecord.close();
}
if (psUpdateRecord != null)
{

psUpdateRecord.close();
}
if (psAddRecord != null)
{

psAddRecord.close();
}
if (psDeleteRecord != null)
{

psDeleteRecord.close();
}
if (dbConnect != null)
{

dbConnect.close();
}

}
catch (Exception e)
{

System.out.println("Dispose Exception" + e);
}
this.getComponents();
if (ivjJDBCExampleDisplayAll1 != null)

ivjJDBCExampleDisplayAll1.dispose();
super.dispose();
System.exit(0);
return;

}

Chapter 3. AS/400 Toolbox for Java 123

the user is connected to the database (closing a PreparedStatement, which is
null, throws an exception).

dbConnect.close();

• This line disconnects from the AS/400 system.

if (ivjDisplayAll != null) ivjDisplayAll.dispose();

• If the JDBCExampleDisplayAll class is still instantiated, this line calls its
dispose method to shut it down.

super.dispose();

• This line calls the super class dispose method to make sure any resources
used by the Frame are properly freed.

System.exit(0);

• This line ensures that your program shuts down properly. AS/400 Toolbox for
Java connects to the AS/400 system with user threads. Because of this, a
failure to issue System.exit(0) may keep your Java program from properly
shutting down.

3.5.5 JDBCExampleDisplayAll Class
In this section, we investigate the key methods of the JDBCExampleDisplayAll
Class.

3.5.5.1 Instance Variables
The following instance variables for accessing the database are declared for the
class:

private java.sql.Connection dbConnect;
private java.sql.PreparedStatement psAllRecord;

3.5.5.2 The constructor Method
A non-default constructor is created for the class that takes parameters of a
Connection object and a PreparedStatement object. This is done so that the main
class (JDBCExample) can instantiate this class by passing the database objects
already created (see Figure 86).

Figure 86. Non-Default Constructor Example

public JDBCExampleDisplayAll(java.sql.Connection dbc, java.sql.PreparedStatement psAll)
{

this();
dbConnect = dbc;
psAllRecord = psAll;
this.populateListBox();
this.setVisible(true);

}

124 Building AS/400 Client/Server Applications with Java

Class: JDBCExampleDisplayAll Constructor

Let us look more closely at the constructor:

this();

• This line executes the default constructor to take care of the window set up
and initialization.

dbConnect = dbc;
psAllRecord = psAll;

• These lines set the instance variables for the database Connection and
PreparedStatement to reference the objects passed from JDBCExample.

this.populateListBox();

• This line executes the database query and loads the records to the list box.
See the method details in Figure 87.

this.setVisible(true);

• This line displays the Frame.

3.5.5.3 The populateListBox Method
This method is called from the non-default constructor. It runs the SQL statement
to select all records from the parts file and converts the data in a suitable form for
the GUI.

Figure 87. The populateListbox Method Example

public void populateListBox()
{

java.sql.ResultSet rs = null;
try
{

rs = psAllRecord.executeQuery();
while (rs.next())
{

String[] array = new String[5];
array[0] = rs.getString("PARTNO");
array[1] = rs.getString("PARTDS");
array[2] = insertSpaces(Integer.toString(rs.getInt("PARTQY")), 5);
array[3] = insertSpaces(rs.getBigDecimal("PARTPR", 2).toString(), 8);
array[4] = rs.getDate("PARTDT").toString();
ivjIMulticolumnListbox1.addRow(array, array[0]);

}
}
catch (Exception e)
{

showException(e);
}
return;

}

Chapter 3. AS/400 Toolbox for Java 125

Class: JDBCExampleDisplayAll Method: populateListBox

Let us examine this method:

rs = psAllRecord.executeQuery();

• This line executes the SQL defined by the psAllRecord PreparedStatement
object. It places the table of resulting records in a ResultSet object referenced
by rs.

while (rs.next()) {

• The next() method of the ResultSet attempts to position the cursor of the
result set to the next record from the result table. The first time this happens,
the cursor is pointed to the first record in the ResultSet and returns true. If
there are no records to retrieve, the method returns a false value. The
method loops until the next() method returns a false value.

String[] array = new String[5];

• This line creates a new string array object, which receives the data from the
current record of the ResultSet.

array[0] = rs.getString("PARTNO");
array[1] = rs.getString("PARTDS");
array[2] = insertSpaces(Integer.toString(rs.getInt("PARTQY")), 5);
array[3] = insertSpaces(rs.getBigDecimal("PARTPR", 2).toString(), 8);
array[4] = rs.getDate("PARTDT").toString();

• These lines retrieve each of the field values from the current record in the
ResultSet. The values are converted to strings and placed into the string
array. Note the insertSpaces(String, int) method, which is responsible for
lining up numeric columns correctly. For the same purpose, you also have to
choose a monospace font for the dataFont property of the list box.

ivjIMulticolumnListbox1.addRow(array, array[0]);

• This line adds the string values of the current parts record as a new row at the
end of the list box. The list box places each element of the array in its
corresponding column and keeps a key for the row, which is part number in
this case.

3.5.6 Reusable GUI Part
For the remainder of the database examples in this chapter, a reusable class is
used to handle the user interface. The advantage is that the user interface is
designed, programmed, and tested once. Then, it is re-used in multiple
applications that demonstrate different methods of accessing resources on the
AS/400 system.

The class is called ToolboxGUI. It is a subclass of java.awt.Panel and can be
dropped onto a Frame. ToolboxGUI communicates with its parent container
through a PartsContainer interface. This interface allows specific methods of the
parent to be invoked by the ToolboxGUI class to handle functions such as
connecting to the database, retrieving, updating or deleting a part record, or
adding part records to a list box.
126 Building AS/400 Client/Server Applications with Java

To use the ToolboxGUI, create a new class that is a sub-class of java.awt.Frame,
and implement the PartsContainer interface. In the Visual Composition Editor,
choose the bean ToolboxGUI, drop it on the empty application frame, re-size and
re-position to fit.

The PartsContainer interface designates methods to be implemented in the main
application class so that ToolboxGUI can make requests for database access.
The interface methods are:

connectToDB Connects to the database server and returns a String result.

getRecord Retrieves a single record from the database and places the
resulting record field values in the TextFields passed.

populateListBox Retrieves all records from the database and adds values for
each record in the list box widget passed.

updateRecord Updates or adds the database record with the values passed;
returns a String result.

deleteRecord Deletes a single record from the database; returns a String
result.

ToolboxGUI calls out to the parent method using the following format:

((PartsContainer)getParent()).connectToDB(systemName, userid, password);

The getParent() method returns the ToolboxGUIs container object. This object is
cast as an object that conforms to the PartsContainer interface. The
connectToDB method is invoked on the parent object. Similar code is used for the
other interface methods.

The ToolboxGUI also has a helper class, DisplayAllParts, to display and populate
the IMulticolumnListbox. This class is instantiated when the Get All Parts button
is pressed. It uses the same mechanism defined previously to call out to the
parents populateListBox method.

3.5.7 Stored Procedures
Using stored procedures with the Toolbox is an extension of the JDBC access
technique. Instead of using PreparedStatement and Statement objects to execute
SQL statements, a CallableStatement object is defined and executed.

The prepareCall method on the Connection object is used to create a
CallableStatement object, for example:

CallableStatement aCS = aConnection.prepareCall(
"CALL LibraryName.PocedureName(?, ?, ?)");

These lines define a CallableStatement object, aCS. When executed, aCS calls
the procedure in the specified library, passing three parameters. These
parameters can be input, output, or both. Output parameters must be registered
using the registerOutParameter method, for example:

aCS.registerOutParameter (3, java.sql.Types.INTEGER);

This line registers the third parameter (the third question mark) as an output
parameter for the stored procedure of an SQL type integer. After the procedure is
executed, the value of the parameter can be retrieved using aCS.getInt(3). Other
getters (= methodname starting with get) exist for each registered data type.
Chapter 3. AS/400 Toolbox for Java 127

Input parameters must be set using the set method associated with the data type,
for example:

aCS.setInt(1, 500);

This line sets the value of the first parameter to an integer value of 500.

Stored procedures can be executed using the execute, executeQuery, or
executeUpdate methods. The execute method is used when zero or more result
sets are expected to be returned. The executeQuery method can be used when
exactly one result set is returned. The executeUpdate can be used when no
result set but a number of rows affected is to be returned for database operations
such as UPDATE, INSERT, or DELETE.

Stored procedures are generally used for two reasons. First, native programs
written in RPG, COBOL, and others can be used by the Java application through
a standard interface. Second, stored procedures can greatly boost performance
of the application when compared with straight SQL.

3.5.8 JDBC Stored Procedure Application Example
In the following example, we use JDBC stored procedures to access records in
an AS/400 database (see Figure 88).

Figure 88. JDBC Application Stored Procedures

The client program requests data from the AS/400 database by calling an AS/400
stored procedure program. The host server passes the call to the AS/400
program and returns the results to the client program in an SQL result set. The
JDBC support handles all data conversions. Figure 89 and Figure 90 on page 129
show the user interface to the Stored Procedure.
128 Building AS/400 Client/Server Applications with Java

Figure 89. Stored Procedure Example One Part

Figure 90. Stored Procedure Example All Parts

Class StoredProcedureExample is the main class in this application. It is
functionally equivalent to the JDBCExample application, but is implemented
using different techniques. The ToolboxGUI class is used to handle all user
Chapter 3. AS/400 Toolbox for Java 129

interaction. A stored procedure is used instead of SQL statements. Record read,
update, add, and delete are implemented in this example. This was done by
creating two stored procedures that perform the corresponding database
operations. The reason for creating two stored procedures was due to the
different number of parameters needed for the different database operations.

The programs we use as stored procedures are written in RPG and named
SPROC2 and SPROC3 in library APILIB. The first program SPROC2 takes two
integer input parameters. Parameter 1 is an action code. A value of 1 returns a
single record in the result set with the part number field matching the part number
supplied in the second parameter. A value of 2 in the first parameter returns all
records from the parts database in a result set. The second parameter is ignored
in this case. A value of 3 deletes a single record in the database file with the part
number field matching the part number supplied in the second parameter. The
second program SPROC3 takes three integers, one string, one float, and one
date input parameter. Parameter 1 is an action code. A value of 1 causes a single
record defined by the part number supplied in the second parameter to be
updated. Parameters three through six supply the values for the corresponding
database fields. A value of 2 causes a single record defined by the part number
supplied in the second parameter to be written into the database file. Parameters
three through six supply the values for the corresponding database fields.

3.5.9 StoredProcedureExample Class
In this section, we investigate the key methods of the StoredProcedureExample
Class. SQL statements are written in capital letters for better readability. They
can also be written in lowercase.

3.5.9.1 Instance Variables
The following instance variables for accessing the database are declared for the
class:

private java.sql.CallableStatement callableStmt;
private java.sql.CallableStatement callableStmt1;
private java.sql.Connection dbConnect;
private WorkShop.ToolboxGUI ivjToolboxGUI1 = null;

3.5.9.2 The connectToDB Method
The connectToDB method is called by the ToolboxGUI class when the Connect
button is pressed. String parameters representing the AS/400 system name, user
ID, and password are passed to the method.
130 Building AS/400 Client/Server Applications with Java

Figure 91. Stored Procedure Example connectToDB Method

Let us dissect this method:

java.sql.DriverManager.registerDriver(new
com.ibm.as400.access.AS400JDBCDriver());

dbConnect = java.sql.DriverManager.getConnection("jdbc:as400://" + systemName
+ "/apilib;naming=sql;errors=full;date format=iso;extended dynamic=true;" +
"package=TeamLab;package library=apilib", userid, password);

• Loads the JDBC driver and connects to the AS/400 system the same way as
in the preceding JDBCExample class.

dbConnect.createStatement().execute("DROP PROCEDURE APILIB.PARTQRY2");

• Attempts to remove the stored procedure PARTQRY2 from the system
catalog, if it exists. If the procedure does not already exist in the catalog, an
error is thrown, so we catch it and do nothing.

public void connectToDB(String systemName, String userid, String password) throws Exception
{

java.sql.DriverManager.registerDriver(new com.ibm.as400.access.AS400JDBCDriver());
dbConnect = java.sql.DriverManager.getConnection("jdbc:as400://" + systemName +

"/apilib;naming=sql;errors=full;date format=iso;extended dynamic=true;" +
"package=TeamLab;package library=apilib", userid, password);

try
{

dbConnect.createStatement().execute("DROP PROCEDURE APILIB.PARTQRY2");
}
catch (Exception e){}
try
{

dbConnect.createStatement().execute("CREATE PROCEDURE APILIB.PARTQRY2(INOUT P1" +
" INT, INOUT P2 INT) RESULT SETS 1 LANGUAGE RPG DETERMINISTIC CONTAINS SQL" +
" EXTERNAL NAME APILIB.SPROC2 PARAMETER STYLE GENERAL");

}
catch (Exception e){}
callableStmt = dbConnect.prepareCall("CALL APILIB.PARTQRY2(?, ?)");
try
{

dbConnect.createStatement().execute("DROP PROCEDURE APILIB.PARTQRY3");
}
catch (Exception e){}
try
{

dbConnect.createStatement().execute("CREATE PROCEDURE APILIB.PARTQRY3(INOUT P1" +
" INT, IN P2 INT , IN P3 CHAR (25), IN P4 INT , IN P5 DEC (6, 2), IN P6 DATE)" +
" LANGUAGE RPG NOT DETERMINISTIC CONTAINS SQL EXTERNAL NAME APILIB.SPROC3" +
" PARAMETER STYLE GENERAL");

}
catch (Exception e){}
callableStmt1 = dbConnect.prepareCall("CALL APILIB.PARTQRY3(?, ?, ?, ?, ?, ?)");
return;

}

Chapter 3. AS/400 Toolbox for Java 131

dbConnect.createStatement().execute("CREATE PROCEDURE APILIB.PARTQRY2(INOUT
P1" + " INT, INOUT P2 INT) RESULT SETS 1 LANGUAGE RPG DETERMINISTIC CONTAINS
SQL" +" EXTERNAL NAME APILIB.SPROC2 PARAMETER STYLE GENERAL");

• This command executes an SQL statement to add the PARTQRY2 procedure
to the system catalog. A new statement object is created by the Connection
object. The execute method is used to run an ad hoc SQL statement to
declare the RPG program SPROC2 to the catalog. In a production
environment, the procedure is added to the catalog once by a system
administrator and not added on the fly by an application each time it connects
to the database.

callableStmt = dbConnect.prepareCall("CALL APILIB.PARTQRY2(?, ?)");

• This command creates a new CallableStatement object from the Connection
object. The statement declares the stored procedure and has markers for two
parameters. The parameters are input only, because no output parameters are
registered.

3.5.9.3 The getRecord Method
The GetRecord method is called by the ToolboxGUI class when the Get Part
button is pressed.

We show how to drop and create an AS/400 stored procedure from a Java
client here. In most cases, it is better to do this directly on the AS/400
system. You can do this on the AS/400 system by using interactive SQL or
through an application program. Creating the stored procedure needs to be
done only once. It is added to the system catalog, so it can be found and
reused. Creating a stored procedure from the client, as shown here, adds
extra overhead to a Java application.

Attention
132 Building AS/400 Client/Server Applications with Java

Figure 92. Stored Procedure Example getRecord Method

Class: StoredProcedureExample Method: getRecord

Method highlights:

java.sql.ResultSet rs = null;

• Declares a variable, rs, to reference a ResultSet object.

callableStmt.setInt(1, 1);
callableStmt.setInt(2, Integer.parseInt(partNo.trim()));

• Uses the setInt method to set the value of parameter 1 to the integer value 1
to tell the program to get a single part record. Then, the setInt method is used
to set the value of parameter 2 to the integer value of the part number passed
on the parameter list.

rs = callableStmt.executeQuery();

• Executes the stored procedure defined by the callableStatement object and
places the table of resulting records in a ResultSet object referenced by rs.

if (rs.next()) {

• The next() method of the ResultSet attempts to position the cursor of the
result set to the next record from the result table. Because this is the first read
from the result set, the method positions to the first record from the result set
and returns a true value. If there are no records to retrieve, the method
returns a false value.

public String getRecord(String partNo, java.awt.TextField partDesc, java.awt.TextField partQty,
java.awt.TextField partPrice, java.awt.TextField partDate) throws Exception
{

java.sql.ResultSet rs = null;
callableStmt.setInt(1, 1);
callableStmt.setInt(2, Integer.parseInt(partNo));
rs = callableStmt.executeQuery();
if (rs.next())
{

partDesc.setText(rs.getString(2).trim());
partQty.setText(Integer.toString(rs.getInt(3)));
partPrice.setText(rs.getBigDecimal(4, 2).toString());
partDate.setText(rs.getDate(5).toString());

}
else
{

partDesc.setText("");
partQty.setText("0");
partPrice.setText("0.00");
partDate.setText("");
return "Record not found.";

}
return "Record found.";

}

Chapter 3. AS/400 Toolbox for Java 133

partDesc.setText(rs.getString(2).trim());
partQty.setText(Integer.toString(rs.getInt(3)));
partPrice.setText(rs.getBigDecimal(4, 2).toString());
partDate.setText(rs.getDate(5).toString());

• These lines retrieve values of database fields and place them in their
corresponding screen fields. The ResultSet object has getter methods for
many Java data types. We use column indices instead of column names to
reference the values requested from the result set.

3.5.9.4 The populateListBox Method
This method is called from the DisplayAllParts non-default constructor through
the PartsContainer Interface. It runs the SQL statement to select all records from
the parts file.

Figure 93. Stored Procedure Example populateListBox Method

Class: StoredProcedureExample Method: populateListBox

The populateListBox method highlights:

callableStmt.setInt(1, 2);
callableStmt.setInt(2, 0);

• Uses the setInt method to set the value of parameter 1 to the integer value 2
to tell the program to get all part records. Then, the setInt method is used to
set the value of parameter 2 to the integer value of 0 so that a null value is not
passed to the procedure.

rs = callableStmt.executeQuery();

• Executes the stored procedure defined by the CallableStatement object, and
places the table of resulting records in a ResultSet object referenced by rs.

public void populateListBox(com.ibm.ivj.eab.dab.IMulticolumnListbox aListBox) throws Exception
{

java.sql.ResultSet rs = null;
callableStmt.setInt(1, 2);
callableStmt.setInt(2, 0);
rs = callableStmt.executeQuery();
while (rs.next())
{

String[] array = new String[5];
array[0] = rs.getString(1);
array[1] = rs.getString(2);
array[2] = WorkShop.DisplayAllParts.insertSpaces(Integer.toString(rs.getInt(3)), 5);
array[3] = WorkShop.DisplayAllParts.insertSpaces((rs.getBigDecimal(4,

2).toString()),8);
array[4] = rs.getDate(5).toString();
aListBox.addRow(array, array[0]);

}
return;

}

134 Building AS/400 Client/Server Applications with Java

while (rs.next()) {

• The next() method of the ResultSet attempts to position the cursor of the
result set to the next record from the result table. The first time the cursor is
pointed to the first record in the ResultSet and returns a true value. If there are
no records to retrieve, the method returns a false value. The method loops
until next() returns a false value.

array[0] = rs.getString(1);
array[1] = rs.getString(2);
array[2] =

WorkShop.DisplayAllParts.insertSpaces(Integer.toString(rs.getInt(3)),5);
array[3] = WorkShop.DisplayAllParts.insertSpaces((rs.getBigDecimal(4,

2).toString()),8);
array[4] = rs.getDate(5).toString();

• Retrieves the field values from the current record in the ResultSet. These
values are converted to strings and placed into a string array for adding to the
multi-column list box. The list box places each element of the array in a
different column of the list box. Column indices are used here instead of
column names.

aListBox.addRow(array, array[0]);

• Adds the String values of the current parts record as a new row at the end of
the list box. The list box places each element of the array in its corresponding
column and keeps a key for the row, which is part number in this case.

3.5.9.5 The dispose Method
The dispose method is called when the application window is closed.
Chapter 3. AS/400 Toolbox for Java 135

Figure 94. Stored Procedure Example dispose Method

Class: StoredProcedureExample Method: dispose

The dispose method highlights include:

callableStmt.close();

• Releases the CallableStatements database and JDBC resources immediately.
This also closes the current ResultSet. The CallableStatements should be
tested for null, since we do not know whether the user has connected to the
database. Closing a CallableStatement, which is null, throws an exception.

dbConnect.close();

• Disconnects from the AS/400 system.

super.dispose();

• Calls the super class dispose method to make sure any resources used by the
frame are properly freed.

System.exit(0);

• This line ensures that your program shuts down properly. AS/400 Toolbox for
Java connects to the AS/400 with user threads. Because of this, a failure to
issue System.exit(0) may keep your Java program from properly shutting
down.

public void dispose()
{

try
{

if (callableStmt != null)
{

callableStmt.close();
}
if (callableStmt1 != null)
{

callableStmt1.close();
}
if (dbConnect != null)
{

dbConnect.close();
}

}
catch (Exception e)
{

System.out.println("Exception while disconnecting from AS/400." + e.toString());
}
super.dispose();
System.exit(0);
return;

}

136 Building AS/400 Client/Server Applications with Java

3.5.10 DDM Record-Level Access Application Example
In the example in Figure 95, we use Distributed Data Management (DDM) Record
Level Access to access records in an AS/400 database named Parts.

Figure 95. DDM Record Level Access

The client program requests data from the AS/400 database by interfacing with
the host DDM server. The DDM server accesses the database and returns the
results to the client program. We demonstrate using the DDM server to retrieve
the format of the Parts file from the AS/400 system. This makes it easy to work
with the file using field names.

Figure 96. Distributed Data Management Record Level Access Example

Class RLAExample is the main class in this application. We use the same classes
as in the other examples, and ToolboxGUI and DisplayAll Parts to handle all user
interaction.
Chapter 3. AS/400 Toolbox for Java 137

3.5.11 RLAExample Class
In this section, we investigate the key methods of the RLAExample Class.

3.5.11.1 Instance Variables
The following instance variables for accessing the database are declared for the
class:

private AS400 as400;
private KeyedFile myKeyedFile;
private SequentialFile mySeqFile;
private RecordFormat partsFormat = null;
private WorkShop.ToolboxGUI ivjToolboxGUI1 = null;

3.5.11.2 The connectToDB Method
The ConnectToDB method is called by the ToolboxGUI class when the Connect
button is pressed.
138 Building AS/400 Client/Server Applications with Java

Figure 97. Record Level Access Example connectToDB Method

Let us dissect the method:

as400 = new AS400(systemName, userid, password);

• Creates a new AS/400 connection object. System name, user ID, and
password are passed through the constructor.

QSYSObjectPathName fileName = new QSYSObjectPathName("APILIB", "PARTS",
"*FILE", "MBR");

• Creates a new path name for the file to be accessed.

public void connectToDB(String systemName, String userid, String password) throws Exception
{

as400 = new AS400(systemName, userid, password);
QSYSObjectPathName fileName = new QSYSObjectPathName("APILIB", "PARTS", "*FILE", "MBR");
myKeyedFile = new KeyedFile(as400, fileName.getPath());
mySeqFile = new SequentialFile(as400, fileName.getPath());
try
{

as400.connectService(AS400.RECORDACCESS);
}
catch (Exception e)
{

System.out.println("Unable to connect");
System.exit(0);

}
try
{

AS400FileRecordDescription recordDescription = new AS400FileRecordDescription(as400,
"/QSYS.LIB/APILIB.LIB/PARTS.FILE");

partsFormat = recordDescription.retrieveRecordFormat()[0];
partsFormat.addKeyFieldDescription("PARTNO");

}
catch (Exception e)
{

System.out.println("Unable to retrieve record format from APILIB/PARTS");
System.exit(0);

}
try
{

myKeyedFile.setRecordFormat(partsFormat);
mySeqFile.setRecordFormat(partsFormat);
myKeyedFile.open(AS400File.READ_WRITE, 0, AS400File.COMMIT_LOCK_LEVEL_NONE);
mySeqFile.open(AS400File.READ_ONLY, 100, AS400File.COMMIT_LOCK_LEVEL_NONE);

}
catch (Exception e)
{

System.out.println("Unable to open file");
System.exit(0);

}
return;

}

Chapter 3. AS/400 Toolbox for Java 139

myKeyedFile = new KeyedFile(as400, fileName.getPath());
mySeqFile = new SequentialFile(as400, fileName.getPath());

• Creates a keyed file object and a sequential file object that represents the file
we access on the AS/400 system. We use the QSYSObectPathName object to
get the path and name of the file into the correct format. The keyed file is used
for all single-record operations such as add, update, delete, and read. The
sequential file is used for the multiple-record operation in the populateListBox
method.

as400.connectService(AS400.RECORDACCESS);

• Connects to the AS/400 DDM server. This is not required. If a service
connection is needed and does not already exist, the service is connected
automatically. We choose to place the connection overhead in the connect
method as opposed to connecting the first time the user requests a part
record.

AS400FileRecordDescription recordDescription = new
AS400FileRecordDescription(as400, "/QSYS.LIB/APILIB.LIB/PARTS.FILE");

• Creates the Record Description object for accessing the file. The record
description is the same as the record format for file APILIB/PARTS.

partsFormat = recordDescription.retrieveRecordFormat()[0];

• We retrieve the record format. There is only one record format for the file, so
we use the first (and only) element of the RecordFormat array returned as the
record format for the file.

partsFormat.addKeyFieldDescription("PARTNO");

• We make the PARTNO field the key field.

myKeyedFile.setRecordFormat(partsFormat);
mySeqFile.setRecordFormat(partsFormat);

• We set the record format with the format description that we retrieved from the
AS/400 system.

myKeyedFile.open(AS400File.READ_WRITE, 0, AS400File.COMMIT_LOCK_LEVEL_NONE);
mySeqFile.open(AS400File.READ_ONLY, 100, AS400File.COMMIT_LOCK_LEVEL_NONE);

• We open the keyed file for both read and write. Since we are not opening for
read only, a blocking factor (0) is ignored and no blocking is done. If we are
reading records only, as in the sequential file, we can specify a blocking factor
(100) on the open to help achieve better performance. We are not using
commitment control.

3.5.11.3 The getRecord Method
The getRecord method is called by the ToolboxGUI class when the Get Part
button is pressed.
140 Building AS/400 Client/Server Applications with Java

Figure 98. Record Level Access Example getRecord Method

The getRecord method highlights include:

Object[] theKey = new Object[1];
theKey[0] = new java.math.BigDecimal(partNo.trim());

• Creates the key for reading the records. The key for a keyed file is specified
as an object array.

Record data = myKeyedFile.read(theKey);

• Reads the first record matching the key. Null is returned if the record is not
found.

partDesc.setText(((String) data.getField("PARTDS")).trim());
partQty.setText(((java.math.BigDecimal) data.getField("PARTQY")).toString());
partPrice.setText(((java.math.BigDecimal)

data.getField("PARTPR")).toString());
partDate.setText((String) data.getField("PARTDT"));
return "Record found.";

• If the record is found, we use the field names to retrieve the data and set the
text property of the objects shown on the ToolboxGUI. This causes the text
fields to display the values received in this method.

3.5.11.4 The populateListBox Method
The populateListBox method is called from the DisplayAllParts non-default
constructor through the PartsContainer Interface. It uses the sequential file and
requests all records from the parts file.

public String getRecord(String partNo, java.awt.TextField partDesc, java.awt.TextField partQty,
java.awt.TextField partPrice, java.awt.TextField partDate) throws Exception

{
Object[] theKey = new Object[1];
theKey[0] = new java.math.BigDecimal(partNo.trim());
Record data = myKeyedFile.read(theKey);
if (data != null)
{

partDesc.setText(((String) data.getField("PARTDS")).trim());
partQty.setText(((java.math.BigDecimal) data.getField("PARTQY")).toString());
partPrice.setText(((java.math.BigDecimal) data.getField("PARTPR")).toString());
partDate.setText((String) data.getField("PARTDT"));
return "Record found.";

}
else
{

partDesc.setText("");
partQty.setText("0");
partPrice.setText("0.00");
partDate.setText("");
return "Record not found.";

}
}

Chapter 3. AS/400 Toolbox for Java 141

Figure 99. Record Level Access Example populateListBox Method

The populateListBox method highlights include:

Record record = mySeqFile.readFirst();

• We use the readFirst method to read the first record.

array[0] = ((java.math.BigDecimal) record.getField("PARTNO")).toString();
array[1] = (String) record.getField("PARTDS");
array[2] = WorkShop.DisplayAllParts.insertSpaces(((java.math.BigDecimal)

record.getField("PARTQY")).toString(), 5);
array[3] = WorkShop.DisplayAllParts.insertSpaces(((java.math.BigDecimal)

record.getField("PARTPR")).toString(), 8);
array[4] = (String) record.getField("PARTDT");

• We use the field names to retrieve the data fields and move them to the array
elements.

aListBox.addRow(array);

• We use the addRow method to add a new row to the list box.

record = mySeqFile.readNext();

• We read the next record in the file.

Note: When using a sequential file, the records are not sorted by the key defined
in the database file. Use a keyed file if you want to obtain sorted records.

public void populateListBox(com.ibm.ivj.eab.dab.IMulticolumnListbox aListBox) throws Exception
{

try
{

Record record = mySeqFile.readFirst();
while (record != null)
{

String[] array = new String[5];
array[0] = ((java.math.BigDecimal) record.getField("PARTNO")).toString();
array[1] = (String) record.getField("PARTDS");
array[2] = WorkShop.DisplayAllParts.insertSpaces(((java.math.BigDecimal)

record.getField("PARTQY")).toString(), 5);
array[3] = WorkShop.DisplayAllParts.insertSpaces(((java.math.BigDecimal)

record.getField("PARTPR")).toString(), 8);
array[4] = (String) record.getField("PARTDT");
aListBox.addRow(array, array[0]);
record = mySeqFile.readNext();

}
}
catch (Exception e)
{

System.out.println("unable to get all");
System.exit(0);

}
return;

}

142 Building AS/400 Client/Server Applications with Java

3.5.11.5 The dispose Method
The dispose method is called when the application window is closed.

Figure 100. Record Level Access Example dispose Method

Class: RLAExample Method: dispose

The dispose method supports these features:

myKeyedFile.close();

• Closes the open database file.

as400.disconnectAllServices();

• Releases all connections to the AS/400 system and releases resources
associated with server jobs processing requests for the client.

super.dispose();

• Calls the super class dispose method to make sure any resources used by the
frame are properly freed.

All other methods used in the dispose method are the same as in the JDBC and
StoredProcedure examples.

3.5.12 Distributed Program Call Feature
The Program Call feature of the AS/400 Toolbox allows a Java program to directly
execute any non-interactive program object (*PGM) on the AS/400 system. It
passes input data as parameters and returns results through parameters.

public void dispose()
{

try
{

if (myKeyedFile != null)
{

myKeyedFile.close();
}
if (mySeqFile != null)
{

mySeqFile.close();
}
if (as400 != null)
{

as400.disconnectAllServices();
}

}
catch (Exception e)
{

System.out.println("Exception while disconnecting from AS/400." + e.toString());
}
super.dispose();
System.exit(0);
return;

}

Chapter 3. AS/400 Toolbox for Java 143

The Java developer must use the data conversion classes from the Toolbox to
convert input parameters from the Java format to an AS/400 data type and
convert output parameters from AS/400 format to a Java format.

The advantage of using the Distributed Program Call class is that native AS/400
non-interactive programs can be executed from a Java application unchanged.
Native program calls can also result in better performance of a Java application
when compared with JDBC. In addition, this interface can call programs on the
AS/400 system that do more than just database access. For example, a Java
application can call a program that starts nightly job processing, saves libraries to
tape, or sends or receives data through communication lines.

Calling a native AS/400 program involves the following steps:

1. Connect to the AS/400 system by creating an AS400 object.

2. Create a ProgramCall object.

3. Define and initialize a ProgramParameter array for passing parameters to and
from the called program.

4. Use the Data Conversion classes to convert input parameter values from the
Java format to the AS/400 format.

5. Use the setProgram method to specify the qualified name of the program to
call and the parameters to use, if not declared on the ProgramCall constructor.

6. Execute the program using the run method.

7. If the run method fails, obtain detailed error information through
AS400Message objects.

8. Retrieve output parameters using the getOutputData method of the
ProgramParameter object.

9. Convert output parameter values using the data conversion classes.

3.5.13 Distributed Program Call (DPC) Application Example
In this example, we use the Distributed Program Call (DPC) interface to allow a
client program to call an AS/400 program (see Figure 101 on page 145). We also
develop this application using the Enterprise Toolkit/400 Program Call
SmartGuide. Please see Section 9.4, “Creating a Program Call JavaBean” on
page 345, for details.
144 Building AS/400 Client/Server Applications with Java

Figure 101. Distributed Program Call Example

The client program requests data from the AS/400 database by calling an AS/400
program. Information is passed between the programs using parameters. It is up
to the application implementer to handle data conversions.

Figure 102. Distributed Program Call Example

The client program requests data from the server program by calling it and
passing it parameters. The input parameters are a flag and a part number and all
of the attributes of a part. For example, S12301 is a request for a single record
(Flag = S) of part number 12301. If requesting all parts (Flag=A), the part number
is not necessary. The server program, DPCXRPG, searches the database for the
requested information. The result is passed back in the output parameters.
Chapter 3. AS/400 Toolbox for Java 145

Class DPCExample is the main class in this application. It is functionally
equivalent to the StoredProcedureExample application, but is implemented using
different techniques. The ToolboxGUI and DisplayAllParts class are used to
handle all user interaction. A native RPG program is called on the AS/400 system
to access and return data. All of the four basic database operations are
implemented in this example.

3.5.13.1 RPG Program Background
Library: APILIB

Program Name: DPCXRPG

Parameters (all are used as Input/Output):

Table 23. Parameter List

Values of the Operation Code (Input OPTION):

Table 24. Flag Operation Codes

Values of the Return Code (Output OPTION):

Table 25. Flag Operation Codes

Sequence / Field Description Length/Type

1 / OPTION In: Operation Code / Out: Return Code 1 character

2 / PARTNO Part Number 5.0 packed

3 / PARTDS Part Description 25 character

4 / PARTQY Part Quantity 5.0 packed

5 / PARTPR Part Price 6.2 packed

6 / PARTDT Part Date Received 10 date

Operation Code Database Operation to Execute

S Retrieve a single record for the supplied key.

A Retrieve all records.

F Fetch next record based on the current position.

E End the program.

D Delete a single record for the supplied key.

U Update a single record for the supplied key with the attribute data; Write a single record for the
supplied key with the attribute data if it does not yet exist.

Return Code Result Description

Y Normal: Operation has succeeded / When operation code was U: Record updated

X Normal: Operation has failed / When operation code was U: Record added

U Unknown operation code has been supplied
146 Building AS/400 Client/Server Applications with Java

3.5.14 DPCExample Class
In this section, we investigate the key methods of the DPCExample class.

3.5.14.1 Instance Variables
The following instance variables are declared for the class:

private AS400 as400;
private ProgramCall pgm;
private String progName = "/QSYS.LIB/apilib.LIB/DPCXRPG.PGM";
private WorkShop.ToolboxGUI ivjToolboxGUI1 = null;

3.5.14.2 The connectToDB Method
The connectToDB method is called by the ToolboxGUI class when the Connect
button is pressed. String parameters representing the AS/400 system name, user
ID, and password are passed to the method.

Figure 103. Distributed Program Call Example connectToDB Method

Class: DPCExample Method: connectToDB

The connectToDB method offers these functions:

as400 = new AS400(systemName, userid, password);

• Creates a new AS/400 connection object. System name, user ID, and
password are passed through the constructor.

as400.connectService(AS400.COMMAND);

• Connects to the AS/400 program call and command call server. This is not
required. If a service connection is needed and does not already exist, the
service is connected automatically. We choose to place the connection
overhead in the connect method as opposed to connecting the first time the
user requests a part record.

pgm = new ProgramCall(as400);

• Creates a new ProgramCall object for the AS/400 system defined in the
AS400 object. The program and parameter information are supplied later.

3.5.14.3 The getRecord Method
The getRecord method is called by the ToolboxGUI class when the Get Part
button is pressed.

public void connectToDB(String systemName, String userid, String password) throws Exception
{

as400 = new AS400(systemName, userid, password);
as400.connectService(AS400.COMMAND);
pgm = new ProgramCall(as400);
return;

}

Chapter 3. AS/400 Toolbox for Java 147

Figure 104. Distributed Program Call Example getRecord Method

public String getRecord(String partNo, java.awt.TextField partDesc, java.awt.TextField partQty,
java.awt.TextField partPrice, java.awt.TextField partDate) throws Exception
{

ProgramParameter[] parmlist = new ProgramParameter[6];
AS400Text asFlag = new AS400Text(1);
parmlist[0] = new ProgramParameter(asFlag.toBytes("S"), 1);
AS400PackedDecimal asPartNo = new AS400PackedDecimal(5, 0);
parmlist[1] = new ProgramParameter(asPartNo.toBytes(new java.math.BigDecimal(partNo.trim())),

3);
AS400Text asDesc = new AS400Text(25);
parmlist[2] = new ProgramParameter(asDesc.toBytes(""), 25);
AS400PackedDecimal asQty = new AS400PackedDecimal(5, 0);
parmlist[3] = new ProgramParameter(asQty.toBytes(new java.math.BigDecimal(0)), 3);
AS400PackedDecimal asPrice = new AS400PackedDecimal(6, 2);
parmlist[4] = new ProgramParameter(asPrice.toBytes(new java.math.BigDecimal(0)), 4);
AS400Text asDate = new AS400Text(10);
parmlist[5] = new ProgramParameter(asDate.toBytes("0001-01-01"), 10);
pgm.setProgram(progName, parmlist);
if (pgm.run() != true)
{

System.out.println("program failed:" + progName);
AS400Message[] messagelist = pgm.getMessageList();
for (int i = 0; i < messagelist.length; i++)
{

System.out.println(messagelist[i]);
}
return "Program call failed!";

}
else
{

if (((String) (asFlag.toObject(parmlist[0].getOutputData(), 0))).equals("Y"))
{

partDesc.setText(((String) (new
AS400Text(25)).toObject(parmlist[2].getOutputData(), 0)).trim());

partQty.setText(((java.math.BigDecimal) (new AS400PackedDecimal(5,
0)).toObject(parmlist[3].getOutputData(), 0)).toString());

partPrice.setText(((java.math.BigDecimal) (new AS400PackedDecimal(6,
2)).toObject(parmlist[4].getOutputData(), 0)).toString());

partDate.setText((String) (new
AS400Text(10)).toObject(parmlist[5].getOutputData(), 0));

return "Record found.";
}
else
{

partDesc.setText("");
partQty.setText("0");
partPrice.setText("0.00");
partDate.setText("");
return "Record not found.";

}
}

}

148 Building AS/400 Client/Server Applications with Java

Class: DPCExample Method: getRecord

The getRecord method supports these features:

ProgramParameter[] parmlist = new ProgramParameter[6];

• Declares a ProgramParameter array for six parameters.

AS400Text asFlag = new AS400Text(1);
parmlist[0] = new ProgramParameter(asFlag.toBytes("S"), 1);

• The first parameter is an action code of one character. An object of type
AS400Text with a length of one is created and called asFlag. The asFlag
object is used to convert a Java String object with a value of S to its AS/400
equivalent and returned as an array of bytes. This byte array is used as the
input for a program parameter. The second parameter of the
ProgramParameter constructor is an integer declaring the number of bytes
expected to be returned by the program after execution.

AS400PackedDecimal asPartNo = new AS400PackedDecimal(5, 0);
parmlist[1] = new ProgramParameter(asPartNo.toBytes(new

java.math.BigDecimal(partNo.trim())), 3);

• The second parameter is a part number and is both input and output. An
AS400PackedDecimal conversion object is created to convert the part number
to its AS/400 format. An output buffer of three bytes is reserved for the value
returned by the called program.

AS400Text asDesc = new AS400Text(25);
parmlist[2] = new ProgramParameter(asDesc.toBytes(""), 25);
AS400PackedDecimal asQty = new AS400PackedDecimal(5, 0);
parmlist[3] = new ProgramParameter(asQty.toBytes(new java.math.BigDecimal(0)),

3);
AS400PackedDecimal asPrice = new AS400PackedDecimal(6, 2);
parmlist[4] = new ProgramParameter(asPrice.toBytes(new

java.math.BigDecimal(0)), 4);
AS400Text asDate = new AS400Text(10);
parmlist[5] = new ProgramParameter(asDate.toBytes("0001-01-01"), 10);

• The next four parameters are used for output only, but require a correct value
set. This is avoids errors in the server program, such as decimal data errors.

pgm.setProgram(progName, parmlist);

• Associates a program name and parameter list with the ProgramCall object.

if (pgm.run() != true)

• Uses the run method of the ProgramCall object to execute the program on the
AS/400 system. The method returns a true value if successful and a false

value if a problem occurred.

AS400Message[] messagelist = pgm.getMessageList();
for (int i = 0; i < messagelist.length; i++)

{System.out.println(messagelist[i]);}

• If an error occurred on the run(), obtain the error messages from the
ProgramCall object and print each message on the console.
Chapter 3. AS/400 Toolbox for Java 149

if (((String) (asFlag.toObject(parmlist[0].getOutputData(), 0))).equals("Y"))

• This statement checks the value of the action parameter returned by the
program to see if the part record was retrieved successfully.
parmlist[0].getOutputData() returns an array of bytes for the first parameter in
the AS/400 format. The toObject method is used on the AS400Text object,
asFlag, to convert the byte array to a Java object. Since toObject returns an
object of type Object, it must be typecast as a string object to use string
methods.

partDesc.setText(((String) (new
AS400Text(25)).toObject(parmlist[2].getOutputData(), 0)).trim());

partQty.setText(((java.math.BigDecimal) (new AS400PackedDecimal(5,
0)).toObject(parmlist[3].getOutputData(), 0)).toString());

partPrice.setText(((java.math.BigDecimal) (new AS400PackedDecimal(6,
2)).toObject(parmlist[4].getOutputData(), 0)).toString());

partDate.setText((String) (new
AS400Text(10)).toObject(parmlist[5].getOutputData(), 0));

• The same technique is used to retrieve and convert parameter values from the
AS/400 format to Java objects. The string representation of each output
parameter is used to set the text property of the associated TextFields on the
window.

3.5.14.4 The populateListBox Method
The populateListBox method is called from the DisplayAllParts non-default
constructor through the PartsContainer Interface. It runs the RPG program
multiple times to retrieve all records from the PARTS file.

Figure 105. Distributed Program Call Example populateListBox Method (Part 1 of 2)

public void populateListBox(com.ibm.ivj.eab.dab.IMulticolumnListbox aListBox) throws Exception {
ProgramParameter[] parmlist = new ProgramParameter[6];
AS400Text asFlag = new AS400Text(1);
parmlist[0] = new ProgramParameter(asFlag.toBytes("A"), 1);
AS400PackedDecimal asPartNo = new AS400PackedDecimal(5, 0);
parmlist[1] = new ProgramParameter(asPartNo.toBytes(new java.math.BigDecimal(0)), 3);
AS400Text asDesc = new AS400Text(25);
parmlist[2] = new ProgramParameter(asDesc.toBytes(""), 25);
AS400PackedDecimal asQty = new AS400PackedDecimal(5, 0);
parmlist[3] = new ProgramParameter(asQty.toBytes(new java.math.BigDecimal(0)), 3);
AS400PackedDecimal asPrice = new AS400PackedDecimal(6, 2);
parmlist[4] = new ProgramParameter(asPrice.toBytes(new java.math.BigDecimal(0)), 4);
AS400Text asDate = new AS400Text(10);
parmlist[5] = new ProgramParameter(asDate.toBytes("0001-01-01"), 10);
pgm.setProgram(progName, parmlist);
String flag = null;
150 Building AS/400 Client/Server Applications with Java

Figure 106. Distributed Program Call Example populateListBox Method (Part 2 of 2)

Class: DPCExample Method: populateListBox

Method highlights:

AS400Text asFlag = new AS400Text(1);
parmlist[0] = new ProgramParameter(asFlag.toBytes("A"), 1);
AS400PackedDecimal asPartNo = new AS400PackedDecimal(5, 0);
parmlist[1] = new ProgramParameter(asPartNo.toBytes(new

java.math.BigDecimal(0)), 3);

• The program parameter list is defined and initialized in the same manner as in
the getRecord method. Here, the first parameter is set to A to tell the program
to retrieve all records from the parts file. Zero is supplied for the part number.

if (pgm.run() != true) {
System.out.println("program failed:" + progName);
AS400Message[] messagelist = pgm.getMessageList();
for (int i = 0; i < messagelist.length; i++) {
System.out.println(messagelist[i]);
}
return;
} else {
flag = (String) (asFlag.toObject(parmlist[0].getOutputData(), 0));
if (flag.equals("Y")) {
parmlist[0] = new ProgramParameter(asFlag.toBytes("F"), 1);
pgm.setProgram(progName, parmlist);
do {
if (pgm.run() != true) {
System.out.println("program failed:" + progName);
AS400Message[] messagelist = pgm.getMessageList();
for (int i = 0; i < messagelist.length; i++) {
System.out.println(messagelist[i]);
}
return;
} else {
flag = (String) (asFlag.toObject(parmlist[0].getOutputData(), 0));
if (flag.equals("Y")) {
String[] array = new String[5];
array[0] = (((java.math.BigDecimal) (new AS400PackedDecimal(5, 0)).toObject

(parmlist[1].getOutputData(), 0)).toString());
array[1] = (String) (new AS400Text(25)).toObject(parmlist[2].getOutputData(), 0);
array[2] = WorkShop.DisplayAllParts.insertSpaces(((java.math.BigDecimal) (new

AS400PackedDecimal(5, 0)).toObject(parmlist[3].getOutputData(), 0)).toString(), 5);
array[3] = WorkShop.DisplayAllParts.insertSpaces(((java.math.BigDecimal) (new

AS400PackedDecimal(6, 2)).toObject(parmlist[4].getOutputData(), 0)).toString(), 8);
array[4] = (String) (new AS400Text(10)).toObject(parmlist[5].getOutputData(), 0);
aListBox.addRow(array, array[0]);
}}
} while (flag.equals("Y"));
}}
return;
}

Chapter 3. AS/400 Toolbox for Java 151

if (pgm.run() != true)

• Calls the program the first time to open the parts file and position the read
pointer to the first record in the file.

flag = (String)(asFlag.toObject(parmlist[0].getOutputData(),0));
if (flag.equals(Y))

• Checks if there was any record at all to retrieve. If the initial call to the
program was successful, retrieve the value of the first parameter and check
for an operation succeeded code (Y).

parmlist[0] = new ProgramParameter(asFlag.toBytes(" F") , 1);

• Change the value of the first parameter to an F to tell the program to retrieve
the next record from the file.

Execute the program inside a do loop until the value returned in the first
parameter is not a Y. This means that there are no more records to retrieve from
the file. Upon each successful call to the program, use the same techniques as in
the getRecord method to retrieve the values of output parameters. Place their
Java String converted value into a string array for an addition to the list box.

3.5.14.5 The updateRecord Method
The updateRecord method is called by the ToolboxGUI class when the
Update/Add Part button is pressed.
152 Building AS/400 Client/Server Applications with Java

Figure 107. Distributed Program Call Example updateRecord Method

Class: DPCExample Method: updateRecord

The updateRecord method highlights include:

AS400Text asFlag = new AS400Text(1);
parmlist[0] = new ProgramParameter(asFlag.toBytes("U"), 1);
AS400PackedDecimal asPartNo = new AS400PackedDecimal(5, 0);
parmlist[1] = new ProgramParameter(asPartNo.toBytes(new

java.math.BigDecimal(partNo.trim())), 3);
AS400Text asDesc = new AS400Text(25);
parmlist[2] = new ProgramParameter(asDesc.toBytes(partDesc), 25);
AS400PackedDecimal asQty = new AS400PackedDecimal(5, 0);
parmlist[3] = new ProgramParameter(asQty.toBytes(new

java.math.BigDecimal(partQty)), 3);
AS400PackedDecimal asPrice = new AS400PackedDecimal(6, 2);
parmlist[4] = new ProgramParameter(asPrice.toBytes(new

java.math.BigDecimal(partPrice)), 4);
AS400Text asDate = new AS400Text(10);
parmlist[5] = new ProgramParameter(asDate.toBytes(partDate), 10);

public String updateRecord(String partNo, String partDesc, String partQty, String partPrice, String
partDate) throws Exception
{

ProgramParameter[] parmlist = new ProgramParameter[6];
AS400Text asFlag = new AS400Text(1);
parmlist[0] = new ProgramParameter(asFlag.toBytes("U"), 1);
AS400PackedDecimal asPartNo = new AS400PackedDecimal(5, 0);
parmlist[1] = new ProgramParameter(asPartNo.toBytes(new java.math.BigDecimal(partNo.trim())),

3);
AS400Text asDesc = new AS400Text(25);
parmlist[2] = new ProgramParameter(asDesc.toBytes(partDesc), 25);
AS400PackedDecimal asQty = new AS400PackedDecimal(5, 0);
parmlist[3] = new ProgramParameter(asQty.toBytes(new java.math.BigDecimal(partQty)), 3);
AS400PackedDecimal asPrice = new AS400PackedDecimal(6, 2);
parmlist[4] = new ProgramParameter(asPrice.toBytes(new java.math.BigDecimal(partPrice)), 4);
AS400Text asDate = new AS400Text(10);
parmlist[5] = new ProgramParameter(asDate.toBytes(partDate), 10);
pgm.setProgram(progName, parmlist);
if (pgm.run() != true)
{

System.out.println("program failed:" + progName);
AS400Message[] messagelist = pgm.getMessageList();
for (int i = 0; i < messagelist.length; i++)
{System.out.println(messagelist[i]);}
return "Program call failed!";

}
else
{

if (((String) (asFlag.toObject(parmlist[0].getOutputData(), 0))).equals("Y"))
{return "Record updated.";}
else
{return "Record added.";}

}
}

Chapter 3. AS/400 Toolbox for Java 153

• Here, the first parameter is set to U to tell the program to retrieve a single
record by part number, update it with the supplied attribute values, and return
a Y, meaning that the record was updated. If the record cannot be found in the
database file, the program writes it into the database file. The record is written
with all the supplied data and the program returns an X, meaning that the
record was added.

3.5.14.6 The deleteRecord Method
The deleteRecord method is called by the ToolboxGUI class when the Delete Part
button is pressed. It works in the same way as the getRecord method, but a D is
supplied as the operation code.

3.5.14.7 The dispose Method
The dispose method is called when the application window is closed.

Figure 108. Distributed Program Call Example dispose Method

Class: DPCExample Method: dispose

The dispose method supports:

as400.disconnectAllServices();

• Releases all connections to the AS/400 system and releases resources
associated with server jobs processing requests for the client.

All other methods used in the dispose method are the same as in the JDBC and
StoredProcedure examples.

3.5.15 Data Queues
Data Queue classes allow a Java program to create, delete, write, and read data
queues on the AS/400 system.

DataQueue classes allow a Java program to interact with AS/400 data queues.
AS/400 data queues have the following characteristics:

• The data queue is a fast means of communications between jobs. Therefore, it
is an excellent way to synchronize and pass data between jobs.

• Many jobs can access them simultaneously.

public void dispose()
{

try
{

as400.disconnectAllServices();
}
catch (Exception e)
{
};
super.dispose();
System.exit(0);
return;

}

154 Building AS/400 Client/Server Applications with Java

• Messages on a data queue are free format. Fields are not required as in
database files.

• The data queue can be used for either synchronous or asynchronous
processing.

• The messages on a data queue can be ordered in one of three ways:

– Last in, first out (LIFO)

The last (newest) message placed on the data queue is the first message
taken off the queue.

– First in, first out (FIFO)

The first (oldest) message placed on the data queue is the first message
taken off the queue.

– Keyed

Each message on the data queue has a key associated with it. A message
can only be taken off the queue by specifying the key that is associated
with it.

• Data queues allow for time independent applications. The client and server
applications are not communicating directly and can work independent of each
other.

The DataQueue class provides a complete set of interfaces to access AS/400
data queues from a Java program. It is an excellent way to communicate between
Java programs and AS/400 programs. The AS/400 program can be written in any
language.

A required parameter of the DataQueue constructor is the AS400 object that
represents the AS/400 system that has the data queue or where the data queue
is to be created. The DataQueue constructor requires the integrated file system
path name of the data queue.

Two types of data queues are supported: keyed and non-keyed. Methods
common to both types of queues are in the BaseDataQueue class. This class is
extended by the DataQueue class to complete the implementation of non-keyed
data queues. The BaseDataQueue class is extended by the KeyedDataQueue
class to complete the implementation of keyed data queues.

When data is read from a data queue, it is placed in a DataQueueEntry object.
This object holds the data for both keyed and non-keyed data queues. Additional
data available when reading from a keyed data queue is placed in a
KeyedDataQueueEntry object that extends the DataQueueEntry class. Consider
this example:

// Create an AS400 object
AS400 sys = new AS400("mySystem.myCompany.com");

// Create the DataQueue object
DataQueue dq = new DataQueue(sys, "/QSYS.LIB/MYLIB.LIB/MYQUEUE.DTAQ");

// read data from the queue
DataQueueEntry dqData = dq.read();

// get the data out of the DataQueueEntry object as a byte array
byte[] data = dqData.getByteData();
Chapter 3. AS/400 Toolbox for Java 155

// ... process the data

// Disconnect since I am done using data queues
sys.disconnectService("data queue");

The data queue classes do not alter data written to or read from the AS/400 data
queue. It is up to the Java program to correctly format the data. The data
conversion classes provide methods for converting data.

3.5.15.1 Keyed Data Queues
The BaseDataQueue and KeyedDataQueue classes provide the following
methods for working with keyed data queues:

• Create a keyed data queue on the AS/400 system. The Java program must
specify a key length and maximum size of an entry on the queue. The Java
program can optionally specify authority information, save sender information,
force to disk, and provide a queue description.

• Peek at an entry that matches the specified key without removing it from the
queue. The Java program can wait or return immediately if no entry is
currently on the queue that matches the specified key. The program can
receive the entry as a string or as a byte array.

• Read an entry off the queue that matches the specified key. The Java program
can wait or return immediately if no entry is available on the queue that
matches the specified key. The program can read the entry as a string or as a
byte array.

• Write an entry to the queue.

• Clear all entries that match the specified key.

• Delete the queue.

The BaseDataQueue and KeyedDataQueue classes also provide additional
methods for retrieving the attributes of the data queue.

3.5.15.2 Non-Keyed Data Queues
Entries on a non-keyed AS/400 data queue are removed in FIFO or LIFO
sequence. The BaseDataQueue and DataQueue classes provide the following
methods for working with non-keyed data queues:

• Create a data queue on the AS/400 system. The Java program can optionally
specify queue parameters (FIFO versus LIFO, save sender information, and
so on) when the queue is created.

• Peek at an entry on the data queue without removing it from the queue. The
Java program can wait or return immediately if no entry is currently on the
queue, and can receive the entry as a string or as a byte array.

• Read an entry off the queue. The Java program can wait or return immediately
if no entry is available on the queue, and can read the entry as a string or as a
byte array.

• Write an entry to the queue.

• Clear all entries from the queue.

• Delete the queue.
156 Building AS/400 Client/Server Applications with Java

The BaseDataQueue and DataQueue classes also provide additional methods for
retrieving the attributes of the data queue.

3.5.16 Data Queue Application Example
In this example, we use the Data Queue interface to allow a client program to
interface with an AS/400 program (see Figure 109).

Figure 109. Data Queue Application

The client program requests data from the AS/400 database by placing requests
on an input AS/400 data queue. A host program monitors the input data queue for
a request. If a request is received, the host program uses it to retrieve records
from the AS/400 database. The output information is placed in an output data
queue that is monitored by the client program. When using data queues, it is up
to the application implementer to handle data conversions.

Figure 110. Data Queue Example
Chapter 3. AS/400 Toolbox for Java 157

Class DataQueueExample is the main class in this application. It is functionally
equivalent to the StoredProcedureExample application, but is implemented using
different techniques. The ToolboxGUI and DisplayAllParts classes are used to
handle all user interaction. A native RPG program waits for a request on an input
data queue (APILIB/DQINPT) and places results on an output data queue
(APILIB/DQOUPT). Record create, read, update, and delete are implemented in
this example.

3.5.16.1 Data Queue Server Program Background
An input queue and output queue were created with these commands:

CRTDTAQ DTAQ(APILIB/DQINPT) MAXLEN(48) TEXT('Data Queue for Parts Input')
CRTDTAQ DTAQ(APILIB/DQOUPT) MAXLEN(48) TEXT('Data Queue for Parts Output')

Table 26 shows the DQINPT layout for the data queue.

Table 26. Data Queue DQINPT Layout

Table 27 shows the DQOUPT layout for the data queue.

Table 27. Data Queue DQOUPT Layout

Queue Position Description Length/Type Values

1 - 1 Operation Code 1 character S - read single record
A - read all records
E - end the program
D - delete single record
U - update/add single record

2 - 6 Part Number 5.0 zoned

7 - 31 Part Description 25 character

32 - 34 Part Quantity 5.0 packed

35 - 38 Part Price 6.2 packed

39 - 48 Part Date Received 10 date

Queue Position Description Length/Type Values

1 - 1 Return Code 1 character Y - record found, deleted, updated
X - record not found, added, End of File

2 - 6 Part Number 5.0 zoned

7 - 31 Part Description 25 character

32 - 34 Part Quantity 5.0 packed

35 - 38 Part Price 6.2 packed

39 - 48 Part Date Received 10 date
158 Building AS/400 Client/Server Applications with Java

3.5.17 DataQueueExample Class
In this section, we investigate the key methods of the DataQueueExample Class.

3.5.17.1 Instance Variables
The following instance variables are declared for the class:

private AS400 as400;
private DataQueue dqInput;
private DataQueue dqOutput;
private RecordFormat rfInput;
private RecordFormat rfOutput;

3.5.17.2 The connectToDB Method
The connectToDB method is called by the ToolboxGUI class when the Connect
button is pressed. String parameters representing the AS/400 system name, user
ID, and password are passed to the method.

Figure 111. Data Queue Example connectToDB Method

Class: DataQueueExample Method: connectToDB

This method supports these functions:

as400 = new com.ibm.as400.access.AS400(systemName, userid, password);

• Creates a new AS/400 connection object. System name, user ID, and
password are passed through the constructor.

Note: If you import the com.ibm.as400.access classes, you do not have to
fully qualify the class name. You can write it as shown.

dqInput = new com.ibm.as400.access.DataQueue(as400,
"/QSYS.LIB/APILIB.LIB/DQINPT.DTAQ");

dqOutput = new com.ibm.as400.access.DataQueue(as400,
"/QSYS.LIB/APILIB.LIB/DQOUPT.DTAQ");

• Creates new DataQueue objects for the input and output queues. The
fully-qualified IFS name of the data queues are passed in the constructor.

dqInput.clear();
dqOutput.clear();

• Clears both DataQueues, so there are no remaining entries from interrupted
or unsuccessful tests. DataQueues that are not properly initialized can
provoke confusing and unwanted results in your application.

public void connectToDB(String systemName, String userid, String password) throws Exception
{

as400 = new AS400(systemName, userid, password);
dqInput = new com.ibm.as400.access.DataQueue(as400, "/QSYS.LIB/APILIB.LIB/DQINPT.DTAQ");
dqOutput = new com.ibm.as400.access.DataQueue(as400, "/QSYS.LIB/APILIB.LIB/DQOUPT.DTAQ");
dqInput.clear();
dqOutput.clear();
return;

}

Chapter 3. AS/400 Toolbox for Java 159

3.5.17.3 The getRecord Method
The getRecord method is called by the ToolboxGUI class when the Get Part
button is pressed.

Figure 112. Data Queue Example getRecord Method

Class: DataQueueExample Method: getRecord

Method highlights include:

if (rfInput == null) initRecordFormat();

• Uses lazy initialization to create the input and output record format objects.
See the initRecordFormat method for details.

Record rInput = rfInput.getNewRecord();

• Creates a new input record object from the input record format. A
RecordFormat is only a description of a record. A record is an object that can
have field values.

public String getRecord(String partNo, java.awt.TextField partDesc, java.awt.TextField partQty,
java.awt.TextField partPrice, java.awt.TextField partDate) throws Exception
{

if (rfInput == null) initRecordFormat();
Record rInput = rfInput.getNewRecord();
rInput.setField("flag","S");
rInput.setField("partno",new java.math.BigDecimal(partNo.trim()));
rInput.setField("partds","");
rInput.setField("partqy",new java.math.BigDecimal(0));
rInput.setField("partpr",new java.math.BigDecimal(0));
rInput.setField("partdt","0001-01-01");
dqInput.write(rInput.getContents());
DataQueueEntry dqe = null;
while (dqe == null)
{

dqe = dqOutput.read();
}
Record rOutput = rfOutput.getNewRecord(dqe.getData());
if (((String)rOutput.getField("flag")).equals("Y"))
{

partDesc.setText(((String)rOutput.getField("partds")).trim());
partQty.setText(((java.math.BigDecimal)rOutput.getField("partqy")).toString());
partPrice.setText(((java.math.BigDecimal)rOutput.getField("partpr")).toString());
partDate.setText((String)rOutput.getField("partdt"));

}
else
{

partDesc.setText("");
partQty.setText("0");
partPrice.setText("0.00");
partDate.setText("");
return "Record not found.";

}
return "Record found.";

}

160 Building AS/400 Client/Server Applications with Java

rInput.setField("flag","S");
rInput.setField("partno",new java.math.BigDecimal(partNo.trim()));
rInput.setField("partds","");
rInput.setField("partqy",new java.math.BigDecimal(0));
rInput.setField("partpr",new java.math.BigDecimal(0));
rInput.setField("partdt","0001-01-01");

• Sets the value of the flag field in the record to S to tell the server program to
retrieve a single record from the database. Set the value of the part field to the
part number passed on the parameter list. Initialize the remaining fields with
values accepted by the server program. This has to be done because the input
parameters must match the requirements of the AS/400 data types and avoids
having such server program troubles as decimal data errors or date
conversion errors.

dqInput.write(rInput.getContents());

• Writes the input record to the input data queue. The getContents method
returns a byte array of the value of the record in the AS/400 format.

DataQueueEntry dqe = null;
while (dqe == null) {dqe = dqOutput.read();}

• Initializes a DataQueueEntryObject. In a loop, the method dqOutput.read()
reads the next entry off the output data queue. This returns a data queue entry
object. Since we do not know how long it will take the server program to write
the answer of our request into the output dataQueue, the program must loop
until the expected record can be retrieved from there.

Record rOutput = rfOutput.getNewRecord(dqe.getData());

• Creates a new output record by using the output record format and setting
field values that use the array of bytes returned by the getData method of the
data queue entry object.

if (((String)rOutput.getField("flag")).equals("Y"))

• This statement checks the value of the flag field in the record format to see if
the part record was retrieved successfully. The getField method uses an
object of type Object. It must be typecast as a string object to use string
methods.

partDesc.setText(((String)rOutput.getField("partds")).trim());
partQty.setText(((java.math.BigDecimal)rOutput.getField("partqy")).toString(

));
partPrice.setText(((java.math.BigDecimal)rOutput.getField("partpr")).toString

());
partDate.setText((String)rOutput.getField("partdt"));

• The same technique is used to retrieve and field values from the output record
object to Java objects. The string representation of each output parameter is
used to set the text property of the associated TextFields on the window.
Chapter 3. AS/400 Toolbox for Java 161

3.5.17.4 The initRecordFormat Method
The initRecordFormat method initializes the input and output record format
objects. It is called by the getRecord and populateListBox methods if the record
formats are not already initialized.

Figure 113. Data Queue Example initRecordFormat Method

Class: DataQueueExample Method: initRecordFormat

This method includes:

CharacterFieldDescription asFlag = new CharacterFieldDescription(new
AS400Text(1),"flag");

ZonedDecimalFieldDescription asPartNo = new ZonedDecimalFieldDescription(new
AS400ZonedDecimal(5,0),"partno");

CharacterFieldDescription asPartDS = new CharacterFieldDescription(new
AS400Text(25),"partds");

PackedDecimalFieldDescription asPartQy = new PackedDecimalFieldDescription(new
AS400PackedDecimal(5,0),"partqy");

PackedDecimalFieldDescription asPartPR = new PackedDecimalFieldDescription(new
AS400PackedDecimal(6,2),"partpr");

DateFieldDescription asPartDt = new DateFieldDescription(new
AS400Text(10),"partdt");

• These statements create field description objects for the data fields that make
up the input and output record formats. The field description constructor takes
an AS/400 data type object and a field name.

public void initRecordFormat()
{

CharacterFieldDescription asFlag = new CharacterFieldDescription(new AS400Text(1),"flag");
ZonedDecimalFieldDescription asPartNo = new ZonedDecimalFieldDescription(new

AS400ZonedDecimal(5,0),"partno");
CharacterFieldDescription asPartDS = new CharacterFieldDescription(new

AS400Text(25),"partds");
PackedDecimalFieldDescription asPartQy = new PackedDecimalFieldDescription(new

AS400PackedDecimal(5,0),"partqy");
PackedDecimalFieldDescription asPartPR = new PackedDecimalFieldDescription(new

AS400PackedDecimal(6,2),"partpr");
DateFieldDescription asPartDt = new DateFieldDescription(new AS400Text(10),"partdt");
rfInput = new RecordFormat();
rfInput.addFieldDescription(asFlag);
rfInput.addFieldDescription(asPartNo);
rfInput.addFieldDescription(asPartDS);
rfInput.addFieldDescription(asPartQy);
rfInput.addFieldDescription(asPartPR);
rfInput.addFieldDescription(asPartDt);
rfOutput = new RecordFormat();
rfOutput.addFieldDescription(asFlag);
rfOutput.addFieldDescription(asPartNo);
rfOutput.addFieldDescription(asPartDS);
rfOutput.addFieldDescription(asPartQy);
rfOutput.addFieldDescription(asPartPR);
rfOutput.addFieldDescription(asPartDt);
return;

}

162 Building AS/400 Client/Server Applications with Java

rfInput = new RecordFormat();
rfInput.addFieldDescription(asFlag);
rfInput.addFieldDescription(asPartNo);
rfInput.addFieldDescription(asPartDS);
rfInput.addFieldDescription(asPartQy);
rfInput.addFieldDescription(asPartPR);
rfInput.addFieldDescription(asPartDt);

• Creates the input record format by adding field descriptions to a new
RecordFormat object.

rfOutput = new RecordFormat();
rfOutput.addFieldDescription(asFlag);
rfOutput.addFieldDescription(asPartNo);
rfOutput.addFieldDescription(asPartDS);
rfOutput.addFieldDescription(asPartQy);
rfOutput.addFieldDescription(asPartPR);
rfOutput.addFieldDescription(asPartDt);

• Creates the output record format by adding field descriptions to a new
RecordFormat object.

3.5.17.5 The populateListBox Method
The populateListBox method is called from the constructor. It sends a message
on the input data queue to request all records from the parts file. It receives from
the output data queue multiple times until all of the parts records are returned by
the server program.
Chapter 3. AS/400 Toolbox for Java 163

Figure 114. Data Queue Example populateListBox Method

Class: DataQueueExample Method: populateListBox

This method offers:

if (rfInput == null) initRecordFormat();

• The input and output record formats are initialized, if needed.

Record rInput = rfInput.getNewRecord();

• A new input record object is created from the input record format.

rInput.setField("flag","A");

• The flag field in the input record is set to an "A" to request all records from the
parts file.

public void populateListBox(com.ibm.ivj.eab.dab.IMulticolumnListbox aListBox) throws Exception
{

if (rfInput == null) initRecordFormat();
Record rInput = rfInput.getNewRecord();
rInput.setField("flag","A");
rInput.setField("partno",new java.math.BigDecimal(0));
rInput.setField("partds","");
rInput.setField("partqy",new java.math.BigDecimal(0));
rInput.setField("partpr",new java.math.BigDecimal(0));
rInput.setField("partdt","0001-01-01");
dqInput.write(rInput.getContents());
String flag = null;
do
{

DataQueueEntry dqe = null;
while (dqe == null)
{

dqe = dqOutput.read();
}
Record rOutput = rfOutput.getNewRecord(dqe.getData());
flag = (String)rOutput.getField("flag");
if (flag.equals("Y"))
{

String[] array = new String[5];
array[0] =((java.math.BigDecimal)rOutput.getField("partno")).toString();
array[1] =(String)rOutput.getField("partds");
array[2] =WorkShop.DisplayAllParts.insertSpaces(((java.math.BigDecimal)

rOutput.getField("partqy")).toString(), 5);
array[3] =WorkShop.DisplayAllParts.insertSpaces(((java.math.BigDecimal)

rOutput.getField("partpr")).toString(), 8);
array[4] =(String)rOutput.getField("partdt");
aListBox.addRow(array, array[0]);

}
}
while (flag.equals("Y"));
return;

}

164 Building AS/400 Client/Server Applications with Java

dqInput.write(rInput.getContents());

• Puts the current value of the input record format on the input data queue.

DataQueueEntry dqe = null;
while (dqe == null) {dqe = dqOutput.read();}

• Initializes a DataQueueEntryObject. In a loop, the method dqOutput.read()
reads the next entry off the output data queue. This returns a data queue entry
object. Since we do not know how long it will take the server program to write
the answer of our request into the output dataQueue, the program must loop
until the expected record can be retrieved from there.

Record rOutput = rfOutput.getNewRecord(dqe.getData());

• Uses the array of bytes returned by the method getData() to initialize a new
output record object.

Execute the read inside a do loop until the value returned in the flag field is not a
"Y". This means that there are no more records to retrieve from the file. Upon
each successful read from the data queue, use the same techniques as the
getRecord method to retrieve the values of output record fields and place their
Java String converted value into a string array for addition to the list box.

3.5.17.6 The updateRecord Method
The updateRecord method is called by the ToolboxGUI class when the
Update/Add Part button is pressed.
Chapter 3. AS/400 Toolbox for Java 165

Figure 115. Data Queue Example updateRecord Method

Class: DataQueueExample Method: updateRecord

The updateRecord method includes:

rInput.setField("flag", "U");
rInput.setField("partno", new java.math.BigDecimal(partNo.trim()));
rInput.setField("partds", partDesc);
rInput.setField("partqy", new java.math.BigDecimal(partQty));
rInput.setField("partpr", new java.math.BigDecimal(partPrice));
rInput.setField("partdt", partDate);

• Here, the first parameter is set to U to tell the program to retrieve a single
record by its part number, update it with the supplied attribute values, and
return a Y, meaning that the record was updated. If the record cannot be found
in the database file, the program writes it into the database file. The record is
written with all the supplied data and the program returns an X, meaning that
the record has been added.

3.5.17.7 The deleteRecord Method
The deleteRecord method is called by the ToolboxGUI class when the Delete Part
button is pressed. It works in the same way as the getRecord method, but a D is
supplied as the operation code.

public String updateRecord(String partNo, String partDesc, String partQty, String partPrice, String
partDate) throws Exception
{

if (rfInput == null)
initRecordFormat();

Record rInput = rfInput.getNewRecord();
rInput.setField("flag", "U");
rInput.setField("partno", new java.math.BigDecimal(partNo.trim()));
rInput.setField("partds", partDesc);
rInput.setField("partqy", new java.math.BigDecimal(partQty));
rInput.setField("partpr", new java.math.BigDecimal(partPrice));
rInput.setField("partdt", partDate);
dqInput.write(rInput.getContents());
DataQueueEntry dqe = null;
while (dqe == null)
{

dqe = dqOutput.read();
}
Record rOutput = rfOutput.getNewRecord(dqe.getData());
if (((String) rOutput.getField("flag")).equals("Y"))
{

return "1 Record updated.";
}
else
{

return "1 Record added.";
}

}

166 Building AS/400 Client/Server Applications with Java

3.5.17.8 The dispose Method
The dispose method is called when the application window is closed.

Figure 116. Data Queue Example dispose Method

Class: DataQueueExample Method: dispose

The dispose method includes:

as400.disconnectAllServices();

• Releases all connections to the AS/400 system and releases resources
associated with server jobs processing requests for the client.

super.dispose();

• Calls the super class dispose method to make sure any resources used by the
frame are properly freed.

All other methods used in the dispose method are the same as in the JDBC and
StoredProcedure Examples.

3.6 Network Print

The network print classes provide the following functions:

• Read and write AS/400 spooled files
• Generate SCS data streams
• Manage print resources:

– List, hold, and release spooled files
– List, hold, and release output queues
– Start and stop AS/400 writer jobs
– List and retrieve attributes of printer devices
– List and read AFP resources

Using the Network Print classes involves the following steps:

1. Establish a connection.
2. Create a spooled file list.
3. Set the user filter.
4. Open the spooled file list.
5. Retrieve entries.

public void dispose()
{

try
{

as400.disconnectAllServices();
}
catch (Exception e)
{
};
super.dispose();
System.exit(0);
return;

}

Chapter 3. AS/400 Toolbox for Java 167

6. Close the spooled file list.
7. Close the connection.

3.6.1 Print Example
In this example, we use the SpooledFileList feature of the AS/400 Toolbox to
allow a Java program to directly access spooled files on the AS/400 system
(Figure 117).

Figure 117. AS/400 Toolbox for Java Print

Spooled files can be created, deleted, held, and released. Spooled files can also
be filtered by user name.

The Toolbox classes used are:

• AS400(String, String, String)

Constructor for class com.ibm.as400.access.AS400. Constructs an AS400
object for the specified system, user ID, and password.

• SpooledFileList(AS400)

Constructor for class com.ibm.as400.access.SpooledFileList. Constructs a
SpooledFileList to an AS/400 system.

• SpooledFile()

Constructor for class com.ibm.as400.access.SpooledFile. Constructs a
spooled file object.

The spooledFileList methods used include:

• openSynchronously()

Builds the list synchronously. This method does not return until the list is built
completely.

• getObject(int index)

Returns one object from the list.

• close()

Closes the spooled file list.
168 Building AS/400 Client/Server Applications with Java

Figure 118. Spooled File Example

This application was created using VisualAge for Java and the AS/400 Toolbox
classes. The spooled file list retrieval application allows us to retrieve a list of
spooled files of the current logged on user, but any user name can be used.
Figure 118 shows the spooled files for the current logged on user.

3.6.2 SpooledFileListExample Class
In this section, we investigate the key methods of the SpooledFileListExample
class.

3.6.2.1 The connect Method
The connect method is called when the Connect button is pressed. String
parameters representing the AS/400 system name, user ID, and password are
passed to the method.
Chapter 3. AS/400 Toolbox for Java 169

Figure 119. Spooled File Example connect Method

This method supports these features:

as400 = new AS400(systemName, userid, password);

• Creates a new AS/400 connection object. System name, user ID, and
password are passed through the constructor.

as400.connectService(AS400.PRINT);

• Connect to the AS/400 Program Call and Print Service server. This is not a
required call. If a service connection is needed and does not already exist, the
service is connected automatically. We choose to place the connection
overhead in the connect method, as opposed to connecting the first time that
the user requests a spooled file.

3.6.2.2 The formatSpooledFile Method
The formatSpooledFile method is called to format the Print objects so they can be
added to the Multi-column list box. It is called by the getSpooledFilesForUser
method. It is called with a SpooledFile Object as input. It retrieves the attributes
of the object and returns a string array that contains the formatted attributes of
the object.

Figure 120. Spooled File Example formatSpooledFile Method

public String connect(String systemName, String userid, String password)
{

try
{

as400 = new AS400(systemName, userid, password);
as400.connectService(as400.PRINT);

}
catch (Exception e)
{

return "Exception " + e;
}
return "Connected";

}

public String[] formatSpooledFile(com.ibm.as400.access.SpooledFile theFile) throws Exception
{

String result[] = new String[6];
result[0] = theFile.getStringAttribute(PrintObject.ATTR_SPOOLFILE);
result[1] = theFile.getStringAttribute(PrintObject.ATTR_JOBUSER);
result[2] = theFile.getStringAttribute(PrintObject.ATTR_USERDATA);
result[3] = theFile.getStringAttribute(PrintObject.ATTR_SPLFSTATUS);
String date = theFile.getStringAttribute(PrintObject.ATTR_DATE);
result[4] = date.substring(3, 5) + "/" + date.substring(5, 7) + "/" + date.substring(1, 3);
String time = theFile.getStringAttribute(PrintObject.ATTR_TIME);
result[5] = time.substring(0, 2) + ":" + time.substring(2, 4) + ":" + time.substring(4, 6);
return result;

}

170 Building AS/400 Client/Server Applications with Java

3.6.2.3 The getSpooledFilesForUser (String User) Method
The getSpooledFilesForUser method highlights include:

• New spooledFileList (as400)

Constructs a spooled file list object using the system object. The default list
shows all spooled files for the current user on the specified system.

• list.setUserFilter (String user name)

Specifies the user data that the spooled file must have for it to be included in
the list. The value can be any specific value or the special *ALL value. The
value cannot be greater than 10 characters. The default is *ALL.

• list.openSynchronously()

Builds the list synchronously. This method does not return until the list is built
completely. The caller may then call the getObjects method to get an
enumeration of the list.

• list.size()

Returns the current size of the list.

• currentFile = (SpooledFile)list.getObject(x)

Returns one object from the list.

• getMultiColumnListbox1().addRow(formatSpooledFile(currentFile),
currentFile)

Calls formatSpooledFile to retrieve the attributes of the object and then adds it
to the list box.

• list.close()

Closes the list so that objects in the list can be garbage collected.
Chapter 3. AS/400 Toolbox for Java 171

Figure 121. Spooled File Example getSpooledFileForUser Method

3.7 Integrated File Systems Access

Integrated file system support allows access to files in the AS/400 system's
integrated file systems as a stream of bytes. It provides a function similar to the
java.io package, plus the ability to:

• Specify a file sharing mode to deny access to the file while it is in use
• Specify a file creation mode to open, create, or replace the file
• Lock a section of the file to deny access to that part of the file while it is in use
• List the contents of a directory more efficiently
• Determine the number of bytes available on the AS/400 system
• Get detailed information on why an operation failed

The Integrated File System Stream File classes were created because the java.io
package does not provide file redirection. The Integrated File System Stream File
classes also provide functions that are not in the java.io package. The function
provided by the Integrated File System Stream File classes is a superset of the
function provided by the file IO classes in the java.io package. All methods in
java.io InputStream, OutputStream, and RandomAccessFile are in the Integrated
File System Stream File classes.

The Integrated File System Stream File classes also allow a Java applet to write
files to the AS/400 file system. Java applets cannot use the java.io package to
write to the file system.

A Java program can still use the java.io package, but a method of redirection
must be provided by the client operating system. For example, if the Java

public String getSpooledFilesForUser(String user)
{

SpooledFileList list;
try
{

clearListbox();
list = new SpooledFileList(as400);
list.setUserFilter(user.toUpperCase());
list.openSynchronously();
int listsize = list.size();
SpooledFile currentFile;
for (int x = 0; x < listsize; x++)
{

currentFile = (SpooledFile) list.getObject(x);
getIMulticolumnListbox1().addRow(formatSpooledFile(currentFile), currentFile);

}
}
catch (Exception e)
{

return "An exception occurred" + e;
}
list.close();
getIMulticolumnListbox1().repaint();
return "SpooledFileList Retrieved Successfully";

}

172 Building AS/400 Client/Server Applications with Java

program is running on a Windows 95 or Windows NT personal computer, the
network drive function of AS/400 Client Access for 32-bit Windows is required for
java.io calls to the AS/400 system. With the Integrated File System Stream File
classes, Client Access is not required.

Integrated File System Stream File classes require the hierarchical name of the
object in the integrated file system. Use the forward slash as the path separator
character. For example, to access FILE1 in directory path DIR1/DIR2, the name
is:

/DIR1/DIR2/FILE1

3.7.1 Integrated File System Example
In this example, we use the integrated file system classes of the AS/400 Toolbox
to allow a Java program to interface with the OS/400 host servers to gain access
to files in the AS/400 integrated file system (Figure 122).

Figure 122. AS/400 Toolbox for Java IFS

The toolbox classes used in this example are:

• AS400(String, String, String)

Constructor for class com.ibm.as400.access.AS400. Constructs an AS400
object for the specified system, user ID, and password.

• IFSFile(AS400, String)

Constructor for class com.ibm.as400.access.IFSFile. Constructs an object
referring to an IFS File on the AS/400 system.

• IFSFileInputStream(AS400, IFSFile, int)

Constructor for class com.ibm.as400.access.IFSFileInputStream. Constructs
an input stream to read contents of the file.

The IFS methods used in this example are:

• list()

Method in class com.ibm.as400.access.IFSFile. If the IFSFile object
represents a directory or folder, this method returns an array of strings that
holds the list of all files and directories within.
Chapter 3. AS/400 Toolbox for Java 173

• getSystem()

Method in class com.ibm.as400.access.IFSFile. Returns the AS400 object
from which this IFSFile was created.

• getName()

Method in class com.ibm.as400.access.IFSFile. Returns a string with the
name of the IFSFile.

• isDirectory() and isFile()

Methods in class com.ibm.as400.access.IFSFile. Return booleans to
determine whether the IFSFile object represents a file or directory.

• length()

Method in class com.ibm.as400.access.IFSFile. Returns the length (in bytes)
of the file.

• lastModified()

Method in class com.ibm.as400.access.IFSFile. Returns the last date that the
file was modified (as a long).

• available()

Method in class com.ibm.as400.access.IFSFileInputStream. Returns the
number of available bytes in the file.

• read(byte[])

Method in class com.ibm.as400.access.IFSFileInputStream. Reads the
number of bytes available and stores in the byte array.

• close()

Method in class com.ibm.as400.access.IFSFileInputStream. Closes the input
stream.

This application was built using VisualAge for Java and the AS/400 Toolbox. In
this example, we use the integrated file system classes of the AS/400 Toolbox to
allow a Java program to retrieve a list of files from the AS/400 integrated file
system. Figure 123 on page 175 shows the files stored in the IFS for the path
entered in the text box.
174 Building AS/400 Client/Server Applications with Java

Figure 123. Integrated File System Example (Directories/Files)

If a text file is selected from the list of files, its contents are displayed as shown in
Figure 124.

Figure 124. Integrated File System Example (File Viewer)

To build this application, the following steps are required:

1. Establish a connection.
2. Set the IFS Path to view.
3. Create an IFSFile object.
4. Retrieve the list of files.
5. Open an IFSFileInputStream.
6. Read the file contents.
7. Close the connection.
Chapter 3. AS/400 Toolbox for Java 175

3.7.2 IFSExample Class
In this section, we investigate the key methods of the IFSExample class.

3.7.2.1 The connect Method
The connect method is called when the Connect button is pressed. String
parameters representing the AS/400 system name, user ID, and password are
passed to the method.

Figure 125. Integrated File System Example connect Method

The connect method offers the following highlights:

as400 = new com.ibm.as400.access.AS400(systemName, userid, password);

• Creates a new AS/400 connection object. System name, user ID, and
password are passed through the constructor.

as400.connectService(AS400.com.ibm.as400.access.AS400.FILE);

• Connects to the AS/400 host file server. This is not a required call. If a service
connection is needed and does not already exist, the service is connected
automatically. We choose to place the connection overhead in the connect
method as opposed to connecting the first time the user requests to access a
file.

3.7.2.2 The populateList Method
The populateList method is called when the Get Dirs/Files button is pressed. A
string parameter representing the IFS path is passed to the method.

public void connect(String systemName, String userid, String password) throws Exception
{

getStatus().setText("Connecting....");
as400 = new com.ibm.as400.access.AS400(systemName, userid, password);
as400.connectService(com.ibm.as400.access.AS400.FILE);
getStatus().setText("Connected to AS400");
return;

}

176 Building AS/400 Client/Server Applications with Java

Figure 126. Integrated File System Example populateList Method

The populateList method highlights include:

aFile = new com.ibm.as400.access.IFSFile(as400, IFSPath);

• Creates a new IFSFile object using the AS400 object and the IFS path as
parameters.

files = aFile.list();

• Uses the IFSFile list method to return an array of strings that holds a list of
files and directories held in the IFSFile object.

public void populateList(String IFSPath)
{

com.ibm.as400.access.IFSFile aFile;
String[] files;
Object rowKey;
getStatus().setText("Retrieving...");
clearListbox();
try
{

aFile = new com.ibm.as400.access.IFSFile(as400, IFSPath);
files = aFile.list();
for (int i=0; i<files.length; i++)
{

aFile = new com.ibm.as400.access.IFSFile(as400,IFSPath, files[i]);
rowKey = aFile;
String[] rowData = new String[4];
rowData[0] = files[i];
rowData[1] = String.valueOf(aFile.length());
if (aFile.isDirectory())
{

rowData[2] = "Directory";
}
else
{

rowData[2] = "File";
}
rowData[3] = new java.util.Date(aFile.lastModified()).toString();
getIMulticolumnListbox1().addRow(rowData, rowKey);

}
}
catch (java.io.IOException ex)
{

System.out.println("Error Receiving Files: "+ex);
}
getIMulticolumnListbox1().repaint();
getStatus().setText("Done.");
return;

}

Chapter 3. AS/400 Toolbox for Java 177

for (int i=0; i<files.length; i++) {
aFile = new com.ibm.as400.access.IFSFile(as400,IFSPath, files[i]);
.
.

• Loops through the list of file objects stored in the string array named files and
builds an object array that contains the name of the file, the size, the type, and
the last modified date.

getMultiColumnListbox1().addRow(rowData, rowKey);

• Adds a new entry to the multi-column list box for the file object.

3.7.2.3 The readFile() Method
The readFile() method reads the contents of a file as a stream of bytes and stores
them in a byte array.

Figure 127. Integrated File System Example readFile Method

protected void readFile()
{

byte[] data = null;

// Determine if the file extension is .txt
String name = _file.getName();
int index = name.lastIndexOf(".");
if (index == -1)
{

getFileContents().setText("Error: Only .txt files can be viewed.");
return;

}
if (!(name.substring(index + 1).toUpperCase()).equals("TXT"))
{

getFileContents().setText("Error: Only .txt files can be viewed.");
return;

}
try
{

IFSFileInputStream in = new IFSFileInputStream(_file.getSystem(), _file,
IFSFileInputStream.SHARE_ALL);

int len = in.available();
data = new byte[len];
in.read(data);
in.close();

}
catch (Exception ex)
{

System.err.println("Error reading file: " + ex);
}
String t = new String(data);
getFileContents().setText(t);

}

178 Building AS/400 Client/Server Applications with Java

Readfile() method highlights:

IFSFileInputStream in = new IFSFileInputStream(_file.getSystem(), _file,
IFSFileInputStream.SHARE_ALL);

• Creates a new IFSFileInputStream object that is used to read the contents of a
file.

int len = in.available();

• Uses the IFSFileInputStream method available to determine the number of
bytes contained in the file.

data = new byte[len];

• Allocates a byte array to hold the data of the size returned previously.

in.read(data);

• Uses the IFSFileInputStream method read to read the stream of bytes into the
byte array.
Chapter 3. AS/400 Toolbox for Java 179

180 Building AS/400 Client/Server Applications with Java

Chapter 4. AS/400 Toolbox for Java — GUI Classes

New to the AS/400 Toolbox for Java with Modification 1 are the graphical user
interface (GUI) classes, which are part of the vaccess package. With the GUI
classes, you can visually represent your AS/400 data and resources. This
chapter covers the GUI classes available as part of the AS/400 Toolbox for Java
Modification 1. This support is available with OS/400 V4R3. The AS/400 Toolbox
for Java Modification 2 offers additional GUI classes. They are described in
Chapter 5, “AS/400 Toolbox for Java Modification 2” on page 213.

Java programs that use the AS/400 Toolbox for Java GUI classes also need
Sun’s JDK Swing 1.0.1 support. Swing is available with Sun's JFC (Java
Foundation Classes) 1.1. For more information about Swing, visit the Web site at:
http://www.javasoft.com/products/jfc/index.html

VisualAge for Java 2.0 provides this support so you can use these classes in the
Visual Composition Editor. The AS/400 Toolbox for Java provides GUI classes for
the following resources:

• AS/400 panes
• Java Database Connectivity (JDBC)
• Data queues
• Command call
• Error events
• Jobs
• Messages
• Network print
• Program call
• Record-level access
• Users and groups

4.1 Overview of the GUI Classes

This section presents an overview of each of the GUI classes. Basic
programming examples are provided by the AS/400 Toolbox for Java API Users
Guide that is available with the AS/400 Toolbox for Java. This chapter includes
examples that use the GUI classes and VisualAge for Java 2.0 to produce
AS/400 client/server applications.

The source code for any of the examples discussed in this chapter is available on
the Internet. Please refer to Section A.1, “Downloading the Files from the
Internet” on page 396, for details.

4.1.1 AS/400 Panes
AS/400 panes are graphical user interface classes that present and allow
manipulation of one or more AS/400 resource. The behavior of each AS/400
resource varies depending on the type of resource. All panes extend the Java
Component class. As a result, they can be added to any AWT Frame, Window, or
Container.
© Copyright IBM Corp. 1997, 1998, 1999 181

The following AS/400 panes are available:

• AS400ListPane presents a list of AS/400 resources and allows selection of
one or more resources (Figure 128).

Figure 128. AS400ListPane

• AS400DetailsPane presents a list of AS/400 resources in a table where each
row displays various details about a single resource. The table allows the
selection of one or more resources (Figure 129).

Figure 129. AS400DetailsPane

• AS400TreePane presents a tree hierarchy of AS/400 resources and allows
the selection of one or more resources (Figure 130).

Figure 130. AS400TreePane

• AS400ExplorerPane combines an AS400TreePane and AS400DetailsPane
so that the resource selected in the tree is presented in the details (Figure 131
on page 183).
182 Building AS/400 Client/Server Applications with Java

Figure 131. AS400ExplorerPane

4.1.2 JDBC
Java Database Connectivity (JDBC) graphical user interface classes allow a Java
program to present various views and controls for accessing a database using
SQL (Structured Query Language) statements and queries. The following classes
are available:

• SQLStatementButton — A button that issues an SQL statement when
clicked.

• SQLStatementMenuItem — A menu item that issues an SQL statement when
selected.

• SQLStatementDocument — A document that can be used with any Java
Foundation Classes (JFC) graphical text component to issue an SQL
statement.

• SQLResultSetFormPane — Presents the results of an SQL query in a form.

• SQLResultSetTablePane — Presents the results of an SQL query in a table.

• SQLResultSetTableModel — Manages the results of an SQL query in a table.

• SQLQueryBuilderPane — Presents an interactive tool for dynamically
building SQL statements.

4.1.2.1 SQL Connections
An SQLConnection object represents a connection to a database using JDBC.
The SQLConnection object is used with all of the JDBC graphical user interface
classes. To use an SQLConnection, set the URL property using the constructor or
setURL() method. This identifies the database to which the connection is made.
Other optional properties can be set:

• Use setProperties() to specify a set of JDBC connection properties.
• Use setUserName() to specify the user name for the connection.
• Use setPassword() to specify the password for the connection.

The actual connection to the database is not made when the SQLConnection
object is created. Instead, it is made when the getConnection() method is called.
This method is normally called automatically by the JDBC graphical user
interface classes, but it can be called at any time to control when the connection
is made.

An SQLConnection object can be used for more than one JDBC graphical user
interface component. All such classes use the same connection, which can
improve performance and resource usage. Alternately, each JDBC graphical user
interface component can use a different SQL object. It is sometimes necessary to
use separate connections so that SQL statements are issued in different
transactions. When the connection is no longer needed, close the
Chapter 4. AS/400 Toolbox for Java — GUI Classes 183

SQLConnection object using the close() method. This frees up JDBC resources
on both the client and server.

4.1.3 Command Call
The command call graphical user interface classes allow a Java program to
present a button or menu item that calls a non-interactive AS/400 command. A
CommandCallButton object represents a button that calls an AS/400 command
when pressed. The CommandCallButton class extends the Java Foundation
Classes (JFC) JButton class so that all buttons have a consistent appearance
and behavior. Similarly, a CommandCallMenuItem object represents a menu item
that calls an AS/400 command when selected. The CommandCallMenuItem class
extends the JFC JMenuItem class so that all menu items also have a consistent
appearance and behavior. To use a command call graphical user interface
component, set both the system and command properties. These properties can
be set using a constructor or through the setSystem() and setCommand()
methods.

4.1.4 Data Queues
The data queue graphical classes allow a Java program to use any Java
Foundation Classes (JFC) graphical text component to read or write to an AS/400
data queue. The DataQueueDocument and KeyedDataQueueDocument classes
are implementations of the JFC Document interface. These classes can be used
directly with any JFC graphical text component. Several text components, such
as single line fields (JTextField) and multiple line text areas (JTextArea), are
available in JFC. Data queue documents associate the contents of a text
component with an AS/400 data queue. A text component is a graphical
component used to display text that the user can optionally edit. The Java
program can read and write between the text component and data queue at any
time. Use DataQueueDocument for sequential data queues, and use Keyed
DataQueueDocument for keyed data queues.

To use a DataQueueDocument, set both the system and path properties. These
properties can be set using a constructor or through the setSystem() and
setPath() methods. The DataQueueDocument object is "plugged" into the text
component, usually using the text component's constructor or setDocument()
method. KeyedDataQueueDocuments work the same way.

4.1.5 Error Events
In most cases, the AS/400 Toolbox for Java GUI classes fire error events instead
of throwing exceptions. An error event is a wrapper around an exception that is
thrown by an internal component.

You can provide an error listener that handles all error events fired by a particular
graphical user interface component. When an exception is thrown, the listener is
called and can provide appropriate error reporting. By default, no action takes
place when error events are fired.

The AS/400 Toolbox for Java provides a graphical user interface component
called ErrorDialogAdapter, which automatically displays a dialog to the user when
an error event is fired.
184 Building AS/400 Client/Server Applications with Java

4.1.6 Jobs
The jobs graphical user interface classes allow a Java program to present lists of
AS/400 jobs and job log messages in a graphical user interface. The following
classes are available:

• VJobList object — A resource that represents a list of AS/400 jobs for use in
AS/400 panes.

• VJob object — A resource that represents the list of messages in a job log for
use in AS/400 panes.

You can use AS/400 panes, VJobList objects, and VJob objects together to
present many views of a job list or job log.

The VJobList example shown in Figure 132 presents an AS400ExplorerPane
filled with a list of jobs. The list shows jobs on the system that have the same job
name.

Figure 132. VJobList Graphical User Interface Component

4.1.7 Messages
The messages graphical user interface classes allow a Java program to present
lists of AS/400 messages in a graphical user interface.

The following classes are available:

• VMessageList object — A resource that represents a list of messages for
use in AS/400 panes. This is for message lists generated by command or
program calls.

• VMessageQueue object — A resource that represents the messages in an
AS/400 message queue for use in AS/400 panes.

You can use AS/400 pane, VMessageList, and VMessageQueue objects together
to present many views of a message list and to allow the user to select and
perform operations on messages.
Chapter 4. AS/400 Toolbox for Java — GUI Classes 185

4.1.8 Network Print
The network print graphical user interface classes allow a Java program to
present lists of AS/400 network print resources in a graphical user interface.

The following classes are available:

• VPrinters object — A resource that represents a list of printers for use in
AS/400 panes. A VPrinter object is a resource that represents a printer and its
spooled files for use in AS/400 panes.

• VPrinterOutput object — A resource that represents a list of spooled files for
use in AS/400 panes.

AS/400 pane, VPrinters, VPrinter, and VPrinterOutput objects can be used
together to present many views of network print resources and allow the user to
select and perform operations on them.

4.1.9 Program Call
The program call graphical user interface classes allow a Java program to
present a button or menu item that calls an AS/400 program. Input, output, and
input/output parameters can be specified using ProgramParameter objects.
When the program runs, the output and input/output parameters contain data
returned by the AS/400 program.

A ProgramCallButton object represents a button that calls an AS/400 program
when pressed. The ProgramCallButton class extends the Java Foundation
Classes (JFC) JButton class so that all buttons have a consistent appearance
and behavior.

Similarly, a ProgramCallMenuItem object represents a menu item that calls an
AS/400 program when selected. The ProgramCallMenuItem class extends the
JFC JMenuItem class so that all menu items also have a consistent appearance
and behavior.

To use a program call graphical user interface component, set both the system
and program properties. Set these properties by using a constructor or the
setSystem() and setProgram() methods.

4.1.10 Record-Level Access
The record-level access graphical user interface classes allow a Java program to
present various views of AS/400 files. The following classes are available:

• RecordListFormPane — Presents a list of records from an AS/400 file in a
form.

• RecordListTablePane — Presents a list of records from an AS/400 file in a
table.

• RecordListTableModel — Manages the list of records from an AS/400 file for
a table.

4.1.10.1 Keyed Access
You can use the record-level access graphical user interface classes with keyed
access to an AS/400 file. Keyed access means that the Java program can access
the records of a file by specifying a key.
186 Building AS/400 Client/Server Applications with Java

Keyed access works the same for each record-level access graphical user
interface component. Use the setKeyed() method to specify keyed access
instead of sequential access. Specify a key using the constructor or the setKey()
method.

By default, only records whose keys are equal to the specified key are displayed.
To change this, specify the searchType property using the constructor or
setSearchType() method. Possible choices include:

• KEY_EQ — Displays records whose keys are equal to the specified key.

• KEY_GE — Displays records whose keys are greater than or equal to the
specified key.

• KEY_GT — Displays records whose keys are greater than the specified key.

• KEY_LE — Displays records whose keys are less than or equal to the
specified key.

4.1.11 Users and Groups
The users and groups graphical user interface classes allow a Java program to
present lists of AS/400 users and groups in a graphical user interface.

The VUserList object class is available. It is a resource that represents a list of
AS/400 users and groups for use in AS/400 panes. AS/400 panes and VUserList
objects can be used together to present many views of the list and allow the user
to select users and groups. Figure 133 shows the VUserList graphical user
interface component.

Figure 133. VUserList Graphical User Interface Component

4.2 JDBC Examples

This section explains how to build AS/400 client/server applications using the
AS/400 Toolbox for Java GUI JDBC classes and VisualAge for Java 2.0.

4.2.1 Using the AS/400 Toolbox Classes in the VCE
The AS/400 Toolbox for Java classes are available in the VisualAge for Java
Visual Composition editor. To use the Toolbox classes in the VCE, select the
AS/400 Toolbox from the palette pulldown choice box. Hover help is provided so
you can move the mouse pointer over the component to display its name.
Chapter 4. AS/400 Toolbox for Java — GUI Classes 187

Figure 134 shows the AS/400 Toolbox classes as they appear in the VisualAge
for Java Visual Composition Editor.

Figure 134. AS/400 Toolbox Classes in the VCE

4.2.2 SQLResultSetTablePane
The SQLResultSetTablePane presents the results of an SQL query in a table. In
this example, we demonstrate building an AS/400 client/server application using
the SQLResultSetTablePane. We also use an SQLConnection component to
provide connectivity to the AS/400 system and an ErrorDialogAdapter to handle
error conditions. All of these classes are available with the AS/400 Toolbox for
Java. This example demonstrates building an AS/400 client/server application
without writing code. The GUI classes do all the work.

4.2.2.1 SQLResultSetTablePane Application
The SQLResultSetTablePane application allows the end user to enter SQL
statements that run against a DB2/400 database. The results are displayed in an
SQLResultSetTable Pane. Figure 135 on page 189 shows the completed
application.
188 Building AS/400 Client/Server Applications with Java

Figure 135. SQLResultSetTablePane Example

4.2.2.2 Error Handling
We use an ErrorDialogAdapter as a Listener to handle and display error
conditions. In this case, we entered an SQL statement which could not be
executed on the AS/400 system. The resulting error condition is displayed in a
dialog box.

Figure 136. ErrorDialogAdapter Dialog Box

4.2.2.3 Building the Application
This section covers building this application using VisualAge for Java 2.0. We use
the Visual Composition Editor (VCE) to construct the application from Toolbox
classes.
Chapter 4. AS/400 Toolbox for Java — GUI Classes 189

Figure 137. Building the Application with the VisualAge for Java VCE

Figure 137 shows the application in the VisualAge for Java Visual Composition
Editor. We use one visual and four non-visual classes to build the application.
The visual component is the SQLResultSetTablePane that we place on the frame.
It displays the results of an SQL statement entered in the TextField at the top of
the Frame. The DriverManager class is used to load the proper JDBC driver. The
SQLConnection class is used to connect to the AS/400 system. The
IMessageBox is used to display any application-defined messages. The
ErrorDialogAdapter displays any errors generated by the
SQLResultSetTablePane.

4.2.2.4 Registering the Driver Manager
All JDBC graphical user interface classes communicate with the database using a
JDBC driver. The JDBC driver must be registered with the JDBC driver manager
for any of these classes to work. The following code example registers the
AS/400 Toolbox for Java JDBC driver:

// Register the JDBC driver
DriverManager.registerDriver(new com.ibm.as400.access.AS400JDBCDriver ());

In this example, we drop a DriverManager object, from the java.sql package,
outside the frame and use the windowOpened event of the frame to register the
proper JDBC driver with the DriverManager object. Figure 138 on page 191
shows the connection that is made.
190 Building AS/400 Client/Server Applications with Java

Figure 138. JDBC registerDriver

In the VCE, we click on the Set Parameters button and enter the name of the
AS/400 Toolbox for Java JDBC driver as the name of the driver that we want to
use as shown in Figure 139.

Figure 139. Registering the AS/400 Toolbox JDBC Driver

We use the Toolbox SQLConnection class to handle the connection to the AS/400
system. It provides methods that allow you to obtain and set its properties. Figure
140 on page 192 shows the SQLConnection properties.
Chapter 4. AS/400 Toolbox for Java — GUI Classes 191

Figure 140. SQLConnection Methods

As shown in Figure 141, we set the URL property in the VCE. We do not set the
name of the AS/400 system, the user ID, or the password. The first time we try to
run a SQL statement, we are prompted for this information.

Figure 141. Setting the SQLConnection URL Property

The SQLResultSetTablePane is placed on the frame. It is used to display the
results of the query. The connection property of the SQLResultSetTable is set to
192 Building AS/400 Client/Server Applications with Java

the SQLConnection component that we created earlier. This is shown in Figure
142.

Figure 142. Setting the SQLResultSetTablePane Connection Property

The Run button is used to initiate the running of the query and display the results.
It causes the setQuery method of the SQLResultSetTablePane to be executed
with the TextField supplying the input parameter. The load method causes the
query to run and fill the SQLResultSetTablePane with the rows from the
database. Figure 143 shows the Run button events.

Figure 143. Run Button Events

The final component to add is the ErrorDialogAdapter to handle error conditions
for our application. As shown in Figure 144 on page 194, we use the
windowOpened event to add an ErrorListener. We pass in the ErrorDialogAdapter
as a parameter to the ErrorListener.
Chapter 4. AS/400 Toolbox for Java — GUI Classes 193

Figure 144. Adding an ErrorListener

This completes the application. We have created an AS/400 client/server
application that allows us to use JDBC to execute SQL statements against
DB2/400 databases. We use a Listener to handle and display any error conditions
that occur. We did this all without writing a single line of Java code.

4.2.3 SQLQueryBuilderPane
The SQLQueryBuilderPane presents an interactive tool for dynamically building
an SQL queries. You can use the SQLQueryBuilderPane to build and execute
SQL statements against a DB2/400 database. It allows you to select the table
that you want to use. It retrieves the table columns and displays them. You can
choose which columns you want, selection criteria for the Where clause, and how
to group or order the information. As you build the SQL statement, you can use
the Summary tab to display the statement. When you are satisfied with the
statement, you can execute it. The example shown in Figure 145 on page 195
displays the results in a SQLResultSetTablePane.
194 Building AS/400 Client/Server Applications with Java

Figure 145. SQLQueryBuilderPane Example

We use an ErrorDialogAdapter to display any error conditions. The
SQLQueryBuilderPane allows you to modify the SQL statement that you are
building. For example, if you enter an invalid column name, the dialog box shown
in Figure 146 on page 196 appears when you execute the statement.
Chapter 4. AS/400 Toolbox for Java — GUI Classes 195

Figure 146. SQLQueryBuilderPane Error Dialog

As shown in Figure 147 on page 197, this example was created using the
VisualAge for Java Visual Composition Editor. We use two visual classes:

• SQLQueryBuilderPane — To build the SQL statements
• SQLResultSetTablePane — To execute the statement and display the results

We use three non-visual classes: DriverManager from the java.sql package,
SQLConnection, and ErrorDialogAdapter.
196 Building AS/400 Client/Server Applications with Java

Figure 147. SQLQueryBuilder Example in the VisualAge for Java VCE

Processing for the non-visual classes is exactly the same as shown in the
SQLResultSetTablePane example discussed earlier in this chapter. Please see
Section 4.2.2.1, “SQLResultSetTablePane Application” on page 188, for details.

The Load button controls the SQLQueryBuilderPane. We use the setConnection
method to set the SQL connection. We pass in the SQLConnection object as the
parameter for the connection to use. We use the load method to load the
database schemas and tables with which we want to work. Figure 148 on page
198 shows the load button connections.
Chapter 4. AS/400 Toolbox for Java — GUI Classes 197

Figure 148. Load Button Connections

Figure 149 shows the SQLQueryBuilderPane properties dialog box. We set the
tableSchema property value to APILIB. This causes all the tables in the library
named APILIB to be shown.

Figure 149. Setting the Tables Schema

The Run button controls the SQLResultSetTablePane. First, we set the
connection property with the SQLConnect object. We use the getQuery() method
of the SQLQueryBuilder pane to retrieve the query that was built and use it as the
parameter for the setQuery method of the SQLResultSetTable Pane. We then use
the load() method to cause the query to run and the results to be displayed.
Figure 150 on page 199 shows the Run button connections.
198 Building AS/400 Client/Server Applications with Java

Figure 150. Run Button Connections

This completes the application. We have created an AS/400 client/server
application that allows us to use JDBC to interactively build and execute SQL
statements against DB2/400 databases. We use a Listener to handle and display
any error conditions that occur. We did this all without writing a single line of Java
code.

4.2.4 SQLResultSetFormPane
The SQLResultSetFormPane presents the results of a query in a form. The form
provides controls that allow you to scroll forward and backward through the result
set returned by the query. Figure 151 shows the completed example.

Figure 151. SQLResultSetFormPane Example
Chapter 4. AS/400 Toolbox for Java — GUI Classes 199

We use a ErrorDialog Adapter to display any error conditions. If you entered an
invalid column name, for example, the dialog box shown in Figure 152 appears.

Figure 152. SQLResultSetFormPane Example Error

As shown in Figure 153 on page 201, this example was created using the
VisualAge for Java Visual Composition Editor. We use a visual component, the
SQLResultSetFormPane, to execute an SQL statement and display the results.
We use three non-visual classes: DriverManager from the java.sql package,
SQLConnection, and ErrorDialogAdapter.
200 Building AS/400 Client/Server Applications with Java

Figure 153. SQLResultSetForm in the VCE

Processing for the non-visual classes is exactly the same as shown in the
SQLResultSetTablePane example discussed earlier in this chapter. Please see
Section 4.2.2.1, “SQLResultSetTablePane Application” on page 188, for details.

The Run button controls the processing of the SQLResultSetFormPane
processing. Figure 154 on page 202 shows the Run button connections.
Chapter 4. AS/400 Toolbox for Java — GUI Classes 201

Figure 154. Run Button for the SQLResultSetFormPane

The setQuery method is used to set the SQL statement to be executed. The value
from the TextField is used as input. The execution of the load method causes the
SQL statement to be executed. The results are displayed in the
SQLResultSetFormPane.

This completes the application. We created an AS/400 client/server application,
which allows us to use JDBC to interactively build and execute SQL statements
against DB2/400 databases. We use a Listener to handle and display any error
conditions that occur. We did this all without writing a single line of Java code.

4.2.5 SQLResultSetModel
The SQLResultSetModel class manages the results of an SQL query in a table.
The SQLResultSetModel class allows you to have more control over the classes
that you are using. In this example, we use the class in conjunction with a Swing
JScrollPane. The SQLResultSetModel controls the execution and results of the
SQL statement, but the JScrollPane actually displays the results. This class
allows you to keep the SQL processing separate from the actual display. Figure
155 on page 203 shows the completed example.
202 Building AS/400 Client/Server Applications with Java

Figure 155. SQLResultSetTableModel Example

We use an ErrorDialog Adapter to display any error conditions. If you enter an
invalid column name, for example, the dialog box shown in Figure 156 appears.

Figure 156. SQLResultSetTableModel Error Dialog

As shown in Figure 157 on page 204, this example was created using the
VisualAge for Java Visual Composition Editor. We use a visual component, the
Swing JScrollPane, to display the results. We use four non-visual classes:
Chapter 4. AS/400 Toolbox for Java — GUI Classes 203

DriverManager from the java.sql package, SQLResultSetTableModel,
SQLConnection, and ErrorDialogAdapter.

Figure 157. SQLResultSetModel in the VCE

Processing for the DriverManager, SQLConnect, and the ErrorDialogAdapter is
exactly the same as shown in the SQLResultSetTablePane example discussed
earlier in this chapter. Please see Section 4.2.2.1, “SQLResultSetTablePane
Application” on page 188, for details.

The Run button controls the processing of the SQLResultSetTableModel and the
JScrollPane. Figure 158 on page 205 shows the Run button connections.
204 Building AS/400 Client/Server Applications with Java

Figure 158. SQLResultSetTableModel Example Run Button

The SQLResultSetTableModel setQuery method is used to set the SQL statement
using the JTextField as input. The JScrollTable setModel method is used to set
the TableModel property to the SQLResultSetTableModel. The load method of the
SQLResultSetTableModel is executed to run the SQL statement and return the
results. The results are displayed in the JScrollPane.

This completes the application. We created an AS/400 client/server application
which allows us to use JDBC to interactively build and then execute SQL
statements against DB2/400 databases. We use a Listener to handle and display
any error conditions that occur. We did this all without writing a single line of Java
code. This application is similar to the SQLResultSetTablePane example in
Section 4.2.2.1, “SQLResultSetTablePane Application” on page 188. The
difference here is that we use a Swing component, which is not part of the AS/400
Toolbox for Java, to display the results.

4.3 Record Level Access GUI Examples

This section explains how to build AS/400 client/server applications using the
AS/400 Toolbox for Java GUI Record Level Access classes and VisualAge for
Java. In these examples, we access the database using the DDM Record Level
Access interface.

4.3.1 RecordListFormPane
The RecordListFormPane class presents a list of records from an AS/400 file in a
form. In this example, we use it to display the records from an AS/400 file named
PARTS. Figure 159 on page 206 shows the completed example.
Chapter 4. AS/400 Toolbox for Java — GUI Classes 205

Figure 159. RecordListFormPane Example

We use an ErrorDialog Adapter to view any error conditions. If you try to access a
non-existent file, for example, the dialog box shown in Figure 160 appears.

Figure 160. Record-Level Access Error Dialog

As shown in Figure 161 on page 207, this example was created using the
VisualAge for Java Visual Composition Editor. We use three non-visual classes:
AS400, AS400FileRecordDescription, and ErrorDialog Adapter. We use a
RecordListFormPane to view the records retrieved from the AS/400 system.
206 Building AS/400 Client/Server Applications with Java

Figure 161. RecordListFormPane in the VCE

By dropping an AS400 object outside the frame in the VCE, we instantiate an
AS400 object. We use the AS/400 for the connection to the AS/400 system. We
do not set the AS400 properties for system name, user ID, or password. This
causes a signon dialog to appear the first time we try to access the AS/400
system. We use the AS400FileRecordDescription object, which we name
PartsFile, to control the name of the AS/400 file with which we want to work.

We set the path attribute to /QSYS.LIB/APILIB/PARTS.FILE. We use AS/400 IFS
naming conventions to set the name of the file. The Run button controls the
execution of the application. The Run button connections are shown in Figure
162 on page 208.
Chapter 4. AS/400 Toolbox for Java — GUI Classes 207

Figure 162. Run Button Connections

We use the setFileName method of the RecordListTablePane class to set the
name of the file with which we want to work. We use the value from the
AS400FileRecordDescription object. Next, we set the system name again using
the value from the AS400FileRecordDescription object. Finally, we execute the
load method to cause the records to be displayed.

The final component to add is the ErrorDialogAdapter to handle error conditions
for our application. We use the windowOpened event to add an ErrorListener. We
pass in the ErrorDialogAdapter as a parameter to the ErrorListener. This is done
exactly the same as in the RecordListTablePane example.

This completes the application. We created an AS/400 client/server application
that allows us to use Record Level Access to retrieve records from an AS/400 file.
We use a Listener to handle and display any error conditions that occur. We did
this all without writing a single line of Java code.

4.3.2 RecordListFormPane Using the Keyed Access Example
In this example, we use keyed access to retrieve records by key and display them
in a RecordListFormPane. Figure 163 on page 209 shows the completed
example.
208 Building AS/400 Client/Server Applications with Java

Figure 163. RecordListFormPane Example

We use an ErrorDialog Adapter to display any error conditions. If you try to
access an non existent file, for example, the dialog box shown in Figure 164
appears.

Figure 164. Record-Level Access Error Dialog

As shown in Figure 165 on page 210, this example was created using the
VisualAge for Java Visual Composition Editor. We use three non-visual classes:
AS400, AS400FileRecordDescription, and ErrorDialog Adapter. We use a
RecordListFormPane to display the records retrieved from the AS/400 system.
Chapter 4. AS/400 Toolbox for Java — GUI Classes 209

Figure 165. RecordListFormPane in the VCE

By dropping an AS400 object outside the frame in the VCE, we instantiate an
AS400 object. We use the AS400 object for the connection to the AS/400 system.
We do not set the AS400 properties for system name, user ID, or password. This
causes a signon dialog to appear the first time we try to access the AS/400
system. We use the AS400FileRecordDescription object to control the name of
the AS/400 file with which we want to work.

We set the path attribute to /QSYS.LIB/APILIB/PARTS.FILE. We use AS/400 IFS
(Integrated File System) naming conventions to set the name of the file. This is
done exactly the same as in the RecordListTablePane example.

We use the windowOpened event of the frame to control the required initialization
processing. Figure 166 on page 211 shows the window events.
210 Building AS/400 Client/Server Applications with Java

Figure 166. Window Events Connections

We add an ErrorDialogAdapter to handle error conditions for our application. We
use the windowOpened event to add an ErrorListener. We pass in the
ErrorDialogAdapter as a parameter to the ErrorListener.

We use the setFileName method of the RecordListTablePane class to set the
name of the file with which we want to work. We use the value from the
AS400FileRecordDescription object. Next, we set the system name again using
the value from the AS400FileRecordDescription object. We use the setKeyed
method with a value of true to specify keyed access. Finally, we request focus on
the JTextField where we enter the key value of the record that we want to
retrieve.

The Go button controls retrieving the record specified in the JTextField from the
AS/400 system. The Go button events are shown in Figure 167.

Figure 167. Go Button Connections

We provide a Java method named setKey to convert the information in the
JTextField to a Object[] format, which is required by the RecordListFormPane
setKey method.
Chapter 4. AS/400 Toolbox for Java — GUI Classes 211

public Object[] setKey(String partNo) {
Object [] theKey = new Object[1];
theKey[0] = new java.math.BigDecimal(partNo);
return theKey;.

}

This completes the application. We created an AS/400 client/server application
that allows us to use Record Level Access to retrieve records from an AS/400 file
using keyed reads. We use a Listener to handle and display any error conditions
that occur.

4.4 Conclusion

The AS/400 Toolbox for Java GUI classes allow you to visually represent your
AS/400 data and resources. You can quickly build AS/400 client/server
applications using these classes. In many cases, you can do this without writing
any Java code. You can also combine the GUI classes with your own
application-specific code.

Java programs that use the AS/400 Toolbox for Java GUI classes also need
Sun’s JDK Swing 1.0.1 support. Swing is available with Sun's JFC (Java
Foundation Classes) 1.1. See http://www.javasoft.com/products/jfc/index.html for
more information about Swing. VisualAge for Java 2.0 provides this support so
you can use these classes in the VisualAge for Java Visual Composition Editor.
212 Building AS/400 Client/Server Applications with Java

Chapter 5. AS/400 Toolbox for Java Modification 2

The AS/400 Toolbox for Java Modification 2, as shipped with OS/400 V4R4, adds
many new features. Unfortunately, this results in the following requirements for
VisualAge for Java 2.0:

• Some new features require JDK 1.1.7 and Swing 1.0.3 support.

• JDBC 2.0 requires Java 2 (JDK 1.2) support.

The AS400 Toolbox for Java Modification 2 still retains the JDBC 1.22 APIs for
use with JDK1.1.7.

To meet the first requirement, some updates must be made to VisualAge for Java
2.0. Some of the updates are temporary fixes that are not currently fully
supported. However, JDBC 2.0 is not supported in the current version of
VisualAge for Java, since it requires Java 2 (JDK 1.2). The JDBC 2.0 examples
discussed in this chapter were created outside of VisualAge for Java using Java 2
(JDK1.2) and the Notepad editor.

For these reasons, we decided to keep the new Modification 2 features in one
chapter, rather than integrating them with the Modification 1 information. This
way, we hope to allow you to evaluate the new functions and be aware of the
requirements they place on your development and deployment systems.

Note: Be aware that you can only use the licensed program for Modification 2 of
the AS/400 Toolbox for Java (5769JC1 V4R2M0) with V4R2 or later AS/400
systems. In addition, some functions will only work when communicating with
V4R4 systems.

This chapter covers:

• The AS/400 Toolbox for Java GUI Builder
• PDML
• PCML
• JDBC 2.0
• The new access and vaccess classes

You can learn about other new features in Chapter 10, “Deployment
Considerations and Tools” on page 365, such as:

• How to secure an application with SSL
• How to reduce the size of deployment archives with the JarMaker tool

5.1 Upgrading the AS/400 Toolbox Contained in VisualAge for Java 2.0

The AS/400 Toolbox for Java version, currently shipped with VisualAge for Java
Enterprise Edition version 2.0, is Modification 1. You must update VisualAge for
Java to use the AS/400 Toolbox for Java Modification 2 classes.

If you want to use the latest features in the AS/400 Toolbox for Java that are
available, you must update VisualAge for Java 2.0 prior to installing the new
Toolbox support.

Note: Some of the new AS/400 Toolbox for Java features, such as scrollable
cursors, are part of Java 2 (JDK1.2) and will not be available in the VisualAge for
© Copyright IBM Corp. 1997, 1998, 1999 213

Java IDE. Requirements for the AS/400 Toolbox Modification 2, which ships with
OS/400 V4R4 are:

• JDK 1.1.7
• Swing 1.0.3

You must install the VisualAge for Java Rollup2 fix pack to provide the required
JDK and Swing support. Be aware that you need approximately 40 MB of free
space to install the fix pack. Fix packs, instructions for applying fix packs, and
additional information can be found by following the links from
http://www.software.ibm.com/ad/vajava to the VisualAge for Java Developer
Domain (VADD).

Once you successfully install Rollup2, you can download the AS/400 Toolbox for
Java Modification 2 from your AS/400 system or the AS/400 Web site. On the
AS/400 system, the Toolbox classes are found in the
/QIBM/ProdData/HTTP/Public/jt400/lib/ directory of the integrated file system.

The following instructions enable you to download and install the AS/400 Toolbox
for Java modification into the VisualAge IDE:

1. Using Client Access or through the native SMB server, map a network drive to
the /QIBM directory of an AS/400 V4R4 system.

2. Start IBM VisualAge for Java.

3. If you are using the Enterprise Edition of VisualAge for Java, ensure that the
IBM Enterprise Toolkit for AS/400 V 2.0 feature is loaded into your workspace.

4. Open the project containing the AS/400 Toolbox for Java. If you have the
Enterprise Edition, the Toolbox classes are contained in the IBM Enterprise
Toolkit for AS/400 V2.0 project.

5. Create an Open Edition of the project.

6. Delete the two packages: com.ibm.as400.access and
com.ibm.as400.vaccess, as shown in Figure 168 on page 215. During the
deletion, many error messages will appear. Ignore them for now since they will
be fixed when you load the new AS/400 Toolbox for Java.

At the time of the writing of this redbook, it was necessary to download two
temporary patches for VisualAge, named 1f6xh0w and 1f78fqu, from the
VisualAge Developer Domain. Without these fixes, we found that the Visual
Composition Editor became unstable and would not work properly with AS/400
Toolbox for Java Modification 2 support.

Important
214 Building AS/400 Client/Server Applications with Java

Figure 168. Deleting the Old Packages

7. Reselect the project containing these packages. Select File—>Import.

8. Select the Import from Jar option, and click Next.

9. You are prompted for the file name of the JAR file to import. Locate the
JT400.JAR file located in the ProdData/HTTP/Public/jt400/lib/ directory of
your mapped drive.

10.Check the Overwrite existing resources without warning option.

11.Check the Version imported classes and new editions of
packages/projects option. The complete import smart guide should appear
as shown in Figure 169 on page 216.
Chapter 5. AS/400 Toolbox for Java Modification 2 215

Figure 169. Importing the New Toolbox

12.Click the Next button to start the import process. This process is long running
on all but the most powerful machines.

13.After the new AS/400 Toolbox for Java is versioned, you are prompted to add
the new beans to a VCE folder. Select all the new beans and add them to the
AS/400 Toolbox folder as shown in Figure 170.

Figure 170. Adding the New AS/400 Beans to the VCE Palette

14.Version the IBM AS400 Toolbox for Java V2.0 project.

You should now be able to use AS/400 Toolbox for Java Modification 2 within IBM
VisualAge for Java. You can verify this by using one of the new classes (for
example, SecureAS400) within the VCE.
216 Building AS/400 Client/Server Applications with Java

5.2 XML

XML is an abbreviation for eXtensible Markup Language. XML is a tag-based
language based on SGML (Standard Generalized Markup Language). SGML is a
document language intended for creating large complex documents. XML
provides a format for describing data and information. It presents an application
with data and describes what the data represents at the same time. Many
industries, noticeably publishing and scientific research, are finding that XML
provides them a solution to the age-old problem of describing data in an
application neutral format. XML looks very similar to HTML in the sense that they
are both tag-based languages. However, HTML is more concerned about how to
lay out information to present it to a user rather than the meaning of the data.
XML does provide the possibility of attaching style information to an XML data file
so that it can be rendered in a desired fashion. Its primary concern is data, not
display.

The real power of XML is the ability to create tags that have meaning to each
particular application. It allows the separation of the data from the presentation of
the data, so the data can remain intelligent. The AS/400 Toolbox for Java
provides two implementations using XML, which are:

• PDML (Panel Definition Markup Language)
• PCML (Program Call Markup Language)

PDML is a platform-independent way to describe user interfaces in terms of
panels and panel components. Many programmers have some initial difficulty in
learning Swing or AWT programming. A good proportion of user interfaces can be
coded in PDML, which is more simple than AWT or Swing since it is a
tagged-based language. PDML also has the ability to use databean classes to
assist in the separation of the user interface and data.

PCML is a way to describe program call interfaces. The Java to AS/400
implementation for PCML automatically converts data between AS/400 data
types and Java Object classes (such as Integer, String, Float, and so on). In
addition, you only need to define the program interface in a single PCML file. This
encourages reuse and makes maintaining the interface between legacy programs
and Java easier.

5.3 PDML

PDML is based on XML and defines a platform-independent language for
describing the layout of user interface elements. Once panels are defined in
PDML, you can use the runtime API provided by the Graphical Toolbox to display
them. The API displays panels by interpreting the PDML tags and rendering the
user interface using Java Foundation Classes.

Although PDML can replace many forms of a user interface, it is not currently a
complete replacement for Swing or AWT programming. For example, PDML
currently only handles three types of buttons: OK, Cancel, and Help. Other
buttons would require you to write event handlers in Java.

PDML is a language developed using XML. It is similar in structure to HTML and
SGML.
217

Here are some examples of PDML tags:

• <panel> — Defines a panel
• <title> — Specifies the title of the panel or field
• <size> — Specifies the size of the panel or field
• <label> — Defines a label on the panel (static text field)
• <location> — Specifies the location of the field on the panel
• <button> — Defines a button on the panel
• <textfield> — Defines a textfield on the panel

Some of the tags used in PDML are:

• <pdml> </pdml> — Used to identify the start and end of a PDML definition.

• <panel name="mypanel1"> and </panel> — Used to identify the start and
end of a panel called mypanel1.

• <title>xxx</title> — Sets the title used when displaying a panel. If the panel
is the only contents of a window, then this is the window title.

• <label name="label_1">Name</label> — Defines a text label (output only) to
show on the display.

5.3.1 PDML Example
Figure 171 shows an example of PDML source file.

Figure 171. PDML Source Code

Figure 172 on page 219 shows how the panel appears to the end user.

<PDML version="1.0" source="JAVA" basescreensize="1024x768">

<PANEL name="EXAMPLE_PANEL">
<TITLE>EXAMPLE_PANEL</TITLE>
<SIZE>278,120</SIZE>
<LABEL name="NAME_LABEL" disabled="no">

<TITLE>NAME_LABEL</TITLE>
<LOCATION>15,20</LOCATION>
<SIZE>100,19</SIZE>

</LABEL>
<TEXTFIELD name="NAME" masked="no" editable="yes" disabled="no">

<TITLE>NAME</TITLE>
<LOCATION>161,14</LOCATION>
<SIZE>100,26</SIZE>

</TEXTFIELD>
<BUTTON name="CLOSE_BTN" disabled="no">

<TITLE>CLOSE_BTN</TITLE>
<LOCATION>89,83</LOCATION>
<SIZE>100,26</SIZE>

</BUTTON>
</PANEL>

</PDML>
218 Building AS/400 Client/Server Applications with Java

Figure 172. PDML Example Panel

5.4 The Graphical Toolbox

The AS/400 Toolbox for Java Modification 2 includes a user interface framework
to provide a productive development environment for building graphical panels. It
is called the Graphical Toolbox. The framework automatically handles the
exchange of data. The developer needs only to create one or more data beans
and bind them to the panel components using the Panel Definition Markup
Language (PDML).

The Graphical Toolbox consists of two components:

• A graphical user interface builder tool to develop Java GUIs. This tool is a
WYSIWYG (What You See is What You Get) GUI editor. It is called the GUI
Builder.

• A Resource Script Converter, which converts Windows dialogs to equivalent
Java panels.

Underlying these tools is the PDML. The output of both tools are PDML source
files. Rather than writing PDML tags yourself, you use these tools to generate
PDML source files.

You can use the GUI Builder to quickly and easily create new panels from
scratch. Or, you can use the Resource Script Converter to convert existing
Windows-based panels to Java. Both tools support internationalization for
different locales.

The GUI Builder helps you create custom user interface panels in Java. You can
incorporate the panels into your Java applications, applets, or Operations
Navigator plug-ins. The panels may contain data obtained from the AS/400
system, or data obtained from another source such as a file in the local file
system or a program on the network.

The GUI Builder is a WYSIWYG visual editor for creating Java dialogs, property
sheets, and wizards. With the GUI Builder you can add, arrange, or edit user
interface controls on a panel, and then preview the panel to verify that the layout
behaves the way you expected. You can use the panel definition in a dialog,
insert panels into property sheets and wizards, or arrange the panels in splitter
panes, deck panes, and tabbed panes.

The Resource Script Converter converts Windows user interface elements into a
form usable by Java programs. With the Resource Script Converter, you can
219

process Windows resource scripts (RC files) from your existing Windows
applications and produce definitions of dialogs, property sheets, and wizards that
can be displayed in Java.

5.4.1 Installing the Graphical Toolbox on Your Workstation
To develop Java programs using the Graphical Toolbox, you should install the
Graphical Toolbox jar files on your workstation. There are two ways to do this.

If you already installed the AS/400 Toolbox for Java licensed program on an
AS/400 system, you can copy the jar files from the directory:
/QIBM/ProdData/HTTP/Public/jt400/lib. You can use FTP to do this (ensure that
you transfer the files in binary mode), or map a network drive and copy them.

You can also install the Graphical Toolbox when you install Client Access Express
V4R4M0. The AS/400 Toolbox for Java is shipped as part of Client Access
Express V4R4M0. If you are installing Client Access Express for the first time,
choose Custom Install and select the AS/400 Toolbox for Java component on
the installation menu. If you have already installed Client Access Express, you
can use the Selective Setup program to install this component if it is not already
present.

Before you start using the AS/400 Toolbox for Java GUI Builder, it is essential
that you make sure the classpath settings are correct. The simplest way to
achieve this is to set up additional environment variables and then append them
to the existing classpath. We show you two batch files to achieve this. The file
addtoolbox.bat is used to add just the com.ibm.as400.access and
com.ibm.as400.vaccess packages to the system CLASSPATH. The file
adduitools.bat adds the GUI Builder tools and runtime classes.

The Graphical Toolbox is delivered as a set of jar files, which include:

• uitools.jar — Contains the GUI Builder and Resource Script Converter tools.

• jui400.jar — Contains the runtime API for the Graphical Toolbox. Java
programs use this API to display the panels constructed using the tools. These
classes may be redistributed with applications.

• data400.jar — Contains the runtime API for the PCML. Java programs use
this API to call AS/400 programs whose parameters and return values are
identified using PCML. These classes may be redistributed with applications.

• util400.jar — Contains utility classes for formatting AS/400 data and handling
AS/400 messages. These classes may be redistributed with applications.

• x4j400.jar — Contains the XML parser used by the API classes to interpret
PDML and PCML documents.

To use the Graphical Toolbox, you must add these jar files to your CLASSPATH
environment variable (or specify them on the classpath option on the command
line). For example, if you copied the files to the directory C:\jt400\lib on your
workstation, you must add the following path names to your classpath:

C:\jt400\lib\uitools.jar;
C:\jt400\lib\jui400.jar;
C:\jt400\lib\data400.jar;
C:\jt400\lib\util400.jar;
C:\jt400\lib\x4j400.jar;
220 Building AS/400 Client/Server Applications with Java

If you installed the Graphical Toolbox using Client Access Express, the jar files
will all reside in the directory \Program Files\Ibm\Client Access\jt400\lib on the
drive where you installed Client Access Express. The path names in your
classpath should reflect this.

5.5 Java Plug-in for Operations Navigator

This section explains how to build an extension to Operations Navigator V4R4M0
using the AS/400 Toolbox for Java GUI Builder tool. If you have Operations
Navigator installed on your workstation, you can follow these steps to build your
own extension. Figure 173 shows the System Status menu item that we add to
the System context menu.

Figure 173. The Operations Navigator Extension

Figure 174 on page 222 shows the panel displayed when the System Status
menu option is selected.

Internationalized versions of the GUI Builder and Resource Script Converter
tools are available. To run a non-U.S. English version, you must add the correct
version of the uitools.jar for your language and country to your Graphical
Toolbox installation. These jar files are available on the AS/400 system in the
/QIBM/ProdData/HTTP/Public/jt400/Mri29xx directory, where 29xx is the
four-digit OS/400 NLV code corresponding to your language and country. The
non-English jar files are automatically installed by Client Access Express if the
Client Access primary language is not English.

Note
221

Figure 174. The System Resources Panel

To build an extension, we follow these steps:

1. Start the GUI Builder.
2. Create a new panel definition.
3. Modify the generated databean to retrieve data from the AS/400 system.
4. Test the application.
5. Write an ActionsManager implementor to extend Operations Navigator.
6. Modify the Windows registry to reflect the extension.
7. Test the Operations Navigator extension.

5.5.1 Setting Up the GUI Builder
Before you start using the AS/400 Toolbox for Java, you need to make sure that
your CLASSPATH settings are correct. The easiest way to make sure that your
setup is correct, is to create additional environment variables. Then, append them
to your existing CLASSPATH. For these examples, we installed the AS/400
Toolbox for Java Modification 2 in a directory named AS400ToolBoxMod2 and the
Java Swing support in a directory named Swing.0.3. We used JDK 1.1.7B.

You can set your CLASSPATH by performing either of these tasks:

• Add the com.ibm.as400.access, com.ibm.as400.vaccess, and other
user-interface (UI) related packages directly to your CLASSPATH.

• Create small batch files that add these packages to your CLASSPATH.

If you want to add just the com.ibm.as400.access and com.ibm.as400.vaccess
classes to your system CLASSPATH, create a batch file named addtoolbox.bat.
Your batch file should look like the one shown in Figure 175.

Figure 175. The addtoolbox.bat File

set SWING_HOME=C:\Swing1.0.3
set TOOLBOX_HOME=C:\AS400ToolBoxMod2\

set CLASSPATH=%CLASSPATH%;%SWING_HOME%\swingall.jar;
%TOOLBOX_HOME%\lib\jt400.jar
222 Building AS/400 Client/Server Applications with Java

If you want to add the GUI Builder tools and runtime environment to your system,
create a batch file named adduitools.bat. Your batch file should look like the one
shown in Figure 176.

Figure 176. The adduitools.bat File

Once you run these two batch files in a command prompt window, you are ready
to use the AS/400 Toolbox for Java classes.

5.5.2 Starting the GUIBuilder
Before we start the GUI Builder, we create a directory named C:\L04\Student to
hold all the generated files. Then, we change to that directory.

To start the GUIBuilder, from the command line, enter:

java com.ibm.as400.ui.tools.GUIBuilder

Providing the classpath was set up properly, you are presented with a loading
GUI Builder flash, as shown in Figure 177.

Figure 177. Loading the GUIBuilder Tool

Once the IBM Graphical Toolbox for Java is loaded, a window appears, similar to
that shown in Figure 178 on page 224. The GUIBuilder main window shows the
loaded PDML files in an hierarchical layout. The various tree nodes can be
expanded or collapsed to enable you to select and work on specific PDML
components.

The Properties window shows the properties of the currently selected component.
In the illustration, the SystemResources panel is the selected panel. Modifying
any properties in this window can affect the SystemResources panel.

The Toolbox window is key for GUI development. Various tool items, such as
labels, text fields, buttons, lists, radio buttons, check boxes and many other GUI
components can be selected from here and added onto a panel or other container
GUI component. The GUI Toolbox window also allows you to select various tools
to assist in the layout of the GUI container. All of the tool items have fly-over text.

set GUITOOLS=%TOOLBOX_HOME%\lib\data400.jar;%TOOLBOX_HOME%\lib\ui400.jar
set GUITOOLS=%GUITOOLS%;%TOOLBOX_HOME%\lib\uitools.jar
set GUITOOLS=%GUITOOLS%;%TOOLBOX_HOME%\lib\util400.jar
set GUITOOLS=%GUITOOLS%;%TOOLBOX_HOME%\lib\x4u400.jar

set GUITOOLS=%CLASSPATH%;%GUITOOLS%
223

If you are searching for a tool, simply move the mouse pointer along the items
until you find the required tool.

Figure 178. The GUI Builder Windows

5.5.3 Creating the New Panel Definition
In this section, we create a new panel definition, add some basic components,
and generate skeleton Java code. In subsequent sections, we modify the
generated Java code to retrieve data from the AS/400 system. This code is called
a databean.

During this task, we perform the following steps:

1. Create a new PDML file.
2. Create a panel and populate it with the required user interface.
3. Bind some of the user interface objects to a databean.
4. Save the new PDML files and generate the skeleton Java code for the

databeans.

Toolbox window

Main GuiBuilder window

Currently selected component
properties Window

Panel being edited
224 Building AS/400 Client/Server Applications with Java

Here are the steps that are necessary to complete this task:

1. Run the GUIBuilder.

Enter java com.ibm.as400.ui.tools.GUIBuilder to start the builder.

2. Create a new PDML file

a. Create a new file by selecting File—>New or by clicking on the new file
icon.

b. Select the Properties window.

c. Change the Generate DataBean property to "true" by highlighting the
property value field.

d. Change the Generate Help to "true".

The main and property panels appear as shown in Figure 179.

Figure 179. Modifying the PDML File Properties

3. Create a new Panel.

a. Select Insert—>Panel from the main window menu, as illustrated in Figure
180.

Figure 180. Inserting a New Panel
225

This causes the appearance of a new window in the GUIBuilder. The
window is the newly created panel. The title of the window will be the name
of the panel. At this point, it should appear as Panel_1.

b. Once added, highlight the panel in the main window and then modify the
panel properties. The name of the panel should be SystemResources. The
title should be set to System Resources as illustrated in Figure 181.

Figure 181. Setting the Properties of System Resources Panel

4. Add the required basic text labels.

Select the label icon from the Toolbox window and click on the new panel.
Then modify the label to set these properties:

• Name: CPU_Label
• Label: CPU Utilization

Figure 182 shows all the various GUIBuilder windows after performing this
task.

Figure 182. The GUIBuilder after Adding and Modifying the First Label
226 Building AS/400 Client/Server Applications with Java

5. Repeat step 4 to add the five labels listed in Table 28 and modify their
properties.

Table 28. Labels to Add to the Panel

6. Align the labels on the left-hand side of the panel using the alignment tool. The
panel should appear as shown in Figure 183. To align the labels, press the
Control key and click on the labels with the mouse pointer. Then, release the
Control key and click the Alignment button.

Figure 183. System Status Panel after Inserting the Labels

7. Add labels to display information from a databean.

Since we are only displaying information we only need to use labels, instead
of text fields, to present data to the end user. However, if you were to request
data from the user, then you would use text fields.

To create bound labels, simply set the DataClass and Attribute property of a
label. Then, providing that the PDML file Generate DataBeans property is true,
the GUI Builder builds the skeleton get and set methods for the databean. The
one drawback to using a label, as opposed to a text field, is that it has no
concept of any data types, except Strings. This means that your get and set
methods must accept String input values and return Strings. The set methods
are only called when the panel in instantiated through a programmed method
invocation.

Name Label

ASPSize_Label System ASP Size

ASPUsed_Label Percent System ASP Used

Addresses_Label System Address Utilization

Perm_Label Permanent

Temp_Label Temporary
227

Table 29 shows the labels and associated properties that need to be added to
complete this task.

Table 29. Labels Required to Show the System Status Values

After we successfully complete the addition of these new labels, we align them
in as shown in Figure 184.

Figure 184. Completed SystemResources Panel

8. Save the PDML file.

a. To save a PDML file, select File—>Save from the menu, or click on the
save icon in the main window toolbar. When prompted for a filename and
location, save the PDML file as SystemStatus.

b. Exit the GUI Builder application.

Table 30 shows the generated files.

Table 30. The Contents of the Directory

Label Name Label Value Data Class Attribute

CPU_Value % SystemStatusEngine CpuUtilization

ASPSize_Value MB SystemStatusEngine SystemASPSize

ASPUsed_Value % SystemStatusEngine SystemASPPercent

Perm_Value % SystemStatusEngine PermanentAddressesUsed

Temp_Value % SystemStatusEngine TemporaryAddressesUsed

File name Content

SystemStatus.pdml The PDML definitions including the main panel, layout,
and types of labels and their bindings to the databean.

SystemResources.html A skeleton help file in HTML format. This can be edited to
display context-sensitive help for the benefit of the end
user.

SystemStatus.properties The initial values for each of the labels. Other information
used by the GUIBuilder is also stored in this file.

SystemStatusEngine.java The skeleton Java code generated for the bound
components

SystemStatusEngine.class A compiled version of the SystemStatusEngine.java file.
228 Building AS/400 Client/Server Applications with Java

5.5.4 Modifying the Databean to Retrieve Data from the AS/400 System
During this task, we modify the generated SystemStatusEngine Java code to
retrieve data from the AS/400 system, so it can be displayed on the panel.

The databean needs to know about the system from which we retrieve data. To
do this, we create a constructor method that accepts an AS400 object. The only
other method that needs to be modified is the load() method, which retrieves the
AS/400 system status data and sets the databean attributes.

We follow these steps to modify the databean:

1. Open the SystemStatusEngine.java file using the notepad editor.

Once open, we find that the following methods were created:

• Method
• getSystemASPPercent()
• getCpuUtilization()
• getSystemASPSize()
• getPermanentAddressesUsed()
• getTemporaryAddressesUsed()
• getCapabilities()
• verifyChanges()
• save()
• load()

The get methods, with the exception of getCapabilities(), are generated as a
result of binding labels to databean classes. To make the data class useful, we
write a SystemStatusEngine(AS400) constructor method and modify the load()
method to retrieve the data from the AS/400 system.

2. Add two new import statements.

Since we will use some of the AS/400 Toolbox for Java access classes, we
import the com.ibm.as400.access classes. In addition, the
com.ibm.as400.opnav.Monitor class allows us to log error messages. This is a
useful way to trap errors once the extension is loaded.

We move the cursor to the line after the first import statement and add the
following import statements:

import com.ibm.as400.access.*;
import com.ibm.as400.opnav.Monitor;

3. Add an instance variable to the class.

We add a private instance variable called m_sAS400 of type AS400 to the end
of the list of variables:

private AS400 m_sAS400;

To increase run-time performance, a PDML file can be serialized. The panel is
then constructed using the serialized file. In this case, the IBM XML parser is
not used at runtime. To serialize a PDML file, select File—>Properties on the
GUI Builder main window. Then, turn on the Serialize option.

Serialization
229

4. Create a constructor method.

We add a construct method that will accept an AS400 object as a parameter
and store it in the instance variable called m_sAS400.

public SystemStatusEngine(AS400 anAS400) {
m_sAS400=anAS400;
}

5. Modify the load() method.

a. Locate the load() method.

b. Enclose the existing assignments within a try block. If we catch an error, we
use the logThrowable method to log it.

public void load() {
try {
m_sSystemASPPercent = "";
m_sCpuUtilization = "";
m_sSystemASPSize = "";
m_sPermanentAddressesUsed = "";
m_sTemporaryAddressesUsed = "";
} catch (Exception e) {
Monitor.logThrowable(e);
}
}

c. Before the assignments are made, create a new object called aStatus of
type SystemStatus. Then, we use the appropriate constructor method to
create the instance and set the system to m_sAS400.

d. Use the AS/400 Toolbox for Java SystemStatus class to retrieve the values
to display from the AS/400 system.

e. Modify the existing assignments to extract the appropriate attributes from
the newly created aStatus object, for example:

m_sSystemASPPercent = "";

would become

m_sSystemASPPercent =
newFloat(aStatus.getPercentSystemASPUsed()).toString() + " %";

6. Save the changes and close Notepad.

7. Modify the Classpath and compile the new Java code.

In addition to the Toolbox classes, use the class
com.ibm.as400.opnav.Monitor, which is found in an archive file named

Percentages are handled differently for different languages and countries.
The technique used here may have to be changed for a different language.

Internationalization

See Section C.1, “SystemStatusEngine.java” on page 407, for the
complete source code.

Completed Code
230 Building AS/400 Client/Server Applications with Java

jopnav.jar in the Classes subdirectory of Client Access Express. Add this
archive to the classpath before compiling the Java source.

a. To add the archive file, enter:

set CLASSPATH=%CLASSPATH%;C:\Program Files\Ibm\Client
Access\Classes\jopnav.jar

b. To compile the Java source, enter:

javac SystemStatusEngine.java

5.5.5 Testing the Application
To test the application, we write a test program. It is very small. The code is
shown in Figure 185.

Figure 185. SystemStatusTester.java

The code follows this sequence:

1. Instantiates an AS400 object named theMachine.

2. Instantiates a new SystemStatusEngine object named theSystemEngine
passing in the AS400 object as a parameter.

3. Executes the load() method of the theSystemEngine object to cause it to
retrieve the system information.

4. Creates a DataBean array, which contains the theStatusEngine object.

5. Creates a PanelManager object named pm.

6. Instantiates the pm object using the constructor method, passing the following
parameters in sequence:

a. A String containing the name of the PDML file. The PDML document must
be in a directory or JAR file in the CLASSPATH. The PanelManager first
looks for a serialized panel definition before attempting to parse the PDML
file.

b. A String containing the name of the actual panel required.

import com.ibm.as400.access.*;
import com.ibm.as400.ui.framework.java.*;
class SystemStatusTester extends java.awt.Frame {
public static void main(String[] args) {
SystemStatusTester aSystemStatusTester = new SystemStatusTester();
AS400 theMachine = new AS400();
SystemStatusEngine theSystemEngine = new SystemStatusEngine(theMachine);
theSystemEngine.load();
DataBean[] dbeans = {theSystemEngine};
PanelManager pm = null;
try {

pm = new PanelManager("SystemStatus", "SystemResources", dbeans,
aSystemStatusTester);

} catch (DisplayManagerException e) {
e.displayUserMessage(aSystemStatusTester);

}
pm.setVisible(true);

}
}

231

c. The array of databeans to be used by this panel.

d. The owning frame.

7. Executes the setVisible method to show the panel.

We compile the code using:

javac SystemStatusTester.java

We run the program using:

java SystemStatusTester

If everything works correctly, we are prompted to sign on to the AS/400 system.
After signing on to the AS/400 system, we see the SystemStatus panel in which
the system information is displayed as shown in Figure 186.

Figure 186. System Information

5.5.6 Adding an Operations Navigator Plug-in
In this section, we deploy the PDML application as a plug-in to Operations
Navigator. The ActionsManager interface displays context menus to a user. It is
the simplest interface to write to and use to extend Operations Navigator.

Once an actions manager is added into the Operations Navigator, various
methods are called depending on the action of the user and the state of
Operations Navigator.

When implementing the ActionsManager interface, we implement these methods:

• initialize(ObjectName[] arg1, ObjectName arg2)
• queryActions(int arg1)
• actionSelected(int arg1, java.awt.Frame arg2)

These methods are covered in detail in the following steps. The completed Java
code can be found in Section C.2, “SystemStatusManager” on page 408.

1. We create a new Java source file named SystemStatusManager.java.

2. We add import statements.
232 Building AS/400 Client/Server Applications with Java

We import all the classes in the following packages:

com.ibm.as400.opnav
com.ibm.as400.ui.framework.java
com.ibm.as400.access

3. We define a new Class.

We create a public class definition named SystemStatusManager that extends
the Object class and implements ActionsManager.

We define two private class variables:

• initObjs — An array of ObjectName
• dragDropObj — Of type ObjectName

4. We define an initialize method.

When Operations Navigator detects that a plug-in or extension may be
required to perform an action, it calls the initialize method. The initialize
method accepts two variables as parameters and returns void. The first
parameter is an array of ObjectName that identifies objects on which the
ActionsManager implementor may want to perform some actions. The second
parameter is a single ObjectName that is used if an Operations Navigator
object is dragged or dropped onto another Operations Navigator object.

In this case, we register the SystemStatusManager as a context manager of
the AS/400 Network. This way, it is called when the end user right clicks on an
AS/400 system. As such, the only type of Operations Navigator ObjectName
we should receive is an "AS4" type.

The parameters that are passed should be stored in the class variables. A
completed definition of this method appears is shown here:

public void initialize(com.ibm.as400.opnav.ObjectName[] arg1,
com.ibm.as400.opnav.ObjectName arg2) {
initObjs = arg1;
dragDropObj = arg2;

}

5. We define a queryAction method.

The queryAction method is used by Operations Navigator to ask the
ActionsManager to report on the actions it can perform and what is displayed
to the user. To inform Operations Navigator, the queryActions method returns
an array of ActionDescriptor objects. An ActionDescriptor object has a number
of attributes, some of which are shown in Table 31 on page 234.
233

Table 31. Attributes and Methods from the ActionDescription Class

In this case, the queryActions method needs to return an array of one
element, since we are only performing one action. The ActionDescription
returned needs to have the attributes set that are shown in Table 32.

Table 32. ActionDescription Attributes

Before setting up the ActionDescription, ensure that you are defining the
correct menu to display in the given context. This is achieved by checking the
ObjectType that was set when the initialize method is called. In this case, we
registered the context menu to exist only under an AS/400 System. This object
type is AS4, and it represents an AS/400 network connection. For a complete
list of the available types, see the system registry entries for
HKEY_CLASSES_ROOT\IBM.AS400.Network\TYPES.

The getObjectType method can throw an ObjectNameException so we
encapsulate the code within a try block. The following code sample illustrates
all of these points:

public ActionDescriptor[] queryActions(int arg1) {

ActionDescriptor[] actions = new ActionDescriptor[0];
String objType = null;

try {
objType = initObjs[0].getObjectType();
if (objType.equals("AS4")) {
if ((arg1 & CUSTOM_ACTIONS) == CUSTOM_ACTIONS) {
actions = new ActionDescriptor[1];
ActionDescriptor act = new ActionDescriptor(1);
act.setText("System Status");

Attribute Methods Comment

HelpText set, get Action help text displayed in the status
field in the Operations Navigator main
window.

Text set, get Text displayed in the menu.

Verb set, get A non-displayed string used to identify
the action.

ID get, set &
ActionDescription(ID)

A numeric integer used to identify the
action. All actions should be assigned a
unique ID for any ActionManager
implementor.

subActions set, get Enables context menus within menu
items.

Default set, isDefault() If true, then this menu item is the default
action on this context menu.

Property Required Value

ID 1

Text System Status

HelpText Loads the ITSO System Status Plugin

Verb ITSOSysSts
234 Building AS/400 Client/Server Applications with Java

act.setHelpText("Loads the ITSO System Status Plugin");
act.setVerb("ITSOSysSts");
actions[0] = act;
}

}
}
catch (Exception e) {

Monitor.logThrowable(e);
}
return actions;

}

6. We define an actionSelected method.

The actionSelected method is only called by Operations Navigator when the
user selects one of the actions returned in queryActions. For this reason, we
need to instantiate any databeans and code the majority of the plug-in within
this method:

a. We add a public method called actionSelected that accepts two arguments.
The first argument should be an integer called arg1. The second should be
a Frame called arg2. The method does not return a value.

b. We use an if clause to verify that the action selected (arg1) is equal to 1.
Since this is the only value set by queryActions, it should always be set to
1.

c. Once the action is verified, we use a try block since the subsequent
methods may throw an exception.

d. Within the try block we extract the AS/400 system object from the first
element in the initObjs variable using the getSystemObject(). We store this
value in a new AS400 object called theMachine.

e. We use theMachine to create a new instance of the SystemStatusEngine
databean and call it theStatusEngine.

f. We have the theStatusEngine load data by calling the load() method.

g. We create an array called dBeans of type DataBean. We set the first and
only element to be theSystemStatusEngine.

Now that the databean is initialized, we need to display the
SystemResource panel created in Section 5.5.3, “Creating the New Panel
Definition” on page 224. To achieve this, we use the PanelManager class
and construct a panel manager object using the databean and the owning
frame.

h. We declare a PanelManager object called pm and set it to null.

i. Within a try block, we instantiate the pm object using the constructor
method, passing the following parameters in sequence:

i. A String containing the name of the PDML file. The PDML document
must be in a directory or JAR file in the CLASSPATH. The
PanelManager will first look for a serialized panel definition before
attempting to parse the PDML file.

ii. A String containing the name of the actual panel required.
235

iii. The array of databeans to be used by this panel.

iv. The owning frame.

j. If the PanelManager constructor method throws a
PanelManagerException, we catch it and use the displayUserMessage()
method, to display a message to the user.

k. To display the new panel and hand over control to this panel to the user, we
use the setVisible(true) method.

l. We use a catch to trap all exceptions and log them to the Monitor log using
the logThrowable() method.

After completing this step the defined method should appear like this
example:

public void actionSelected(int arg1, java.awt.Frame arg2) {

if (arg1 == 1)
{

try {
AS400 theMachine = (AS400)initObjs[0].getSystemObject();
SystemStatusEngine theSystemEngine = new
SystemStatusEngine(theMachine);
theSystemEngine.load();
DataBean[] dbeans = {theSystemEngine};

PanelManager pm = null;

try
{
pm = new
PanelManager("SystemStatus","SystemResources",dbeans,arg2);
}
catch (DisplayManagerException e){
e.displayUserMessage(arg2);
}
pm.setVisible(true);

}
catch (Exception e) {

Monitor.logThrowable(e);
}

}
}

7. We save the Java source.

8. We Compile the Java Source.

5.5.7 Modifying the Windows Registry
To reduce the possibility of incorrectly setting the registry, a file called
SystemStatusPlugin.reg is used. This file was produced using REGEDIT4. An
incorrectly set registry can, under extreme circumstances, cause your machine to

See Section C.2, “SystemStatusManager” on page 408, for the full source
code listing.

Source Code
236 Building AS/400 Client/Server Applications with Java

stop functioning. Therefore, we recommend that you always backup the registry
prior to any modification. Follow these steps:

1. Backup the registry.

a. Start the regedit program

b. Select Registry—>Export Registry File from the menu and export all
entries to a file called Original in the C:\L04\Student directory.

2. From Windows NT Explorer, double click on the SystemStatusPlugin.reg file
to have the system apply it to the registry.

5.5.8 Testing the Extension
To test the extension, we perform the following steps:

1. Start Operations Navigator. If it is already active, then we close and re-open it
to force it to read the registry again.

2. Select and expand the defined AS/400 system.

3. Log on to the system as prompted.

4. If the extension is registered, a scan operation takes place. Click the Scan
Now button to confirm that the scan can occur now.

5. Right click on the system menu item to see the newly installed extension is
available. Figure 187 shows the context menu with the new menu item.

Figure 187. Correctly Installed Extension Showing the SystemStatus Menu Item

6. Select the menu option SystemStatus. After retrieving the data from the
AS/400 system, the System Resource panel is displayed as shown in Figure
188 on page 238.

See Section C.3, “SystemStatus Registry” on page 408, for a listing of the
registry file.

Results
237

Figure 188. System Resources Panel

5.5.9 Adding a Second Panel to the PDML File
In this section, we modify the existing PDML file to include a second panel and
embed the two panels in a tabbed pane. We follow these steps:

1. Start the GUI Builder.

2. Open the SystemStatus.pdml file that we previously created. We add a new
Panel called PoolAllocation.

3. Add a table to the panel called SystemPool_Table. We set the table selection
mode to "none".

4. Double-click on the table to edit its columns.

5. Modify the table to define the columns shown in Table 33. All columns have
the editable property set to "false" and the Pool # column property Primary
Column set to "true".

Table 33. Table Column Properties

6. We use the alignment tools so that when we preview the pane, it appears as
shown in Figure 189 on page 239.

Title Data Class Attribute

Pool # SystemStatusEngine SystemPoolNumber

Pool Name SystemStatusEngine SystemPoolName

Pool Size SystemStatusEngine SystemPoolSize

DB Faulting SystemStatusEngine DBFaulting

Non-DB Faulting SystemStatusEngine NonDBFaulting
238 Building AS/400 Client/Server Applications with Java

Figure 189. Preview of the PoolAllocation Panel

7. We add a new Panel to the PDML file called SystemStatus.

8. We add a Tabbed Pane to the Panel.

9. We add the two panels, SystemResources and PoolAllocation, to the tabbed
pane.

10.We preview the tabbed pane and verify that it appears the same as the one in
Figure 190.

Figure 190. Preview of the Tabbed Panel

11.We save the PDML panel and exit the GUI Builder.

5.5.10 Modifying the SystemStatusEngine DataBean
Having successfully completed adding the second panel, we modify the Java
source for the databean to perform the methods associated with the newly added
panel.

The GUI Builder defines the instance variables shown in Table 34 on page 240.
239

Table 34. SystemStatusEngine Instance Variables

We need only modify the load() method so that it sets these variables correctly.
The getPoolsNumber() method, used in an instance of the SystemStatus class,
returns the number of system pools defined.

Using the getSystemPools() method in a SystemStatus object returns a vector of
Enumeration. We can loop though the Enumeration object using the
nextElement() method and cast the elements to a SystemPool object. Once cast,
we use the appropriate method to extract the required information. For example,
the getPoolIdentifier() method returns an integer that represents the system pool
number.

We perform this series of steps:

1. Open the SystemStatusEngine.java file and locate the load() method.

2. Within the try block, add an integer variable called numOfPools and use the
getPoolsNumber() method to retrieve the number of pools defined in aStatus.

3. Declare a variable named thePools of type java.util.Enumeration, and use the
getSystemPools() method to retrieve the system pool objects.

4. Modify the assignments to the new class variables so that all arrays hold the
same number of elements as the number of pools defined.

5. After the arrays are defined, use a while loop to cycle through all the elements
of the thePools object. Extract the appropriate information, and assign it to the
class variables.

6. We save, exit, and compile the Java program.

Name Type

m_sSystemPoolNumber String[]

m_idSystemPoolNumber ItemDescriptor[]

m_sSystemPoolName String[]

m_idSystemPoolName itemDescriptor[]

m_sSystemPoolSize String[]

m_idSystemPoolSize ItemDescriptor[]

m_sDBFaulting String[]

m_idDBFaulting ItemDescriptor[]

m_sNonDBFaulting String[]

m_idNonDBFaulting ItemDescriptor[]

Section C.4, “SystemStatusEngine.java” on page 409, shows the code for the
new load method.

Java Source Code
240 Building AS/400 Client/Server Applications with Java

5.5.11 Modifying the SystemStatusManager
We need to modify the SystemStatusManager.java source file to display the
panel that contains the tabbed pane. We only need to change one line of code:

pm = new PanelManager("SystemStatus","SystemStatus",dbeans,arg2);

See Section C.5, “SystemStatusManager” on page 412, for the completed source
listing for this task.

We compile the updated SystemStatusManager.java program. Now when we run
the plug-in, it displays information as illustrated in Figure 191.

Figure 191. System Resources Tab

Figure 192. Pool Allocation Tab

5.6 PCML Examples

Program Call Markup Language (PCML) is a tag language that helps you call
AS/400 programs, but with writing less Java code. PCML is based on the XML, a
tag syntax that you write to describe the input and output parameters for AS/400
programs. PCML enables you to define tags that fully describe AS/400 programs
that will be called by your Java application.
241

PCML was created to simplify calling AS/400 programs from Java. It performs the
following functions:

• It converts data types between the AS/400 format and the Java format.

• It simplifies Java programs by handling complex relationships in AS/400 data.

– Varying length character strings and structures
– Varying size arrays of fields and structures and nested arrays
– Strings with runtime CCSID tagging

• PCML is implemented as a package of Java classes:

– com.ibm.as400.data(data400.jar)

Figure 193 shows how PCML works.

Figure 193. PCML Architecture

To build AS/400 program calls with PCML, you must start by creating:

• A Java application
• A PCML source file

Depending on your application design, you must write one or more PCML source
files where you describe the interfaces to the AS/400 programs that will be called
by your Java application. When your application constructs a
ProgramCallDocument object, the IBM XML parser reads and parses the PCML
source file. After the ProgramCallDocument class is created, the application
program uses the ProgramCallDocument class methods to retrieve the necessary
information from the AS/400 system through the AS/400 distributed program call
(DPC) server.
242 Building AS/400 Client/Server Applications with Java

To increase runtime performance, the ProgramCallDocument class can be
serialized. The ProgramCallDocument is then constructed using the serialized
file. In this case, the IBM XML parser is not used at runtime.

The following Java code constructs a ProgramCallDocument object:

AS400 as400 = new AS400();
ProgramCallDocument pcmlDoc = new ProgramCallDocument(as400,

"myPcmlDoc");

The ProgramCallDocument object looks for the PCML source in a file called
myPcmlDoc.pcml. Notice that the .pcml extension is not specified on the
constructor. If you are developing a Java application in a Java package, you can
package-qualify the name of the PCML resource:

AS400 as400 = new AS400();
ProgramCallDocument pcmlDoc = new ProgramCallDocument(as400,

"com.company.package.myPcmlDoc");

5.6.1 A Simple PCML Example
PCML consists of the following tags, each of which has its own attribute tags:

• The program tag begins and ends code that describes one program.

• The struct tag defines a named structure, which can be specified as an
argument to a program or as a field within another named structure. A struct
tag contains a data or a struct tag for each field in the structure.

• The data tag defines a field within a program or structure.

Figure 194 shows a simple PCML file. It allows us to call a program named
QZLSSTRS. It has no input parameters and one output parameter.

Figure 194. A Simple PCML File

Figure 195 shows how we call a program from Java using PCML. The Java
application uses PCML by constructing a ProgramCallDocument object with a
reference to the PCML source file. The ProgramCallDocument considers the
PCML source file to be a Java resource. Consequently, the PCML source file is
found using the Java CLASSPATH.

Figure 195. Calling a Program Using PCML

<pcml version="1.0">
<program name="StartNetServer"

path="/QSYS.LIB/QZLSSTRS.PGM">
<data name="ErrorCode" type="char" useage="output"/>
</program>
</pcml>

AS400 myAS400 = new AS400(...) ;
ProgramCallDocument myCall = new ProgramCallDocument
(myAS400, "pcmlfile") ;
Boolean wasDone = myCall.callProgram("StartNetServer");
243

5.6.2 Calling the DPCXRPG Program Using PCML
In this section, we use PCML to call the RPG Program, DPCXRPG, described in
Section 3.5.13, “Distributed Program Call (DPC) Application Example” on page
144. Figure 196 shows the PCML source file.

Figure 196. PCML Source File PcmlPgmCall.pcml

The name of the AS/400 program that we call is named DPCXRPG. It is found in
the library named APILIB. DPCXRPG accepts and returns six parameters. In this
example, we use it to retrieve information from rows in the Parts table. To request
information from the AS/400 program, we set two input parameters:

• Flag = "S"
• Part Number = the part number (key) of the row to retrieve

The AS/400 program returns six parameters:

• Flag = "Y" if the row was found; "X" if the row was not found
• Part Number = The part number
• Description = Description of the part
• Quantity = Quantity in stock
• Price = Price
• Date= Received date

Notice that we specify the usage as "inputoutput" for all the parameters. This is
because the AS/400 program also supports update, delete, and add capabilities.
If we write another Java program to use these capabilities, we can use the same
PCML file. Also notice that some of the parameters have a type of "packed". The
AS/400 program expects and returns packed decimal parameters. The PCML
support automatically handles the conversion for us.

<pcml version="1.0">

<!-- PCML source for calling "DPCXRPG" Program -->

<!-- Program PgmCall and its parameter list for retrieving part records -->
<program name="PcmlPgmCall" path="/QSYS.lib/APILIB.lib/DPCXRPG.pgm">

<data name="asFlag" type="char" length="1" usage="inputoutput"
init=" "/>

<data name="asPartNo" type="packed" length="5" precision="0" usage="inputoutput"
init=" "/>

<data name="asDesc" type="char" length="25" usage="inputoutput"
init=" "/>

<data name="asQty" type="packed" length="5" precision="0" usage="inputoutput"
init="0"/>

<data name="asPrice" type="packed" length="6" precision="2" usage="inputoutput"
init="0.0"/>

<data name="asDate" type="char" length="10" usage="inputoutput"
init="1999-01-01"/>

</program>

</pcml>
244 Building AS/400 Client/Server Applications with Java

Figure 197 shows code snippets from a Java program, named PcmlPgmCall, that
calls the AS/400 program using PCML. The entire program is available for
download from the redbooks Web site.

Figure 197. Java Code for PCML Program Call

We create a ProgramCallDocument object by passing it an AS/400 object and the
name of the PCML source file. When an application constructs a
ProgramCallDocument object, the IBM XML parser reads and parses the PCML
source file. We use the setValue method of the ProgramCallDocument object to
set the values for the flag and part number parameters. We use the callProgram
method to actually call the AS/400 program. When the call to the AS/400 program
is complete, we use the getValue method to retrieve the values of the parameters
returned and write them to the console. Notice that we did not have to handle any
data conversions.

Figure 198 shows an example of running the application.

Figure 198. Running the PCML Example

5.6.3 PCML Conclusion
Calling AS/400 programs from Java applications can require a large amount of
programming effort. Ordinarily, you have to write additional lines of code to
construct AS/400 Toolbox for Java class objects for connecting to and retrieving
information from an AS/400 program and for performing the appropriate data
translation.

pcml = new ProgramCallDocument(as400System, "PcmlPgmCall");
pcml.setValue("PcmlPgmCall.asFlag", "S");
pcml.setValue("PcmlPgmCall.asPartNo", partNo);
rc = pcml.callProgram("PcmlPgmCall");
.
.
value = pcml.getValue("PcmlPgmCall.asFlag");
if (value.equals("Y")) {
value = pcml.getValue("PcmlPgmCall.asPartNo");
System.out.println(" Part Number: " + value);
value = pcml.getValue("PcmlPgmCall.asDesc");
System.out.println(" Descescription:" + value);
value = pcml.getValue("PcmlPgmCall.asQty");
System.out.println(" Quantity: " + value);
value = pcml.getValue("PcmlPgmCall.asPrice");
System.out.println(" Price: $" + value);
value = pcml.getValue("PcmlPgmCall.asDate");
System.out.println(" Date: " + value);
245

Using PCML, calls to AS/400 program are handled by PCML class objects. The
PCML class objects are generated from PCML tags, which the PCML coded
description of AS/400 programs calls. This minimizes the amount of code you
need to write in order to call AS/400 programs from your application.

PCML provides a powerful way to call existing AS/400 programs. It can run in any
1.1.7 JVM that has the AS/400 Toolbox for Java Modification 2 and the PCML and
XML parser archives available. You can write one PCML definition to use in all
your Java programs. This allows you to reuse it and makes it easier to maintain. It
can also serialize the PCML file for improved runtime performance. To serialize a
PCML file, use the ProgramCallDocument class with the -serialize option:

Java com.ibm.ProgramCallDocument -serialize pcmlfile

The system will use the serialized file if it exists. Also, the IBM XML parser
packages are not required at runtime.

While PCML was designed to support distributed program calls to AS/400
program objects from a Java client platform, you can also use PCML to make
calls to an AS/400 program from within an AS/400 environment.

5.7 JDBC 2.0

The JDBC 2.0 API is the latest update of the JDBC API. The JDBC 2.0 API
contains many new features, including scrollable result sets. There are two parts
to the JDBC 2.0 API: the JDBC 2.0 Core API and the JDBC 2.0 Standard
Extension API. The JDBC 2.0 Core API is included in the Java 2 (JDK 1.2)
Platform release.

The JDBC 2.0 API has been factored into two complementary components. The
first component, which is termed the JDBC 2.0 Core API, comprises the updated
contents of the java.sql package. The second component, termed the JDBC 2.0
Standard Extension API, comprises the contents of a new package, javax.sql,
which as its name implies will be delivered as a Java Standard Extension.

The java.sql package contains all of the enhancements that have been made to
the existing JDBC interfaces and classes, in addition to a few new classes and
interfaces. The new javax.sql package has been introduced to contain the parts
of the JDBC 2.0 API that are closely related to other pieces of the Java platform.
The parts are standard extensions, such as the Java Naming and Directory
Interface (JNDI), and the Java Transaction Service (JTS). In addition, some
advanced features that are easily separable from the JDBC Core API, such as
connection pooling and rowsets, have also been added to javax.sql. Putting these
advanced facilities into a standard extension, instead of into a core, helps keep
the JDBC Core API small and focused.

Since the standard extensions are downloadable, it will always be possible to
deploy an application that uses the features in the JDBC standard extension that
will "run anywhere". If a standard extension is not installed on a client machine, it
can be downloaded along with the application that uses it.
246 Building AS/400 Client/Server Applications with Java

The AS/400 Toolbox for Java supports the JDBC 2.0 Core API. If you want to use
any of the following JDBC 2.0 enhancements, you also need to use Java 2 (JDK
1.2):

• BLOB interface
• CLOB interface
• Scrollable result sets
• Updatable result sets
• Batch update capability with Statement, PreparedStatement, and

CallableStatement objects

To use BLOB and CLOB support with the AS/400 system, the AS/400 Universal
Data Base (UDB) is required. At the time of the writing of this redbook, it was
anticipated that this support would be available in fourth quarter 1999.

5.7.1 JDBC Result Sets
A result set created by executing a statement may support the ability to move
backward (last-to-first), as well as forward (first-to-last), through its contents.
Result sets that support this capability are called scrollable result sets. Result
sets that are scrollable also support relative and absolute positioning. Absolute
positioning is the ability to move directly to a row by specifying its absolute
position in the result set. Relative positioning gives the ability to move to a row by
specifying a position that is relative to the current row. The definition of absolute
and relative positioning in JDBC 2.0 is modeled on the X/Open SQL CLI
specification.

The JDBC 1.0 API provided one result set type, forward-only. The JDBC 2.0 API
provides three result set types: forward-only, scroll-insensitive, and
scroll-sensitive. As their names suggest, the new result set types support
scrolling, but they differ in their ability to make changes visible while they are
open.

A scroll-insensitive result set is generally not sensitive to changes that are made
while it is open. A scroll-insensitive result set provides a static view of the
underlying data it contains. The membership, order, and column values of rows in
a scroll-insensitive result set are typically fixed when the result set is created. On
the other hand, a scroll-sensitive result set is sensitive to changes that are made
while it is open, and provides a "dynamic" view of the underlying data. For
example, when using a scroll-sensitive result set, changes in the underlying
column values of rows are visible. The membership and ordering of rows in the
result set may be fixed. This is implementation defined.

An application may choose from two different concurrency types for a result set:
read-only and updatable. A result set that uses read-only concurrency does not
allow updates of its contents. This can increase the overall level of concurrency
between transactions, since any number of read-only locks may be held on a data
item simultaneously. A result set that is updatable allows updates and may use
database write locks to mediate access to the same data item by different
transactions. Since only a single write lock may be held at a time on a data item,
this can reduce concurrency. Alternatively, an optimistic concurrency control
scheme may be used if conflicting access to data will be rare. Optimistic
concurrency control implementations typically compare rows either by value or by
a version number to determine if an update conflict has occurred.
247

Two performance hints may be given to a JDBC 2.0 driver to make access to
result set data more efficient. Specifically, the number of rows to be fetched from
the database each time more rows are needed can be specified. A direction for
processing the rows—forward, reverse, or unknown—can be given as well.
These values can be changed for an individual result set at any time. A JDBC
driver may ignore a performance hint if it chooses. The AS/400 Toolbox for Java
JDBC 2.0 driver implements the number of rows fetched, but not the direction for
processing.

5.7.2 Using Scrollable and Updatable Result Sets
If a result set is created by executing a statement or prepared statement, you can
move (scroll) backward (last-to-first) or forward (first-to-last) through the rows in a
table. Figure 199 shows a code snippet, which uses a scrollable result set.

Figure 199. Scrollable Result Set Example

The prepareStatement method now has two additional parameters. We set them
to scroll insensitive and read only. We use the setFetchSize method to set the
number of rows to be fetched from the database when more rows are needed.
This may be changed at any time. If the value specified is zero, then the driver
will choose an appropriate fetch size.

There are a number of new methods available for moving through the result set.
Some of them include:

• Next — Positions the cursor to the next row.
• Previous — Positions the cursor to the previous row.
• First — Positions the cursor to the first row of the result set.
• Last — Positions the cursor to the last row of the result set.
• IsLast — Indicates if the cursor is positioned on the last row.
• Absolute — Positions the cursor to an absolute row number. Attempting to

move beyond the first row positions the cursor before the first row. Attempting
to move beyond the last row positions the cursor after the last row. If the
absolute row number is positive, this positions the cursor with respect to the

private java.sql.ResultSet rs;
private java.sql.PreparedStatement s;

s = dbConnect.prepareStatement("SELECT * FROM PARTS WHERE PARTQY > ? ",
java.sql.ResultSet.TYPE_SCROLL_INSENSITIVE,
java.sql.ResultSet.CONCUR_READ_ONLY);

s.setFetchSize(25);
s.setInt(1,1000);
rs = s.executeQuery();
rs.next ();
.
rs.previous();
.
rs.first();
.
rs.last();
.
boolean islast = rs.isLast();
.
boolean setPosition = rs.absolute(10);
248 Building AS/400 Client/Server Applications with Java

beginning of the result set. If the absolute row number is negative, this
positions the cursor with respect to the end of result set.

Figure 200 shows a code snippet, which updates a row from a result set.

Figure 200. Updatable Result Set Example

In this case, we do not set a fetch size because the toolbox JDBC driver will
return only one row at a time from the AS/400 system. The host server will lock
the row on which we are positioned. We use the updateRow method to update
the row.

5.7.3 JDBC 2.0 Example
In this section, we modify the JDBCExample and JDBCExampleDisplayAll
classes discussed in Section 3.5.4, “JDBCExample Class” on page 116, to use
scrollable result sets.

Figure 201 on page 250 shows the connectToDB method of the JDBCExample
class.

private java.sql.ResultSet rs;
private java.sql.PreparedStatement s;

s = dbConnect.prepareStatement("SELECT * FROM PARTS WHERE PARTQY > ? FOR UPDATE",
java.sql.ResultSet.TYPE_SCROLL_SENSITIVE,
java.sql.ResultSet.CONCUR_UPDATABLE);

s.setInt(1,1000);
rs = s.executeQuery();
rs.next ();
.
rs.previous();
String name = rs.getString("PARTNO");
int qty = rs.getInt("PARTQY");
.
. // application logic
.
rs.updateInt("PARTQY", qty); // Update the quantity with a new value

rs.updateRow (); // Send the updates to the server.
249

Figure 201. The connectToDB Method

The prepareStatement method for the psAllRecord PreparedStatement object
has two additional parameters. We set them to scroll sensitive and read only.
Scroll sensitive means that any changes to the database will be reflected in the
result set as we scroll through it. The CONCUR_READ_ONLY option allows us to
only read rows from the database. We cannot update them. This setting allows
the JDBC driver to function more efficiently because it can retrieve multiple rows
at a time from the server. If we set this value to Concur_Updatable, the server
returns only one row at a time. We use the setFetchSize method to set the
number of rows to be fetched from the database (when more rows are needed) to
ten. This option can be valuable when the SQL statement executed returns a very
large result set. In JDBC 1.0, all the rows were returned to you. Now, you can
control the number of rows returned programmatically. As you scroll through the
result set, the driver retrieves the number of rows that you specify as they are
needed.

Figure 202 on page 251 shows the new JDBCExampleDisplayAll display. Three
new buttons have been added to demonstrate some of the new JDBC 2.0
capabilities:

• Next 10
• Previous 10
• First 10

public String connectToDB(String systemName, String userid, String password)
{
try
{
setCursor(java.awt.Cursor.getPredefinedCursor(java.awt.Cursor.WAIT_CURSOR));
java.sql.DriverManager.registerDriver(new com.ibm.as400.access.AS400JDBCDriver());
dbConnect = java.sql.DriverManager.getConnection("jdbc:as400://" + systemName +

"/apilib;naming=sql;errors=full;date format=iso;extended dynamic=true;" +
"package=JDBCExa;package library=apilib", userid, password);

psSingleRecord = dbConnect.prepareStatement("SELECT * FROM PARTS WHERE PARTNO = ?");

psAllRecord = dbConnect.prepareStatement("SELECT * FROM PARTS ORDER BY PARTNO",
java.sql.ResultSet.TYPE_SCROLL_SENSITIVE,

java.sql.ResultSet.CONCUR_READ_ONLY);
psAllRecord.setFetchSize(10);

psUpdateRecord = dbConnect.prepareStatement("UPDATE PARTS SET PARTDS = ?," + " PARTQY = ?, PARTPR = ?,
PARTDT = ? WHERE PARTNO = ?");

psAddRecord = dbConnect.prepareStatement("INSERT INTO PARTS (PARTDS, PARTQY," + " PARTPR, PARTDT,
PARTNO) VALUES(?, ?, ?, ?, ?)");

psDeleteRecord = dbConnect.prepareStatement("DELETE FROM PARTS WHERE PARTNO = ?");
}
catch (Exception e){

e.printStackTrace();
showException(e);
setCursor(java.awt.Cursor.getPredefinedCursor(java.awt.Cursor.DEFAULT_CURSOR));
return "Connect Failed.";
}

setCursor(java.awt.Cursor.getPredefinedCursor(java.awt.Cursor.DEFAULT_CURSOR));
return "Connected to AS/400.";
}

250 Building AS/400 Client/Server Applications with Java

Figure 202. JDBCExampleDisplayALL

Figure 203 shows the populateListBoxNextTen method, which supports the Next
10 button.

Figure 203. The populateListBoxNextTen Method

public void populateListBoxNextTen() {
int i = 0;
try
{

if (!(psAllRecordRS.next())) {/* read past the end of the result set*/
psAllRecordRS.absolute(psAllRecordRS.getRow() - 1); /*return to last row */
return; /* Just leave current screen up */

}

ivjIMulticolumnListbox1.removeAllRows();
do
{

String[] array = new String[5];
array[0] = psAllRecordRS.getString("PARTNO");
array[1] = psAllRecordRS.getString("PARTDS");
array[2] = insertSpaces(Integer.toString(psAllRecordRS.getInt("PARTQY")), 5);
array[3] = insertSpaces(psAllRecordRS.getBigDecimal("PARTPR", 2).toString(), 8);
array[4] = psAllRecordRS.getDate("PARTDT").toString();
ivjIMulticolumnListbox1.addRow(array, array[0]);
i++;

}while ((i < 10) && (psAllRecordRS.next()));
}
catch (Exception e)
{
showException(e);
}
return;
}

251

If we are already at the end of the result set, we use the absolute method to
position to the last row and return. Otherwise, we use the next method to retrieve
up to ten rows from the result set and add them to the list box.

Figure 204 shows the populateListBoxPrevTen method. This method supports the
Previous 10 button.

Figure 204. The populateListBoxPrevTen Method

We move the cursor backwards by 20 rows with the psAllRecordRS.relative(-20)
statement. Notice that the getRow method returns the absolute row number. It
returns zero if we are not positioned on a row. We can also point directly to a
specific row with the absolute method. We can point the cursor to before the first
row with the beforeFirst method.

Figure 205 on page 253 shows the populateFirstTen method. This method
supports the First 10 button.

public void populateListBoxPrevTen() {
int i = 0;

try
{

psAllRecordRS.relative(-20);
if(psAllRecordRS.getRow() == 0)

psAllRecordRS.beforeFirst(); /* position before first */
ivjIMulticolumnListbox1.removeAllRows();
while ((i < 10) && psAllRecordRS.next())

{String[] array = new String[5];
array[0] = psAllRecordRS.getString("PARTNO");
array[1] = psAllRecordRS.getString("PARTDS");
array[2] = insertSpaces(Integer.toString(psAllRecordRS.getInt("PARTQY")), 5);
array[3] = insertSpaces(psAllRecordRS.getBigDecimal("PARTPR", 2).toString(), 8);
array[4] = psAllRecordRS.getDate("PARTDT").toString();
ivjIMulticolumnListbox1.addRow(array, array[0],i);
i++;

}
}
catch (Exception e)
{
showException(e);
}
return;
}

252 Building AS/400 Client/Server Applications with Java

Figure 205. The populateFirstTen Method

Notice that the first() method positions the cursor to the first row of the result set.
We then use the next() method to retrieve nine more rows from the result set and
add them to the list box.

5.8 Additional Classes

This section describes and demonstrates some of the new or enhanced classes
available with Modification 2 of the AS/400 Toolbox for Java. All sample
applications were written using IBM VisualAge for Java 2.0 with rollup2,
enterprise update, and Modification 2 of the AS/400 Toolbox for Java loaded in
the workspace. For instructions on how to load these features, see Section 5.1,
“Upgrading the AS/400 Toolbox Contained in VisualAge for Java 2.0” on page
213.

5.8.1 SpooledFileViewer
As the class name implies, the SpooledFileViewer class displays AS/400 spooled
files on a client workstation. There are two AS/400 requirements for this class:

• The spooled file must reside on a V4R4 or later AS/400 system.
• The AFP Utilities licensed product must be installed on the AS/400 system.

The SpooledFileViewer class is a subclass of the
com.sun.java.swing.JComponent. It can be added to suitable swing classes
(such as JFrame). Figure 206 on page 254 illustrates a possible use of this class.
We use a JSplitPane to hold an AS400DetailPane on top and a
SpooledFileViewer on the bottom. The AS400DetailPane is populated with a list
of AS/400 spooled files. Selecting a file in the AS400DetailPane causes its
contents to be displayed in the bottom pane.

public void populateFirstTen() {
int i = 0;

try
{

psAllRecordRS.first();
ivjIMulticolumnListbox1.removeAllRows();
do
{
String[] array = new String[5];
array[0] = psAllRecordRS.getString("PARTNO");
array[1] = psAllRecordRS.getString("PARTDS");
array[2] = insertSpaces(Integer.toString(psAllRecordRS.getInt("PARTQY")), 5);
array[3] = insertSpaces(psAllRecordRS.getBigDecimal("PARTPR", 2).toString(), 8);
array[4] = psAllRecordRS.getDate("PARTDT").toString();
ivjIMulticolumnListbox1.addRow(array, array[0]);
i++;
}while ((i < 10) && (psAllRecordRS.next()));

}
catch (Exception e)
{
showException(e);
}
return;
}

253

Figure 206. Application Using the SpooledFileViewer Class

5.8.1.1 Building the Spooled Application
For this example, it is necessary to extend the
com.ibm.as400.vaccess.SpooledFileViewer class to add two methods. We do this
to enable an application to pass the AS400DetailsPlane selected object and the
VPrinterObject object to the extended SpooledFileViewer class. It converts them
to the required parameters for the setSpooledFile method provided with the base
SpooledFileViewer class. The base SpooledFileViewer does not directly accept
AS400DetailsPanes and VPrinterObjects. The sample application is built by
extending the existing SpooledFileViewer class to provide two additional
setSpooledFile methods. The extended class is used inside a JSplitPanel to
create the application. The following steps show how to build the application:

1. Start IBM VisualAge for Java 2.0

2. From the Workspace window, create a new project called New Toolbox
Samples.

3. Create a package called SpooledViewer inside the previously created project.

4. Create a new class called ESpooledFileViewer that extends
com.ibm.as400.vaccess.SpooledFileViewer and imports the
com.ibm.as400.access and com.ibm.as400.vaccess packages.

5. Create a new void method called setSpooledFile that accepts two parameters:

• system of type AS400
• splf of type VOutput

The method should also be capable of throwing the exception
java.beans.PropertyVetoException.

The following code snippet forms the body of the previously created method. It
uses the VOutput and AS400 objects to create a SpooledFile object that is
used to call the inherited setSpooledFile(SpooledFile) method.

String splfString = splf.toString();
String splfName = splfString.substring(0, splfString.indexOf(" "));
splfString = splfString.substring(splfString.indexOf(" ")).trim();
254 Building AS/400 Client/Server Applications with Java

int splfNum = new Integer(splfString.substring(0,splfString.indexOf("
"))).intValue();
splfString = splfString.substring(splfString.indexOf(" ")).trim();
String splfUser = splfString.substring(0, splfString.indexOf(" "));
splfString = splfString.substring(splfString.indexOf(" ")).trim();
String splfJobNum = splfString.substring(0, splfString.indexOf(" "));
String splfJobName = splfString.substring(splfString.indexOf(" ")).trim();
setSpooledFile(new SpooledFile(system ,splfName, splfNum, splfJobName,
splfUser, splfJobNum));

6. Create another new void method called setSpooledFile that accepts two
slightly different parameters:

• system of type AS400
• splf of type VObject

Again, the method should be capable of throwing the
java.beans.PropertyVetoException exception.

7. This method simply calls the previously created method by casting the
VObject to a VOutput object, as shown in the following code snippet:

setSpooledFile(system, (VOutput) splf)

Figure 207 shows the complete ESpooledFileViewer class.

Figure 207. The ESpooledFileViewer Class

Next, we use the VisualAge for Java Visual Composition Editor to create an
end-user application that uses the ESpooledFileViewer class to display spooled
files. Figure 208 on page 256 shows the JavaBeans that make up the new
application.

import com.ibm.as400.vaccess.*;
import com.ibm.as400.access.*;
public class ESpooledFileViewer extends SpooledFileViewer{
public void setSpooledFile(VOutput aVSplf,VPrinterOutput aVSplfList)

throws java.beans.PropertyVetoException {
String splf = aVSplf.toString();
String splfName = splf.substring(0, splf.indexOf(" "));
splf = splf.substring(splf.indexOf(" ")).trim();
int splfNum = new Integer(splf.substring(0,splf.indexOf(" "))).intValue();
splf = splf.substring(splf.indexOf(" ")).trim();
String splfUser = splf.substring(0, splf.indexOf(" "));
splf = splf.substring(splf.indexOf(" ")).trim();
String splfJobNum = splf.substring(0, splf.indexOf(" "));
String splfJobName = splf.substring(splf.indexOf(" ")).trim();
setSpooledFile(new SpooledFile(aVSplfList.getSystem(),splfName, splfNum,

splfJobName, splfUser, splfJobNum));
}
public void setSpooledFile (VObject aVSplf, VObject aVList) throws
java.beans.PropertyVetoException {
if (aVSplf!=null) {
setSpooledFile((VOutput) aVSplf, (VPrinterOutput) aVList);
}
}
}

255

Figure 208. The SampleViewer Class in the IDE

We follow this process:

1. In the VisualAge for Java IDE, create a new class named SampleViewer that
extends com.sun.java.swing.JFrame and select the Compose the class
visually radio box.

2. Click on Finish to generate the class and start the Visual Composition Editor.

3. Set the JFrameContentPane, inside the JFrame, to use the Border layout.

4. Add a new JPanel to the free form space. It should not be added to the
JFrameContentPane yet.

5. Add the Swing components (see Table 35) in sequence to the JPanel.

Table 35. Swing Components

Component Text Property

JLabel System Name

JTextField

JLabel User ID

JTextField

JLabel Password

JPasswordField

JButton Connect

JFrame

JFrameContentPane

BorderLayout

West Center

JPanel BoxLayout (Y_AXIS)

JSplitPane

ESpooledFileViewer
(Bottom)

AS400DetailPane
(Top)
256 Building AS/400 Client/Server Applications with Java

6. Change the panel layout manager to BoxLayout (with the BoxLayout axis
property set to" Y_AXIS:). It should appear the same as shown in Figure 209.

Figure 209. System and User Details Panel

7. Add the panel to the JFrameContentPane’s west side.

8. Create a new JSplitPane in the free form space. Again, be careful not to add it
to the JFrameContentPane yet. Set the orientation property of the JSplitPane
to VERTICAL_SPLIT.

9. Use the Choose a bean tool to add a ESpooledFileViewer to the bottom
portion of the JSplitPane object.

10.Add an AS400DetailsPane to the top portion of the JSplitPane object. Set the
JSplitPane dividerLocation property to 30. The JSplitPane should appear
similar to Figure 210.

Figure 210. The JSplitPane

11.Add the JSplitFrame to the center of the JFrameContentPane. Again, at this
time, you may need to change the JSplitPane dividerLocation property to
display both panels correctly.
257

Figure 211. Adding AS400 and VPrinterOutput Objects

12.As shown in Figure 211, add an AS400 System and a VPrinterOutput object to
the free space of the Visual Composition Editor.

13.Add the connections in sequence as shown in Table 36.

Table 36. VCE Connections

From Object From Event or
Property

To Object To Property or Method

JButton1 actionPerformed AS4001 setSystemName()

Previous connection arg1 JTextField1 text

JButton1 actionPerformed AS4001 setUserId()

Previous connection arg1 JTextField2 text

JButton1 actionPerformed AS4001 setPassword

Previous connection arg1 JPasswordField1 text

JButton1 actionPerformed VPrinterOutput1 setSystem

Previous connection arg1 AS4001 this

JButton1 actionPerformed VPrinterOutput1 load()

JButton1 actionPerformed AS400DetailsPane1 setRoot()

JButton1 actionPerformed AS400DetailsPane1 load()

Previous connection arg1 VPrinterOutput1 this

AS400DetailsPane1 listSelection MySpooledFileViewer1 setSpooledFile(AS400,
VObject)
258 Building AS/400 Client/Server Applications with Java

Figure 212 shows the resulting connections within the VCE.

Figure 212. SampleViewer Class with Completed Connections

14.Run the application.

Once loaded, maximize the window so you can see both subcomponents of
the JSplitPane correctly.

Verify that it will connect to an AS/400 system. Once the list of available
spooled files is obtained from the server, selecting a spooled file in the details
pane should produce the MySpooledFileViewer display as shown in Figure
213 on page 260.

Previous connection system AS4001 this

Same connection as the
previous connection

splf AS400DetailsPane1 getSelectedObject()

AS400DetailsPane1 listSelection MySpooledFileViewer1 load()

From Object From Event or
Property

To Object To Property or Method
259

Figure 213. Running the Application

5.8.2 VSystemStatusPane
The VSystemStatusPane is another JComponent that can be added to a suitable
container (such as a JFrame). As the name implies, the VSystemStatusPane is
used to display information about the current system status on an AS/400
system. Adding a refresh button to the panel allows the user to monitor the
AS/400 status at various points in time. An example application is shown in
Figure 214 on page 261.
260 Building AS/400 Client/Server Applications with Java

Figure 214. Example Using the VSystemStatusPanel Class

5.8.2.1 Building the Sample Application
The sample application uses a bean factory to overcome a missing null
constructor method for the VSystemStatusPane class. The following steps outline
how to build this sample application:

1. Start VisualAge for Java 2.0

2. Within the New Toolbox Samples project, add a new package named
StatusExample.

3. Create a new class in this package called Status. This class should extend
com.sun.java.swing.JFrame. Select the Compose the class visually radio
box.

4. Click on the Finish button to generate the class and start the Visual
Composition Editor.

5. Set the JFrameContentPane to use the Border layout manager.

6. Add a JPanel component to the Center of the JFrameContentPane.

7. Set the JPanel to use FlowLayout.

8. Add a button to the JPanel, and set the text property to Refresh.

9. Set the JPanel constraints property to South.

10.Add an AS400 object to the free form area of the VCE.
261

11.Within the VCE, select the Factory bean (), from the Other palette. Add it
to the free form area of the VCE.

12.Right click on the Factory bean and select the Change Type... option. Set the
type to com.ibm.as400.vaccess.VSystemStatusPane.

13.Connect the Status initialize event to the Factory1 constructor method.

To do this, right-click on the JFrame and select the Connect—>Connectable
Features—>initialize event. Then, click on the Factory1 object and select
the VSystemStatusPane(com.ibm.as400.access.AS400) option.

14.Pass the AS4001 object as the parameter for the previous connection.

15.Connect the Status initialize event to the add(Component) method for the
JFrameContentPane. Pass in the Factory as the component parameter.

16.Connect the actionPerformed event of the JButton1 object to the load()
method for the Factory1 object.

17.Save and run the sample application. Click on the Refresh button to cause the
sign on dialog to appear.

5.8.3 Jobs and Job Logs
The VJobList class is very simple to use. Once added to an AS400ExplorerPane,
it can be used to display and select jobs running on an AS/400 system. Selecting
a job triggers the joblog messages to be displayed in the right-hand pane of the
AS400ExplorerPane. Figure 215 shows the output generated once the VJobList
loads data from an AS/400 system.

Figure 215. A VJobList Example

5.8.3.1 Building the Sample
To build the VJobList sample, perform these steps:

1. Start IBM VisualAge for Java 2.0.

2. Within the New Toolbox Samples project, add a new package named
UsersExample.

3. Create a new class in this package called Jobs. This class should extend
com.sun.java.swing.JFrame.
262 Building AS/400 Client/Server Applications with Java

4. Select the Compose the class visually radio box and click on the Finish
button.

5. Within the VCE, set the JFrameContentPane to use the Border layout
manager.

6. Add an AS400ExplorerPane to the Center of the JFrameContentPane.

7. Add an AS400 object to the free form area of the VCE.

8. Add a com.ibm.as400.vaccess.VJobList to the free form area of the VCE.

9. Connect the Jobs initialize event to the VJobList.setSystem(AS400) method,
and pass the AS4001 object as the parameter to this method.

10.Connect the Jobs initialize event to the VJobList.load() method.

11.Connect the Jobs initialize event to the AS400ExplorerPane.setRoot(VNode)
method, and pass the VJobList as the parameter to this method.

12.Save and run the sample application.

5.8.4 Users and Groups
The VUserList and VUserAndGroup classes provide a simple and efficient way to
manage user profiles from a Java client. Simply adding a VUserList to an
AS400DetailsPane allows the user to list AS/400 user profiles.

Figure 216. A VUserList Example

To inspect user profiles in more detail, right-click the selected user profile and
select the property pop-up option.
263

Figure 217. The Properties for a Selected User

An additional class, VUserAndGroup, allows a Java program to list user groups,
all users, or users that are not in a group.

5.8.4.1 Building the Sample Application
The following steps create a the program used to generate the displays shown in
Figure 216 on page 263 and Figure 217:

1. Start IBM VisualAge for Java 2.0.

2. Within the New Toolbox Samples project add a new package called
UsersExample.

3. Create a new class in this package called Users. This class should extend
com.sun.java.swing.JFrame.

4. Select the Compose the class visually radio box.

5. Within the VCE, set the JFrameContentPane to use the Border layout
manager.

6. Add an AS400DetailsPane to the Center of the JFrameContectPane.

7. Add an AS400 object into the free form area.

8. Add a VUserList object to the free form area of the VCE.

9. Connect the User object initialize event to the VUserList1 object
setSystem(AS400) method.

10.Pass the AS4001 object as the parameter to the setSystem() method call
generated in the previous step.

11.Connect the User object initialize event to the VUserList1 object load()
method.

12.Connect the User object initialize method to the setRoot(VNode) method of
the AS400ListPane1 object.
264 Building AS/400 Client/Server Applications with Java

13.Set the VUserList1 object as the parameter to the setRoot(VNode) method
generated in the previous step.

14.Run the program and connect to an AS/400 system.

5.8.5 IFS File Access
The IFSJavaFile class represents a file in the AS/400 integrated file system.
IFSJavaFile extends the java.io.File class and allows programs to be written for
the java.io.File interface and still access the AS/400 integrated file system.
IFSFile should be considered as an alternate to this class.

Here are some considerations to help you decide when IFSJavaFile should be
used:

• IFSJavaFile should be used when a portable interface, compatible with
java.io.File, is needed. For example, you have written code that accesses the
native file system. Now you want to move the design to a networked file
system. More particularly, you need to move the code to the AS/400 integrated
file system. When a program is being ported and needs to use the AS/400
integrated file system, IFSJavaFile is a good choice. IFSJavaFile also
provides the SecurityManager features defined in java.io.File.

• If you need to take full advantage of the AS/400 integrated file system, IFSFile
is more useful. IFSFile is written to handle more of the specific AS/400
integrated file system details.

• java.io.File can be used to access the AS/400 file system if you use a product
like Client Access/400 to map a local drive to the AS/400 integrated file
system.

IFSJavaFile is used in conjunction with IFSFileInputStream and
IFSFileOutputStream. It does not support java.io.FileInputStream and
java.io.FileOutputStream. Despite IFSJavaFile being based on the IFSFile class,
its interface is more like java.io.File than IFSFile. Using this class enables your
Java application to access remote AS400 integrated file systems in the same
manner as it would access a local system file. The following code snippet
accesses an AS400 called SystemX and writes an array of bytes to a file in the
named myFile.txt in the /home directory of the AS/400 system IFS:

IFSJavaFile file = new IFSJavaFile(new AS400("SystemX"), "/home/MyFile.txt");
try {

IFSFileOutputStream os = new IFSFileOutputStream(file.getSystem(),
file,IFSFileOutputStream.SHARE_ALL,false);

byte[] data = new byte[256];
for (int i=0; i < data.length; i++) {

data[i] = (byte) i;

As with all the examples in the section, the amount of time required to retrieve
information from the AS/400 system depends on many factors. During this
time, the user is not given any indication that processing is taking place. Also,
little error handling is performed, the addition of an ErrorDialogAdaptor would
improve the application’s error handling. See Chapter 4, “AS/400 Toolbox for
Java — GUI Classes” on page 181, for examples of using the ErrorDialog
Adapter class.

Note
265

os.write(data[i]);
}
os.close();

}
catch (Exception e) {

System.err.println ("Exception: " + e.getMessage());
}

266 Building AS/400 Client/Server Applications with Java

Chapter 6. Enterprise Access Builder for Data (DAX)

The VisualAge for Java Enterprise edition includes the following Access Builder
components:

• Enterprise Access Builder for Data

This component allows access to any relational database that supports either
an ODBC driver or a JDBC driver.

• Enterprise Access Builder for Java to C++

This component allows access to C++ services by generating JavaBeans and
C++ code to allow interoperability between Java and C++.

• Enterprise Access Builder for RMI

This component is used for creating distributed Java applications. Remote
Method Invocation (RMI) allows a Java object running on one virtual machine
to send messages to another Java object running on a another Java virtual
machine. These objects can even be on different systems.

• Enterprise Access Builder for SAP R/3 using SAP R/3 BAPI business objects

• Enterprise Access Builder for Persistence Enterprise Access Builder

This component is used for transforming relational schemas into Enterprise
JavaBeans components.

• Enterprise Access Builder for interacting with existing applications

This chapter focuses entirely on the Enterprise Access Builder for Data
component of the VisualAge Java Enterprise edition.

6.1 Overview

Enterprise Access Builder for Data (referred to as Data Access Builder or DAX) is
part of the VisualAge Java Enterprise edition. It allows you to generate data
access classes based on existing relational database tables.

You use Data Access Builder to generate the Java source code (classes) to
access data. These generated Java classes, which are JavaBeans, can be used
directly in your Java programs or within the VisualAge for Java Visual
Composition Editor. Some of the key features of Data Access Builder are:

• JDBC access to data

Data Access Builder generates classes that use JDBC to access databases.
You can use the JDBC driver that is part of the AS/400 Toolbox for Java to
access the databases.

• RAD but still object-oriented

Data Access Builder can generate Java source code in a matter of minutes
that allows you to add, update, delete, and retrieve rows from a database.
Data Access Builder generates the code in a consistent, extendable, and
object-oriented fashion enabling the benefits of object-oriented programming.
© Copyright IBM Corp. 1997, 1998, 1999 267

• Generated JavaBeans

Data Access Builder generates JavaBeans. JavaBeans are a standard Java
class architecture that allows generated classes to be used in any JavaBeans
compliant IDE or utility.

• Stored procedures

You can use Data Access Builder to generate code that calls JDBC stored
procedures. Stored procedures often provide better performance than JDBC
data access.

• Commitment control and connection

Services are provided for connecting to databases. In addition, commit and
rollback methods are also generated for transactions.

6.2 Building an Application Using the Data Access Builder (DAX)

This section describes how to create an application using the VisualAge for Java
Data Access Builder.

6.2.1 Application Requirements
The application we build is for the ABC Parts Supply Company, a fictitious parts
wholesaler. The application allows ABC employees to enter orders by selecting a
customer, the part being ordered, and the quantity of the part being ordered.

The application uses the three DB2/400 database tables that are described in
Table 37.

Table 37. ABC Database Tables

The layout of the three DB2/400 database tables are described in Table 38
through Table 40 on page 269.
268 Building AS/400 Client/Server Applications with Java

Table 38. Database Tables Layout (Customer)

Table 39. Database Tables Layout (Parts)

Table 40. Database Tables Layout (Orders)
Chapter 6. Enterprise Access Builder for Data (DAX) 269

The application we create is shown in Figure 218. It allows the user to view a list
of parts and customers and to create orders. The user must sign on and connect
to the database using the Connection menu option before any processing can
occur.

Figure 218. Parts Order Management Window

The following process occurs when the Display Records button is clicked:

1. All of the customer records are read from the database and placed in the
multi-column Customer list box.

2. All of the parts records are read from the database and placed in the
multi-column Parts list box.

The following process occurs when the Place Order button is clicked:

1. The parts record field IQTY is reduced by the quantity ordered. The ISOLD
field is incremented by the quantity sold.

2. The parts record is updated in the database file.

3. A new order, which includes the customer ID, part ID, and quantity ordered, is
inserted into the Order database.

The Parts Ordering Application "Connection Configuration" frame is shown in
Figure 219 on page 271. It allows the user to specify a URL, JDBC driver, user ID,
270 Building AS/400 Client/Server Applications with Java

password, and commitment control option. The user uses this window to connect
to the AS/400 system.

Figure 219. Parts Configuration Window

6.3 Generating the Application Using DAX

In this section, we build the complete ABC Part Ordering System application
using DAX.

6.3.1 Understanding the Software Design
A key feature of Java is its support of object-oriented programming (OOP).
Please refer to Chapter 1, “Object-Oriented Technology Overview” on page 1, for
a more detailed discussion of object-oriented programming. Here, we use and
discuss elementary elements of OOP. Figure 220 on page 272 illustrates the use
of Unified Methodology Language (UML) to describe our object model. UML is
basically a diagramming language used to describe object data properties,
actions, and relationships with other objects. For more information on UML, refer
to the site on the Web at: http://www.rational.com

An object model is produced with UML through object-oriented analysis and
design (OOA OOD).

The goal of OOP is to increase programmer productivity and the quality of the
software produced. To achieve this goal, we design software that:

• Models the real world

OOP allows us to create objects and classes that are the same as their
real-world counterparts. This makes software more simple and easier to
understand.

• Promotes re-usability

Objects can be created in an abstract way, and sub-classed or extended using
inheritance. This allows object properties and operations to be reused.
Chapter 6. Enterprise Access Builder for Data (DAX) 271

The UML object model shown in Figure 220 illustrates the software design we
use for constructing our sample application. UML uses a rectangle with three
compartments to describe a class. The top compartment simply contains the
class name. The middle compartment contains the attributes or properties of the
class. The bottom compartment contains the operations or methods that this
class can perform.

Figure 220. UML Object Model
272 Building AS/400 Client/Server Applications with Java

Table 41 describes all of the classes previously illustrated in the UML diagram.

Table 41. Application Classes

6.3.2 Building the Application
Without using the Data Access Builder, we must manually create all of the
classes, as well as code all of the logic to select, update, and insert records into
the database. Using the Data Access Builder, much of the code is generated for
us. First, we start by creating a VisualAge project and package to hold the
classes that we are about to create. We can start the Data Access Builder by
choosing the Selected menu option and then selecting Tools—>Data
AccessBuilder—>Create Data Access Builder Beans from the VisualAge for Java
Workbench menu. This brings up a Data Access Builder session window.

Data Access Builder uses ODBC to access the remote databases. You must
define an ODBC data source for it to use. Once the JavaBeans are generated,
JDBC is used for database access and ODBC is no longer used.

Selecting Map Schema from the file menu starts the database-to-Java object
mapping process. Selecting the ODBC Data Source that represents the target
Chapter 6. Enterprise Access Builder for Data (DAX) 273

system identifies the location of the data source. From this point, clicking the Get
Tables button retrieves the available tables and views from the target system.
Selecting a particular file such as the CUSTOMER file results in a window similar
to the one shown in Figure 221.

Figure 221. DAX Generation Window

The Data Access Builder has, at this point, accessed the database that was
specified and retrieved all the fields (or columns) available in the database file.
DAX creates a Java class named Customer and adds variables for each field in
the file, as well as the Java methods to retrieve and set the variables value. For
example, the database contains a field named czipcode. DAX generates an
instance variable named czipcode and a method named getczipcode to get the
value. It also generates a method called setczipcode that is capable of setting the
value of this instance variable. You can change the names of the instance
variables to something more descriptive such as zipCode instead of czipcode.
This can be done from the attribute settings of the Customer class as shown in
Table 42 on page 275. The data identifier, which is the field or fields that identify a
record, can also be specified in this window.

We make the changes shown in Table 42 on page 275 by selecting Attributes
from the Customer pop-up menu.
274 Building AS/400 Client/Server Applications with Java

Table 42. Customer Table

Note: We change CustomerId to be the data identifier. The data identifier is taken
from the primary key of the table. If the table does not have a primary key
specified, you may have to manually specify the data identifier as we do here.
Having a data identifier allows DAX to generate, delete, update, and retrieve
methods.

In addition to the generated Customer class, several additional classes are
generated including a CustomerManager. The CustomerManager class is
capable of retrieving and instantiating a collection of Customer objects.

The DAX generation process starts when you specify Save and Generate from
the file menu pull-down. This takes a few minutes while DAX actually creates the
classes with the appropriate methods and variables.

Upon completion of the generation process, the classes shown in Figure 222 on
page 276 are generated by DAX and placed in the Java package.
Chapter 6. Enterprise Access Builder for Data (DAX) 275

Figure 222. Dax Generated Customer Window

Table 43 on page 277 describes each generated class (bean).
276 Building AS/400 Client/Server Applications with Java

Table 43. Generated Classes
Chapter 6. Enterprise Access Builder for Data (DAX) 277

Note: The xxxDataIdxxx classes are only generated if a data identifier field is
specified during the generation process. These generated classes are the
reusable elements that we use to build the application.

We follow the same process to generate classes for the Order file and the Parts
file. This results in classes such as Order, OrderManager, OrderResultForm,
Parts, PartsManager, and PartsResultForm.

We set the attributes for the Parts class as shown in Figure 223.

Figure 223. The Parts Attributes Window

We set the attributes for the Parts table and the Orders table as shown in Table
44 and Table 45 on page 279.
278 Building AS/400 Client/Server Applications with Java

Table 44. Parts Table

Table 45. Orders Table

6.4 Building the Company Class

The Company class handles the processing for a new order. It contains the
following objects:

• PartsManager object
• OrderManager object
• CustomerManager object

The Company class integrates the xxxManager classes and has the ability to
create orders. The xxxManager classes are generated for us by DAX. We must
create the Company class because it is part of our object model that DAX knows
nothing about. To create the Company class, we simply create a class within one
of the Java packages.

Figure 224 on page 280 shows the Company class created within a package
called SalesCompany. It shows partsManager, orderManager, and
customerManager instance variables created as private variables. Along with
these variables are methods to get the values of these variables. For example,
the customerManager variable has a getCustomerManager method that returns
the value of the variable. The returned value is an instance of a
CustomerManager object. These variables do not have associated set methods
because there is no need in this application to set these variables.
Chapter 6. Enterprise Access Builder for Data (DAX) 279

The import statements allow you to use classes and objects that exist in a
different package. The defaultDatastore variable is used to hold our connection
object. This connection object, which is generated by DAX, contains the URL,
connection status, and methods to connect and disconnect from the database.
The defaultDatastore variable has a getter method to return the datastore object.

Figure 224. DAXProject Window

The method shown in Figure 225 is used to acquire the customerManager object.

Figure 225. The getCustomerManager Method

This code uses a technique called lazy initialization. Lazy initialization tests and
sets the value of a variable when it is accessed. In this case, if the
customerManager variable is null, it is set to a new instance of the
CustomerManager class. The getDefaultDatastore method is used to assign the
280 Building AS/400 Client/Server Applications with Java

defaultDatastore as the datastore of the CustomerManager instance. The
methods for getOrderManager and getPartsManager are the same except they
return instances of OrderManager and PartsManager respectively.

The getDefaultDatastore() method, shown Figure 226, can return any of the
xxxxxxdatastore objects. This is because DAX generated three datastore objects
called PartsDatastore, OrderDatastore, and CustomerDatastore. Since they all
reference the same URL and datastore information, they are all the same. We
simply use PartsDatastore.

Figure 226. The getDefaultDatastore Method

The newOrder (Parts aPart, Customer aCustomer, String aQuantity) method is
our most important method. It is called when the user clicks the Place Order
button after selecting a customer, a part, and specifying a quantity.

Figure 227. The newOrder Method

public void newOrder(Parts aPart, Customer aCustomer, String aQuantity) {

/* convert the input string aQuantity to a short value. It comes in a string because
it comes from the user interface */

short quantitySold = (new Short(aQuantity)).shortValue();

/** Create a new order and populate the order data */
Orders newOrder = new Orders();
newOrder.setQuantity(quantitySold);
newOrder.setCustomerId(aCustomer.getCustomerId());
newOrder.setPartid(aPart.getPartId());
newOrder.setOrdermsp(new java.sql.Timestamp(System.currentTimeMillis()));
/** Reset the part inventory quantity. Need to do a lot of conversion since

coming from a short */

int newQuantityInt = (aPart.getQuantity() - quantitySold); //short - short gives a int
String newQuantityString = (new String()).valueOf(newQuantityInt);
short newQuantity = ((new Short(newQuantityString)).shortValue());
aPart.setQuantity(newQuantity);
int newNumSoldInt = (aPart.getNumSold() + quantitySold); //short - short gives a int
String newNumSoldString = (new String()).valueOf(newNumSoldInt);
short newNumSold = ((new Short(newNumSoldString)).shortValue());
aPart.setNumSold(newNumSold);
try {
aPart.update();
} catch (Exception e) {
System.out.println("Error updating part " + e);
}
try {
newOrder.add();
} catch (Exception problem) {
System.out.println("error adding order " + problem);
}
}

Chapter 6. Enterprise Access Builder for Data (DAX) 281

This method accepts the three objects in the parameter list. The method performs
these actions:

1. Creates a new order object and sets the appropriate data in it.

2. Updates the part object by reducing the inventory and incrementing the
number sold.

3. Adds the order record to the database.

6.5 Building a Custom GUI Using DAX Objects

The last task is to create a user interface for the ABC parts ordering system.
Basically, we assemble and connect the classes that DAX created for us, along
with our custom Company class.

As shown in Figure 228, we first create a new class named OrderMainFrame,
which extends from java.awt.Frame, that we use to compose our GUI windows.

Figure 228. OrderMainApp in the Composition Editor Window

We then use the Visual Composition Editor to:

• Add the visual parts
• Add the non-visual parts
• Add the connections
282 Building AS/400 Client/Server Applications with Java

The parts or classes listed in Table 46 are used.

Table 46. Application Parts

After assembling the previously built classes, the OrderMainFrame appears
similar to the example in Figure 229 on page 284.
Chapter 6. Enterprise Access Builder for Data (DAX) 283

Figure 229. OrderMainFrame Window

Figure 230 on page 285 shows how the Order Configuration window appears in
the VisualAge for Java Visual Composition Editor.
284 Building AS/400 Client/Server Applications with Java

Figure 230. Order Configuration in Visual Composition Editor

Since the Company class contains the PartsManager and CustomerManager
attributes, we use the Tear off Property pop-up menu item from the Company
object. This allows connections to be made to the Parts and Customer Manager
objects that are contained within the Company object. The connections listed in
Table 47 on page 286 complete the application.
Chapter 6. Enterprise Access Builder for Data (DAX) 285

Table 47. Application Connections

6.6 The Completed Application

Figure 231 on page 287 shows the completed application. Please refer to the
VisualAge for Java online documentation for further information about DAX.
286 Building AS/400 Client/Server Applications with Java

Figure 231. Completed Application

6.7 Summary

In summary, the benefit of using DAX over custom coding data access classes is
the significant time savings. DAX can generate, in minutes, what can take several
days to create with custom coding. In addition, DAX generated classes can be
extended and customized by the programmer. Many advanced capabilities, such
as asynchronous processing through threads, are also generated for your use.
Consider DAX for any serious programming efforts. The DAX support is only
available with the Enterprise Edition of VisualAge for Java.
Chapter 6. Enterprise Access Builder for Data (DAX) 287

288 Building AS/400 Client/Server Applications with Java

Chapter 7. Remote Method Invocation

This chapter discusses building AS/400 client/server applications that use
Remote Method Invocation (RMI) to communicate between a client program and
a server program.

7.1 What RMI Is

Distributed systems require computations running in different address spaces,
potentially on different hosts, to communicate. For a basic communication
mechanism, the Java language supports sockets, which are flexible and sufficient
for general communication. However, sockets require the client and server to
engage in application-level protocols to encode and decode messages for
exchange. The design of such protocols is cumbersome and can be error prone.

An alternative to sockets is Remote Procedure Call (RPC), which abstracts the
communication interface to the level of a procedure call. Instead of working
directly with sockets, the programmer has the illusion of calling a local procedure.
In fact, the arguments of the call are packaged and shipped to the remote target
of the call. RPC systems encode arguments and return values using an external
data representation, such as XDR. However, RPC does not translate well into
distributed object systems, where communication between program-level objects
residing in different address spaces is needed. To match the semantics of object
invocation, distributed object systems require remote method invocation or RMI.
In such systems, a local surrogate (stub) object manages the invocation on a
remote object.

The Java remote method invocation system described in this specification has
been specifically designed to operate in the Java environment. While other RMI
systems can be adapted to handle Java objects, these systems fall short of
seamless integration with the Java system due to their interoperability
requirement with other languages. For example, CORBA presumes a
heterogeneous, multi-language environment, and therefore, must have a
language-neutral object model. In contrast, the Java language RMI system
assumes the homogeneous environment of the Java Virtual Machine. Therefore,
the system can take advantage of the Java object model whenever possible.
© Copyright IBM Corp. 1997, 1998, 1999 289

Figure 232. RMI Architecture

As shown in Figure 232, a remote method invocation from a client to a remote
server object travels down through the layers of the RMI system to the client-side
transport. Then, it travels up through the server-side transport to the server.

A client invoking a method on a remote server object actually makes use of a stub
or proxy for the remote object as a conduit to the remote object. A client-held
reference to a remote object is a reference to a local stub. This stub is an
implementation of the remote interfaces of the remote object and forwards
invocation requests to that server object through the remote reference layer.
Stubs are generated using the rmic compiler.

The remote reference layer is responsible for carrying out the semantics of the
invocation. For example, the remote reference layer is responsible for
determining whether the server is a single object or a replicated object requiring
communications with multiple locations. Each remote object implementation
chooses its own remote reference semantics, whether the server is a single
object or is a replicated object requiring communications with its replicas.

Also handled by the remote reference layer are the reference semantics for the
server. The remote reference layer, for example, abstracts the different ways of
referring to objects that are implemented in servers that are always running on
some machine, and servers that are run only when some method invocation is
made on them (activation). These differences are not seen at the layers above
the remote reference layer.

The transport layer is responsible for connection setup, and connection
management. Plus, it keeps track of and dispatching to remote objects (the
targets of remote calls) residing in the transport address space.

To dispatch to a remote object, the transport forwards the remote call up to the
remote reference layer. The remote reference layer handles any server-side
behavior that needs to occur before handing off the request to the server-side

Client

Transport Layer

Stubs/Proxies

Remote
Reference Layer

Client

Transport Layer

Skeletons

Remote
Reference Layer

Virtual Connection

Network Connection
290 Building AS/400 Client/Server Applications with Java

skeleton. The skeleton for a remote object makes a call up to the remote object
implementation that carries out the actual method call.

The return value of a call is sent back through the skeleton, remote reference
layer, and transport on the server side. Then, it travels up through the transport,
remote reference layer, and stub on the client side.

7.2 Building an RMI Application

Building an RMI application is a five step process that follows this sequence:

1. Define the interfaces to your remote server objects.

A Java Interface is like an abstract class. It allows us to define methods
without actually implementing them. We can implement the interface in a
class.

2. Implement the remote server objects.

The remote class can implement any number of remote interfaces. The class
can extend another remote implementation class. The class can define
methods that do not appear in the remote interface. Those methods can only
be used locally and are not available remotely.

3. Run the rmic command on remote implementation classes.

The rmic command creates stubs (proxies) and skeletons. It is available as
part of JDK1.1. It is also available a part of many IDEs including VisualAge for
Java.

4. Implement the client.

The client invokes the remote interfaces defined by the server.

5. Make the server code network accessible.

The server code is made network accessible by starting the RMI registry and
starting and registering the server objects.

7.3 Building a Simple AS/400 Application Using RMI

This section shows you how to build a simple AS/400 client/server application
using RMI. This example helps you understand the basic requirements of RMI.
Later, in this chapter, we build a more complex example. This first example allows
a client program to invoke a remote method, which increments a parameter
passed in and returns the result. We build this application following the previously
discussed five-step process.

7.3.1 Defining Interfaces
A Java interface, as shown in Figure 233 on page 292, defines a set of methods,
but does not implement them. The class that implements the interface agrees to
implement all methods defined in the interface. An interface exposes the
programming interface of an object without revealing its class.
Chapter 7. Remote Method Invocation 291

Figure 233. Java Interfaces

To use RMI, the interface must:

• Be a subclass of the Remote class
• Describe each public method
• Throw a RemoteException for each public method

Figure 234 shows an interface definition.

Figure 234. Defining the Interface

7.3.2 Implementing the Remote Server Objects
The remote server objects follow these rules:

• The Class must extend UnicastRemoteObject and implement the interface.

The UnicastRemoteObject class defines the remote object as a unicast object,
which means that only a single instance of the object can exist on a single
server. This is distinguished from a MultiCastRemoteObject, which can
replicate across multiple servers. The class must implement an interface that
describes the public methods.

• The constructor must throw an Exception.

• Worker methods must throw a RemoteException.

• The remote object must make its services available by:

– Registering with an RMI security manager
– Binding an instance of the server object to the host
– The TCP/IP port number used must match the number used on the

rmiregistry command

Figure 235 on page 293 shows the host code.

package TestRMI;

import java.rmi.*;//for Remote, RemoteException

public interface AddOneServerInterface
extends java.rmi.Remote {

public int addOne(int iNum) throws RemoteException;
}

292 Building AS/400 Client/Server Applications with Java

Figure 235. Host RMI Code

The host RMI code extends UnicastRemoteObject and implements the public
interface. The public methods that it implements (addOne) throw a
RemoteException.

Before the client can use the remote methods, the remote server must register
with the RMI security manager. We use the setSecurityManager method to do
this. The host program must bind itself as a service with an appropriate name. We
use the Naming.rebind method to do this. It requires a URL as an input
parameter. The format of the URL is:

// + the name of the host system + the the TCP port number + the name of the
host program ("//sysname:port/AddOne")

We show the host program registering with the RMI security manager in Figure
236 on page 294.

package TestRMI;

import java.rmi.*;
import java.rmi.registry.*;
import java.rmi.server.*;

public class AddOneServer extends UnicastRemoteObject
implements AddOneServerInterface{

public AddOneServer() throws Exception {}

public int addOne(int iNum) throws RemoteException {
try {
System.out.println("addOne - someone calling us...");
System.out.println("iNum = " + iNum);
return (iNum + 1); // Complex business logic here!
} catch (Exception e) {e.printStackTrace(); return 0;}
}

Chapter 7. Remote Method Invocation 293

Figure 236. Registering with the RMI Security Manager

7.3.3 Running rmic on Remote Implementation Classes
The rmic command automatically creates stub and skeleton code from the
interface and implementation class definitions.

To make the remote class ready to use, you must:

• Compile server classes using javac or an IDE.
• Run rmic or an equivalent function from an IDE.

– In the JDK, the command is: rmic AddOneServer
– From the VisualAge for Java IDE, select Tools—>Remote Method

Invocation—>Generate Proxies

The output from the rmic command is two new compiled Java files:

• AddOneServer_skel.class
• AddOneServer_stub.class

There is no need to modify these files. Some IDE tools also create .java files.

7.3.4 Implementing the Client
For the client to use the methods of the remote object, it must:

• Import the package of server classes
• Register with the RMI security manager
• Use Naming.lookup to find the remote server object, which:

– Uses the server interface object
– Must match the port number used by the server

The client can make method calls on the remote server object like any other Java
method call. Figure 237 on page 295 shows the client code.

public static void main(String args[]) {

try {
AddOneServer myAddOneServer = new AddOneServer();
System.out.println("Main: Attempting to registerAddOneServer");

System.out.println("Main: Before security mgr");
System.setSecurityManager(new RMISecurityManager());
System.out.println("Main: After security mgr");
System.out.println("Main: After new AddOneServer");
Naming.rebind("//sysname:6666/AddOne", myAddOneServer);
System.out.println("Main: after rebind");
System.out.println("Main: Successfully registered with the security
manager");
} catch(Exception e) {e.printStackTrace();}

return;
}

294 Building AS/400 Client/Server Applications with Java

Figure 237. Client Program

Before the client can use the remote methods, it must register with the RMI
security manager. We use the setSecurityManager method to do this as shown in
Figure 237:

System.setSecurityManager(new RMISecurityManager());

The client must obtain a reference to the remote object itself. Use the
Naming.lookup method to do this. It requires a URL as an input parameter. The
format of the URL is:

// + the name of the host system + the the TCP port number + the name of the
host program

Figure 237 shows the following code:

AddOneServerInterface myAddOne =
(AddOneServerInterface)Naming.lookup("//sysname:port/AddOne");

7.3.5 Making the Server Code Network Accessible
To make the server code network accessible, you must complete these steps:

1. Start the RMI Registry (rmiregistry) on the server:

• Pass in the TCP/IP port as the first parameter.
• The CLASSPATH must provide access to all required server objects.

2. Start the server objects in a new (second) server process, which binds to the
registry.

3. Invoke the client.

package TestRMI;

import java.rmi.*;
public class UseAddOne {

public static void main(java.lang.String[] args){
int myNum = 0;

try {
System.setSecurityManager(new RMISecurityManager());
System.out.println("Main: After UseAddOne security mgr");

AddOneServerInterface myAddOne =
(AddOneServerInterface)Naming.lookup("//sysname:6666/AddOne");

for (int i=0; i<10; i++)
{

System.out.println("myNum = " + (myNum = myAddOne.addOne(myNum)));
}
} catch (Exception e) {e.printStackTrace();}
return;
}
}

Chapter 7. Remote Method Invocation 295

To run the application on the AS/400 system, start the host application. Since we
are using RMI support, start the RMI registry. The registry must run in the QShell
environment. Before starting the QShell environment, set the Java Environment
CLASSPATH information. The registry must be able to find the application that we
are running. To start the RMI registry, use the following command:

rmiregistry 6666

Next, start the application. First, set the Java Environment CLASSPATH
information. There are a number of ways to do this. Set the CLASSPATH so we
can find the application class and the AS/400 Toolbox for Java classes (if we are
using them). Then, start the host application using this command:

java AddOneServer

We are now ready to invoke the client. It can use the remote method supplied by
the host:

java UseAddOne

7.4 RMI JDBC Example

This section explains how to implement an AS/400 client/server application using
RMI. This is a "thin" client implementation. The client handles all the graphical
user interface support while all the logic and database access is performed on the
server. The server uses JDBC to access the AS/400 database.

Figure 238 on page 297 shows the main window of the RMI example. To run the
example, enter the name of the AS/400 system and click on the connect button.
This causes the connectToDB method to run. If you successfully establish an RMI
connection to the AS/400 system, you receive the message Connected to AS/400.
This program can retrieve information about one part or all of the parts in the
database.
296 Building AS/400 Client/Server Applications with Java

Figure 238. JDBC RMI Application

Figure 239 on page 298 shows the result of clicking on the Get All Parts button.
All part numbers are retrieved from the PART database and displayed in a
multi-column listbox.
Chapter 7. Remote Method Invocation 297

Figure 239. RMI Example — Get All Parts

Figure 240 shows the RMI example application design.

Figure 240. AS/400 RMI Example

The client Java program requests data from the AS/400 database by sending
requests to the Host Java program. The Host Java program uses JDBC to access
the PARTS database. Two SQL statements are used:

• Select * from apilib.parts to retrieve all columns for all records

• Select * from apilib.parts where partno =? to retrieve all columns for a given
part number
298 Building AS/400 Client/Server Applications with Java

The entire application is kept in a package named JDBCRmi as shown in Figure
241.

Figure 241. Java Package for the RMI Example

This package contains the following classes:

• Item — Used to create Item objects
• ItemDetail — Used to create Item Detail objects
• ItemEntryI — Contains the interface implemented to support RMI
• ItemSubmitter — Used to create an RMI support object for the client
• JDBCRmi — The AS/400 Host Java program
• RMIExample — The client Java program

Figure 242 on page 300 shows the program interface. RMIExample is the Java
client program. It creates an instance of the ItemSubmitter class. The
ItemSubmitter class contains all the RMI support for the client side. ItemEntryI is
the interface, which describes the public methods. It is used by ItemSubmitter
and JDBCRmi (the host Java program).

The Item class is used to pass information about an item between the host java
program (JDBCRmi) and the client Java program (RMIExample). If a request is
made for all the items in the database, an item object is created that contains
ItemDetail objects for each record in the database.
Chapter 7. Remote Method Invocation 299

Figure 242. RMI Application Design

Figure 243 shows how the public methods are used. ItemEntryI is the interface
that describes the public methods.

Figure 243. RMI Example Public Methods

There are two public methods:

• public Item getAll() throws RemoteException
• public Item getItem(String anItem) throws RemoteException

The getAll method takes no input parameters and returns an Item object. The
getItem method takes a String input parameter, which contains the part number
requested and returns an Item object, which contains the details about an Item.

To separate the RMI logic from the application logic, the ItemSubmitter class is
used by the client program. The client program instantiates an instance of the
ItemSubmitter class. It is called ItemHandler, and the client program uses the
ItemHandler object to interface to the public methods.

On the host side, JDBCRmi contains the actual application logic for the public
methods.
300 Building AS/400 Client/Server Applications with Java

The getAll method uses the JDBC interface to retrieve all records from the
PARTS database. The getItem method uses JDBC to retrieve the requested item
from the PARTS database. In both methods, an Item object is returned to the
client program.

7.4.1 Item Class
The Item class is used to pass information about a particular item between the
client program and the server program. It contains the Item identification, Item
description, Item price, Item quantity, and Item date. It also contains an array that
can contain up to 100 ItemDetail objects. The ItemDetail objects are used when a
request for all items (or parts) is made. In this case, one Item object is returned
that contains an ItemDetail object for each item in the PARTS database. The Item
class is shown in Figure 244.

Figure 244. Item Class

The Item class also provides a number of methods for accessing or changing
information in the Item object(getters/setters). Methods are also provided for
determining the number of ItemDetail objects contained in the Item object and for
retrieving the ItemDetail objects.

The Item class implements Serializable. This is required to allow objects to be
passed as parameters over a communication network.

The ItemDetail class is used to pass information about all items between the
client program and the server program. It contains the Item identification, Item
description, Item price, Item quantity, and the Item date. The ItemDetail objects
are used when a request for all items (or parts) is made. In this case, one Item
object is returned that contains an ItemDetail object for each item in the PARTS
database.

The ItemDetail class also provides a number of methods for accessing
information in the ItemDetail object(getters). The ItemDetail class implements
Serializable. This is required to allow objects to be passed as parameters over a
network. The ItemDetail class is shown in Figure 245 on page 302.

import java.io.Serializable;
public class Item implements Serializable
{
private StringBuffer ItemId = new StringBuffer(5);
private String ItemDesc;
private java.math.BigDecimal ItemPrice;
private int ItemQuantity;
private String ItemDate;
private ItemDetail[] entryArray = new ItemDetail[100];
}

Chapter 7. Remote Method Invocation 301

Figure 245. ItemDetail Class

7.4.2 Defining the Interface
When using Java RMI support, the public methods must be described in an
interface. The interface must extend the Remote class. The public methods must
throw a RemoteException. The interface is named ItemEntryI and is shown in
Figure 246.

Figure 246. ItemEntryI Interface

7.4.3 Implementing the Remote Server Objects
The code example in Figure 247 shows the class description for the host Java
program. We import a number of support classes, including the RMI support
classes. To use RMI, we must extend the UnicastRemoteObject class and
implement the ItemEntryI interface.

Figure 247. JDBCRmi Class

public class ItemDetail implements Serializable {
StringBuffer itemId = new StringBuffer(6);
StringBuffer itemDsc = new StringBuffer(24);
String itemPrice;
String itemQty;

String itemDate;
}

import java.rmi.*;
public interface ItemEntryI extends Remote {
public Item getAll() throws RemoteException;
public Item getItem(String anItem) throws RemoteException;
}

import com.ibm.as400.access.*; //Toolbox classes
import java.math.*; // for BigDecimal class
import java.sql.*; // for JDBC classes
import java.util.*; // for Properties class
import java.text.*; // for DateFormat class
import java.rmi.*; // for Remote Method Invocation
import java.rmi.registry.*;
import java.rmi.server.*;
public class JDBCRmi extends UnicastRemoteObject implements ItemEntryI
{
private static final String SYSTEM = "SysName"; //AS/400 system name
private static final String USER = "*current";
private static final String PASSWORD = "*current";
private static final String DATA_LIBRARY = "TEAMxx";
// global connection and prepared statements
private Connection dbConnect = null;
private PreparedStatement psAllRecord;
private PreparedStatement psSingleRecord;

}

302 Building AS/400 Client/Server Applications with Java

The UnicastRemoteObject class defines the remote object as a unicast object,
which means that only a single instance of the object can exist on a single server.
This is distinguished from a MultiCastRemoteObject, which can replicate across
multiple servers.

The class must implement an interface that describes the public methods. In the
example used here, the interface is named ItemEntryI. It does not need to be
called ItemEntryI, but such a naming convention helps keep the links between the
classes clear. The Interface class must import the java.rmi package to use the
RMI classes.

We declare some global variables that are used in the application. The value
*current means to use the information for the current user that is signed on. We
also declare an SQL Connection object and two PreparedStatement objects that
are used to access the AS/400 database through the JDBC interface.

Each remote class must be capable of registering its services with an RMI
registry that provides brokering services between the client and the server. We do
this by adding a main method that performs the registration. The RMI classes
throw exceptions so we must wrap our use of these classes in a try{} catch{}
block. The host main method is shown in Figure 248.

Figure 248. JDBCRmi Main Method

The host initialize method shown in Figure 249 on page 304 demonstrates how
the JDBC environment is set up. It shows using the AS/400 Native JDBC driver to
access the AS/400 system database.

public static void main(String[] parameters)
{
// main must be invoked with 1 parameter: the port number
// this should be the same port number on which the
// particular Registry has been started
if(parameters.length<1)
{
System.err.println("Must pass port number when invoking.");
System.exit(1);

}
String port = ":"+parameters[0];

// Set up the server
try
{
System.out.println("Main: Attempting to register JDBCRmi");
System.setSecurityManager(new RMISecurityManager());
JDBCRmi oeJDBC = new JDBCRmi();
Naming.rebind("//"+SYSTEM+port+"/JDBCRmi", oeJDBC);
System.out.println("Main: Successfully registered with the security
manager");
} catch(Exception e) {e.printStackTrace();}
return;
}

Chapter 7. Remote Method Invocation 303

Figure 249. Initializing the JDBC Connection

To connect to the AS/400 database, we use the DriverManager.getConnection()
method. The DriverManager.getConnection() method takes a URL string as an
argument. The JDBC driver manager attempts to locate a driver that can connect
to the database represented by the URL. When using the native AS/400 Java
driver, we use the following syntax for the URL:

jdbc:db2:systemName/defaultLibrary;listOfProperties

An SQL statement can be compiled and stored in a PreparedStatement object.
The Java program can use this object to run the statement multiple times since
the statement is compiled only once. This is more efficient than running the same
statement multiple times using a Statement object, which compiles the statement
each time it is run. We use the Connection.prepareStatement() method to create
PreparedStatement objects.

Next, we create the code for the public method getItem. The getItem method is
shown in Figure 250 on page 305. We first create a new Item object that we
return to the caller if we successfully find the item in the database. A ResultSet
object provides access to a table of data generated by running a statement.

private void initialize () throws Exception
{

// Create a properties object for JDBC connection
Properties jdbcProperties = new Properties();
// Set the properties for the JDBC connection
jdbcProperties.put("user", USER);
jdbcProperties.put("password", PASSWORD);
jdbcProperties.put("naming", "sql");
jdbcProperties.put("errors", "full");
jdbcProperties.put("date format", "iso");

Class.forName ("com.ibm.db2.jdbc.app.DB2Driver");
// Connect using the properties object
dbConnect =

DriverManager.getConnection("jdbc:db2:"+SYSTEM+"/"+DATA_LIBRARY,
jdbcProperties);

psSingleRecord = dbConnect.prepareStatement("SELECT * FROM PARTS
WHERE PARTNO = ?");

psAllRecord = dbConnect.prepareStatement("SELECT * FROM PARTS order
by partno");
304 Building AS/400 Client/Server Applications with Java

Figure 250. The getItem remote Method

The table rows are retrieved in sequence. Within a row, column values can be
accessed in any order:

• java.sql.ResultSet rs = null;

Declares a variable, rs, to reference a ResultSet object.

• psSingleRecord.setInt(1, Integer.parseInt(partNo));

Uses the PreparedStatement method, setInt, to set the value of parameter 1 to
the integer value of the part number passed on the parameter list.

• rs = psSingleRecord.executeQuery();

Executes the SQL defined by the psSingleRecord PreparedStatement object
and places the table of resulting records in a ResultSet object referenced by
rs.

• if (rs.next())

The next() method of the ResultSet attempts to position the cursor of the
result set to the next record from the result table. Since this is the first method
read from the ResultSet, the method positions to the first record from the
ResultSet and returns true. If there are no records to retrieve, the method
returns a false value.

The following lines retrieve values of database fields and place them in the
Item object that is returned:

– theItem.setItemDesc(rs.getString("PARTDS"));
– theItem.setItemQty(rs.getInt("PARTQY"));
– theItem.setItemDate(rs.getDate("PARTDT").toString());
– theItem.setItemPrice(rs.getBigDecimal("PARTPR", 2));

We use the setter provided by the Item class to do this. ResultSet objects
have getter methods for many Java data types.

public Item getItem (String anItem) throws RemoteException
{
Item theItem = new Item(anItem);
try
{
java.sql.ResultSet rs = null;
psSingleRecord.setInt(1, Integer.parseInt(anItem));

rs = psSingleRecord.executeQuery();
if (rs.next()) {

theItem.setItemDesc(rs.getString("PARTDS"));
theItem.setItemQty(rs.getInt("PARTQY"));
theItem.setItemDate(rs.getDate("PARTDT").toString());
theItem.setItemPrice(rs.getBigDecimal("PARTPR", 2));

}
else {
return(null);

}
} catch (Exception e) {e.printStackTrace(); return null; }
return(theItem);

}

Chapter 7. Remote Method Invocation 305

Here we use:

– getString — Returns the value of the column PARTDS as a String object
– getInt — Returns the value of the column PARTQY as an integer
– getBigDecimal — Returns the value of the PARTPR field as a BigDecimal

object
– getDate — Returns the value of column PARTDT as a Date

If we successfully find the item number in the database, we return the Item object.
Otherwise, we return null. Next, we write the code for the getAll method.

The getAll method is shown in Figure 251. To get all the records, we execute the
Prepared Statement object named psAllRecord. It does not require any
parameters. In this case, we have multiple rows returned in the result set. We use
the result set, Next method, to retrieve each row from the result set. For each row
returned, we create a ItemDetail object in the Item object that we return to the
caller.

Figure 251. The getAll Method

7.4.4 Creating the Stubs and Skeletons
To make the remote class ready to use, you must complete this process:

1. Compile server classes using javac or an IDE.

2. Run rmic or its equivalent function from an IDE.

• In the JDK, the command is: rmic JDBCRmi

• From VisualAge for Java, follow this sequence Tools—>Remote Method
Invocation—>Generate Proxies (as shown in Figure 252 on page 307).

The output from the rmic command is two new compiled Java files:

• JDBCRmi_skel.class
• JDBCRmi_stub.class

There is no need to modify these files. Some IDE tools also create .java files.

public Item getAll () throws RemoteException
{
Item theItem = new Item("all");
java.sql.ResultSet rs = null;
String[] detailRow = new String[5];
try {
rs = psAllRecord.executeQuery();
while (rs.next()) {

ItemDetail detail = new ItemDetail
(rs.getString("PARTNO"),

rs.getString("PARTDS"),
Integer.toString(rs.getInt("PARTQY")),
"$" + rs.getBigDecimal("PARTPR", 2).toString(),
rs.getDate("PARTDT").toString());
theItem.addEntry(detail);
}

} catch (Exception e) {e.printStackTrace(); return null;}
return(theItem);
}

306 Building AS/400 Client/Server Applications with Java

Figure 252. Creating the Stubs and Skeletons in VisualAge for Java

After running RMI Create Stub and Skeleton, our package now contains all of the
required host remote classes as shown in Figure 253 on page 308.
Chapter 7. Remote Method Invocation 307

Figure 253. Completed Host Remote Application

Before we can run the application on the AS/400 system, we have to move it
there. If the AS/400 Integrated File System (IFS) is available as a network drive,
we can export the host classes to the AS/400 system. We can also use the
ET/400 export function. Please see Section 8.6, “Support for Export, Compile,
Run, and Debug AS/400 Programs” on page 330, for details about using ET/400
and the export function.

In this case, we have a network drive assigned to the AS/400 system, so we
directly export the classes using the VisualAge for Java export function. When we
run the application on the AS/400 system, we have to set the CLASSPATH
environment variable to include the AS400 IFS file where we stored the class
files. In Figure 254 on page 309, we export the classes to the AS/400 system
using a network drive.
308 Building AS/400 Client/Server Applications with Java

Figure 254. Exporting the Class Files

7.4.5 Implementing the Client
This section explains how to build the client class of the RMI application. We use
the ToolboxGUI class to create a new class that is a subclass of java.awt.Frame
and implements the PartsContainer interface. For details about the ToolboxGUI
class and the PartsContainer interface, please refer to Section 3.5.6, “Reusable
GUI Part” on page 126.

The name of the client program is RMIExample. As shown in Figure 255, we
create global variables for the port name and system name and create a new
instance of the ItemSubmitter class, which we call remoteRequestor. We use the
remoteRequestor object for all of our RMI work.

Figure 255. Creating the Client Class

public class RMIExample extends java.awt.Frame implements
java.awt.event.WindowListener, WorkShop.PartsContainer
{

static String port = null;
static String systemName = null;
ItemSubmitter remoteRequestor = new ItemSubmitter();
}

Chapter 7. Remote Method Invocation 309

The RMIExample main method was created by VisualAge for Java.

Figure 256. RMIExample Main Method

When the application is run, main instantiates a new instance of the RMIExample
class. We only have to modify it to use the first argument of the parameter list to
set the port variable.

The connectToDB method shown in Figure 257 is executed when the user clicks
on the Connect button.

Figure 257. RMIExample CcnnectToDB Method

We use the system name from the screen TextField as a parameter to set the
systemName variable. We call the linked method of the remoteRequestor object,
which was instantiated from the ItemSubmitter class to establish the RMI
connection.

The getRecord method, shown in Figure 258 on page 311, is called when the
user clicks on the Get Part button.

public static void main(java.lang.String[] args) {
try {
JDBCRmi.RMIExample aRMIExample = new

JDBCRmi.RMIExample();
try {
Class aCloserClass = Class.forName("uvm.abt.edit.WindowCloser");
Class parmTypes[] = { java.awt.Window.class };
Object parms[] = { aRMIExample };
port = args[0];
java.lang.reflect.Constructor aCtor =

aCloserClass.getConstructor(parmTypes);
aCtor.newInstance(parms);
} catch (java.lang.Throwable exc) {};
aRMIExample.setVisible(true);
} catch (Throwable exception) {
System.err.println("Exception occurred in main() of java.awt.Frame");
}
}

public void connectToDB(String systemName, String userid,
String password) throws Exception {

this.systemName = systemName;
remoteRequestor.linked(systemName,port);
return;
}

310 Building AS/400 Client/Server Applications with Java

Figure 258. RMIExample getRecord Method

The getRecord method calls the submit method of the remoteRequestor object
passing the part number as an input parameter. An Item object is returned that
contains the details about the Item (or Part).

If an Item object is returned, the item requested was found in the database. We
use the getter methods provided by the Item object to retrieve the information and
display it on the screen.

The populateListBox method, shown in Figure 259, is called when the user clicks
on the Get All Parts button. It calls the submitAll method of the remoteRequestor
object passing no parameters.

Figure 259. RMIExample populateListBox Method

An Item object is returned that contains an array of ItemDetail objects, which
contain the details about each Item (or Part) in the database. If an Item object is
returned, we use the getNumEntries to determine how many ItemDetail objects
were returned.

public String getRecord(String partNo, java.awt.TextField partDesc,
java.awt.TextField partQty, java.awt.TextField partPrice,
java.awt.TextField partDate) throws Exception {

Item rtnItem = new Item(partNo);

rtnItem = remoteRequestor.submit(partNo);
if ((rtnItem) != null)
{

partDesc.setText(rtnItem.getItemDesc());
partDate.setText(rtnItem.getItemDate());
partQty.setText((Integer.toString(rtnItem.getItemQuantity())));
partPrice.setText("$" + (rtnItem.getItemPrice()).toString());

}
else {

partDesc.setText("");
partDate.setText("");
partQty.setText("");

partPrice.setText("");
return "Record not found";

}
return "Record found";
}

public void populateListBox(com.ibm.ivj.eab.dab.IMulticolumnListbox
aListBox) throws Exception {
Item rtnItem = new Item("all");
ItemDetail rtnDetail = new ItemDetail();
rtnItem = remoteRequestor.submitAll();
Chapter 7. Remote Method Invocation 311

Figure 260. Populating the ListBox

We use the getter methods provided by the ItemDetail object to retrieve the
information and add it to the array, which is used to populate the multi-column
listbox.

7.4.6 Making the Server Code Network Accessible
To run the application, we first start the host application on the AS/400 system.
Since we are using RMI support, we start the RMI registry. The registry must run
in the QShell environment. Before starting the QShell environment, we set the
Java Environment CLASSPATH information. There are a number of ways to do
this. Here, we use the add environment variable (addenvvar) command. The
registry must be able to find the application that we are running. We start the RMI
registry using the AS/400 rmiregistry command. Setting the CLASSPATH
environment variable and starting the QShell environment is shown in Figure 261
on page 313.

if ((rtnItem) != null) {
System.out.println("back from host");
rtnDetail = rtnItem.getFirstEntry();
for (int i = 0; i < rtnItem.getNumEntries(); i++) {
String[] array = new String[5];
array[0] = rtnDetail.getItemId();
array[1] = rtnDetail.getItemDsc();
array[2] = rtnDetail.getItemQty();
array[3] = rtnDetail.getItemPrice();
array[4] = rtnDetail.getItemDate();
aListBox.addRow(array, array[0]);
rtnDetail = rtnItem.getNextEntry();
}
} else {
return;
}
return;
}

312 Building AS/400 Client/Server Applications with Java

Figure 261. Setting the CLASSPATH Environment Variable

In Figure 262, we start the RMI registry using the rmiregistry CL command. We
must pass in the TCP port number we are using as a parameter. The rmiregistry
command does not support the verbose parameter. In this case, we start the RMI
registry using a 5250 emulation session. We can also submit this as a batch job
and not tie up a 5250 session.

Figure 262. Starting the RMI Registry

We next start the host application. As shown in Figure 263 on page 314, we first
set the Java Environment CLASSPATH information. There are a number of ways
to do this. Here, we use the add environment variable (addenvvar) command. We
must set the CLASSPATH so we can find the application class and if we are using
them, the AS/400 Toolbox for Java classes. Then, we use the java CL command
to start the application passing in the port number as a parameter.
Chapter 7. Remote Method Invocation 313

Figure 263. Starting the Host Application

Figure 264 shows the host application screen after a successful start. The
messages are output by the application writing to a standard out using
System.out.println.

Figure 264. Host Application Successful Start

We are now ready to run the client application. We have the registry started and
the host application started.
314 Building AS/400 Client/Server Applications with Java

After starting the client application, perform the following tasks:

1. Enter the AS/400 system name, user ID, and password. Click on Connect.

2. After a Connected to AS/400 message is received, complete the following steps:

a. Enter a part (item) number and click on the Get Part button. Valid numbers
are 12301 through 12350.

b. Click on the Get All Parts button to display all the records in a listbox.

Figure 265. Running the JDBC RMI Application
Chapter 7. Remote Method Invocation 315

7.5 Conclusion

In this chapter, we showed you how to build AS/400 client/server applications
using the Java remote method invocation (RMI) support. The advantages of using
RMI are:

• Both the client and server application are written in Java. The programmer
only needs to work in one language.

• The Java code is platform independent. It is easy to write Java code that can
run on either the client or server.

• Calling the remote method is transparent. Calling a method using RMI is the
same as calling a local method. This makes it easy to extend or modify
programs by moving the actual location of the methods being used.

• Objects can be passed between the client and server code. Even though a
method may reside on a remote platform, objects can be passed to it and
received back from it. This makes it much easier to interface with programs
running on other platforms than passing parameters. When passing
parameters, we have to implement platform-unique solutions to pass the
parameters from the client to the host.
316 Building AS/400 Client/Server Applications with Java

Chapter 8. IBM Enterprise Toolkit for AS/400

The VisualAge for Java 2.0 Enterprise edition includes the IBM Enterprise Toolkit
for AS/400 (ET/400). ET/400 provides AS/400 unique Java support. It provides
SmartGuides that allow you to use AS/400 Toolbox classes easier (Program Call
SmartGuide). Plus, SmartGuides to make it easy to develop and implement
AS/400 Java programs using VisualAge for Java. ET/400 also offers the ability to
debug Java programs running on the AS/400 system from your workstation. In
previous versions of VisualAge for Java, this support was available as VisualAge
for Java - AS/400 Feature. AS/400 Feature was external to VisualAge for Java.
The new ET/400 support is integrated into the VisualAge for Java 2.0 Integrated
Development Environment. ET/400 includes:

• The AS/400 Toolbox for Java classes that can be used to access AS/400
resources and services. These are the same classes shipped with the AS/400
Toolbox for Java, product 5763-JC1.

• A SmartGuide to generate Java classes and beans for remote program calls to
AS/400 programs written in RPG, COBOL or C.

• A SmartGuide to convert AS/400 display file records to Java Abstract
Windowing Toolkit (AWT) classes.

• A SmartGuide to create a subfile from an AS/400 database file.

• Support to export, compile, run, and debug AS/400 Java applications from the
VisualAge for Java Integrated Development Environment (IDE).

8.1 Using ET/400

The ET/400 tools are available from the VisualAge for Java Integrated
Development Environment. To access the ET/400 tools, select ET/400 from the
Tools pop-up menu option as shown in Figure 266 on page 318.
© Copyright IBM Corp. 1997, 1998, 1999 317

Figure 266. ET/400 Tools

8.2 AS/400 Toolbox for Java Classes

If you want to use the AS/400 Toolbox for Java classes inside the VisualAge for
Java Integrated Development Environment, you must import these classes inside
the IDE. ET/400 simplifies this process. After you install VisualAge for Java 2.0
Enterprise edition, the Toolbox classes are available in the repository as part of
the IBM Enterprise Toolkit for AS/400 project. If you want to use the Toolbox
classes, perform these steps:

1. From the workbench, click on File and Quick Start.
2. Click on Features, Add Feature, and OK.
3. Select IBM Enterprise Toolkit and OK.

This adds the toolbox classes to your workspace. The IBM Enterprise Toolkit for
AS/400 is listed under All Projects.

The alternative is to perform these tasks:

1. Install LPP 5763-JC1 on an AS/400 system.
2. Download the classes to your workstation.
3. Import the classes into the VisualAge for Java IDE.
318 Building AS/400 Client/Server Applications with Java

8.3 Distributed Program Call SmartGuide

The AS/400 Toolbox for Java Distributed Program Call class allows you to call
AS/400 programs from a client Java application. The Create Program Call
SmartGuide simplifies using this interface. With the Create Program Call
SmartGuide, it is not necessary to code the program call. You just fill in the
AS/400 name, the name of the AS/400 program your Java program will call, and
the parameters you want to pass. The SmartGuide generates the Java code for
you. The data conversions between the AS/400 data types and the Java data
types are handled for you through the AS/400 Toolbox for Java classes.

Program Call SmartGuide input includes:

• AS/400 Program to Call (any *PGM object)
• AS/400 library where the program is stored
• Parameter list of data types, lengths, and decimals
• Name of the JavaBean to generate
• Name of the Java package
• Name of the Java project

For the output, JavaBean calls the AS/400 program that uses the AS/400 Toolbox
for Java program call class. The output usage is:

• As is — Manually code to Java generated code
• In the Visual Composition Editor as a non-visual part
• Used on a client or server

The limitations include:

• The number of parameters are currently limited to 35 in a program call.
• Program and library names cannot contain the "." character.
• The Save Settings as: field cannot start with a "#" character.

For a complete example of using the Program Call SmartGuide, please refer to
Section 9.4, “Creating a Program Call JavaBean” on page 345.

8.4 SmartGuide to Convert AS/400 Display Files to Java

The Convert Display File SmartGuide allows you to quickly convert existing 5250
screens to Java. It converts existing AS/400 display file records to Java Abstract
Windowing Toolkit (AWT) code. You can use the generated Java code as a bean
in the Visual Composition Editor, or runnable code as an application or applet.

The input includes the AS/400 display file record format to convert. The output
may include:

• JavaBean or class-per-record format
• Java AWT, which is used where possible
• Special AWT classes that are created for:

– Subfiles
– Datatype aware entry fields
– Edit codes, edit words
– Date and time constants
Chapter 8. IBM Enterprise Toolkit for AS/400 319

The output usage is:

• As is — Manually code to the Java generated code
• In the Visual Composition Editor as visual parts

The SmartGuide allows you to select which DDS file you want to use as input for
the conversion. In Figure 267, we select DSP003.

Figure 267. Convert DDS SmartGuide

Figure 268 on page 321 shows how the DSP003 file appears when used in a
5250 application running on an AS/400 system.
320 Building AS/400 Client/Server Applications with Java

Figure 268. DSP003 File in a 5250 Application

Figure 269 on page 322 shows the source for the DSP03 display file. We use it to
create a Java AWT class that is comparable. Notice that a subfile is used as part
of this display file. Since the Java AWT does not support subfiles, special classes
are built for it and any other AS/400 unique components.
Chapter 8. IBM Enterprise Toolkit for AS/400 321

Figure 269. RPG03 Display File Source

As shown in Figure 270 on page 323, the SmartGuide generates a Java class for
the DDS file and several helper classes.

A REF(APFLDREF)
A R DATA SFL
A VNDNBR R 15 4
A INVNBR R 15 11
A DUDATE R 15 20EDTCDE(Y)
A MERCH R 15 30EDTCDE(3)
A DCTAVL R 15 42EDTCDE(3)
A NET R 15 50EDTCDE(3)
A STATUS R 15 62
A R CONTROL SFLCTL(DATA)
A 40 SFLEND
A 75 SFLCLR
A 85 SFLDSPCTL
A 95 SFLDSP
A SFLSIZ(20)
A SFLPAG(8)
A CA03(03 'END OF JOB')
A 02 21'VENDOR INVOICE SELECTION'
A 04 03'TO DISPLAY ALL INVOICES,'
A 04 28'PRESS ENTER.'
A 06 03'TO DISPLAY INVOICES DUE BEYOND A
A 06 36'SPECIFIC DATE, KEY THE YEAR
A YR R Y B 06 64DSPATR(CS RI)
A REFFLD(DUYR)
A 06 68'AND'
A 07 07'MONTH/DAY'
A MODY R Y B 07 17DSPATR(CS RI)
A REFFLD(DUMODY)
A 07 23', THEN PRESS ENTER'
A 09 3'TO END JOB, PRESS CMD KEY 3
A 96 12 02'NO RECORDS FOUND'
A DSPATR(RI)
A 13 3'VENDOR INVOICE DUE'
A 13 32'GROSS DISCOUNT NET'
A 13 60'STATUS'
A 14 3'NUMBER NUMBER DATE'
A 14 31'AMOUNT AVAILABLE AMOUNT
322 Building AS/400 Client/Server Applications with Java

Figure 270. DDS Conversion SmartGuide

Figure 271 shows how the converted output appears. It can be used as part of an
application or as a visual component in a visual builder such as the VisualAge for
Java IDE.

Figure 271. Converted DDS File
Chapter 8. IBM Enterprise Toolkit for AS/400 323

Figure 272 shows using the new bean in the Visual Composition Editor. You can
choose to add a new Bean and then drop it on the frame with which you want to
work.

Figure 272. Java AWT Display in the VCE

The convert DDS SmartGuide allows you to quickly convert DDS source files to
the Java AWT format. The resulting JavaBean can be used as part of a Java
application. The SmartGuide uses AWT, where possible. If not, it uses the
"com.ibm.ivj.et400.util" package to deal with the rest of the fields. For example, a
subfile extends com.ibm.ivj.et400.util.AS400VisualSubfile.

If you need to change the bean, for example, improve the appearance of the
display, then make the changes in the Java source. The Visual Composition
editor does not work here.

8.5 Creating a Subfile SmartGuide

This SmartGuide creates a subfile from an AS/400 database file. The following
limitations apply:

• Subfiles currently do not support:

– Floating point fields
– Duplicate keys
– Partial keys

• AS/400 Record I/O maximum limit is 500 fields per record format. If the file
has more than 500 fields, the SmartGuide fails to generate the class.

• Although the AS/400 Record I/O maximum size of a field can be 32766 bytes,
the SmartGuide can only handle 20000 bytes.
324 Building AS/400 Client/Server Applications with Java

• The Record I/O classes do not support logical join files and null key fields.
Also the record level access from a Java Applet is allowed only in V4R2 and
later. In V3R2, V3R7, and V4R1, only Java Application support is provided.

• The Subfile SmartGuide allows you to select only one record format. It
supports *first member in the data file, even though the file can have multiple
record formats or multiple members.

• The number of decimal places set in each numeric field of the subfile has to
match with the decimal position defined in the physical file. Otherwise, the
data is incorrect.

• To run the application generated by subfile SmartGuide, set the CLASSPATH
using the Selected—>Properties—>Class path tab. Then, select IBM
Enterprise Toolkit for AS/400 and the JFC class libraries.

• Record numbering of a subfile is different from the record numbering of a
database file.

8.5.1 Creating a Java Subfile Bean
This section demonstrates how to create a Java Subfile class (or bean) from an
AS/400 database file. To start the Create Subfile SmartGuide, select Create
Subfile from the ET/400 menu. The Create an AS/400 Subfile SmartGuide initial
display appears as shown in Figure 273.

Figure 273. Create an AS/400 Subfile SmartGuide

The first Subfile SmartGuide display allows you to choose between create a new
subfile or work with an exiting one. We choose the Create a new subfile class.
This option shows a display, as shown in Figure 274 on page 326, that allows us
to specify which AS/400 system to access and which database file to use as the
base for creating a Java subfile class.
Chapter 8. IBM Enterprise Toolkit for AS/400 325

Figure 274. Create Subfile SmartGuide

If the Browse button is clicked, the SmartGuide retrieves a list of AS/400 libraries
based on your library list. If you select a library from the list, the SmartGuide
displays a list of objects from that library that are candidates for creating a subfile
from. In Figure 275, we select the PARTS file from APILIB.

Figure 275. Select AS/400 Database File

In Figure 276 on page 327, we select the columns from the PARTS file that we
want to display in the subfile JavaBean that we generate.
326 Building AS/400 Client/Server Applications with Java

Figure 276. Select Subfile Columns

The SmartGuide displays the selected columns and the column attributes as
shown in Figure 277. At this point, we can change the format of the columns.

Figure 277. Edit Subfile Columns
Chapter 8. IBM Enterprise Toolkit for AS/400 327

When we are satisfied with the format of the subfile, we generate the subfile
JavaBean. The SmartGuide generates a subfile JavaBean and a ready-to-use
application as shown in Figure 278.

Figure 278. Generated Subfile Application

The generated subfile JavaBean can be used as part of a custom application.
Figure 279 shows how to use the subfile bean in the VisualAge for Java Visual
Composition Editor.

Figure 279. Subfile Application in the VCE

In this application, we use an AS400 object from the AS/400 Toolbox for Java to
provide a connection to the AS/400 system. We use the subfile JavaBean as a
328 Building AS/400 Client/Server Applications with Java

visual component, which we drop on the frame. We use the actions of the Get All
button to control the application processing. In Figure 280, we show the
connections to the subfile JavaBean. We use the subfile setAS400Server method
to set the AS/400 connection, using the AS400 object as input. We use the
openSequentialFileReadOnly method to open the AS/400 file and the
readAllRecords method to populate the subfile.

Figure 280. Get All Button Connections

Figure 281 shows the subfile populated with information from the AS/400 PARTS
file.

Figure 281. Completed Subfile Application

The Create subfile SmartGuide allows us to build a Java version of an AS/400
subfile. We can use an exiting AS/400 database as the basis for the generated
subfile. The SmartGuide generates a JavaBean that we can use as a visual
component in a visual builder such as the Visual Composition Editor. It also
generates a finished application, which we can use as is.
Chapter 8. IBM Enterprise Toolkit for AS/400 329

8.6 Support for Export, Compile, Run, and Debug AS/400 Programs

This support allows you to create, run, and debug Java programs on an AS/400
system from the VisualAge for Java IDE. It allows you to customize and save
options.

8.6.1 Setup
Before using ET/400 support to export, compile, or debug AS/400 Java programs,
select the Properties option from the ET/400 menu and set up the options that
you want to use. The AS/400 Properties menu is shown in Figure 282.

Figure 282. AS/400 Properties

Export Options allows you to control the name of the AS/400 system that you are
exporting to and the directory in the AS/400 integrated file system to which you
want to export.

Compile options, as shown in Figure 283 on page 331, allows you to set the
optimization level, whether to replace existing programs or to enable the
collection of performance information.
330 Building AS/400 Client/Server Applications with Java

Figure 283. Compile Options

8.6.2 Export Support
Export support helps you export Java files from the VisualAge for Java Integrated
Development Environment to the AS/400 integrated file system (IFS). If you have
a network drive assigned to the AS/400 system, you can export directly from
VisualAge for Java to the IFS. Using the ET/400 export support, you do not need
a network drive. To use the ET/400 support, highlight the classes that you want to
export, and select Export from the ET/400 menu. You can export multiple classes
at once.

8.6.3 Compile Support
To compile a program on the AS/400 system, highlight the class file. You can
have multiple classes highlighted. Select Compile from the ET/400 menu. The
compile AS/400 Java class files support creates an AS/400 Java program from a
Java class file. The resulting Java program object becomes part of the class file
object, but cannot be viewed or modified directly. The Java class file name must
be in one of the following AS/400 integrated file systems: QOpenSys, "root", or a
user-defined file system. Behind the scenes, this support calls the Create Java
Program (CRTJVAPGM) command on the AS/400 system and returns messages
back to the user. The CRTJVAPGM process is done the first time you run a Java
program on the AS/400 system. If you have large programs that take a long time
Chapter 8. IBM Enterprise Toolkit for AS/400 331

to compile, you may want to use this support so the program is created before
you run it. The only extension of the CRTJVAPGM command provided is the
ability to save the compile definitions locally, so you do not have to specify them
the next time you compile the same class. For example, you may want to save
the optimization level with which the AS/400 Java program should be compiled.

The following optimization levels are valid:

• 10 — The Java program contains a compiled version of the class byte codes
but has only minimal additional compiler optimization. Variables can be
displayed and modified while debugging.

• *INTERPRET — The Java program created is not optimized. When invoked,
the Java program interprets the class file byte codes. Variables can be
displayed and modified during debugging.

• 20 — The Java program contains a compiled version of the class file byte
codes and has some additional compiler optimization. Variables can be
displayed but not modified while debugging.

• 30 — The Java program contains a compiled version of the class file byte
codes and has more compiler optimization than optimization level 20. During a
debug session, user variables cannot be changed, but can be displayed. The
presented values may not be the current values of the variables.

• 40 — The Java program contains a compiled version of the class byte file
codes and has more compiler optimization than optimization level 30. All call
and instruction tracing is disabled.

The output from the compile is returned to you in the VisualAge IDE in a dialog
box as shown in Figure 284.

Figure 284. ET/400 Compile Dialog Box

8.6.4 Debug Support
The cooperative debugger allows you to debug a Java program running on the
AS/400 system from the VisualAge for Java IDE running on a workstation. Before
you can use the debugger, the debug server must be started on the AS/400
system. To start the debug server, enter the Start Debug Server (STRDBGSVR)
command on an AS/400 command line and press Enter.
332 Building AS/400 Client/Server Applications with Java

If the debug server has already been started previously, you see the message
Debug server router function already active, when you issue the STRDBGSVR
command.

To debug an AS/400 Java program, you need to compile it using the -g option. If
you use ET/400 support to compile the program, check the Debuggable classes
option as shown in Figure 282 on page 330.

If you compiled the program and used a higher optimization level higher than 10,
recompile with level 10 for best results. Use:

CRTJVAPGM CLSF(xxxxxx) OPTIMIZE(10)

8.6.5 Debugging an AS/400 Java Program
This section shows how to debug a Java program running on the AS/400 system
from within the VisualAge for Java IDE. The program that we debug is the RMI
example that we created in Section 7.3, “Building a Simple AS/400 Application
Using RMI” on page 291. To start the remote debugger, we highlight the program
that we want to debug and select Debug from the ET/400 menu. The Debugger
Logon prompt shown in Figure 285 appears.

Figure 285. Debugger AS/400 Logon

After signing on the AS/400 system, the debugger starts running the program on
the AS/400 system. We see the source Java code for the program as shown in
Figure 286 on page 334.

The debug server needs to be started only once for the AS/400 system on
which you plan to debug your application.

Attention
Chapter 8. IBM Enterprise Toolkit for AS/400 333

Figure 286. JDBCRmi Java Source

We can now set breakpoints or watches for variables. Figure 287 on page 335
shows how to set a breakpoint at line 112 of the JDBCRmi program.
334 Building AS/400 Client/Server Applications with Java

Figure 287. Setting a Breakpoint

Since this is a client/server application that gets its input from the client program
named RMIExample, we start it on the client and connect to the AS/400 system.
Figure 288 on page 336 shows the Java console for the program running on the
AS/400 system.
Chapter 8. IBM Enterprise Toolkit for AS/400 335

Figure 288. Debugger Java Console

We can now use the debugger to display and work with the threads of the
JDBCRmi program, as shown in Figure 289.

Figure 289. JDBCRmi Threads

If we request a part from the database, the host program stops at line 112
because we set a breakpoint there. We can now step through the code and look
336 Building AS/400 Client/Server Applications with Java

at the variables of JDBCRmi. In Figure 290, we can see the variables as they are
displayed by the debugger.

Figure 290. Displaying Program Variables

8.7 ET/400 System Requirements

The ET/400 system requires a client platform with:

• VisualAge for Java Enterprise edition
• TCP/IP setup on the workstation

The AS/400 system must be equipped with:

• Application Development Tool Set (ADTS), which is required for the Display
File Conversion SmartGuide. ADTS Version 3 Release 2 or Version 3 Release
6 and above is required.

• OS/400 V4R2 (or later) QJAVA library to compile, run, and debug Java on the
AS/400 system.

AS/400 connections must be established. By having a JRE (Java Runtime
Environment) installed on the workstation system, you can avoid signing onto the
same AS/400 more than once. A server is started that keeps a connection to the
Chapter 8. IBM Enterprise Toolkit for AS/400 337

AS/400 active, so that it may be used by other ET/400 components. This server
remains active for six hours of inactivity, at which point it shuts down. You can
also end this server by going to the Task Manager and ending the jre.exe
process.

8.8 PTF Information

Load the latest cumulative PTF package for the release that you are using on
your AS/400 system.

The AS/400 Cooperative Debugger requires that the following PTFs be applied:

• V4R3M0 5769SS100 SF49975
• V4R3M0 5769999 MF19487

If you are using the convert DDS SmartGuide, you need to apply the appropriate
PTF as indicated in the following list for the Application Development ToolSet/400
product:

• V3R2M0 5763PW100 SF45556
• V3R6M0 5716PW100 SF45554
• V3R7M0 5716PW100 SF45552
• V4R2M0 5769PW100 SF49832
• V4R3M0 5769PW100 SF49832

The convert DDS SmartGuide support for edit codes has been improved. To take
advantage of this, you need the following PTFs:

• V3R1M0 5763PW100 SF47783
• V3R2M0 5763PW100 SF47784
• V3R6M0 5716PW100 SF47785
• V3R7M0 5716PW100 SF47786
• V4R2M0 5769PW100 SF47774
• V4R3M0 5769PW100 SF47774
338 Building AS/400 Client/Server Applications with Java

Chapter 9. JavaBeans

This chapter is designed to help you understand what a JavaBean (also referred
to as a bean) is and how they are created. First, it discusses what a JavaBean is.
You then learn what makes a good JavaBean and when to use them. Finally, this
chapter explains how to use the Enterprise Toolkit/400 to create a JavaBean,
which allows you to run an AS/400 program from a Java client. Java code
examples are discussed throughout this chapter, followed by several complete
working examples that you can compile and try on your own.

The source code for the examples discussed in this chapter is available on the
Internet. For download instructions, please refer to Section A.1, “Downloading the
Files from the Internet” on page 396.

Before you start, we should answer this question: What do you need and what do
you need to know?

To create and use a JavaBean, you need a Java 1.1 compatible development tool
such as Visual Age for Java or the Java Development Kit (JDK 1.1) and a text
editor.

This chapter does not teach every detail about JavaBeans, but provides enough
information for you to understand and create simple-to-intermediate JavaBeans.
You learn what JavaBeans are capable of and what additional information you
must gather for your specific needs.

9.1 What JavaBeans Offer

JavaBeans offer several benefits. Probably the largest benefit gained from using
beans is the ability to use a bean over and over because it is a component.

How many graphical applications have you used that have buttons? Probably
every single one. The same is true for text boxes, scrollbars, and menus. These
components are so common and are used in so many applications. The time
saved by programmers who can use the standard Java button rather than create
their own is unimaginable. This does not only apply to graphical components. A
bean can be something as complex as a grammar and spelling checker, and can
also be reused because of the large number of word processing applications.

9.1.1 Visual Manipulation and Building
Using a good Java builder tool, it is possible to import and connect several beans
together to make a complete application without writing a single line of Java
code. Of course, someone has to create the beans to start. Many beans can be
bought and reused, and many builder tools actually allow the creation of beans
without writing any Java code. Even if your bean is not a graphical one, it can be
much faster to draw connection lines and have the builder tool write the Java
code and send the correct parameters. Otherwise, you may end up writing
everything yourself, only to get syntax or logic errors.

9.1.2 Everything Java Offers and More
Many cautious or skeptical developers want to make sure they are making a good
investment before completely jumping into the world of beans. The main point to
© Copyright IBM Corp. 1997, 1998, 1999 339

remember is that JavaBeans are 100% Java and simply an extension of Java.
JavaBeans offer everything Java offers and more. The data processing industry
has seen incredible growth and support for Java in the past few years, and there
seems to be no stopping point yet. As with Java, JavaBeans is not expected to
die anytime soon. Because beans are Java, they are relatively simple to program.
Beans give you all the benefits of an object-oriented programming model. Beans
are also Internet and intranet ready and are perfect for distributed applications.
They also inherit all of the built-in capabilities that Java offers.

9.1.3 Easy Packaging and Distribution
Java JAR files make it easy to package the several class files that make up a
bean or several beans into one easy-to-ship JAR file. Most builder tools have a
wizard that allows the user to import a JAR file and select which beans inside the
JAR file to use. Because of introspection and the bean standards, the builder tool
can also inform the user of the beans properties, methods, and events without the
user having to read any documentation or look through program code to
determine a method's parameters.

9.2 The Basics of JavaBeans

The definition of a JavaBean is: A reusable software component that can be
visually manipulated in a builder tool.

That definition is pretty general because the beans specification itself is quite
general and leaves a lot of room for variety and customizing. Therefore, beans
can come in a wide variety of shapes and sizes, and perform a number of
different tasks and still conform to the JavaBeans specification.

To begin understanding JavaBeans, this section discusses some basic
JavaBeans concepts and terminology used. In Section 9.3, “Creating a Simple
JavaBean” on page 342, you learn what is done to create a simple JavaBean
without any complex BeanInfo knowledge.

9.2.1 What It Actually Means to Be a Bean
Any object can be a bean. Almost any Java object is already a bean or can be
quickly changed to follow the beans rules. To be a bean really means that the
class follows a few simple rules and naming conventions. There is no class that a
bean must extend or interfaces that must be implemented. However, some are
offered to help with complex beans.

It is also important to remember that just because the definition says that a bean
can be visually manipulated, all beans are not graphical. Many components, such
as buttons and textfields, can be beans. Another example of a bean is a text
convertor or a credit card number verifier. All of the components we just listed
have one task — to be general enough to be used in many applications. Most
builder tools allow the user to have an icon that represents the bean while
designing the application, which is invisible at runtime.
340 Building AS/400 Client/Server Applications with Java

9.2.1.1 JavaBean Terminology
This section defines basic JavaBean terms to help you gain a better
understanding of this topic. These terms include:

Property A property is a piece of information about a particular bean that is
used to give, get, or pass information to and from a bean. Suppose we
have a bean that represents a person. One property is age. This is an
example of a readable property because you can ask for someone's
age, but there is not a way to change it. Another property is hair color.
This is a readable and writable property because we can change their
hair color.

The JavaBean specification suggests a naming convention to be used
when creating properties. A property should be private or protected.
Public methods (getters and setters) should be created to give other
classes access to the property if necessary. The method names
should be getXXX and setXXX, where XXX is the property name.
Figure 291 contains a Java code sample for an age property.

Figure 291. Age Property Java Code Sample

Method A method for a bean is nothing different from any regular Java
method. It is simply an interface in which beans can communicate by
passing parameters and getting values or objects back.

There are several points to keep in mind when creating methods.
Name the methods descriptive enough so someone else using your
bean has an idea of what a method does simply by seeing the name.
Also, unless you specify exactly which methods to show and which
ones to name in a BeanInfo class (see Advanced JavaBeans
concepts), all public methods are displayed using Introspection. Only
make public the methods you want other objects to invoke.

Events Events are a way for beans to communicate by allowing a bean to let
other beans know when something has occurred. For example, a
button must be able to let other beans know if it has been pushed.
There are several events already built into Java such as events for
mouse movements, windows being opened or minimized, and so on.
New events can also be created and used by a bean to allow almost
anything to be communicated. For example, a database access bean
can fire (inform other beans of) an event if the database connection
has closed so the rest of the application can take appropriate action.

Introspection

Introspection is one of the concepts that make JavaBeans easy to use
and be used by others. Introspection means that a builder tool or
person analyzes the bean first to determine what properties, methods,
and events the bean has.
Chapter 9. JavaBeans 341

Customization

Customization is exactly as it sounds—the ability to change a bean to
better suit your application's needs. Customization makes beans
powerful and reusable by giving a developer an easy way to change
the look or functionality of a bean. New application development does
not have to take place. The JavaBeans specification gives us two
ways to do this. First, property editors can be created to make
changing a bean property easier and more robust by checking to make
sure a property's value is set within a valid range, and so on. Second,
a Customizer class can be created, which can be a wizard to take a
developer step-by-step through using the bean.

Persistence

Persistence means that your data exists even after you close the
program or shut off the computer. This is important when using
customizable beans. If you customize a bean with a builder tool, the
state of the bean can be saved to disk and brought back later.

9.3 Creating a Simple JavaBean

This section shows you how to create a simple bean named FancyLabel. It
demonstrates how we can externalize methods and properties. The function of
this bean allows us to add a label to our application that can sense when the
mouse moves over it and changes color accordingly. The code for the bean is
shown in the following example. It was written using VisualAge for Java.

When we run the application, the label named Fancy is shown in red when the
mouse passes over it and green when the mouse is not over it. The window in
Figure 292 appears.

Figure 292. FancyLabel Example
342 Building AS/400 Client/Server Applications with Java

To make FancyLabel a simple bean, we publicize its methods, properties, and
events. Actually, we do not need to do anything with all the public methods. They
are automatically seen.

We have three properties that we make available for others to use:

• mouseInsideColor
• mouseOutsideColor
• mouseInside

Figure 293. FancyLabel Class Definition

We use JDK1.1 events to control the application.

Figure 294. Listener Methods

We implement the java.awt.event.MouseListener interface. We only use two of
the MouseListener interface methods, mouseEntered and mouseExited. We
override the paint method to set the actual label color.

public class FancyLabel extends java.awt.Label implements
java.awt.event.MouseListener {

// Properties
public java.awt.Color mouseInsideColor = java.awt.Color.red;
public java.awt.Color mouseOutsideColor = java.awt.Color.green;
public boolean mouseInside = false;

}

Chapter 9. JavaBeans 343

Because FancyLabel is a bean, we can use a tool such as VisualAge for Java to
display its methods, properties, and events. Figure 295 shows the properties of
FancyLabel.

Figure 295. FancyLabel Properties

Figure 296 shows the methods available with FancyLabel.

Figure 296. FancyLabel Methods

To make the bean work with our application, we make two connections as shown
in Figure 297 on page 345:

• Event mouseEntered to the mouseEntered method
• Event mouseExited to the mouseExited method
344 Building AS/400 Client/Server Applications with Java

Figure 297. VisualAge for Java VCE Connections

This example shows some of the basic capabilities of JavaBeans. The key
capabilities that JavaBeans bring us are the ability to externalize properties and
methods and to use a visual tool to work with these properties and methods.

9.4 Creating a Program Call JavaBean

This section presents a more practical use of JavaBeans. We create a JavaBean
that allows us to run an AS/400 RPG program by using the SmartGuide provided
by Enterprise Toolkit/400. We also create an application that uses the program
call JavaBean that we make.

9.4.1 Distributed Program Call Feature
Instead of directly writing to the Distributed Program Call (DPC) support provided
by the AS/400 Toolbox for Java, we create a Program Call JavaBean and create
an application which uses it. First, let us review the AS/400 Toolbox for Java
Program Call feature.

9.4.1.1 The Program Call Feature
The Program Call feature of the AS/400 Toolbox allows a Java program to directly
run any non-interactive program object (*PGM) on the AS/400 system. It passes
input data as parameters and returns results through parameters.

The Java developer must use the data conversion classes from the Toolbox to
convert input parameters from a Java format to an AS/400 data type and convert
output parameters from an AS/400 format to a Java format.

The advantage of using the Distributed Program Call class is that native AS/400
non-interactive programs can be run from a Java application unchanged. Native
program calls can also result in better performance of a Java application when
compared with JDBC. Additionally, this interface can call programs on the AS/400
system that do more than just database access. For example, a Java application
Chapter 9. JavaBeans 345

can call a program that starts nightly job processing, saves libraries to tape, or
sends or receives data through communication lines.

Calling a native AS/400 program involves the following steps:

1. Connect to the AS/400 system by creating an AS400 object.

2. Create a ProgramCall object.

3. Define and initialize a ProgramParameter array for passing parameters to or
from the called program.

4. Use the Data Conversion classes to convert input parameter values from a
Java format to an AS/400 format.

5. Use the setProgram method to specify the qualified name of the program to
call and parameters to use, if not declared on the ProgramCall constructor.

6. Execute the program using the run method.

7. If the run method fails, obtain detailed error information through
AS400Message objects.

8. Retrieve output parameters using the getOutputData method of the
ProgramParameter object.

9. Convert output parameter values using the data conversion classes.

9.4.2 Application Description
In this example, we use the Distributed Program Call (DPC) interface (Figure
298) to allow a client program to call an AS/400 program.

Figure 298. Distributed Program Call Example

The client program requests data from the AS/400 database by calling an AS/400
program. Information is passed between the programs using parameters. It is up
to the application implementer to handle data conversions.
346 Building AS/400 Client/Server Applications with Java

Figure 299. Distributed Program Call Example

The client program requests data from the server program by calling it and
passing it parameters. The input parameters are a flag, a part number, and all
attributes of a part. For example, S12301 is a request for a single record
(Flag = S) of part number 12301. If requesting all parts (Flag=A), the part number
is not necessary. The server program, DPCXRPG, searches the database for the
requested information. The result is passed back in the output parameters.

9.4.2.1 RPG Program Background
Library: APILIB

Program Name: DPCXRPG

Parameters (all are used as Input/Output):

Table 48. Parameter List

Sequence / Field Description Length/Type

1 / OPTION In: Operation Code / Out: Return Code 1 character

2 / PARTNO Part Number 5.0 packed

3 / PARTDS Part Description 25 character

4 / PARTQY Part Quantity 5.0 packed

5 / PARTPR Part Price 6.2 packed

6 / PARTDT Part Date Received 10 date
Chapter 9. JavaBeans 347

Values of the Operation Code (Input OPTION):

Table 49. Flag Operation Codes

Values of the Return Code (Output OPTION):

Table 50. Flag Operation Codes

9.4.3 Creating a Program Call JavaBean
As shown in Figure 300 on page 349, to start the ET/400 Program Call
SmartGuide, we highlight a package and use the right mouse button to select
Create Program Call. The output is a new class or JavaBean in the selected
package.

Operation Code Database Operation to Execute

S Retrieve a single record for the supplied key.

A Retrieve all records.

F Fetch next record based on the current position.

E End the program.

D Delete a single record for the supplied key.

U Update a single record for the supplied key with the attribute data. Write a single record for the
supplied key with the attribute data if it does not yet exist.

Return Code Result Description

Y Normal: Operation has succeeded / When operation code was U: Record updated

X Normal: Operation has failed / When operation code was U: Record added

U Unknown operation code has been supplied
348 Building AS/400 Client/Server Applications with Java

Figure 300. ET/400 Create Program Call

As shown in Figure 301 on page 350, the first AS/400 Program Call SmartGuide
window allows us to choose whether we want to create a new class or modify an
existing class. We choose Create a new program call class.
Chapter 9. JavaBeans 349

Figure 301. SmartGuide — Create AS/400 Program Call 1

Next, we specify the name of the AS/400 system, the name of the program, and
the library where the program is found. We can choose the Browse button, and
the SmartGuide interactively retrieves the programs from the specified library. We
then select the program that we want to call. Once we enter the name program to
call, we enter the name of the JavaBean or class that we want to generate and
the project and package in which to store it.
350 Building AS/400 Client/Server Applications with Java

Figure 302. SmartGuide — Create AS/400 Program Call 2

Finally, we need to define the parameters that the AS/400 program uses. The
SmartGuide provides choice boxes to insure that we configure the parameters
properly. Since this is an AS400 RPG program, the SmartGuide does not have
any way of knowing what the required parameters are. We need to check the
AS/400 program to determine this. In Figure 302, we show the parameters
required for the AS/400 RPG Program named DPCXRPG.
Chapter 9. JavaBeans 351

Figure 303. SmartGuide — Create AS/400 Program Call 3

Click on the Finish button to generate the new bean. In this case, a bean named
DPCXRPG is generated. A number of methods are generated that allow us to
effectively use the generated bean. The generated methods are shown in Figure
304 on page 353.
352 Building AS/400 Client/Server Applications with Java

Figure 304. DPCXRPG Generated Methods

The constructor method generated, DPCXRPG(), does not initialize the date
properly. This causes a problem for the host AS/400 RPG program. We fix this
problem by changing the line of code in the DPCXRPG() constructor method
from:

setasDateAsString (" ");

to:

SetasDateAsString("1999-01-01");

The SmartGuide generates several connection methods for connecting to the
AS/400 system. It does not generate a connect method that takes three
parameters (system name, user ID and password). We add such a method to the
DPCXRPG bean to make our application development easier. The new
connection method is shown in Figure 305 on page 354.
Chapter 9. JavaBeans 353

Figure 305. New connect Method

This user-supplied connect method accepts system name, user ID, and password
as parameters. We can use this method in the Visual Composition editor and
visually pass in these parameters from screen text fields.

9.4.4 Building an Application Using the DPCXRPG Bean
This section defines how to create a class, named DpcxRpg2, which uses the
DPCXRPG JavaBean. We use the ToolboxGUI class to create a new class that is
a subclass of java.awt.Frame and implements the PartsContainer interface. For
details about the ToolboxGUI class and the PartsContainer interface, please refer
to Section 3.5.6, “Reusable GUI Part” on page 126.

In the class description, we declare a DPCXRPG object, which we name
aDpcxRpg. We use this object to run the AS/400 program. We also declare an
AS400 object, named as400, which provides connectivity to the AS/400 system.

Figure 306. Class Description for DPCXRPG Object

We write a connectToDB method which is shown in Figure 307. This code
example uses the user-written connect method.

Figure 307. The connectToDB Method

We pass in system name, user ID, and password. A new DPCXRPG object is
named aDpcxRpg is instantiated and its connect method is called.

public void connect(String name, String user, String password)
{
as400 = new AS400(name, user, password);
as400Name = name;
connect();
}

import com.ibm.as400.access.*;
import PgmCall.*;
public class DpcxRpg2 extends java.awt.Frame implements
java.awt.event.WindowListener, WorkShop.PartsContainer {
private DPCXRPG aDpcxRpg;
private AS400 as400;
private WorkShop.ToolboxGUI ivjToolboxGUI1 = null;
private ProgramCall pgm;
}

public void connectToDB(String systemName, String userid, String password)
throws Exception
{
aDpcxRpg = new DPCXRPG();
aDpcxRpg.connect(systemName, userid, password);
return;
}

354 Building AS/400 Client/Server Applications with Java

The getRecord method shown in Figure 308 takes advantage of the DPCXRPG
bean’s generated methods.

Figure 308. The getRecord Method (Part 1 of 2)

We use the setter methods to set the value for the flag and the part number.
Methods are provided to convert these parameters to Strings. This is much easier
than doing all the conversion work on your own. The runProgram method is
provided to actually make the program call.

The code example in Figure 309 shows the advantages of using the generated
methods.

Figure 309. The getRecord Method (Part 2 of 2)

We use the generated getter methods to retrieve the information returned as
parameters. Notice that getter methods are provided that return the values as
Strings, so we can display them to the window.

In the populateListBox method shown in Figure 310 on page 356, we use the
methods of the DPCXRPG bean to populate the listbox with records from the
PARTS file.

public String getRecord(String partNo,
java.awt.TextField partDesc, java.awt.TextField
partQty, java.awt.TextField partPrice,
java.awt.TextField partDate) throws Exception {

// Setup the parameters
aDpcxRpg.setasFlagAsString("S");
aDpcxRpg.setasPartNoAsString(partNo);

// Run the program
if (aDpcxRpg.runProgram() != true) {

handle error

else {
if (aDpcxRpg.getasFlagAsString().equals("Y")) {

partDesc.setText(aDpcxRpg.getasDescAsString());
partQty.setText(aDpcxRpg.getasQtyAsString());
partPrice.setText("$" + aDpcxRpg.getasPriceAsString());
partDate.setText(aDpcxRpg.getasDateAsString());

}
else {

partDesc.setText("");
partQty.setText("");
partPrice.setText("");
partDate.setText("");
return "Record not found.";

}

Chapter 9. JavaBeans 355

Figure 310. The populateListBox Method (Part 1 of 2)

We use the generated setter methods to set the value for the flag. Methods are
provided to convert these parameters to Strings. In this case, we send a Flag set
to "A" to tell the AS/400 program to position to the first record. The runProgram
method is provided to actually make the program call.

If we successfully position to the first record, we call the AS/400 program to
retrieve records from the file.

Figure 311. The populateListBox Method (Part 2 of 2)

To sequentially retrieve records, we send the AS/400 program a flag set to "F". If
a record is returned (we check for a flag set to "Y" in the return from the AS/400
program), we format and place it in the multi-column listbox. We use the bean's
getters and setters to help do this. We do this in a While loop to retrieve all the
records. Note that if we wanted to improve the performance of this method, we
can return multiple records at a time.

Calling an AS/400 program is made much easier by using the ET/400 Program
Call SmartGuide to generate a JavaBean and using the generated JavaBean as
part of the application. The generated JavaBean provides getter and setter
methods for accessing and setting program parameters. These methods handle

public void populateListBox(MultiColumnListbox
aListBox) throws Exception {

String[] array = new String[5];
// Setup the parameters
aDpcxRpg.setasFlagAsString("A");
if (aDpcxRpg.runProgram() != true) {

// Note that there was an error
System.out.println("program failed:");

// Show the messages
return;

}
else {

if (aDpcxRpg.getasFlagAsString().equals("Y")) {
aDpcxRpg.setasFlagAsString("F");

do {
if (aDpcxRpg.runProgram() != true) {
// Handle error}
else {

if (aDpcxRpg.getasFlagAsString().equals("Y")) {
array[0] =aDpcxRpg.getasPartNoAsString();
array[1] =aDpcxRpg.getasDescAsString();
array[2] =aDpcxRpg.getasQtyAsString();;
array[3] = "$" + aDpcxRpg.getasPriceAsString();;
array[4] =aDpcxRpg.getasDateAsString();
aListBox.addRow(array);
}

}
} while (aDpcxRpg.getasFlagAsString().equals("Y"));

}

356 Building AS/400 Client/Server Applications with Java

conversions between the AS/400 and Java formats. Methods are also provided to
run the program and check error conditions.

9.4.5 Using the DPCXRPG Bean in the VCE
You can also use the DPCXRPG bean as a non-visual part in a visual editor. This
section describes how to use the generated bean as a non-visual component in
the VisualAge for Java Visual Composition Editor. We create a class named
DPCExample2. We open the Visual Composition Editor and build the graphical
user interface. We add a DPCXRPG bean as a non-visual part, called aDpcxRpg.
This has the effect of instantiating a DPCXRPG object, which we can use in the
visual builder. This is shown in Figure 312.

Figure 312. Building the Graphical User Interface

We can use the VCE to display the methods available with DPCXRPG. To handle
the event generated when a user clicks on the Connect button, we connect the
actionPerformed event of the button to the DPCXRPG bean’s connect method
which takes three parameters. The DPCXRPG bean’s methods are shown in
Figure 313 on page 358.
Chapter 9. JavaBeans 357

Figure 313. DPCXRPG Methods

As shown in Figure 314, we pass in the three parameters. We connect the
System Name, User, and Password TextFields fields text property to the
connecting line between the connect button and the DPC bean.

Figure 314. Passing in the Parameter to the connect Method

Figure 315 shows the Cancel button connections. We connect the
ActionPerformed event of the Cancel button to the DPC bean’s
disconnectFromAS400 method. We also connect the ActionPerformed event of
the Cancel button to the dispose method of the form.

Figure 315. Cancel Button Processing

To handle the action performed when the user clicks on the Get Part button, we
connect the ActionPerformed event of the Get Part button to the DPCXRPG
bean’s asFlagAsString method and supply the connection with the parameter
358 Building AS/400 Client/Server Applications with Java

value "S." To set the parameter, we double click on the connection line and click
on Set parameters. Next, we connect the ActionPerformed event of the button to
the DPCXRPG bean’s asPartNoAsString method and supply the connection with
the parameter value of the text field Part number. Finally, we connect the
ActionPerformed event of the button to the bean’s runProgram method. These
connections are shown in Figure 316.

Figure 316. Get Part Button Processing

To set the other parameters, perform the following steps:

1. Move the mouse pointer on top of the last connection line (for runProgram).

2. Click the right mouse button. Select Connect and NormalResult from the
pop-up menu that appears.

3. Drag the mouse and click the left mouse button on the Part description text
field. Select Text from the pop-up menu.

4. Move the mouse pointer on top of the new connection line.

5. Click the right mouse button. Select Connect and Value from the pop-up
menu that appears.

6. Drag and click the left mouse button on the DPCXRPG bean. Select All
Features from the pop-up menu and the getasDescAsString () method.

7. Click OK.

Repeat steps one through seven for the rest of the text fields in the part using the
appropriate getter methods from the DPCXRPG bean. The completed Get Part
button’s connections are shown in Figure 317 on page 360.
Chapter 9. JavaBeans 359

Figure 317. Completing the Connections for the Get Part Button

The Get Part button connections should appears as shown in Figure 318.

Figure 318. Get Part Connections

In the VCE, the final application is shown in Figure 319 on page 361.
360 Building AS/400 Client/Server Applications with Java

Figure 319. Completed Application

That completes the processing to connect to the AS/400 system and to call an
AS/400 RPG program. To complete the application, we supply a
DPCExampleDisplayAll bean to handle retrieving all parts from the database.

We built this entire application in the VisualAge for Java Visual Composition
Editor. We did not write a single line of code. We used the Distributed Program
Call bean that we generated using the ET/400 SmartGuide to do all the work. An
additional benefit of the DPCXRPG bean is that it can easily be made available
for others to use in their applications.

9.5 Advanced JavaBeans Concepts

This section explains the advanced concepts of JavaBeans.

BeanInfo Class
A bean creator may not want to leave property, method, and event finding up to
the Introspector or want to add more advanced features such as custom property
editors or bean customizers. A BeanInfo file can be created to let a user or
builder tool know what to make public.

A BeanInfo file must have the same name as the bean with BeanInfo appended to
the end. For example, our Fancy Label bean can have a class called
FancyLabelBeanInfo. This BeanInfo class must either implement the
java.beans.BeanInfo interface or extend the Java.beans.SimpleBeanInfo class.
The Java.beans.SimpleBeanInfo class implements the java.beans.BeanInfo
Chapter 9. JavaBeans 361

interface and makes it easier for a developer to quickly add only a few BeanInfo
methods by overriding the methods already present in the SimpleBeanInfo class.

Note: Some builder tools do not use Introspection if a BeanInfo file is present.
You must list all properties, methods, and events you want visible in the BeanInfo
class.

Advanced Properties
For an application or applet to be built well graphically, the beans need to have
effective communication between them. In addition to methods and regular
events, beans allow two special property types: bound and constrained.

Bound properties

A bound property is the same as any other property we discussed
earlier with an additional feature. Bound properties make an
announcement to any interested listener that its value has changed.
To let a builder tool know a property is bound, a BeanInfo class must
be created and methods need to be added to the main class to support
bound property listeners.

Constrained properties

A constrained or vetoable property is similar to a bound property. Not
only are listeners notified when the property has changed, they have
the opportunity to disallow a change to occur. For example, a person
may ask a loan bean to change the interest rate to 10%, but a bank
bean that contains the loan bean does not allow interest rates below
15%. The bank is informed of the possible change in the interest rate
and vetoes the change.

Indexed properties

Another special property is the indexed property. An indexed property
works the same as an array. It lets you work with all of the contents of
the property at once, and allows you to read and write one item in the
array at a time. The example in Figure 320 is an indexed property and
also shows the BeanInfo data to accompany it.

Figure 320. BeanInfo Indexed Property
362 Building AS/400 Client/Server Applications with Java

Figure 321. Using an Indexed Property

Methods
You can also use the BeanInfo file to let the builder tool know which methods to
make available to the bean user. You can also provide more information about a
method this way, such as a better description of what the method does and better
descriptions of the method's parameters.

9.5.1 What Makes a Good JavaBean
Before going out and converting or updating all of your Java classes to beans,
decide which Java classes are best suited to become beans. The basic question
to ask yourself is: Is this class discrete or general enough to be reused?

If you have a class that pulls data from a particular database, it is probably not
worth making it a bean. On the other hand, with just a little work, a customizer
can be added to that class to let a user select which database and fields to
retrieve. Then you have a bean that can be reused in several applications.
Another thing to be aware of is that introspection, itself, may be enough to make
a good bean. For example, a standard Java button is a bean that does not have a
BeanInfo file or customizer. All of its properties (text and color) simply have get
and set methods. If you follow the naming conventions when making any object,
less work must be done to make your object a bean.

9.5.2 References and More Information
For more information about JavaBeans, refer to the following resources:

• JavaBeans for Dummies, SR23-7895, by Emily Vander Veer
• Sun Web site: http://java.sun.com/beans

public class BeanNameBeanInfo extends SimpleBeanInfo{
public PropertyDescriptor[] getPropertyDescriptors() {
try {
IndexedPropertyDescriptor pd = new IndexedPropertyDescroptor("names",
BeanName,"getNames","setNames","getIndexNames","setIndexNames");
PropertyDescriptor allDescriptors[] = {pd};
return allDescriptors;
} catch(Exception e) {
return null;
}
}
}

Chapter 9. JavaBeans 363

364 Building AS/400 Client/Server Applications with Java

Chapter 10. Deployment Considerations and Tools

This chapter introduces some deployment considerations and the tools available
to enable you to deploy a finished Java applications more effectively.

The two items covered are:

• How to reduce the size of Java archive files (.jar and .zip files)
• How to encrypt data transmissions between a client and server

Reducing Java archive size is important for two reasons:

• A smaller archive will be downloaded more quickly to a client.
• A smaller archive will be faster to search (this will usually be a minor

performance improvement).

Secure application communication with an AS/400 system is important if your
application is deployed on the Internet and the data is sensitive (such as banking
information). Secure Sockets Layer (SSL) encrypts data at a socket layer before
it is transmitted between a client and server. The concepts and environment
configuration can be quite complex. However, the modifications required to an
AS/400 Toolbox for Java program are very simple.

New in OS/400 V4R4 is the ability for host servers to communicate using SSL
support. To provide this function in Java, the AS/400 Toolbox for Java now has a
SecureAS400 Object. SSL conversations can only take place between an AS/400
Toolbox for Java class and a V4R4 system that has SSL-enabled host servers.

10.1 Java Archive Files

Reducing the size of a Java archive can be important when the archive is
downloaded across the Internet or through a slow WAN connection. The current
jt400.jar file is 2.3 MB. With a slow modem or congested Internet route,
downloading this file from a Web server can be time consuming.

To help overcome this problem, two tools are available with the AS/400 Toolbox
for Java Modification 2. The following classes are found in the
/QIBM/ProdData/Http/Public/jt400/utilities integrated file system directory and
perform similar functions:

• JarMaker — A general purpose archive tool, primarily used to extract classes
from jar files and re-package them in new jar files.

• AS400ToolboxJarMaker — An extension to JarMaker, specifically for AS/400
Toolbox for Java jar files. It can be used to extract specified AS/400
components from the jt400.jar file to produce new jar file containing only the
selected components.

10.1.1 JarMaker
The JarMaker class is used to generate a smaller (and, therefore, faster loading)
jar or zip file from a larger one. In addition, you can also use JarMaker to:

• Extract desired files from a jar or zip file.
• Split a jar or zip file into smaller jar or zip files.
© Copyright IBM Corp. 1997, 1998, 1999 365

You can use JarMaker in a program, or run it from a command line:

java utilities.JarMaker [options]

You must specify one of the following options:

-requiredFile
-additionalFile
-package
-extract
-split

If the following options are specified multiple times in a single command string,
only the final specification applies:

-source
-destination
-additionalFilesDirectory
-extract
-split

Other options have a cumulative effect when you specify them multiple times in a
single command string.

10.1.1.1 Options
These options control what JarMaker will do:

• -source sourceJarFile

Specifies the source jar or zip file to extract the required classes from. If you
specify a relative path, the path is assumed to be relative to the current
directory. If you specify this as the first positional argument, the tag (-source)
is optional. You may abbreviate the option tag to -s.

• -destination destinationJarFile

Specifies the destination jar or zip file, which will contain the desired subset of
the files in the source jar or zip file. If you do not specify the path name, the file
is created in the current directory. You may abbreviate the option tag to -d. The
default name is generated by appending "Small" to the source file name. For
example, if the source file is myfile.jar, then the default destination file would
be myfileSmall.jar.

• -requiredFile jarEntry1[,jarEntry2[...]]

The files in the source jar or zip file that are to be copied to the destination.
Entries are separated by commas (no spaces). The specified files, along with
all of their dependencies, will be considered required. Files are specified in jar
entry name syntax, such as com/ibm/as400/access/DataQueue.class. You
may abbreviate the option tag to -rf.

• -additionalFile file1[,file2[...]]

Specifies additional files (not included in the source jar or zip file) which are to
be copied to the destination. Entries are separated by commas (no spaces).
Files are specified by either their absolute path, or their path relative to the
current directory. The specified files will be included, regardless of the settings
of other options. You may abbreviate the option tag to -af.
366 Building AS/400 Client/Server Applications with Java

• -additionalFilesDirectory baseDirectory

Specifies the base directory for additional files. This should be the parent
directory of the directory where the package path starts. For example, if file
foo.class in package com.ibm.mypackage is located in directory
C:\dir1\subdir2\com\ibm\mypackage\, then specify base directory
C:\dir1\subdir2. You may abbreviate the option tag to -afd. The default is the
current directory.

• -package package1[,package2[...]]

The packages that are required. Entries are separated by commas (no
spaces). You may abbreviate the option tag to -p. Package names are
specified in standard syntax, such as com.ibm.component.

Note: The specified packages are simply included in the output. No additional
dependency analysis is done on the files in a package, unless they are
explicitly specified as required files.

• -extract [baseDirectory]

Extracts the desired entries of the source jar or zip file into the specified base
directory, without generating a new jar or zip file. This option enables the user
to build up a customized jar or zip file empirically, based on the requirements
of their particular application. When this option is specified, -additionalFile,
-additionalFilesDirectory, and -destination are ignored. You may abbreviate
the option tag to -x. By default, no extraction is done. The default base
directory is the current directory.

• -split [splitSize]

Splits the source jar or zip file into smaller jar or zip files. No zip entries are
added or excluded. The entries in the source jar or zip file are simply
distributed among the destination jar or zip files. The split size is in units of
kilobytes (1024 bytes), and specifies the maximum size for the destination
files. The destination files are created in the current directory, and are named
by appending integers to the source file name. Any existing files by the same
name are overwritten. For example, if the source jar file is myfile.jar, the
destination jar files would be myfile0.jar, myfile1.jar, and so on. When this
option is specified, all other options except -source and -verbose are ignored.
You may abbreviate the option tag to -sp. The default split size is 2 MB
(2048 KB).

• -verbose

Causes progress messages to be printed to System.out. You may abbreviate
the option tag to -v. The default is non-verbose.

10.1.2 JarMaker Example
In this example, the source jar file is named myJar.jar, and is in the current
directory. To create a jar file that contains only the classes mypackage.MyClass1
and mypackage.MyClass2, along with their dependencies, enter:

java utilities.JarMaker -source myJar.jar -requiredFile
mypackage/MyClass1.class,mypackage/MyClass2.class
Chapter 10. Deployment Considerations and Tools 367

Alternatively, the same function can be done with a Java program as shown here:

import utilities.JarMaker;
// Set up the list of required files.
Vector classList = new Vector ();
classList.addElement ("mypackage/MyClass1.class");
classList.addElement ("mypackage/MyClass2.class");
JarMaker jm = new JarMaker ();
jm.setRequiredFiles (classList);
// Make a new jar file, that contains only MyClass1, MyClass2...
File sourceJar = new File ("myJar.jar");
File newJar = jm.makeJar (sourceJar); // smaller jar file

10.1.3 AS400ToolboxJarMaker
The AS400ToolboxJarMaker class is used to generate a smaller jar or zip file
from the shipped AS/400 Toolbox for Java jar or zip file. In addition, you can use
the AS400ToolboxJarMaker to:

• Extract desired files from a jar or zip file
• Split a jar or zip file into smaller jar or zip files

You can use AS400ToolboxJarMaker in a program, or you can run
AS400ToolboxJarMaker as a command line program, as shown here:

java utilities.AS400ToolboxJarMaker [options]

AS400ToolboxJarMaker extends the functionality of JarMaker by allowing the
user to specify one or more AS/400 Toolbox for Java component, language, or
CCSID. You specify whether to include or exclude any JavaBean files that are
associated with the specified components.

You must specify at least one of the following options:

-requiredFile
-additionalFile
-package
-extract
-split
-component
-language
-ccsid
-ccsidExcluded

If these options are specified multiple times in a single command string, only the
final specification applies:

-source
-destination
-additionalFilesDirectory
-extract
-split
-languageDirectory

Other options have a cumulative effect when you specify them multiple times in a
single command string.
368 Building AS/400 Client/Server Applications with Java

10.1.3.1 Options
These options control what AS400ToolboxJarMaker will do:

• -source sourceJarFile

Specifies the source jar or zip file from which to derive the destination jar or
zip file. If you specify a relative path, the path is assumed to be relative to the
current directory. If this option is specified as the first positional argument, the
tag (-source) is optional. You may abbreviate the option tag to -s. The default
is jt400.jar, in the current directory.

• -destination destinationJarFile

Specifies the destination jar or zip file, which will contain the desired subset of
the files in the source jar or zip file. If a path name is not specified, the file is
created in the current directory. You may abbreviate the option tag to -d. The
default name is generated by appending "Small" to the source file name. For
example, if the source file is myfile.jar, then the default destination file would
be myfileSmall.jar.

• -requiredFile jarEntry1[,jarEntry2[...]]

The files in the source jar or zip file that are to be copied to the destination.
Entries are separated by commas (no spaces). The specified files, along with
all of their dependencies, will be considered required. Files are specified in jar
entry name syntax, such as com/ibm/as400/access/DataQueue.class. You
may abbreviate the option tag to -rf.

• -additionalFile file1[,file2[...]]

Specifies additional files (not included in the source jar) that are to be copied
to the destination. Entries are separated by commas (no spaces). Files are
specified by either their absolute path, or their path relative to the current
directory. The specified files will be included, regardless of the settings of
other options. You may abbreviate the option tag to -af.

• -additionalFilesDirectory baseDirectory

Specifies the base directory for additional files. This should be the parent
directory of the directory where the package path starts. For example, if file
foo.class in package com.ibm.mypackage is located in directory
C:\dir1\subdir2\com\ibm\mypackage\, then specify base directory
C:\dir1\subdir2. You may abbreviate the option tag to -afd. The default is the
current directory.

• -package package1[,package2[...]]

The packages that are required. Entries are separated by commas (no
spaces). You may abbreviate the option tag to -p. Package names are
specified in standard syntax, such as com.ibm.component.

Note: The specified packages are simply included in the output. No additional
dependency analysis is done on the files in a package, unless they are
explicitly specified as required files.

• -extract [baseDirectory]

Extracts the desired entries of the source jar into the specified base directory,
without generating a new jar or zip file. This option enables the user to build
up a customized jar or zip file empirically, based on the requirements of their
particular application. When this option is specified, -additionalFile,
-additionalFilesDirectory, and -destination are ignored. You may abbreviate
Chapter 10. Deployment Considerations and Tools 369

the option tag to -x. By default, no extraction is done. The default base
directory is the current directory.

• -split [splitSize]

Splits the source jar or zip file into smaller jar or zip files. No zip entries are
added or excluded. The entries in the source jar or zip file are simply
distributed among the destination jar or zip files. The split size is in units of
kilobytes (1024 bytes), and specifies the maximum size for the destination
files. The destination files are created in the current directory, and are named
by appending integers to the source file name. Any existing files by the same
name are overwritten. For example, if the source jar file is myfile.jar, then the
destination jar files would be myfile0.jar, myfile1.jar, and so on. When this
option is specified, all other options except -source and -verbose are ignored.
You may abbreviate the option tag to -sp. The default split size is 2 MB
(2048 KB).

• -verbose

Causes progress messages to be printed to System.out. You may abbreviate
the option tag to -v. The default is non-verbose.

• -component componentID1[,componentID2[...]]

The AS/400 Toolbox for Java components that are required. Entries are
separated by commas (no spaces), and are case insensitive. You may
abbreviate the option tag to -c. See the list of components that are supported
by AS/400 Toolbox for Java.

• -beans

Causes inclusion of all Java Beans files (classes, gifs) that are directly
associated with the specified components. This option is valid only if
-component is also specified. You may abbreviate the option tag to -b. The
default is no Beans.

• -language language1[,language2[...]]

Specifies the desired languages for the messages produced by the Toolbox
classes. Entries are separated by commas (no spaces). The languages are
identified by their Java locale name, such as fr_CA (for Canadian French).

Note: The shipped jt400.jar file contains only English messages. You may
abbreviate the option tag to -l. By default, only English messages are
included.

• -languageDirectory baseDirectory

Specifies the base directory for additional Toolbox language files. The path
below this directory should correspond to the package name the language
files. For example, if the desired MRI files are located in directories
/usr/myDir/com/ibm/as400/access/ and /usr/myDir/com/ibm/as400/vaccess/,
then the base directory should be set to /usr/myDir. You may abbreviate the
option tag to -ld. By default, language files are searched for relative to the
current directory.

• -ccsid ccsid1[,ccsid2[...]]

Specifies the CCSIDs whose conversion tables should be included.
Conversion tables for other CCSIDs will not be included. Entries are
separated by commas (no spaces). You may abbreviate the option tag to -cc.
370 Building AS/400 Client/Server Applications with Java

By default, all CCSIDs are included. See the list of CCSIDs and encoding that
are supported by AS/400 Toolbox for Java.

• -ccsidExcluded ccsid1[,ccsid2[...]]

Specifies the CCSIDs whose conversion tables should not be included.
Entries are separated by commas (no spaces). If a CCSID is specified on both
the -ccsid and -ccsidExcluded, it is included, and a warning message is sent to
System.err. You may abbreviate the option tag to -cx. By default, all shipped
CCSIDs are included. See the list of CCSIDs and encoding that are supported
by AS/400 Toolbox for Java.

10.1.4 Example Usage
To create a jar file that contains only those files needed by the AS/400 Toolbox for
Java CommandCall and ProgramCall classes, enter the following command
(assuming you are in the same directory as the jt400.jar file):

java utilities.AS400ToolboxJarMaker -component
CommandCall,ProgramCall

The resulting jt400Small.jar file is 630K. It includes all the supporting classes
required. This drastically improves the amount of time required to download an
applet that only uses these components.

10.2 Securing Applications with SSL

Prior to discussing SSL, it is useful to understand some elements of Internet
security and how they relate to the AS/400 system. The remainder of this chapter
contains the following information:

• An overview of the elements of transaction security available on the Internet
• A high-level description of the Secure Sockets Layer (SSL) protocol
• How to use Digital Certificate Manager (DCM) on AS/400 to create an intranet

certificate authority (CA) and server certificates
• How to apply the server certificate to the Host Servers
• How to receive a CA certificate into a Java class
• How to load the SSL classes into VisualAge for Java
• How to modify an existing application to use SSL
• How to verify that SSL is being used

10.2.1 Internet Security Elements
There is no one single answer to Internet security. Some people believe that by
installing a firewall that their company network is safe.

Will a firewall alone shield your company from any inappropriate Internet access?
No, security is not a matter of a single device or procedure. Security is a concept,
a set of different security measures that are selected based on the needs of a
specific installation.

Therefore, it is essential to discuss first the type of Internet security you need to
achieve. Chances are that it is not just a firewall.

Figure 322 on page 372 shows some of the elements that you can address when
designing a total security solution for a company. However, this redbook is not
intended as an aid for deciding upon your company security policy. If you need
Chapter 10. Deployment Considerations and Tools 371

help in forming a security policy for you company, it is better that you seek
professional advice or services, such as the IBM SecureWay services.

Figure 322. Internet Security Elements

First of all, a policy established by high-level management indicates how your
company wants to deal with the Internet. It should define what level of security
you want to achieve and how valuable or sensitive the different types of
information you posses are. Various Internet security features, such as
cryptography or host system security functions, can help you to implement what
you design.

In addition, users need to be educated to follow and maintain the implemented
security procedures, as well as to observe specific rules when acting as Internet
clients.

10.2.2 Transaction Security and Secure Sockets Layer
Transaction security includes several basic elements, such as:

• Confidentiality/privacy
• Integrity
• Authentication
• Accountability

SSL is the Secure Sockets Layer protocol defined by Netscape Communications
Corporation. It provides a private channel between a client and server that
ensures privacy of data, authentication of session partners and message
integrity.

Digital certificates are used for session partner authentication. Server
authentication is common. Client authentication is not yet common, but it is
growing in popularity.

Internet
Transaction Security

Security Policy

User
Procedures

Host Security Network Access
Security

Internet

*g6Ktgk$79hl]!aD4$
372 Building AS/400 Client/Server Applications with Java

Keys, are the base for end-to-end information encryption. Figure 323 provides a
high-level view of SSL and transaction security.

Figure 323. Transaction Security

You must re-write TCP/IP applications to use SSL. Primarily, SSL is used by
HTTP (HTTPS) for Web browsing. In OS/400 V4R3 Directory Services Server
(LDAP) is SSL enabled. With OS/400 V4R4, the Host Server applications have
been enabled by the licensed products as shown in Table 51.

Table 51. AS/400 SSL Licensed Program Products

When you order OS/400, you are shipped the appropriate version of the 5769ACx
and 5769CEx products in accordance with US export laws.

10.2.2.1 Confidentiality
When a packet travels across a standard network, it is possible to use a packet
sniffer to passively read the message. This means packets travelling a network
can be read without either the sender or receiver ever knowing. To overcome this,
messages should be encrypted to assure confidentiality.

Confidentiality means that the contents of the messages remain private as they
pass through the Internet. Without confidentiality, your computer broadcasts the
message to the network, similarly to shouting the information across a crowded
room. Encryption ensures confidentiality.

10.2.2.2 Integrity
For example, you may want to know if the data received is the same as the data
that was sent. You can determine this through two possible solutions: digital
signature (or hashing) and encryption.

Installed Cryptographic Access
Provider Product

Required Client Encryption
Product

Key length

5769AC1 5769CE1 40 bit

5769AC2 5769CE2 56 bit

5769AC3 5769CE3 128 bit

Client identity
authenticated

Internet

Server identity
authenticated

O w ner:
John D oe

Issuer:
Verisign

O w ner:
IBM Server
IBM Corp

Issuer:
Verisign

Web
browser

Web
server

*g6Ktgk$79hl]!aD 4$
Chapter 10. Deployment Considerations and Tools 373

The sending system calculates a hash value based on the message being sent.
The hash value is appended to the transmission. The receiving system uses the
same calculation to generate a value. The receiving system then compares the
calculated value with the received value. If the values are different, then it
assumes that the data changed. To provide more bullet proof security, the
message should first be encrypted using an appropriate encryption algorithm.

Integrity means that the messages are not altered while being transmitted. If a
router or other network device inserts, deletes, or garbles the message as it
passes by, the receiver would detect the modification. Without integrity, you have
no guarantee that the message you sent matches the message that was
received. Encryption and digital signature ensure integrity.

10.2.2.3 Authenticity
Consider the scenario where you want to know who is at the other end of a Web
site to test its authenticity. One way to find out is through the use of digital
certificates and digital signatures (see Figure 324).

Figure 324. Verifying Identity — Digital Certificates and Digital Signatures

Authenticity means that you know who you are talking to and that you trust that
person. Without authenticity, you have no way to be sure that anyone is who they
say they are. Authentication through digital certificates and digital signatures
ensure authenticity.

There are two ways in which the server uses authentication:

• Digital signature
• Digital certificates

Digital signature ensures accountability. But how do you know if the person
sending you a message is who they say they are?

To ensure accountability look at the sender's digital certificate. A public key
certificate is issued by a trusted third party known as the certifying authority (CA).
The browser and server exchange information, including their public key
certificate. SSL uses the information to identify and authenticate the sender of the
certificate.

Problem - How do we know who is at the other end?

I am going to setup a fake site to
sell football tickets. No one will
ever know. I'll make millions.

This site does not have a
Certificate from a trusted source. I
think I'll order some football tickets

from someone else.

Certificate
University of the Internet

Issue Date
Distinguished Name

Public Key
Expiration Date

Digital Signature of CA

Authenticity
374 Building AS/400 Client/Server Applications with Java

You can think of a digital certificate as being like a credit card with your picture on
it and a picture of the bank president with his arm around you. A merchant will
trust you more because not only do you look like the picture on the credit card,
but the bank president trusts you, too.

You base your trust for the authenticity of the sender on whether you trust the
third party (a person or agency) that certified the sender. The third party or
certification authority (CA) issues digital certificates.

How can you ensure that the person sending the message is really trustworthy?
Let us use an example to illustrate this point.

If you wake up one day feeling ill, you may decide to visit a doctor. You can select
a doctor from your phone book and go to his or her office for a visit. Once you get
to the office, how can you be sure that the person about to examine you is really
a doctor? After all, you have never met this person before. They may look like a
doctor and act like a doctor, but who's to say that this person has successfully
completed all of the training necessary to become a doctor?

You need certification by a trusted third party to reassure you that this person
really is a doctor. The doctor probably has a diploma on the wall stating that they
have successfully completed their training. If the diploma is from a well known
school, you would probably be reassured that you are about to be examined by a
real doctor. But what if the diploma is from the medical school of a
correspondence school whose name you do not recognize? You may not be so
reassured.

Authentication works the same way. Trusted third parties verify that the server
really is who it claims to be. This verification is provided with a digital certificate—
the digital equivalent of your doctor's diploma hanging on the wall. You base your
trust for the authenticity of the server on whether you trust the third party that
certified the server—the school that issued the diploma. That third party is called
a certifying authority (CA).

The term trusted root is given to a trusted certifying authority (CA) on your server.
A trusted root key is the key belonging to the CA.

You can use authentication server to client (Server authentication) or client to
server (Client authentication). Server authentication is described above. The
clients authenticate the servers. With client authentication, the client is
authenticated by the server. For example, you may use client authentication if a
server contained hospital patient information, to verify that the client attempting to
access the data is really who he said he is before allowing him access to patient
records.

10.2.2.4 Accountability
If you need to prove that specific transactions took place, you need to implement
some form of accountability.

To prove that a transaction occurred, combine all the previous techniques. First,
calculate the hash code of the data to assure data integrity. The data is then
encrypted using the keys derived from the public key exchange. This assures the
identity of the session partners. This is used in combination with a time stamp in
the data to provide a log of the transactions.
Chapter 10. Deployment Considerations and Tools 375

Accountability means that both sender and receiver agree that the exchange took
place. Without accountability, the target application user can easily deny that the
data arrived. You can use digital signatures to ensure accountability. However,
accountability is not part of the SSL protocol since it requires an application to
perform the tasks described.

10.3 Digital Certificates and Certificate Authority

A digital certificate identifies a user or a system, and is required before you can
use SSL. Once a server has a digital certificate, SSL-enabled browsers, such as
the Netscape Navigator, can communicate securely with the server using SSL. A
digital certificate consists of:

• Owner’s distinguished name
• Owner’s public key
• Digital signature of certificate authority (CA)
• Name of the CA
• Issue date of certificate
• Certificate expiration date
• Serial number

Plus, digital certificates have the following characteristics:

• Digital certificates are digital documents that validate the identity of the
certificate's owner.

• There are three types of digital certificates: CA, server, and client certificates.
• Digital certificates contain a public key, which binds it to an identity.
• Digital certificates are created by trusted third parties called certificate

authorities (CA).
• Digital certificates can be distributed freely.
• A digital signature in the digital certificate prevents tampering.

A certificate authority (CA) issues a digital certificate. CAs are entities that are
trusted to properly issue certificates and have controls in place to prevent
fraudulent use. They are the equivalent to the Department of Motor Vehicles for a
driver's license. An individual may have many certificates from different CAs just
as we may have many forms of identification (passport, credit card, gym
membership card, and so on). If you trust a CA, you can be reasonably assured
that any certificate they issue properly represents the individual that is holding it.
The CA charges a fee for issuing a certificate.

• CAs broadcast their public key and distinguished name.
• People add them as trusted root keys to Web servers and browsers.
• Your server trusts anyone who has a certificate from that CA.
• There are several common CAs in the marketplace.
• Servers and browsers are shipped with several default trusted root keys and

more can be added as needed.

Some examples of universally recognized Internet CAs include:

• Thawte Consulting
• VeriSign, Inc.
• IBM World Registry

For testing purposes or for applications that will be used exclusively in an intranet
environment, you may issue digital certificates using an intranet certificate
376 Building AS/400 Client/Server Applications with Java

authority. The AS/400 system with Digital Certificate Manager (DCM) can act as
an intranet certificate authority. However, be aware that the real cost of being
your own CA can escalate. It is often cheaper to purchase a valid certificate from
a well known certificate authority.

For secure communications, the receiver must trust the CA that issued the
certificate, whether the receiver is a browser or a server. Anytime a sender signs
a message, the receiver must have the corresponding CA certificate and public
key designated as a trusted root key.

10.4 AS/400 Implementation of Digital Certificate Management

You can configure your AS/400 system as an intranet certificate authority. Digital
Certificate Manager (DCM) is a Web browser-based administration facility that
allows you to create, manage, and use certificates within an enterprise and with
partners of an enterprise. You can use DCM to request digital certificates from
such Internet CA as VeriSign and Thawte.

DCM allows you to create your own intranet CA. You can then use the CA to
dynamically issue digital certificates to servers and users (client certificates) on
your intranet. When you create a server certificate, DCM automatically generates
the private key and public key for the certificate. You can also use DCM to
register and use digital certificates from Verisign or other commercial
organizations on your intranet or the Internet.

DCM is option 34 of OS/400 (5769-SS1). You must install this option to use DCM.
DCM is a link in the AS/400 Tasks page, which runs in the *ADMIN HTTP server
instance. Therefore, you must install and use IBM HTTP Server for AS/400
(5769-DG1) to access DCM. In addition, you must install IBM Cryptographic
Access Provider licensed program (5769-AC1, AC2, or AC3) to create certificate
keys. These cryptographic products determine the maximum key length permitted
for cryptographic algorithms on your AS/400 system. Government export or
import regulations determine which version is available in your country.

Note: To use all the options available in DCM, you must have *SECOFR and
*SECADM authority.

To access DCM, click on the hyperlink for Digital Certificate Manager from the
AS/400 Tasks Page. When using Digital Certificate Manager, you can click the
Help button on any page at any time to access on-line help.

10.4.1 Configuring a Digital Certificate Environment
You can use your AS/400 system to configure a digital certificate environment.
Once the environment is configured, you can use certificates to enable SSL
communication.

Perform the following series of steps to configure an intranet digital certificate
environment using the AS/400 system as a CA:

1. Use DCM to create an intranet CA in one or more AS/400 systems.

2. Using DCM, use the intranet CA to issue server certificates, which can be
used in the local server (same AS/400 system where the CA is configured) or
exported to a remote server.
Chapter 10. Deployment Considerations and Tools 377

3. For the clients to recognize and trust the server certificates issued by the
intranet CA, the client must download and designate the CA certificate as a
trusted root.

10.5 Using a Self-Signed Certificate for SSL

This section describes how to create a self-signed certificate using your AS/400
system as an intranet CA.

Because self-signed certificates are not recognized by client applications as
coming from a trusted third party, you should not use them in customer
transaction situations over the Internet. Use them only on your test and
development systems, and for demonstration purposes. You can also use a
self-signed certificate for intranet applications.

To obtain a self-signed certificate, complete the following steps:

1. Create an intranet CA.
2. Create a server certificate with your intranet CA.
3. Configure your servers to use the server certificate.

10.5.1 Creating an Intranet Certificate Authority
DCM allows you to create your own intranet CA in your AS/400 system and use it
to issue server and client certificates for testing purposes or applications within
your organization.

This section outlines the steps that you must perform to create a CA on your
AS/400 system. You only need to perform these steps if the system administrator
did not previously create an intranet CA and if you wish to use your AS/400
system to issue intranet server certificates.

To create an intranet CA in your AS/400 system, follow these steps:

1. Start the HTTP *ADMIN server on your AS/400 system. From the command
line, enter this command:

STRTCPSVR SERVER(*HTTP) HTTPSVR(*ADMIN)

2. Access the AS/400 Tasks page from your browser by entering this URL:

http://System_name:2001

3. You are prompted to enter your user name and password. Sign on with a user
that has *SECOFR and *SECADM authority. The AS/400 Tasks Page is
displayed as shown in Figure 325 on page 379.
378 Building AS/400 Client/Server Applications with Java

Figure 325. AS/400 Tasks Page

4. Click Digital Certificate Manager.

5. Click Certificate Authority (CA).

6. Click Create a Certificate Authority.

Note: If a Certificate Authority (CA) was previously created on your system,
the Create a Certificate Authority link is not displayed.

7. Complete the Create a Certificate Authority form as shown in Figure 326 on
page 380. Replace the field values as appropriate with your organization
information.
Chapter 10. Deployment Considerations and Tools 379

Figure 326. Create an Intranet Certificate Authority

8. Click OK.

9. After DCM processes the form, it stores a copy of the CA certificate in the CA
default key ring file.

DCM displays the page shown in Figure 327.

Figure 327. CA Certificate Created Successfully
380 Building AS/400 Client/Server Applications with Java

10.Click OK.

Complete the CA Policy Data form to set the client certificate policy for your
CA (see Figure 328). This is where you define whether your CA can issue and
sign client certificates. If the CA can issue client certificates, indicate the
length of time for which the certificates will be valid.

Figure 328. Certificate Authority Policy

11.Click OK.

12.The next display that appears invites you to allow certain applications to trust
the newly created CA, as shown in Figure 329 on page 382. Select all of the
applications that start QIBM_OS400_ to enable SSL to all the host servers.
Chapter 10. Deployment Considerations and Tools 381

Figure 329. Setting the Created CA to Be Trusted by Host Servers

13.The message appears: The policy data for the Certificate Authority was

successfully changed. At this point, you can continue to create a server
certificate signed by your certificate authority. This allows server
authentication by clients that use this system as a server.

10.5.2 Creating a Server Certificate with Your Intranet CA
Immediately after creating the intranet CA, DCM leads you to create a server
(system) certificate. To use Secure Sockets Layer (SSL), your server must have a
digital certificate. When you create a server certificate in DCM, the server
certificate and keys are stored in the following default directory and file. Make
sure it gets backed up:

/QIBM/USERDATA/ICSS/CERT/SERVER/DEFAULT.KDB

Note: When you create a server certificate, DCM stores a copy of the CA
certificate in the server key ring and designates it as a trusted root.

Complete the following steps:

1. Complete the Create a System Certificate form, as shown in Figure 330 on
page 383, by replacing the field values with your organization information.

The options for the key size are determined by the IBM Cryptographic Access
Provider (5769-ACx) licensed program product installed in your system. This
is the key size that is used to generate your public and private keys. The
higher the value is, the more secure the conversation is.
382 Building AS/400 Client/Server Applications with Java

Figure 330. Create a System Certificate Page

By default, the system inserts the fully-qualified name of the AS/400 system
into the system name field. Do not change this name. This is the name used to
describe your server. You can give the server any name, although the fully
qualified TCP/IP host name is usually used for the server name.

2. Click OK.

3. The Server Certificate Created Successfully page displays (see Figure 331 on
page 384).
Chapter 10. Deployment Considerations and Tools 383

Figure 331. Server Certificate Created Successfully Page

4. From this page, apply the server certificate to the same servers to which you
applied the CA certificate to (QIBM_OS400_xxx).

5. Click Done.

6. End and restart host servers by issuing the ENDHOSTSVR *ALL and STRHOSTSVR

*ALL commands from OS/400.

10.6 Using a Server Certificate from an Internet CA

To conduct commercial business on the Internet, you should request your server
certificate from an Internet certificate authority, such as VeriSign or Thawte, who
are widely known by clients browsers and servers.

For your private Web network within your own company, university, or group, or
for testing purposes, you can act as your own CA by using Digital Certificate
Manager (DCM). Section 10.5, “Using a Self-Signed Certificate for SSL” on page
378, explains this procedure.

This section describes how to obtain a server certificate from an Internet
certificate authority.

To use a server certificate issued by an Internet CA, you must complete these
steps:

1. Request the server certificate from an Internet CA.
2. Receive a server certificate for this server.
3. Configure host servers to use this certificate.
384 Building AS/400 Client/Server Applications with Java

To use SSL for secure Web serving, your server must have a digital certificate.
You can use an intranet CA to issue a server certificate (see Section 10.5, “Using
a Self-Signed Certificate for SSL” on page 378). Or, you can use an Internet CA.

When you choose to use an Internet CA to issue a server certificate, you must
first request the certificate. To request a certificate, use the following steps:

1. From the Digital Certificate Manager (DCM) page, click Server Certificates in
the left-hand frame to display an extended list of server tasks.

2. Click Create a server certificate from the list to display the Select a
Certificate Authority page.

3. Select VeriSign or other Internet Certificate Authority as shown in Figure
332.

Figure 332. Requesting a Certificate from VeriSign or Other Internet Certificate Authority

4. Click OK to display the Create a Server Certificate form.

5. Complete the Create a Server Certificate form as show in Figure 333 on page
386 replacing the field values with your organization information.

The options for the key size are determined by the IBM Cryptographic Access
Provider (5769-ACx) licensed program installed in your system. This is the key
size that generates your public and private keys.
Chapter 10. Deployment Considerations and Tools 385

Figure 333. Request a Server Certificate from an Internet CA

By default, the system inserts the fully qualified name of the AS/400 system
into the system name field. Do not change this name. This is the name that
describes your server. You can give the server any name, although the fully
qualified TCP/IP host name is usually used for the server name.

6. Click OK to process the Create a Certificate Request form.

You will receive the Server Certificate Request Created page as shown in
Figure 334.

Figure 334. Server Certificate Request Generated by DCM

Note: Do not click Done or close the browser yet. You need to cut and paste
the certificate request when you submit the Certificate Signing Request to the
Internet CA.

7. Copy the Server Certificate Request to your clipboard. Start at -----BEGIN
NEW CERTIFICATE REQUEST----- and end at -----END NEW CERTIFICATE
REQUEST-----. Click Done to close the page.
386 Building AS/400 Client/Server Applications with Java

8. Follow your Internet CA procedures to paste the certificate request. For
example, to request a certificate from VeriSign, follow the instructions that are
described on the following Web site: http://www.verisign.com

When the Internet CA is satisfied that you meet all of its requirements, it will
e-mail the secure server certificate to you. You should receive it in three to five
business days. Other certificates authorities have their own procedures.

10.6.1 Receiving a Server Certificate for This Server
After you receive the certificate from the Internet CA, you need to copy the signed
server certificate to a text file that DCM can access when you perform the
Receive server certificate task. Perform these steps:

1. Copy the signed server certificate presented to you by the Internet CA to your
clipboard.

Include the -----BEGIN CERTIFICATE REQUEST----- and -----END
CERTIFICATE REQUEST----- sections of the certificate

2. Paste the signed server certificate in your clipboard into an empty .txt file.

3. Save the file in your AS/400 system integrated file system. Use a mapped
network drive and save the .txt file that contains the server certificate issued
by the Internet CA in the following path (you can actually store this file where
ever you want):

/QIBM/USERDATA/ICSS/CERT/SERVER/rcvcert.txt

4. Back in DCM, click Receive a server certificate and complete the Receive a
Server Certificate page (Figure 335).

Figure 335. Receiving a Server Certificate Issued by an Internet CA

5. The Certificate Received page is displayed. You should now apply the
certificate to the AS/400 servers. Select all the QIBM_OS400_xxx servers to
enable SSL for Host Servers.

10.7 Downloading the SSL Java Packages

The core Java specification for 1.1.7 does not require the JDK/JVM to support
SSL conversations. However, IBM recognizes the need to secure socket
conversations using SSL, and therefore, provides two packages for enabling SSL
in Java programs.
Chapter 10. Deployment Considerations and Tools 387

The following two archives are shipped with the 5769CEx products:

• SSLTools.zip — A utility set of classes used to create custom KeyRing class
files

• sslightu.zip (with 5769CE3) or sslightx.zip (with 5769CE1 or 5769CE2) —
This archive contains an SSL implementation for Java

Both of these archives are located in one of the following IFS directories:

• 5769CE1 — /QIBM/ProdData/HTTP/Public/jt400/SSL40
• 5769CE2 — /QIBM/ProdData/HTTP/Public/jt400/SSL56
• 5769CE3 — /QIBM/ProdData/HTTP/Public/jt400/SSL128

Using file transfer protocol (FTP), Client Access Shared Folders, Native SMB, or
Operations Navigator (as shown in Figure 336), download the two zip files to your
PC. In the subsequent sections, these zip files were downloaded to the
C:\Programs\ directory.

Figure 336. The SSL Java Archives Viewed through Operations Navigator

When you deploy the program, you need to deploy the sslightx.zip or sslightu.zip
archive with it. However, there is no need to deploy the SSLTools.zip archive.

10.8 Creating a KeyRing Class

Java uses a special class called KeyRing. This class stores additional CAs that
your application will trust to communicate with through SSL.

The following certificates are built into the SSL packages shipped by IBM:

• VeriSign, Inc.
• Integrion Financial Network
• IBM World Registry
• Thawte Consulting
• RSA Data Security, Inc.

Therefore, if your server certificate was issued by one of the above certification
authorities, you do not need to perform the subsequent steps.
388 Building AS/400 Client/Server Applications with Java

If you are a working as your own CA, or have received a certificate from a
certification authority that is not listed, you need to create a KeyRing.class file.
The following steps help you achieve this:

1. Ensure that the AS/400 host servers have been restarted since assigning
them a certificate. Use the ENDHOSTSVR *ALL and STRHOSTSVR *ALL commands if
necessary.

2. Open a Java-enabled command prompt and add the SSLTools.zip and
sslightu.zip or sslightx.zip classes to the CLASSPATH.

3. From your current directory, create a com/ibm/as400/access directory
structure.

4. Enter the following command:

java com.ibm.sslight.nlstools.keyrng com.ibm.as400.access.KeyRing connect
systemname:9470

This connects the SSL tool to port 9470, which is the default port for the
Secure Socket version of the Central Server host server. You can use any SSL
enabled socket, for example, 448 the secure data server port. For the AS/400
Toolbox for Java to communicate using SSL, the KeyRing class must reside in
the com.ibm.as400.access package.

5. When prompted, enter toolbox for the password for the KeyRing class. This is
the only value supported by the AS/400 Toolbox for Java for secure
communications.

6. When the secure server is contacted, it causes the SSL tool to display the
certificates known to the server and asks you to select one to add to the
KeyRing class.

Note: Select the CA certificate. Do not select the site certificate.

7. Once the Done message appears, you have successfully imported the CA
certificate into the KeyRing class. The SSL Java classes can now use the
class to communicate with any server that has a certificate issued by the
imported CA.

These steps are shown in Figure 337 on page 390.
Chapter 10. Deployment Considerations and Tools 389

Figure 337. Adding the CA Certificate to the KeyRing.class File

8. If you wish, you can now delete the SSLTool.zip file from your PC since it is
only required to create a com.ibm.as400.access.KeyRing class.

10.9 Modifying an Application to Use SSL with VisualAge 2.0

After downloading the sslightx.zip or sslightu.zip archive file, you need to import it
into the VisualAge for Java environment. If it was necessary to create your own
com.ibm.as400.access.KeyRing class, you also need to import it into VisualAge
for Java before you can run any modified applications. Once imported into
VisualAge for Java, modifying a AS/400 Toolbox for Java program to use SSL is
very simple.

C:>SET CLASSPATH=%CLASSPATH%;C:\Programs\SSLTools.zip
C:>SET CLASSPATH=%CLASSPATH%;C:\Programs\sslightu.zip
C:>md com
C:>md com\ibm
C:>md com\ibm\as400
C:>md com\ibm\as400\access

C:>java com.ibm.sslight.nlstools.keyrng com.ibm.as400.access.KeyRing
connect as20:9470
Password for com.ibm.as400.access.KeyRing.class:
toolbox
Connecting to as20:9,470
-------------------------- Server Certificate Chain --------------------------
Site Certificate - Number 0
Key : RSA/2048 bits
Subject: AS20.itsoroch.ibm.com, Rochester, Department 977,IBM ITSO, US
Issuer: ITSO Certification Authority, Rochester, Department 977, IBM ITSO, US
Valid from: 4/6/99 6:50 PM
Valid to: 4/6/00 6:50 PM

Fingerprint: E3:7E:0D:0F:13:39:B9:99:E0:EC:E0:6C:AB:2C:33:55

CA Certificate - Number 1
Key : RSA/2048 bits
Subject: ITSO Certification Authority, Rochester, Department 977,IBM ITSO, US
Issuer: ITSO Certification Authority, Rochester, Department 977,IBM ITSO, US
Valid from: 4/6/99 6:43 PM
Valid to: 4/7/02 6:43 PM

Fingerprint: 6D:F1:4C:F1:5D:E7:93:B5:8A:58:7A:69:F5:B4:92:02
--
Enter the number of the certificate to be added to com.ibm.as400.access.KeyRing
.class (q to quit):
1
Adding the CA Certificate - 1 to com.ibm.as400.access.KeyRing.class
Done.

When you distribute the program, be sure to distribute this class. In addition, it
must be included in the classpath prior to any AS/400 Toolbox for Java
archives since this contains a KeyRing class.

Deployment Consideration
390 Building AS/400 Client/Server Applications with Java

10.9.1 Importing the Required Classes
Before attempting to use SSL or even importing these classes, be sure that you
already followed the steps documented in Section 5.1, “Upgrading the AS/400
Toolbox Contained in VisualAge for Java 2.0” on page 213, to upgrade the
AS/400 Toolbox for Java to Modification 2. Then, you can follow these steps to
import the necessary classes into the VisualAge for Java Enterprise Edition 2.0
environment:

1. Start VisualAge for Java.

2. Select the IBM Enterprise Toolkit for AS/400 project. If you are using a
different edition of VisualAge, select the project containing the AS/400 Toolkit
for Java Modification 2.

3. Create an Open Edition of this project.

4. Import the Java archive by selecting File—>Import. Check the Import from a
Jar file option, and click Next.

5. Use the browse button to locate the sslightx.zip or sslightu.zip archive you
previously downloaded. This is illustrated in Figure 338.

Figure 338. Importing the SSL Support into VisualAge for Java

If you used the SSLTools.zip archive to create a customized KeyRing class, you
need to perform the following additional steps:

1. Locate the existing com.ibm.as400.access.KeyRing class and delete it.

2. Import the new com.ibm.as400.access.KeyRing class by using the Import from
a directory option. This is illustrated in Figure 339 on page 392.
Chapter 10. Deployment Considerations and Tools 391

Figure 339. Importing a Modified KeyRing Class

You have now completed the all of the steps necessary to develop SSL-enabled
AS/400 Toolbox for Java Modification 2 applications to communicate with AS/400
systems that run OS/400 V4R4 or later. Now, it is time to modify an application to
use SSL.

10.9.2 Modifying the Program
For the AS/400 Toolbox for Java classes to use SSL to communicate with the
AS/400 system, it is only necessary to change the AS400 objects to
SecureAS400 objects. If you are using JDBC, set the secure property to true.
This causes JDBC to use a SecureAS400 object.

In VisualAge for Java, you can use the Morph into feature to change an AS400
object to a SecureAS400 object. The following steps convert the
TBVisual.RLFPExample program to use SSL:

1. Open the TBVisual.RLFPExample class in the Visual Composition Editor
(VCE).

2. Right click on the AS400 object and select the Morph into option, as
illustrated in Figure 340 on page 393.
392 Building AS/400 Client/Server Applications with Java

Figure 340. Morphing an AS400 Object

3. In the Morph into dialog, enter com.ibm.as400.access.SecureAS400 and click
Next, as shown in Figure 341.

Figure 341. Morph the AS400 Object to a SecureAS400 Object

4. Once the morph operation is completed, the AS400 object is morphed to a
SecureAS400. It uses SSL as opposed to normal socket communications. You
need to repeat this step for all AS400 objects used in your application.
Chapter 10. Deployment Considerations and Tools 393

10.9.3 Testing the Changed Program
When it is run, the client application will not indicate that it is using SSL. However,
should the program be unable to find the correct SSL-enabled server, a message
will appear through the ErrorDialogAdaptor, as illustrated in Figure 342.

Figure 342. The ErrorDialogAdaptor Message

If the application works and connects to the AS/400 system, you can use the
AS/400 netstat *cnn command to verify which type of socket communication is
being used.

10.9.4 Additional SSL Related Resources
For additional information, check out these resources:

• HTTP Server for AS/400 Webmaster's Guide, GC41-5434
• Securing Your AS/400 from Harm on the Internet, SG24-4929
• http://www.as400.ibm.com/toolbox
• http://publib.boulder.ibm.com/pubs/html/as400/ic2924/info/index.htm

Click Internet—>Digital certificate management
• http://www.software.ibm.com/webservers/
• http://www.ibm.com/security
• http://www.ics.raleigh.com
• http://www.internet.ibm.com/commercepoint/registry/
• http://www.verisign.com/products/doc.html
• http://home.netscape.com/assist/security/ssl/index.html
• http://www.rsa.com
394 Building AS/400 Client/Server Applications with Java

Appendix A. Example Programs

The Java programs and the AS/400 programs and libraries used in this redbook
are available to be downloaded through the Internet. These examples were
developed using VisualAge for Java Version 2.0 Enterprise edition. OS/400
V3R2, V3R7, or later is required. To run the RMI example, V4R2 or later is
required. To use any of the AS/400 Toolbox for Java Modification 2 examples,
V4R2 or later is required. The following VisualAge for Java projects are available:

• DaxProject — Dax example Parts Ordering application. See Chapter 6,
“Enterprise Access Builder for Data (DAX)” on page 267.

• TeamLab

– TeamLab — Toolbox examples for JDBC stored procedures, DDM record
level access, data queue, distributed program call, integrated file system,
and print. See Chapter 3, “AS/400 Toolbox for Java” on page 89.

– JDBCRmiEx — RMI example. See Chapter 6, “Enterprise Access Builder
for Data (DAX)” on page 267.

– PgmCall — Distributed Program Call JavaBean example. See Section 9.4,
“Creating a Program Call JavaBean” on page 345.

– TeamLabExtra

• FancyLabel — JavaBean Fancy Label example. See Chapter 9,
“JavaBeans” on page 339.

• Demo — FancyLabel example
• DpcxRpg2 — Program Call JavaBean program example
• DPCExample2 — Program Call JavaBean visual example
• DPCExampleDisplayAll — Helper class for DPCExample2

• Workshop — Toolbox examples for JDBC. See Chapter 3, “AS/400 Toolbox
for Java” on page 89.

• TBVisual — Toolbox examples using the GUI classes. See Chapter 4,
“AS/400 Toolbox for Java — GUI Classes” on page 181.

– ISQLExSwing — SQLResultSetTablePane example
– QBExample — SQLQueryBuilderPane example
– RLFPExample — RecordListFormPane example
– RLFPKeyedExample — RecordListFormPane keyed access example
– RSFPExample — SQLResultSetFormPane example
– RSTMExample — SQLResultSetTableModel example

These example programs have not been subjected to any formal testing. They
are provided "as is." Use them for reference only. Please refer to Appendix D,
“Special Notices” on page 413, for more information.

Important Information
© Copyright IBM Corp. 1997, 1998, 1999 395

A.1 Downloading the Files from the Internet

To use these files, download them to your personal computer from the Internet
site. A file named README.TXT is included. It contains instructions for restoring
the AS/400 libraries, the VisualAge for Java examples, and runtime notes.

The URL to access is: http://www.redbooks.ibm.com

Click on Additional Materials, and select the directory SG242152. In the
SG242152 directory, click on readme.txt.

A.2 Setting Up VisualAge for Java

VisualAge for Java Enterprise edition, Version 2.0, requires the following software
and hardware for development with the IDE:

• Windows 95 or Windows NT 4.0 with Service Pack 3
• TCP/IP communications protocol
• Pentium processor or higher recommended
• SVGA 800x600 display or higher (1024x768 recommended)
• 64MB RAM minimum (80MB recommended)
• Frames-capable Web browser

– Netscape Navigator 4.04 or higher, or
– Microsoft Internet Explorer 4.01 or higher

• Java Development Kit (JDK) 1.1 for deploying applications or
• JDK 1.1.2 for deploying applications using Swing components

The Java support classes described in the following sections are required.

A.2.1 AS/400 Toolbox for Java Classes

The example programs require that the AS/400 Toolbox for Java classes be
inside the VisualAge for Java Integrated Development Environment. You must
import these classes inside the IDE. Enterprise Edition simplifies this process.
After you install VisualAge for Java 2.0 Enterprise edition, the Toolbox classes
are available in the repository as part of the IBM Enterprise Toolkit for AS/400
project. To use the Toolbox classes, perform these steps:

1. From the workbench, click on File and click on Quick Start.
2. Click on Features, Add Feature, and OK.
3. Select IBM Enterprise Toolkit for AS/400, and click OK.

This adds the toolbox classes to your workspace. The IBM Enterprise Toolkit for
AS400 is listed under All Projects.

The alternative is to perform these tasks:

1. Install LPP 5763-JC1 (5769-JC1 for V4R4) on an AS/400 system.
2. Download the classes to your workstation.
3. Import the classes into the VisualAge for Java IDE
396 Building AS/400 Client/Server Applications with Java

A.2.2 IBM Enterprise Data Access Libraries

The example programs use IBM Enterprise Data Library supporting classes. To
add them, complete these steps:

1. From the workbench, click File and Quick Start.
2. Click on Features, Add Feature, and OK.
3. Select IBM Enterprise Data Access Libraries, and click OK.

A.2.3 IBM Enterprise Access Builder Library

The DAX example programs use the IBM Enterprise Access Builder Library
supporting classes. To add them, follow these steps:

1. From the workbench, click on File and Quick Start.
2. Click on Features, Add Feature, and OK.
3. Select IBM Enterprise Access Builder Library, and click OK.
Appendix A. Example Programs 397

398 Building AS/400 Client/Server Applications with Java

Appendix B. AS/400 Source Listings

This appendix contains source listings for the following AS/400 programs used in
the example programs:

• PARTS/PF
• SPROC2/SQLRPGLE
• SPROC3/SQLRPGLE
• DPCXRPG/RPGLE
• DQXRPG/RPGLE

B.1 PARTS/PF
A UNIQUE
A R PARTR
A PARTNO 5S 0 COLHDG('Part Number')
A PARTDS 25 COLHDG('Part Description')
A PARTQY 5 0 COLHDG('Part Qty-on-Hand')
A PARTPR 6 2 COLHDG('Part Price')
A PARTDT L DATFMT(*ISO)
A COLHDG('Part Shipment Date')
A K PARTNO

B.2 SPROC2/SQLRPGLE
D*
D* Defines PART ID As a Integer (Binary 4.0)
D*
D #PRTDS DS
D #PART 1 4B 0
D #OPTDS DS
D #OPT 1 4B 0
D*PARTNO 1 2B 0
C *ENTRY PLIST
C PARM #OPTDS
C PARM #PRTDS
C* Copy PART NUMBER to RPG Native Variable With Same Attributes Of
C* Field In PARTS Master File (5,0) For Performance Issues
C Z-ADD #PART PART 5 0
C #OPT CASEQ 1 ONEREC
C #OPT CASEQ 2 ALLREC
C #OPT CASEQ 3 DELREC
C CAS BADOPT
C ENDCS
C*
C ONEREC BEGSR
C/Exec Sql Declare C1 Cursor For
C+ Select
C+ PARTNO,
C+ PARTDS,
C+ PARTQY,
C+ PARTPR,
C+ PARTDT
C+
C+ From PARTS -- From PART Master File
C+
C+ Where PARTNO = :PART
C+
C+
C+ For Fetch Only -- Read Only Cursor
C/End-Exec
C*
C/Exec Sql
C+ Open C1
C/End-Exec
C*
C/Exec Sql
C+ Set Result Sets Cursor C1
C/End-Exec
© Copyright IBM Corp. 1997, 1998, 1999 399

C*
C RETURN
C ENDSR
C*
C ALLREC BEGSR
C/Exec Sql Declare C2 Cursor For
C+ Select
C+ PARTNO,
C+ PARTDS,
C+ PARTQY,
C+ PARTPR,
C+ PARTDT
C+
C+ From PARTS -- From PART Master File
C+
C+
C+ Order By PARTNO -- Sort By PARTNO me
C+
C+ For Fetch Only -- Read Only Cursor
C/End-Exec
C*
C/Exec Sql
C+ Open C2
C/End-Exec
C*
C/Exec Sql
C+ Set Result Sets Cursor C2
C/End-Exec
C RETURN
C ENDSR
C*
C DELREC BEGSR
C/Exec Sql
C+ Delete
C+
C+ From PARTS -- From PART Master File
C+
C+ Where PARTNO = :PART
C+
C+
C/End-Exec
C*
C RETURN
C ENDSR
C*--
C* SUBROUTINE BADOPT
C*
C* AN UNRECOGNIZED OPTION PARAMETER WAS SET - RETURN '4' FOR
C* UNKNOWN.
C*
C*--
C BADOPT BEGSR
C MOVE 4 #OPT
C RETURN
C ENDSR
C*
C*
C*

B.3 SPROC3/SQLRPGLE
D* Option (1=Update/2=Add)
D #OPTDS DS
D #OPT 1 4B 0
D* Defines PART ID As an Integer (Binary 4.0)
D #PRTDS DS
D #PART 1 4B 0
D* Defines DESC As a String (25)
D #DSCDS DS
D #DESC 1 25A
D* Defines QTY As an Integer (Binary 4.0)
D #QTYDS DS
D #QTY 1 4B 0
D* Defines PRICE As a Float (zoned 6.2)
D #PRCDS DS
D #PRC 1 4P 2
400 Building AS/400 Client/Server Applications with Java

D* Defines DATE As a Date (date 10)
D #DATDS DS
D #DAT 1 10D
C *ENTRY PLIST
C PARM #OPTDS
C PARM #PRTDS
C PARM #DSCDS
C PARM #QTYDS
C PARM #PRCDS
C PARM #DATDS
C* Copy PART NUMBER to RPG Native Variable With Same Attributes Of
C* Field In PARTS Master File (5,0) For Performance Issues
C Z-ADD #PART PART 5 0
C MOVEL #DESC DESC 25
C Z-ADD #QTY QTY 5 0
C Z-ADD #PRC PRC 6 2
C MOVEL #DAT DAT 10
C #OPT CASEQ 1 UPDREC
C #OPT CASEQ 2 ADDREC
C CAS BADOPT
C ENDCS
C*
C UPDREC BEGSR
C/Exec Sql
C+ Update PARTS Set
C+ PARTDS = :DESC,
C+ PARTQY = :QTY,
C+ PARTPR = :PRC,
C+ PARTDT = :DAT
C+
C+ Where PARTNO = :PART
C+
C/End-Exec
C*
C RETURN
C ENDSR
C*
C ADDREC BEGSR
C/Exec Sql
C+ Insert Into PARTS
C+ (PARTNO,
C+ PARTDS,
C+ PARTQY,
C+ PARTPR,
C+ PARTDT)
C+ Values
C+ (:PART,
C+ :DESC,
C+ :QTY,
C+ :PRC,
C+ :DAT)
C+
C/End-Exec
C*
C RETURN
C ENDSR
C*
C*--
C* SUBROUTINE BADOPT
C*
C* AN UNRECOGNIZED OPTION PARAMETER WAS SET - RETURN '3' FOR
C* UNKNOWN.
C*
C*--
C BADOPT BEGSR
C MOVE 3 #OPT
C RETURN
C ENDSR
C*
C*
Appendix B. AS/400 Source Listings 401

B.4 DPCXRPG/RPGLE
H*DPCXRPG
H* This program is called from the client via the Distributed
H* Program Call API or as a stored procedure via ODBC. It
H* returns data to the client from the PARTS database file.
H*--
H
FPARTS UF A E K DISK
C*---
C* MAIN PROGRAM
C*
C* Take action depending on the 'option' parameter:
C* Option Action
C* S Retrieve a single record for supplied key
C* A Retrieve all records
C* F Fetch the next record based on cursor posn.
C* E End the program
C* D Delete a single record for supplied key
C* U Update/Add single record for supplied key / fields
C*--
C *ENTRY PLIST
C PARM OPTION 1
C PPARTNO PARM PARTNO
C PPARTDS PARM PARTDS
C PPARTQY PARM PARTQY
C PPARTPR PARM PARTPR
C PPARTDT PARM PARTDT
C *LIKE DEFINE PARTNO PPARTNO
C *LIKE DEFINE PARTDS PPARTDS
C *LIKE DEFINE PARTQY PPARTQY
C *LIKE DEFINE PARTPR PPARTPR
C *LIKE DEFINE PARTDT PPARTDT
C OPTION CASEQ 'S' ONEREC
C OPTION CASEQ 'A' ALLREC
C OPTION CASEQ 'F' NXTREC
C OPTION CASEQ 'E' ENDPRG
C OPTION CASEQ 'D' DELREC
C OPTION CASEQ 'U' UPDREC
C CAS BADOPT
C ENDCS
C*--
C* SUBROUTINE - ONEREC
* This subroutine attempts to find the requested part in the
C* PARTS file. If the record is found, set the OPTION parameter
C* to 'Y', otherwise to 'X' to indicate record not found, then
C* return.
C*--
C ONEREC BEGSR
C* Return only one record
C PARTNO CHAIN PARTR 40 40
C *IN40 IFEQ '1'
C MOVE 'X' OPTION
C ELSE
C MOVE 'Y' OPTION
C ENDIF
C RETURN
C ENDSR
C*--
C* SUBROUTINE - ALLREC
C* This subroutine re-positions the cursor to the start of the
C* PARTS file anticipating subsequent calls to fetch the records
C* sequentially. If the SETLL operation fails, set the option
C* parameter to 'X', otherwise 'Y'.
C*--
C ALLREC BEGSR
C *LOVAL SETLL PARTS 50
C *IN50 IFEQ '1'
C MOVE 'X' OPTION
C ELSE
C MOVE 'Y' OPTION
C ENDIF
C RETURN
C ENDSR
C*--
C* SUBROUTINE - NXTREC
C* This subroutine retrieves the next sequential record in the
402 Building AS/400 Client/Server Applications with Java

C* PARTS file. If the record is found, set the option parameter
C* to 'Y', otherwise 'X'.
C*--
C NXTREC BEGSR
C READ PARTS 60 60=EOF
C *IN60 IFEQ '0'
C MOVE 'Y' OPTION
C ELSE
C MOVE 'X' OPTION
C ENDIF
C RETURN
C ENDSR
C*--
C* SUBROUTINE ENDPRG
C*
C* This subroutine terminates the program.
C*
C*--
C ENDPRG BEGSR
C MOVE 'Y' OPTION
C SETON LR
C RETURN
C ENDSR
C*--
C* SUBROUTINE - DELREC
C* This subroutine attempts to find the requested part in the
C* PARTS file. If the record is found, delete it, set the OPTION
C* parameter to 'Y', otherwise to 'X' to indicate record not found,
C* then return.
C*--
C DELREC BEGSR
C* Delete only one record
C PARTNO CHAIN PARTR 40
C *IN40 IFEQ '1'
C MOVE 'X' OPTION
C ELSE
C DELETE PARTR
C MOVE 'Y' OPTION
C ENDIF
C RETURN
C ENDSR
C*--
C* SUBROUTINE - UPDREC
C* This subroutine attempts to update the requested part in the
C* PARTS file. If the record is found, update it, set the OPTION
C* parameter to 'Y', otherwise add it, set the OPTION parameter to
C* 'X' to indicate the record was added, then return
C*--
C UPDREC BEGSR
C* Update only one record
C PARTNO CHAIN PARTR 40
C *IN40 IFEQ '1'
C Z-ADD PPARTNO PARTNO
C MOVEL PPARTDS PARTDS
C Z-ADD PPARTQY PARTQY
C Z-ADD PPARTPR PARTPR
C MOVEL PPARTDT PARTDT
C WRITE PARTR
C MOVE 'X' OPTION
C ELSE
C MOVEL PPARTDS PARTDS
C Z-ADD PPARTQY PARTQY
C Z-ADD PPARTPR PARTPR
C MOVEL PPARTDT PARTDT
C UPDATE PARTR
C MOVE 'Y' OPTION
C ENDIF
C RETURN
C ENDSR
C*--
C* SUBROUTINE BADOPT
C*
C* An unrecognised option parameter was set - return 'U' for
C* unknown.
C*
C*--
C BADOPT BEGSR
C MOVE 'U' OPTION
Appendix B. AS/400 Source Listings 403

C RETURN
C ENDSR

B.5 DQXRPG/RPGLE
*DQXRPG
*
* This is a never-ending-program that runs in the background
* as a batch job. It checks the data queue DQINPT for
* any queue entries received. Once an entry arrives in the
* data queue, the program retrieves and processes it.
*
* This program should be submitted with the SBMJOB command
* and terminated with ENDJOB OR WRKACTJOB commands, or by
* placing an entry starting with 'E' on the DQINPT data queue.
*--
H
FPARTS UF A E K DISK
*---
* DATA STRUCTURES
*
* DATAI - input data record 6 bytes
* DATAO - output data record 48 bytes
*---
D DATAI DS
D OPTION 1 1
D INPNO 2 6 0
D IARTDS 7 31
D IARTQY 32 34P 0
D IARTPR 35 38P 2
D IARTDT 39 48D
D DATAO DS
D RESULT 1 1
D PARTNO 2 6 0
D PARTDS 7 31
D PARTQY 32 34P 0
D PARTPR 35 38P 2
D PARTDT 39 48D
*---
* CONSTANTS
*
* DQINPT - data queue used for receiving input records
* DQOUPT - data queue used for sending records
* APILIB - library name
*--
D DQINPT C CONST('DQINPT ')
D DQOUPT C CONST('DQOUPT ')
D LIBL C CONST('APILIB ')
*---
* MAIN PROGRAM
*
* Loop on read to data queue. Action depends on the 'option'
* flag:
* Option Action
* S Retrieve a single record for supplied key
* A Retrieve all records in file
* E End the program
* D Delete a single record for supplied key
* U Update/Add single record for supplied key / fields
*--
C EXSR RCVDQ
C OPTION DOWNE 'E'
C EXSR READR
C EXSR RCVDQ
C ENDDO
C SETON LR
*--
* SUBROUTINE RCVDQ
*
* This subroutine performs the QRCVDTAQ function. Notice that
* the wait parameter is set to a negative value to force it
* to wait until a queue entry is available.
*
C RCVDQ BEGSR
C MOVE DQINPT QUEUEI 10
C MOVE LIBL LIBLD 10
404 Building AS/400 Client/Server Applications with Java

C Z-ADD 48 FLDDL 5 0
C Z-ADD -9 WAIT 5 0
C CALL 'QRCVDTAQ'
C PARM QUEUEI
C PARM LIBLD
C PARM FLDDL
C PARM DATAI
C PARM WAIT
C ENDSR
*--
* SUBROUTINE - READR
* This subroutine retrieves the part number from the data queue
* DQINPT, searches the data base file PARTS using the part number
* just received. If the record is found, send the record to the
* data queue DQOUPT. If option 'A' is received, send all records
* to the data queue DQOUPT.
*
* The 'result' flag is set as follows
* Result Meaning
* Y Record found and being returned
* X Record not found or eof
*--
C READR BEGSR
*
C OPTION IFEQ 'A'
* Return all records in the file
C *LOVAL SETLL PARTS
C READ PARTS 60 60=EOF
*
C *IN60 DOWEQ '0'
C MOVE 'Y' RESULT
C EXSR SNDDQ
C READ PARTS 60
C ENDDO
*
C MOVE 'X' RESULT
C EXSR SNDDQ
*
C ELSE
*
C OPTION IFEQ 'D'
* Delete one record
C INPNO CHAIN PARTR 98
*
C *IN98 IFEQ '1'
C MOVE 'X' RESULT
C ELSE
C DELETE PARTR
C MOVE 'Y' RESULT
C ENDIF
C EXSR SNDDQ
*
C ELSE
*
C OPTION IFEQ 'U'
* Update record if found / Add record if not found
C INPNO CHAIN PARTR 98
*
C *IN98 IFEQ '1'
C Z-ADD INPNO PARTNO
C MOVEL IARTDS PARTDS
C Z-ADD IARTQY PARTQY
C Z-ADD IARTPR PARTPR
C MOVEL IARTDT PARTDT
C WRITE PARTR
C MOVE 'X' RESULT
C ELSE
C MOVEL IARTDS PARTDS
C Z-ADD IARTQY PARTQY
C Z-ADD IARTPR PARTPR
C MOVEL IARTDT PARTDT
C UPDATE PARTR
C MOVE 'Y' RESULT
C ENDIF
C EXSR SNDDQ
*
C ELSE
* Return only one record
Appendix B. AS/400 Source Listings 405

C INPNO CHAIN PARTR 98
*
C *IN98 IFEQ '1'
C MOVE 'X' RESULT
C ELSE
C MOVE 'Y' RESULT
C ENDIF
*
C EXSR SNDDQ
C ENDIF
*
C ENDIF
C ENDIF
*
C ENDSR
*--
* SUBROUTINE SNDDQ
*
* This subroutine performs the QSNDDTAQ function.
*
C SNDDQ BEGSR
C MOVE DQOUPT QUEUEO 10
C MOVE LIBL LIBLD
C Z-ADD 48 FLDDL
C CALL 'QSNDDTAQ'
C PARM QUEUEO
C PARM LIBLD
C PARM FLDDL
C PARM DATAO
C ENDSR
406 Building AS/400 Client/Server Applications with Java

Appendix C. GUI Builder Code

This appendix contains the code for the GUI Builder examples.

C.1 SystemStatusEngine.java

This section shows the SystemStatusEngine.java code after completing the task
in Section 5.5.4, “Modifying the Databean to Retrieve Data from the AS/400
System” on page 229.

import com.ibm.as400.ui.framework.java.*;
import com.ibm.as400.access.*;
import com.ibm.as400.opnav.Monitor;

public class SystemStatusEngine extends Object implements DataBean {
private String m_sSystemASPPercent;
private String m_sCpuUtilization;
private String m_sSystemASPSize;
private String m_sPermanentAddressesUsed;
private String m_sTemporaryAddressesUsed;
private AS400 m_sAS400;

public SystemStatusEngine(AS400 anAS400) {
m_sAS400 = anAS400;
}

public Capabilities getCapabilities() {
return null;

}

public String getCpuUtilization() {
return m_sCpuUtilization;

}

public String getPermanentAddressesUsed() {
return m_sPermanentAddressesUsed;

}

public String getSystemASPPercent() {
return m_sSystemASPPercent;

}

public String getSystemASPSize() {
return m_sSystemASPSize;

}

public String getTemporaryAddressesUsed() {
return m_sTemporaryAddressesUsed;

}

public void load() {
try {

SystemStatus aStatus = new SystemStatus (m_sAS400);
m_sSystemASPPercent = new Float(aStatus.getPercentSystemASPUsed()).toString() + " %";
m_sCpuUtilization = new Float(aStatus.getPercentProcessingUnitUsed()).toString() +

" %";
m_sSystemASPSize = new Integer(aStatus.getSystemASP()).toString() + " MB";
m_sPermanentAddressesUsed = new

Float(aStatus.getPercentPermanentAddresses()).toString() + "%";
m_sTemporaryAddressesUsed = new

Float(aStatus.getPercentTemporaryAddresses()).toString() + "%";
} catch (Exception e) {

Monitor.logThrowable(e);
}

}

public void save() {
}

public void verifyChanges() {
}

}

© Copyright IBM Corp. 1997, 1998, 1999 407

C.2 SystemStatusManager

This section shows the SystemStatusManager.java source code after completing
the task in Section 5.5.6, “Adding an Operations Navigator Plug-in” on page 232.

import com.ibm.as400.opnav.*;
import com.ibm.as400.access.*;
import com.ibm.as400.ui.framework.java.*;

class SystemStatusManager extends Object implements ActionsManager {
private ObjectName[] initObjs;
private ObjectName dragDropObj;

public void initialize(ObjectName[] arg1, ObjectName arg2) {
initObjs = arg1;
dragDropObj = arg2;

}

public ActionDescriptor[] queryActions(int arg1) {
ActionDescriptor[] actions = new ActionDescriptor[0];
String objType = null;

try {
objType = initObjs[0].getObjectType();
if (objType.equals("AS4")) {

if ((arg1 & CUSTOM_ACTIONS) == CUSTOM_ACTIONS) {
actions = new ActionDescriptor[1];
ActionDescriptor act = new ActionDescriptor(1);
act.setText("System Status");
act.setHelpText("Loads the ITSO System Status Plugin");
act.setVerb("ITSOSysSts");
actions[0] = act;

}
}

}
catch (Exception e) {

Monitor.logThrowable(e);
}
return actions;

}

public void actionSelected(int arg1, java.awt.Frame arg2) {
if (arg1 == 1) {

try {
AS400 theMachine = (AS400)initObjs[0].getSystemObject();
SystemStatusEngine theSystemEngine = new SystemStatusEngine(theMachine);
theSystemEngine.load();
DataBean[] dbeans = {theSystemEngine};
PanelManager pm = null;
try {

pm = new PanelManager("SystemStatus","SystemResources",dbeans,arg2);
}
catch (DisplayManagerException e){

e.displayUserMessage(arg2);
}

pm.setVisible(true);
}
catch (Exception e) {

Monitor.logThrowable(e);
}

}
}

}

C.3 SystemStatus Registry

This section show the Windows registry after completing the task in Section
5.5.7, “Modifying the Windows Registry” on page 236. Some additional comments
have been added to clarify the entries.
408 Building AS/400 Client/Server Applications with Java

REGEDIT4
; Define the primary registry key for the plugin

[HKEY_CLASSES_ROOT\IBM.AS400.Network\3RD PARTY EXTENSIONS\ITSO.SystemStatusPlugin]
; You have written an extension to the shell, so use EXT for the type of
; plugin. If a ListManager interface had been implemented then you would
; have set this to Plugin
"Type"="EXT"
"MinimumRISCRelease"="ANY"
"MinimumIMPIRelease"="NONE"
"ProductID"="NONE"
"ServerEntryPoint"="NONE"
; The next value point to the base directory or archive used to find any
; required user class definitions.
"JavaPath"="C:\\L04\\Student\\"
"JavaMRI"=""
; Although no DLL is used you are required to add a registry entry. It will
; never be used or accessed but it MUST exist.
"NLS"="itso.dll"
"NameID"=dword:00000000
"DescriptionID"=dword:00000000

;--
; Register a context menu handler for the new folder and its objects

[HKEY_CLASSES_ROOT\IBM.AS400.Network\3RD PARTY
EXTENSIONS\ITSO.SystemStatusPlugin\shellex\AS/400
Network*\ContextMenuHandlers\{1827A857-9C20-11d1-96C3-00062912C9B2}]
; Java class is the classname of the ActionManager implementor class.
"JavaClass"="SystemStatusManager"

C.4 SystemStatusEngine.java

This is the source code for SystemStatusEngine.java after completing the task in
Section 5.5.10, “Modifying the SystemStatusEngine DataBean” on page 239.

import com.ibm.as400.ui.framework.java.*;
import com.ibm.as400.access.*;
import com.ibm.as400.opnav.Monitor;

public class SystemStatusEngine extends Object
implements DataBean

{
private String[] m_sSystemPoolNumber;
private ItemDescriptor[] m_idSystemPoolNumber;
private String[] m_sSystemPoolName;
private ItemDescriptor[] m_idSystemPoolName;
private String[] m_sSystemPoolSize;
private ItemDescriptor[] m_idSystemPoolSize;
private String[] m_sDBFaulting;
private ItemDescriptor[] m_idDBFaulting;
private String[] m_sNonDBFaulting;
private ItemDescriptor[] m_idNonDBFaulting;
private String m_sSystemASPPercent;
private String m_sCpuUtilization;
private String m_sSystemASPSize;
private String m_sPermanentAddressesUsed;
private String m_sTemporaryAddressesUsed;
private AS400 m_sAS400;

public SystemStatusEngine(AS400 anAS400) {
m_sAS400 = anAS400;

}

public Capabilities getCapabilities() {
return null;

}

public String getCpuUtilization() {
return m_sCpuUtilization;

}

public ItemDescriptor[] getDBFaultingList() {
return m_idDBFaulting;

}

Appendix C. GUI Builder Code 409

public String[] getDBFaultingSelection() {
return m_sDBFaulting;

}

public ItemDescriptor[] getNonDBFaultingList() {
return m_idNonDBFaulting;

}

public String[] getNonDBFaultingSelection() {
return m_sNonDBFaulting;

}

public String getPermanentAddressesUsed() {
return m_sPermanentAddressesUsed;

}

public String getSystemASPPercent() {
return m_sSystemASPPercent;

}

public String getSystemASPSize() {
return m_sSystemASPSize;

}

public ItemDescriptor[] getSystemPoolNameList() {
return m_idSystemPoolName;

}

public String[] getSystemPoolNameSelection() {
return m_sSystemPoolName;

}

public ItemDescriptor[] getSystemPoolNumberList() {
return m_idSystemPoolNumber;

}

public String[] getSystemPoolNumberSelection() {
return m_sSystemPoolNumber;

}

public ItemDescriptor[] getSystemPoolSizeList() {
return m_idSystemPoolSize;

}

public String[] getSystemPoolSizeSelection() {
return m_sSystemPoolSize;

}

public String getTemporaryAddressesUsed() {
return m_sTemporaryAddressesUsed;

}

public void load() {
try {

SystemStatus aStatus = new SystemStatus (m_sAS400);
int numOfPools = aStatus.getPoolsNumber();
java.util.Enumeration thePools = aStatus.getSystemPools();

m_sSystemASPPercent = new Float(aStatus.getPercentSystemASPUsed()).toString() + " %";
m_sCpuUtilization = new Float(aStatus.getPercentProcessingUnitUsed()).toString() +

" %";
m_sSystemASPSize = new Integer(aStatus.getSystemASP()).toString() + " MB";
m_sPermanentAddressesUsed = new

Float(aStatus.getPercentPermanentAddresses()).toString() + " %";
m_sTemporaryAddressesUsed = new

Float(aStatus.getPercentTemporaryAddresses()).toString() + " %";

m_sSystemPoolNumber = new String[numOfPools];
m_idSystemPoolNumber = new ItemDescriptor[numOfPools];
m_sSystemPoolName = new String[numOfPools];
m_idSystemPoolName = new ItemDescriptor[numOfPools];
m_sSystemPoolSize = new String[numOfPools];
m_idSystemPoolSize = new ItemDescriptor[numOfPools];
m_sDBFaulting = new String[numOfPools];
m_idDBFaulting = new ItemDescriptor[numOfPools];
m_sNonDBFaulting = new String[numOfPools];
m_idNonDBFaulting = new ItemDescriptor[numOfPools];
int i = 0;
410 Building AS/400 Client/Server Applications with Java

while (thePools.hasMoreElements()) {
SystemPool tempPool = (SystemPool) thePools.nextElement();

m_sSystemPoolNumber[i] = new Integer(tempPool.getPoolIdentifier()).toString();
m_idSystemPoolNumber[i] = new ItemDescriptor ("PNum"+ m_sSystemPoolNumber[i],

m_sSystemPoolNumber[i]);
m_sSystemPoolName[i] = tempPool.getPoolName();
m_idSystemPoolName[i] = new ItemDescriptor ("PName" + m_sSystemPoolNumber[i],

m_sSystemPoolName[i]);
m_sSystemPoolSize[i] = new Integer(tempPool.getPoolSize()).toString() + " K bytes";
m_idSystemPoolSize[i] = new ItemDescriptor("PSize" +

m_sSystemPoolNumber[i],m_sSystemPoolSize[i]);
m_sDBFaulting[i] = new Float(tempPool.getDatabaseFaults()).toString() + " page

faults per sec " +
new Float(tempPool.getDatabasePages()).toString() + " pages brought in per min";

m_idDBFaulting[i] = new ItemDescriptor("DBFault" + m_sSystemPoolNumber[i],
m_sDBFaulting[i]);

m_sNonDBFaulting[i] = new Float(tempPool.getNonDatabaseFaults()).toString() + " page
faults per sec " +
new Float(tempPool.getNonDatabasePages()).toString() + " pages brought in per
min";

m_idNonDBFaulting[i] = new ItemDescriptor("NonDBFault" + m_sSystemPoolNumber[i],
m_sNonDBFaulting[i]);

i ++;
}

} catch (Exception e) {
Monitor.logThrowable(e);

}
}

public void save() {
}

public void setDBFaultingList(ItemDescriptor[] items) {
m_idDBFaulting = items;

}

public void setDBFaultingSelection(String[] select) {
m_sDBFaulting = select;

}

public void setNonDBFaultingList(ItemDescriptor[] items) {
m_idNonDBFaulting = items;

}

public void setNonDBFaultingSelection(String[] select) {
m_sNonDBFaulting = select;

}

public void setSystemPoolNameList(ItemDescriptor[] items) {
m_idSystemPoolName = items;

}

public void setSystemPoolNameSelection(String[] select) {
m_sSystemPoolName = select;

}

public void setSystemPoolNumberList(ItemDescriptor[] items) {
m_idSystemPoolNumber = items;

}

public void setSystemPoolNumberSelection(String[] select) {
m_sSystemPoolNumber = select;

}

public void setSystemPoolSizeList(ItemDescriptor[] items) {
m_idSystemPoolSize = items;

}

public void setSystemPoolSizeSelection(String[] select) {
m_sSystemPoolSize = select;

}

public void verifyChanges(){
}

}

Appendix C. GUI Builder Code 411

C.5 SystemStatusManager

This is the source code for the SystemStatusEngine.java file after completing the
task in Section 5.5.11, “Modifying the SystemStatusManager” on page 241. The
only change is mofiying the name of the initial panel to be displayed.

import com.ibm.as400.opnav.*;
import com.ibm.as400.access.*;
import com.ibm.as400.ui.framework.java.*;

class SystemStatusManager extends Object implements ActionsManager {
private PanelManager pm = null;
private SystemStatusEngine theSystemEngine = null;
private ObjectName[] initObjs;
private ObjectName dragDropObj;

public void actionSelected(int arg1, java.awt.Frame arg2) {
if (arg1 == 1) {

try {
AS400 theMachine = (AS400)initObjs[0].getSystemObject();
theSystemEngine = new SystemStatusEngine(theMachine);
theSystemEngine.load();
DataBean[] dbeans = {theSystemEngine};

try {
pm = new PanelManager("SystemStatus","SystemStatus",dbeans,arg2);

}
catch (DisplayManagerException e){

e.displayUserMessage(arg2);
}
pm.setVisible(true);

}
catch (Exception e) {

Monitor.logThrowable(e);
}

}
}

public void initialize(ObjectName[] arg1, ObjectName arg2) {

initObjs = arg1;
dragDropObj = arg2;

}

public ActionDescriptor[] queryActions(int arg1) {

ActionDescriptor[] actions = new ActionDescriptor[0];
String objType = null;

try {
objType = initObjs[0].getObjectType();
if (objType.equals("AS4")) {

if ((arg1 & CUSTOM_ACTIONS) == CUSTOM_ACTIONS) {
actions = new ActionDescriptor[1];
ActionDescriptor act = new ActionDescriptor(1);
act.setText("System Status");
act.setHelpText("Loads the ITSO System Status Plugin");
act.setVerb("ITSOSysSts");
actions[0] = act;

}
}

}
catch (Exception e) {

Monitor.logThrowable(e);
}
return actions;

}
}

412 Building AS/400 Client/Server Applications with Java

Appendix D. Special Notices

This publication is intended to help anyone with a need to understand how to use
Java to build AS/400 client/server applications. The information in this publication
is not intended as the specification of any programming interfaces that are
provided by VisualAge for Java or the AS/400 Toolbox for Java. See the
PUBLICATIONS section of the IBM Programming Announcement for VisualAge
for Java for more information about what publications are considered to be
product documentation.

References in this publication to IBM products, programs or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM's product, program, or service may be used. Any functionally
equivalent program that does not infringe any of IBM's intellectual property rights
may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY 10594 USA.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact IBM Corporation, Dept.
600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The information contained in this document has not been submitted to any formal
IBM test and is distributed AS IS. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer's ability to evaluate and integrate them into the
customer's operational environment. While each item may have been reviewed
by IBM for accuracy in a specific situation, there is no guarantee that the same or
similar results will be obtained elsewhere. Customers attempting to adapt these
techniques to their own environments do so at their own risk.

Any performance data contained in this document was determined in a controlled
environment, and therefore, the results that may be obtained in other operating
environments may vary significantly. Users of this document should verify the
applicable data for their specific environment.
© Copyright IBM Corp. 1997, 1998, 1999 413

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc. in the United States and/or other countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

PC Direct is a trademark of Ziff Communications Company in the United States
and/or other countries and is used by IBM Corporation under license.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel
Corporation in the United States and/or other countries. (For a complete list of
Intel trademarks see www.intel.com/tradmarx.htm)

UNIX is a registered trademark in the United States and/or other countries
licensed exclusively through X/Open Company Limited.

SET and the SET logo are trademarks owned by SET Secure Electronic
Transaction LLC.

Other company, product, and service names may be trademarks or service marks
of others.

AFP OS/390
AIX OS/2
AS/400 RS/6000
AT S/390
CICS SanFrancisco
Client Access SecureWay
Client Access/400 SP
CT System/390
DB2 TeamConnection
DB2 Universal Database VisualAge
FFST WebSphere
First Failure Support Technology World Registry
IBM XT
Netfinity 400
OS/400
414 Building AS/400 Client/Server Applications with Java

Appendix E. Related Publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

E.1 International Technical Support Organization Publications

For information on ordering these ITSO publications see “How to Get ITSO
Redbooks” on page 417.

• Building AS/400 Applications with Java, SG24-2163

• AS/400 Client/Server Performance Using the Windows Clients, SG24-4526

• Securing Your AS/400 from Harm on the Internet, SG24-4929

• Application Development with VisualAge for Java Enterprise, SG24-5081

• VisualAge for Java Enterprise Team, SG24-5245

• Building AS/400 Internet Based Applications with Java, SG24-5337

E.2 Redbooks on CD-ROMs

Redbooks are also available on the following CD-ROMs. Click the CD-ROMs
button at http://www.redbooks.ibm.com/ for information about all the CD-ROMs
offered, updates and formats.

E.3 Other Publications

These publications are also relevant as further information sources:

• HTTP Server for AS/400 Webmaster's Guide, GC41-5434

• Object Oriented Technology: A Manager's Guide, SH20-9092

• JavaBeans for Dummies, SR23-7895

• Flanagan, David. Java in a Nutshell. Indianapolis, IN: Sams.net Publishing,
1996 (ISBN 1-56592-183-6)

CD-ROM Title Collection Kit
Number

System/390 Redbooks Collection SK2T-2177
Networking and Systems Management Redbooks Collection SK2T-6022
Transaction Processing and Data Management Redbooks Collection SK2T-8038
Lotus Redbooks Collection SK2T-8039
Tivoli Redbooks Collection SK2T-8044
AS/400 Redbooks Collection SK2T-2849
Netfinity Hardware and Software Redbooks Collection SK2T-8046
RS/6000 Redbooks Collection (BkMgr Format) SK2T-8040
RS/6000 Redbooks Collection (PDF Format) SK2T-8043
Application Development Redbooks Collection SK2T-8037
© Copyright IBM Corp. 1997, 1998, 1999 415

416 Building AS/400 Client/Server Applications with Java

How to Get ITSO Redbooks

This section explains how both customers and IBM employees can find out about ITSO redbooks, redpieces, and
CD-ROMs. A form for ordering books and CD-ROMs by fax or e-mail is also provided.

• Redbooks Web Site http://www.redbooks.ibm.com/

Search for, view, download, or order hardcopy/CD-ROM redbooks from the redbooks Web site. Also read
redpieces and download additional materials (code samples or diskette/CD-ROM images) from this redbooks
site.

Redpieces are redbooks in progress; not all redbooks become redpieces and sometimes just a few chapters will
be published this way. The intent is to get the information out much quicker than the formal publishing process
allows.

• E-mail Orders

Send orders by e-mail including information from the redbooks fax order form to:

• Telephone Orders

• Fax Orders

This information was current at the time of publication, but is continually subject to change. The latest information
may be found at the redbooks Web site.

In United States
Outside North America

e-mail address
usib6fpl@ibmmail.com
Contact information is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl/

United States (toll free)
Canada (toll free)
Outside North America

1-800-879-2755
1-800-IBM-4YOU
Country coordinator phone number is in the “How to Order” section at
this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl/

United States (toll free)
Canada
Outside North America

1-800-445-9269
1-403-267-4455
Fax phone number is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl/

IBM employees may register for information on workshops, residencies, and redbooks by accessing the IBM
Intranet Web site at http://w3.itso.ibm.com/ and clicking the ITSO Mailing List button. Look in the Materials
repository for workshops, presentations, papers, and Web pages developed and written by the ITSO technical
professionals; click the Additional Materials button. Employees may access MyNews at http://w3.ibm.com/ for
redbook, residency, and workshop announcements.

IBM Intranet for Employees
© Copyright IBM Corp. 1997, 1998, 1999 417

IBM Redbook Fax Order Form
Please send me the following:

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

Title Order Number Quantity

First name Last name

Company

Address

City Postal code

Telephone number Telefax number VAT number

Invoice to customer number

Country

Credit card number

Credit card expiration date SignatureCard issued to
418 Building AS/400 Client/Server Applications with Java

List of Abbreviations

AFP advanced function printing

APA all points addressable

AWT Abstract Windowing Toolkit

CPW Commercial Processing
Workload

EAB Enterprise Access Builder

DAX Data Access Builder

DDM Distributed Data Management

DPC Distributed Program Call

FFST First Failure Support
Technology

GUI Graphical User Interface

HTML Hypertext Markup Language

IBM International Business
Machines Corporation

IDE Integrated Development
Environment

ITSO International Technical
Support Organization

JAR Java Archive

JDBC Java Database Connectivity

JDK Java Development Toolkit

JFC Java Foundation Classes

JIT Just in Time Compiler

JVM Java Virtual Machine

MI Machine Interface

OOA Object Oriented Analysis

OOD Object Oriented Design

OOP Object Oriented Programming

PTF Program Temporary Fix

RAD Rapid Application
Development

RMI Remote Method Invocation

SCS SNA Character Set

SLIC System Licensed Internal
Code

SSL secure sockets layer

TIMI Technology Independent
Machine Interface

UML Unified Methodology
Language

URL Universal Resource Locator
© Copyright IBM Corp. 1997, 1998, 1999
VCE Visual Composition Editor

WWW World Wide Web
419

420 Building AS/400 Client/Server Applications with Java

Index

Numerics
5763-JC1 91, 318, 396
5769-AC1 377
5769-ACx 373, 382
5769-CEx 388
5769-DG1 377
5769-JC1 213
5769JC1 89
5769-SS1 377

A
abbreviations 419
acronyms 419
ActionsManager interface 232
addenvvar 312
addtoolbox.bat 222
adduitools.bat 223
advanced JavaBean concept 361
advanced JavaBeans concept 361
Applet Viewer 70
application

description 181
examples 107

AS/400 data type 97
AS/400 Native JDBC driver 303
AS/400 Panes 181

AS400DetailsPane 182
AS400ExplorerPane 182
AS400ListPane 182
AS400TreePane 182

AS/400 Toolbox 14
AS/400 Toolbox for Java 14, 88, 89, 90, 229, 313, 318,
345, 396

data conversion 97
digital certificates 91
GUI classes 92, 181
introduction 89
Jobs class 91
Message Queue class 91
QueuedMessage class 91
security 105
supported platforms 94
User and Group class 91
UserSpace class 92
V4R3 enhancements 91, 94
V4R4 enhancements 92

AS400 Panes
AS400DetailsPane 257, 263, 264
AS400ExplorerPane 262

AS400ToolboxJarMaker 94, 365, 368
Example 371

authenticity 374
AWT 17, 319

B
BeanInfo 33
© Copyright IBM Corp. 1997, 1998, 1999
bibliography 415
Blob 247
breakpoint 63, 76, 334, 336
browser 23

class 30
package 29
project 25
type 30

C
certificate authority (CA) 371, 374, 377
class 3, 35, 42
class browser 30
CLASSPATH 105, 295, 308, 312, 313
Client Access Express 220
Clob 247
collaboration 6
command 103
commitment control and connection 268
compile 331
component 7
component browser 23
composition 6
confidentiality 373
configure a digital certificate environment 377
console 81
Convert Display File SmartGuide 319
cooperative debugger 332
CORBA 289
Create Java Program (CRTJVAPGM) command 331
Create Program Call SmartGuide 319
Create Subfile SmartGuide 324
creating a simple JavaBean 342
CRTJVAPGM (Create Java Program) command 331, 333

D
Data Access Builder (DAX) 82
data conversion 97
data queue 104, 184

DataQueue object 159
read 161, 165
write 161, 165

Data Queue application example 157
data400.jar 220
databean 224, 229, 235
DAX 267, 273, 275, 287

availability 287
benefits 287
building a GUI 282
building an application 268
completed application 286
Visual Composition Editor 284

DAX (Data Access Builder) 82
DAX (Enterprise Access Builder for Data) 267
DDM server 101, 137
DDS 324
Debugger 73, 77, 336
421

stepping through methods 78
debugging 63
debugging an AS/400 Java program 333
deprecated methods 86
digital certificate 91, 372, 376
Digital Certificate Manager (DCM) 371, 377, 378, 382,
384, 385
digital signature 374
distributed program call (DPC) 143, 144, 345, 346
DPC 145, 346

application example 144
ProgramCall object 147
ProgramParameter 149

DPC (distributed program call) 144, 346
DPCXRPG JavaBean 354

in VCE 357
DPCXRPG program name 146, 347, 351

E
EAB (Enterprise Access Builder) 14, 82
edition 69
editor 73, 75
encapsulation 3, 7
encryption 373
Enterprise Access Builder for Data (DAX) 82, 267
Enterprise Access Builder for Java to C++ 82
Enterprise Access Builder for Persistence 82
Enterprise Access Builder for RM 82
Enterprise Access Builder for SAP R/3 82
Enterprise Access Builders (EAB) 14, 82
error processing 106
ET/400 308, 317, 348

AS/400 Toolbox for Java Classes 318
compile support 331
components 317
Convert DDS SmartGuide 319
Create Program Call SmartGuide 319
Create Subfile SmartGuide 324
create, run, and debug 330
debug support 332
export 330
export support 331
Program Call SmartGuide 348
PTF information 338
system requirements 337

ET/400 Program Call SmartGuide 356
export 308, 330, 331

F
FancyLabel 343
field description object 162
framework 8

G
Graphical Toolbox 219

installing 220
Group class 91
GUI Builder 219

starting 223
GUI classes 181

Command Call 184
Data Queues 184
Error Events 184
JDBC 183
JDBC examples 187
Jobs 185
Messages 185
Network Print 186
overview 181
Program call 186
Record Level Access 186
SQLConnection 183
SQLQueryBuilderPane example 194
SQLResultSetFormPane example 199
SQLResultSetModel example 202
Users and Groups 187

H
host server 97, 105
HTML 72
HTTP server 104
HTTPS 373

I
IBM Cryptographic Access Provider 382
IBM Enterprise Toolkit for AS/400 (ET/400) 317
IBM Enterprise Toolkit for AS/400 project 90, 318, 396
IBM World Registry 388
IBM XML parser 245
IDE (Integrated Development Environment) 14, 16
IDE setup 76
IFS

available 179
connectService 176
IFSFile 177
IFSFileInputStream 179
list 177
read 179

IFSFile 265
IFSJavaFile 265
inspectors 79
Integrated Development Environment (IDE) 14, 16
integrated file system 101, 308, 330

access 172
example 173

Integrion Financial Network 388
interface 291
Item class 301
ItemDetail 301
ItemEntryI 302, 303

J
JAR (Java archive) 16
JAR file 340
JarMaker 94, 365, 366

example 367
422 Building AS/400 Client/Server Applications with Java

Java 2 (JDK1.2) 213
Java archive (JAR) 16
Java console 335
Java Database Connectivity (JDBC) 14
Java native interface 16
JavaBean 35, 326, 328, 339, 340, 348

advanced concept 361
basics 340
BeanInfo class 361
benefits 339
bound property 362
contrained property 362
creating a Program Call bean 345
creating a simple 342
customization 341
events 341
indexed property 362
introspection 341
making ItemsDb 345
method 341
persistence 342
property 341

JavaBeans 35, 267, 268, 339
JavaBeans API 16
JDBC 16, 99, 108, 183, 267, 296, 303

application example 114, 115
CallableStatement object 127
connection object 117
examples 187
executeQuery 119, 133
executeUpdate 122
extended dynamic 109
getConnection 117
next() method 119
package cache 109
performance tips 109
prepareCall 127, 132
prepareStatement 118
properties 110
ResultSet 119, 133
stored procedure application example 128
stored procedures 127

JDBC (Java Database Connectivity) 14
JDBC 2.0 93, 246, 247

absolute 252
beforeFirst 252
CONCUR_READ_ONLY 250
Concur_Updatable 250
Example 249
first 248, 253
isLast 248
last 248
next 248
previous 248
scrollable result set 248
scroll-insensitive 247
scroll-sensitive 247

JDBC 2.0 Core API 247
JDBC 2.0 Standard Extension API 246
JDBC Result Sets 247

JDBC/ODBC bridge driver 99
JDBCRmi package 299
JDK 1.1 14, 17, 339
JNDI 246
jobs 91
jui400.jar 220

K
KeyRing class 388, 389, 390, 391

L
log 81

M
MessageQueue class 91
Migration from VisualAge for Java Version 1.0 to 2.0 85

N
national language support 105
network print 167
network print example 168

O
object 2
object-oriented programming (OOP) 271
OOA (object-oriented analysis) 271
OOD (object-oriented design) 271
OOP (object-oriented programming) 271
Operations Navigator 221, 232

plug-in 221, 232
optimization levels 332

P
package 41
package browser 29
PanelManager 235
PARTS file 107
PartsContainer interface 126
PCML 94, 217, 241

architecture 242
DPCXRPG example 244
simple example 243

PCML (Program Call Mark-up Language) 94
PDML 94, 217, 219, 238
PDML (Panel Definition Mark-up Language) 94
polymorphism 7
PreparedStatement 304, 305
print 102

connectService 170
openSynchronously 171
setUserFilter 171
size 171
SpooledFileList 171

program call 103
project browser 25
projects view 40
423 Building AS/400 Client/Server Applications with Java

Q
QShell 296, 312
QueuedMessage class 91

R
RAD 267
Record Level Access 101

application example 137
GUI examples 205
pre-V4R2M0 101

record level conversion 98
Record Level File Access 101, 137
RecordFormat object 163
registry 236
Remote Method Invocation (RMI) 16
Remote Procedure Call 289
repository 67
Repository Explorer 81
requesting a server certificate 384
resize-handles 50
Resource Script Converter 219
reusable GUI part 126
RMI 289, 333

advantages 316
architecture 290
building an RMI application 291
five step process 291
JDBC example 296
JDBC example program interface 299
Naming.rebind method 293
proxy 290
RemoteException 293
skeleton 291, 306
specification 289
stub 290, 291, 306
UnicastRemoteObject 292, 303
URL 293

RMI (Remote Method Invocation) 16
RMI registry 296, 312
RMI security manager 294, 295
rmic 291, 294, 306
rmiregistry 295, 313
RSA Data Security, Inc 388

S
Scrapbook 80
Scrollable result sets 247
Secure Sockets Layer (SSL) 371, 382
SecureAS400 392
self-signed certificate 378
setFetchSize method 248
SGML (Standard Generalized Markup Language) 217
SmartGuide 39, 81

applet creation 70
smartguide 82
SmartGuides/Wizards 81
sockets 289
spooled file example 169
SpooledFileViewer 253, 254

SQLQueryBuilderPane 183, 194
SQLResultSetFormPane 183, 199
SQLResultSetModel 202
SQLResultSetTableModel 183
SQLResultSetTablePane 183, 188
SQLResultSetTablePane application 188
SQLStatementButton 183
SQLStatementDocument 183
SQLStatementMenuItem 183
SSL 365, 373, 376, 381, 388, 391
SSL (Secure Sockets Layer) 93
sslightu.zip 388, 389, 391
sslightx.zip 388, 389, 391
SSLTool.zip 390
SSLTools.zip 388, 389, 391
Start Debug Server (STRDBGSVR) command 332
stored procedures 127, 268
STRDBGSVR (Start Debug Server) command 332
subfile 324, 328, 329
Swing 14, 181, 212

T
Tabbed Pane 239
TCP/IP 373
team development 66
Thawte 376, 384, 388
threads 336

U
uitools.jar 220
UML (Unified Methodology Language) 271, 272
Unified Methodology Language (UML) 271
Universal Data Base (UDB) 247
updatable result sets 247
URL 293, 304
User class 91
UserSpace class 92
util400.jar 220

V
VeriSign 376, 384, 388
version 56, 66, 69
visual builder connection 37
visual composition editor 32, 34, 37

connections 38
free-form surface 43
parts palette 43
resize-handles 50
toolbar 49

VisualAge for Java 11, 12
Applet Viewer 70
building a sample application 39
component hierarchy 21
debugger 77
debugging code 62
deprecated methods 86
Enterprise Edition 13, 67

Version 2.0 14
424 Building AS/400 Client/Server Applications with Java

Entry Edition 12
inspector 79
Integrated Development Environment 14
Java applet viewer 70
Navigating within VisualAge for Java 17
Professional Edition 12, 67
Rollup2 214
scrapbook 80
setting breakpoints 62
SmartGuide 73
system requirement 84
team development 66
upgrades 87
upgrading the AS/400 Toolbox for Java 213
VisualAge for Java Enterprise Edition Version 2.0 14

VisualAge for Java Help 82
VJobList 262
VSystemStatusPane 260
VUserAndGroup 263
VUserList 263

W
Windows registry 236
Workbench 19, 22

X
x4j400.jar 220
XML 217
425 Building AS/400 Client/Server Applications with Java

426 Building AS/400 Client/Server Applications with Java

© Copyright IBM Corp. 1997, 1998, 1999 427

ITSO Redbook Evaluation

Building AS/400 Client/Server Applications with Java
SG24-2152-02

Your feedback is very important to help us maintain the quality of ITSO redbooks. Please complete this
questionnaire and return it using one of the following methods:

• Use the online evaluation form found at http://www.redbooks.ibm.com/
• Fax this form to: USA International Access Code + 1 914 432 8264
• Send your comments in an Internet note to redbook@us.ibm.com

Which of the following best describes you?
_ Customer _ Business Partner _ Solution Developer _ IBM employee
_ None of the above

Please rate your overall satisfaction with this book using the scale:
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction __________

Please answer the following questions:

Was this redbook published in time for your needs? Yes___ No___

If no, please explain:

What other redbooks would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

SG24-2152-02

Printed in the U.S.A.

B
uilding

A
S/400

C
lient/Server

A
pplications

w
ith

Java
SG

24-2152-02

	Figures
	Tables
	Preface
	The Team That Wrote This Redbook
	Comments Welcome

	Chapter 1. Object-Oriented Technology Overview
	1.1 Before Object-Oriented Technology
	1.2 Objects
	1.2.1 Encapsulation of Objects

	1.3 Class Relationships
	1.3.1 Specialization
	1.3.2 Composition
	1.3.3 Collaboration

	1.4 Polymorphism
	1.5 Benefits of Object-Oriented Technology

	Chapter 2. Introduction to VisualAge for Java
	2.1 The VisualAge Family
	2.2 VisualAge for Java Overview
	2.2.1 VisualAge for Java Versions
	2.2.2 Integrated Development Environment
	2.2.3 Components and Features

	2.3 Integrated Development Environment (IDE)
	2.3.1 Java Support
	2.3.2 Navigating within VisualAge for Java
	2.3.3 How It Fits Together
	2.3.4 Building a Sample Application
	2.3.5 Team Development
	2.3.6 Applets and Applet Viewer
	2.3.7 Editor, Debugger, and SmartGuides

	2.4 Enterprise Access Builders (EAB)
	2.4.1 Data Access Builder (DAX)

	2.5 System Requirements and Prerequisites for Version 2.0
	2.6 Migration from VisualAge for Java Version 1.0 to 2.0
	2.7 Upgrades Available for VisualAge for Java 2.0
	2.8 Summary

	Chapter 3. AS/400 Toolbox for Java
	3.1 Introduction to the AS/400 Toolbox for Java
	3.1.1 Installing the Toolbox
	3.1.2 V4R3 Enhancements
	3.1.3 V4R4 Enhancements
	3.1.4 Supported Platforms
	3.1.5 Application Developer Usage
	3.1.6 AS/400 Host Servers
	3.1.7 AS400 Object, Infrastructure, and Sign-On

	3.2 AS/400 Toolbox for Java and Host Servers
	3.2.1 Data Descriptions and Conversions
	3.2.2 AS/400 Data Types
	3.2.3 Record Level Conversions
	3.2.4 JDBC Specification
	3.2.5 Record-Level File Access
	3.2.6 Integrated File System
	3.2.7 Print
	3.2.8 Command
	3.2.9 Program Call
	3.2.10 Data Queue

	3.3 How the AS/400 System Fits into This Picture
	3.3.1 Security
	3.3.2 National Language Support
	3.3.3 Save and Restore Considerations
	3.3.4 Installation and Run-Time Considerations
	3.3.5 Error Recovery Considerations
	3.3.6 Mapping AS/400 Data Types to Java Data Types

	3.4 Introduction to Application Examples
	3.5 AS/400 Database Access
	3.5.1 JDBC Interface
	3.5.2 JDBC Performance Tips
	3.5.3 JDBC Application Example
	3.5.4 JDBCExample Class
	3.5.5 JDBCExampleDisplayAll Class
	3.5.6 Reusable GUI Part
	3.5.7 Stored Procedures
	3.5.8 JDBC Stored Procedure Application Example
	3.5.9 StoredProcedureExample Class
	3.5.10 DDM Record-Level Access Application Example
	3.5.11 RLAExample Class
	3.5.12 Distributed Program Call Feature
	3.5.13 Distributed Program Call (DPC) Application Example
	3.5.14 DPCExample Class
	3.5.15 Data Queues
	3.5.16 Data Queue Application Example
	3.5.17 DataQueueExample Class

	3.6 Network Print
	3.6.1 Print Example
	3.6.2 SpooledFileListExample Class

	3.7 Integrated File Systems Access
	3.7.1 Integrated File System Example
	3.7.2 IFSExample Class

	Chapter 4. AS/400 Toolbox for Java — GUI Classes
	4.1 Overview of the GUI Classes
	4.1.1 AS/400 Panes
	4.1.2 JDBC
	4.1.3 Command Call
	4.1.4 Data Queues
	4.1.5 Error Events
	4.1.6 Jobs
	4.1.7 Messages
	4.1.8 Network Print
	4.1.9 Program Call
	4.1.10 Record-Level Access
	4.1.11 Users and Groups

	4.2 JDBC Examples
	4.2.1 Using the AS/400 Toolbox Classes in the VCE
	4.2.2 SQLResultSetTablePane
	4.2.3 SQLQueryBuilderPane
	4.2.4 SQLResultSetFormPane
	4.2.5 SQLResultSetModel

	4.3 Record Level Access GUI Examples
	4.3.1 RecordListFormPane
	4.3.2 RecordListFormPane Using the Keyed Access Example

	4.4 Conclusion

	Chapter 5. AS/400 Toolbox for Java Modification 2
	5.1 Upgrading the AS/400 Toolbox Contained in VisualAge for Java 2.0
	5.2 XML
	5.3 PDML
	5.3.1 PDML Example

	5.4 The Graphical Toolbox
	5.4.1 Installing the Graphical Toolbox on Your Workstation

	5.5 Java Plug-in for Operations Navigator
	5.5.1 Setting Up the GUI Builder
	5.5.2 Starting the GUIBuilder
	5.5.3 Creating the New Panel Definition
	5.5.4 Modifying the Databean to Retrieve Data from the AS/400 System
	5.5.5 Testing the Application
	5.5.6 Adding an Operations Navigator Plug-in
	5.5.7 Modifying the Windows Registry
	5.5.8 Testing the Extension
	5.5.9 Adding a Second Panel to the PDML File
	5.5.10 Modifying the SystemStatusEngine DataBean
	5.5.11 Modifying the SystemStatusManager

	5.6 PCML Examples
	5.6.1 A Simple PCML Example
	5.6.2 Calling the DPCXRPG Program Using PCML
	5.6.3 PCML Conclusion

	5.7 JDBC 2.0
	5.7.1 JDBC Result Sets
	5.7.2 Using Scrollable and Updatable Result Sets
	5.7.3 JDBC 2.0 Example

	5.8 Additional Classes
	5.8.1 SpooledFileViewer
	5.8.2 VSystemStatusPane
	5.8.3 Jobs and Job Logs
	5.8.4 Users and Groups
	5.8.5 IFS File Access

	Chapter 6. Enterprise Access Builder for Data (DAX)
	6.1 Overview
	6.2 Building an Application Using the Data Access Builder (DAX)
	6.2.1 Application Requirements

	6.3 Generating the Application Using DAX
	6.3.1 Understanding the Software Design
	6.3.2 Building the Application

	6.4 Building the Company Class
	6.5 Building a Custom GUI Using DAX Objects
	6.6 The Completed Application
	6.7 Summary

	Chapter 7. Remote Method Invocation
	7.1 What RMI Is
	7.2 Building an RMI Application
	7.3 Building a Simple AS/400 Application Using RMI
	7.3.1 Defining Interfaces
	7.3.2 Implementing the Remote Server Objects
	7.3.3 Running rmic on Remote Implementation Classes
	7.3.4 Implementing the Client
	7.3.5 Making the Server Code Network Accessible

	7.4 RMI JDBC Example
	7.4.1 Item Class
	7.4.2 Defining the Interface
	7.4.3 Implementing the Remote Server Objects
	7.4.4 Creating the Stubs and Skeletons
	7.4.5 Implementing the Client
	7.4.6 Making the Server Code Network Accessible

	7.5 Conclusion

	Chapter 8. IBM Enterprise Toolkit for AS/400
	8.1 Using ET/400
	8.2 AS/400 Toolbox for Java Classes
	8.3 Distributed Program Call SmartGuide
	8.4 SmartGuide to Convert AS/400 Display Files to Java
	8.5 Creating a Subfile SmartGuide
	8.5.1 Creating a Java Subfile Bean

	8.6 Support for Export, Compile, Run, and Debug AS/400 Programs
	8.6.1 Setup
	8.6.2 Export Support
	8.6.3 Compile Support
	8.6.4 Debug Support
	8.6.5 Debugging an AS/400 Java Program

	8.7 ET/400 System Requirements
	8.8 PTF Information

	Chapter 9. JavaBeans
	9.1 What JavaBeans Offer
	9.1.1 Visual Manipulation and Building
	9.1.2 Everything Java Offers and More
	9.1.3 Easy Packaging and Distribution

	9.2 The Basics of JavaBeans
	9.2.1 What It Actually Means to Be a Bean

	9.3 Creating a Simple JavaBean
	9.4 Creating a Program Call JavaBean
	9.4.1 Distributed Program Call Feature
	9.4.2 Application Description
	9.4.3 Creating a Program Call JavaBean
	9.4.4 Building an Application Using the DPCXRPG Bean
	9.4.5 Using the DPCXRPG Bean in the VCE

	9.5 Advanced JavaBeans Concepts
	9.5.1 What Makes a Good JavaBean
	9.5.2 References and More Information

	Chapter 10. Deployment Considerations and Tools
	10.1 Java Archive Files
	10.1.1 JarMaker
	10.1.2 JarMaker Example
	10.1.3 AS400ToolboxJarMaker
	10.1.4 Example Usage

	10.2 Securing Applications with SSL
	10.2.1 Internet Security Elements
	10.2.2 Transaction Security and Secure Sockets Layer

	10.3 Digital Certificates and Certificate Authority
	10.4 AS/400 Implementation of Digital Certificate Management
	10.4.1 Configuring a Digital Certificate Environment

	10.5 Using a Self-Signed Certificate for SSL
	10.5.1 Creating an Intranet Certificate Authority
	10.5.2 Creating a Server Certificate with Your Intranet CA

	10.6 Using a Server Certificate from an Internet CA
	10.6.1 Receiving a Server Certificate for This Server

	10.7 Downloading the SSL Java Packages
	10.8 Creating a KeyRing Class
	10.9 Modifying an Application to Use SSL with VisualAge 2.0
	10.9.1 Importing the Required Classes
	10.9.2 Modifying the Program
	10.9.3 Testing the Changed Program
	10.9.4 Additional SSL Related Resources

	Appendix A. Example Programs
	A.1 Downloading the Files from the Internet
	A.2 Setting Up VisualAge for Java
	A.2.1 AS/400 Toolbox for Java Classes
	A.2.2 IBM Enterprise Data Access Libraries
	A.2.3 IBM Enterprise Access Builder Library

	Appendix B. AS/400 Source Listings
	B.1 PARTS/PF
	B.2 SPROC2/SQLRPGLE
	B.3 SPROC3/SQLRPGLE
	B.4 DPCXRPG/RPGLE
	B.5 ˆDQXRPG/RPGLE

	Appendix C. GUI Builder Code
	C.1 SystemStatusEngine.java
	C.2 SystemStatusManager
	C.3 SystemStatus Registry
	C.4 SystemStatusEngine.java
	C.5 SystemStatusManager

	Appendix D. Special Notices
	Appendix E. Related Publications
	E.1 International Technical Support Organization Publications
	E.2 Redbooks on CD-ROMs
	E.3 Other Publications

	How to Get ITSO Redbooks
	IBM Redbook Fax Order Form

	List of Abbreviations
	Index
	ITSO Redbook Evaluation

