
International Technical Support Organization

SG24-2247-00

From Client/Server to Network Computing
A Migration to Java

http://www.redbooks.ibm.com

Christophe Toulemonde, Anthony Button, Karen Harrison,
Jae Hyung Lee, Stephen Longhurst, Luigi Walter Sartori

International Technical Support Organization SG24-2247-00

From Client/Server to Network Computing

May 1998

A Migration to Java

© Copyright International Business Machines Corporation 1998. All rights reserved
Note to U.S Government Users - Documentation related to restricted rights - Use, duplication or disclosure is subject to restrictions
set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (May 1998)

This edition applies to CICS Transaction Server for OS/390 Version 1.2, Domino Go Webserver Version 4.6,
VisualAge for Java Version 1.0, DB2 for MVS/ESA Version 4, and DB2 Universal Database version 5.0.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. QXXE Building 80-E2
650 Harry Road
San Jose, California 95120-6099

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any way
it believes appropriate without incurring any obligation to you.

Before using this information and the product it supports, be sure to read the general information in Appendix E,
“Special Notices” on page 109.

Take Note!

Contents

Figures . vii

Tables . ix

Preface . xi
The Team That Wrote This Redbook . xi
Comments Welcome . xiii

Chapter 1. Foreign Currency and Traveler’s Check Application 1
1.1 Business Concepts .1
1.2 Business Processes .1
1.3 CS92 Infrastructure .2

1.3.1 Hardware Configuration .3
1.3.2 Software Configuration .3
1.3.3 Communications .4

1.4 Detail Design .5
1.5 Data and Function Placement .6

1.5.1 Data Placement. .6
1.5.2 Function Placement .7

1.6 Application Coding .7
1.7 Graphical User Interface Design .8

Chapter 2. Network Computing Framework .11
2.1 Open Blueprint .11
2.2 Network Computing Framework? .11
2.3 NC Framework Components .12

2.3.1 Clients. .12
2.3.2 e-Business Applications Services .13
2.3.3 Data and Transaction Connectors .14
2.3.4 Application Programming Support .14
2.3.5 Foundation Services .15
2.3.6 Web Server with Object Request Broker .16
2.3.7 Infrastructure with Java, Directory, and Security16
2.3.8 Systems Management .16

Chapter 3. From Client/Server to Network Computing19
3.1 The Client/Server Model .19

3.1.1 Distributed computing .19
3.1.2 Transparency .20

3.2 Network Computing Benefits .22
3.3 Building a Client/Server Application .23

3.3.1 Basic Communication Models .24
3.3.2 Application Characteristics .24
3.3.3 Security .25
3.3.4 System Management. .26
3.3.5 Data Management .27

3.4 Architecture: Three-Tier Model .27
3.4.1 Hardware .28
3.4.2 Software .28
3.4.3 Use of the Tier Model in Migration .28
© Copyright IBM Corp. 1998 iii

Chapter 4. Network Computing New Environment 31
4.1 Java . 31

4.1.1 Java Applet . 32
4.1.2 Java Application . 33
4.1.3 JavaBeans. 33
4.1.4 VisualAge for Java . 33

4.2 Web Server . 34
4.2.1 Features . 35
4.2.2 Security Considerations . 36

4.3 CICS . 37
4.3.1 CICS Gateway for Java . 37

4.4 DB2 . 41
4.4.1 Net.Data . 42
4.4.2 DB2 Java Support . 43
4.4.3 Configuration . 43

Chapter 5. Network Computing Security Environment 45
5.1 Java Security Features . 45
5.2 Leaving the Sandbox . 46
5.3 Netscape Capabilities API . 46

5.3.1 Implementation . 47
5.3.2 Principles . 48

5.4 Microsoft Internet Explorer Security Zone System 48
5.5 The HotJava Security Model . 49
5.6 Digital Certificates . 51

5.6.1 Why Sign Java Applets? . 53
5.6.2 Obtaining a Digital Certificate . 54

5.7 Security Features in Java 1.2 . 55
5.8 Secure Java Applets . 55

Chapter 6. Designing a Network Computing Application 57
6.1 From CS92 to NC97: Application Selection . 57
6.2 NC97 Infrastructure . 57

6.2.1 Hardware . 58
6.2.2 Software . 59
6.2.3 Communications . 59

6.3 Application Design Tasks . 60
6.3.1 Application Design . 60
6.3.2 Outline Design . 61

6.4 Presentation and Application Separation . 62
6.5 Data and Function Placement . 62

6.5.1 Data Flexibility . 62
6.5.2 Function Flexibility . 62
6.5.3 CS92 Application Request Manager . 62
6.5.4 Routing Techniques . 63

6.6 Data Placement . 64
6.6.1 Reference Data . 64
6.6.2 NC97 Data Placement . 65

6.7 Function Placement . 66
6.7.1 Existing Function . 67
6.7.2 Updated Function . 68

6.8 Designing the Application Access . 69
6.9 Designing for the Web . 70
iv A Migration to Java

6.9.1 User Base . 70
6.9.2 System Operation . 71

6.10 Designing for Integrity . 72
6.10.1 Designing Logical Units of Work . 72
6.10.2 User Awareness . 73

6.11 Designing for Security . 73
6.12 Designing for Year 2000 Compliance. 74

Chapter 7. Developing the New Client Application 75
7.1 Graphical User Interface . 75

7.1.1 Java features . 75
7.1.2 Common Look and Feel . 76

7.2 VisualAge for Java. 77
7.2.1 Application or Applet Decision . 77
7.2.2 Applet Design Goals . 78
7.2.3 Applet Prerequisites. 78

7.3 Object Modeling . 78
7.4 Window Manager. 79
7.5 Router . 79
7.6 Transaction Manager . 80
7.7 JDBC DB2 Access. 83
7.8 Net.Data . 85

7.8.1 Implementation . 85
7.8.2 Net.Data Macro . 86

7.9 COBOL Changes. 91
7.10 Change of Platform . 92

Appendix A. Domino Go Web Server for OS/390 Operations95

Appendix B. CICS Gateway for Java — Installation and Setup 97
B.1 Configuration .97
B.2 Running the CICS Gateway for Java .97

Appendix C. Creating Signed Java Applets .99
C.1 The Netscape Tools. .99

C.1.1 Create a JAR file signed for Netscape Communicator.100
C.2 The Sun Java Development Kit Tools .100
C.3 Microsoft Authenticode Technology. .101

Appendix D. Net.Data Macro .103
D.1 The Tables .103
D.2 Net.Data Macro .104

Appendix E. Special Notices .109

Appendix F. Related Publications .111
F.1 International Technical Support Organization Publications111
F.2 Redbooks on CD-ROMs. .111
F.3 Other Publications and Web Sites .111

F.3.1 Network Computing Framework. .111
F.3.2 JAVA .112
F.3.3 Domino Go Web Server .112
F.3.4 CICS. .112
F.3.5 DB2 .113
v A Migration to Java

F.3.6 VisualAge for Java .113

How To Get ITSO Redbooks . 115
How IBM Employees Can Get ITSO Redbooks .115
How Customers Can Get ITSO Redbooks .116
IBM Redbook Order Form .117

Glossary . 119

List of Abbreviations . 123

Index . 125

ITSO Redbook Evaluation . 131
vi A Migration to Java

Figures

1. CS92 System Configuration. 3
2. CS92 Communication Protocols . 4
3. CS92 Programming Language. 8
4. Network Computing Framework Infrastructure . 12
5. Applet Tag . 32
6. CICS Gateway for Java on a Workstation, with CICS Client 38
7. CICS Gateway for Java on OS/390 . 38
8. CICS Gateway for Java on a Workstation, with CICS Server 39
9. CICS Gateway for Java on OS/390: Sequence of Events 40
10. Net.Data Architecture. 42
11. JDBC Applet Sample . 43
12. Net.Data and JDBC Configuration . 44
13. Netscape Security Warning . 47
14. Internet Explore Security Setting Panel . 49
15. HotJava Basic Security Panel . 50
16. HotJava Advanced Security Preference Panel . 51
17. Netscape Security Info Window . 52
18. Importing a New Certificate with Netscape . 53
19. NC97 Infrastructure . 58
20. NC97 Communication Configuration . 60
21. Possible Function Placements . 67
22. Function Placement Using the CICS Gateway for Java. 68
23. Installation Choice of Java Code . 69
24. Internet/Intranet Options . 70
25. Window Manager Object . 79
26. Router Object . 80
27. TransactionManager . 81
28. COMMAREA . 81
29. Create COMMAREA Bean. 82
30. Unit of Work Bean Properties. 83
31. Visual Programming with the CICS Bean . 83
32. Definition of BRANCH Table . 84
33. Schema Mapping . 84
34. Branch Bean Properties Window . 84
35. Visual Programming with the Data Bean . 85
36. Net.Data Implementation . 86
37. Net.Data Input Section . 88
38. Net.Data Function Input Form . 89
39. Net.Data Report Section . 89
40. Net.Data Process Section . 90
41. Net.Data Function Output . 91
42. Micro Focus COBOL Redefine Statement . 92
43. IBM COBOL Redefine Statement . 92
44. Java Gateway Startup JCL . 98
45. JAR file creation . 100
46. CAB File Creation . 102
47. Ord_Hist Table Definition . 103
48. Ord_Detail_Hist Table Definition . 103
49. Ord_Hist_View View Definition . 104
© Copyright IBM Corp. 1998 vii

viii A Migration to Java

Tables

1. Table Placement . 6
© Copyright IBM Corp. 1998 ix

x A Migration to Java

Preface

In summer of 1992, at the ITSO San Jose Center, an international team designed
and implemented a client/server application to demonstrate how the client/server
computing model can be implemented with IBM’s mainline transaction and
database products in the OS/2 and MVS/ESA environment. At that time, this
application was using the best application architecture, development tools and
techniques, and products.

Five years later, the new technologies, and especially the Internet, have strongly
modified the computer industry and company environments. By combining the
Web technologies with the vast resources of traditional information technology,
companies around the world are shifting their business activities to the Internet.
Business done on the Internet is known as e-business. The new application
architecture use the Network Computing Framework. Java is the development
environment for choice of the Internet, and new connectors exist to access the
enterprise resources managed by CICS and DB2.

To gain the advantage of this new model and environment, companies face a
choice to either create completely new applications to exploit the Net and allow
them to do business on the Internet, or migrate and enhance existing applications
to support the Web technologies.

In this book, we explore the migration path. In the summer of 1997, an
international team at ITSO San Jose migrated the 1992 client/server application
to the new architecture with three main objectives:

 • To reuse the maximum amount of the existing application

 • To open the application to the Net

 • To add a new function to the application.

This book explains the complete migration process from the design phase to
production, including the choice of the tools used in the migration. This book will
help you to understand the different steps required in a migration process, what
questions have to be asked and some of the answers we found in our
environment. It also describes the different tools and technologies that we used to
accomplish this work. In addition, it presents some alternatives to our choice that
may need to be investigated.

This book is intended for technical professionals who are working in the area of
designing and implementing network computing applications connected to
existing enterprise systems.

The Team That Wrote This Redbook

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization San Jose Center.

Christophe Toulemonde is a Senior ITSO Specialist for client/server and
network computing at the Application Development and Data Management ITSO,
San Jose Center. He writes extensively and teaches IBM classes worldwide on all
areas of client/server and network computing. Before joining the ITSO,
© Copyright IBM Corp. 1998 xi

Christophe worked as Technical Manager in an IBM subsidiary, Datablue, in
France. You can reach him by e-mail at toulemon@us.ibm.com.

Anthony Button is a Technical Consultant for HUON, an IBM Business Partner.
He has experience with all aspects of Client/Server development, from the client
to the server and the communication mechanism in between. Anthony is also
involved in a consultancy role, which includes working with customers to utilize
new technologies and HUON solutions.You can reach him by e-mail at
tony_button@uk.ibm.com

Karen Harrison is a senior IT specialist in the UK. She has 4 years of experience
in the field of client/server development. She has worked at IBM for 16 years. Her
areas of expertise include the life-cycle of application development from
requirements and design, through build and test, to implementation and
maintenance.You can reach her by e-mail at karen_harrison@uk.ibm.com.

Jae Hyung Lee is a ICP-ITS in IBM Korea. He has 20 years of experience in
PSR, Field SE and marketing support. He holds a degree in Electronics
Engineering from Korea University. His areas of expertise include transaction
systems, and legacy system integration through Internet. He has written
extensively on CICS transaction systems. You can reach him by e.mail at
cpsjhl@kr.ibm.com.

Stephen Longhurst is a software developer working at IBM Hursley for the
CICS/ESA Data Communications group. He is part of the CICS Web Interface
development team and also implemented the MVS port of the CICS Gateway for
Java. Stephen graduated in 1996 from the University of Southampton with skills
in Java, TCP/IP and distributed systems. You can reach him by e-mail at
slong@hursley.ibm.com.

Luigi Walter Sartori is an IT specialist in IBM Italy NCS Technical Support. He is
especially experienced in database technology and in this area he has supported
customers during the implementation of systems using DB2 (on various
platforms), DB2 Parallel Edition and DataJoiner. You can reach him by e-mail at
lwsartor@vnet.ibm.com

Thanks to the following people for their invaluable contributions to this project:

Eugene Deborin
IBM International Technical Support Organization, San Jose Center

Ueli Wahli
IBM International Technical Support Organization, San Jose Center

Alan Hollingshead
IBM Hursley Laboratories

Susan Malaika
IBM Santa Teresa Laboratories

Geoff Sharman
Transaction Systems Software, IBM United Kingdom

Thanks also to Shirley Hentzell for her editorial review.
xii A Migration to Java

Comments Welcome

Your comments are important to us!

We want our redbooks to be as helpful as possible. Please send us your
comments about this or other redbooks in one of the following ways:

 • Fax the evaluation form found in “ITSO Redbook Evaluation” on page 131 to
the fax number shown on the form.

 • Use the electronic evaluation form found on the Redbooks Web sites:

For Internet usershttp://www.redbooks.ibm.com

For IBM intranet users http://w3.itso.ibm.com

 • Send us a note at the following address:

redbook@vnet.ibm.com
 xiii

xiv A Migration to Java

Chapter 1. Foreign Currency and Traveler’s Check Application

Back in 1992, the foreign currency and traveler’s check application that we then
called CS92 for Client/Server, was developed using the basic principles of the
client/server model. The scenario was chosen for the following reasons:

 • The simplicity of its business concepts, as most people have bought or sold
foreign currency before going on foreign travel

 • The generic components of its processes, which can easily be applied to any
business that involves order and supply processing.

 • Its benefits from a client/server computing architecture because of the
organization of the business.

In this chapter, we explain CS92 by giving a brief outline of its functionality to
allow you to understand the migration process described in the following
chapters.

1.1 Business Concepts

We introduce CS92 by describing its operation in a fictitious bank, providing
foreign currency and traveler’s checks to customer. Based on the bank’s
organization, CS92 is used in the branches by the bank’s clerks and in the central
department at the bank head-quarters.

Bank branches supply currency and checks on demand, where demand justifies
maintaining stocks at the branch. Otherwise, currency and checks are ordered
from the central department and mailed to the customer or to the branch for
collection. The branches also cash in traveler's checks and purchase currency.

The central department is responsible for maintaining appropriate stock levels
centrally and at all branches. Maintaining these levels is very important for
currency, because stock holdings cannot accrue interest, and insufficient stocks
mean lost sales.

CS92 deals also with reconciling branch stocks against sales and purchases,
exchanges rates, and calculation of branch and central department commissions.

1.2 Business Processes

In functional terms, CS92 covers all aspects of a bank’s foreign currency and
traveler’s checks operation. The business processes involved are:

 • Customer order management
 • Cashier management
 • Branch management
 • Central bank management

All of the business processes were modeled, but only two subprocesses were
fully implemented:

 • Customer purchases from branch cashier

This is the most frequently performed function in the application. Purchases
are normally for the currency and traveler's checks of the destination country.
© Copyright IBM Corp. 1998 1

Payment for this service can be by cash, credit card, local check, or a debit to
the customer's account.

Stock levels are reduced, a customer tab is printed, and accounting entries
are passed to the accounts application.

 • Branch stock replenishment

At the end of each day, the requests of the cashiers are consolidated. Each
request can be an order either to replenish stock or send excess stock. A
consolidated branch order is then sent to the central departments.

In this book, we migrated only the customer purchases from branch cashier
function.

1.3 CS92 Infrastructure

Based on the bank’s organization, a three-levels system structure was
implemented:

 • The client workstation, used by the Cashier, running OS/2 2.0 with IBM
Extended Services with Database Server for OS/2 Version 1.0 and CICS OS/2
Version 1.2

 • The local server, located in the branch office, running OS/2 2.0 with IBM
Extended Services with Database Server for OS/2 Version 1.0 and CICS OS/2
Version 1.2

 • The mainframe server, located in the Head Office, running MVS/ESA Version
4.2 with CICS/ESA Version 3.3 and DB2 Version 2.3.

CS92 ran on a LAN-attached OS/2 workstation that is linked to an MVS/ESA
mainframe server. In this project, the existing workstations, LAN, network, and
mainframe were used in the hardware configuration. For software, CICS/ESA,
DB2, CICS OS/2, DDCS/2, and IBM Extended Services with Database Server for
OS/2 were used to demonstrate the client/server enabling capabilities of this
software.

Figure 1 shows the CS92 system configuration.
2 A Migration to Java

Figure 1. CS92 System Configuration

Although the application was implemented in an enterprise LAN environment
using specific hardware and software, the application design using a client/server
computing model makes it just as easy to implement the application in other
environments, for example, a workgroup LAN environment, and using different
hardware and software.

1.3.1 Hardware Configuration
The workstations on the LAN can be either client machines or local servers. They
are connected via a communications controller to the mainframe server, which
acts as an enterprise server.

The hardware configuration we used maps very nicely to the structure of the
business described above. The functions provided by the enterprise server could
be mapped to the functions provided by the head office. The functions provided
locally by the LAN in each branch could be mapped to the functions provided by
the branch. Each workstation on the LAN corresponds to the workstation used by
an employee of the branch (for example, a cashier).

1.3.2 Software Configuration
CICS/ESA Version 3.3 and DB2 Version 2.3 were installed on the mainframe
server running MVS/ESA Version 4.2.

Each workstation had the following software installed:

 • OS/2 Version 2.0 with IBM Extended Services with Database Server for OS/2
Version 1.0

 • CICS OS/2 Version 1.2
Foreign Currency and Traveler’s Check Application 3

In the project the workstation had the full database manager installed; however,
the client part of the IBM Extended Services with Database Server for OS/2
would have been sufficient.

The local server machine had installed:

 • DDCS/2 Version 1.0 multiuser

The development machines had installed:

 • IBM C/2 Version 1.1

 • IBM C SET/2 Version 2.0

 • EASEL Workbench

 • Micro Focus COBOL/2.

1.3.3 Communications
LU 6.2 and NetBIOS are the two communication protocols used.

 • LU6.2 was used for the CICS communications between CICS/ESA and CICS
OS/2.

 • LU6.2 was also used for the database communications between DB2 and
DDCS/2.

 • NetBIOS was used for the database communication between the Client
workstation and the Local server.

Figure 2 shows the different protocols used by the database and the transaction
communications.

Figure 2. CS92 Communication Protocols
4 A Migration to Java

1.4 Detail Design

The key objective of the CS92 project was to show how the client/server
computing model, using an online transaction processing (OLTP) application,
could be implemented with IBM's mainline transaction and database products. It
focuses on the following considerations:

Encapsulation
All access to data was through application code built around the data. The client
application did not use dynamic SQL. If the data was resident on the same
platform as the client application, data access was built as a separate server
application so that client applications would not be responsible for data location
or organization.

This encapsulation allowed code to be reused when new server functions were
required that resembled functions already developed. The new functions inherited
the existing, or base, functions.

Transparency
The project's application design and system design were independent of each
other. For instance, services were known by their identifier only, and the service
location was controlled independently of the application code. The control of
service location introduced some directory services functions into the
development.

Although the message routing function was developed at the application level,
this layer was considered part of the network operating system layer and should
remain transparent to the application developer.

Open Architecture
Access to the server was via C or COBOL programs only. Any program, not just
CICS programs, may invoke a function, written in C or COBOL, that accesses
services and data.

The services were developed to be easily portable to other platforms. Because
each program was developed using modular programming techniques, the
programming language standard set of calls was used and environment-specific
calls were not allowed. It should be noted that client functions were not easily
ported across platforms because the presentation components were environment
dependent.

Any change to server functions would have affect only those existing or new client
functions that require the function created by the change. There would be no
need to amend or relink client applications that required the unchanged or
previous version of the server function. This also applies when the decision is
made to change server location.

Flexibility
The decision on how to split functions was made as late as possible in the design
phase; minimizing the functions at the client reduces the likelihood of a client
process disrupting the system. This thin client approach applied throughout this
project.
Foreign Currency and Traveler’s Check Application 5

Simple Validation
Data field validation was applied at the client and server functions: at the client to
minimize network and server traffic in the event of simple errors, and at the server
so that one server would not become dependent on the many clients correctly
performing error handling

1.5 Data and Function Placement

Another important characteristic of CS92 is data and function placement.

1.5.1 Data Placement
Data placement was discussed in terms of these considerations:

 • Data ownership, which is often the key factor when considering the distribution
of data

 • Level of sharing, whether by many users or just one

 • Data partition between the different locations

 • Target environment, based on the cost and the software architecture of the
target hardware or the security facilities at the location

 • Read/change data, including the transaction rates and the data manipulation
profile to allow acceptable response times

 • Volatility and currency of data

 • Integrity, dealing with the coordination of updates in a logical unit of work.

 • Systems management, such as backup of data, propagation of data, and data
recovery.

From the above considerations, a decision was made for each entity as to
whether to hold a single copy of the data in one location, to hold multiple copies
of the data in multiple locations, or to distribute the data, as shown in Table 1.

Table 1. Table Placement

Table Location

Currency Client workstation, backup on the Local server

Currency denomination Client workstation, backup on the Local server

Exchange rate Mainframe server

Customer order Local server

Customer order denomination Local server

Customer order currency Local server

Cashier Client workstation and Local server

Cashier order Local server

Cashier order details Local server

Branch order Mainframe server

Branch order details Local server and Mainframe server

Customer Local server and Mainframe server
6 A Migration to Java

1.5.2 Function Placement
The outline design of the application was produced from the requirement
specifications. Each business process that was identified was then transformed
into application tasks and mapped into application functions.

The decomposition of application tasks into application functions, which can then
be implemented as self-contained modules, is key in the design of a client/server
application. The application functions had to run on any platform, whether
workstation, local server, or mainframe server, and the location of a function had
to be transparent to the client part of the application. When the client required a
service, it called the function that provides the service, but was unaware of where
the service was coming from.

In CS92, functions that do not access data were placed close to the user. With
functions that access data, the software products used enabled a flexible
approach to function placement. Functions that access data need not be
influenced by data placement.

The two examples below demonstrate the flexibility that is available for function
placement:

 • The cashier table, which contains the cashier ID and name, is held locally and
the server function to get the cashier identity resides on the local workstation.

 • The exchange rate table, which contains the buy and sell rate for each
currency, resides on the mainframe server, but the function to retrieve the
exchange rate data was implemented on the client machine. In this particular
case, DDCS/2 enabled the local server function to transparently get the data
from the DB2 on the mainframe server. No application code is necessary on
the mainframe server for this to happen.

1.6 Application Coding

As shown in Figure 3 on page 8, the following programming languages were used
to implement the different components of the application:

 • EASEL was used to implement the presentation component of the application.

 • The application component and the application request handler were
implemented using IBM C SET/2 (with 32-bit addressing capabilities) to exploit
the capabilities of OS/2 Version 2.0.

 • IBM C/2 was used to implement the system server interface component to
maintain compatibility with CICS OS/2 Version 1.2, which then supported only
16-bit addressing.

 • To achieve the portability of the functions that provide the services to the
application on multiple platforms, functions on the workstations and mainframe

Commission Client machine, Local server, and Mainframe
server

Control information Local server

Branch Local server and Mainframe server

Table Location
Foreign Currency and Traveler’s Check Application 7

server were implemented in COBOL/2, a programming language used in many
business applications. Micro Focus COBOL/2 was used to implement the
functions on the workstation, and IBM VS COBOL II was used on the
mainframe server.

Figure 3. CS92 Programming Language

1.7 Graphical User Interface Design

The approach to designing the GUI consisted of the following steps:

 • The processes in the process model that the end user will perform were
identified. For example, in order management, the user will perform tasks to
carry out such processes as order creation and order update.

 • For each process, we identified the entity in the data model that the user
would most naturally use to perform the business process. For example, the
customer order entity was selected as the object with which the user interacts
in order management. We recommended that a prototype of the GUI be
developed together with the end user to confirm that the objects selected for
the GUI are correct.

 • For each entity involved, we identified the actions that can be performed on
the entity. For example, actions on the customer order entity include:

 • New

 • Update

 • Delete

 • Print.
8 A Migration to Java

 • We mapped each action of an object as closely as possible to a process. For
example, for the customer order object,

 • New action was mapped to the create-order process.

 • Update action was mapped to the update-order process.

 • Delete action was mapped to the delete-order process.

 • Print action was mapped to the print-order process.

 • Next we identified the user will need to work with on the GUI, beginning with
the data for the tasks within a process. For example, in the create-order
process, we identified tasks that access customer details, stock details, and
input order details. All this information needs to be in the window. The
information can be refined during prototyping.

 • By carrying out the above steps for each object with which the user interacts,
we defined the actions and the windows containing data that the user needs to
work with. Prototyping could then begin.
Foreign Currency and Traveler’s Check Application 9

10 A Migration to Java

Chapter 2. Network Computing Framework

The Open Blueprint is an architecture. Specifically, it is an infrastructure
architecture that helps you to build an integrated system from multiple
heterogeneous systems, including any product set that fits in.

The Network Computing Framework (NCF) is a skeleton based on the standards
of the Open Blueprint. It identifies specific products and services, targeted to the
delivery and support of network computing.

In this chapter, we introduce the (NCF). We describe the characteristics of the
framework and the environment to implement the framework. We also describe
the functions implemented in our sample network computing solution.

2.1 Open Blueprint

Open Blueprint is IBM’s software architecture that integrates different forms of
distributed computing such as network computing, client/server, and mobile
computing on a common base. It provides a structure and set of technologies that
enable heterogeneous systems to work together and form an integrated system.

In its easiest form, Open Blueprint is a simple chart that acts as a communication
vehicle and checklist. In its complete form, it consists of a handbook and
technical papers that a software designer would use to make applications on
different systems interoperate.

Open Blueprint defines common functional building blocks and interfaces for
distributed computing. These building blocks that consist of different software
services are arranged in logical groups. This building block approach leads to
modular, scalable systems that are easy to grow and enhance.

Open Blueprint is the common base architecture upon which specific solution
oriented models can be built. The NCF has been developed using the Open
Blueprint as the base.

2.2 Network Computing Framework?

The NCF is an open, standards-based framework for creating expandable
e-business solutions. It's not a product, and it's not based on an IBM only
philosophy (though we do offer complete, end-to-end e-business solutions). It's a
network computing model, containing six key elements:

1. An infrastructure and a set of services whose capabilities can be accessed by
open, standard protocols and a standard component interface, JavaBeans.

2. Clients based on a Web browser Java applet model that support universal
access, a thin client paradigm, and exploitation of just-in-time delivery of
components to provide a rich user interaction with the server.

3. A programming model and tools that create and exploit JavaBean
components. As a result, any tool can produce a component to access any
service.

4. Internet-ready protocol support, such as hypertext transfer protocol (HTTP)
and Internet inter-ORB protocol (IIOP), which links JavaBean components.
© Copyright IBM Corp. 1998 11

5. A set of connector services that provide access to existing data, applications,
and external services.

6. A set of built-in collaboration, commerce and content services as a foundation
for an industry of partner-built solutions and customizable applications for
e-business.

Figure 4 shows the NCF infrastructure.

Figure 4. Network Computing Framework Infrastructure

2.3 NC Framework Components

The NCF has eight majors components, each of which is discussed in detail in
the following subsections:

 • Clients

 • e-business application services

 • Data and transaction connectors

 • Application programming support

 • Foundation services

 • Systems management

 • Web server with object request broker (ORB)

 • Infrastructure with Java, directory, and security

2.3.1 Clients
The client element of the NCF provides universal access, a thin client paradigm,
and exploitation of just-in-time delivery of components for seamless interaction
between a user and information provided by the server. New NCF applications
can be written as hypertext markup language (HTML), including dynamic HTML,
12 A Migration to Java

with Java applet extensions. Because the client model is based on standard
browsing protocols (HTTP) and supports additional standard protocols such as
IIOP, lightweight directory access protocol (LDAP), Post Office protocol (POP),
and NetNews transfer protocol (NNTP), it offers access to key information and
applications.

The NCF client model provides benefits in several key areas:

 • A browser technology, used for distributing information and downloading
applets from the network, making it easy to deploy, use, and manage new
solutions. The NCF also provides several other client options based on user
functionality requirements:

 • A simple browser with Java applet capability, so that Java applets can use
the Object Request Broker (ORB) and IIOP to communicate with remote
objects.

 • Domain-specific desktops that use dynamic HTML and Java applets to
integrate local client applications with Web server access to the network.

 • Application-specific clients, such as e-mail.

 • A fully integrated client such as Lotus Notes, which provides rich
collaboration and superior mobile support.

 • A consistent programming model, which allows developers using Java to learn
once and write anywhere. Having a consistent programming model among
clients means that end users can reap the unique benefits of each of those
devices while taking advantage of common Java and browser-enabled
applications.

 • Dynamic data exchange, implemented as JavaBean components. JavaBeans
can dynamically exchange data using the Lotus InfoBus technology provided
in the JavaSoft Java development kit (JDK).

 • Support of mobile and fixed clients, from personal data assistants to network
computers (NC) and from PCs to high-end workstations. The variety of mobile
clients supported by the NCF operate either in disconnected environments or
connected environments using wireless and other low bandwidth connections.
These clients are supported through the use of replication technology. NCF
mobile communication is enhanced with the use of compression, caching, and
differencing algorithms.

2.3.2 e-Business Applications Services
NCF e-business application services are building blocks that facilitate the
creation of e-business solutions. They are higher-level, application-oriented
components that conform to the NCF programming model. They build on and
extend the underlying NCF infrastructure and foundation services with functions
required for specific types of applications. As a result, e-business solutions can
be developed faster with higher quality.

One set of these building blocks is being defined to support the process steps
used in electronic commerce solutions. This includes support of intellectual
property management and secure business-to-business delivery of content as
well as support of the secure electronic transaction (SET) standards developed
by VISA and MasterCard with support from IBM and other leading companies.
Additional e-business application services will be defined over time.
Network Computing Framework 13

2.3.3 Data and Transaction Connectors
Any application that operates in support of an enterprise must access information
and business processes on a variety of computers. The bulk of today's critical
data and application programs reside on and use existing enterprise systems.
Hence both developers and operations team need a tool set that facilitates
connecting existing applications to the new ones. NCF connectors allow you to
extend your critical corporate data, application, and transaction programs to the
Web, linking the best of the Internet with the best of the enterprise:

 • IBM CICS Gateway for Java brings open access to CICS from any
Java-enabled Web client, such as a Web browser or a network computer. This
Java applet can directly call CICS programs and data and run on any server
platform that is Java-enabled.

 • IBM CICS Internet Gateway provides an interface between a Web server and
a CICS application using common gateway interface (CGI) scripts. It allows
the conversion of 3270 datastreams to HTML format.

 • IBM Net.Data allows Web developers to easily build dynamic Internet
applications using macros. Net.Data Web Macros have the simplicity of HTML
with the power of dynamic SQL. Net.Data provides database connectivity to a
variety of data sources, including information stored in relational databases
and flat files. Your data sources, such as DB2, Oracle, and Sybase, can be on
a wide range of operating systems.

 • Lotus Domino.Connect integrates the Lotus Domino server with a broad range
of database, transaction, and enterprise application systems. Domino.Connect
enables Lotus Notes clients and Web browsers to access enterprise data and
applications, including enterprise resource planning systems, such as SAP
R/3, traditional transaction processing systems, such as CICS and IMS, and
relational database systems including IBM DB2 and offerings from Oracle and
Informix

 • IBM IMS Internet Solutions contain four solutions that provide connectivity
from the Web to transactions in IMS databases. These solutions allow
customers to match their communication infrastructures used with IMS to their
Web server configurations.

 • IBM MQSeries Client for Java enables Web browsers and Java applets to
issue queries over the Internet to MQSeries for information stored in
mainframe and legacy applications.

 • IBM MQSeries Internet Gateway provides a transparent bridge between the
Web and MQSeries commercial-messaging applications.

 • IBM Host On-Demand provides fast and easy access to mainframe data from
the Internet and intranets. Host On-Demand is a high-performance, low-cost
solution for Internet users.

 • DCE Encina Lightweight (DE-Light) Client, combined with an intermediate
gateway, provides a solution for secure network transactions in distributed
environments. DE-Light uses Kerberos and SSL security to support the
integrity of information being processed in a transaction from Web browser to
the server.

2.3.4 Application Programming Support
There are two concepts essential to understanding IBM's approach to this part of
the framework.
14 A Migration to Java

One is the JavaBeans components. They are the core of the delivery model, both
for client-side application support and also for server-side application
programming, taking advantage of the development productivity provided by
Java's reusability of objects. JavaBeans is the organizing principle of the NCF
programming model. It is the platform-neutral, component architecture for Java to
develop or assemble network-aware solutions. The JavaBean component model
specifies how to build reusable software components, how the resulting
JavaBeans describe their properties to visual tools for rapid application
development, and how they communicate with each other.

Here are a few examples of JavaBean components:

 • JavaBeans that provide easy access to relational and hierarchical data

 • JavaBeans that integrate a business's existing transactional applications
(CICS, IMS, and Encina) into new Web-based applications built within the NCF

 • JavaBeans to access applications from vendors such as SAP, Baan, and
PeopleSoft

 • JavaBeans that integrate all of the Domino server classes into the NCF
programming environment

 • Lotus JavaBeans for embedding functions such as text processing,
spreadsheets, charting, and calendaring capabilities into applications

The other concept is the assembly of the components. JavaBeans allows
developers to create reusable software components that can then be assembled
together using visual application builder tools, such as VisualAge for Java. In the
NCF, application development is divided into three categories, summarized
below:

 • Content authoring tools, used to create and manipulate the Web-based
application's multimedia content including HTML, graphics, images,
animations, audio, and video

 • Content assembly and management tools, taking the active contents and
composing and scripting them together with other active or static contents to
create a complete NCF application. This allows someone with neither
sophisticated content development skills nor application development skills to
create the final product.

 • Integrated application development tools, including tools to support
component coding and development such as Lotus Notes Designer for
Domino or VisualAge for Java

2.3.5 Foundation Services
The foundation services are a subset of the Open Blueprint Application Services
resource managers. They are products that provide essential services to
e-business applications, but are not intrinsically e-business applications
themselves. The services are:

 • Mail and community services which provide e-mail messaging, calendaring,
and group scheduling, chat, and newsgroup discussions. These services
support standard Internet technologies and protocols and are accessible from
all standards-based clients.

 • Collaboration services providing groupware and workflow support. They
integrate information from any resources, manage how much and what is
Network Computing Framework 15

shown to the user, allow users to interact with the information, and manage the
content.

 • Relational database services delivered through IBM's Universal DB2. They
provide a facility for managing both the operational data and multimedia
content. They leverage existing business logic to build new Web-based
applications, support development and execution of database application
programs, stored procedures, and user-defined functions using Java. They
support the SQL and the Java database connectivity (JDBC) interfaces and
integrate transaction services using the XA model.

 • Transaction services extend the Web by providing a transactional application
execution environment. NCF transaction services support development of both
procedural and object oriented transactional application program.

2.3.6 Web Server with Object Request Broker
Just as Java and component-based assembly are central to the application
development strategy for the framework, so is the Web server a powerful point of
integration in the NCF. Electronic networking businesses today presupposes the
use of the Web and therefore a Web server.

The Web server is the entry point to server functionality supporting HTTP and
IIOP requests from NCF clients, locating and invoking business logic on the
logical midtier server. The Web server provides the programming environment for
transactional business applications, linking the Web to the existing enterprise
application, data and systems.

2.3.7 Infrastructure with Java, Directory, and Security
The basic infrastructure services are Java, directory, and security.

For both clients and server, the Java Virtual Machine provides the base support
for programming. It also provides platform independence for e-business solutions

Directory services that locate users, services, and resources in the network are
accessed through standard LDAP protocols and interfaces.

Security services support user identification and authentication, single sign-on,
access control to resources and services, firewalls, confidentiality, data integrity,
nonrepudiation of transactions, security management, key recovery, and Java
security. They are based on robust public key support and certificates.

2.3.8 Systems Management
Finally, there is the fundamental assurance that all this can be managed. NCF
systems management encompasses systems, network, and applications
management. The NCF provides for the unique management requirements of
network computing across all elements of the system including applications,
services, infrastructure, and hardware. The basic Systems Management model
has four basic categories:

Development: The IBM products included as part of the NCF already have the
necessary interfaces to facilitate management. Part of the NC Framework is to
provide toolkits that enable customer-written applications and services to also
take advantage of the same management services
16 A Migration to Java

Deployment: Once applications have been developed, it is essential to ease the
process through which they are delivered to the Internet servers.

Operations: This provides support to the WebMaster for statistics, performance
tuning, load balancing, along with more traditional backup, configuration
management, security services. All are part of this aspect of systems
management.

Content: These tools provide support for the visualization of and management of
the objects, links, and files that constitute the electronic business on the Web.
Network Computing Framework 17

18 A Migration to Java

Chapter 3. From Client/Server to Network Computing

In this chapter, we explain the evolution of the computing model. We start from
the characteristics of the client/server application. Then, we analyze their impact,
or their modification in a network computing environment. We, also describe the
benefits the new model can provide. Finally, we discuss how the client/server
application building blocks can be used as is or modified in a network computing
application

3.1 The Client/Server Model

The client/server computing model for distributing applications is a logical model
that defines the existence of a client (requester of a service) and a server
(provider of the service). A service can entail data, a function, or any resource
that can be shared. The server can be local or remote. Usually, the server is
remote, and there is thus a need for communications to connect the client and
server (or servers).

The main evolution between the client/server model and the networking
computing model is in the communication protocol used and the definition of the
client:

 • Today, TCP/IP provides the ability for corporations to merge differing physical
networks while giving users a common suite of functions. It allows
interoperability between equipment supplied by multiple vendors on multiple
platforms, and it provides access to the Internet. In fact, the Internet, which
has become the largest computer network in the world, is based on the
TCP/IP protocol suite.

Unlike the Internet, the intranet has evolved recently, consisting of TCP/IP
networks that are entirely under the control of a private authority or company.
Those intranets may or may not have connections to other independent
intranets (which would then be referred to as extranets) or the Internet. They
may or may not be fully or partially visible from the outside depending on the
implementation.

 • The thin client, as presented by NCs, offers a range of simple, economical
alternatives to terminals and underutilized personal computers. NCs extend
access to network applications, intranets, and the Internet while they lower the
total cost of ownership with reduced up-front expenses and significantly less
need for support. They are simple to install and easy to use and manage. With
the "install once and run everywhere" nature of network computing, including
the growing availability of Java applications, NCs make the business desktop
easier to manage and support.

With NCs, there are no longer any local services on the client machine. There
is no requirement for any storage on the client machine: the application is
dynamically downloaded at execution time, and data is not stored on the client
machine.

3.1.1 Distributed computing
The client/server computing model has evolved to a distributed network
computing model. This model can be viewed as a single multiuser computing
system that functions and performs like a traditional host computer but is built
© Copyright IBM Corp. 1998 19

from a set of discrete machines, interconnected by a very high speed, reliable
mechanism. The whole structure is transparent to the application. Services can
easily be assigned to server machines on the basis of the changing requirements
of users and the changing capabilities of server machines.

In general hardware terms, the application uses workstations or NCs, network
connected servers and enterprise mainframe servers. They each run on different
platforms but are all interoperable since they are linked by the network, thus
maximizing the processing power of each machine. In the network computing
model, the concept of distributed computing is extended further, as applications
can be distributed to any client machine that has a Web browser, without any
preconfiguring of the network.

3.1.2 Transparency
When CS92 was developed, a significant characteristic of the client/server model
was that it provided transparency to applications and end users, leaving them
untroubled by the complexity of the overall system. Each part of the system
encapsulated its own complexity and communicated with the remainder of the
system and users by presenting a simple view.

The following features have transparency considerations:

 • User view

The CS92 user saw the application as a single coherent application that
provided the means of performing the business functions. The user did not
need to know how or where a function or resource is provided.

User view transparency is the same in network computing: a successful
migration should mean that the user is unaware of the change. This is one
major requirement for our migration project.

 • Location

The CS92 user was be able to access applications and data without regard to
their location in the distributed system. Programming interfaces for accessing
data and services enabled requesting programs to be independent of the
location of data or services.

This independence is particularly true of the client in the network computing
model: the client can be located anywhere, on the enterprise network, or even
connected through the Internet (if there is no security exposure) and still be
able to access the application. More, the client can be any kind of hardware,
from NCs to PCs, because most of the load is supported by the servers.

 • Vendors

Both client/server and network computing enable machines from different
vendors to interoperate. Network computing simplifies the interoperability as
there are no specific hardware requirements for the client machine.

 • Network independence transport

When CS92 was developed, many different networks had to be crossed to
access data and applications. This diversity of networks meant that
applications had to use communication interfaces that insulated them from the
protocols of the particular network transport that they used.
20 A Migration to Java

In our network computing migration, we standardized on one network protocol,
TCP/IP, which facilitates the communication between the servers, the
subsystems such as DB2 or CICS, and also the programming of the
application.

 • Distributed applications and service enablers

A basic requirement in both client/server and network computing is that the
application developer should be able to concentrate on the implementation of
a function, rather than on how to make the function accessible to requesters
anywhere in the distributed system.

In our migration, this requirement is satisfied because the application is
downloaded dynamically, on the user’s computer, at execution time. The
enterprise gateways, in our case the CICS Java Gateway and JDBC, enable
clients to connect to the enterprise services.

 • Performance

Clearly, every application requires adequate performance. In CS92, it was
anticipated that when function and data were accessed directly from the
workstation, performance would be improved. However, no performance data
was gathered.

In the case of network computing, all accessing of function and data is by way
of the network. It is not yet clear whether the costs of the network times will be
outweighed by the benefits of the powerful mainframe processors, improving
performance time. It is beyond the scope of this redbook to analyze
performance statistics.

 • Universal distributable directory

A directory is required that provides universal naming and naming consistency
so that information about resources and facilities in a distributed environment
can be managed and located. That is, code on the client does not need to
know the identity and location of the server it is making requests of, but some
facility does need to know. In the foreign currency application, code was
written on the client machine to satisfy the requirement. However the
developers acknowledged that this was not a full solution.

Network computing does not yet have directory services, but does have a
common naming standard, the universal resource locator (URL) which partly
satisfies the requirement.

 • Data Conversion

In a centralized environment, the entire application is contained in one system
and there is only one data representation on that system. For an IBM
mainframe, the data representation is EBCDIC, and for a workstation, it is
ASCII

As soon as data is exchanged between systems, however, it is important to
know whether the systems that exchange data have the same type of data
representation.

If not, data conversion is required. Several approaches to data conversion
exist in the industry. One approach is to convert data to a common known
representation. Another is to convert incoming data to the representation
known by the local system.
From Client/Server to Network Computing 21

Whatever approach is taken, the application should be shielded from the data
conversion. The conversion of the data should be taken care of, for instance,
by a transaction manager or resource manager so that neither the conversion
nor the data representation will affect the application.

The DFHCNV macro of CICS was used by CS92 to convert data on its arrival
at the mainframe.

In the case of our migration to a network computing solution, the data
conversion was performed by the VisualAge for Java code, thus making it
transparent to the application code.

3.2 Network Computing Benefits

CS92’s developers described some benefits expected to be achieved through
developing a client/server solution. Here we discuss those benefits in terms of
what client/server computing provided and what network computing can provide:

 • Cost-effective solution (right-sizing)

When the original solution was developed, it was sometimes thought that the
best way to right-size was to place a significant proportion of the processing
on the inexpensive workstation.

For certain types of application, the current thinking is that a right-sized
application has most of its processing on the mainframe, because a
cost-effective solution is not only made up of the capital costs of the
equipment, but also the operating costs of the system. Network computing
follows this philosophy.

 • Provide graphical user interfaces to users

The use of workstations is a cost-effective way of providing a GUI to users.
Both client/server and network computing applications can be designed such
that the user interface processing is performed on the workstation.
Well-designed GUIs for appropriate applications provide significantly higher
end-user productivity than those that run on traditional 3270 screens.

A network computing application can also build a dialog using HTML on a Web
page or a Java applet. Developers have the choice of building a GUI dialog or
an HTML dialog, depending upon which is more appropriate for the
application.

 • Organization structure mapping

In CS92, the bank consists of a hierarchy of semi-independent units that share
common information, for example, commission rate. The lowest units in the
hierarchy are the cashiers who have their own data, such as personal stock
levels. The cashiers require services unique to them such as creating new
customer orders. At the same time, they also require data and services held
higher in the hierarchy: exchange rate is an example of this. Dealers maintain
the exchange rate at the central office because this data is dynamic and the
latest rate must always be applied.

The branch office is in the middle of the hierarchy. It provides services as a
response to the cashiers’ requests to provide, for example, replenished stock.
In turn, however, it acts as a client in relation to the central office, for instance,
by making requests to return excess currency.
22 A Migration to Java

The central office is at the top of the hierarchy. It provides services to both the
branch and the cashier. The three levels of the bank illustrate, in the
client/server model, in which a client is a component that requests services,
and a server is a component that satisfies requests. The example of the
branch office shows that a server can also be a client of another server. The
hierarchical structure is different from peer-to-peer structures, and maps more
logically to the organization of a business.

The network computing framework maps more closely to the way in which
modern business is evolving. The trend is for one enterprise’s computing
system to communicate directly with that of another enterprise: the connection
is made without any regard to the organization of either business. In a similar
way, when individual customers browse an enterprise’s home page, and
possibly order goods or services, they do not care which department or level
of the organization is dealing with their order.

 • Exploits LAN infrastructure

When CS92 was developed, many enterprises had a LAN infrastructure with
many workstations installed. Client/server applications can successfully use
such a structure.

This usage is not such an important consideration for network computing:
providing that a workstation can communicate with its server machine, using
TCP/IP, it is not significant whether a LAN infrastructure is used or not.

 • Improves availability

The infrastructure of a client/server application can be used to improve
availability. For example, if availability is crucial to the application and
sufficient resources are available, then several servers can be defined to
perform the same functions. Single points of failure are avoided by running
these servers on different machines. When only one server’s providing a
particular function, the function can be switched transparently to an alternative
server if the first one fails.

Network computing is rather more dependent upon the network: if the network
goes down the application cannot run. However, networks are becoming
increasingly more robust.

 • Enables heterogeneous interoperability

Client/server applications are based on accepted industry standards and allow
for heterogeneous interoperability, so that systems from different vendors can
work together to execute applications.

Java is evolving into the industry standard in which to write network computing
applications. This evolution is based on popularity and actual usage partly
because of its ability to “be written once, run anywhere.”

3.3 Building a Client/Server Application

In this section, we describe some features of a client/server application, and
discuss some considerations when building. We also discuss the applicability of
these characteristics to a network computing application.
From Client/Server to Network Computing 23

3.3.1 Basic Communication Models
There are three communications models that can be implemented with varying
degrees of success by client/server or network computing:

 • Conversational model

In the conversational model, a conversation is a series of synchronous
message exchanges between two partners that have a peer-to-peer
relationship. Both partners must be active for the duration of the conversation.
Either partner can initiate and direct the communications, and both sides can
send or receive data. In general, a receiver cannot send data until the sender
surrenders that right.

The conversational model is powerful but may make the programs more
complicated. Both sides have to know the logic of the conversation, and they
have to agree on the state of the conversation at any given time. From a
programming point of view, the two sides of the conversation are not
transparent to each other, although they may be to the end user.

This model is difficult to implement in a network computing application
because the server is generally unaware of the state of the browser especially
when using HTML. However, there have been some enhancements to the
middleware, such as CICS, to improve this conversation support

 • Call model

In the call model, a program sends a request to another system by specifying
a program or function to be executed. The process is synchronous to the
requester, which waits for the function to complete. The called system
executes the requested program or function and returns the results in a
predefined format to the calling program. The call format includes parameters
for the passing of data.

The routing of the request and the establishment of communication with the
called program are transparent to the caller.

This is the model used by the existing client/server application. It is the model
implemented by TCP/IP, and so is the model used by our migrated application.

 • Messaging model

In the messaging model, a single message is passed from one program to
another by placing the message on a queue. No response is required from the
client. The message is not necessarily processed instantly. There can be a
single queue or multiple queues for different message types and priorities.

The messaging model, as implemented by MQSeries, is recommended for
asynchronous processing but was not used in our migration to a network
computing solution.

3.3.2 Application Characteristics
When we migrated the application from the client/server model to the network
computing model, we had to consider the characteristics of that type of
application, to ensure that the new model maintains, or improves upon, the
support for that type.

In CS92, an online transaction processing application is critical to the business of
the bank. Hence the following requirements have to be satisfied:

 • Rapid response times
24 A Migration to Java

 • High availability

 • High volume transaction rates

 • Robust data integrity

3.3.3 Security
Security is a critical issue in any application. Only authorized users should be
able to access applications and data. In centralized applications, access control
to resources is often managed by a resource access control manager through
user IDs and passwords. Preferably, only one resource manager should exist for
maintaining and checking access control.

When applications and data are distributed over more than one system, the task
of securing applications and data becomes more complex. In the first place, more
than one security resource manager is involved, and heterogeneous
environments can involve different resource managers. These different resource
managers must be able to interface with each other. In the second place, the
maintenance of user IDs and passwords has also become more complex in a
distributed environment.

Security can be divided into the following three components:

 • Authentication

Authentication is the first security step. When clients communicate with
servers, they must identify themselves and the server must verify that the
clients are who they claim to be. The authentication function should be
contained either in the security subsystem or in the communications
subsystem. Several solutions related to authentication exist in the industry.

 • Authorization

After authentication has taken place, it is necessary to check whether the
client is authorized to access the resources it is asking for. The authorization
check is done through the use of userids and passwords. First, the user ID and
password are used on the client machine to check whether an end user is
authorized to use the client application. Then, the client application will ask for
services in the network, and the user ID and password are sent to check
whether the client is allowed to access those services.

In an intranet environment, authorization is still possible using user IDs and
passwords managed by a systems administrator, because the user base is still
known. When a network computing solution is implemented across the
Internet, using user IDs and passwords to check for authorization becomes
much less realistic, and considerable attention must be given to determining
which external users are to be allowed to execute enterprise transactions, and
to view and update enterprise data.

 • Encryption

To secure the transmission of data through the network, data should be
encrypted. Again, the encryption function should be carried out by the
communications subsystem or the security subsystem. The application
programmer should not be bothered with this function.
From Client/Server to Network Computing 25

3.3.4 System Management
System management is crucial for effective operation of any application. There
are particular considerations when the application uses a client/server model.
Some of these considerations are simplified when the application uses network
computing. The following discusses some of these considerations:

 • Network

The network is essential for client/server or network computing applications.
The system management tasks include ensuring the continuous availability of
the network, acceptable performance of the network, in both response times
and throughput. For client/server and intranet solutions, usage of, and access
to, the network must also be managed.

A network computing application, using Java, may also need to handle more
throughput, especially in the initialization phase of the application, when it is
being downloaded from the server to the workstation.

 • Software distribution

Software distribution is complex in a client/server environment. Version control
between systems is required to ensure software integrity. Rollout must be
coordinated to ensure that the application comes on-line consistently across
the enterprise and that the rollout has no impact on the user

To distribute the new or updated software, system administrators define
packages that contain data files, programs, system software, and script. They
then define the distribution jobs by specifying package, site, execution time,
and query. Installation is then by script driver, triggered by user logon

Software distribution becomes much more straightforward in network
computing because there is no longer a need to distribute application code, or
system software, such as DB2 or CICS, to client workstations. The code to be
dynamically downloaded can be held in a single, production-level library which
requires only the well-established disciplines of library management and
version control. The only software that has to be loaded on the client
workstation is an appropriate Web browser.

 • Problems and changes

Problems do occur in applications: they need to be reported, investigated,
fixed, installed, and tracked throughout their lives. In a client/server
environment, users can easily report a problem to their support team. The
support team, however, may have much greater difficulty in analyzing and
reproducing the problem, as they are unlikely to have an identical environment
in which to run the application. When a fix, or a change, is made to a
client/server application, the installation faces the difficulties of software
distribution.

In an intranet network computing environment, users can still report problems
to their support team, and now, this team’s investigations should be much
simpler as there is only one environment, and one level of code to analyze.
Similarly, the installation of fixes and changes needs to be done in only one
place.

The mechanics of problem management are the same in an Internet network
computing environment. However, culturally, the raising of problems may
change, leading to discussions over the following questions:
26 A Migration to Java

 • Will an external user make the effort to report a problem, particularly, one
of low severity?

 • How will the external user report a problem?
 • Do external users have to prove their credibility?
 • What will persuade a company to fix perceived problems?

3.3.5 Data Management
The tasks required to manage databases include reorganizing the data, backing it
up, control, performance monitoring and tuning, capacity planning,
housekeeping, and access control.

The operational success of an application depends in part upon the accuracy,
consistency and completeness of its data. Here we look at the subjects of backup
and recovery, and data integrity in relation to client/server and network computing
applications

 • Backup and recovery

In a centralized environment, backup procedures are often implemented and
maintained automatically. In a client/server environment, the backup of data
on client machines cannot easily be done in this way. Users are unlikely to
back up the data on their own machine in a systematic disciplined way, and it
cannot even be guaranteed that users will either always turn off their
machines, or always leave them on to enable remote access.

In network computing, the databases are no longer distributed to client
machines, so the required data management tasks do not have to be
replicated across remote environments. Backup and recovery can again be
centralized, because no data is stored on the client machines.

 • Data integrity

Data must be kept in a consistent state, that is, it must have integrity. The
developers of the client/server application were unable to ensure such
consistency, because one business transaction was implemented by two
logical units of work, one updating data on the client machine, the other
updating data on the server machine. At the time, the two-phase commit
protocol was not implemented by system software across different platforms,
which would have ensured that either both updates were successful or neither
was. The problem could not be solved by combining the two updates into one
logical unit of work because the level of distributed relational database
architecture (DRDA) used did not support updates across platforms.

With network computing, data is typically held on only one platform, so there is
no longer a problem with cross platform updates, and normal application
design should determine what constitutes a logical unit of work.

3.4 Architecture: Three-Tier Model

CS92 embodied the principles of the three-tier model. The model can be used to
describe the hardware configuration, the software configuration, and the
application design. Some aspects of the three-tier model can still be applied to a
network computing solution, but the model is no longer essential for defining the
architecture.
From Client/Server to Network Computing 27

3.4.1 Hardware
CS92 client/server implementation ran on LAN-attached OS/2 workstation. There
was a local server machine on the same LAN. The LAN was linked to an
MVS/ESA host. Depending upon the configuration of the workstation, it could
communicate with the MVS/ESA host either directly or through the local server.

In migrating the application, we used the same basic hardware setup. However,
network computers could have been used instead of the local workstations. This
is because, with the network computing model, all the resources are stored on
the server and downloaded to the workstation only when required. There is no
need to store resources on the local workstation.

3.4.2 Software
In CS92, system and application software was loaded on each tier to support the
data and function placements. Hence, the appropriate versions of CICS and DB2
were installed on each platform. Application code was also installed on all three
tiers. LU 6.2 and NetBIOS were the protocols used to communicate between the
tiers.

In migrating to network computing, CICS and DB2 are no longer needed on the
client machine, instead a Web browser must be installed, and the communication
protocol is now TCP/IP. The application code is only installed on the Internet Web
server.

3.4.3 Use of the Tier Model in Migration
We largely adhered to the three-tier model when we migrate CS92. The client
became skinnier when data was no longer stored on it, and therefore, there was
no requirement for a database management system (DBMS). As part of a
network computing solution, application code is not stored permanently on the
client, reducing it even further. In our implementation, there was no need to
communicate directly between the local server and the mainframe. However,
neither the thinness of the client nor the absence of a link between the other two
tiers abandons the three-tier model.

In more general terms, the three-tier model is not essential for considering a
network computing solution. There are a number of advantages in dropping the
mainframe or the local server, with their associated hardware and software
configurations. From a systems management view, it is simpler to have only two
hardware components: client and mainframe, or client and server. Also from a
systems management view, both installation and maintenance of software and
application are more straightforward. When data is stored in only one place, then
its design is easier because placement and duplication are no longer issues that
have to be decided. In terms of application logic, code placement questions are
more easily answered, and logical units of work that update data cannot be
spread across more than one platform.

There are advantages in keeping a three-tier model. For an existing application
that already uses this model, it can be preferable to maintain the existing setup.
Retaining a mainframe and a local server can maximize the flexibility and
transparency of a system, so that an application can switch from running on one
platform to running on another. This is particularly relevant if the application is a
generic solution that can be run on multiple systems. If, however, the application
28 A Migration to Java

is custom tailored, the systems management costs might outweigh other
perceived benefits of switching the application from one server to another.
From Client/Server to Network Computing 29

30 A Migration to Java

Chapter 4. Network Computing New Environment

In the following sections, we describe briefly the new IT environment that helped
us to migrate the application. We concentrate on the products and features that
we used in the migration.

4.1 Java

Java is not just a programming language, it is a platform that can be used to
create and deliver information over any network. Java is portable and
architecture-neutral for any system implementing the Java Virtual Machine.
Programs written in Java can be distributed and executed on any client system
that has a Java-enabled Web browser. Developers are freed from having to write
multiple versions for multiple platforms and even from having to recompile for
each platform. Because the applets run on the client system, scalability and
performance are no longer tightly tied to Web server systems. High performance
requirements are also addressed through multithreading, the ability to link native
code, and the just-in-time compiler.

Java is portable and flexible. In the past, we have had languages that claimed
portability, but none delivered anything remotely resembling portability.
Developed from the ground up as object oriented and portable, Java has already
addressed the biggest challenge. Companies now are free to let departments
select the hardware platform of their choice without worrying or having to budget
for integration and porting costs.

Java applications are implementation-neutral. We often get caught up in the fat
client, thin client rhetoric. Because Java is truly object-oriented, you are free to
distribute the application business logic in the manner that best fits your needs.
Modifications are made easily and transparently as business needs change.

Although Java is most often described as a programming language, its more
unique capability is its platform independent virtual machine facility. The
excitement of Java is that it combines an object programming paradigm with the
client/server distributed architecture and the broad connectivity of the Internet,
while solving many of the problems industry has encountered with client/server
software and hardware management.

Java is an interpreted object-oriented language, similar to C++, which can be
used to build programs that are platform independent in both source and object
form. Its unique operational characteristics, which span Web browser and
network computers as well as servers, enable new client/server functions in
Internet applications while enforcing a discipline that make software management
possible across almost any hardware platform.

To achieve platform independence, the Java language allows no
platform-dependent operations and it excludes some C++ functions such as a
preprocessor, operator overloading, multiple inheritances and pointers. All Java
programming is encapsulated within classes, and the development toolkit
includes an extensive set of classes. These special classes, which are critical to
assuring platform independence, include GUI functions, input/output functions
and network communications.
© Copyright IBM Corp. 1998 31

The Java compiler, however, does not generate machine code. Instead, it
generates intermediate code called Java bytecode. This bytecode is interpreted
by the Java interpreter, which executes the instructions on the particular
hardware platform. The Java interpreter and run-time system are collectively
called the Java Virtual Machine or JVM.

The interpreter also inspects the bytecode at execution time to ensure its validity
and safety to the machine environment. The isolation the Java interpreter
provides, coupled with the Java run-time systems provided by vendors, create a a
platform-independent virtual machine environment.

The Java language can be used to construct Java applets and Java applications.

4.1.1 Java Applet
A Java applet is a small application program which is downloaded to and
executed on a Web browser or network computer. A Java applet typically
performs the type of operations that client code would perform in a client/server
architecture. It edits input, controls the screen and communicates transactions to
a server that in turn performs the data or database operations.

Invocation of applets occur through the use of a new applet HTML parameter as
shown in Figure 5.

Figure 5. Applet Tag

This tag is used within HTML pages to indicate when applets are to have control
and to specify the display area to be used by the applet. When a Java-enabled
server is downloading a page and encounters this tag, it also downloads the
applet bytecode in the same way it downloads an image referenced by an HTML
image tag. The Java-enabled browser, such as Netscape Communicator or
Microsoft Internet Explorer, then interprets and executes the applet bytecode.
The applet may edit screen input, generate screen output, and communicate back
to the computer from which it was downloaded. An example of applet processing
would be an applet in constant communication with a server to receive stock
trade information which it would update in a window on the screen. Multiple
applets can execute concurrently.

The downloading of applets should not have a significant performance impact on
the response time to end users since the applets are typically not very large. In
fact, applets, by performing processing on the browser or network computer, can
improve the overall browser performance by eliminating iterations with the Web
server. Note that also, just as images are cached in Web browsers, applets are
cached and this minimizes the frequency of applet downloading. A current
performance consideration is the iterative compiling of the Java bytecode at the
time of execution. This, however, is rapidly being addressed by the industry and is
losing its importance.

<applet code="ibm.cics.jgate.test.TestECI.class" width=520 height=290
codebase="/jgate/classes">
</applet>
32 A Migration to Java

4.1.2 Java Application
A Java application is a program written in Java that executes locally on a
computer. It allows programming operations in addition to those used in applets
which can make the code platform dependent. It can access local files, it can
create and accept general network connections, and it can call native C/C++
functions in machine-specific libraries.

4.1.3 JavaBeans
JavaBeans is a component model for Java. The intention of JavaBeans is to
define a model that enables suppliers to create and ship Java components that
can be composed together into applications by end users. JavaBeans is a
reusable piece of code written in Java. After a JavaBeans function is built, it can
be shared, sold, or reused. The whole idea of JavaBeans promises to deliver vast
reusable libraries of functions that can quickly and easily be assembled into new
applications to meet urgent business requirements. The JavaBeans specification
means that application development tools, by adapting to the specification, can
now freely interchange beans without code modification, thereby greatly
increasing your ability to choose the tool that best suits your needs.

4.1.4 VisualAge for Java
JavaBeans, true object-orientation, and the ability of application development
tools to easily interoperate deliver on the value and promise of rapid application
development. Java projects deliver real business value in weeks and months, not
years. Companies are able to leverage existing systems and data, enter new
markets, and even develop new businesses in record times.

VisualAge for Java is the application development tool of choice when building
Java-compatible applications, applets, and JavaBeans components.

VisualAge for Java is the newest member of IBM's VisualAge family. VisualAge for
Java is a powerful suite of application development tools that allow you to build
complete 100% Pure Java applications, applets, and JavaBeans by using the
VisualAge "Construction from Parts" paradigm.

Combining the power of a true rapid application development (RAD) environment
for Java with the ease of visual programming, VisualAge for Java connects the
thin Java client to existing server applications, allowing you to extend your
existing server applications to the Internet, intranet, or extranet, and to connect
an existing Java solution to a server for access to data, transactions, or
applications.

VisualAge for Java simplifies your Java development process in four major ways:

1. Client/server programming in Java is made easier through automatic
generation of JavaBean components and middleware code that connects the
Java client to existing transaction, data, and application servers.

2. An intelligent development environment enables your enterprise to build
scalable Java solutions that run on Windows 95, Windows NT, OS/2, AIX,
OS/400, and OS/390.

3. An automatic version-control facility allows you to easily go back to a working
version of your code. This will be enhanced with a fully integrated
Network Computing New Environment 33

repository-based team environment that encourages simple and easy
collaboration and management of development projects.

4. An advanced project-based-development environment enables programmers
to create Java applications/applets or JavaBean components using
construction from parts.

VisualAge for Java has the following key components:

 • An integrated development environment enables VisualAge for Java to deliver
rapid application development to your Java program during the development
phase.

 • A visual composition editor allows you to assemble applets, applications and
beans from pre-selected parts on the visual builder palette.

 • An enterprise access builder for transactions generates JavaBeans
components that establish fast connections between the Java client and CICS
Transaction Servers.

 • An enterprise access builder for data allows database manipulation through
Java language, using the JDBC standard.

 • An enterprise access builder for applications allows you to build applications
that connect Java clients to existing or new applications on the server, using
Java client to Java server remote method invocation (RMI), Java client to C++
server through Java bindings for C++ classes and RMI.

 • Real-time changes are reflected in currently run applications, letting you add a
class, add a method, or change a method while still in the test phase.

 • Integrated change management and version control provide the ability to store
code, and to import and export files from the repository to classic file systems,
using a single-user development repository.

4.2 Web Server

The Domino Go Webserver is an industry standards based Web server that
allows you to build Web applications with connectivity to the databases you use
daily in your business. Domino Go Webserver is a complete Web server product
with advanced security and development features. It gives you, your customers,
and your suppliers a secure, quick and easy way to complete business
transactions electronically. It allows you to host and manage applications that:

 • Distribute a wealth of information to your customers, partners, and prospects,
using text, graphics, audio, and video.

 • Publish presales or postsales product information.

 • Create information that your audience can interact with using electronic forms
or by e-mail.

 • Dynamically track how your customers, suppliers, and personnel use the
information you publish.

Domino Go Webserver is easy to install, use, and manage. The server provides
consistent application programming interfaces (APIs), administration, and
configuration across the spectrum of server platforms, desktop systems,
departmental servers, all the way up to IBM System/390 mainframe systems.
34 A Migration to Java

Appendix A, “Domino Go Web Server for OS/390 Operations” on page 95,
describes the use of the Domino Go Webserver for OS/390 to distribute the
applet code to Web browsers

4.2.1 Features
Domino Go Webserver supports SSL Version 3 including client authentication.
The SSL V3 implementation also includes server authentication, data encryption,
and additional message digest hashing algorithms (see “Secure Sockets Layer”
on page 36 for more information). If your environment has a SOCKS-based
firewall for access to the Internet, Domino Go Webserver can be used in a proxy
server role to access destinations outside the firewall. Client connections that use
SSL are tunneled through the proxy server, eliminating the need to decrypt and
reencrypt the data at the proxy.

Domino Go Webserver includes an SNMP subagent, which maintains server
information and performance data in an SNMP management information base
(MIB). From any SNMP-capable network manager (such as IBM NetView for AIX,
TME10 Distributed Monitoring, or HP Open View) you can display, monitor, and
adjust thresholds for your server performance.

Support for HTTP now includes full HTTP 1.1 compliance, which provides support
for persistent connections and virtual hosts. Persistent connections allow the
server to accept multiple requests and to send responses over the same TCP/IP
connection. This eliminates a great deal of connection processing, resulting in
faster responses to the clients and reduced network bandwidth requirements.
Virtual hosts allow the use of one IP address to serve multiple files instead of
requiring different IP addresses for different files.

Domino Go Webserver supports the expanded CGI which includes the Java
programming language in addition to the other languages supported, such as C,
REXX, and Perl. It provides a Java development environment based upon JDK1.1
standards for JavaBeans, JDBC for database access, and Java servlets. Java
servlets, a Java server-side application, offer very significant performance
enhancements over CGI applications and are truly portable.

Users can write applications that extend or customize how the Web server hands
off client requests using the Go Webserver API. You can use existing HTTP
methods or tailor them to your needs. This API support is language neutral, and
user extensions run as part of the Web server process, with significantly better
performance than CGI applications.

Domino Go Webserver also offers:

 • A Web site content rating support

 • A server activity monitor that allows you, through a browser, to monitor
performance and status information about the server and the network

 • A Java GUI that you can use to access your server activity information

 • A search engine that delivers advanced search and navigation capabilities

 • A Web usage mining tool that helps you organize your Web site more
efficiently, determine the relative value of pages, and target marketing-based,
on-page groupings.
Network Computing New Environment 35

4.2.2 Security Considerations
Domino Go Webserver supports the HTTP feature of basic authentication along
with SSL encryption and SSL client authentication. By default, the pages are
protected using TSO user IDs and passwords with basic authentication. The
Webmaster’s Guide describes how to configure the server for these types of
security.

4.2.2.1 Basic Authentication
Basic authentication provides a means of protecting HTML pages on the server
from unauthorized access. You define server rules for access control and, when a
controlled page is requested by a browser, the server asks the browser for a user
ID and password. This makes the browser prompt its user for this information.
Without any form of encryption this technique is open to abuse because user IDs
and passwords are transmitted unencoded.

When authentication is required, you can define users and passwords in files, set
up access control lists, or use the system security subsystem running on your
OS/390 system, such as RACF. You can also write custom code that is invoked
when authentication is done, allowing site-specific operations to be performed.
You might write a function to invoke a CICS program for the verification, or lookup
users in a DB2 database for example.

4.2.2.2 Secure Sockets Layer
SSL is a security protocol that was developed by Netscape Communications
Corporation, along with RSA Data Security, Inc. This protocol ensures that data
transferred between a client and a server remains private. It allows the client to
authenticate the identity of the server. In addition, SSL V3 allows the server to
authenticate the identity of the client. Web browsers use https requests, to
specify secure connections. https is an URL access method for connecting to
HTTP servers using SSL. It uses digital certificates and requires specific
configuration of the server. HTML pages, user IDs and passwords, and Java code
can all be downloaded with the knowledge that connection is secure. An
important point to note is that when a Java applet starts to execute, if it uses its
own protocols to communicate with other servers; these are not secured by the
https encryption. With the CICS Gateway for Java and JDBC connections, all the
network communications are unsecured.

4.2.2.3 Signing Java Applet Code
Java 1.1 allows for applets running in browsers to have controlled access to their
environment by the use of object signing. With the correct authority, granted by
the user, applets can do the same things as Java applications. This means that
developers can use the dynamic downloading advantages of applets and still
write full specification programs. The applet code must be signed with a digital
certificate before it is deployed on the server. The browser can verify this
certificate and the user can be assured of the authenticity of the code and
accountability of the developer. Appendix C, “Creating Signed Java Applets” on
page 99 describes how applet code can be signed, and describes security
principles in more detail.
36 A Migration to Java

4.3 CICS

CICS is IBM's general-purpose OLTP software. It is a powerful application server
that runs on a range of operating systems, from the smallest desktop to the
largest mainframe.

It is flexible enough to meet your transaction-processing needs, whether you have
thousands of terminals or a client/server environment with workstations and LANs
exploiting modern technology such as graphical interfaces or multimedia.

It takes care of the security and integrity of your data while looking after resource
scheduling, thus making the most effective use of your resources. CICS
seamlessly integrates all the basic software services required by OLTP
applications, and provides a business application server to meet your
information-processing needs, today and in the future.

CICS processes transactions, that can consist of many computing and
data-access tasks to be executed in one or more machines. The tasks may
include handling the user interface, data retrieval and modification, and
communication. In CICS terms, these operations are grouped together as a unit
of work or a transaction.

A transaction management system (sometimes called a transaction monitor) such
as CICS:

 • Handles the start, running, and completion of units of work for many
concurrent users

 • Enables the application (when started by an end-user) to run efficiently, to
access a number of protected resources in a database or file system, and then
to terminate, normally returning an output screen to the user

 • Isolates many concurrent users from each other so that two users cannot
update the same resource at the same time.

4.3.1 CICS Gateway for Java
The IBM CICS Gateway for Java brings easy state-of-the-art, open, access to
CICS from any Java-enabled Web client, such as Netscape Navigator or a
network computer.

A Java applet in the Web client can directly call CICS programs and data simply
by invoking the small Java class supplied with the Gateway. When the applet is
invoked, all the necessary code is downloaded to the client platform
automatically, so no work is needed to prepare Web clients for CICS access.

The CICS Gateway for Java provides a way to access the transaction capabilities
of CICS servers from the Internet. It combines the portable, architecture-neutral,
object-oriented strengths of the Java programming environment with the power of
CICS to bring access from the Internet to CICS applications.

Figure 6 shows the CICS Gateway for Java installed on a workstation. It accesses
the CICS transactions using the external call interface (ECI) or the external
presentation interface (EPI) of the CICS client.
Network Computing New Environment 37

Figure 6. CICS Gateway for Java on a Workstation, with CICS Client

As showed in Figure 7, the CICS Gateway for Java execute on OS/390 providing
Java applets access to CICS Transaction Server 1.2 in a two tier configuration.

Figure 7. CICS Gateway for Java on OS/390

4.3.1.1 Operation
The CICS Gateway for Java is a TCP/IP server application that runs separately
from CICS. Java applets make TCP/IP connections to the CICS Gateway for Java
that uses ECI or EPI requests to connect to the CICS server. These programming
interfaces, provided by the CICS Client and CICS workstation products, allow
programs external to CICS to invoke CICS services.

When the CICS Gateway for Java is running on OS/390, ECI and EPI are not
available. On OS/390, the CICS Client is not available, and CICS Transaction
Server for OS/390 does not provide these interfaces to OS/390 programs. When
running on OS/390, the CICS Gateway for Java actually uses the external CICS
interface (EXCI) provided by CICS TS. The applets that are clients to the CICS
Gateway for Java on OS/390 still use ECI request data, that are transformed to
EXCI calls by the CICS Gateway for Java Thus the applet code can remain
38 A Migration to Java

unchanged, regardless of where the CICS Gateway for Java resides and which
CICS server is used.

Figure 6 on page 38 shows how the CICS Gateway for Java can run on a
workstation and use the CICS Client to access CICS servers in a three-tier
configuration. The CICS Client can access multiple servers simultaneously, using
different protocols

Figure 8 on page 39 shows the CICS Gateway for Java running on the same
workstation as the CICS server, in a two-tier configuration, without the need for a
CICS Client. The CICS Gateway for Java can access only the single local server,
and no other CICS servers.

Figure 8. CICS Gateway for Java on a Workstation, with CICS Server

Figure 7 on page 38 shows that the use of the EXCI allows the CICS Gateway for
Java to access multiple CICS TS regions, but not other CICS workstation servers.

4.3.1.2 CICS Gateway for Java on OS/390
For our environment, we used the gateway in its OS/390 version. Appendix B,
“CICS Gateway for Java — Installation and Setup” on page 97 explains how we
installed the gateway.

Figure 9 shows an overview of the CICS Gateway for Java executing on OS/390.
The steps show the sequence of events for an applet that is downloaded to the
Web browser and then issues a synchronous ECI request.
Network Computing New Environment 39

Figure 9. CICS Gateway for Java on OS/390: Sequence of Events

The sequence of events is the following:

1. The browser requests an HTML page from the Web server, and the page
contains an applet tag.

2. The browser requests the Java class files and starts executing the applet.

3. The applet creates a JavaGateway object, which opens the TCP/IP connection
to the CICS Gateway for Java. The applet also creates an ECIRequest object,
which contains the information for an ECI request, including a CICS program
name and a COMMAREA. The JavaGateway flow method is invoked by using
the ECIRequest object as the parameter. This sends the request information
to the CICS Gateway for Java.

4. The CICS Gateway for Java receives the request information and issues an
EXCI call to the CICS TS server.

5. The CICS Gateway for Java returns the results to the applet. The ECIRequest
object in the applet now contains the COMMAREA as updated by the CICS
program.

4.3.1.3 Programming Interface
The CICS Gateway for Java provides several classes and interfaces that you can
use to access CICS programs from Java applets or applications. These include:

 • ibm.cics.jgate.client.JavaGateway

 • ibm.cics.jgate.client.ECIRequest

 • ibm.cics.jgate.client.EPIRequest

 • ibm.cics.jgate.client.Callbackable

 • ibm.cics.jgate.client.GatewayRequest

When an instance of the JavaGateway class is created, the constructor method
requires the TCP/IP address and port number of the CICS Gateway for Java to
which a connection will be made. The object opens a TCP/IP socket connection
to the specified CICS Gateway for Java, and this connection remains open until
40 A Migration to Java

the close method is called or the object is destroyed. The GatewayRequest class
is a superclass of the ECIRequest and EPIRequest and contains variables
common to both. The Java program creates instances of ECIRequest and
EPIRequest, and these objects are used as parameters to the flow method of the
JavaGateway object. With the latest version of the CICS Gateway for Java, a new
feature, called Local Java Gateway, enables the Java Gateway to communicate
directly to the local CICS client without the need for a network communication
between the Java Gateway and the CICS client.

The Callbackable class is a Java interface that is used when you require an
asynchronous call with callback. You need to write a class that implements the
Callbackable interface and pass an instance of this class to the setCallback
method of the request object. When flow is called, it returns immediately, and
when the data is actually returned by the CICS Gateway for Java, the
Callbackable object is run in a new thread.

4.4 DB2

DB2, in its versions for the MVS and Workstation platforms, provides data storage
facilities for our application. DB2 offers a comprehensive set of functions, which
has been extended over the years, for implementing distributed applications. New
facilities, not available in 1992, are now in place, which broadens the number of
possible technical solutions. For example, it is now possible to establish a DRDA
connection from DB2 for OS/390 to DB2 for OS/2, because DB2 for OS/2 now
implements the DRDA Application Server function. It is possible for an MVS
COBOL program to access DB2 for OS/2 tables, without any need to use another
COBOL program on OS/2 invoked through CICS intersystem facilities.

IBM DataJoiner is another recent product which many businesses are
implementing successfully. It provides total location transparency to the
applications, which can access the total corporate data assets as if they
constituted a single database. Note that, with proper adds-on to the product, this
is true also for nonrelational data stores, for which the same SQL interface used
for relational databases (IBM and other) is also available.

In our project, we did not exploit any of these new products or features. Time
constraints, coupled with the willingness to show other new solutions such as the
CICS Gateway for Java and VisualAge for Java brought us to the decision to keep
the new application as close as possible to the original, as far as data access
goes. Nevertheless, in approaching a real-life application migration, you would
probably consider exploiting some of these new technologies.

DB2 is fully integrated with Web technology so that data can be easily accessed
from the Internet or from your intranet with complete security. The following
facilities included with DB2 allow you to Web-enable your database applications
right out of the box:

 • Net.Data - A Webserver Database Gateway

 • DB2 Java Support

We used those new Web integration technologies to support our application
migration.
Network Computing New Environment 41

4.4.1 Net.Data
Net.Data is a Web-enabling tool for interactive database-to-Web applications.
Net.Data is IBM's strategic product for enabling Internet/intranet access to
relational data on a variety of platforms. Figure 10 shows the Net.Data
architecture.

Figure 10. Net.Data Architecture

Net.Data provides open data access to DB2 and other data sources including
Oracle, Sybase, and any ODBC data server. With Net.Data, your application can
use DB2 to build dynamic Web pages to support electronic commerce
applications. Net.Data runs on OS/2, AIX, HP-UX, Windows NT, Solaris, and
SCO-UNIX.

Net.Data provides high-performance, robust, application development function
and allows exploitation of existing business logic through open programming
interfaces. Net.Data tightly integrates with Web-server APIs such as those from
IBM, Lotus, Netscape, and Microsoft, providing higher performance than CGI
applications.

Net.Data provides connection management to your key relational databases for
optimum performance. Net.Data can establish a continuous connection to
specified databases. Net.Data maintains the connection throughout the Web
application and across invocations of Web applications. Since the database
connection is continuous, the application does not experience the overhead of
repeated connects to the database. The result is peak performance of your
interactive Web application. The Net.Data application is a macro with a rich
macro language, variable substitution, conditional logic, and optional function
calls. Net.Data supports client-side processing with Java applets and JavaScript.
Serve- side processing includes Java applications and REXX, Perl, and C/C++
applications.
42 A Migration to Java

4.4.2 DB2 Java Support
Java applications are very attractive to customers who would like to develop a
single application running on any operating system and who would like to reduce
the cost of application distribution and maintenance.

JDBC is a database access interface for Java applications that is being delivered
with DB2. The DB2 JDBC database interface supports this API.

DB2 provides native support for Java at client workstations and DB2 servers.
Java is supported on the client workstations in two ways:

 • A Java application uses the DB2 Client Application Enabler (CAE), which must
be installed on the client workstation, to communicate with the DB2 server.
Customers with existing DB2 client/server configurations can now use Java as
a database application development tool.

 • Java applets allow applications to be developed that access DB2 servers
without requiring DB2 CAE code to be installed on client workstations. Java
applets can be automatically downloaded to the client workstation at
application invocation time. Java support in DB2 servers consists of the ability
to create native Java-based, user-defined functions and stored procedures.
Figure 11 shows a sample of a JDBC applet.

Figure 11. JDBC Applet Sample

4.4.3 Configuration
Figure 12 shows the configuration difference between Net.Data and JDBC.

import java.sql.*;
public class appletSample extends java.applet.Applet
{
 { Class.forName("COM.ibm.db2.jdbc.net.DB2Driver"); } // load applet
driver
 String results = "";
 public void start()
 {
 Connection con = DriverManager.getConnection(
 "jdbc:db2://malmo:8888","userid","password");
 Statement stmt = con.createStatement();
 ResultSet rs = stmt.executeQuery("SELECT branch_name FROM branch");
 while(rs.next()) // fetch a row until EOF
 {
 String name = rs.getString(1); // fetch column value
 results = results + ", " + branch_name; // concatenate names
 }
 rs.close(); stmt.close(); con.close(); // close up
 }
 public void paint(Graphics g)
 {
 g.drawString("Branches", 0, 10);
 g.drawString(results, 0, 20);
 }
}

Network Computing New Environment 43

Figure 12. Net.Data and JDBC Configuration

The two Web browser applications, the HTML page using a Net.Data connection,
or the Java applet using a JDBC connection, are downloaded from the Web
server using HTTP protocol:

 • Net.Data

Using HTTP, the HTML page sends back to the originating Web server some
information needed to access the database. Using CGI, the Web server then
passes the argument to the Net.Data program. Using the DB2 CAE, Net.Data
connects to the database and accesses the tables.

 • JDBC

Using TCP/IP, the Java applet uses the JDBC applet driver to open a
connection with the JDBC applet server. The JDBC applet server then, using
the DB2 CAE, connects to the database and accesses the tables. It is also
important to notice that the JDBC applet server can be located on another
machine as the Web server, if the Java applet has been developed using JDK
1.1.
44 A Migration to Java

Chapter 5. Network Computing Security Environment

When we migrate CS92 to NC97 using this new network computing model, one of
our biggest challenges was to remove the security exposures that the Internet
brings. Handling security changes fundamentally between the client/server model
and the network computing model.

This chapter describes the security issues you need to be aware of when
developing a Java based solution. Java security features are currently in a state
of change, and vary depending upon browsers and Java virtual machine
implementations. The information here should enable you to write a Java program
that will not be broken by security restrictions when you deploy it.

5.1 Java Security Features

In general, Java applets that are loaded from a network are deemed untrusted
and are restricted in the actions they can perform. An untrusted applet cannot:

 • Make network connections to hosts other than the originating host.

 • Read and write files on local disks.

 • Start external programs and processes.

 • Load libraries and define native methods.

These restrictions allow a user to download an applet with reasonable assurance
that it cannot harm their system. It is up to the implementation of the Java virtual
machine (JVM) in the browser to ensure that these restrictions are policed.
Security bugs in JVM implementations have been found and Javasoft maintain a
chronology page on their Web site to record the status of these bugs. Since its
introduction, the Java technology has evolved in the public eye and when security
bugs are found, fixes have quickly followed.

Web browsers that support Java 1.0 applets are very strict about enforcing the
security rules and the term sandbox has been used to describe the restrictive
environment that the applet runs in. This is not a problem for small applets that
enhance the look and interface of Web pages, and do not provide much complex
functionality.

Applications written in Java do not have these same restrictions and can access
the system in the same ways as traditional compiled programs. This is because
applications must be installed locally on a computer and run from the local disk. It
is the responsibility of the person installing the application to know what it is and
that it can be trusted. This approach loses the advantages of dynamically
downloadable applets, where no code needs to be installed on user machines.

Java 1.1 addresses this issue by allowing applet class files to be digitally signed
by the developer. This allows the end user to determine the degree of trust that
the applet can be afforded. When the trust is established, the applet can be
allowed to perform actions that an untrusted applet could not do. For example, in
NC97, the client applet needs to make network connections to servers other than
the originating host.
© Copyright IBM Corp. 1998 45

5.2 Leaving the Sandbox

The latest versions of the popular web browsers, Microsoft Internet Explorer
version 4, Netscape Communicator Version 4 and HotJava Version 1.1 provide
mechanisms for the user to allow Java applets access beyond the sandbox.
These are based on digital signature and certificate technology and on the user’s
interaction with the browser. When a Java applet has been digitally signed, the
user can allocate security settings based on the signature. The applet can then
do things that would otherwise not be allowed if the applet was without a
signature. 5.6, “Digital Certificates” on page 51 details how using digital
certificate technology allows the user to make these security choices safely.

Once a mechanism for trusting a Java applet is used, the developer is free to
write code for any purpose. You have the full power of the Java language and can
write sophisticated client programs without any restrictions. These then use the
dynamic downloading capabilities of browsers, removing the need to administer
client platforms and install software manually.

Within an intranet environment, the applet trust should be implicit, since the code
has been developed by the company and the intranet is secure. The use of
external trusted third-party Certification Authorities as described in 5.6, “Digital
Certificates” on page 51 would not be necessary.

The only drawback at the current time is the mechanisms used by different
browsers to establish whether or not an applet is trusted. Each of the popular
browsers uses a different mechanism, and Netscape Communicator requires the
use of special API calls in the Java applet code to request the privileges to
perform insecure actions. The certificate technology required to sign the code is
also different for each browser. Applet code that has been signed for one browser
will not work with the others. The developers are required to provide a separate
copy of the signed code for each browser.

Sun Microsystems have evolved the sandbox model in their architecture for Java
1.2 to include fine-grained access control. The details are in the Java Security
Architecture (JDK 1.2) document available from Sun Microsystems. The new
APIs have a purpose similar to that of the Netscape Communicator Capabilities
API described in 5.3, “Netscape Capabilities API” on page 46. When Netscape
Communicator supports Java 1.2 developers should no longer need to use the
Capabilities API. Other browsers that claim support for Java 1.2 will also need to
provide the security APIs that will be part of the core Java API. This will solve the
problem of requiring specific code for particular browsers. Java 1.2 should also
provide a standard for signing Java archive (JAR) archive files that will be
common to Java browsers. This will allow for a single JAR files to be signed and
then used in any browser.

5.3 Netscape Capabilities API

A signed Java applet that runs in Netscape Communicator is not automatically
allowed to access system resources. The developer must use calls to the
Capabilities API to enable privileges before the actions can be taken.
46 A Migration to Java

The PrivilegeManager class controls the access to a set of system targets. For
example, in order to successfully make a network connection the following code
must be used:

PrivilegeManager.enablePrivilege("UniversalConnect")

The complete set of targets covers all the things you may want an applet to do,
and groups of targets allow for more general access. For example, the
TerminalEmulator target is required by a terminal emulator such as 3270; it allows
you to read and write files and establish network connections. This target
includes the targets UniversalLinkAccess, UniversalPropertyRead,
UniversalListen, UniversalAccept, and UniversalConnect. The Netscape
developer Web site contains details on using the API, including a complete list of
all the targets.

Netscape has implemented an extension to the core Java API to provide support
for capability-defined security. To perform any kind of function that involves
interacting with other resources, such as establishing network connections, a call
to the method enablePrivilege in the Netscape specific class PrivilegeManager is
required. We have implemented this code in the TransactionManager and
DataManager. If this code is executed in a browser other than Netscape
Communicator, a run-time error will be thrown. To safeguard against this, extra
code is required to determine whether the applet is executing in a Netscape
Communicator browser. Various solutions have been published on the Internet.
The solution we adopted involves implementing a SecurityContext class that has
two static methods: isCommunicator and isCapableOf. isCapableOf is a public
method that returns a boolean to indicate whether a privilege can be granted.
isCommunicator is a private method that attempts to load a Netscape security
class. A boolean value is returned that determines whether the load was
successful

5.3.1 Implementation
When an applet make an enablePrivilege call for the first time, the user must
decide how to process the request. Netscape Communicator displays a panel like
that of Figure 13.

Figure 13. Netscape Security Warning
Network Computing Security Environment 47

The name of the certificate is displayed, "Stephen Longhurst’s IBM ID" in Figure
13, and a short description of the target being requested. The full certificate can
be displayed by clicking on the Certificate button. If the certificate is not issued by
a recognized authority, then the applet is automatically denied the requested
privilege with no user intervention.

The user can grant or deny the privilege, and set the checkbox so that the panel
is not displayed every time the applet enables the privilege. You can check and
alter the privileges afforded to a certificate by using the using the "Security Info"
option any time.

The advantage of this method of setting the privileges is that the user does not
need to know in advance what an applet needs to do to run properly. During the
execution, the messages are displayed as required. We would recommend
issuing enablePrivilege calls for each target your applet requires access to when
execution first starts. This gets the user’s dialogs out of the way at the beginning,
rather than interrupting the user during normal operation.

5.3.2 Principles
The principles in the Capabilities API refer to who is allowed to do certain actions,
and the targets refer to what they want to do. The principle of an applet is
normally associated with its signature; hence, only signed applets can make use
of the Capabilities API. It is the name of the signature that is listed in the
Java/JavaScript section of the "Security Info" panel.

For development purposes, having to sign the applet continuously for testing is
not very productive. You can get Netscape Communicator to recognize the
applet’s code base as a principle when evaluating the privileges by adding the
following line to the preferences file:

user_pref("signed.applets.codebase_principal_support", true);

This allows you to write code that uses the Capabilities API, but does not need to
be signed.

5.4 Microsoft Internet Explorer Security Zone System

Microsoft Internet Explorer 4 introduces the concept of dividing the Web into
different zones. You can assign different levels of security to each zone, trusting
each at a different level. For example, you can set the intranet zone to low
security (high trust) but the Internet zone to a high security level (low trust).
Figure 14 shows the security settings panel in Microsoft Internet Explorer version
4. You can see that the Internet zone has a high security setting by default.
48 A Migration to Java

Figure 14. Internet Explore Security Setting Panel

Java applets are allowed levels of access and capabilities based on the zone from
which they originate. By signing an applet, the developer can also specify the
level at which the applet needs to run. If the applet is loaded from a higher
security zone, the user needs to decide whether the applet will be allowed to do
what it requests.

The capabilities that a Java applet can be granted are defined in high, medium
and low settings. The high setting is equivalent to the sandbox-like environment.
The medium setting adds the capability to access a scratch pad. The scratch pad
is a secure area, proprietary to Microsoft Internet Explorer, that allows applets to
store information on the client machine. It is accessed with Java APIs that are
provided with the Microsoft Java Developers Kit. The low setting allows applets
complete access to the system.

Microsoft claims this approach allows fine-grained control over what a Java applet
is allowed to do. If you discount the medium setting because it is the same as the
high setting with one extra capability, you have a either a sandbox or complete
access to everything. As a user, if you allow a Java applet to run with low security,
then it has complete access to your system. This is unlike the Netscape model
that allows you to control exactly which resources an applet can access.

If Microsoft Internet Explorer allowed more control over what the high, medium
and low settings mean, then the model would be simpler to use than Netscape’s
Capabilities API, from a development point of view. The Microsoft Java Security
White Paper implies that this is the case, but we could not determine how to do it.
It is probably done using the Internet Explorer Administrator’s Kit.

5.5 The HotJava Security Model

The HotJava browser has quite a flexible approach to security from a user’s point
of view. A user can finely control the things that an applet can and cannot do,
Network Computing Security Environment 49

based on the site it comes from or the certificate it is signed with. The security
dialogs allow for defaults as well as customized settings, and you can group sites
and certificates together for easy configuration. This greater flexibility makes it
easier for somebody to unwittingly allow an untrusted applet to perform undesired
operations. Applets that are not signed can be allowed privileges that the other
browsers make available only to signed applets.

Figure 15 shows the basic security dialog in HotJava. You can set the options for
both signed and unsigned applets.

Figure 15. HotJava Basic Security Panel

The advanced options, shown in Figure 16 allow you to configure specific
permissions granted to applets. This is very comprehensive and allows control
over things like specific sites the applet can or cannot connect to, exact
directories on your disk that the applet can or cannot write to, and the system
properties the applet is allowed to access.
50 A Migration to Java

Figure 16. HotJava Advanced Security Preference Panel

HotJava is relatively new and is less sophisticated than the other browsers. One
thing missing that is available with Microsoft Internet Explorer and Netscape
Communicator is a centralized administration point. By using administration
products from Microsoft or Netscape, end-users browsers can be configured by a
single administrator. The configurations can then be locked so that users cannot
alter them. This allows administrators to decide on a security policy that all
browsers must follow, and prevent the end users from circumventing it. In a
company intranet environment, enforcing a security policy may be very important.

5.6 Digital Certificates

A digital certificate is a data structure that contains three pieces of information: a
name, a public key, and a digital signature computed over the other two. The
certificate is signed by a trusted third party called a certification authority (CA). It
is the job of the CA to verify that the name information is correct. If you trust the
CA, then digital certificates provide a safe method for distributing public keys via
an electronic medium.
Network Computing Security Environment 51

A digital signature is a mechanism that associates data with the owner of a
particular private key. The digital signature for a message is created by hashing
the message to produce a message digest. This message digest is then
encrypted with the private key of the individual sending the message, the key
then becomes the digital signature. When the message is received, the recipient
decrypts the digital signature with the public key of the sender. The message
digest is then calculated from the received message and compared with the
decrypted one. If the two match, then the message has not been tampered with.
By using the public key of the sender to verify the message, we can be sure that
the message was encoded by the private key known only to the sender.

Your copy of Netscape Communicator or Microsoft Internet Explorer comes
loaded with the digital certificates of trusted CAs such as Verisign, and the IBM
World Registry. Figure 17 shows the Netscape Communicator security info
dialog, displaying a list of the CA certificates. If you create your own CA for
intranet use then your browsers must be loaded with your CA certificate. This
function is provided by the Certificate Server, and is the only manual
configuration step that the browser user must take before running applets signed
with your developer certificates.

Figure 17. Netscape Security Info Window

Figure 18 on page 53 shows a Netscape Communicator browser importing a new
CA certificate.
52 A Migration to Java

Figure 18. Importing a New Certificate with Netscape

5.6.1 Why Sign Java Applets?
In order for downloaded Java code to have access to a system beyond the
sandbox, you must explicitly grant it privileges. In order to make the decision as to
whether to grant the access or not, certain conditions must be met. Therefore, the
downloaded Java applet must meet the following criteria:

 • Authenticity

You must be able to authenticate the person the applet has been developed
by, and that you trust that person. With off-the-shelf software, the packaging
usually identifies the software publishers very explicitly. Other physical
identifiers like holograms and certificates of authenticity allow you to trust the
program you install on your machine. When you download an applet into your
Web browser, you do not get the same guarantees about where the software
has come from, or who developed it.

When Java code is digitally signed, you have reliable information about who
developed the code. You can then decide what to allow the program to do.
When the Web server employs secure sockets, you can be assured of where
the code is being downloaded from.

 • Integrity
Network Computing Security Environment 53

You need to be sure of the integrity of the code that you download. If it has
been altered in any way during transmission, you cannot trust it. Encryption
and digital signatures ensure integrity.

 • Accountability

When you receive code that is signed by a particular developer or
organization, you can be sure that they cannot deny it is their code. Only they
should have knowledge of their secret key, which is used to create the
signature. If something does go wrong, you know who is accountable for the
mistakes.

Appendix C, “Creating Signed Java Applets” on page 99 explains the process
required to build a signed archive file for the main Web browsers.

5.6.2 Obtaining a Digital Certificate
The javakey program and Microsoft code-signing technology allow you to create
your own certificates for signing Java code. The Java security Web pages at Sun
describe how to create certificates using javakey and “Microsoft Authenticode
Technology” on page 101 shows how to use the makecert program to create a
Microsoft code-signing certificate.

Obtaining a Netscape code-signing certificate is more difficult. You can purchase
one from a commercial CA such as Verisign Inc. or Thawte Consulting. The
average cost is about $20 per year. Verisign call the certificates enabled for code
signing Class 2 or Class 3 certificates. Class 2 are for personal use while Class 3
are corporate certificates and cost significantly more. At the time of writing,
Verisign issue these certificates to U.S. and Canadian residents only. Netscape
maintains a Web page of companies that issue certificates to clients, but they are
limited today to Belgium, Luxembourg, Brazil, Spain, and South America. Thawte
Consulting offer services in more countries, but not for code-signing certificates in
every country. The lack of services in countries other than the US is due to the
difficulty in verifying individual identities. The U.S. Social Security Number
provides a consistent method to uniquely identify a U.S. resident, while not all
other countries have a similar mechanism. Verisign and the other companies also
offer Microsoft code-signing certificates, if you need to publish software for the
Internet.

If you do not want to pay money for a Verisign certificate, or you live in a country
where certificates are not available, you can download the Netscape Certificate
Server evaluation copy. This allows you to set yourself up as a certificate
authority, within an Intranet environment, and issue yourself and others with
developers’ certificates. These certificates, like the Microsoft developer test
certificates, will not be trusted on the public Internet. Using the Certificate Server
is a good way to learn about the technology and become familiar with the
processes of obtaining and using digital certificates. It is quite simple to install
and set up, and comes with comprehensive instructions. There is also a code
patch available from Netscape that allows the Certificate Server to issue
certificates to the Microsoft Internet Explorer browser. A detailed description of
the Netscape Certificate Server is beyond the scope of this chapter, but it is worth
looking at for evaluation.
54 A Migration to Java

5.7 Security Features in Java 1.2

The Java 1.1 platform does not provide concrete implementations of some key
security features. Certain certificate formats and algorithms are to be introduced
with Java 1.2. The certificate management infrastructure will include support for
X509v3 certificates. A new permission based security mechanism is also
proposed, similar to the Netscape Capabilities API. This will allow common code
that requests access outside the sandbox to be written. It will be compatible with
all browsers and Java environments. The problem today is the need for browser
specific code, the Netscape Capabilities API, to be written. The support for
X509v3 certificates will remove the need to sign applet code for specific
browsers. More information on security and the proposed specification for Java
1.2 is available at Suns Web site.

5.8 Secure Java Applets

To write and install secure Java applets, you need to understand three different
domains:

 • Writing the applet

You need to be aware of how Web browsers enforce security on Java applets if
you want to write code that needs access to the system beyond that allowed
by the sandbox model. Different browsers use different mechanisms to show
whether code can be trusted:

 • For use with Netscape Communicator, your code must include calls to the
Capabilities API. You create a JAR file that must be digitally signed with a
code-signing certificate compatible with the Netscape tools.

 • For use with HotJava, you must inform the browser users of the
requirements of your applet. Users then have to configure the browser to
allow the applet the access it requires. Your code may or may not be
digitally signed, but if it is you must create a JAR file and use the javakey
program to sign it. This JAR file must be different from the one that is used
with Netscape Communicator.

 • For use with Microsoft Internet Explorer, you must create a cabinet (CAB)
file that is digitally signed and specify the level of access that your code
requires. You need a code-signing certificate that is compatible with the
Microsoft Authenticode tools.

When using a digital certificate, the browser must recognize the Certificate
Authority that signed your certificate. Either you need to obtain the certificate
from a recognized authority, such as Verisign, or import your authority’s
certificate into the browser and mark it as trusted.

 • Securing the applet communication

The IBM CICS Gateway for Java Version 1 classes do not use encryption
when transferring data from the applet to the server. This will not be secure in
an Internet environment. You may need to think of other communication
options if using CICS, or wait for security features to be included with the CICS
Gateway for Java. You can also use third-party libraries to implement
encryption of your COMMAREAs and database information independent of the
CICS Gateway for Java or JDBC. JDBC connections also do not employ
Network Computing Security Environment 55

encryption, and face the same problems as the CICS Gateway for Java
communication.

 • Web Server Security

If you require authenticated access to your Web server, there are two options.
You can employ basic authentication or use SSL client authentication. When
the server is required to authenticate a request you can use custom written
code to access existing security services, or design new policies using the
server administration tools. For example, your server might invoke a CICS
program that uses the CICS API command EXEC CICS VERIFY PASSWORD
to authenticate a particular user.
56 A Migration to Java

Chapter 6. Designing a Network Computing Application

The application design tasks for CS92 included tasks specific to developing a
client/server application. In this chapter, we look at the design tasks to see which
of them relate to a network computing application. A task might be relevant simply
because it is part of good application design, or because it relates generally to
distributed computing. Alternatively, there may no longer be any need to perform
a task because it applies only to client/server applications. In addition, we look at
new tasks that network computing makes necessary.

6.1 From CS92 to NC97: Application Selection

Any application that has distributed processing requirements is a good candidate
for development using the network computing model. An existing application with
a robust mainframe element but which needs to reach a wider audience of users
is an ideal candidate for migration to network computing.

It would have been possible to develop an entirely new application that used the
network computing model, however, we wanted to show that an existing
client/server application could be migrated easily to a network computing
environment for three main reasons:

 • CS92 had been developed to demonstrate the principles of the client/server
model. It was using the principal technologies of this model, and therefore it
was a good case study to show how they migrate to the new model.

 • The application was developed five years ago: its client portion was coded in
EASEL and its server portion in COBOL. The server code still existed, but as
there was no longer support or a development environment for EASEL, the
GUI part of the application had to be redeveloped. It appears to us that this
situation may often occur in a real situation, when choices made in the past
have to be reconsidered because of an important change in technologies.

 • The last reason derives from the first two. In applying the principles of the
client/server model, the CS92 developers isolate each application part, the
presentation, the business logic, and the data access. Therefore, it was easy
for us to concentrate on the redevelopment of the GUI only, limiting the scope
of our project in term of resource and time. It also gave us the opportunity to
use Java and exploit the potential of network computing.

The migrated application, that we called NC97 for Network Computing in 1997,
was on its tracks

6.2 NC97 Infrastructure

The task of defining the configuration of the system is still necessary. In a
migration project, this can simply reconfirm that the existing configuration
satisfies the requirements or, more radically, the configuration could be
redesigned to remove one tier of the architecture. The decision would be specific
to each project, depending upon the resources available and any other uses that
the configuration is being used for.

Figure 19 shows the new infrastructure that was chosen to migrate the
application.
© Copyright IBM Corp. 1998 57

Figure 19. NC97 Infrastructure

On one hand, we tried to keep as much as possible of the existing programs on
the local server and on the mainframe server. On the other hand, we tried to
implement the new technologies offered by the NCF to the extent possible.

Therefore, we developed a new front end to the application using Java and Java
applets. Our development tool was the newest member of IBM’s VisualAge family:
VisualAge for Java.

To connect to the existing DB2 data and CICS transactions, we used two NCF
connectors:

 • JDBC to access the DB2 data

 • CICS Gateway for Java

We added a new function to the application using Net.Data.

A Web browser was the new application interface to the user. HTML pages and
our Java applets were stored in a Web server, the Domino Go Webserver for
OS/390.

6.2.1 Hardware
When looking at the hardware configuration, we faced two alternatives:

 • A two-tier configuration, where the client using a Web browser connects to a
single host running the Web server and the subsystems (DB2 and CICS).

This configuration has advantages for administration, maintenance, and
system management because of the unique server in the configuration. A
unique team can manage that machine. There is only one version of the
58 A Migration to Java

software, system, or applications. The users have only one entry point to the
systems wherever they are located, on the intranet or the Internet.

This configuration, however, has a drawback for the migration. All the
distributed programs and data have to be relocated to one server. This can
lead to many changes in the application programs.

 • A three-tier configuration where the client connects two servers, the branch
office local server and the bank mainframe server, one also running the Web
server.

This configuration is similar to the client/server configuration, keeping the
same distributed structure in the two servers. Only the processes and data
located on the client machine need to be migrated to one or the other server.
Therefore the migration process is easier.

This configuration may need more administration, maintenance and system
management than a two-tier configuration. But it is not more than what have
existed with CS92 and the same support team with appropriate education can
continue to support NC97.

To respect one of the project objectives, maximum reuse of the CS92 application,
we decided to use the same basic hardware configuration for NC97 as had
originally been used in CS92. There were some variations, such as no longer
needing workstations with storage capacity.

6.2.2 Software
Concerning the software, the decision was to take advantage, if needed, of the
new functions of the system software that were used in 1992. The other decision
was to take advantage of the new development technologies especially in the
rapid application development area and to use the tools that support it.

6.2.3 Communications
The Internet uses TCP/IP as the communication protocol. We also wanted to
avoid multiple communication stacks in our environment. Therefore, the
communication protocols changed from SNA LU 6.2 and NetBIOS to TCP/IP as
shown in Figure 20.
Designing a Network Computing Application 59

Figure 20. NC97 Communication Configuration

In this environment, all communications are using the TCP/IP protocol over the
intranet and the Internet. Compared to CS92 communication configuration (see
Figure 2 on page 4), this new configuration is much simpler to manage (one
communication stack). It also requires less resources (memory and CPU) than
the previous configuration.

6.3 Application Design Tasks

The following tasks are fundamental to any application development, regardless
of the framework within which the application is developed.

6.3.1 Application Design
In a migration project, these tasks have to be performed to validate the previous
design, but do not need to be started completely anew:

 • Revalidate the business needs.

In a migration project, the business needs would probably have changed
between the two versions of the application. We then need to revalidate the
business needs that this application addresses.

 • Revalidate the data model

If the business needs have changed, then the data model that describe the
data to a business and the relationships among the data may also have to be
changed.

 • Check the business processes

The next step in the development process of the application involved
identifying and analyzing the business processes, and to group them into
60 A Migration to Java

major business processes areas. This was a joint effort between the
application designers and the business analysts and the end users.

The business map identifying the data entities that each process requires and
establishing the business rules for each process has to be confirmed with the
new environment.

 • Check the specifications for requirement

Using the business map as a framework, the requirement specifications of the
application are produced for the business areas that were considered.

These requirement specifications have to be checked against the new
environment.

In our migration project, we considered that the environment did not change so
that we could use the same hypothesis.

6.3.2 Outline Design
An outline design of an application is produced from the requirement
specifications: each identified business process is transformed into application
tasks. In the case of a migration project, this transformation was performed when
the application was first developed, so the task now is to verify that the outline
design is still valid and able to be implemented.

The application tasks can then be analyzed to determine which tasks require
application function to be written. However, in the case of a migration project it is
typical to want to keep as much of the existing application function as possible.
Reasons for this can be:

 • Operational stability

The existing mainframe function can be optimally tuned for performance, fully
integrated into the existing production schedule, and have efficient
housekeeping.

 • Resource constraints

It is possible that all-COBOL skills, for example, are employed in today’s
environment on year 2000 work on legacy systems.

 • Degree of change

The more change there is in an application, the longer it takes to change, and
the more risk is associated with it.

The degree of change influenced our decision to keep the COBOL code.
Approximately 60% of CS92 was written in EASEL and C SET/2, which meant if
we could keep the COBOL code, then 40% of the application would not be subject
to change. Keeping the COBOL code drove the definition of what outstanding
application function had to be implemented in Java, and to an extent also drove
the flow of the user interface. Because of the modular design of the original
application, it was possible to work back from the individual building blocks of the
COBOL code, without being constrained by large pieces of functionality contained
within one module. Thus, it was easier to design the flow of the application, and to
define exactly what functions needed to be developed in Java.
Designing a Network Computing Application 61

6.4 Presentation and A pp lication Se paration

The design principle of separating the presentation layer from the application
business logic is still relevant for network computing. This separation was
achieved quite easily in the migration project because CS92 had previously made
the distinction between presentation and application. The presentation layer was
written in EASEL and the application layer in COBOL. We retained the application
layer and rewrote the presentation layer in VisualAge for Java.

The decision to have application logic performing all data manipulation became a
little blurred for us, because in CS92, EASEL code was used not only to handle
the presentation logic, but also to handle some business logic. For example an
EASEL routine calculated the total amount payable so that it could be displayed
to the user. This calculated piece of data was then passed back to the application
logic for storage on the database, without any further calculation. Chapter 6.7.2,
“Updated Function” on page 68, discusses in further detail what we decided to do
with this function, which did not clearly belong to one layer or the other.

6.5 Data and Function Placement

There is still a fundamental requirement to have location transparency for
applications, and hence as much flexibility as possible. It is important to be able
to change the location of data or function without changing application code.

6.5.1 Data Flexibility
Full transparency of data is not always easily attainable. In the case of CS92, for
example, a major part of the DB2 table design was to determine where the data
should be placed. As a result, tables that were specific to a geographic location,
such as a bank branch, did not carry a branch identifier. If this sort of table is
migrated from the server to the mainframe, an extra column must be added to the
table, and application code must change accordingly.

6.5.2 Function Flexibility
Transparency of application function is achievable by physically moving the code
from one platform to another, or by using system software such as CICS or DB2
to perform remote access. The location of code should not be volatile, but
requirements such as performance tuning and load balancing may necessitate
the moving of code; hence, means of routing client requests to the appropriate
functions must be provided.

6.5.3 CS92 Application Request Manager
CS92 used the application request manager (ARM) to support the flexibility
requirement. The ARM stands between the application logic on the client
workstation and the distributed system services such as access to DB2 data or
call to a CICS transaction. It has two functions:

 • It verifies that the application logic is requesting a known service and using the
correct parameter for that service.

 • It routes the request through the system service interface that handles the
particular service requested.
62 A Migration to Java

This architecture was implemented in CS92 for two reasons.

 • It served as the interface between the EASEL and COBOL code.

 • The ARM protected the client from needing to know the location of server
code.

We do not need this function in our migration because the Java code can make
the equivalent calls via the CICS gateways.

Client protection is more relevant to this application routing discussion. For
example, the client requests the service GetCashierID, so the ARM determines
which program it requires and what service provides it. The developers
recognized that directory services external to the ARM should be used to hold the
precise location information, but time constraints prevented them from
implementing this.

6.5.4 Routing Techniques
In migrating the application we decided to place function on the same platform as
the data. We also decided not to migrate the ARM. These migration decisions had
implications for the Java code as the router had to decide for itself which CICS
Java Gateway the ECI request should be routed to, and the name of the COBOL
program that would perform the data access. Using object oriented techniques a
router object can be implemented to encapsulate this information. The router
implementation can be changed depending upon how the information is made
available.

Here are four possible solutions:

 • The applet can be provided with information about the location of programs
and servers, either at development time or run time. During development, the
information is hard coded into the router object. At the end of development,
the router can be altered to read the information from run-time parameters.
The run-time parameters are coded in the HTML applet tag.

 • In the existing application, each DB2 COBOL program is suffixed with a letter
that identifies the location of its DB2 data. The Java code must use this
metadata to make its routing decision.

 • Maintain a centrally placed DB2 table holding the location of the CICS
Gateway for Java for each function implemented by COBOL code, and update
the encapsulated routing function described above to access this table.

 • The same design considerations are still relevant, and there is now a protocol
defined, called lightweight directory access protocol (LDAP). It is a standard
protocol used by clients to access a directory information server. For our
configuration we would need to define the services being provided by the
CICS and DB2 servers to the directory server. The client would then request
information about the services using the LDAP protocol.

There is still a lack of full system support for this area. We decided, in the
interests of time, to go with the hard-coding option (see Chapter 7.5, “Router” on
page 79.)
Designing a Network Computing Application 63

6.6 Data Placement

The task of establishing where to place data is much simpler in a network
computing application because there is only one place to store the data, unlike
the three-tier model of the client/server application. In the case of a migration
project, such as ours, however there was data stored previously on the client.
This data and its associated DBMS tables have to be moved from the client to a
server machine, whether a mainframe or a local server.

One reason for having data on the client is that it is specific to the user of that
workstation. In CS92, this was the case with the currency and currency
denomination tables, which were specific to a cashier. When these tables are
migrated to the server machine, an additional column must be added so that
specific instances of a currency can be identified with a specific cashier. The task,
therefore, involves listing all the tables stored on the client machine and
performing data analysis to determine what new key information must be added
to a table to uniquely identify a row.

Read frequency is a second reason for holding data on the client. In the case of
CS92, the commission rate was an example of data duplication, in that the table
holding the single commission-rate row was held on the client, the local server
and the mainframe server. This was done because, although the commission rate
was maintained and updated very infrequently on the mainframe, it was read
frequently on all three platforms. When reference data is held on the client which
is a copy of data held and maintained elsewhere there is no need to migrate it
from the client.

If, however, the purpose of holding frequently read data on the client is to improve
performance, then the design phase of a network computing development must
provide an alternative solution. One option is to download the reference data at
the point where the applet first starts up; another option is to retrieve the data
only when needed. Clearly, both approaches have performance implications, so
we must consider factors such as the amount of data and its complexity.

6.6.1 Reference Data
In terms of complexity of installation and configuration, it is undesirable in one
transaction processing application to have two ways of accessing the DB2 data.
However, there are additional considerations when migrating an existing
application. In a client/server environment, it is customary to hold reference data
on the client machine for ease and speed of access. The data is usually
maintained on the server machine and downloaded to the client. The frequency of
this downloading is dependent on the volatility of the data.

In a network computing environment, however, it is not valid to store reference
data on the client because the client machine may lack local storage capabilities.
Nevertheless, there is a need to provide drop-down lists and other user selection
data. It is quite likely that an existing transaction processing application will not
have any application code for downloading reference data, as it is more likely to
have used a system utility. As a result, in migrating to network computing, it is
undesirable to have to write new server code simply to download the reference
data.
64 A Migration to Java

When there is a large amount of reference data to download, then megadata
problems can occur. The main megadata problems arise when the user enters
vague selection criteria against large tables. There is a slight distinction between
satisfying a user query and, for example, populating a drop-down list box for user
selection, but fundamentally, the problem is always that of an unknown amount of
data being returned.

Solving the problem requires quite complex server code. One of the possible
solutions is repositioning to avoid retrieving the same data twice, but this requires
the same transaction executing more than once. There is further complexity when
the server code communicates to the client that it has encountered megadata and
the client code must handle the megadata correctly. An additional problem arises
when CICS is used to transfer the data, because it has a size limitation of 32 KB,
which the megadata might exceed.

In CS92, each cashier holds lists of currencies. The number of different
currencies is unknown and can be large: retrieving such data can give rise to
megadata problems. The CS92 development team already recognized that
megadata was a potential problem and suggested some possible solutions, but
did not implement them.

During the migration project, we did not want to add any coding complexity to the
COBOL code; we, therefore, tried to solve some of the megadata problems with
JDBC.

We decided to use JDBC to download our reference data. The client code
requests the data when needed, knows the format it will be sent in, and can
display it to the user. Reference data is thus available, without changes to the
existing transaction processing programs.

We replaced an existing server program, which retrieves a list of currencies
associated with a cashier, with Java code that makes JDBC calls directly to the
DB2 data. In this way, complexity is removed from the server code and the CICS
limit is bypassed. The Java code can then handle the unknown amount of data in
a number of ways:

 • List windows with proportional scroll bars
 • Context-sensitive selectable list boxes
 • Predefined user limits
 • Java code displaying only a subset of the returned result set.

6.6.2 NC97 Data Placement
Although the technology exists to support the placement of all data either on the
mainframe or on the local server, we decided to leave the existing mainframe and
server tables in their current positions to avoid unnecessary changes of the
back-end programs.

However, the first decision we made was not to have data held on the client
machine. In a network computing environment, the client may be very “skinny”
and its location can be completely remote, so it is not realistic to store data there.

As a result, we had to decide where to place this data and our only change was to
migrate three tables from the client to the local server.
Designing a Network Computing Application 65

In CS92, three tables are held on the client only: Cashier, Currency, and Currency
Denomination. The Cashier table when held on the client is a single row table, so
when it is migrated to the local server, it simply results in a multirow table and
changes are not required. In contrast, the Currency and Currency Denomination
tables are specific to a single cashier, so when they are migrated to the local
server the currency data for all the branch cashiers is held on the same table.
Therefore the cashier must be added as part of the unique key so that one
cashier’s data can be distinguished from that of another.

We could have migrated all existing tables to the mainframe. However, in the
same way that the currency information is specific to a single cashier, much of the
order information is specific to the branch. Therefore, too many of the tables, and
thus the COBOL code, would have to be changed, adding the cashier and the
branch as part of the unique key.

Similarly, we could have migrated all the existing tables to the local server. In this
case, however, we would not have satisfied the existing data placement
requirements. Specifically, in our application, the exchange rate table had to be
on the mainframe, because it was here that the centrally placed dealers,
maintained the data held on it. Additionally, we would be making changes not
justifiable as part of a migration project.

6.7 Function Placement

In the original application, the infrastructure allowed the placement of function on
any of the three platforms. For functions that did not access data the principle
was to place them close to the user. Equally, however, functions that did access
data were also placed on the client: system software was used to access the data
remotely. This was to illustrate the flexibility of the client/server model.

A number of considerations influence function placement when migrating to a
network computing environment.

 • Choice of development language

For example, Java applets are better suited for downloading and presenting
windows, whereas COBOL is better for data manipulation and retrieval.

 • Minimal redevelopment

If the function already exists, can it be reused in its current placement?

 • Reuse

This includes not only reusing existing functions, as above, but also, if new
code is being developed, in which position is it more likely to be reused?

 • System software

What system software is available to support function placement on a specific
platform? For example, is JDBC available on the client to enable DB2 data to
be available directly to the client?

 • Speed of communication

If a three-tier model is used, are there any performance implications in
keeping, for example, code on the server machine which accesses data on the
mainframe?
66 A Migration to Java

In NC97, the COBOL could not be kept on the client, but we wanted to reuse the
COBOL function rather than rewrite that part of the application in Java. Therefore,
establishing function placement became choosing on which server, local or
mainframe, we should put the functions. A logical approach, which minimized
network traffic, and minimized reliance on system software was to place the
function on the same platform as the data.

6.7.1 Existin g Function
The COBOL code in the existing application was placed on the client. In our
implementation of the thin client, we had to move the code to either the
mainframe or the local server, or both. Figure 21 lists the possible function
placements.

Figure 21. Possible Function Placements

It is possible to place the COBOL code on the mainframe server and to use
DRDA to access DB2 data on the local server. Similarly, it is possible to place the
COBOL code on the local server and to access the mainframe DB2 data with
DDCS and DRDA. We could also use CICS to establish these connections
between the two servers.

However, as our client uses Java, we wanted to demonstrate the two versions of
the CICS Gateway for Java, without additionally linking the mainframe and the
local servers. As a result, we decided to place the COBOL code on the same
platform as its related DB2 data as shown in Figure 22.
Designing a Network Computing Application 67

Figure 22. Function Placement Using the CICS Gateway for Java

In CS92, one program retrieves both currency denomination table data, which is
held on the local server, and the exchange rate table data, which is held on the
mainframe server. Because we decided to place COBOL code on the same
platform as its data, we had to split the function of the code. Fortunately, another
program could retrieve the exchange-rate table data, so the only coding change
we had to make was to remove the exchange-rate retrieval from first program.

6.7.2 Updated Function
In CS92, the EASEL code calculated the total amount payable. We discussed
where this updated function ought to be placed. If multiple-client GUIs were to be
developed, for example a Lotus Notes version as well as a Java version, then it
would be more efficient to code the calculation in a server just once, rather than
in each client implementation. However, this approach conflicts with our
requirement to reuse as much of the mainframe code as possible without any
amendment.

We also discussed whether we should make our client as skinny as possible by
not adding function that could be performed at the servers. In this particular case,
as the business function requires an immediate display of the total cost, the
calculation should be done on the client machine.

We decided to develop the function as a Java applet, as this approach would
satisfy a number of our requirements:

 • The client remains skinny.
 • New function is independent of the existing COBOL code.
 • The new function is developed only once.
 • The applet supports an open architecture, in cases where an alternative GUI

is developed.
68 A Migration to Java

6.8 Designing the Application Access

A design task is needed to determine how users will access their network
computing application. If the application is to run on an intranet, the client
machine can be configured on a one-off basis, by installing a Web browser on the
machine, and then defining its default home page as the address of the Web
server machine. In an Internet scenario, a client machine would still need a Web
browser installed, so that a user could find the home page of the owning
organization of the application, as this would be the starting point for the
application.

Figure 23 shows the different installation choices we have in installing the
application code.

Figure 23. Installation Choice of Java Code

Having brought the user to the required home page, where the Java applet tag is
held in the HTML, the next decision is where to download the Java code from.
Basically, there are three options available to install the Java application:

 • The Java code can be held on the mainframe and be accessed by the client
through a web server also on the mainframe.

 • An alternative is to define a server machine in the configuration as the Web
server. However, if the Java code is developed and maintained on the
mainframe, this requires a distribution mechanism from the mainframe to the
server.

 • A combination of the two approaches is to hold the Java code on the
mainframe and define the server machine as a proxy Web server. This means
that a client machine makes HTTP requests of its local Web server. If the
required Java applets are already cached on the local server, then it satisfies
Designing a Network Computing Application 69

the client requests. Otherwise, if the code is not cached, then the local Web
server makes HTTP requests to the mainframe web server.

Using proxy Web servers in this way, in an intranet environment, can improve
the performance of an application, as communications between the local
server and mainframe are minimized. The frequency of Java code refresh
from the mainframe to the local server can be specified, so that stable Java
code will not be frequently downloaded from the mainframe to the local server.

In NC97, since we were operating in an intranet environment, we defined the
user’s default home page, as the home page of the bank. We decided to define
the mainframe as the Web server. We did not define the local server as the Web
server because we wanted to minimize the need to distribute code. We did not
use proxy Web servers during development of the application because during
testing, frequent refreshing of the code on the client was more important than
performance.

6.9 Desi gnin g for the Web

A network computing application can be Internet- or intranet-enabled. The degree
of enablement is a major design decision, in which a number of factors must be
taken into consideration.

6.9.1 User Base
Figure 24 illustrates the three types of users a network computing application
may encounter.

Figure 24. Internet/Intranet Options

The three types are:
70 A Migration to Java

 • The corporate users

In NC97, the user base remains unchanged: it is still cashiers in bank
branches. Therefore, an intranet solution is more appropriate. Fewer
infrastructure changes are required because the bank’s enterprise-wide
network can be used. From a systems management and security viewpoint the
users of the application are known: from the physical location of the users and
their machines, through to their user IDs and passwords. However,
implementing the application using intranet network computing positions the
application for extranet and Internet access.

 • The associate users

A possible evolution of the user base would be to expand it to a franchised
company, such as a travel agency, whereby a travel agent could use the same
parts of the application as a branch cashier, and would act as a satellite
cashier to a particular branch. The travel agency company would have its own
enterprise network, but would access NC97 through the Internet; this structure
is called an extranet. Each enterprise would have a server machine acting as
a firewall between its own network and the Internet. The firewall ensures that
the data travelling across the Internet is secure. No application amendments
would be necessary, as the travel agent is using the same functions as a
cashier. The systems management of this extranet remote access would be
similar to that of the intranet implementation because the user base would still
be identifiable.

 • The individual users

The next evolution would be to allow access by individual customers through
the Internet. However, such a change is more fundamental. The concept of a
systems administrator allocating user IDs and maintaining passwords is
simply not relevant when the enterprise does not know who its customers are.
Changes would be required to the business application, as the GUI was
originally written for a cashier, not a customer. For example, the cashier ID is a
vital data element, which is not relevant when a customer orders currency
directly.

6.9.2 System O peration
There are system management implications in extending the scope of a network
computing application. If the application is confined to a specific location, it would
be possible to make it available to other dispersed parts of the
organization—perhaps worldwide.

The result of such an extension is the loss of predictability of the behavior of the
environment. The original application may be tuned to a specific and measured
workload (transaction rate daily, batch processing nightly) with hardware
resources properly sized to accommodate the peaks in usage. Those
assumptions are not valid anymore, particularly if the application is opened
externally to the Internet.

If the access is worldwide, or at least widely dispersed, the problem of the
different time zones should make you reconsider the distinctions you had
between daily and nightly operations. You may come to the conclusion that your
newly extended application now has to be operational for 24 hours 7 days a
week. So, for example, if the nightly operations were reporting ones, you should
make sure that they can still run as-is, when, potentially, users can update the
Designing a Network Computing Application 71

underlying data. Is it acceptable for the requirements of the reporting application?
What about the conflicts in locking database resources? If the conclusion is to
rewrite the reporting application, is it just a reshape using the same technology,
or do you have to switch to a different, more suitable, technical solution? The
same applies for the backup activities: if previously they were run during the
night, to ensure that no user or application was accessing the data, this
assurance can no longer be relied upon. The result is that you would probably
need to move to an on-line (or hot) backup of your databases.

Scheduled availability of systems is also affected by time zones, different
countries, and cultures. For example, national holidays follow different rules and
you should consider this, for example, when planning your computer environment
maintenance.

When extending the scope of an application, another consideration is function
placement. For example, if the application is accessible to external users on the
Internet, you could decide to place, whenever possible, most of the processing on
your server machines, in order to please the users with less powerful computers.
The other way is to push most of the processing onto the client machines to avoid
overloading your corporate servers.

6.10 Desi gnin g for Inte grit y

A design task is necessary to determine what the requirements for data integrity
are and how they can be satisfied. It is possible to design an application that does
multiple updates, potentially across different platforms, within a single logical unit
of work (LUW). However, there are implications to this kind of design that need to
be considered. In this section, we look at those implications and discuss
considerations specific to network computing.

6.10.1 Desi gnin g Lo gical Units of Work
CS92 had a design that was inadequate to ensure data integrity. The business
transaction to create a customer order actually performed two updates to data
held on different platforms: the client machine and the local server. Because of
the lack of two-phase commit support in the system software used, these updates
were performed in two different LUWs.

Because we migrated to a network computing solution, we could not store data
on the client. When we migrated the data to the local server, both DB2 tables
were on the same platform, so a small piece of redesign and code change solved
the data integrity issue by including both updates in the same LUW.

If all the transactions designed for CS92 had been implemented, we would
probably have faced similar problems when migrating business functions, which
had been split as separate LUWs across the mainframe and the local servers. In
this case, again with some redesign and code changes, we could have exploited
the two-phase commit support of DRDA, so that COBOL code executing on the
local server could access and update data on the mainframe server, thereby
allowing DB2 to manage the commit processing.

With network computing there is no system software on the client to manage the
synchronization of remote updates. The client machine is “stateless”: it cannot
control the updates taking place remotely. Since the updates are always remote
72 A Migration to Java

then this control must move to the back end. Once control is moved to where
updates are actually taking place, then the synchronization of updates and the
size and business contents of logical units of work become a matter of following
good design principles.

6.10.2 User Awareness
Although we can design an application to ensure that there is always data
integrity, it does not necessarily mean that users are always certain that their data
is in the consistent state that they expected.

In NC97, there is a lot of network communication, system software, and
application code, between the point when the data is entered on the screen to the
point when a confirmation message of success is displayed. At any point, there is
a possibility of failure in one or more of the various links in the chain. How do end
users know at which point the failure occurred, and therefore whether their
update has completed successfully?

Clearly, a message indicating success must be issued by the updating
transaction and communicated back to the end user. Success should be, by far,
the most frequent case, and such a message will leave the user in no doubt as to
the outcome. Other situations are harder to cater for. The Java code on the client
can identify that a communications failure has occurred between it and the CICS
Java gateway server, and display a message accordingly. “Wait” type logic could
be included to determine failures when communication does not return from the
Java gateway, but in this case, the Java code would have no detail as to the
nature of the failure. In a production-strength application, browsing or refreshing
functions would have to be provided to allow users to check on the success of
their update.

Informing users of the success or failure of their updates is a usability issue, and
the design of this part of the application must be performed in conjunction with an
end user representative, so that the cost and complexity of any particular solution
is appropriate to the level of requirement.

6.11 Desi gnin g for Securit y

Security is a crucial issue when expanding the user base to include any access
from the Internet. In a controlled environment, such as an intranet, the main
concern of security is to ensure that the data and the processes that manipulate
the data are protected from any unauthorized access and updating. When an
application is Internet-enabled the definition of security becomes very much
broader:

 • Application owner

Owners of applications still need to ensure that their processes and data are
protected, but now have the added concern of not knowing who the users of
their application are.

 • Application user

Users of an application have to be confident that the application they are
downloading to their machine is reliable and trustworthy, and will not damage
their machine in any way.

 • Communication
Designing a Network Computing Application 73

Not only must application owners and users be assured that their ends of the
communication are safe and secure, they both need to be confident that the
network is secure. In this context, secure means that no third party can
masquerade as either the application or the user, and that no third party has
access to the communication: it is completely private between the two.

 • Applet to Web server

Enabling SSL security on your web server (see Chapter 4.2.2.2, “Secure
Sockets Layer” on page 36) enables Java code to be downloaded securely,
providing code integrity. Digital certificates provide mechanisms for
authenticity and accountability, allowing users to trust applets. Neither of these
mechanisms, however, automatically provides security for any communication
that the Java code then performs independently.

 • Applet to others servers (CICS and DB2)

Our NC applet uses the CICS Gateway for Java and JDBC to communicate
with the server machines. These products do not provide encryption of the
data sent from the applet to the servers. Information like CICS and DB2
passwords flow across the network in the clear. It is up to the applet code that
you write to provide security for these connections. Currently there is no easy
way to do this for the CICS Gateway for Java or JDBC. Future product
enhancements will include providing encryption, in the form of SSL, for the
CICS Gateway for Java. For the Intranet, this is not an inhibitor to using the
technology. Until encryption is supported, use on the Internet will be restricted
to applications that do not require confidentiality of information.

6.12 Desi gnin g for Year 2000 Com pliance

Any application that has to operate with future dates or which itself must operate
into the 21st century must be checked to ensure that it handles dates correctly.
The application must be analyzed to see what processing is dependent upon
dates and in what way. Then the format of the data, and the way in which the date
is manipulated, must be checked. Any shortcomings must be corrected, and the
entire application should be tested for its ability to handle change of century
dates, and the functionality should be regression tested.

In the case of CS92, the analysis showed that no processing was date
dependent. Dates are stored on the DB2 tables, but they are for reference
purposes only: no logic depends upon the values held in the date fields. The use
of DB2 confirms the confidence that the application is Year 2000 compliant: DB2
fully supports dates in the 21st century and edits all dates used in SQL to
retrieve, manipulate or update its data. Therefore, no code changes are required
to support the year 2000 and beyond.
74 A Migration to Java

Chapter 7. Developing the New Client Application

In this chapter, we explain how we develop the new NC97 applet using the NCF
model. We also relate our decisions, giving all the parameters that led us to it.

7.1 Graphical User Interface

To users of a system, the migration from a client/server solution to a network
computing application should not detract from their ability to perform the task at
hand. The design decisions taken when developing the GUI for a client/server
application are still valid if the underlying business processes are unchanged. A
migration to network computing is a good time to reevaluate the GUI to determine
if any new features that have become available to GUIs since the development of
the original GUI will enhance usability. It is important when considering the
usability of a GUI to understand the profile of a typical user.

Network computing, in particular the Internet, has enabled companies to open up
new channels into their business processes. A GUI for an application that is
available on the Internet cannot make the same assumptions about its user base
as an Intranet-based GUI.

 • Intranet GUI design

For an intranet based application the GUI is a tool to complete the business
process in the most efficient manner. One of the major drivers in moving to a
network computing solution is that system support costs can be reduced.
Companies have also been looking for reductions in their personnel costs.
One of the ways that this is achieved is by using computer systems that
require less experienced staff. A good GUI design, in this circumstance, will
enable inexperienced operators to become proficient in the business process
with minimal training.

 • Internet GUI design

In addition to the usability aspect of Internet applications, companies must be
aware that any person using their GUI will be forming opinions about the
company. This aspect can be exploited to advantage by displaying marketing
information. Many applications on the Internet have a very eye-catching
colorful GUI. Such presentations are as much about providing marketing
messages as performing any business function.

7.1.1 Java features
A key feature of the network computing model is the use of Java for its platform
independence. When producing a platform-independent GUI, a separation must
be made between the platform-specific functions and the GUI components.

A factor that the GUI depends upon is the features that are available within Java.
JDK 1.0.2 was criticized for problems in its Abstract Windowing Toolkit (AWT),
which is the Java implementation of the window components.

In JDK 1.1, Sun Microsystems aimed at solving some major AWT deficiencies,
with a strong focus on quality and performance. The AWT enhancements include
the beginnings of a richer infrastructure for larger-scale GUI development,
including APIs for printing, easier/faster scrolling, pop-up menus, clipboard
© Copyright IBM Corp. 1998 75

support, a delegation-based event model, imaging and graphics enhancements,
and more flexible font support for internationalization. Additionally, the Windows
(Win32) version of AWT was completely rewritten for improved speed, quality, and
consistency with the other platforms.

The Java foundation classes (JFC) are another step toward a complete GUI in
Java. The following features that are linked with the new JFC were not available
at the time of writing this book. JFC will provide

 • Java-to-native-windowing-system drag-and-drop capability. Using such a
feature, users will be able to drag from Java to nonnative windows such as
Windows and Motif.

 • High-level components such as: TreeView, TableView, ListView, PaneSplitter,
ToolBar, TabbedFolder, ColorChooser, FontChooser, and StyledText.

 • Low-level components such as icon, ToolTip, StatusBar, and MessageBox, as
well as sliders, gauges, and spinners.

 • Dynamic and virtual views of some components, such as TreeView, so that
when you have a lot of data in a tree, you don't have to display one icon per
item.

 • Support for better displays and type faces. JavaSoft has worked with Adobe to
create a Web-based, PostScript-like system for displaying Web pages and
applets.

7.1.2 Common Look and Feel
As well as designing the layout and behavior of the windows in the GUI, we had to
decide how we could achieve a consistent user interface and what the
mechanism for delivering the GUI should be.

Common look and feel is a design principle for GUIs, particularly within an
application, and ideally across related applications; but in the case of our
application, look and feel common with what? NC97 starts from a Web page,
typically the bank’s home page written in HTML.

We had to chose how to implement the network computing version of the GUI
between the following solutions:

 • HTML

HTML is not a programming language: it is best used for constructing and
displaying Web pages. It is possible to implement the GUI in HTML, but the
result would be a strange hybrid. The windows look like Web pages but with
many missing features of a GUI, such as tabbing to entry fields. Therefore,
there are some serious usability issues.

 • Native Java graphics

There are strong arguments for reproducing the dialog exactly as is. No user
training is required, as the GUI will look and behave in a manner completely
familiar to the user. However, the client/server GUI was written using
Presentation Manager, which is specific to the OS/2 platform. A lot of Java
application coding would have to be written to reproduce this appearance
exactly. This investment in the mechanics of dialog construction could hardly
be justified, especially when the result would be platform specific.

 • AWT
76 A Migration to Java

VisualAge for Java uses the AWT, which contains basic, portable screen
design tools. These tools become platform-specific only at run time. For
example, the developer uses VisualAge to define a field as a drop down list
box; when this code is executed in a Windows NT environment, the list box’s
appearance and associated controls are slightly different from its appearance
in OS/2. Hence, using AWT gives an application an appearance that is
consistent with the platform it is running on.

 • JFC

JFC is a future method of achieving common look and feel planned by Sun
Microsystems which intends to have a universal Java appearance that will look
the same regardless of the platform it is running on. When this is delivered, it
will be another option from which to choose.

We decided to build the GUI using VisualAge for Java, reproducing as much of
the existing dialog as possible. When users of the client/server version of the
application switch to the network computing version, it will appear very familiar to
them. In the same way, if their workstation’s operating system changes to
Windows NT, the application will behave in the same way, and still look familiar.
We chose VisualAge for Java because it is a visual programming tool and runs on
a variety of platforms.

7.2 VisualAge for Java

We developed NC97 using VisualAge for Java. This application development tool
generates Java code that is the NCF language. VisualAge for Java allowed us to:

 • Develop the user interface

 • Include the connection to CICS, using the CICS Gateway for Java

 • Include the connection to DB2, using JDBC and Net.Data

7.2.1 Application or Applet Decision
As we describe in Chapter 4.1, “Java” on page 31, the Java language can be
used to construct Java applets and Java applications and VisualAge for Java
supports both. A decision must be taken when migrating to a NCF application
based on the following criteria:

7.2.1.1 Application Advantages
Performance is an advantage of developing an application as a Java application
rather than as a series of applets. The application can be installed on the client
machines on which it is to run, thereby saving on download time.

Security is also simplified. The owners of an application know which machines it
is installed on, and are not concerned with making secure connections, as they
control both the client machines and the computers to which they are connecting.

7.2.1.2 Applet Advantages
Applets, unlike applications, are not installed on the client machine. Using applets
makes the system management tasks easier, because there is no need to
distribute, install, or maintain the Java code remotely. If a Java applet is to be
used in a production-strength business application, then the applet can become
fully Internet-enabled in a robust way, because there is a straightforward method
Developing the New Client Application 77

of ensuring that a client is running the correct version of the code, that is,
dynamically downloading at run time.

7.2.1.3 NC97 Decision
During the migration process, we decided to use Java applets. Our design is to
make the clients skinny by not installing and administering code on the client
machines. As we had already decided to operate the application in an intranet
environment, we could exploit that secure environment by enabling the Java
applets to connect to both the mainframe from which they were dynamically
downloaded, and the server machine where some of the data and associated
programs reside.

7.2.2 Applet Design Goals
The design goals that we worked towards are:

 • Minimize the changes to the CICS transactions.

 • Maintain separation of presentation layer from the data layer.

 • Maintain the current GUI screen flow.

 • Make it NC compatible.

 • Route CICS requests to multiple CICS Java gateways

 • Make it executable in as many Web browsers as possible

7.2.3 Applet Prerequisites
NC97 needs to connect to, at least, the local and the mainframe servers (see
Figure 19 on page 58). Therefore it requires the enhanced security model that
allows network connections to hosts other than the one from which it was served.
This is a feature of JDK1.1, which is compatible with VisualAge for Java.

7.3 Object Modeling

As in the client/server model, a key stage during the process of designing the
applet is to define a data model that will hold the data to be displayed on the GUI.
This data modeling task has evolved during the past few years with the increasing
maturity of object-oriented analysis and design techniques. As Java is an object
oriented-language, we developed an object model for our application.

Objects identified are:

 • A system object to hold current data on orders that are in progress

 • A transaction manager to call CICS transactions

 • A router object to enable linking to multiple CICS Java Gateways

 • A window manager to handle windows that are open.

The size and complication of an object model for an application depends upon the
complication of the data model. CS92 was a fat client application with large
amounts of local data storage and CICS transactions were not altered. Therefore,
NC97 requires a similar data model.
78 A Migration to Java

If, however, the application is being migrated from a thinner client/server solution
where less data is stored on the client, then the CICS transactions will be
available so that less data is required on the client.

7.4 Window Manager

We designed the applet as a set of panels that are connected together to form
frames.

As shown in Figure 25, the window manager handle the connection and the
application flow.

Figure 25. Window Manager Object

Method logonMenu manages the cashier’s connection to the application. Using
the cashier’s identifier and password, the application can select the cashier’s data
and can also transmit that identification to the back-end systems on the local and
mainframe servers.

Method orderHandling manages the business transaction. The cashier is
presented a set of screens to handle the business transaction, selling or buying
foreign currencies. The method, then, creates the order.

7.5 Router

It is important to be able to change the run-time parameters for the CICS Java
Gateway transactions and JDBC requests at execution time. We have
implemented a Router object that stores these parameters when the applet is
initialized. The parameter values are initialized from HTML named parameters.
As our architecture uses two CICS Java Gateways, a decision about which
gateway to send the request to is made at run time. This is also the responsibility
of the Router object. As shown in Figure 26, we are using a simple
implementation for this, a lookup table is defined in the development environment.
Developing the New Client Application 79

The lookup is based on program name which is reasonable in our case. A more
sophisticated routing algorithm can be used if required.

Figure 26. Router Object

7.6 Transaction Manager

To create Java applets that interact with an existing CICS application, you need
the following components:

 • The CICS Gateway for Java, part of CICS, that provides communication and
data conversion between the Java applets and CICS servers

 • The CICS Access Builder, part of VisualAge for Java, that simplifies the Java
programming by encapsulating the CICS transactions and data as Java beans.

The CICS Access Builder creates a Java bean, which encapsulates the data
transferred between the CICS transaction and the Java applet, together with
classes to handle the data marshaling and conversion. The CICS Access builder
comes with a class library including a bean corresponding to the CICS unit of
work, for synchronizing with the CICS transaction.

We used a TransactionManager object to provide separation between the
presentation layer and the data layer, therefore removing the need for CICS
transactions to be part of the GUI code (See Figure 27 on page 81).
80 A Migration to Java

Figure 27. TransactionManager

The CICS Access Builder uses class IVJCicsUOWInterface for the CICS unit of
work and the abstract class IVJCicsEciCommArea for the COMMAREA.

As a sample, we describe in the following how we created the Java bean of a
CICS transaction. The COMMAREA of our sample transaction is shown in Figure
28.

Figure 28. COMMAREA

**
* ITSC - San Jose Client/Server Computing *
* CSJ - Foreign Currency Application CSJCOM05.CBL *
* *
* DESCRIPTION *
* - COMMON AREA FOR EXCHANGE RATE *
**
01 DFHCOMMAREA.

04 PROGRAM-NAME PIC X(08).
04 ERROR-MESSAGE.

06 MESSAGE-COMMAREA PIC X(80).
06 SQLCODE-COMMAREAX PIC X(07).
06 SQLCODE-COMMAREA REDEFINES

SQLCODE-COMMAREAX PIC 9(07).
06 SQLSTATE-COMMAREA PIC X(05).

04 EXCHANGE-RATE.
06 C-TYPE-OF-CURRENCY-E PIC X(03).
06 C-EXCHANGE-RATE-BUY PIC X(07).
06 C-EXCHANGE-RATE-BUY-R REDEFINES

C-EXCHANGE-RATE-BUY PIC ZZZ9.99.
Developing the New Client Application 81

The steps are the following:

1. Create the COMMAREA bean.

The first step is to parse the COMMAREA, using its COBOL definition, to
create the corresponding Java classes. As shown in Figure 29, the CICS
Access Builder imports the COBOL file, CICSCOM5, and generates a
COMMAREA bean, COMMAREA5, and the associated classes that map
COBOL data to Java data, one-to-one.

Figure 29. Create COMMAREA Bean

If the parsing is successful a class that extends IVJCicsEciCommArea is
created. Other classes are also created to define the COMMAREA. Our
example produces three classes corresponding to the three sections of the
COBOL copybooks:

COMMAREA05_DFHCOMMAREA
COMMAREA05_DFHCOMMAREA_ERROR__MESSAGE
COMMAREA05_DFHCOMMAREA_EXCHANGE__RATE

2. Define the CICS unit of work

The CICS Unit of work is designed to be programmed visually. To create a Unit
of Work bean, an instance of IVJCicsUOWInterface is placed on the canvas of
the composition editor. The properties of the bean can be altered. Figure 30
shows the values used in our sample.
82 A Migration to Java

Figure 30. Unit of Work Bean Properties

3. Program the CICS bean.

Figure 31 shows how we used the CICS bean in our program.

Figure 31. Visual Programming with the CICS Bean

To run the transaction we use the invokeTxn method of the
IVJCicsUOWInterface with COMMAREA05 bean as a parameter.

7.7 JDBC DB2 Access

We used the Data Access Builder tool of VisualAge for Java to create data access
classes customized to our relational database tables.

Data Access Builder generates beans that access database tables using JDBC.
Both DB2 and ODBC JDBC drivers are supplied. We used the DB2 JDBC driver.

The applet needs to access a DB2 table to provide the values for a drop-down list
box. We had to decide when the JDBC call should be made. As this data is
required when a window is displayed, we have issued the JDBC call when the
window is opened. For performance reasons, it may be better to issue the JDBC
call upon logon and cache the result so that when it is accessed a read of the
cached version only is required.

As with CICS transactions, it is necessary to set run-time parameters at execution
time. The parameter values are held in the router class and are set for run-time
invocation in the DataManager class.
Developing the New Client Application 83

As a sample, we describe in the following how we created the Java bean to
access the branch table. The columns of the DB2 table are shown in Figure 32.

Figure 32. Definition of BRANCH Table

The steps are the following:

1. Select the table.

After selecting the package in which the JDBC data access bean is to be
created, complete the Smart Guide to create a schema to the database. This
defines the type of database (DB2 or ODBC) and the database that is
accessed. When selecting the tables in the schema, a DB2 CAE is required on
the VisualAge for Java development machine. A schema for the selected
tables is displayed in the Data Access Builder window. In our example we are
using the BRANCH table (see Figure 33).

Figure 33. Schema Mapping

A mapping is created for the schema upon its creation. The location of the
database and the driver used are defined in the properties of the mapping
(see Figure 34). These must be set up before testing the connection.

Figure 34. Branch Bean Properties Window

The driver depends on the type of database being accessed and whether the
code is run from an applet or an application. For JDBC access to DB2 the

CREATE TABLE NCM.BRANCH
(BRANCH CHAR(02) ,

BRANCH_NAME CHAR(40) ,
BRANCH_ADDRESS CHAR(80))
84 A Migration to Java

driver is COM.ibm.db2.jdbc.net.DB2Driver for applets and
COM.ibm.db2.jdbc.app.DB2Driver for applications.

2. Generate the bean.

Access to the table can be generated from this mapping. This is achieved by
using the Save and Generate function. The generated classes provide basic
access to the database:

3. Program the data bean.

Figure 35 shows how we used the data bean in our program. The generated
BranchAccessApp can be used to access the database.

Figure 35. Visual Programming with the Data Bean

7.8 Net.Data

While designing the migration to NC97, we wanted to show that we could add
value to the application in an easy and inexpensive way, by leveraging the
strengths of the various products in our infrastructure.

We produced a new data warehouse function that is accessed from the bank
home page. This function satisfies the business need of both branch cashiers and
central office staff, to know about the demand profile for a certain currency, for a
certain branch, during a certain period in the past. This knowledge helps them to
make more accurate forecasts of future demands.

This type of application requires an approach that entails the creation of specific
data structures separated from the operational data (sometimes in the form of the
so-called data marts), and access to that data from the Web.

7.8.1 Implementation
We achieved the development of this new function using Net.Data to access our
data and an existing piece of code, a Java applet, to display it. This example
combines the strengths of Net.Data and Java and illustrates two of Net.Data’s
main features:

 • Easy plug-in of SQL statements
Developing the New Client Application 85

 • Interface to other language environments

It also illustrates two main Java features:

 • Code portability (platform independence)
 • Code reuse

The Net.Data macro issues SQL statements and then invokes a Java applet to
display a user-selectable type of chart.

To stress the concepts of portability and code reuse in Java, we used an existing
applet that was available on the Web. This is a simple Java applet available
through the Net.Data home page on the Web.

This piece of code is capable of displaying charts when invoked with the proper
parameters. Within our implementation, this has two important advantages:

 • We had no need to modify the code of the applet, we just had to provide it the
correct parameters.

 • We also did not install the applet on our Web server; NC97 downloaded it as
needed from the Net.Data Web server.

Figure 36 shows the complete picture of our Net.Data implementation.

Figure 36. Net.Data Implementation

7.8.2 Net.Data Macro
Net.Data simplifies writing interactive Web applications by using macros to add
logic, variables, program calls, and reports to HTML. A macro is a text file
containing Net.Data macro language, HTML, and statements needed to work with
data, such as SQL or PERL. These macros combine the simplicity of HTML with
the dynamic functionality of Web server programs, making it easy to add live data
86 A Migration to Java

from local or remote databases, flat files, applications, and system services to
static Web pages.

The Web server starts Net.Data as a CGI process or as a Web server API thread
by calling Net.Data as a DLL or shared library when it receives a URL that refers
to the Net.Data macro. The URL includes information for Net.Data, including
which macro file to process. When Net.Data finishes processing the macro file, it
sends the resulting HTML to the Web server, which passes it on to the Web client,
where it is displayed on the browser.

Refer to Appendix D, “Net.Data Macro” on page 103 to get the complete
environment to run the macro.

Step 1: Request (the URL).
To start the application, the user enters the URL where the Net.Data macro is
stored:

http://china.almaden.ibm.com/cgi-bin/db2www.exe/ncmndb.mac/input

You can break the syntax of the URL into four pieces:

 • Hostname:china.almaden.ibm.com

 • Program to be executed: .../cgi-bin/db2www.exe

 • Macro to be invoked: ncmndb.mac

 • Section to be processed within the macro: input

Here we are using Net.Data in its CGI-style fashion (the URL would slightly differ
in case of using the Web server’s native API). The Web server locates the
executable in its appropriate CGI-bin programs directory. This directory contains
the executable module, db2www.exe, and has be specified during the Net.Data
installation process. Net.Data locates the macro as for the MACRO_PATH in its
configuration file, db2www.ini, and then executes its input section shown in Figure
38
Developing the New Client Application 87

Figure 37. Net.Data Input Section

The SQL sections qryDB_B and qryDB_C return the branch and currency lists.
The DATE_FROM and DATE_TO, specifying the time frame, are simple text entry
fields

Step 2: Inquiry (the input form)
The Input section generates an input form, which is sent back to the user. As
shown in Figure 38, the form allows the user to enter four values:

 • Branch, selected in drop-down listbox
 • Currency, selected in a drop-down listbox
 • Period of inquiry start, in an entry field
 • Period of inquiry end, in an entry field

%{**/
/* HTML section: INPUT /
/* Description: Provides input form for user to choose the information*/
/* for the database query */
/**%}
%HTML_INPUT{
<html>
<head>
<TITLE>$(sampleTitle)</TITLE>
</head>
<body>
<H3>$(sampleTitle)</H3>

<p>
Inquiry arguments: BRANCH/CURRENCY/PERIOD OF TIME

<ul type=square>
 Select Branch from the drop down list box
 Select Currency from the drop down list box
 Enter start/end time you are interested

<p>
<FORM METHOD="POST"
ACTION="report">
<HR>
Branch:
<P>
@qryDB_B()
<P>
Currency:
@qryDB_C()
<p>
Date from (YYYYMM):
<INPUT TYPE="text" NAME="DATE_FROM" SIZE=6>
Date to (YYYYMM):
<INPUT TYPE="text" NAME="DATE_TO" SIZE=6>
<p><HR>
<P>
<INPUT TYPE="submit" VALUE="Submit Query">
<INPUT TYPE="reset" VALUE="Reset input">
</FORM>
<P>
</body>
</html>
88 A Migration to Java

Figure 38. Net.Data Function Input Form

After making his/her selections, the user clicks on the Submit Query button. This
causes the execution of what is specified as ACTION in the input form; in our
case, this means to process the report section of the macro.

Step 3: Delivery of the results, Part I (report form, tabular output)
As shown in Figure 39, the report section starts the SQL section Process.

Figure 39. Net.Data Report Section

Figure 40 on page 90 shows the content of SQL section Process, which:

1. Executes the actual SQL statement to get the data

%{***/
/* HTML section: REPORT */
/* Description: Queries the database to create the pie chart via a JAVA */
/* applet */
/***%}
%HTML_REPORT{
<html>
<head>
<TITLE>$(sampleTitle)</TITLE>
</head>
<body>
<H3>$(sampleTitle)</H3>
<p>
Following are the results of your query.
@Process()
<P>
<hr>$(mainfooter)
</body>
</html>
%}
Developing the New Client Application 89

2. Displays the result set in a tabular format.
3. Stores the result set in table currtable for subsequent applet processing.
4. Calls the applet to display the chart.

Figure 40. Net.Data Process Section

Note that currtable is not a relational table; it is just a Net.Data data structure that
contains the result of the query.

Step 4: Delivery of the results, Part II (report form, applet output)
The applet code is downloaded from the its origin (Web server in Boulder,
Colorado) and then executed. Its input parameters comprise currtable and some
information about the way to display the chart. Figure 41 on page 91 shows the
final result. The negative value reported for January and March 1996 means that
during that month, customers returned to the branch more Australian dollars than
they requested from it.

%{**/
/* Function: Process Language Environment: SQL */
/* Description: Queries the database and invokes the Java applet */
/* within the report section */
/**%}
%function(DTW_SQL) Process() {
select yyyymm_order, sum (amount) from $(TABLEQLFR).ORD_HIST_VIEW
 where branch_number = SUBSTR('$(BRANCH)',1,2)
 and branch_type_curr = '$(CURRENCY)'
 and yyyymm_order >= '$(DATE_FROM)'
 and yyyymm_order <= '$(DATE_TO)'
 group by yyyymm_order
 order by 1
%REPORT{
 %IF (RETURN_CODE == "0")
 <table border=2 cellspacing=40 cellpadding=0>
 <tr> <th colspan=2 bgcolor='a7a7ff'>Currency: $(CURRENCY) From: $(DATE_FROM) To:
$(DATE_TO) Branch: $(BRANCH)
 <tr> <th bgcolor='ffaacc'>Tabular Data <th bgcolor='ffaacc'> Java Applet
 <tr>
 <td align=center>
 <table border=1 >
 <tr><td>Month</td> <td>Requested</td>
 %ENDIF
 %ROW{
 <tr><td>$(V1)</td> <td align=center>$(V2)</td>
 %}
 %IF (RETURN_CODE == "0")
 </table>
 <td>
 @DTWA_ChartUI2(ChartUI2.codebase,ChartUI2.width, ChartUI2.height,ChartType, numrow,
currtable, name)
 </table>
 %ENDIF
 %}
%}
90 A Migration to Java

Figure 41. Net.Data Function Output

This process highlights how easily the Java applet, a single piece of code
centrally stored and maintained, can be used to display a simple chart for any
kind of two-column tables, without any kind of spreadsheet product actually
installed on the client machine.

7.9 COBOL Changes

Previously, most of the COBOL programs resided on the client. In this migration,
we placed the code on the same platform as the DB2 tables. The code was
originally written using Micro Focus COBOL/2. We had to recompile all the
modules using IBM VS COBOL II on the mainframe server and IBM VisualAge for
COBOL on the local server.

Therefore, some changes to the COBOL code and copybooks were essential in
the following areas:

 • DB2-related changes

 • Additional columns

The Currency and Currency Denomination tables were migrated from the
client to the server machine. As a result, an additional column was added
to the unique key of both tables, namely, CASHIER_ID. Any programs that
accessed the tables by the unique key had to have the new column added
into the SQL statement. Also, the copybooks associated with the changed
programs had to be updated to include the new field.
Developing the New Client Application 91

 • SQLGSTRD API

The API calls to stop and start databases remotely are not needed when
the code is on the same platform as the data, and only one database is
accessed. See Chapter 4.4, “DB2” on page 41 for details on the reasons
behind this. As a result the APIs and their related copybook were removed
from both the mainframe and server programs.

 • CICS/DB2 synch-point coordination

A CICS user installable module (UIM), FAARMDBM had to be linked into all
the programs that ran on the server, to coordinate the commit points
between CICS and DB2. Otherwise the thread to DB2 would still be active
when the CICS program finished. The module definition file for each of the
server updated programs had the following import statement:

IMPORTS SQLCALL=FAARMDBM.SQLGCALL

as described in the CICS OS/2 manual.

 • COBOL related changes

The syntax of the redefines statement in the copybook had to be changed
from the Micro Focus version (see Figure 42) to IBM COBOL on all platforms
(see Figure 43).

Figure 42. Micro Focus COBOL Redefine Statement

Figure 43. IBM COBOL Redefine Statement

7.10 Change of Platform

In the previous application, the final suffix letter of the program name (L,S,H)
identified where the DB2 tables resided. In this implementation, we maintained
the naming convention, so that the client programs that were previously suffixed
with an L, are renamed to be suffixed with an S to reflect the move to the server
platform.

One program had been coded in the client/server implementation to demonstrate
that both server and mainframe DB2 tables could be accessed from the same

04 ERROR-MESSAGE.

 06 MESSAGE-COMMAREA PIC X(80).
 06 SQLCODE-COMMAREAX PIC X(07).
 06 SQLCODE-COMMAREA REDEFINES
 SQLCODE-COMMAREAX PIC 9(07).
 06 SQLSTATE-COMMAREA PIC X(05).

04 ERROR-MESSAGE.

 06 MESSAGE-COMMAREA PIC X(80).
 06 SQLCODE-COMMAREAX PIC X(07).
 06 SQLCODE-COMMAREA PIC +999999
 REDEFINES SQLCODE-COMMAREAX.
 06 SQLSTATE-COMMAREA PIC X(05).
92 A Migration to Java

client based program. Because of our data and function placement decision we
needed to change this program to remove all the logic that accessed and
retrieved Exchange Rate data. Another program on the mainframe already
provided this functionality.

Two programs implemented the create customer order function and demonstrated
the difficulties of maintaining data integrity when updates were across platforms
(the client and the server). Because we migrated the client data, to the server, the
two modular update programs can both be called by the same CICS COBOL
program, and so included in the same LUW. This also involved combining the two
specific copybooks into one.
Developing the New Client Application 93

94 A Migration to Java

Appendix A. Domino Go Web Server for OS/390 Operations

In this appendix, we describe the use of the Domino Go Webserver for OS/390 to
distribute the applet code to Web browsers. In our particular network computing
configuration, the Web server is centrally located at the main office on the host
server.

In order for a user (cashier) to start the application, a web browser must be
directed to open an HTML page on this server. Once the page is accessed, the
Java code is downloaded from the server and executed in the browser.

After installation, you start the server using the startup procedure IMWEBSRV
member of the system PROCLIB data set. The OS/390 operator start command
is:

s IMWEBSRV

This command starts the Web server using the configuration file httpd.conf. We
added a Pass directive for the CICS Gateway for Java which references actual
directories in the HFS. In order for the CICS Gateway for Java files and
documentation to be served by the Domino Go Webserver, you need a Pass
directive pointing to the installation directory in the HFS:

Pass /jgate/* /u/java/JGate/*
Pass /* /usr/lpp/internet/server_root/pub/*

This assumes that the CICS Gateway for Java is installed in the directory
/u/java/JGate. The documentation is contained in the directory JGate/html/doc,
with a file called index.html as the main starting page. Once the server has been
started, you can use the URL:

http://your.server.address/jgate/html/doc/index.html

Under the JGate directory structure installed in the HFS is a classes directory.
This contains the CICS Gateway for Java class files that are served by the
Domino Go Webserver. You need an HTML page that contains an APPLET tag so
that a Web browser can invoke the applet. There is a test Java applet that is
provided with the CICS Gateway for Java and to use it you need the APPLET tag
that follows:

<applet code="ibm.cics.jgate.test.TestECI.class" width=520 height=290
codebase="/jgate/classes">
</applet>

It is the codebase parameter that instructs the browser where on the server the
applet class files are. When this tag is read by the browser, it forms a URL
request using /jgate/classes/ as the base. On the server, this is mapped to
/u/java/JGate/classes by the Pass directive. Java class files are also stored in a
directory structure that matches their package naming convention. So in the
above example, TestECI.class is in /u/java/JGate/classes/ibm/cics/jgate/test
directory. The full URL the browser requests when it reads the applet tag is

http://you.server.name/jgate/classes/ibm/cics/jgate/test/TestECI.class
© Copyright IBM Corp. 1998 95

96 A Migration to Java

Appendix B. CICS Gateway for Java — Installation and Setup

We downloaded the CICS Gateway for Java from the CICS Web site.This site also
contains detailed information about the CICS Gateway for Java and instructions
for operation on workstation platforms. Using a Web browser, you receive a
registration form, and you can download the product for the specific platform you
require.

The product files are packaged as a single compressed tar file that needs to be
copied to the hierarchical file system of the OS/390 OpenEdition. The tar file must
then be expanded into a set of directories.

B.1 Configuration

Before the CICS Gateway for Java can be run, you must edit the startup script, in
the JGate file, to reflect the CICS TS libraries on your system, your EXCI options
table, and the HLQ variable:

EXCI_OPTIONS="CICSTS12.PROG.LOAD"
HLQ="CICSTS12.CICS"
EXCI_LOADLIB="${HLQ}.SDFHEXCI"
export STEPLIB=${STEPLIB}:${EXCI_OPTIONS}:${EXCI_LOADLIB}
fig: example of JGAte filr varables

You must specify the WEB=YES SIT option to enable the business logic interface.
To support CICS Gateway for Java, the DFHJVCVT program definition must be
installed on CICS TS.

Java applets and applications do not execute in an EBCDIC environment, even on
the OS/390 Java virtual machine. Unless the applet can generate COMMAREA
data for the CICS program in the correct format and code page, a DFHCNV table
entry is required for the program.

In order for an OS/390 program to use the EXCI to communicate with CICS TS,
definitions for the connection and sessions must be installed. The CICS Gateway
for Java can use a specific or generic connection.

B.2 Running the CICS Gateway for Java

The CICS Gateway for Java is started from an OpenEdition shell prompt. It can
also be started by submitting JCL that runs the OS/390-supplied program
BPXBATCH that executes OpenEdition programs and shell scripts that reside in
the HFS.

Figure 44 on page 98 shows the JCL that can be used to run the JGate script file.
It is assumed that the CICS Gateway for Java is installed in the /u/java/JGate
directory.
© Copyright IBM Corp. 1998 97

Figure 44. Java Gateway Startup JCL

//JGATE JOB (999,POK),'JGATE',CLASS=A,MSGCLASS=T,
// NOTIFY=&SYSUID
//BPXJGATE EXEC PGM=BPXBATCH,
// PARM='SH /u/java/JGate/bin/mvs/JGate
// -noinput',
// REGION=28M
//STDIN DD PATH='/dev/null',
// PATHOPTS=(ORDONLY)
//STDOUT DD PATH='/u/java/JGate/jgateo.log',PATHOPTS=(OWRONLY,OCREAT),
// PATHMODE=SIRWXU
//STDERR DD PATH='/u/java/JGate/jgatee.log',PATHOPTS=(OWRONLY,OCREAT),
// PATHMODE=SIRWXU
//STDENV DD *
DFHJVSYSTEM_00=SCSCPAA9-ITSO System TS 1.2
DFHJVSYSTEM_01=BRANCH-Main branch server
/*
98 A Migration to Java

Appendix C. Creating Signed Java Applets

This appendix describes the steps required to build a signed archive file for
Netscape Communicator, HotJava, and Microsoft Internet Explorer. Signing the
applet class files and placing them in an archive enables browsers to give
additional privileges over unsigned applets.

C.1 The Netscape Tools

Two tools for signing Java code are available from Netscape: JAR Packager and
zigbert. JAR Packager is a Java applet that is run within Netscape Communicator
and has a graphical user interface. Zigbert is a command line tool, available for
Windows NT. Both can be downloaded free of charge from the Netscape
developer site. JAR Packager proved slow and unable to handle large numbers of
files. In order to create a JAR file that included all the VisualAge support classes
and our applet, we had to use zigbert.

Follow these steps to create a signed JAR file using zigbert. The steps assume
that zigbert has been downloaded and installed onto your machine, and the
directory is in the PATH. The steps are:

1. You must have a certificate installed in your Netscape Communicator that is
enabled for object signing. See “Obtaining a Digital Certificate” on page 54 for
ways to obtain this certificate. Make a note of the name by which the
certificate is referred to when you installed it into the Netscape Communicator
database.

2. Place all the files that make up your applet into an empty directory, making
sure the directory structure is preserved. If you are using VisualAge for Java,
use the export project option and specify the directory; however, do not select
the export JAR file option.

To sign all the files, issue the following command (all on one line):

zigbert -d "c:\program files\netscape\users\default" -k "Stephen Longhurst’s
IBM ID" c:\build

This assumes that the Netscape certificate database files are in the directory
c:\program files\netscape\users\default. This is usually the case, the files are
named cert*.db and key*.db. The name of the signing certificate is "Stephen
Longhurst’s IBM ID." You can check the names of your certificates by using the
"Security Info" panel in Netscape Communicator and looking under the
Certificates->Yours section. The directory where all the files have been
expanded to is c:\build.

You will be prompted for the password that protects the certificate you specify.
After the command has completed, a new directory called META-INF is
created under the top level (c:\build). This directory contains the manifest file
for the JAR archive and the Netscape-specific signing information files.

3. Use the zip command that is supplied with zigbert to create the JAR file from
the directory. Change to the top-level directory (c:\build) and use the
command:

zip -r ns4applet.jar .
© Copyright IBM Corp. 1998 99

A file is created called ns4applet.jar, this is the JAR file that is uploaded to the
Web server and is referenced in the archive tag of the HTML page. You can
use any name you like for the output file.

C.1.1 Create a JAR file signed for Netscape Communicator.

Figure 45 shows the script file used for NC97. It is quite simple to automate the
process. You could also add a step to copy the resulting file to the Web server
disk if it has been remotely mounted.

Figure 45. JAR file creation

C.2 The Sun Java Development Kit Tools

Sun JDK Version 1.1 includes the javakey tool that allows you to create, display
and save certificates. It is also used to sign JAR files for use with HotJava.
Javakey manages a database of entities. These entities are either identities or
signers and the user or administrator can declare certain entities to be trusted.

The Sun Microsystems Web site contains comprehensive instructions on using
the javakey tool as well as a tutorial on signing applets. The page is entitled
"Security and Signed Applets."

For the purposes of this project, actually signing a JAR file for use with HotJava
was not necessary. HotJava can be configured to allow unsigned applets
privileges beyond the sandbox. We used this mechanism when testing the applet
with HotJava. You need to create a separate JAR file for use with HotJava
because one signed with Netscape tools will fail to load properly. To create the
JAR file, use the jar tool in the directory where your class files are expanded.

jar -cvf output.jar *

REM makens4.bat
REM Script to digitally sign a directory structure of files
REM and then package them up into a JAR file.
REM Use on Windows NT
REM
REM Parameter 1 = Directory to package up
REM Parameter 2 = Name of output file
REM
REM Example Usage : makens4 g:\build ns4applet.jar
REM

SET ZIGBERT_DIR=c:\JARPackager\zigbert
SET CERTDB_DIR="c:\program files\netscape\users\default"
SET CERTIFICATE="Stephen Longhurst's IBM ID"

%ZIGBERT_DIR%\zigbert -d %CERTDB_DIR% -k %CERTIFICATE% %1
cd %1
%ZIGBERT_DIR%\zip -r %2 .
100 A Migration to Java

C.3 Microsoft Authenticode Technology

You can use Microsoft tools to create digitally signed CAB files, giving your
applets access to system resources when running in Microsoft Internet Explorer.
You need to have the Microsoft Java Software Development Kit. The SDK
provides a tool called makecert that allows you to generate a test software
publishers certificate to sign the CAB file with. The Java SDK is available from the
Microsoft Web site.

The followings steps are detailed on the Microsoft web site in a document entitled
"Signing a Cabinet File with Java Privileges Using Signcode." It is assumed that
the Java SDK is installed on your machine with the bin directory in the PATH. The
steps are:

1. Create a certificate with the makecert program using the following command:

makecert -sk DeveloperKey -n "CN=Company Development" TestCert.cer

2. Use the cert2spc program to turn the certificate into a test software publishers
certificate:

cert2spc TestCert.cer TestPublish.spc

3. Extract all your Java applet class files into an empty directory. This step is
equivalent to Step 2 in “The Netscape Tools” on page 99. Use the cabarc tool
to create a CAB file containing all the files:

cabarc -r -p -s 6144 n output.cab *

4. Use the signcode program to sign the CAB file with your software publishers
certificate (this is all one command).

signcode -j javasign.dll -jp low -spc TestPublish.spc -k DeveloperKey
output.cab

The -jp options specifies the security level at which the CAB file is signed. If
your code needs to do anything beyond the sandbox other than access the
"scratch pad," it must be signed with low security.

5. Create a CAB file signed for Microsoft Internet Explorer

Figure 46 on page 102 shows the Windows NT script file used to create the
NC97 applet signed CAB file. It does not include the steps to create the
certificate because this only needs to be done once.
Creating Signed Java Applets 101

Figure 46. CAB File Creation

REM Script to digitally sign a directory structure of files
REM and then package them up into a CAB file
REM Use on Windows NT
REM
REM Parameter 1 = Directory to package up
REM Parameter 2 = Name of output file
REM
REM Example Usage : makeie g:\build iecashier.cab
REM
SET SDK_DIR=c:\sdk-java.20\bin
SET CERT="g:\ie_certs\itsokey.spc"
SET NAME=ItsoKey
cd %1
%SDK_DIR%\cabarc -r -p -s 6144 n %2 Residency* Domain* COM* ibm*
%SDK_DIR%\signcode -j javasign.dll -jp low -spc %CERT% -k %NAME% %2
%SDK_DIR%\chkjava %2
102 A Migration to Java

Appendix D. Net.Data Macro

In this appendix, we give the complete environment needed to run the Net.Data
macro.

D.1 The Tables

We created a dedicated database, named DWDB, on a different machine
(tonga.almaden.ibm.com). The purpose of the database is to hold the history
data related to customer orders of foreign currencies. Figure 47 shows the
definition for table NCM.Ord_Hist.

Figure 47. Ord_Hist Table Definition

Figure 48 shows the definition for table NCM.Ord_Detail_Hist.

Figure 48. Ord_Detail_Hist Table Definition

Both tables exactly replicate the columns of the operational tables. We have not
undertaken any data remodeling, which would usually be needed for a real-life
data warehouse implementation. The tables are meant to keep history—possibly
for years—of customer orders, which are unlikely to be maintained in the
operational databases. Having a second database is typical of a data warehouse
application. An operational database must periodically be subject to file cleaning
operations (removal of old data), for performance reasons or because such data
is no longer relevant. We also created tables NCM.Branch and
NCM.Exchange_rate, which contain information relevant to our sample
application.

create table ncm.Ord_Hist
branch_number char (2),
branch_order_no int,
order_date date,
order_time time,
completion_date date,
completion_time time,
branch_ord_status char (10),
tran_type char (4))

create table ncm.Ord_detail_hist
branch_number char (2),
branch_order_no int,
branch_type_curr dchar(3),
branch_denom int,
branch_amount dec (11,2))
© Copyright IBM Corp. 1998 103

Finally, we created a view that proves useful for aggregating data in a way that
keeps the actual SQL statement in our sample macro very simple (see Figure
49).

Figure 49. Ord_Hist_View View Definition

D.2 Net.Data Macro

This is the list of the Net.Data macro used in our migration

%{**/
/* FileName: ncmndb.mac */
/* */
/* SQL function blocks included in this file are: */
/* sql_A() */
/* qry_DB_B() */
/* qry_DB_C() */
/* */
/* Java applet used by this file: */
/* ChartUI2() */
/* */
/* HTML blocks included in this file are: */
/* INPUT */
/* REPORT */
/**%}
%{**/
/* GLOBAL DEFINEs - general */
/**%}
%define {
 DATABASE = "DWDB"
 TABLEQLFR = "NCM"
 LOGIN = "CICSRS3"
 PASSWORD = "CICSRS3"
 DTW_HTML_TABLE = "yes"
 DTW_SAVE_TABLE_IN = "currtable"
 SHOWSQL = "NO"
 mainfooter = {Return to Input
form%}
 sampleTitle = "Currency demand profile on time"
%}
%{**/
/* Applet Defines for Chart */

create view ncm.ord_hist_view
(branch_number, branch_type_curr, yyyymm_order, amount)
as select b.branch_number, b.branch_type_curr,
cast (year (a.order_date) as char (4)) ||
substr (digits (cast (month (a.order_date) as smallint)),4,2),
case
when a.tran_type = 'BUY' then (b.branch_amount * b.branch_denom)
when a.tran_type = 'SELL' then - (b.branch_amount * b.branch_denom)
end
from ncm.branch_order a,
ncm.branch_ord_detail b
where a.branch_number = b.branch_number
and a.branch_order_no = b.branch_order_no
and a.branch_ord_status = ’COMPLETE’
104 A Migration to Java

/**%}
%define {
 ChartType = "Vertical Bar"
 ChartUI2.codebase="http://testcase.boulder.ibm.com:8081/java"
 ChartUI2.height = "250"
 ChartUI2.width = "400"
 name = "$(N2)"
 numrow = "$(ROW_NUM)"
%}
%{**/
/* Function: qryDB_B Language Environment: SQL */
/* Description: returns branches in drop down list box */
/**%}
%FUNCTION(DTW_SQL) qryDB_B() {
 SELECT * FROM $(TABLEQLFR).BRANCH ORDER BY 1
 %REPORT{
 %IF (RETURN_CODE == "0")
 <select name=BRANCH>
 %ENDIF
 %ROW{
 <option>$(V1)
 $(V2)
 $(V3)
 %}
 %IF (RETURN_CODE == "0")
 </select>
 %ENDIF
 %}
%}
%{**/
/* Function: qryDB_C Language Environment: SQL */
/* Description: returns currencies in drop down list box */
/**%}
%FUNCTION(DTW_SQL) qryDB_C() {
 SELECT TYPE_OF_CURRENCY FROM $(TABLEQLFR).EXCHANGE_RATE ORDER BY 1
 %REPORT{
 %IF (RETURN_CODE == "0")
 <select name=CURRENCY>
 %ENDIF
 %ROW{
 <option>$(V1)
 %}
 %IF (RETURN_CODE == "0")
 </select>
 %ENDIF
 %}
%}
%{**/
/* Function: ChartUI2 Language Environment: Applet */
/* Description: Call to the Applet Language Environment for ChartUI2 */
/**%}
%function (dtw_applet) ChartUI2();
%{**/
/* Function: Process Language Environment: SQL */
/* Description: Queries the database and invokes the Java applet */
/* within the report section */
/**%}
%function(DTW_SQL) Process() {
Net.Data Macro 105

select yyyymm_order, sum (amount) from $(TABLEQLFR).ORD_HIST_VIEW
 where branch_number = SUBSTR('$(BRANCH)',1,2)
 and branch_type_curr = '$(CURRENCY)'
 and yyyymm_order >= '$(DATE_FROM)'
 and yyyymm_order <= '$(DATE_TO)'
 group by yyyymm_order
 order by 1
%REPORT{
 %IF (RETURN_CODE == "0")
 <table border=2 cellspacing=40 cellpadding=0>
 <tr> <th colspan=2 bgcolor='a7a7ff'>Currency: $(CURRENCY) From:
$(DATE_FROM) To: $(DATE_TO)

Branch: $(BRANCH)
 <tr> <th bgcolor='ffaacc'>Tabular Data <th bgcolor='ffaacc'> Java Applet
 <tr>
 <td align=center>
 <table border=1 >
 <tr><td>Month</td> <td>Requested</td>
 %ENDIF
 %ROW{
 <tr><td>$(V1)</td> <td align=center>$(V2)</td>
 %}
 %IF (RETURN_CODE == "0")
 </table>
 <td>
 @DTWA_ChartUI2(ChartUI2.codebase,ChartUI2.width,
ChartUI2.height,ChartType, numrow, currtable, name)
 </table>
 %ENDIF
 %}
%}
%{**/
/* HTML section: INPUT */
/* Description: Provides input form for user to choose the information */
/* for the database query */
/**%}
%HTML_INPUT{
<html>
<head>
<TITLE>$(sampleTitle)</TITLE>
</head>
<body>
<H3>$(sampleTitle)</H3>

<p>
Inquiry arguments: BRANCH/CURRENCY/PERIOD OF TIME

<ul type=square>
 Select Branch from the drop down list box
 Select Currency from the drop down list box
 Enter start/end time you are interested

<p>
<FORM METHOD="POST"
ACTION="report">
<HR>
Branch:
<P>
106 A Migration to Java

@qryDB_B()
<P>
Currency:
@qryDB_C()
<p>
Date from (YYYYMM):
<INPUT TYPE="text" NAME="DATE_FROM" SIZE=6>
Date to (YYYYMM):
<INPUT TYPE="text" NAME="DATE_TO" SIZE=6>
<p><HR>
<P>
<INPUT TYPE="submit" VALUE="Submit Query">
<INPUT TYPE="reset" VALUE="Reset input">
</FORM>
<P>
</body>
</html>
%}

%{***/
/* HTML section: REPORT */
/* Description: Queries the database to create the pie chart via a JAVA */
/* applet */
/***%}
%HTML_REPORT{
<html>
<head>
<TITLE>$(sampleTitle)</TITLE>
</head>
<body>
<H3>$(sampleTitle)</H3>
<p>
Following are the results of your query.
@Process()
<P>
<hr>$(mainfooter)
</body>
</html>
%}
Net.Data Macro 107

108 A Migration to Java

Appendix E. Special Notices

This publication is intended to help technical professionals to migrate
client/server applications to network-computing applications. The information in
this publication is not intended as the specification of any programming interfaces
that are provided by CICS Transaction Server for OS/390 Version 1.2, Domino Go
Webserver Version 4.6, VisualAge for Java Version 1.0, DB2 for MVS/ESA
Version 4, and DB2 Universal Database version 5.0. See the PUBLICATIONS
section of the IBM Programming Announcement for each of those products for
information about what publications are considered to be product documentation.

References in this publication to IBM products, programs or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM's product, program, or service may be used. Any functionally
equivalent program that does not infringe any of IBM's intellectual property rights
may be used instead of the IBM product, program, or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY 10594 USA.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact IBM Corporation, Dept.
600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The information contained in this document has not been submitted to any formal
IBM test and is distributed AS IS. The information about non-IBM ("vendor")
products in this manual has been supplied by the vendor and IBM assumes no
responsibility for its accuracy or completeness. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer's ability to evaluate and integrate them into the
customer's operational environment. While each item may have been reviewed by
IBM for accuracy in a specific situation, there is no guarantee that the same or
similar results will be obtained elsewhere. Customers attempting to adapt these
techniques to their own environments do so at their own risk.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

AIX CICS
CICS OS2 CICS/ESA
DB2 IBM
IMS MVS
System/390
© Copyright IBM Corp. 1998 109

The following terms are trademarks of Lotus Development Corporation in the
United States and/or other countries:

The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc.

Java and HotJava are trademarks of Sun Microsystems, Incorporated.

Netscape Navigator and Netscape Communicator are trademarks of Netscape
Communications Corp.

Microsoft, Windows, Windows NT, and the Windows 95 logo are trademarks
or registered trademarks of Microsoft Corporation.

PC Direct is a trademark of Ziff Communications Company and is used
by IBM Corporation under license.

Pentium, MMX, ProShare, LANDesk, and ActionMedia are trademarks or
registered trademarks of Intel Corporation in the U.S. and other
countries.

UNIX is a registered trademark in the United States and other
countries licensed exclusively through X/Open Company Limited.

Other company, product, and service names may be trademarks or
service marks of others.

Domino Domino Go Webserver
110 A Migration to Java

Appendix F. Related Publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

F.1 International Technical Support Organization Publications

For information on ordering these ITSO publications see “How To Get ITSO
Redbooks” on page 115.

 • From Client/Server to Network Computing, A Migration to Domino, SG24-5087
(to be published in 1998)

 • Accessing CICS Business Applications from the World Wide Web,
SG24-4547, published by Prentice Hall

 • CICS Transaction Server for OS/390: Version 1 Release 2 Implementation
Guide, SG24-2234

 • VisualAge and Transaction Processing in a Client/Server Environment,
GG24-4487

 • Network Computing Framework Component Guide, SG24-2119

 • Programming with VisualAge for Java, Marc Carrel-Billard, published by
Prentice Hall, ISBN 0139113711

 • JavaBeans by Example,SG24-2035, published by Prentice Hall

 • Java Network Security, SG24-2109, published by Prentice Hall

 • Application Development with VisualAge for Java Enterprise, SG24-5081

F.2 Redbooks on CD-ROMs

Redbooks are also available on CD-ROMs. Order a subscription and receive
updates 2-4 times a year at significant savings.

F.3 Other Publications and Web Sites

These publications and Web sites are also relevant as further information
sources:

F.3.1 Network Computing Framework

 • Web Sites

CD-ROM Title Subscription
Number

Collection Kit
Number

System/390 Redbooks Collection SBOF-7201 SK2T-2177
Networking and Systems Management Redbooks Collection SBOF-7370 SK2T-6022
Transaction Processing and Data Management Redbook SBOF-7240 SK2T-8038
AS/400 Redbooks Collection SBOF-7270 SK2T-2849
RS/6000 Redbooks Collection (HTML, BkMgr) SBOF-7230 SK2T-8040
RS/6000 Redbooks Collection (PostScript) SBOF-7205 SK2T-8041
Application Development Redbooks Collection SBOF-7290 SK2T-8037
Personal Systems Redbooks Collection SBOF-7250 SK2T-8042
© Copyright IBM Corp. 1998 111

 • http://www.software.ibm.com/openblue, for information about IBM Open
Blueprint

 • http://www.software.ibm.com/ebusiness/ncf, for information about the
Network Computing Framework

F.3.2 JAVA

 • Publications

 • Teach Yourself Java 1.1 in 21 Days (2nd Edition), Laura Lemay and
Charles L. Perkins, Sams.net Publishing, ISBN 1575211424

 • Java Database Programming with JDBC, Pratik Patel and Karl Moss,
published by The Coriolis Group, ISBN 1-57610-056-1

 • Web Sites

 • http://www.ibm.com/java, for information about IBM support for Java,
including developers tools (/tools) and a library of Java applications and
applets, and servlets (/apps)

 • http://www.internet.ibm.com/commercepoint/registry, for information about
IBM registry

 • http://java.sun.com, for information about Sun support for Java, including
beans (/beans), security (/security), and JDK (/product/jdk)

 • http://www.microsoft.com/java for information about Microsoft support for
Java, including security (/security) and SDK (/SDK).

 • http://developer.netscape.com, for information about developing with
Netscape

 • http://www.verisign.com, for information about VeriSign, Inc.a provider of
digital authentication services

 • http://www.thawte.com, for information about Thawte, a provider of security
and authentication services.

 • https://certs.netscape.com, for the Netscape list of Certificate Authorities
that issue digital certificates

F.3.3 Domino Go Web Server

 • Publications

Portable document format (PDF) versions of Planning for Installation, the
Webmaster’s Guide, the Webmaster Programming Guide, and the Webmaster
search engine documentation are available from the Domino Go Webserver
Web site.

Hardcopy versions of Planning for Installation and the Webmaster’s Guide can
be ordered through Lotus.

 • Web Site

 • http://www.ics.raleigh.ibm.com, for information about Domino Go Web
Server

F.3.4 CICS

 • Publications
112 A Migration to Java

 • CICS Transaction Server for OS/390 V1R2 Planning for Installation,
GC33-1789

 • CICS Transaction Server for OS/390 V1R2 Release Guide, GC33-1570

 • CICS Transaction Server for OS/390 V1R2 Migration Guide, GC33-1571

 • Web Sites

 • http://www.software.ibm.com/ts/cics, for information about CICS and the
CICS Gateway for Java

F.3.5 DB2

 • Publications

 • IBM DB2 Universal Database Administration Getting Started,S10J-8154

 • IBM DB2 Universal Database Administration Guide Version 5, S10J-8157

 • IBM DB2 Universal Database Messages Reference Version 5, S10J-8168

 • IBM DB2 Universal Database Roadmap to DB2 Programming, S10J-8155

 • IBM DB2 Universal Database SQL Reference Version 5, S10J-8165

 • Web Sites

 • http://www.software.ibm.com/data/db2/udb, for information about DB2
Universal Database version 5

 • http://www.software.ibm.com/data/net.data, for information about Net.Data

 • http://www.software.ibm.com/data/db2/java, for information about DB2 Java
enablement.

F.3.6 VisualAge for Java

 • Publications

 • VisualAge: Concepts and Features, GG24-3946

 • Web Sites

 • http://www.software.ibm.com/ad/vajava, for information about VisualAge for
Java
Related Publications 113

114 A Migration to Java

How To Get ITSO Redbooks

This section explains how both customers and IBM employees can find out about ITSO redbooks, CD-ROMs,
workshops, and residencies. A form for ordering books and CD-ROMs is also provided.

This information was current at the time of publication, but is continually subject to change. The latest information
may be found at http://www.redbooks.ibm.com .

How IBM Employees Can Get ITSO Redbooks
Employees may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and information about
redbooks, workshops, and residencies in the following ways:

 • PUBORDER – to order hardcopies in United States

 • GOPHER link to the Internet – type GOPHER WTSCPOK.ITSO.IBM.COM

 • Tools disks

To get LIST3820s of redbooks, type one of the following commands:

 TOOLS SENDTO EHONE4 TOOLS2 REDPRINT GET SG24xxxx PACKAGE
 TOOLS SENDTO CANVM2 TOOLS REDPRINT GET SG24xxxx PACKAGE (Canadian users only)

To get lists of redbooks:

 TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET ITSOCAT TXT
 TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET LISTSERV PACKAGE

To register for information on workshops, residencies, and redbooks:

 TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ITSOREGI 1996

For a list of product area specialists in the ITSO:

 TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ORGCARD PACKAGE

 • Redbooks Web Site on the World Wide Web

http://w3.itso.ibm.com/redbooks

 • IBM Direct Publications Catalog on the World Wide Web

http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM employees may obtain LIST3820s of redbooks from this page.

 • REDBOOKS category on INEWS

 • Online – send orders to: USIB6FPL at IBMMAIL or DKIBMBSH at IBMMAIL

 • Internet Listserver

With an Internet E-mail address, anyone can subscribe to an IBM Announcement Listserver. To initiate the
service, send an E-mail note to announce@webster.ibmlink.ibm.com with the keyword subscribe in the body of
the note (leave the subject line blank). A category form and detailed instructions will be sent to you.

For information so current it is still in the process of being written, look at "Redpieces" on the Redbooks Web Site
(http://www.redbooks.ibm.com/redpieces.html). Redpieces are redbooks in progress; not all redbooks become
redpieces, and sometimes just a few chapters will be published this way. The intent is to get the information out
much quicker than the formal publishing process allows.

Redpieces
© Copyright IBM Corp. 1998 115

How Customers Can Get ITSO Redbooks
Customers may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and information about
redbooks, workshops, and residencies in the following ways:

 • Online Orders (Do not send credit card information over the Internet) – send orders to:

 • Telephone orders

 • Mail Orders – send orders to:

 • Fax – send orders to:

 • 1-800-IBM-4FAX (United States) or (+1) 408 256 5422 (Outside USA) – ask for:

Index # 4421 Abstracts of new redbooks
Index # 4422 IBM redbooks
Index # 4420 Redbooks for last six months

 • Direct Services – send note to softwareshop@vnet.ibm.com

 • On the World Wide Web

 • Internet Listserver

With an Internet E-mail address, anyone can subscribe to an IBM Announcement Listserver. To initiate the
service, send an E-mail note to announce@webster.ibmlink.ibm.com with the keyword subscribe in the body of
the note (leave the subject line blank).

In United States
In Canada
Outside North America

IBMMAIL
usib6fpl at ibmmail
caibmbkz at ibmmail
dkibmbsh at ibmmail

Internet
usib6fpl@ibmmail.com
lmannix@vnet.ibm.com
bookshop@dk.ibm.com

United States (toll free)
Canada (toll free)

1-800-879-2755
1-800-IBM-4YOU

Outside North America
(+45) 4810-1320 - Danish
(+45) 4810-1420 - Dutch
(+45) 4810-1540 - English
(+45) 4810-1670 - Finnish
(+45) 4810-1220 - French

(long distance charges apply)
(+45) 4810-1020 - German
(+45) 4810-1620 - Italian
(+45) 4810-1270 - Norwegian
(+45) 4810-1120 - Spanish
(+45) 4810-1170 - Swedish

IBM Publications
Publications Customer Support
P.O. Box 29570
Raleigh, NC 27626-0570
USA

IBM Publications
144-4th Avenue, S.W.
Calgary, Alberta T2P 3N5
Canada

IBM Direct Services
Sortemosevej 21
DK-3450 Allerød
Denmark

United States (toll free)
Canada
Outside North America

1-800-445-9269
1-800-267-4455
(+45) 48 14 2207 (long distance charge)

Redbooks Web Site
IBM Direct Publications Catalog

http://www.redbooks.ibm.com
http://www.elink.ibmlink.ibm.com/pbl/pbl

For information so current it is still in the process of being written, look at "Redpieces" on the Redbooks Web Site
(http://www.redbooks.ibm.com/redpieces.html). Redpieces are redbooks in progress; not all redbooks become
redpieces, and sometimes just a few chapters will be published this way. The intent is to get the information out
much quicker than the formal publishing process allows.

Redpieces
116 A Migration to Java

IBM Redbook Order Form

Please send me the following:

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

Title Order Number Quantity

First name Last name

Company

Address

City Postal code

Telephone number Telefax number VAT number

Invoice to customer number

Country

Credit card number

Credit card expiration date SignatureCard issued to
 117

118 A Migration to Java

Glossary

A
application programming interface (API). A set of
calling conventions defining how a service is invoked
through a software package.

applet. A Java program designed to run within a Web
browser. Contrast with application.

application. In Java programming, a self-contained,
stand-alone Java program that includes main()
method. Contrast with applet.

bean . A definition or instance of a JavaBeans
component.

browser . An Internet-based tool that lets user browse
Web sites.

call level interface (CLI) . A callable application
program interface (API) for database access, which is
an alternative to an embedded SQL application
program interface. In contrast to embedded SQL, CLI
does not require precompiling or binding by the user,
but instead provides a standard set of functions to
process SQL statements and related services at run
time.

Customer Information Control System (CICS). A
distributed online transaction processing system
designed to support a network of many terminals. The
CICS family of products is available for a variety of
platforms ranging from a single workstation to the
largest mainframe.

CICS Access Builder . A VisualAge for Java
Enterprise tool that generates beans to access CICS
transactions through the CICS Gateway for Java and
CICS Client.

CICS Client . A server program that processes CICS
ECI calls, forwarding transaction requests to a CICS
program running on a host.

CICS Gateway for Java . A server program that
processes Java ECI calls and forwards CICS ECI calls
to the CICS Client.

class . An aggregate that defines properties,
operations, and behavior for all instances of that
aggregate.

client. As in client/server computing, the application
that makes requests to the server and, often, handles
the necessary interaction with the user.

client/server. A form of distributed processing, in
which the task required to be processed is
accomplished by a client portion that requests services
and a server portion that fulfills those requests. The
client and server remain transparent to each other in
terms of location and platform. See client and server.
© Copyright IBM Corp. 1998
commit . The operation that ends a unit of work to
make permanent the changes it has made to
resources (transaction or data).

Common Gateway Interface (CGI) . A standard
protocol through which a Web server can execute
programs running on the server machine. CGI
programs are executed in response to requests from
Web client browsers.

Common Object Request Broker Architecture
(CORBA) . A middleware specification which defines a
software bus—the Object Request Broker (ORB)—that
provides the infrastructure

communications area (COMMAREA) . In a CICS
transaction program, a group of records that describes
both the format and volume of data used.

conversational. A communication model where two
distributed applications exchange information by way
of a conversation; typically one application starts (or
allocates) the conversation, sends some data, and
allows the other application to send some data. Both
applications continue in turn until one decides to finish
(or deallocate). The conversational model is a
synchronous form of communication.

Data Access Builder . A VisualAge for Java Enterprise
tool that generates beans to access and manipulate
the content of JDBC/ODBC-compliant relational
databases.

database. (1) A collection of related data stored
together with controlled redundancy according to a
scheme to serve one or more applications. (2) All data
files stored in the system. (3) A set of data stored
together and managed by a database management
system.

database management system (DBMS). A computer
program that manages data by providing the services
of centralized control, data independence, and
complex physical structures for efficient access,
integrity, recovery, concurrency control, privacy, and
security.

DB2 Call Level Interface (CLI). The DB2 call level
interface is an alternative SQL interface for the DB2
family of products and takes full advantage of DB2
capability.This implementation closely follows industry
standards, such as X/OPEN, to enhance application
portability. Currently, the DB2 Call Level Interface
functions are compatible with ODBC 2.0, and contain
DB2-specific APIs to help exploit DB2 capability.

DB2 for MVS/ESA . An IBM relational database
management system for the MVS operating system.

DCE. Distributed Computing Environment. Adopted
by the computer industry as a de facto standard for
distributed computing. DCE allows computers from a
variety of vendors to communicate transparently and
 119

share resources such as computing power, files,
printers, and other objects in the network.

distributed processing. Distributed processing is an
application or systems model in which function and
data can be distributed across multiple computing
resources connected on a LAN or WAN. See
client/server computing.

distributed program link (DPL) enables an
application program executing in one CICS system to
link (pass control) to a program in a different CICS
system. The linked-to program executes and returns a
result to the linking program. This process is
equivalent to remote procedure calls (RPCs). You can
write applications that issue RPCs that can be
received by members of the CICS family.

dynamic link library (DLL) . A file containing
executable code and data bound to a program at run
time rather than at link time. The C++ Access Builder
generates beans and C++ wrappers that let your Java
programs access C++ DLLs.

e-business Either (a) the transaction of business over
an electronic medium such as the Internet or (b) a
business that uses Internet technologies and network
computing in their internal business processes (via
intranets), their business relationships (via extranets),
and the buying and selling of goods, services, and
information (via electronic commerce.)

external call interface (ECI). An API that enables a
non-CICS client application to call a CICS program as
a subroutine. The client application communicates with
the server CICS program using a data area called a
COMMAREA.

external presentation interface (EPI). An API that
allows a non-CICS application program to appear to
the CICS system as one or more standard 3270
terminals. The non-CICS application can start CICS
transactions and send and receive standard 3270 data
streams to those transactions.

Enterprise Access Builders (EAB) . In VisualAge for
Java Enterprise, a set of code-generation tools.

See also CICS Access Builder and Data Access
Builder.

file transfer protocol (FTP). The basic Internet
function that enables files to be transferred between
computers. You can use it to download files from a
remote, host computer, as well as to upload files from
your computer to a remote, host computer. See
Anonymous FTP.

gateway . A host computer that connects networks that
communicate in different languages. For example, a
gateway connects a company’s LAN to the Internet.

graphical user interface (GUI) . A type of interface
that enables users to communicate with a program by
manipulating graphical features, rather than by
entering commands. Typically, a graphical user

interface includes a combination of graphics, pointing
devices, menu bars and other menus, overlapping
windows, and icons.

HotJava A Java-enabled Web and intranet browser
developed by Sun Microsystems, Inc. HotJava is
written in Java.

hypertext markup language (HTML). The basic
language that is used to build hypertext documents on
the World Wide Web. It is used in basic, plain
ASCII-text documents, but when those documents are
interpreted (called rendering) by a Web browser such
as Netscape, the document can display formatted text,
color, a variety of fonts, graphic images, special
effects, hypertext jumps to other Internet locations,
and information forms.

hypertext transfer protocol (HTTP) . The protocol for
moving hypertext files across the Internet. Requires an
HTTP client program on one end, and an HTTP server
program on the other end. HTTP is the most important
protocol used in the World Wide Web (WWW). See
also Client, Server, WWW.

HTTP request . A transaction initiated by a Web
browser and adhering to HTTP. The server usually
responds with HTML data, but can send other kinds of
objects as well.

hypertext . Text in a document that contains a hidden
link to other text. You can click a mouse on a hypertext
word and it will take you to the text designated in the
link. Hypertext is used in Windows help programs and
CD encyclopedias to jump to related references
elsewhere within the same document. The wonderful
thing about hypertext, however, is its ability to
link—using HTTP over the Web—to any Web
document in the world, yet still require only a single
mouse click to jump clear around the world.

Internet Inter-ORB Protocol (IIOP) . An industry
standard protocol that defines how General Inter-ORB
Protocol (GIOP) messages are exchanged over a
TCP/IP network. The IIOP makes it possible to use the
Internet itself as a backbone ORB through which other
ORBs can bridge.

integrated development environment (IDE) . A
software program comprising an editor, a compiler,
and a debugger. IBM's VisualAge for Java is an
example of an IDE.

interface . A set of methods that can be accessed by
any class in the class hierarchy. The Interface page in
the Workbench lists all interfaces in the workspace.

Internet . The vast collection of interconnected
networks that all use the TCP/IP protocols and that
evolved from the ARPANET of the late 1960’s and
early 1970’s.

intranet . A private network inside a company or
organization that uses the same kinds of software that
you would find on the public Internet, but that is only
for internal use. As the Internet has become more
120 A Migration to Java

popular, many of the tools used on the Internet are
being used in private networks. For example, many
companies have Web servers that are available only to
employees.

Internet protocol (IP). The rules that provide basic
Internet functions.

See TCP/IP.

Java . Java is a new programming language invented
by Sun Microsystems that is specifically designed for
writing programs that can be safely downloaded to
your computer through the Internet and immediately
run without fear of viruses or other harm to your
computer or files. Using small Java programs (called
applets, Web pages can include functions such as
animations, calculators, and other fancy tricks. We can
expect to see a huge variety of features added to the
Web using Java, since you can write a Java program to
do almost anything a regular computer program can
do, and then include that Java program in a Web page.

Java archive (JAR). A platform-independent file
format that groups many files into one. JAR files are
used for compression, reduced download time, and
security. Because the JAR format is written in Java,
JAR files are fully extensible.

JavaBeans . In JDK 1.1, the specification that defines
the platform-neutral component model used to
represent parts. Instances of JavaBeans (often called
beans) may have methods, properties, and events.

Java Database Connectivity (JDBC) . In JDK 1.1, the
specification that defines an API that enables
programs to access databases that comply with this
standard.

Java Development Kit (JDK) The Java Development
Kit 1.1 is the latest set of Java technologies made
available to licensed developers by Sun Microsystems.
Each release of the JDK contains the following: the
Java Compiler, Java Virtual Machine, Java Class
Libraries, Java Applet Viewer, Java Debugger, and
other tools.

Java Foundation Classes (JFC) Developed by
Netscape, Sun, and IBM, JFCs are building blocks that
are helpful in developing interfaces to Java
applications. They allow Java applications to interact
more completely with the existing operating systems.

LAN . Local area network. A computer network located
at a user’s establishment within a limited geographical
area. A LAN typically consists of one or more server
machines providing services to a number of client
workstations.

LU type 6.2 (LU 6.2). A type of logical unit used for
CICS intersystem communication (ISC). LU 6.2
architecture supports CICS host-to-system-level
products and CICS host-to-device-level products.
APPC is the protocol boundary of the LU 6.2
architecture.

logical unit of work (LUW). An update that durably
transforms a resource from one consistent state to
another consistent state. A sequence of processing
actions (for example, database changes) that must be
completed before any of the individual actions can be
regarded as committed. When changes are committed
(by successful completion of the LUW and recording of
the synch point on the system log), they do not need to
be backed out after a subsequent error within the task
or region. The end of an LUW is marked in a
transaction by a synch point that is issued by either the
user program or the CICS server, at the end of task. If
there are no user synch points, the entire task is an
LUW.

messaging . A communication model whereby the
distributed applications communicate by sending
messages to each other. A message is typically a
short packet of information that does not necessarily
require a reply. Messaging implements asynchronous
communications

method. A fragment of Java code within a class that
can be invoked and passed a set of parameters to
perform a specific task.

Multipurpose Internet Mail Extension (MIME). The
Internet standard for mail that supports text, images,
audio, and video.

online transaction processing (OLTP). A style of
computing that supports interactive applications in
which requests submitted by terminal users are
processed as soon as they are received. Results are
returned to the requester in a relatively short period of
time. An online transaction-processing system
supervises the sharing of resources to allow efficient
processing of multiple transactions at the same time.

object . (1) A computer representation of something
that a user can work with to perform a task. An object
can appear as text or an icon. (2) A collection of data
and methods that operate on that data, which together
represent a logical entity in the system. In
object-oriented programming, objects are grouped into
classes that share common data definitions and
methods. Each object in the class is said to be an
instance of the class. (3) An instance of an object class
consisting of attributes, a data structure, and
operational methods. It can represent a person, place,
thing, event, or concept. Each instance has the same
properties, attributes, and methods as other instances
of the object class, though it has unique values
assigned to its attributes.

ODBC Driver. An ODBC driver is a dynamically linked
library (DLL) that implements ODBC function calls and
interacts with a data source.

ODBC Driver Manager. The ODBC driver manager,
provided by Microsoft, is a DLL with an import library.
The primary purpose of the Driver Manager is to load
ODBC drivers. The Driver Manager also provides entry
points to ODBC functions for each driver and
 121

parameter validation and sequence validation for
ODBC calls.

Open Database Connectivity (ODBC) . A
Microsoft-developed C database application
programming interface (API) that allows access to
database management systems calling callable SQL,
which does not require the use of a SQL preprocessor.
In addition, ODBC provides an architecture that allows
users to add modules called database drivers that link
the application to their choice of database
management systems at run time. This means
applications no longer need to be directly linked to the
modules of all the database management systems that
are supported.

Object Request Broker (ORB). A CORBA term
designating the means by which objects transparently
make requests and receive responses from objects,
whether they are local or remote.

protocol . (1) The set of all messages to which an
object will respond. (2) Specification of the structure
and meaning (the semantics) of messages that are
exchanged between a client and a server. (3)
Computer rules that provide uniform specifications so
that computer hardware and operating systems can
communicate. It’s similar to the way that mail, in
countries around the world, is addressed in the same
basic format so that postal workers know where to find
the recipient’s address, the sender’s return address
and the postage stamp. Regardless of the underlying
language, the basic protocols remain the same.

proxy . An application gateway from one network to
another for a specific network application such as
Telnet of FTP, for example, where a firewall’s proxy
Telnet server performs authentication of the user and
then lets the traffic flow through the proxy as if it were
not there. Function is performed in the firewall and not
in the client workstation, causing more load in the
firewall. Compare with socks.

Remote Method Invocation (RMI) . In JDK 1.1, the
API that allows you to write distributed Java programs,
allowing methods of remote Java objects to be
accessed from other Java virtual machines.

Remote Procedure Call (RPC) . A communication
model where requests are made by function calls to
distributed procedure elsewhere. The location of the
procedures is transparent to the calling application.

sandbox. A restricted environment, provided by the
Web browser, in which Java applets run. The sandbox
offers them services and prevents them from doing
anything naughty, such as doing file I/O or talking to
strangers (servers other than the one from which the
applet was loaded). The analogy of applets to children
led to calling the environment in which they run the
sandbox.

schema . In the Data Access Builder, the
representation of the database that will be mapped. In
the Data Access Builder, the mapping contains a set of

definitions for all attributes matching all the columns
for your database table, view, or SQL statement,
information required to generate Java classes.

server . A computer that provides services to multiple
users or workstations in a network; for example, a file
server, a print server, or a mail server.

Socket Secure (SOCKS). The gateway that allows
compliant client code (client code made socket secure)
to establish a session with a remote host.

Transmission Control Protocol/Internet Protocol
(TCP/IP). The basic programming foundation that
carries computer messages around the globe via the
Internet. The suite of protocols that defines the
Internet. Originally designed for the UNIX operating
system, TCP/IP software is now available for every
major kind of computer operating system. To be truly
on the Internet, your computer must have TCP/IP
software.

thin client Thin client usually refers to a system that
runs on a resource-constrained machine or that runs a
small operating system. Thin clients don't require local
system administration, and they execute Java
applications delivered over the network.

transaction. A unit of processing (consisting of one
or more application programs) initiated by a single
request. A transaction can require the initiation of one
or more tasks for its execution.

transaction processing. A style of computing that
supports interactive applications in which requests
submitted by users are processed as soon as they are
received. Results are returned to the requester in a
relatively short period of time. A transaction
processing system supervises the sharing of
resources for processing multiple transactions at the
same time.

Uniform Resource Locator (URL). Standard to
identify resources on the World Wide Web

virtual machine (VM) A software program that
executes other computer programs. It allows a physical
machine, a computer, to behave as if it were another
physical machine.

Web server The server component of the World Wide
Web. It is responsible for servicing requests for
information from Web browsers. The information can
be a file retrieved from the server's local disk or
generated by a program called by the server to
perform a specific application function.

workstation. A configuration of input/output
equipment at which an operator works. A terminal or
microcomputer, usually one that is connected to a
mainframe or a network, at which a user can perform
applications.

World Wide Web (WWW or Web). A graphic
hypertextual multimedia Internet service.
122 A Migration to Java

List of Abbreviations

API application program interface

ARM application request
manager

ASCII American National Standard
Code for Information
Interchange

AWT abstract windowing toolkit

CA certification authority

CAB cabinet (Microsoft)

CAE client application enabler

CGI common gateway interface

CICS Customer Information Control
System

CICS TS CICS Transaction Server for
OS/390

CLI call level interface

COMMAREA communication area (CICS)

CORBA Common Object Request
Broker Architecture

DBMS database management
system

DB2 Database 2

DCE Distributed Computing
Environment

DDCS/2 Distributed Database
Connection Servives/2

DLL dynamic link library

DPL distributed program link
(CICS)

DRDA distributed relational database
architecture

EBCDIC extended binary coded
decimal interchange code

ECI external call interface (CICS)

EPI external presentation interface
(CICS)

ESA Enterprise Systems
Architecture

EXCI external CICS interface

FTP file transfer protocol

GUI graphical user interface

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol
© Copyright IBM Corp. 1998
IBM International Business
Machines Corporation

IDE integrated development
environment

IIOP Internet inter-ORB protocol

IMS Information Management
System

IS information system

ITSO International Technical
Support Organization

JAR Java archive

JDBC Java Database Connectivity

JDK Java development kit

JFC Java foundation classes

JVM Java virtual machine

LAN local area network

LDAP lightweight directory access
protocol

LUW logical unit of work

MIME multipurpose Internet mail
extensions

MVS Multiple Virtual Storage

NC network computer

NCF network computing framework

NetBIOS Network Basic Input/Output
System

NNTP NetNews transfer protocol

NT Microsoft Windows NT (new
technology)

ODBC open database connectivity

OLTP online transaction processing

ORB object request broker

OS/2 Operating System/2

OSF Open Software Foundation

PC personal computer

POP Post Office Protocol

RACF Resource Access Control
Facility

RAD rapid application development

RMI remote method invocation

SDK software developer's kit

SET secure electronic transaction
 123

SHTTP secure hypertext transport
protocol

SIT system initialization table

SMTP simple mail transfer protocol

SNA Systems Network Architecture

SNMP simple network management
protocol

SQL structured query language

SSL Secure Sockets Layer

TCP/IP Transmission Control
Protocol/Internet Protocol

TSO time sharing option

URL uniform resource locator

XA extended architecture
124 A Migration to Java

Index

Numerics
3270 datastream, conversion to HTML 14

A
abstract windowing toolkit, See AWT
access

builder 34
control 16, 25

accountability 54
activity monitor 35
administration point 51
algorithm, message digest hashing 35
applet

and Net.Data 91
and security 55, 74
compared to application 77
HTML parameter 32
Java definition 32
routing techniques 63
signing 36, 53
untrusted 45
used in NC97 68

application
access 69
compared to applet 77
designing for network computing 57
distributed 21
DRDA server 41
integrated development 15
Java definition 33
NCF service 13
object-oriented 16
owner 73
procedural 16
request manager, See ARM

ARM 62
ASCII 21
assembly, content 15
authentication 16, 25, 35, 53
authoring, content 15
authority , certification 51
authorization 25
availability 72
AWT 75, 76

B
Baan and JavaBeans 15
backup 6, 27
bibliography 111
BPXBATCH 97
browser , See Web browser

C
C SET/2 4, 7, 61
C/2 4, 7
© Copyright IBM Corp. 1998
CAB 55, 101
cabarc 101
cabinet 101
caching 13
CAE 43, 84
calendar 15
call 24
Callbackable 40
capabilities API 46
cert2spc 101
certificate

and Netscape Communicator 48, 99
and the sandbox 46
class 54
definition 51
NCF infrastructure 16
obtaining 54
server 52
signing applet code 36
using makecert 101
X509v3 55

certification authority 51
CGI 14, 35, 42, 87
chart 15
CICS

and Domino 14
and JavaBeans 15
and LU 6.2 4
data conversion 22
presentation 37
used in CS92 3

CICS Access Builder 80
CICS Gateway for Java

and security 55, 74
installation and setup 97
NCF connector 14
operation 38
presentation 37
routing techniques 63

CICS Internet Gateway 14
CICS OS/2 3, 7
client

and NCF 12
authentication in SSL 35
function portability 5
in client/server 19
thin client 12, 19, 31, 33, 67

client/server
and Open Blueprint 11
computing model 3, 5, 19
programming in Java 33

COBOL 8, 57, 61, 67, 91
codebase_principal_support 48
collaboration 13, 15
ColorChooser 76
COMMAREA 40, 81, 97
commerce, electronic 13
common gateway interface, See CGI
125

communication
and security 73
model 24
protocol 19
protocol used in NC97 59
protocols used in CS92 4

communication area, See COMMAREA
community, NCF foundation service 15
component, JavaBeans 13, 15
composition editor 34
compression 13
computing model, client/server 5
conditional logic 42
confidentiality 16
connected environment 13
connector 14
constructor 40
content

and NCF 17
assembly and management tool 15
authoring tool 15

conversational 24
conversion of data 21
cost of ownership 19
CS92

communication 4
definition 1
GUI 8
hardware 28
infrastructure 2
programming languages 7
software 28

D
data

connector 14
conversion 21
encryption with SSL 35
entity identification 8
integrity 16, 27, 72
management 27
marts 85
model 60
placement 6, 62, 64
reference 64

Data Access Builder 83
database

and communication protocols 4
and Domino 14
NCF foundation service 16

Datajoiner 41
DataManager 47, 83
DB2

and communication protocols 4
and Domino 14
and Year 2000 74
Java support 41
JDBC driver 83
NCF foundation service 16
presentation 41

routing techniques 63
used in CS92 3

db2www 87
DCE Encina Lightweight, See DE-Light
DDCS 67
DDCS/2 4
DE-Light 14
delivery, just-in-time 12
deployment and NCF 17
design 57
development

and NCF 16
environment 33

DFHCNV 22, 97
DFHJVCVT 97
digital certificate , See certificate
digital signature 45
directory 16, 21
disconnected environment 13
distributed computing 11
distribution of software 26
Domino and JavaBeans 15
Domino Go Webserver 34, 95
Domino.Connect 14
DRDA 27, 41, 67, 72
dynamic view 76

E
EASEL 4, 7, 57, 61
EBCDIC 21, 97
e-business 11
ECI 37
ECIRequest 40
electronic commerce 13
e-mail 13
enablePrivilege 47
encapsulation 5, 20
Encina and JavaBeans 15
encryption 25, 55, 74
EPI 37
EPIRequest 40
EXCI 38, 97
EXEC CICS VERIFY PASSWORD 56
Extended Services with Database Server for OS/2 3
external call interface, See ECI
external CICS interface, See EXCI
external presentation interface, See EPI

F
FAARMDBM 92
field validation 6
firewall 16
flexibility 5
FontChooser 76
foundation service 15
framework, network computing 11
function

placement 7, 62, 66
portability 5, 7
126 A Migration to Java

user-defined 16

G
GatewayRequest 40
gauge 76
graphical user interface, See GUI
GUI

in CS92 8
in NC97 75

H
Host On-Demand 14
hostname 87
HotJava

secure applet 55
security implementation 49
signing Java applet 100

HTML 12, 69, 76
HTTP 13, 16
HTTPS 36

I
IBM VS COBOL II 8
IBM World Registry 52
ID, See user ID
identification 16
IIOP 13, 16
IMS

and JavaBeans 15
Internet Solutions 14

IMWEBSRV 95
infrastructure

and NCF 12, 16
in CS92 2

integrated application development 15
integrity 27, 53, 72
Internet

and GUI 75
and TCP/IP 19

interoperability 20, 23
intranet

and GUI 75
and security 46
definition 19

invokeTxn 83
isCapableOf 47
isCommunicator 47
isolatation 37
IVJCicsEciCommArea 81
IVJCicsUOWInterface 81

J
JAR 46, 55
JAR Packager 99
Java

and GUI 75
and security 16, 45, 55
applet, See applet

application 33
definition 31
infrastructure service 16
native graphics 76
programming model 13
reusability of object 15
security features in 1.2 55
writing secure applets 55

Java archive, See JAR
Java Database Connectivity , See JDBC
Java development kit , See JDK
Java virtual machine , See JVM
JavaBeans

and Domino Go Web server 35
component 13, 15, 33
NCF delivery model 15

JavaGateway 40
javakey 54, 55, 100
JDBC

and DB2 83
and Domino Go Webserver 35
and reference data 65
and security 74
applet server 44
database access interface 43
NCF foundation service 16
secure communication 55

JDK 13, 44, 75, 100
JFC 76, 77
just-in-time delivery 12
JVM 16, 45

K
Kerberos 14
key

NCF infrastructure 16
private 52
public 51

L
languages in CS92 7
LDAP 13, 16, 63
ListView 76
location 20
logonMenu 79
look and feel 76
Lotus

and JavaBeans 15
Designer for Domino 15
Domino Go Webserver 34
Domino.Connect 14
InfoBus technology 13
Notes 13

LU 6.2 4, 28, 59

M
macro language 42
MACRO_PATH 87
 127

mail, NCF foundation service 15
makecert 54, 101
management, content 15
megadata 65
message digest hashing algorithm 35
MessageBox 76
messaging 24
metadata 63
Micro Focus COBOL/2 4, 8
Microsoft Internet Explorer

and security 48
secure applet 55
signing Java applet 101
zone system 48

mobile
and Open Blueprint 11
Lotus Notes support 13

model
client/server computing model 19
network computing model 11
object in NC97 78

Motif 76
MQSeries Client for Java 14
MQSeries Internet Gateway 14

N
NC97

and Net.Data 85
and VisualAge for Java 77
communication 59
data placement 65
definition 57
developing the new client application 75
functions placement 67
hardware 58
infrastructure 57
object model 78
software 59
window manager 79

NCF
a framework 11
and Web server 16
application service 13
based on Open Blueprint 11
components 12
connector 14
definition 11
foundation services 15
infrastructure 12
programming model 15

Net.Data
and Java applet 91
and NC97 85
and network computing 42
macro language 86, 103
NCF connector 14

NetBIOS 4, 28, 59
Netscape Communicator

and certificate 48
and security 46

secure applet 55
security implementation 47
signing Java applet 99

network computer 13, 19
network computing

and Open Blueprint 11
and reference data 64
application access 69
benefits 22
design tasks 57
model 11
security 45

network protocol 20
NNTP 13
Notes, See Lotus

O
object model in NC97 78
object request broker, See ORB
object-oriented application 16
OLTP

and Domino 14
used in CS92 5

online transaction processing , See OLTP
Open Blueprint 11
operation and NCF 17
ORB 13
orderHandling 79
OS/2 3

P
pad, scratch 49
PaneSplitter 76
pass directive 95
password 25, 74
PeopleSoft and JavaBeans 15
performance 21
PERL 86
personal data assistant 13
placement of function 7
POP 13
portability 5, 7
private key 52
privilege 48
PrivilegeManager 47
problem and change management 26
procedural application 16
procedure , stored 16
programming model

Java 13
NCF 15

propagation 6
protocol

communication 19
network 20
TCP/IP 19
used in NCF 13

prototype 8
proxy 35, 69
128 A Migration to Java

public key 51

R
RAD 33
rapid application development, See RAD
rating support 35
read frequency 64
recovery 6, 27
replication 13
repudiation 16
reusability 15
router 79, 83
routing techniques 63

S
sandbox 45, 46, 55, 100
SAP

and Domino 14
and JavaBeans 15

schema 84
scratch pad 49, 101
search engine 35
secure electronic transaction, See SET
security

and CICS Gateway for Java 55
and DE-Light 14
and HotJava 49
and intranet 46
and Java 1.2 55
and Microsoft Internet Explorer 48, 49
and NCF 16
and Netscape Communicator 46
and network computing 45
and Web server 36, 56
components 25
design 73, 74
writing secure applet 55

SecurityContext 47
server

certificate 52
function portability 5
in client/server 19

service 19, 62
service enabler 21
servlet 35
SET 13
settings, security 49
Signcode 101
signed.applets 48
signing Java applet 36, 53, 99
sign-on 16
SIT 97
slider 76
SNMP 35
social security number 54
SOCKS 35
software distribution 26
spinner 76
spreadsheet 15

SQL
dynamic 5
used in Net.Data 86

SQLGSTRD 92
SSL 14, 35, 36, 56
stateless 72
StatusBar 76
stored procedure 16
StyledText 76
synch-point coordination 92
system management 16, 26, 71

T
TabbedFolder 76
TableView 76
TCP/IP 19, 59
TerminalEmulator 47
Thawte Consulting 54
ToolBar 76
ToolTip 76
transaction

and LU 6.2 4
connector 14
NCF foundation service 16
secure electronic 13
with CICS 37

TransactionManager 47, 80
transparency 5, 20, 62
TreeView 76

U
uniform resource locator , See URL
unit of work 37, 72, 82
UniversalAccept 47
UniversalConnect 47
UniversalLinkAccess 47
UniversalListen 47
UniversalPropertyRead 47
untrusted applet 45
URL 21
usage mining 35
user

awareness 73
ID 25, 36
interface, See GUI
type 69, 70
view 20

user-defined function 16

V
validation 6
variable substitution 42
Verisign 52, 54
version-control facility 33
view 76
virtual

host 35
view 76
 129

visual application builder 15
VisualAge for Java

and NCF 15
CICS Access Builder 80
Data Access Builder 83
presentation 33
used in NC97 77

W
Web browser

and application access 69
and CICS Gateway for Java 14
and distributed computing 20
and Domino 14
and security 36, 45
and system management 26
used in NCF 13

Web server
and NCF 16
and Net.Data 42
and security 36, 74
Domino Go 34
operations 95
security 56

window manager 79
work , unit of 37

X
X509v3 55
XA 16

Y
Year 2000 74

Z
zigbert 99
zip 99
zones, security 48
130 A Migration to Java

© Copyright IBM Corp. 1998 131

ITSO Redbook Evaluation

From Client/Server to Network Computing A Migration to Java
SG24-2247-00

Your feedback is very important to help us maintain the quality of ITSO redbooks. Please complete this
questionnaire and return it using one of the following methods:

 • Use the online evaluation form found at http://www.redbooks.ibm.com
 • Fax this form to: USA International Access Code + 1 914 432 8264
 • Send your comments in an Internet note to redbook@vnet.ibm.com

Please rate your overall satisfaction with this book using the scale:
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction __________

Please answer the following questions:

Was this redbook published in time for your needs? Yes___ No___

If no, please explain:

What other redbooks would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

S
G

24
-2

24
7

-0
0

P
ri

n
te

d
 in

 t
h

e
 U

.S
.A

.

From Client/Server to Network Computing A Migration to Java SG24-2247-00

	Figures
	Tables
	Preface
	The Team That Wrote This Redbook
	Comments Welcome

	Chapter 1. Foreign Currency and Traveler’s Check Application
	1.1 Business Concepts
	1.2 Business Processes
	1.3 CS92 Infrastructure
	Figure 1. CS92 System Configuration
	1.3.1 Hardware Configuration
	1.3.2 Software Configuration
	1.3.3 Communications
	Figure 2. CS92 Communication Protocols

	1.4 Detail Design
	1.5 Data and Function Placement
	1.5.1 Data Placement
	Table 1. Table Placement

	1.5.2 Function Placement

	1.6 Application Coding
	Figure 3. CS92 Programming Language

	1.7 Graphical User Interface Design

	Chapter 2. Network Computing Framework
	2.1 Open Blueprint
	2.2 Network Computing Framework?
	Figure 4. Network Computing Framework Infrastructure

	2.3 NC Framework Components
	2.3.1 Clients
	2.3.2 e-Business Applications Services
	2.3.3 Data and Transaction Connectors
	2.3.4 Application Programming Support
	2.3.5 Foundation Services
	2.3.6 Web Server with Object Request Broker
	2.3.7 Infrastructure with Java, Directory, and Security
	2.3.8 Systems Management

	Chapter 3. From Client/Server to Network Computing
	3.1 The Client/Server Model
	3.1.1 Distributed computing
	3.1.2 Transparency

	3.2 Network Computing Benefits
	3.3 Building a Client/Server Application
	3.3.1 Basic Communication Models
	3.3.2 Application Characteristics
	3.3.3 Security
	3.3.4 System Management
	3.3.5 Data Management

	3.4 Architecture: Three-Tier Model
	3.4.1 Hardware
	3.4.2 Software
	3.4.3 Use of the Tier Model in Migration

	Chapter 4. Network Computing New Environment
	4.1 Java
	4.1.1 Java Applet
	Figure 5. Applet Tag

	4.1.2 Java Application
	4.1.3 JavaBeans
	4.1.4 VisualAge for Java

	4.2 Web Server
	4.2.1 Features
	4.2.2 Security Considerations

	4.3 CICS
	4.3.1 CICS Gateway for Java
	Figure 6. CICS Gateway for Java on a Workstation, with CICS Client
	Figure 7. CICS Gateway for Java on OS/390
	Figure 8. CICS Gateway for Java on a Workstation, with CICS Server
	Figure 9. CICS Gateway for Java on OS/390: Sequence of Events

	4.4 DB2
	4.4.1 Net.Data
	Figure 10. Net.Data Architecture

	4.4.2 DB2 Java Support
	Figure 11. JDBC Applet Sample

	4.4.3 Configuration
	Figure 12. Net.Data and JDBC Configuration

	Chapter 5. Network Computing Security Environment
	5.1 Java Security Features
	5.2 Leaving the Sandbox
	5.3 Netscape Capabilities API
	5.3.1 Implementation
	Figure 13. Netscape Security Warning

	5.3.2 Principles

	5.4 Microsoft Internet Explorer Security Zone System
	Figure 14. Internet Explore Security Setting Panel

	5.5 The HotJava Security Model
	Figure 15. HotJava Basic Security Panel
	Figure 16. HotJava Advanced Security Preference Panel

	5.6 Digital Certificates
	Figure 17. Netscape Security Info Window
	Figure 18. Importing a New Certificate with Netscape
	5.6.1 Why Sign Java Applets?
	5.6.2 Obtaining a Digital Certificate

	5.7 Security Features in Java 1.2
	5.8 Secure Java Applets

	Chapter 6. Designing a Network Computing Application
	6.1 From CS92 to NC97: Application Selection
	6.2 NC97 Infrastructure
	Figure 19. NC97 Infrastructure
	6.2.1 Hardware
	6.2.2 Software
	6.2.3 Communications
	Figure 20. NC97 Communication Configuration

	6.3 Application Design Tasks
	6.3.1 Application Design
	6.3.2 Outline Design

	6.4 Presentation and Application Separation
	6.5 Data and Function Placement
	6.5.1 Data Flexibility
	6.5.2 Function Flexibility
	6.5.3 CS92 Application Request Manager
	6.5.4 Routing Techniques

	6.6 Data Placement
	6.6.1 Reference Data
	6.6.2 NC97 Data Placement

	6.7 Function Placement
	6.7.1 Existing Function
	Figure 21. Possible Function Placements
	Figure 22. Function Placement Using the CICS Gateway for Java

	6.7.2 Updated Function

	6.8 Designing the Application Access
	Figure 23. Installation Choice of Java Code

	6.9 Designing for the Web
	6.9.1 User Base
	Figure 24. Internet/Intranet Options

	6.9.2 System Operation

	6.10 Designing for Integrity
	6.10.1 Designing Logical Units of Work
	6.10.2 User Awareness

	6.11 Designing for Security
	6.12 Designing for Year 2000 Compliance

	Chapter 7. Developing the New Client Application
	7.1 Graphical User Interface
	7.1.1 Java features
	7.1.2 Common Look and Feel

	7.2 VisualAge for Java
	7.2.1 Application or Applet Decision
	7.2.2 Applet Design Goals
	7.2.3 Applet Prerequisites

	7.3 Object Modeling
	7.4 Window Manager
	Figure 25. Window Manager Object

	7.5 Router
	Figure 26. Router Object

	7.6 Transaction Manager
	Figure 27. TransactionManager
	Figure 28. COMMAREA
	Figure 29. Create COMMAREA Bean
	Figure 30. Unit of Work Bean Properties
	Figure 31. Visual Programming with the CICS Bean

	7.7 JDBC DB2 Access
	Figure 32. Definition of BRANCH Table
	Figure 33. Schema Mapping
	Figure 34. Branch Bean Properties Window
	Figure 35. Visual Programming with the Data Bean

	7.8 Net.Data
	7.8.1 Implementation
	Figure 36. Net.Data Implementation

	7.8.2 Net.Data Macro
	Figure 37. Net.Data Input Section
	Figure 38. Net.Data Function Input Form
	Figure 39. Net.Data Report Section
	Figure 40. Net.Data Process Section
	Figure 41. Net.Data Function Output

	7.9 COBOL Changes
	Figure 42. Micro Focus COBOL Redefine Statement
	Figure 43. IBM COBOL Redefine Statement

	7.10 Change of Platform

	Appendix A. Domino Go Web Server for OS/390 Operations
	Appendix B. CICS Gateway for Java — Installation and Setup
	B.1 Configuration
	B.2 Running the CICS Gateway for Java
	Figure 44. Java Gateway Startup JCL

	Appendix C. Creating Signed Java Applets
	C.1 The Netscape Tools
	C.1.1 Create a JAR file signed for Netscape Communicator.
	Figure 45. JAR file creation

	C.2 The Sun Java Development Kit Tools
	C.3 Microsoft Authenticode Technology
	Figure 46. CAB File Creation

	Appendix D. Net.Data Macro
	D.1 The Tables
	Figure 47. Ord_Hist Table Definition
	Figure 48. Ord_Detail_Hist Table Definition
	Figure 49. Ord_Hist_View View Definition

	D.2 Net.Data Macro

	Appendix E. Special Notices
	Appendix F. Related Publications
	F.1 International Technical Support Organization Publications
	F.2 Redbooks on CD-ROMs
	F.3 Other Publications and Web Sites
	F.3.1 Network Computing Framework
	F.3.2 JAVA
	F.3.3 Domino Go Web Server
	F.3.4 CICS
	F.3.5 DB2
	F.3.6 VisualAge for Java

	How To Get ITSO Redbooks
	How IBM Employees Can Get ITSO Redbooks
	How Customers Can Get ITSO Redbooks
	IBM Redbook Order Form

	Glossary
	List of Abbreviations
	Index
	ITSO Redbook Evaluation

