
Net.Commerce V3.2 for AS/400: A Case Study
for Doing Business in the New Millennium

Fant Steele, Ursula Althoff, Rui Fan, Lauren Hain,
Charles Haramoto, Shahar Mor, Lars-Olov Spångberg

International Technical Support Organization

SG24-5198-00

http://www.redbooks.ibm.com

International Technical Support Organization SG24-5198-00

Net.Commerce V3.2 for AS/400: A Case Study for Doing
Business in the New Millennium

July 1999

© Copyright International Business Machines Corporation 1999. All rights reserved
Note to U.S Government Users - Documentation related to restricted rights - Use, duplication or disclosure is subject to restrictions
set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (July 1999)

This edition applies to V3.2 of IBM Net.Commerce for AS/400, Program Number 5798-NC3 and IBM Payment Server
V1.2 for AS/400, Program Number 5733-PY1 for use with supported versions OS/400.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. JLU Building 107-2
3605 Highway 52N
Rochester, Minnesota 55901-7829

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

Before using this information and the product it supports, be sure to read the general information in Appendix D,
“Special Notices” on page 533.

Take Note!

Contents

Figures . xi

Tables . xxi

Preface .xxiii
The Team That Wrote This Redbook . xxiii
Comments Welcome . xxv

Part 1. Planning the Net.Commerce Site .1

Chapter 1. Introduction to e-business and Net.Commerce.3
1.1 An Evolution to the Web .5

1.1.1 Client/Server Detour .5
1.1.2 Parallel Web Development .6

1.2 Maturing Technologies .7
1.3 Ready for Net.Commerce .8
1.4 Additional Information .8
1.5 What ShopITSO Is .8

Chapter 2. Planning: The Infrastructure .9
2.1 AS/400 Hardware Sizing .9

2.1.1 AS/400 Net.Commerce Hardware Requirements9
2.1.2 Optional AS/400 Net.Commerce Hardware Requirements9

2.2 AS/400 Net.Commerce Installation Requirements .9
2.2.1 AS/400 Net.Commerce Software Requirements10
2.2.2 Optional AS/400 Net.Commerce Software Requirements11

2.3 Network Planning .12
2.3.1 Network Security .12
2.3.2 Security Policy .12
2.3.3 Network Security Objectives .14
2.3.4 Operating System .14
2.3.5 TCP/IP Configuration .14
2.3.6 Server Placement .15
2.3.7 Firewall Planning. .16
2.3.8 Connection Planning .17
2.3.9 Planning for SET .18

2.4 Server Integration .18
2.4.1 HTTP Server .19
2.4.2 Domino Server .19

Chapter 3. Planning: Site Design Considerations .21
3.1 General Considerations .21

3.1.1 Audience and Scope .21
3.1.2 Shoppers .24
3.1.3 Products .25
3.1.4 Payment Processing .26
3.1.5 Order Processing .27
3.1.6 Shipping .27
3.1.7 Notification .28
3.1.8 Order Status .28
3.1.9 Security. .28
iii

3.1.10 Disclaimers and Store Policies. 29
3.1.11 Customer Service . 29
3.1.12 Existing Methodologies . 30
3.1.13 Data Transfer. 30
3.1.14 Performance . 30
3.1.15 Tools . 31

3.2 Planning the Product Catalog . 31
3.2.1 Category Structure. 33
3.2.2 Product Structure. 34
3.2.3 Planning Product Descriptions . 35
3.2.4 Planning Category and Product Templates 36

3.3 Images and Multimedia Files . 37
3.4 Working with Net.Commerce Discounts . 38
3.5 Planning Caching Facilities . 40
3.6 Summary Checklist — Side Design Considerations 41
3.7 Output from the Design . 45

3.7.1 Business Objectives . 45
3.7.2 Navigation Flow . 45
3.7.3 Functionality Description of Each Screen . 46

3.8 Mapping Your Navigation Flow to the Net.Commerce Commands 47
3.8.1 Overview of Net.Commerce Commands . 48
3.8.2 Using Net.Commerce Commands . 52
3.8.3 Mapping the Navigation Flow to Net.Commerce Commands 54

3.9 Design of the ShopITSO Sample Solution . 57
3.9.1 Business Objectives in the ShopITSO Sample Store 57
3.9.2 Functional Description of Each Page in the ShopITSO Sample Store60
3.9.3 Navigation Flow in the ShopITSO Sample Store 61
3.9.4 Navigation Flow and Net.Commerce Commands in ShopITSO 62

3.10 Summary Store Design Considerations . 83

Chapter 4. Planning: Language Considerations . 85

Chapter 5. Planning: Integration with the Back-End Systems 87
5.1 Data Mapping . 87
5.2 Integrating the Data . 87
5.3 Integrating with Applications . 88
5.4 Synchronizing the Net.Commerce Database with Back-End Data 88

Chapter 6. Planning: Payment Collection . 91
6.1 Secure Electronic Transaction (SET) . 91

6.1.1 Payment Server . 92
6.1.2 A Payment Server Transaction . 93
6.1.3 SET Certificate . 95

6.2 SET without a Wallet . 96
6.2.1 Merchant Originated Payment . 96

6.3 Payment Server Planning Tables. 97
6.4 Back-End Systems (PO) . 100

Chapter 7. Planning: Tools to Build the Site . 103
7.1 Net.Data SQL Assist Tool . 103

7.1.1 General Description . 103
7.1.2 Using the Tool . 103
7.1.3 Usage Tips . 107

7.2 Entering SQL Statements Using Operations Navigator or SQLUTIL. . . . 107
iv Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

7.2.1 SQLUTIL Command .108
7.2.2 Operations Navigator .109

7.3 Stream File Handling Tools .111
7.4 Adding a Soft Link to QSYS.LIB Objects .113

Chapter 8. Planning: Skills Required for Your Project115

Part 2. Implementing the Net.Commerce Site .117

Chapter 9. Setting Up SSL Using DCM .119
9.1 Transaction Security and Secure Sockets Layer119
9.2 HTTP Server over SSL (HTTPS) .120
9.3 Digital Certificates and Certificate Authority .121
9.4 AS/400 Implementation of Digital Certificate Management122

9.4.1 Configuring a Digital Certificate Environment122
9.5 Creating a Self-signed Certificate .122

9.5.1 Creating an Intranet Certificate Authority. .123
9.5.2 Creating a Server Certificate with Your Intranet CA (V4R3).126
9.5.3 Creating a System Certificate with Your Intranet CA (V4R4)129
9.5.4 Configuring Web Server to Use SSL Server Authentication (V4R3) .132
9.5.5 Configuring Web Server to Use SSL Server Authentication (V4R4) .135

9.6 Requesting a Server Certificate from an Internet CA139
9.6.1 Requesting a Server Certificate from an Internet CA (V4R3)140
9.6.2 Receiving a Server Certificate for This Server (V4R3)142
9.6.3 Requesting a System Certificate from an Internet CA (V4R4)143
9.6.4 Receiving a System Certificate (V4R4) .146

Chapter 10. Setting Up the Network .149
10.1 Security. .149

10.1.1 General I/T Security Policy Statement .149
10.1.2 Internet Services Policy .149

10.2 Server Placement .150
10.2.1 Scenario Objectives .150

10.3 Firewall .150
10.3.1 Task Summary .151
10.3.2 Installing the AS/400 Firewall .152
10.3.3 Performing Basic Configuration .152
10.3.4 Changing NAT Rules. .155
10.3.5 Starting NAT .159
10.3.6 Adding Filter Rules for SET .159
10.3.7 Filter Rules for Requesting a Certificate .159
10.3.8 Setting Up SOCKS for a Certificate Request160
10.3.9 Filter Rules for SET Communication .163
10.3.10 Configuring a Default Route to Route Web Server Responses . .164
10.3.11 Restarting the Filters .164
10.3.12 Verifying Access to the Web Server and Internet.165
10.3.13 Additional Configuration Information .165
10.3.14 OS/400 TCP/IP Configuration .168

10.4 Backend System Connection .169

Chapter 11. Installing Net.Commerce .171
11.1 Pre-Installation Procedures .171
11.2 Installing Net.Commerce .171
v

Chapter 12. Configuring Net.Commerce . 173
12.1 Creating New Net.Commerce Instances . 173
12.2 Deleting Net.Commerce Instances. 181
12.3 Deleting Net.Commerce Licensed Program Product 182
12.4 Database Server Problem Determination Procedure 182

Chapter 13. Building the Mall and Store. 185
13.1 Net.Commerce Sample Stores. 185
13.2 Store Creation Choices . 186
13.3 Building the Store with Store Creator . 187

13.3.1 Objects Built by Store Creator . 189
13.4 Building the Store with Site and Store Management Functions 190
13.5 Implementing the ShopITSO Sample Solution 191
13.6 Building the ShopITSO Sample Store with Store Creator 192
13.7 Creating the Product Catalog. 203
13.8 Assigning Templates . 206

13.8.1 Assigning Templates to Categories . 206
13.8.2 Assigning Templates to Products . 207
13.8.3 Quick Test for Template Views . 210

13.9 Assigning Product Images to Products . 212
13.10 Using Product Long Description Fields . 214
13.11 Using the Product PRURL Field . 218
13.12 Customizing the Category Tree . 222
13.13 Customizing the HTML Pages . 229
13.14 Using the HTTP Web Server Cache for Static Pages 234

13.14.1 HTTP Server Trace Output File . 237
13.15 Modifying Net.Data Macros . 241

13.15.1 Net.Data Macro to Show the Category Tree 243
13.15.2 Finding or Assigning a Net.Data Macro for a Specific Display . . 244
13.15.3 Original Net.Data Macro for the Product Display 247
13.15.4 Changes to Net.Data Macro for the Product Display 253
13.15.5 Our New Net.Data Macro for Display Product Page 255

13.16 Exception Handling Conditions by Example . 258
13.16.1 Changes in the err_stdata.d2w Macro . 259
13.16.2 Assigning a Net.Data Macro to an Exception Task 261

13.17 Assigning SSL Protocol to Net.Commerce Commands 264
13.18 Disabling Check Inventory . 268
13.19 Customizing System Error Pages . 272

Chapter 14. Enhancing the Store Using Product Advisor 275
14.1 What a Product Advisor Is . 275

14.1.1 Catalog Builder . 276
14.2 Enhancing Our Sample Store Using Product Advisor 277
14.3 Implementing Product Advisor Metaphors . 277

14.3.1 Loading the Product Advisor Applet . 277
14.3.2 Using Catalog Builder . 280
14.3.3 Using Product Exploration Builder . 283
14.3.4 Using Product Comparison Builder . 287
14.3.5 Using Sales Assistant Builder . 290

14.4 Using Template Designer to Customize Product Advisor Pages 299
14.4.1 Building the Base Pages for Product Advisor 300
14.4.2 Customizing the Product Exploration Page 302
14.4.3 Customizing the Product Comparison Page 307
vi Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

14.4.4 Customizing the Sales Assistant Pages. .312
14.5 Publishing Product Advisor Pages. .316

Chapter 15. Importing Business Data into Net.Commerce319
15.1 General Considerations for Loading Data .319

15.1.1 Loading the Net.Commerce Database .319
15.2 Options for Loading Data .320

15.2.1 Writing Your Own Program to Import Data.320
15.2.2 Mass Import .321

15.3 Importing Data by Example .330
15.3.1 Consideration for the Example Solution. .330
15.3.2 The LOADPRD Utility — Description .330
15.3.3 Ongoing Synchronization of Database Activity339

Chapter 16. Setting Up Payment Methods .343
16.1 Secure Electronic Transaction .343

16.1.1 Installing Payment Server .343
16.1.2 Creating a Payment Server .344
16.1.3 Basic Configuration of the Payment Server347
16.1.4 SET Protocol Configuration of the Payment Server348
16.1.5 Payment Systems Configuration of the Payment Server350
16.1.6 Acquirer Configuration of the Payment Server353
16.1.7 SET Certificate .356
16.1.8 Requesting a SET Merchant Certificate from a CA356
16.1.9 Starting and Ending the Payment Server .362

16.2 Payment Server Payment Processing .366
16.2.1 Managing Payment Transactions .366
16.2.2 Types of Payment Server Functions .367
16.2.3 Searching the Payment Transactions in the Database.367
16.2.4 Requesting Authorization on a Payment Transaction.368
16.2.5 Requesting Authorization Reversal on a Payment Transaction . . .368
16.2.6 Requesting Capture on a Payment Transaction.369
16.2.7 Requesting Capture upon Order Fulfillment.371
16.2.8 Requesting Capture Reversal on a Payment Transaction371
16.2.9 Requesting Credit on a Payment Transaction371
16.2.10 Requesting Credit Reversal on a Payment Transaction372

16.3 Installing a SET Compliant eWallet .372
16.4 Getting a SET Certificate for the IBM Consumer Wallet.375

Chapter 17. Interfacing to Our Back-End Business System383
17.1 Description of Our Example .383
17.2 The Pricing and Orders Process .383
17.3 Table Synchronization and Cache Mechanism392

17.3.1 Product Information Synchronization .393
17.3.2 Integration with Net.Commerce Cache Mechanism393

17.4 Requesting Capture upon Order Fulfillment .398
17.5 Usage Considerations .400
17.6 Relevant Tables and Programs .402

Chapter 18. Generating Net.Commerce Reports .403
18.1 Integrating Seagate Crystal Report 6 with IBM Net.Commerce403

18.1.1 ODBC Driver Configuration .404
18.2 Creating a User-Defined Reports Example .406

18.2.1 Identifying the Relevant Net.Commerce Tables and Columns406
vii

18.2.2 Creating the Example Report Using Lotus Approach 407

Chapter 19. Implementing Overridable Functions 413
19.1 The Basic Model . 413
19.2 Tasks and Overridable Functions . 416
19.3 General Issues . 417

19.3.1 Command-Oriented Programming . 417
19.3.2 Programming with C++ . 417
19.3.3 Net.Commerce Classes . 418
19.3.4 Other Resources . 418

19.4 Overridable Function by Example . 419
19.4.1 Identifying the Need for New Overridable Functions. 419
19.4.2 Defining and Designing the New Behavior 419
19.4.3 Coding the Overridable Function . 420
19.4.4 Coding Your Overridable Function . 427
19.4.5 Compiling the Overridable Function . 434
19.4.6 Registering the Overridable Function in the Database 434
19.4.7 Assigning the Overridable Function . 434

19.5 Testing and Debugging the Overridable Function 437
19.5.1 Compiling the Overridable Function with Debug Information 437
19.5.2 Starting Net.Commerce Service Jobs. 438
19.5.3 Start Debug . 439

19.6 Working with the Back-End System on a Different Server 441

Chapter 20. Writing Commands . 443
20.1 Creating Your Working Directory . 443
20.2 Creating the Binding Directory . 444
20.3 Preparing the Source File . 444
20.4 Building the Command. 446
20.5 Registering the Command in the Database . 447
20.6 Testing the New Command . 449
20.7 Coding Patterns and Guidelines . 449

20.7.1 Calling a Task . 450
20.7.2 Using Iterators . 450
20.7.3 Selecting Rows from the Database . 450
20.7.4 Updating Rows in the Net.Commerce Database. 451
20.7.5 Static Variables . 452
20.7.6 Security Considerations . 452

Chapter 21. Site Administration . 453
21.1 Net.Commerce Server Logs. 453

21.1.1 System Log . 453
21.1.2 User Traffic Log . 454
21.1.3 Viewing the Log Files. 454

21.2 Database Cleanup Utility . 456
21.3 Clearing Log Files . 460
21.4 General Administration Tasks . 461
21.5 Net.Commerce Jobs on the AS/400 System . 461
21.6 Web Server Jobs on the AS/400 System . 462

Appendix A. Source Code Samples .463
A.1 Retrieving Encrypted Text .463
A.2 Registering Overridable Functions. .465
A.3 Clear Net.Commerce Cache .467
viii Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

A.4 The STRNETBE Command . 470
A.5 The ORDERC Program. 471
A.6 Back-End Table Definition. 472
A.7 The RQSCAP Command . 473
A.8 HTML Samples . 475

A.8.1 Index HTML. 475
A.8.2 Banner1 HTML . 475
A.8.3 Home HTML . 476
A.8.4 News HTML . 476
A.8.5 Catalog HTML . 476
A.8.6 Company HTML . 477
A.8.7 Help HTML . 477
A.8.8 Contact HTML . 477
A.8.9 Banner2 HTML . 478
A.8.10 Promotions HTML . 478
A.8.11 Search HTML . 478
A.8.12 20BOG HTML . 479
A.8.13 CMDINC HTML. 479

A.9 Net.Data Sample Macros . 480
A.9.1 Macro for Catalog Tree . 480
A.9.2 Category Macro. 482
A.9.3 Product Macro PROD1.D2W . 484
A.9.4 Product Macro PROD2.D2W . 487
A.9.5 Macro for Current Order . 489
A.9.6 Macro for Accepted the Order (Alternative 1) . 491
A.9.7 Macro for Accepted the Order (Alternative 2) . 498
A.9.8 Macro for Order Confirmation . 504
A.9.9 Macro for Order Status . 508
A.9.10 Macro for Search. 511
A.9.11 Error Macro Address Update . 512
A.9.12 Error Macro Bad Quantity . 517

A.10 ShopITSO Include File . 519
A.11 AS/400 Web Server Configuration File . 519
A.12 INI Files . 521

A.12.1 NCOMMERCE.INI. 521
A.12.2 DB2WWW.INI . 522
A.12.3 SRVCTRL.INI . 522
A.12.4 PAY_BACK.INI . 523
A.12.5 PAY_ETILL.INI . 523
A.12.6 INSTANCE.INI . 523

Appendix B. Performance . 525
B.1 Using the DNSLookup Directive . 525
B.2 Tuning SQL Requests . 525
B.3 Increasing the Max Active Value of the Memory Pool. 525
B.4 Adjusting the QNETCOMM Jobs Priority . 526
B.5 Loading Net.Commerce Tables to Main Memory . 526
B.6 Improving the IBM Client Access ODBC Driver Performance. 528

Appendix C. Problems and Solutions . 529
C.1 Net.Commerce . 529

C.1.1 Net.Commerce Online Documentation . 529
C.1.2 The ExecMacro Command . 529
ix

C.2 Net.Data and Net.Commerce. .529
C.2.1 Error Handling .530
C.2.2 Performance Considerations .530

Appendix D. Special Notices .533

Appendix E. Related Publications .535
E.1 International Technical Support Organization Publications535
E.2 Redbooks on CD-ROMs .535
E.3 Other Publications .535
E.4 Other Resources .536

How to Get ITSO Redbooks . 537
IBM Redbook Fax Order Form .538

Index . 539

ITSO Redbook Evaluation . 549
x Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figures

1. Net.Commerce Overview . 4
2. Components of an Internet Security Policy . 12
3. Structure of the Product Catalog . 32
4. Category Relationships . 33
5. Product and Item Relationships . 34
6. Sample Product with Items that Have Attributes . 35
7. Discount Definition in Net.Commerce Tables . 38
8. Example Discount Calculation . 39
9. Navigation Flow for the Entire e-Business Application. 45
10. Sample Navigation Flow for Our Product Page . 46
11. Sample of Functionally Description of Display Product Page 47
12. Commands, Tasks, and Overridable Functions . 49
13. Important Net.Commerce Commands . 50
14. Command Processing . 51
15. Sample of Syntax of Net.Commerce Commands . 52
16. How to Use Commands in HTML or Net.Data Macros 53
17. Navigation Flow to Net.Commerce Command Mapping 54
18. OrderItemUpdate Command Syntax Diagram . 55
19. Our Display Current Order Page in ShopITSO . 60
20. Overview of Our e-Business Sample Application. 62
21. Navigation Bar 1. 63
22. Home Page with Navigation Bar 1 . 63
23. Navigation Bar 2 — Active when StartShopping Selected. 64
24. Navigation Flow from Our Home Page . 64
25. Catalog Tree with Navigation Bar2 and Promotions Page. 65
26. Navigation Flow from Our Category Tree and Promotion Page. 66
27. Subcategory Page in Left Frame; Product Page in the Main Frame 67
28. Product List Page in Left Frame; Product Page in the Main Frame. 67
29. Navigation Flow from the Product Explorer Page . 68
30. Navigation Flow for Product Page . 69
31. Navigation Flow from Our Display Current Order Page 71
32. No Current Order Page . 73
33. Order Accepted Page — First Area . 74
34. Order Accepted Page — Second Area . 75
35. Order Accepted Page — Third Area . 75
36. Navigation Flow from Our Order Accepted Page. 76
37. Error Order Confirmation Page (Part 1 of 2) . 77
38. Error Order Confirmation Page (Part 2 of 2) . 78
39. Order Confirmation Page (Part 1 of 3) . 78
40. Order Confirmation Page (Part 2 of 3) . 79
41. Order Confirmation Page (Part 3 of 3) . 79
42. Navigation Flow to Check Order Status Page . 80
43. Navigation Flow for Search Page. 81
44. Search Input HTML Page. 81
45. ShopITSO Search Result Page . 82
46. Navigation for Order Now Page . 82
47. SET Logo . 92
48. Payment Server . 93
49. Payment Server Transactions . 94
50. Brand CA . 96
© Copyright IBM Corp. 1999 xi

51. Net.Data SQL Assist Welcome Page .104
52. Log on to the AS/400 System .105
53. List of Tables in Schema. .106
54. The Net.Data Macro Generated by SQL Assist .106
55. SQLUTIL Prompt. .108
56. SQLUTIL Screen. .109
57. Operations Navigator Pop-Up Menu .110
58. Operation Navigator SQL Interface. .110
59. Operations Navigator SQL Result Set from Select Statement111
60. EDTF Command Prompt. .112
61. EDTF Editing Screen .113
62. Adding Link to QSYS.LIB .113
63. HTTP Server Using SSL .120
64. AS/400 Tasks Page .123
65. Creating an Intranet Certificate Authority .124
66. CA Certificate Created Successfully .125
67. Certificate Authority Policy .125
68. Trusting the CA for Applications .126
69. Create a Server Certificate Page .127
70. Server Certificate Created Successfully Page .128
71. Creating a Server Certificate with an Existing Intranet CA128
72. Create a System Certificate Page. .130
73. System Certificate Created Successfully Page. .131
74. Digital Certificate Manager - Work with Certificates .132
75. Creating a System Certificate with an Existing Intranet CA132
76. HTTP Server Configuration. .133
77. Security Configuration Page .134
78. Work with Server Instances .135
79. HTTP Server Configuration. .136
80. Security Configuration Page .137
81. Work with Secure Applications in DCM. .138
82. Work with System Certificate .138
83. Work with Server Instances .139
84. Requesting a Certificate from VeriSign or Other Internet CA140
85. Requesting a Server Certificate from an Internet CA141
86. Server Certificate Request Generated by DCM .141
87. Receiving a Server Certificate Issued by an Internet CA142
88. Key Management Page. .143
89. Requesting a Certificate from VeriSign or Other Internet CA144
90. Creating a System Certificate with an Internet CA .144
91. Create a System Certificate Page. .145
92. System Certificate Request Created Page .146
93. Receiving a System Certificate Issued by an Internet CA.147
94. Confirmation of Successful Receipt .147
95. Scenario Network Configuration .151
96. Firewall Installation Summary Page .152
97. Starting the Firewall .152
98. Firewall Basic Configuration Summary Page (Part 1 of 2)154
99. Firewall Basic Configuration Summary Page (Part 2 of 2)155
100.Confirmation that the Firewall Is Configured .155
101.Selection of NAT from the Configuration Menu .156
102.Network Address Translation Settings Page .157
103.Change the NAT MAP Setting .158
xii Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

104.Displaying NAT Settings . 158
105.Starting NAT from the Status Page . 159
106.Operations Navigator — TCP/IP Properties SOCKS before Configuration . . 160
107.Add SOCKS Destination with Direct Connection Information 161
108.Add SOCKS Destination with SOCKS Server Connection 162
109.Point to the SOCKS Domain Name Server . 163
110.AS/400 System TCP/IP Interfaces. 165
111.AS/400 System Routing Configuration . 165
112.Network Server Description (Part 1 of 7) . 166
113.Network Server Description (Part 2 of 7) . 166
114.Network Server Description (Part 3 of 7) . 166
115.Network Server Description (Part 4 of 7) . 167
116.Network Server Description (Part 5 of 7) . 167
117.Network Server Description (Part 6 of 7) . 167
118.Network Server Description (Part 7 of 7) . 168
119.AS/400 System TCP/IP Interfaces — AS01 . 168
120.AS/400 System Routing Configuration — AS01 . 169
121.Configuration Manager . 175
122.Create a New Net.Commerce Instance . 176
123.Web Server Tab. 177
124.Database Tab . 178
125.Language Tab . 179
126.Payment Tab . 180
127.Find the Serving Database Job . 182
128. List of Jobs Used by Net.Commerce Instance User 183
129.Work with the Database Server . 183
130.Database Server Job Log . 184
131.Store Creation Choices . 187
132.One Stop Shop Store Model . 188
133.Personal Delivery Store Model . 188
134.Business to Business Shop Model . 189
135.One Stop Shop Store Model . 191
136.Store Creator View in the Net.Commerce Administrator Page 192
137.Store Creator Status Window . 193
138.Store Creator — Welcome Window. 193
139.Store Creator — Step 1. Select a Store Model . 194
140.Store Creator — Step 2. Enter Contact Information 195
141.Store Creator — Step 3. Add Sample Products and Store Description. 196
142.Store Creator — Step 4. Specify Tax Rates . 197
143.Store Creator — Step 5. Select Payment Methods . 198
144.Store Creator — Step 6. Specify Shipping Providers 199
145.Store Creator — Step 7. Select a Store Style . 200
146.Store Creator — Step 8. Select Page Layouts . 200
147.Store Creator — Step 9. Review Your Selections . 201
148.Store Creator — Results Display. 202
149.Shop ITSO Just after Creation by Store Creator . 203
150.Creating the Product Catalog . 203
151.Product Categories . 206
152.Assigned Category Template . 207
153.Product/Item Information . 208
154.Product/Item Information — Product List. 208
155.Product Template Assignment. 209
156.Update Template Assignment . 209
xiii

157.Product Template Updated Successfully .210
158.Product Template Assignment .211
159.Test View from the Product Template .211
160.Product Page in ShopITSO .212
161.Images Available for Products .213
162.Our Product Names .213
163.SQL Statements for Updating the Image Path and Names214
164.Product/Item Information (Part 1 of 6) .215
165.Product/Item Information (Part 2 of 6) .216
166.Product/Item Information (Part 3 of 6) .216
167.Product/Item Information (Part 4 of 6) .217
168.Product/Item Information (Part 5 of 6) .217
169.Product/Item Information (Part 6 of 6) .217
170.Product Page with HTML Formatted Long Description Field218
171.Update Product Table — PRURL Field (Part 1 of 2)220
172.Update Product Table — PRURL Field (Part 2 of 2)220
173.Product Page with Link to Description .221
174.Link Page from Product Page. .221
175.Category Tree — One Level Deep (Flat) .222
176.Category Tree — Three Levels .223
177.Store Manager View in Net.Commerce Administrator Page223
178.Product Categories — ShopITSO Store .224
179.Product Categories — Top Category .224
180.Product Categories — Level One Categories (Select to Add Category)225
181.Products Categories — Add New Category .225
182.Products Categories — Level One Categories (Select to Assign Template) .226
183.Category Template Assignment — Save Template Assignment226
184.Category Template Assignment — Return to Product Categories227
185.Products Categories — Level One Categories (Select to Mark)227
186.Products Categories — Level One Categories (Select to Move)228
187.Products Categories — Level One and Two Categories228
188.Products Categories — Level One, Two, and Three Categories229
189.ShopITSO Home Page with First Banner. .231
190.ShopITSO News Page .231
191.ShopITSO Our Company Page .232
192.ShopITSO Help Page .232
193.ShopITSO Contact Info Page .233
194.ShopITSO Online Shop Page with Promotion Page233
195.ShopITSP Search Page Part1 .234
196.ShopITSO Search Result Page .234
197.Configuration Form for Local Caching — HTTP Server Configuration236
198.Local Cache File Parameter .237
199.Local Cache File Entry .237
200.Find HTTP Server Job .238
201.Work with HTTP Server Job .238
202.Start Work with Spooled Files .239
203.Start Display Spooled Files .239
204.First site of HTTP Server Trace Protocol .240
205.Protocol Entries for Local Cache Function .241
206.First Site in Our ShopITSO with Catalog Tree .243
207.Task Management — View Task .245
208.Task Assignment — View Task .246
209.Macro Assignment for ORD_DSP_PEN Task .246
xiv Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

210.Bad Quantity Exception Page . 261
211.Task Management — Error Task. 262
212.Task Management — Error Task Assignment. 262
213.Macro Assignment — Task Management Page . 263
214.Macro Assignment for the New Net.Data Macro . 263
215.Command Security (Part 1 of 7) . 265
216.Command Security (Part 2 of 7) . 265
217.Command Security (Part 3 of 7) . 266
218.Command Security (Part 4 of 7) . 266
219.Command Security (Part 5 of 7) . 267
220.Command Security (Part 6 of 7) . 267
221.Command Security (Part 7 of 7) . 268
222.Out of Stock Message . 269
223.Task Management — CHECK_INV (Part 1 of 4). 270
224.Task Management — CHECK_INV (Part 2 of 4). 270
225.Task Management — CHECK_INV (Part 3 of 4). 271
226.Task Management — CHECK_INV (Part 4 of 4). 271
227.System Error Flow . 272
228.Original System Error Page . 274
229.Changed System Error Page. 274
230.Product Advisor Page in the Net.Commerce Administrator. 278
231.Work with Active Jobs . 278
232.Product Advisor — Starting Resynchronize All . 279
233.Product Advisor — Resynchronization Panel . 279
234.Product Advisor — Successful Resynchronization Panel 279
235.Product Advisor — Include New Products Panel. 280
236.Product Advisor Applet . 280
237.Product Advisor — Opening Catalog Builder. 281
238.Catalog Builder — Saving Changes . 282
239.Catalog Builder — Save Complete Panel . 282
240.Product Advisor — Catalog Prepared . 283
241.Product Advisor — Opening Product Exploration Builder 284
242.Product Exploration Builder — Changing Display Value 284
243.Product Exploration Builder — Changing Widget Value 285
244.Product Exploration Builder — Selecting Template for Viewing 285
245.Product Exploration Builder — Select Template for Viewing Panel. 286
246.Product Exploration Builder — Viewing Product Exploration Page 286
247.Product Exploration Page . 287
248.Product Advisor — Opening Product Comparison Builder 288
249.Product Comparison Builder — Selecting Template for Viewing. 288
250.Product Comparison Builder — Select Template for Viewing Panel 289
251.Product Comparison Builder — Viewing Product Comparison Page 289
252.Product Comparison Page. 290
253.Product Advisor — Opening Sales Assistant Builder 291
254.Sales Assistant Builder — Adding a Question. 291
255.Sales Assistant Builder — Add a Question Panel . 292
256.Sales Assistant Builder — Adding an Answer . 292
257.Sales Assistant Builder — Add an Answer Panel . 293
258.Sales Assistant Builder — Selecting Product Constrains 293
259.Sales Assistant Builder — Select Product Constrains Panel. 294
260.Sales Assistant Builder — Linking to Another Metaphor 294
261.Sales Assistant Builder — Link to Another Metaphor Panel 295
262.Sales Assistant Builder — Select Template for Viewing Panel 295
xv

263.Sales Assistant Builder — Link Metaphor and Product Constrains Added . .296
264.Sales Assistant Builder — Selecting Template for Viewing296
265.Sales Assistant Builder — Select Template for Viewing Panel297
266.Sales Assistant Builder — Viewing Sales Assistant Page in a Browser.297
267.Sales Assistant Page .298
268.Product Advisor — Catalog and All Metaphors Prepared298
269.Template Designer Page in the Net.Commerce Administrator.299
270.Template Designer Status Window .300
271.Template Designer Window — Open File .301
272.Template Designer — Open Product Exploration Sample Template301
273.Product Exploration — Saving the New Product Exploration Template302
274.Product Exploration Template — Save Panel .302
275.Template Designer Window — Open File .303
276.Product Exploration Template — Product Links Object303
277.Product Exploration Template — Text Object .304
278.Product Exploration Template — Sales Assistant Image Object304
279.Product Exploration Template — Image Object Panel305
280.Product Exploration Template — Object Link Panel305
281.Product Exploration Template — Image Object Panel306
282.Product Exploration Template — Object Link Panel306
283.Product Exploration Template — Opening the Product Advisor Template. . .307
284.Product Exploration Template — Product Advisor Template Panel307
285.Template Designer Window — Open File .308
286.Product Comparison — Saving New Product Comparison Template308
287.Product Comparison Template — Sales Assistant Image Object309
288.Product Comparison Template — Image Object Panel309
289.Product Comparison Template — Object Link Panel310
290.Product Comparison Template — Image Object Panel310
291.Product Comparison Template — Object Link Panel311
292.Product Comparison Template — Opening the Product Advisor Template . .311
293.Product Comparison Template — Product Advisor Template Panel312
294.Template Designer — Open File .312
295.Sales Assistant Template — Product Exploration Image Object313
296.Sales Assistant Template — Image Object Panel .313
297.Sales Assistant Template — Object Link Panel .314
298.Sales Assistant Template — Image Object Panel .314
299.Sales Assistant Template — Object Link Panel .315
300.Sales Assistant Template — Opening the Product Advisor Template Panel .315
301.Sales Assistant Template — Product Advisor Template Panel316
302.Sales Assistant Template — Exiting Template Designer316
303.Product Categories — Editing Category with Product Advisor Metaphors. . .317
304.Product Categories — Setting Custom Field 1 to the Value of 1318
305.Sample Import File .323
306.WRKRDBDIRE — Checking the Location of a Database324
307.IMPNETCDAT — Command Prompt .325
308.Mass Import Sample Log File .326
309.Log File Example .327
310.Find Info SQL Message Description .328
311.AS/400 Native Export to Flat File Command Example329
312.The LOADPRD Command Prompt .332
313.Command LOADPRD Source File .333
314.The LOADPRD Command CPP Source Code (Part 1 of 2)333
315.The LOADPRD Command CPP Source Code (Part 2 of 2)334
xvi Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

316.LOADALL Utility Source Code. 339
317.BEPRODT Source File (Part 1 of 2) . 340
318.BEPRODT Source File (Part 2 of 2) . 341
319.Add Physical File Trigger (ADDPFTRG) Display. 342
320.AS/400 Task Page. 344
321.Payment Server for AS/400 . 345
322.Payment Server Administration Create Page . 346
323.Payment Server Administration Creation Done Page 346
324.Payment Server Configuration Basic Page . 347
325.Payment Server Basic Configuration Complete Page 348
326.Payment Server SET Protocol Configuration Page . 349
327.Payment Server SET Protocol Configuration Complete Page. 349
328.Net.Commerce Administrator Logon Page . 350
329.Net.Commerc Administrator Page . 351
330.Net.Commerce Store Manager . 351
331.Net.Commerce Payment Configuration . 352
332.Net.Commerce Payment Acquirer Configuration. 352
333.Payment Server Acquirer Configuration Form Page 353
334.Payment Server Acquirer Profile Added Page. 354
335.Payment Server Acquirer Add Brand Page . 354
336.Payment Server Acquirer Brand Configuration Form Page. 355
337.Payment Server Acquirer Brand Profile Added Page 355
338.Payment Server Certificate Management Login Page. 356
339.Payment Server Certificate Request . 357
340.Payment Server Request Certificate Brand. 358
341.Payment Server Certificate Root Hash . 359
342.Payment Server Certificate Request Policy. 360
343.Payment Server Certification Request Information Page 361
344.Payment Server Certificate Request Complete Page 361
345.Payment Server Page . 363
346.Start Payment Server . 363
347.Payment Server Starting Page . 364
348.Payment Server Page . 365
349.End Payment Server . 365
350.Payment Server Ending. 366
351.Payment Transaction Database Page . 368
352.Payment Processing — Capture Ready . 369
353.Payment Processing — Request Capture . 370
354.Payment Processing — Request Capture Details . 370
355.Payment Processing — Amount to Be Captured. 371
356.IBM Consumer Wallet Setup — Welcome Window . 372
357.IBM Consumer Wallet Setup — Software License Agreement Window 373
358.IBM Consumer Wallet Setup — Choose Destination Location Window 373
359.IBM Consumer Wallet Setup — Select Program Folder Window 374
360.IBM Consumer Wallet Setup — Perform Search Question Panel 374
361.IBM Consumer Wallet Setup — Update Web Browser Window 374
362.IBM Consumer Wallet Setup — Setup Complete Window 375
363.IBM Consumer Wallet Certificate Setup — Sample Acquirer Web Page . . . 375
364.IBM Consumer Wallet Certificate Setup — New User Sign On Window 376
365.IBM Consumer Wallet Certificate Setup — Add Account Window 376
366.IBM Consumer Wallet Certificate Setup — Add Payment Card 377
367.IBM Consumer Wallet Certificate Setup — Add Payment Card Summary . . 378
368.IBM Consumer Wallet Certificate Setup — Accounts View Window 378
xvii

369.IBM Consumer Wallet Certificate Setup — Policy Agreement Panel379
370.IBM Consumer Wallet Certificate Setup — Certificate Registration (Page 1) 379
371.IBM Consumer Wallet Certificate Setup — Certificate Registration (Page 2) 380
372.IBM Consumer Wallet Certificate Setup — Certificate Registration (Page 3) 381
373.IBM Consumer Wallet Certificate Setup — Certificate Authority Message . .381
374.IBM Consumer Wallet Certificate Setup — Success Certificate Setup Page .382
375.Back End System Integration — Order Flow and Pricing384
376.Process Order from the Net.Commerce Site .385
377.The EXTORDER Source (Part 1 of 2) .386
378.The EXTORDER Source (Part 2 of 2) .387
379.The EXTORDERR Program Source (Part 1 of 3). .389
380.The EXTORDERR Program Source (Part 2 of 3). .390
381.The EXTORDERR Program Source (Part 3 of 3). .391
382.Back-End System Table Synchronization and Cache Handling392
383.Discount Table Trigger Program Source Code (Part 1 of 2)396
384.Discount Table Trigger Program Source Code (Part 2 of 2)397
385.Attach the Trigger Program to the Discounts Table .398
386.Order Payment Capture Request Mechanism .399
387.Net.Commerce Start Up Program STRNETCBE .401
388.Configure ODBC — The ODBC Administrator .404
389.Configure ODBC — Create a New Data Source .404
390.Configure ODBC — Client Access Driver Set up .405
391.Configure ODBC — Specify the Net.Commerce Library405
392.ODBC — End of Driver Setup .406
393.Report Definition — Tables Selection. .408
394.Report Definition — Select Database Type .408
395.Report Definition — List of Available Tables .409
396.Report Definition — Selected Tables .409
397.Report Definition — SQL Statement. .410
398.Define Reports — SQL Statement Results .410
399.Orders by Merchant and Status Example Report .411
400.Net.Commerce Basic Model .413
401.Flow of the OrderProcess Command .415
402.Price Retrieval Mechanism. .420
403.Install the C++ PRPQ .421
404.Verifying the C++ Installation .421
405.Verify the Openness Include .422
406.Duplicating the Compile Commands .422
407.Directory Tree for Overridable Functions .423
408.Creating Binding Directory for Net.Commerce .423
409.Add the Net.Commerce Service Programs .424
410.Net.Commerc Overridable Functions Skeleton Code.425
411.Creating C++ Module Using the C++ PRPQ .426
412.GETPRICE Overridable Function (Part 1 of 2) .428
413.GETPRICE Overridable Function (Part 2 of 2) .429
414.GETPRICER RPG Program Source Code (Part 1 of 3)431
415.GETPRICER RPG Program Source Code (Part 2 of 3)432
416.GETPRICER RPG Program Source Code (Part 3 of 3)433
417.Compile the GETPRICE Service Program .434
418.Net.Commerce Administrator Window .435
419.Net.Commerce Site Manager Window .435
420.Select Task for Assignment .436
421.Assign Task to Overridable Function .436
xviii Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

422.Create C++ Module with Debug Information . 438
423.Display Net.Commerce Jobs . 439
424.Start Servicing Net.Commerce Process . 439
425.Start Debug the Overridable Function . 440
426.Source Debug Screen . 440
427.Net.Commerce Source Breakpoint . 441
428.Creating the Directory Tree (Member CRTDIR in File QCLSRC) 443
429.Directory Tree for the Example . 443
430.Creating the Binding Directory (Member BNDDIRC in File QCLSRC) 444
431.Copy the Source File to the Root File System. 444
432.The New Command Source . 445
433.Create Command Service Program (Member BLDCMD in File QCLSRC) . . 446
434.Registering the Command (Member REGCMD in File QSQLSRC) 448
435.Output of Our First Command . 449
436.Define Network Drive Attributes. 455
437.Define Automatic Conversion for Log Extension Complete. 455
438.Net.Commerce Log File Example . 456
439.The DLTNETCDBE Command Prompt . 457
440. Sample Cleanup Utility Log File . 459
441.Reorganize the Net.Commerce Table after Cleanup Utility. 460
442.Net.Commerce Subsystem . 462
443.HTTP Server Jobs . 462
444.Command RTVENCKEY Source. 463
445.RTVENCKEY Command CPP (Part 1 of 2). 464
446.RTVENCKEY Command CPP (Part 2 of 2). 465
447.REGOFS Command Definition . 465
448.REGOFS Command CPP Source (Part 1 of 2) . 466
449.REGOFS Command CPP Source (Part 2 of 2) . 467
450.REGOFS QMQRY Source. 467
451.CLRCACH Command . 468
452.CLRCACH CPP (Part 1 of 2) . 469
453.CLRCACH CPP (Part 2 of 2) . 470
454.STRNETCBE CPP Source Code. 471
455.ORDERC Source Code . 472
456.RQSCAP Command Source . 473
457.REQCAP CPP Source (Part 1 of 2). 474
458.REQCAP CPP Source (Part 2 of 2). 475
459.REQCAP SQL Script — QMQRY Source . 475
460.Changing the Net.Commerce Server Run Priority. 526
461.Example to SETOBJACC Usage. 527
xix

xx Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Tables

1. Security Policy Planning Worksheet . 13
2. Prerequisite Planning Worksheet . 15
3. Firewall Planning Worksheet . 16
4. ISP Planning Worksheet . 17
5. SSL Planning Worksheet . 18
6. Payment Server Check Table . 97
7. Acquirer Configuration Planning Worksheet . 98
8. Acquirer Brand Configuration Worksheet. 99
9. Payment Server Certificate Planning Worksheet . 100
10. SQLUTIL Parameters. 109
11. EDTF Command Parameters. 112
12. Fields Used from the Back-End System Table for Product Catalog 205
13. Items Generated by Store Creator . 230
14. Net.Data Macros Changes Made for ShopITSO . 242
15. SQL Functions Deleted in the Net.Data Macro . 254
16. Table System Error Pages . 273
17. Names Used for SHOPITSO Templates . 300
18. Command IMPNETCDAT Parameters. 325
19. Map of Mass Import Columns to Back-End System Tables 331
20. Command LOADPRD Parameters. 332
21. Back-End System Relevant Tables . 402
22. Programs and OFs Used to Interact with the Back-End System 402
23. Command CRTCPPMOD Parameters. 426
24. DLTNETCDBE Command Prompt . 457
© Copyright IBM Corp. 1999 xxi

xxii Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Preface

Discover a practical end-to-end solution for doing business on the Web with
Net.Commerce for AS/400. This redbook presents a case study that you can use
as a guide for implementing a Net.Commerce site. The information in this
redbook helps you plan, install, tailor, configure, and troubleshoot a
Net.Commerce site by taking you through the implementation of a sample site.
The intended audience for this redbook includes analysts or consultants that will
sell, plan, or design Net.Commerce sites. It also targets the person that will build
the Net.Commerce site.

The team that wrote this redbook followed the steps that a typical customer would
consider when implementing Net.Commerce. The authors cover such topics as
populating the Net.Commerce site with existing data, integrating with a backend
system, and using payment collection. These areas are presented from the
perspective of "What needs to be done to make this work". Please note that some
knowledge of the AS/400 platform and Net.Commerce is assumed.

The Team That Wrote This Redbook

This redbook was produced by a team of AS/400 and Net.Commerce specialists
from around the world working at the International Technical Support
Organization Rochester Center.

Fant Steele is an Advisory ITSO Specialist for AS/400 in the International
Technical Support Organization, Rochester Center. He writes extensively and
teaches IBM classes worldwide on many areas of AS/400 communications

This redbook is based on Net.Commerce for AS/400 V3.2 running on OS/400
V4R3. While most of the redbook still applies to Net.Commerce V3.2 running
on later versions of OS/400, some specific instructions are only for V4R3.
Chapter 9, "Setting Up SSL Using DCM" of this updated softcopy version has
been modified to include DCM V4R4. If you are configuring or running
Net.Commerce V3.2 on V4R4, please make sure you obtain Informational
APAR II12011 and II12041. They contain important setup and WebSphere
information. To access the APAR information, log on to:
http://www.as400service.ibm.com/

Click the + (plus sign) next to Tech Info & Databases->Software Problems -
APARS->All Info APARs by Release->Search. Enter the APAR number, and
click Search. The search should return the title of the APAR. Click the
hyperlink by the title, and read the APAR information.

You should also check the readme file. To access the readme file, log on to:
http://www.software.ibm.com/commerce/net.commerce

Click Support in the left frame. In the right frame, support areas are listed.
Click IBM Net.Commerce in the Technical Library area. Click OS400 in the
header bar. From here, you can view the readme file and the list of PTFs
needed for different levels of the OS/400 operating system.

Note
© Copyright IBM Corp. 1999 xxiii

technologies and e-business. He spent eight years as an instructor and
developer for the AS/400 communications and programming curriculum of IBM
Education and Training. Prior to joining IBM in 1989, he worked on S/36 to
AS/400 code conversion, VM/MVS systems programming, and applications
programming for the manufacturing industry.

Ursula Althoff is an AS/400 System Engineer working at IBM Midrange System
Sales Technical Support in Germany. She has worked at IBM for 24 years. Her
areas of experience include OS/400, application development, Internet Services
on AS/400, and Net.Commerce for AS/400 Version 2.

Rui Fan is a Software Engineer from IBM AS/400 Partners In Development
division in Rochester, MN. He has a year and an half of experience in the field of
e-commerce on the AS/400 system. He has worked with IBM AS/400 Business
Partners on designing and implementing AS/400 e-commerce solutions. His
areas of expertise include Web development, Object-Oriented Programming, and
e-commerce, specifically Net.Commerce.

Lauren Hain is an Application Integration Specialist in IBM Global Services
Rochester Minnesota. He has 26 years of experience in hardware and software
development. His areas of expertise include application development, Web
development, and the customizing of e-commerce solutions using
Net.Commerce.

Charles Haramoto is an IT Architect at IBM Global Services in Chile. He has
been with IBM for nine years working in systems engineering, networking
services, and consulting. Now he focuses on Net.Commerce and WebSphere
technologies for implementing e-business solutions.

Shahar Mor is an AS/400 specialist working for an IBM Business Partner YUVAL
in Israel. He has 12 years of experience in the AS/400 field. His areas of
expertise include AS/400 TCP/IP and Internet connectivity, databases, PC
connectivity to the AS/400, security, and client/server programming. Shahar
teaches AS/400 classes for IBM Israel. He is also responsible for system services
and technical support for YUVAL.

Lars-Olov Spångberg is an Advisory IT Specialist in IBM Global Services
Sweden. He has worked at IBM for 20 years, which includes 19 years of
experience in the S/38 and AS/400 field. His areas of expertise include IT
security consulting, Internet services on AS/400, Firewall for AS/400, TCP/IP, and
AS/400 performance.

Thanks to the following people for their invaluable contributions to this project:

Kris Peterson
Marv Kulus
Thomas Gray
Jenifer Servais
Marcela Adan
International Technical Support Organization, Rochester Center
xxiv Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Gaspare Latona
Janette Wong
The rest of the Net.Commerce for AS/400 Team
IBM Toronto

Daniel Luo
IBM Rochester

Comments Welcome

Your comments are important to us!

We want our redbooks to be as helpful as possible. Please send us your
comments about this or other redbooks in one of the following ways:

• Fax the evaluation form found in “ITSO Redbook Evaluation” on page 549 to
the fax number shown on the form.

• Use the online evaluation form found at http://www.redbooks.ibm.com/

• Send your comments in an internet note to redbook@us.ibm.com
xxv

xxvi Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Part 1. Planning the Net.Commerce Site

The first part of this book introduces you to the concepts of e-business and
Net.Commerce. Then, it explains the various aspects of planning your
Net.Commerce site, including the infrastructure, site design and language
considerations, integration with back-end systems, and payment collection. It
also covers the tools and skills needed to complete the project.
© Copyright IBM Corp. 1999 1

2 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Chapter 1. Introduction to e-business and Net.Commerce

Welcome to Net.Commerce for AS/400. This redbook describes an end-to-end
solution showcasing the features of Net.Commerce for AS/400, as implemented
with OS/400 Version 4, Release 3.

The Internet is becoming more common and, in many cases, essential to today's
society. As a result, it is becoming important for businesses to be capable of
exploiting the opportunities represented by the Internet. It is no longer sufficient
to simply provide access to the Internet or perhaps even have a static presence.
The real potential of the Internet lies beyond those early uses to actually conduct
business transactions—conducting "commerce". The Internet-related
technologies including TCP/IP, HTTP, browsers, and so on, are generally capable
of three primary implementation scenarios. One is an intranet, which typically
means the users that are connected together using the protocols are within an
organization or business. A second use is connecting to the Internet, with typical
functions such as internal users having the ability to access other Internet sites,
as well as a Web presence. Finally, many businesses are establishing extranets,
which use Internet technologies to connect to other businesses with whom they
have a relationship.

Internet implementation is generally thought of as providing
business-to-consumer value. Net.Commerce is IBM's premier offering that allows
many businesses to quickly conduct consumer-to-business transactions through
the Internet. It is a merchant solution that provides a framework to conduct
business on the Internet in a secure and scalable manner. It supports both
business-to-business as well as business-to-consumer environments.
Net.Commerce works together with a relational database and Secure Web Server
to give users and companies a simple and secure environment. Net.Commerce is
designed to be scalable to meet the needs of the small to very large business.
Merchants can take advantage of their existing operating environment and
expand to larger systems as their electronic traffic grows. Figure 1 on page 4
gives a high level overview of the components that make up Net.Commerce.
© Copyright IBM Corp. 1999 3

Figure 1. Net.Commerce Overview

The Net.Commerce system enables merchants to create electronic stores where
they can sell their products and services globally over the Internet's World Wide
Web (WWW). Using Net.Commerce, merchants can update their product
information easily and tailor the way information is presented, and create
"shopper groups" and offer their members special promotions or unique store
views. They can also track demographic information that is provided by shoppers,
and view purchasing statistics. Shoppers around the world can browse online
catalogs of products and services, complete with descriptions and multimedia
objects such as graphics, photos, and video and sound clips. They can place
items in an electronic "shopping cart". Then, they can order them by using SET
and an e-wallet or by providing credit card and shipping information. With
Net.Commerce, shoppers can complete transactions from their own computers
while avoiding crowds and checkout lines.

Net.Commerce is an application solution available from IBM to run on all IBM
server platforms, including RS/6000 (AIX), S/390, PC servers (running Microsoft's
NT), and the AS/400 system. Net.Commerce also runs on the Sun Solaris
platform.

Before jumping right into Net.Commerce, a review of how the Internet-related
technologies have achieved their current status as tools of choice for applications
may be helpful. This provides a base on which Net.Commerce makes sense as
the application of choice for business transactions. Two of the primary factors that
have occurred are the evolution of client/server computing to Web technologies,
and the maturation of technologies that enable business transactions to use the
Internet as a business medium.

Net.Commerce

Net.CommerceNet.Commerce
AdministratorAdministrator

Site Manager
Store Manager
Template Designer
Store Creator
Product Advisor

Net.CommerceNet.Commerce
ServerServer

Templates
Security
Integration
Multihost

IBM PaymentIBM Payment
ServerServer

HTTP ServerHTTP Server
for AS/400for AS/400

DB2/400DB2/400
Registration
Address books
Shopper groups
Merchandise details
Product categories
Shipping options
Access privileges...

SuppliersSuppliers

ShoppersShoppers

MerchantsMerchants

Existing business systems
Order management
Inventory
Pricing & taxes
Discount practices

Payment interface
Shipping & shipping charges
Accounting
Customer service...

Business-to-business

Business-to-consumer
4 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

1.1 An Evolution to the Web

Over the past 10 years or so, an evolution in the computing paradigm has been
occurring. The evolution has been going on even longer, but with regard to
client/server computing, an evolution that began with the personal computer (PC)
has come to dominate much of the data processing industry. When PCs were first
introduced, they were largely a curiosity, in which only a select few people were
interested. As their capabilities increased, so did the number of people using
them, and eventually the mainstream IS professionals took notice. PCs quickly
became an alternative for host dependent terminals, which allowed integration
into the network, although the applications which they accessed remained largely
unchanged.

Soon, however, applications that were the domain of the PCs and their users
caught the attention of businesses. Many were "personal productivity"
applications such as word processors and spreadsheets. This new breed of
application was difficult, if not impossible, to replicate on host or centralized
computers, and became increasingly important to the daily operations of
businesses. The transition from terminal emulator to "workstation" was beginning
to take hold. Some groups envisioned the transition would end with the complete
elimination of the central or host computers, although we now know that vision
was short-sighted.

Many true visionaries had a different view—one that allowed both the PC as a
workstation and the central or host computer to maximize their respective values.
This view held that applications should not be specific to a single system, but
should work in concert on both types of systems—the PC workstation (client) and
the central or host system (server). The tasks that required task-specific
CPU-intensive functions such as graphical presentation would be done on the
client. Meanwhile, the host would serve the data and (some) applications from a
managed system. This client/server computing model was touted as the next
great evolution of the data processing industry.

1.1.1 Client/Server Detour
Something happened on the way to client/server computing. As the early
adopters began implementing applications in a true client/server model, they
found that it was more difficult than envisioned. The difficulties included
inconsistent splitting of the application between the client and server, lack of
mature tools for application development, and less than expected, or more
accurately, inconsistent performance between the various client and server
systems.

Some of the difficulties were addressed by defining client/server models to help
guide the split of the application. In the meantime, tools for development were
improving more and more. Still, the actual process of successfully implementing
and deploying a true client/server application remained difficult. Additional
changes were required if this model was to become pervasive in the industry.

During this time of rapid change, as many "experts" tried to solve the client/server
challenges, several attempts were made to simplify the client/server environment.
One way to simplify a difficult task is to standardize the client/server platforms.
Some progress was made, especially on the client side. Most businesses
standardized their client hardware and software platform on "win-tel". This was
Introduction to e-business and Net.Commerce 5

the platform represented by Intel-based hardware personal computers (PCs) and
Microsoft's Windows family of operating systems (Windows 3.1x and Windows
95).

Similar attempts at standardizing the server were never really universally
accepted, though not for lack of effort. First came the demand for "open"
systems, which varied so much in meaning that no one could really define "open".
Some viewed an open server as one where the hardware vendor and software
vendor were by definition two distinct entities (following the Intel-Microsoft model
on the client). Others held that open was anything but IBM, which during this time
was going through challenging business changes. After a while, the open label
was put on systems running the UNIX operating system, giving hope to many that
some standardization was finally occurring. What they did not realize was that
there was so much variability among UNIX operating systems (there were and
are dozens of variations). Even UNIX could not carry the open banner by itself.
Smaller-scale efforts to define APIs or interfaces to systems made some progress
as well. However, standardizing the server side of the client/server model
remained elusive.

In the meantime, businesses kept running their operations. The specific
technologies they used remained important, but were not the central issues that
drove business decisions. Businesses were still hoping to accomplish
client/server computing, but realized the process would be difficult. As such, they
began taking small steps toward the goal of client/server computing, without a
complete switch from their traditional processing models. These steps included
getting their various systems to at least communicate with each other, sharing
data, and in some cases, deploying basic client/server applications while steadily
populating the desktop environment with PCs. These steps would become the
foundation for client/server computing, but still more change would be required.

1.1.2 Parallel Web Development
During this time, a seemingly unrelated set of developments were occurring. A
community of computer users, largely based in research and academia, were
continuing to share data over a network. As the PC became popular in this
community as well, the sharing of data began to evolve. The users found it more
convenient to simply access remote data than to continually move it around their
network. This was in part due to the limits of the day, which were primarily the
speed of the network and the capacity of the individual systems. To more
effectively work together in this arrangement, their network, or inter-connected
network of systems, adopted a standard protocol.

This network, now evolved into the Internet and Transmission Control
Protocol/Internet Protocol (TCP/IP), were the foundations on which one more
piece was to be added. The missing piece was a way of dynamically sharing the
information on various systems in the network. An application, including protocol,
was developed to dynamically link information from these systems together. It
was dubbed the Hyper-text Transfer Protocol Application (HTTP). The application
was developed in a client/server model, with the client being responsible for
end-user interaction and presentation management, and the server largely
responsible for storing and transmitting data. The client was given a special name
called a browser, while the server was simply referred to as an HTTP server.
During this time, the network protocol (TCP/IP) emerged from the research and
6 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

academic community into the commercial business world. In addition, the
applications and protocols soon followed, including the newest one—HTTP.

The application/network combination was referred to as the World Wide Web
(WWW or Web). In an almost fad-like fashion, people began to use it, play with it,
experiment with its capabilities, and more. The client software—the
browser—was of special interest. While the first browsers simply accessed and
displayed information from a remote system, their limit was the style of
presentation. They were text-based, much like host-dependent terminals. Since
most client platforms of the day were fast becoming intelligent workstations such
as PCs, the text-based limitation did not last. Seemingly overnight, an industry
segment developed with a sole focus on the browser. The browser revolution was
beginning.

Browser software quickly became a hot commodity, and the pace of development
of browser-based tools, applications, and functions was unlike any environment
up to this time. Even so, few would predict what was to happen next. Since the
client/server development process was still bogged down, the opportunity
presented by the browser was poised to revive it. Most people had given up on
standardizing the server. Further standardization of the client to a specific
application, the browser, changed the direction of client/server computing. Now
application developers could use the browser as the generic or universal client,
and would only have to focus on the server. Since the server application was
already defined through HTTP, a quantum leap in simplicity in the client/server
application development environment had seemingly occurred overnight.

The evolution is continuing, but clearly the Web and the browser to HTTP-server
model of computing has surpassed the client/server application model to become
a de facto standard in the data processing industry. Further evidence of this is the
continuing development and maturing of application development tools for this
specific environment.

1.2 Maturing Technologies

Many of the early applications developed for the Web environment were simple in
nature, often providing access to publicly available information. Perhaps due to
its roots in research and academia, these library-like uses were to be expected.
However, with the whole realm of application development moving to this
environment, the nature of the applications soon diversified. Businesses looked
to this new environment to supplement and, in some cases, replace traditional
applications. One example of this is the area of customer service. With the
proliferation of PCs in the home, business found it viable to move some customer
service functions to the Web environment, effectively providing for customer
self-service.

A limiting factor to which applications were appropriate for this environment was
security. Accessing publicly available information and perhaps some customer
service applications were OK, but without security, specifically data privacy, other
applications would not likely be appropriate for the Web. Prior to the Internet and
Web phenomena, data privacy in the industry was a concern to only one
company at a time as their applications and systems were deployed. With the
Web being a public network, data privacy had now become a universal concern.
Fortunately, since the browser had become the universal client, the solution to
Introduction to e-business and Net.Commerce 7

data privacy was quickly implemented. Existing data encryption technologies
simply had to be incorporated into the HTTP browser to server protocol, and the
application developers would individually not have to worry about data privacy.
HTTPS (secure HTTP) is the protocol that was developed to provide data privacy
over the Internet. One other area of maturing technology that continues to
develop is the area of application development tools. The Web environment has
given rise to a whole new development environment—JAVA. While the promise of
the JAVA environment, where an application can be written once to run on a
variety of hardware and software platforms, has long been desired, the Web
environment has provided the momentum to make the promise a reality.

1.3 Ready for Net.Commerce

Finally, all the pieces were in place. The network, protocols, security, and
development environment were mature enough to develop commercial
applications. While many businesses develop their applications in-house, more
and more businesses are purchasing applications. One such application,
Net.Commerce, is specifically designed for the business-to-business and
business-to-consumer retail environment through the Web. It requires the
universal client, a browser, and provides all of the server-side application
components. It can be described as a table-driven generic retail application, with
the tables to be filled in by the businesses using it. It is highly customizable and
scalable, and is lauded in the industry as perhaps the best retail application for
the Web environment. The rest of this redbook describes the specific way in
which this state-of-the-art application is implemented on the AS/400 system.

1.4 Additional Information

While it is important to know what is in this document, it may also be of interest to
know what this document does not contain. Sufficient documentation exists for
the base Net.Commerce product itself, and is not duplicated here. The
Net.Commerce products are packaged with extensive online documentation,
including both cross-platform and platform-specific reference manuals, and so
on. Those sources should be used in conjunction with the material found in this
publication.

1.5 What ShopITSO Is

To illustrate the entire process of creating an e-business Web site using
Net.Commerce, we are going to use a fictitious store: the ShopITSO online store.
In the following chapters, we describe how we designed and implemented the
store.

Then, we explain how we connected it to a fictitious back-end system for
real-time price consultation. We also describe the networking and payment
considerations you need to take into account in order to build a secure
e-business site and finally collect the payments from your customers.
8 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Chapter 2. Planning: The Infrastructure

This chapter contains the information you must know to implement the
infrastructure for your Net.Commerce site. Before you implement your
Net.Commerce solution, you must carefully plan how you are going to connect to
the Internet, protect your recourses, and connect your Net.Commerce server with
your back-end system. You must also be sure that you have all of the necessary
program products installed.

2.1 AS/400 Hardware Sizing

When deciding on the AS/400 model to be used, consider the complex nature of
Net.Commerce command processing (CGI programs that may run, the database
accessed, and so on). The system is likely to be doing much more than simple
HTML page serving.

2.1.1 AS/400 Net.Commerce Hardware Requirements
At the time this redbook was written, the recommended minimum hardware
requirements for running Net.Commerce alone on an AS/400 system is any RISC
model of the AS/400 system capable of running OS/400 V4R3, with 350 MB of
free disk space for program files and 96 MB of memory.

These are the requirements to install the Net.Commerce software and perform
some limited shopping tasks. Testing in the laboratory has indicated that most
customers need a minimum of 256 MB of memory running on an AS/400e server
170 with a CPW rating of 100 or more.

The minimum hardware requirements for operating a production site can only be
determined through an assessment of your database volume and traffic
requirements. You are advised to contact your IBM Sales or Service
Representative for advice in this area.

A sizing tool is being developed to assist in hardware size determination and will
be available from the Net.Commerce Web site in the AS/400 Download section
for Net.Commerce V3.2. The Net.Commerce site is located at:
http://www.software.ibm.com/commerce/net.commerce/

Refer to the readme document at the Net.Commerce Web site in the AS/400
Download section for Net.Commerce V3.2 for the latest size recommendations.

2.1.2 Optional AS/400 Net.Commerce Hardware Requirements
If you plan to use the IBM Firewall for AS/400, you need an Integrated PC Server
(IPCS) or Integrated Netfinity Server with two LAN adapters and 64 MB of
memory.

2.2 AS/400 Net.Commerce Installation Requirements

Before you install AS/400 Net.Commerce on your AS/400 system, you must verify
that both the AS/400 system and the administration PC meet the software
requirements. This section takes you through the requirements.
© Copyright IBM Corp. 1999 9

2.2.1 AS/400 Net.Commerce Software Requirements
To run, configure, and administer the Net.Commerce server on the AS/400
system, you need two types of software:

• Licensed programs installed on your AS/400 system
• Software installed on your administrator PC

2.2.1.1 AS/400 Net.Commerce Software Requirements
The software requirements for AS/400 Net.Commerce V3.2 are:

• OS/400 Version 4 Release 3 (5769-SS1)

• Digital Certification Manager (5769-SS1 Option 34)

• TCP/IP Connectivity Utilities for AS/400, V4R3 (5769-TC1)

• Licensed Program Product (LPP) 5769-DG1, V4R3, which includes:

– IBM HTTP Server for AS/400
– IBM Web Sphere Application Server 1.1
– IBM Net.Data for AS/400

• One of the following IBM Cryptographic Access Provider products to use
Secure Sockets Layer (SSL)

– 5769-AC1 - 40-bit
– 5769-AC2 - 56-bit
– 5769-AC3 - 128-bit

• AS/400 Net.Commerce (5798-NC3)

• For Java Servlet Support, IBM AS/400 Developer Kit for Java (5769-JV1)

• Qshell Interpreter (5769-SS1 Option 30)

Note: You need to have all of the latest PTFs for the above listed products
applied on your system. You can obtain the latest PTFs either by applying the
latest cumulative package, fix pack, group PTFs, and individual PTFs, or by
ordering the PTFs directly from your AS/400 service representative. For more
information, consult these sites on the Web:

• For links to various AS/400 products and their PTFs, go to:
http://www.as400.ibm.com/misc/map.htm

• For a link to the list of PTFs available for the IBM HTTP Server for AS/400 and
IBM Web Sphere Application Server 1.1, go to: http://www.as400.ibm.com/http

2.2.1.2 AS/400 Net.Commerce Administrator PC Software Requirements
You configure and administer the AS/400 Net.Commerce site through a Web
browser on a PC. The administration PC requires the following software:

• Configured and operational TCP/IP support

• A Web browser that support HTML frames, Java Script and Java 1.1.4, for
example Netscape Communicator 4.06 or higher, 32-bit version

2.2.1.3 Browser Requirements for Shoppers
To shop in a store that is created with Net.Commerce, shoppers can use any
browser that supports the following features:

• SSL
• Java and Java Script
10 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

• Tables and frames
• Cookies

2.2.2 Optional AS/400 Net.Commerce Software Requirements
Depending on what you intend to do, you must install one or more of the following
software products either on the AS/400 or on your workstation. There may be
other software products than those listed here that are useful for your
Net.Commerce implementation. Here are a list of some software products that
can help you with your Net.Commerce implementation:

• IBM AS/400 Client access (5769-XW1 and 5769-XD1)

• AS/400 Operations Navigator, which is a part of AS/400 Client Access

• Firewall for AS/400 (5769-FW1)

If you install the Firewall for AS/400, you also need Integration Services for
IPCS (5769-SA2).

• IBM Payment Server 1.2 for AS/400 (5733-PY1)

• SSL Payment program, for example I/NET Merchant 400

• DB2 Query Manager and SQL Development Kit for AS/400 (5769-ST1)

• ILE RPG for AS/400 (5769-RG1)

• VisualAge RPG for Windows (5763-CL2)

• VisualAge C++ for AS/400 Windows95/NT (5716-CX5)

• AS/400 Native C++ compiler PRPQ (5799-GDW)

• AS/400 Toolbox for Java (5763-JC1)

• Domino for AS/400, V4.6.2 or higher, if you want to use Domino e-mail and the
discussion database from Net.Commerce

Note: We recommend that you have the latest PTFs for the above listed products
applied on your system. You can obtain the latest PTFs either by applying the
latest cumulative package, fix pack, group PTF, or by ordering the PTFs directly
from your AS/400 service representative. For access to links to various AS/400
products and their PTFs, go to the following site on the Web:
http://www.as400.ibm.com/misc/map.htm

Tools that can be useful when you build the Net.Commerce site include:

• Net Object Fusion
• Claris
• FrontPage
• The Net.Commerce Template Designer
• Net.Data design tool (for Windows NT)
• XML
• The Net.Commerce Mass Import Utility
• The Net.Commerce Database Cleanup Utility
• And many other software products
Planning: The Infrastructure 11

2.3 Network Planning

It is important that an infrastructure is in place before any implementation of the
AS/400 Net.Commerce server take place.

2.3.1 Network Security
When connecting to an untrusted network, you must ensure that your security
policy provides you with the best protection possible. A firewall certainly
represents a large portion of your total security solution. However, because a
firewall is only the first line of defense for your network, you must ensure that
your security policy provides additional coverage.

2.3.2 Security Policy
A security policy is a written document that defines the security controls that you
institute for your computer systems and the risks that these controls are intended
to minimize. A security policy also defines what actions should be taken if your
security controls are breached.

The most important rule that your security policy should express is: Anything that
is not explicitly permitted, should, by default, be denied. In other words,
automatically disallow any actions that you do not specifically allow. This ensures
that new types of attacks are not likely to get past your defenses. However, you
may have no knowledge of them and have nothing in your security controls to
defend specifically against them.

A security policy contains rules, such as who can access certain services or
which services can be run from a given computer. The policy also contains
information about what processes and controls are instituted to enforce these
rules. If you are connecting to the Internet, your security policy should stipulate
that you install and use a firewall to control access to and from the Internet.
Figure 2 illustrates the major components of an Internet security policy.

Figure 2. Components of an Internet Security Policy

Once you create a policy, you must ensure that it is put into effect. This may
involve establishing more restrictive password rules, installing and running virus
protection software, holding classes to educate users on security rules, and so
on.

Corporate Security

I/T Security

Networking
Security
12 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

2.3.2.1 Policy
It is important that your implementation follow your company security policy. This
section provides some examples from different parts in an I/T Security Policy,
which is a part of the Corporate Security Policy. Normally, an I/T Security Policy
has several pages. What we provide here is only a small extract from an example
of an I/T security policy. In the following example, we call the company:
Mycompany.

General I/T Security Policy Statement
• A Mycompany Information System (IS) is any information or

telecommunications system owned, leased, or operated by Mycompany.

• Mycompany will implement at least the minimum security requirements as
identified in this policy, to protect IS resources and information (non-sensitive
and sensitive data) processed, stored, or transmitted by Mycompany ISs.
Based on risk management, they may apply additional safeguards to provide
the most restrictive set of controls (privileges) that permit the performance of
authorized tasks (principle of least-privilege).

• Sensitive information in Mycompany ISs must be safeguarded against
unauthorized disclosure, modification, access, use, destruction, or delay in
service.

• All ISs that process, store, or transmit sensitive information must be
accredited.

• Connectivity is prohibited between Mycompany ISs that handle sensitive data
and any other systems or networks not under Mycompany authority, unless
formally approved by an appropriate Mycompany Accrediting Authority.

• All Mycompany ISs are for Mycompany business only and users have no
expectation of privacy while using these resources.

• All persons must comply with these policies who use, manage, operate,
maintain, or develop Mycompany ISs, applications, or data.

Internet Services Policy
Mycompany owned or controlled ISs may only access the Internet through
Mycompany approved gateways. This limitation means that Mycompany owned,
controlled, or authorized computer equipment, regardless of its location or means
of connection to any network or system, may not be used to access the Internet,
directly or indirectly unless such connection is through a Mycompany approved
Internet gateway (firewall). While the configuration of some networks make it
technically possible to access the Internet without going through an approved
gateway, such access is not authorized.

Exceptions to this policy must be approved in writing by the Director of the
Telecommunications Department.

Table 1. Security Policy Planning Worksheet

Prerequisite Checklist (All answers should be Yes before you proceed
with the Installation)

Answers

Do you have an I/T Security Policy, and a Network Security Policy in place?
Planning: The Infrastructure 13

2.3.2.2 Security Service
The National Institute for Standards and Technology (NIST) defines five major
security services. To completely protect your network, your security policy should
address each of these areas as well:

Authentication Assurance that the resource at the other end of the session is
really what it claims to be.

Access Control Assurance that the resource requesting access to data or a
service is authorized to have access to the data or service.

Integrity Assurance that the information that arrives is the same as the
information that was sent.

Confidentiality Assurance that sensitive information is not visible to an
eavesdropper. Encryption is the best way to ensure
confidentiality.

Non repudiation Assurance that a transaction can be proven to have taken
place — also called accountability.

2.3.3 Network Security Objectives
Although the network security objectives that you develop depend on your
particular situation, there are some general objectives to consider:

• Protect your resources, including:

– Your Internet servers
– Your internal network, workstations, and systems
– Your data
– Your company’s image

• Provide your customers with safe Internet transactions. Ensure that the
following conditions are in place:

– Communicating parties can identify each other (authentication).
– Unintended parties cannot read information exchanged between parties

(confidentiality).
– Unauthorized parties cannot alter data (integrity).
– Participating parties cannot repudiate transactions (accountability).

For more information regarding Network Security read AS/400 Internet Security:
IBM Firewall for AS/400, SG24-2162, and IBM Firewall for AS/400 V4R3: VPN
and NAT Support, SG24-5376.

2.3.4 Operating System
Before any installation, you have to verify that you have at least OS/400 Version 4
Release 3 (5769-SS1) or later installed. We recommend that you have the latest
PTFs for the operating system applied on your system. You can obtain the latest
PTFs either by applying the latest cumulative package, fix pack, group PTF, or by
ordering the PTFs directly from your AS/400 service representative.

2.3.5 TCP/IP Configuration
You must have a configured and operational TCP/IP environment on your AS/400
system. For more information about configuring TCP/IP on your AS/400, please
read TCP/IP Configuration and Reference, SC41-5420.
14 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

2.3.6 Server Placement
Placing the Net.Commerce server behind the firewall provides both a high level of
security for the private-secure network and more protection for the
Net.Commerce server. The firewall blocks all access to the internal network from
the Internet.

2.3.6.1 Placing the Net.Commerce Server behind the Firewall
When you place your Net.Commerce server behind the firewall, you gain the
following advantages:

• The firewall protects the Net.Commerce server. You do not depend on the ISP
router for protection of the Net.Commerce server.

• You can use the firewall logging function to detect and recover from attacks on
the Net.Commerce server.

• The Net.Commerce server and production data are on the same side of the
firewall, which may make it easier for you to update the Net.Commerce server
with production data.

• You can use the same AS/400 system to run the firewall Integrated PC Server
or Integrated Netfinity Server and run the Net.Commerce server.

By placing the Net.Commerce server behind the firewall, more protection is
provided for the server. Filter rules are added to allow only certain types of traffic
to be passed to the Net.Commerce server. Any other packets are discarded by
the firewall. Even if the ISP does not filter packets, your firewall protects the
Net.Commerce server.

The firewall can also provide logging of packets. If you choose to use this feature,
you receive a log that contains information about packets that are accepted and
forwarded, and packets that are discarded. These logs can be used to determine
if someone has been attacking your network. The logging features must be set up
before they can be used.

By having the Net.Commerce server and the production systems protected by the
firewall, you can easily use built-in tools, such as Distributed Relational Database
Architecture (DRDA) or File Transfer Protocol (FTP), to move data between
systems without having to modify the firewall. This allows access to existing data
and systems when implementing Internet-based applications.

One system running OS/400 at V4R3 or later is needed to support Network
Address Translation (NAT) on the IBM Firewall for AS/400. This same system can
be used as the Net.Commerce server because the firewall protects the secure
interface from attack.

Table 2. Prerequisite Planning Worksheet

Prerequisite Checklist (All answers should be Yes before you proceed
with the Installation)

Answers

Is your OS/400 V4R3 or later?

Is TCP/IP Connectivity Utilities for AS/400 (5769-TC1) installed?

Is Digital Certification Manager (5769-SS1 Opt. 34) installed?

Is IBM HTTP Server for AS/400 (5769-DG1) installed?
Planning: The Infrastructure 15

2.3.7 Firewall Planning
You should consider NAT in your planning process. For general planning
considerations regarding IBM Firewall for AS/400, refer to Getting Started with
IBM Firewall for AS/400, SC41-5424, and the redbooks AS/400 Internet Security:
IBM Firewall for AS/400, SG24-2162, and IBM Firewall for AS/400 V4R3: VPN
and NAT Support, SG24-5376. IBM makes frequent updates to the AS/400
Firewall home page. Check the latest tips and updates at:
http://www.as400.ibm.com/firewall

Consider the following points when planning to implement a firewall using the
NAT function:

• Determine the servers and ports to which access is allowed. Notice that you
can use the same public address (for example, the non-secure port of the
firewall) in multiple MAP settings, if you map to different ports. IBM Firewall for
AS/400 basic configuration automatically creates filter rules and MAP settings
if you specify that you have public HTTP and HTTPS servers behind the
firewall. You need to configure filter rules and MAP settings to enable other
public servers behind the firewall.

• The firewall non-secure port IP address and the public IP addresses assigned
to servers behind the firewall must be on different subnets. This does not
apply to the special case where the IP address assigned to the public servers
is the same as the non-secure port of the firewall.

• Determine the ISP router configuration. Plan to configure the ISP router
correctly.

If the To_addr is the same as the firewall’s non-secure IP address, then no
routes are required. If the To_addr is some other address, then the router must
be configured so that it routes traffic for the To_addr using the firewall’s
non-secure IP address.

• You must install the DB2 for AS/400 Query Manager and SQL Development
Kit (5769-ST1) licensed program product if you want to convert firewall logs to
DB2/400 tables and use interactive SQL to build views of your log data.

Table 3. Firewall Planning Worksheet

Is IBM Cryptographic Access Provider (5769-AC1, AC2, or AC3) installed?

Is AS/400 Net.Commerce V3.2 (5798-NC3) installed?

Did you verify that the most current PTFs available are installed?

Is TCP/IP configured in your AS/400 system (including IP interfaces, routes,
local host name and local domain name?

Does your Net.Commerce administrator workstation have a Web browser that
support HTML frames, Java Script and Java 1.1, for example Netscape
4.04 with Java plug-in or Netscape 4.5?

Questions about Your Firewall Answers

Is your Firewall installed and configured?

Prerequisite Checklist (All answers should be Yes before you proceed
with the Installation)

Answers
16 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

2.3.8 Connection Planning
There are several point that you must consider when you are planning to connect
to the Internet:

• Type of connection
• Line speed
• Domain name
• Number of IP addresses

Some of the parameters depend on the amount of workload and net traffic you
plan to have. If you do not have an Internet connection, you have to contact an
Internet Service Provider (ISP). Normally, the ISP can help you to register a
domain name and give you IP-addresses.

Table 4. ISP Planning Worksheet

2.3.8.1 Planning for SSL
To use Secure Sockets Layer protocol (SSL), you need a digital certificate
assigned by a Certificate Signer, for example, IBM World Registry or VeriSign. To
be your own certificate authority, you need to have Digital Certificate Manager
(DCM) installed. For more information about the SSL, read TCP/IP Tutorial
Technical Overview, GG24-3376.

Digital Certificate
A digital certificate identifies a user or a system and is required before SSL can
be used. Once a server has a digital certificate, SSL-enabled browsers, such as
the Netscape Navigator, can communicate securely with the server using SSL.

A digital certificate is issued by a certificate authority (CA). CAs are entities that
are trusted to properly issue certificates and have controls in place to prevent
fraudulent use. The certificate authority charges a fee for issuing a certificate.

Some examples of universally recognized Internet certificate authorities (CA)
include:

• Thawte
• VeriSign
• US Postal Service
• AT&T
• MCI

For testing purposes or for applications that will be used exclusively in an intranet
environment, you may issue digital certificates using an intranet certificate
authority. The AS/400 system with Digital Certificate Manager (DCM) can act as
an intranet certificate authority.

Questions about Your Internet Service Provider (ISP) Answers

Have you already selected your Internet Service Provider (ISP)?

Is your connection to the ISP installed and verified?

Is your ISP responsible for configuring the router that connects your
perimeter network to the ISP?

Has your public domain name (mycompany.com) been registered with the
InterNIC?
Planning: The Infrastructure 17

You can configure your AS/400 system as an intranet certificate authority. Digital
Certificate Manager (DCM) is a Web-browser based administration facility that
allows you to create, manage, and use certificates within an enterprise and with
partners of an enterprise. You can use DCM to request digital certificates from
Internet Certificate Authorities such as VeriSign and Thawte.

DCM allows you to create your own intranet certificate authority (CA). You can
then use the CA to dynamically issue digital certificates to servers and users
(client certificates) on your intranet. When you create a server certificate, DCM
automatically generates the private key and public key for the certificate. You can
also use DCM to register and use digital certificates from VeriSign or other
commercial organizations on your intranet or the Internet.

Digital Certificate Manager is option 34 of OS/400 (5769-SS1, option 34). You
must install this option to use DCM. DCM is a link in the AS/400 Tasks page,
which runs in the *ADMIN HTTP server instance. Therefore, you must have
installed IBM HTTP Server for AS/400 (5769-DG1) and use it to access DCM. In
addition, you must install IBM Cryptographic Access Provider licensed program
product (5769-AC1, or AC2, or AC3) to create certificate keys. These
cryptographic products determine the maximum key length permitted for
cryptographic algorithms on your AS/400 system. Government export and import
regulations determine which version is available in your country. To use all the
options available in DCM, you must have *SECOFR and *SECADM authority.

Table 5. SSL Planning Worksheet

2.3.9 Planning for SET
If you plan to use Secure Electronic Transactions (SET) on your Net.Commerce
server, there are some points that you must consider. For planning information
regarding how to setup SET, see Chapter 6, “Planning: Payment Collection” on
page 91.

2.4 Server Integration

You can have more than one Web server instance running on your AS/400
system. All HTTP servers are originally set up to use the well-known port 80.
What you have to think about is that Net.Commerce must use port 80.

To avoid a conflict on this port, only let the HTTP server instance for
Net.Commerce use port 80. Then, configure the other instances to use a different
port, or use another IP address for the other Web servers instances. Either inform
your users about the different ports or IP addresses that you are using, or make
links from the server listening on port 80 to the other Web servers. A good idea
may also be to use virtual hosts from the server listening on port 80 to redirect to
the other Web servers instances listening on other ports.

If you use the same port but different IP-addresses, use the HTTP directive
BindSpecific On, in all your HTTP configuration members, to bind to just one IP
address.

Questions about Your SSL Implementation Answers

Have you already selected your Certification Authority?

Have you received your digital certificate?
18 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

For more information about configuring the HTTP configuration member on your
AS/400 system, please read IBM HTTP Server for AS/400 Webmaster's Guide,
GC41-5434.

2.4.1 HTTP Server
When you configure your Net.Commerce server, it creates an HTTP instance for
you. You can have more than one HTTP server instance running on your AS/400
system. Avoid port conflicts by using different ports or different IP addresses for
the HTTP servers.

2.4.2 Domino Server
The Domino Web Server is part of Domino for AS/400. The Domino Web server
can serve Domino databases and also HTML files. If you are already familiar with
Domino on other platforms, there is no difference between the AS/400 system
and others.

For information about setting up Domino on the AS/400 system, please read
Lotus Domino for AS/400 - Installation, Customization, Administration,
SG24-5181. Or, consult the Lotus books Installing and Managing Domino for
AS/400, Part No. 12999, and Extending the Domino System, Part No. 12953.
Planning: The Infrastructure 19

20 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Chapter 3. Planning: Site Design Considerations

The design phase of any successful implementation of Net.Commerce is key. As
with all types of projects, the design phase is usually the most critical phase after
the requirements have been gathered. It is often stated that for every hour spent
in design, you save several hours during the implementation phase. As a result,
the importance of the design phase cannot be understated.

The main inputs to the design phase are the functional requirements produced
during the requirements gathering phase. After all, it is the foundation upon which
all of the other phases are built and developed. In this phase, you should cover all
the aspects that are needed to implement an e-business application that map
your business process and rules.

Please note that because every project is different, this discussion does not have
the capacity to offer low-level methodologies on how to resolve each of these
issues. Its purpose is only to save some time and effort by presenting issues that
you may have otherwise overlooked.

The following sections present a number of general considerations to think about
when migrating to an e-business. For each of these points, you have to decide
how you want to do your e-business. On the basis of these decisions, you can
proceed with the design.

As a result from the requirements and design phase, your design documents
should be sufficiently specific to allow the implementation team to take the design
documentation and begin the implementation phase. The important parts of these
documents are the navigation flow for the whole e-business application and a
detailed description of the functionality of each screen in the e-commerce site.

3.1 General Considerations

This section presents important considerations to keep in mind before and during
migration from an existing business to an e-business. The intent is not to cover
every possible business process that exists. We assume that you understand the
fundamentals inherent in running a typical business. Instead, the primary focus is
on specific e-business issues that may not be apparent at first glance. Think of
this part as a checklist of points that you need to consider and address.

3.1.1 Audience and Scope
The first question that should be answered in the initial planning stages is: With
whom do I do business? As a direct result of this question, you must also ask: To
what extent do I do business? Both questions need to be answered as soon as
possible to ensure the resulting e-business is feasible.

With the Net.Commerce product, you receive a large range of sample shops
with different business behavior. When one of these samples meets your
requirements, you can use this as a basis for your shop. Perhaps you can use
this shop unchanged.

Important
© Copyright IBM Corp. 1999 21

The following sections highlight the differences in these processes and examine
other details that could affect e-business planning.

3.1.1.1 Business-to-Business Customers
In the case of business-to-business customers, you sell products to other
resellers. Your customers are running their own businesses, so efficiency is a key
factor to consider. Most likely, they know exactly what products they want, so they
want to place their orders as quickly as possible and return to their own work.

They should be provided with a product line and online catalog specific to their
needs and a user interface that is direct and easy to use. In addition, each
business has its own processing systems (payment, order, shipping, and so on).
It is your responsibility to ensure that you can correctly interface with them. The
key is speed and efficiency.

3.1.1.2 Business-to-Consumer Customers
In the case of business-to-consumer customers, you sell products to customers
who will personally use them. Therefore, your customers are not as pressed for
time. In fact, they may not know exactly what they want when they first come to
browse your virtual store. Here, the key is a good shopping experience.

The most obvious first step is to have an attractive user interface. However, be
sure to balance aesthetic appeal with functionality (no one likes to sit waiting for a
page to load all of its images). In fact, most customers find that functionality is
what truly makes for a good shopping experience. Similar to
business-to-business customers, business-to-consumer customers should be
given personalizations based on factors such as customer profiles, personal
preferences, and buying patterns. Together with other components, such as easy
site navigation and straightforward payment processing, this ensures that
customers will return to your site for future purchases.

3.1.1.3 Geography
Consider where your business is currently located. If it is a small- or
medium-sized business, it may be in a single town or in a few states. If it is large,
it may span an entire country or in some cases the whole world.

Now, consider where your e-business will be located. Most likely, your site will be
accessible to anyone in the world who has an Internet connection. The next
question is whether you should conduct business as you normally would or take
into consideration this vast new group of potential customers. If you opt for the
latter, then you should consider these issues:

• Language

How many languages will your site support? Will multiple languages affect any
of your business processes (such as customer service)?

• Currency

How will you handle currency conversions? Particularly, will you have support
for the euro?

How you can handle dual currency for the euro support? See the
implementation of the Net.Commerce sample Euromall. You install this mall
during the configuration phase of the Net.Commerce instance. See Figure 124
on page 178 in 12.1, “Creating New Net.Commerce Instances” on page 173.
22 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

• Taxation

How will you handle sales tax, local tax, national tax, excise tax, and duties?
Will there be circumstances that result in tax exemptions?

• Shipping

How do you handle shipping charges to various countries? Will you limit your
shipping range, or will you be able to ship anywhere in the world?

• Products

Will your product line differ by geography? Will customers even have the
option to choose by geography? Will product prices be calculated and
displayed based on geography?

• Advertising

Who is your target audience (local or global)? Will advertising be perceived
differently by different cultures?

Again, please realize that this is by no means a complete list of every
geographical consideration that exists. However, it should be enough to start you
moving in the right direction. You can read more about this in Chapter 4,
“Planning: Language Considerations” on page 85.

3.1.1.4 Store or Mall
Consider your existing product line. Do all of your products belong to the same
category, or do they differ widely? Perhaps because of physical or financial
constraints, your store seems more like multiple stores, only under the same roof.
Although with an e-business, these constraints are much less stringent.
Therefore, it is possible to set up an online mall consisting of multiple stores that
would seem more logical to the shopper.

However, this introduces some issues that should be noted. For example, each
store should have its own look and feel to give the customer a sense of really
being in a mall of individual stores. Also, each store will attract different shopper
groups that could possibly affect the way sales, discounts, and other related
entities are carried out. As always, there are numerous factors to consider, and
the final decision rests on careful planning.

3.1.1.5 Competitors
In your existing business, perhaps your main competitor is the local convenience
store across the street. Then again, maybe it is a Fortune 500 company across
the ocean. When you move to an e-business, it is any person or organization that
happens to be selling the same items that you are. Aside from industry giants that
are immediately recognizable, how will customers be able to differentiate a
well-established, quality company from a struggling startup? Most likely they will
not unless there are other means to differentiate them. Specifically, factors such
as service (both online and offline) and product quality will help to sway the
customer’s decision. In the end, a customer would definitely be more willing to
pay a little more for these amenities.
Planning: Site Design Considerations 23

Another issue to consider is what happens when you have both online and offline
competitors. Consider the following scenario:

A company that sells music CDs has a physical store in a very expensive
neighborhood. By virtue of its location, the store must have prices that closely
match those of its local competitors. However, this company also has an
online store that sells the exact same CDs. Here, the prices must be lowered
because they seem much too high compared with competitor prices on the
Web. Can the company justify selling the same CDs for different prices?

This example illustrates just one of the many complexities that must be
addressed when migrating to an e-business.

3.1.2 Shoppers
From a shopper’s viewpoint, the basic store procedures are very similar for both
a physical store and a virtual store. Therefore, in both cases, shoppers will
typically enter the store, browse through the inventory, select a product, engage
in a checkout process, and leave the store. However, there are some specialized
shopping issues that require specific considerations.

3.1.2.1 Preferred Shopper Groups
In your existing business, you very likely have a system to differentiate regular
shoppers from one-time-only shoppers. One common way to do this is to supply
regular shoppers with a “club card” that gives them a discount on certain products
each time they shop. In addition, if they are part of the “club,” these shoppers
may be presented with special offers or products to which the one-time-only
shoppers do not have access.

In your e-business, there are many parallels to the preferred shopper group
schema. Instead of regular and one-time-only shoppers, an e-business normally
has registered and guest shoppers. Similar to the application for a “club card,”
registered shoppers must supply information such as name, billing address,
shipping address, and phone number. In return, they are given (or personally
create) a unique login name and password to your site.

This functions as their “club card” and places them in your virtual store’s
preferred group. By logging in each time they come to your store, they will have
access to specials and discounts that guest shoppers will not be able to access.

3.1.2.2 Personalization
Another purpose of club cards is to enable businesses to keep track of shoppers’
buying patterns. By doing this, businesses can send promotional information on
products that fit into a customer’s particular pattern, hoping to generate some
more business. The underlying idea is to personalize the shopping experience for
the customer by providing product information that is the most pertinent to his or
her buying patterns.

In your e-business, personalization can be accomplished in a much more efficient
manner. Because your system is constantly monitoring the products customers
place in their shopping carts, it can instantaneously offer related products or
accessories for existing products. Personalization can also go beyond just the
sale of products. Registered shoppers could also possibly change the look and
feel of the virtual store to suit their preferences. However, it is important that the
personalization does not become too intrusive. For example, shoppers can
24 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

become very annoyed if a related product is pushed onto the screen every time
they access their shopping cart. An alternative may be to offer one or two
products during the checkout process. As always, it is important to ensure that
the customer has a good shopping experience.

The Net.Commerce e-business application provides you ways to handle both
types of shoppers. The guest shopper (a one-time-only shopper) and the
registered shopper, where the personal information of the customer is registered
in the database. For registered shoppers, you can create shopper groups. For
shopper groups, you can assign special discounts, and special category and
product templates to personalize the shopper experience and to define
promotional offers.

3.1.3 Products
For the most part, the products you sell in your existing business will not change
when you migrate to an e-business. The only aspect that changes is how the
products are sold. However, there are a few issues that you should at least briefly
consider before you put your products for sale online.

Your product range should be subdivided into categories and subcategories. This
provides your online shoppers a general idea of your supply. With this hierarchy,
you can guide the shoppers through your catalog. See 3.2, “Planning the Product
Catalog” on page 31, for more information about how you can structure the
product catalog. Another approach may be to split up your products and
categories in different stores in a mall (see 3.1.1.4, “Store or Mall” on page 23).

3.1.3.1 Pricing
A product can have multiple prices associated with it, depending on factors such
as sales, discounts, and taxes. You have to decide the best way to handle these
prices.

For sales, it must be determined whether to store two different prices in the
database for each sale product (for example, regular price: $10, sale price: $8) or
to have a set deduction amount (for example, $2 deduction on sale items). There
must also be some mechanism to cause sales to expire at some future time.

For discounts, it must be determined whether to have a discount by quantity (for
example, $5 off the total if you buy 10 widgets), a discount by customer (for
example, registered customers get a 5% discount on widgets), a discount by
category (for example, 10% off all widgets in this category), or a combination of
discounts.

For taxes, it must be determined whether to include the tax in the product price or
to have it added separately. Also, there is the question of whether certain tax
exemptions will be based on the type of product or geographical considerations.

Net.Commerce provides you with a flexible way to offer special discounted
prices. The discounting functions provide five different implementations for
customizing discounts. You can also specify whether discounting will be based on
quantity, cost, or weight, and whether it will be calculated based on total item
orders (cumulative) or on a series of ranges. By default, the discounting
implementations are set to the store scope, meaning that each individual
merchant can choose an implementation. All the information you need to use the
Planning: Site Design Considerations 25

following discount possibilities is stored in several tables of the Net.Commerce
database. To define a discount, you need to consider the following factors:

• What will be discounted? Discounts can be applied to complete orders or to
products matching a discount code. For product discounts, the calculation can
be performed against all products matching the code or separately for each
individual product.

• To whom will it be offered? Discounts can be offered to all shoppers or specific
shopper groups.

• When is it valid? Discounts can have a start and end date and time. For
example, you may wish to have a one-day-only sale.

• What is the scale determined by? Each discount has a scale (a number of
ranges which have a discount rate). The scale ranges can be based on
quantity, weight, or currency amount.

• How is the discount value applied? Each rate can be applied as either a total
value, per unit of the scale or as a percentage. Multiple rates can be added
cumulatively.

• Should the discount be calculated on a suborder before tax and shipping
charges are applied or on the complete order after tax and shipping charges.
Local laws may determine this decision.

To learn how you can implement and work with the Net.Commerce discount
possibilities, see Chapter 6, "Database Implementation of Discounts," in the
Net.Commerce Utilities handbook. This guide is included with the Net.Commerce
product. You can find this book in the directory:
/QIBM/ProdData/NetCommerce/html/MRIxxxx/ncbooks, where xxxx is your language
code, for example, 2924 for the English language. You can also find a short
overview in 3.4, “Working with Net.Commerce Discounts” on page 38.

3.1.3.2 Subsets
The next question is whether to put up for sale online your entire existing product
line or only a subset of it. This is an especially important consideration if you
decide to keep your existing business operating in addition to your e-business.
Perhaps certain products in your inventory appeal to a global audience, where
others only appeal to a local audience.

Perhaps there are too many online competitors for a certain product, so it would
only make sense to sell that product in your physical store. Or maybe it would not
make sense to sell certain products online. Again, these are just a few
suggestions to start you thinking on the right track.

3.1.4 Payment Processing
In your existing business, payment processing most likely is straight forward.
Customers simply pay for products at the cashier, using various forms of
payment. When payment is approved, the purchase is completed. In an
e-business, payment processing is a bit more complicated.

You can use the Secure Electronic Transaction (SET) protocol, which provides
shoppers with a high degree of security for payment card transactions over open
electronic networks. SET support in Net.Commerce is integrated transparently
with the rest of the Net.Commerce software and shares a common database.
Net.Commerce can manage both SET orders from customers with a SET wallet
26 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

such as IBM Consumer Wallet for Windows 95 and non-SET secure server
transactions from customers who cannot or do not wish to use SET. This is called
the Merchant Originated Payment. See 6.2.1, “Merchant Originated Payment” on
page 96, for more information about this method.

Merchant Originated Payment allows the merchant to receive credit card
information through any mechanism, for example, through the store’s online order
forms. When the form is submitted, the credit card information is encrypted using
SSL. It is then passed to the acquirer using regular SET messages, through the
IBM Payment Gateway for further processing like request capture. For more
information about payment processing with SET, see Chapter 6, “Planning:
Payment Collection” on page 91.

3.1.5 Order Processing
In an e-business, order processing is more like a mail-order company. Inventory
must be checked, shipping providers must be contacted, customers must be
notified, and many related events must occur. Thus, the process required to fulfill
a customer order has many considerations.

3.1.5.1 Inventory
When an order is placed, the customer expects the order to arrive in a reasonable
amount of time. But what if the customer orders a product that is out of stock?
This is an inventory handling issue that needs to be addressed.

One possibility is to have a mechanism to send low-inventory warnings. For
example, if the inventory of widgets dwindles to five units, an alert should be sent
that requests more to be manufactured or acquired.

An alternative may be to allow back orders. If an order is made for a product that
has zero units in stock, the system should recognize this and warn the shopper.
The shopper should be given the option of back ordering the item (realizing
delivery will be delayed), selecting another comparable product, or canceling the
order.

3.1.6 Shipping
Once an order is placed, payment has been authorized, and inventory has been
checked, it is time to ship the product to the customer. But how will the shipping
process occur? There are some important considerations to examine in the area
of order shipments.

First, who will ship the orders? This will certainly depend on to whom you plan to
ship. If you have a global audience, your shipping provider should be able to
reach every corner of the world. Another significant issue is interfacing with your
provider. Due to the nature of e-business, most processes are designed to be
automated. Therefore, it is your responsibility to make sure that your systems can
correctly interface with the shipping provider’s system.

Second, where will the orders be shipped? At first glance, the answer seems
obvious—to the customer address. However, the customer’s address may
actually consist of a billing address and a shipping address. One of the primary
reasons for this feature is to allow a customer to send a gift. For example, Mr. A
will have the bill sent to his address, but Mrs. B will have the dozen roses sent to
her address.
Planning: Site Design Considerations 27

In addition, there should be some means of validating addresses to make sure
they actually exist before products and bills are shipped to them.

3.1.7 Notification
When should customers be notified that their order is on the way?

Again, this seems like an easy question to answer, but it should be approached
with caution. Some may think that as soon as the shopper clicks the Submit
button on the payment screen, a message saying “Your order is on its way”
should be displayed. More accurately, the message should say, “Your order has
been received and is being processed...you will be notified when it is confirmed."

After the order is checked against existing inventory and the shipping provider
has confirmed shipping of the item, the customer should be notified about the
status of the order. They should be notified preferably by e-mail or phone. You
should be sure to include the date when the shipment will be done. This process
should be so automated that it can take place in a matter of minutes (or even
seconds) and the customer feels that the store interactions are efficient.

3.1.8 Order Status
The customer has just been notified that his or her order has been confirmed and
it should arrive in two weeks. Invariably, in a week and a half, the customer wants
to know the status of the order. In an e-business, customers should be able to
check their order’s status 24 hours-a-day, 7 days-a-week at their own
convenience and as many times as they want. This is another step in ensuring a
good shopping experience for the customer, even after the initial sale has
occurred. Perhaps your back-end system does the order fulfilment, so there
should be information from your back-end system to your e-business system
about the status of the order. This information can be used in the e-business
system to change the order status.

3.1.9 Security
In an e-business, global accessibility is the norm. Therefore, security is of
extreme importance to ensure that both the customer and the business are not
affected adversely.

3.1.9.1 Customer Security
In a typical online shopping experience, customers often release sensitive
information such as their home address, home phone number, and credit card
number. By doing this, they are non-verbally stating that they trust you to handle
this information with utmost confidentiality. Without a reasonable sense of
security, it would be foolish for anyone to make transactions online.

The most common way to create a secure environment is by using the SSL
(Secure Sockets Layer) protocol to encrypt sensitive data that is being
transmitted from the shopper. This method of security has become so prevalent
that every major browser now supports SSL sessions. For more information
about planning for the SSL protocol, see 2.3.8.1, “Planning for SSL” on page 17.
For information about how you can assign the use of the SSL protocol to a
Net.Commerce command, see 13.17, “Assigning SSL Protocol to Net.Commerce
Commands” on page 264.
28 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

SET is another security protocol that is used for secure payment processing. The
SSL protocol is a prerequisite for using SET. For more information about this
requirement, see Chapter 6, “Planning: Payment Collection” on page 91.

3.1.9.2 e-business Security
Your e-business security is just as significant as customer security is. The first
security issue that most people think about is hackers. What is the best way to
keep sensitive data away from people who are out to damage it?

One way is to set up a firewall between the world and your most sensitive
data—namely the contents of your database. It is also imperative to limit
accessibility to your intranet or servers from outside locations. For more
information, see 2.3.1, “Network Security” on page 12.

3.1.10 Disclaimers and Store Policies
In your existing business, you have rules and regulations to govern what actions
should be taken in specific circumstances, especially irregular ones. Because
every business is different, these store policies vary from one store to the next. In
an e-business, the general policies that apply to your existing store should also
apply in this environment. It is important that a list of these policies is always
available for the customer to read, and it should be highly visible on the site. This
will ensure that your customers always know how your site conducts business
and any legal information that may affect them. Here are some policies that
should be common to every e-business:

• Late deliveries

When should a customer be notified if a delivery will be late? Should they be
compensated in these cases?

• Incorrect deliveries

Should the customer receive a refund or store credit? Should the correct
delivery be express mailed to the customer at your expense?

• Out-of-stock products

Should the customer be able to back order? Should the customer be given a
slight discount when the product is in stock again?

• Returned products

Was the product unsatisfactory, or did the customer just change their mind?
Does the customer want a refund or exchange?

• Canceled orders

Should there be a time limit between when the order was placed and when the
customer requested cancellation? Should the customer be required to pay all
shipping costs?

3.1.11 Customer Service
Depending on how large your current business is, you may have an entire
customer service department answering phone calls at a help desk or directly
assisting customers in your store. In an e-business, customer service differs quite
a bit with both improvements and drawbacks.
Planning: Site Design Considerations 29

3.1.12 Existing Methodologies
Perhaps your business is already using computers for a great deal of business
processing and data exchange. For example, you may be using some form of
electronic data interchange (EDI) to send unfulfilled orders to your supplier.

The question is what should be done with these existing business processes
when you migrate to an e-business. Read Chapter 5, “Planning: Integration with
the Back-End Systems” on page 87, for more information.

3.1.13 Data Transfer
Perhaps your current business tracks existing product information in a database.
One very significant step is to plan how to transfer that information into the
databases for your e-business. There are many methods for accomplishing this.
The appropriate method strongly depends on your existing database
configuration.

A second factor is the correctness of the data. In any mass transfer of data, there
is the likelihood for some sort of error. Again, because this data is crucial to the
success of your e-business, it must be meticulously inspected for any faults or
flaws. See Chapter 15, “Importing Business Data into Net.Commerce” on page
319, for techniques that can be used to import your existing data to the
Net.Commerce database.

You should also plan for how changes in your existing database (your back-end
system) are transferred to the e-business database. For example, when you add
a new product in the back-end system, this information should also be populated
into the tables of your Net.Commerce system. Our solution for doing this is
described in 17.3.1, “Product Information Synchronization” on page 393.

Also changes (new orders, for example) from the e-business system must be
transferred to your back-end system. For an example of how to do this, read 17.4,
“Requesting Capture upon Order Fulfillment” on page 398.

3.1.14 Performance
Just like customers of your existing business, your e-business customers expect
prompt, efficient service. To ensure that this criterion is met, consider the issue of
performance.

The greatest factor affecting your site’s performance is your intended audience.
Will your site be visited by just a few visitors a day or a few hundred? Once this is
determined, the appropriate hardware and software can be selected.

As a general rule, it is a good idea to overestimate the number of hits that you
expect your site to receive so that any unexpected spikes in traffic can be
managed. Overall traffic will also be affected by how much bandwidth you
dedicate to your site.

No matter how sophisticated your hardware and software may be, sometimes
issues inherent to the application’s design are the sources of performance
problems. In most cases, optimizations can help to alleviate many of these
difficulties. For example, graphics and image optimizations can greatly speed up
site navigation and loading. Use the caching functionality for graphics and
images.
30 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Finally, code optimizations can also significantly enhance performance and
processing speed.

During the planning phase, it may also be advantageous to develop a set of
performance benchmarks that you can measure your application against later in
the project’s life cycle. This may not seem important in the planning phase, but it
is always a good idea to document the standards you expect your application to
meet before you actually start building it. These benchmarks may change during
the course of the project, but it is helpful to compare them against your first
impressions because they are often times the most accurate.

3.1.15 Tools
Another technical consideration is to have a set of online tools to help you
perform various tasks. For example, it is very common to have reporting tools that
calculate and display useful statistics about your site. These statistics may
include details about the number of hits, the number of visitors, or even the
number of registrations that your site received during a particular period of time.

Tools that can help you to develop the e-business site can be found in Chapter 7,
“Planning: Tools to Build the Site” on page 103.

3.2 Planning the Product Catalog

Organizing products into categories allows shoppers to easily find what they want
out of thousands of items for sale. Product categories provide an effective
structure for your product line. They also lay out pathways for shoppers to
navigate through the online store, starting at the home page, and ending at the
product page.

This section shows you a sample of how a product catalog in Net.Commerce is
planned. This should give you an idea of how to define the structure and rules
that you will use to import your data into Net.Commerce from your production
data.

For information about how you can import your data into this structure, see
15.2.2, “Mass Import” on page 321, and 13.7, “Creating the Product Catalog” on
page 203.

Categorization is the process by which we define categories that group products
with other similar products and create a hierarchical structure of categories so
that all products appear below a single root.

To create product categories, first arrange the products in a hierarchy, or inverted
tree. The tree begins at a general category (called the root), and branches out
into increasingly specific sub-categories until it cannot be further divided. Each
lowest level category, which contains only products, is a leaf. Within the structure,

Define your rules about how you will structure your products into the
Net.Commerce schema. You should do this before importing your data from a
production system to the Net.Commerce databases.

Important
Planning: Site Design Considerations 31

a category is the parent to the categories immediately below it, and a child of the
ones above. This structure is stored in the database. The Web pages that display
the catalog to the shopper can be built automatically using this data.

Figure 3 shows you an overview of the product catalog structure. It uses the
following elements to build a structure:

Top or Root Category
The parent of all categories and products in the store.

Category Group of subcategories. Usually products are not assigned at this
level.

Subcategory Group of products. Can have multiple parents.

Products An instance of a commodity or service offered by a store. Products
can belong to multiple parent categories. Many products consist of
multiple items which are variations of the base product.

Item A variation of a product, uniquely identified by one or more
attributes or features such as size or color.

Figure 3. Structure of the Product Catalog

Do not make the tree structure too deep. The deeper the structure is, the more
levels the shoppers have to traverse to find the product for which they are
looking. This can lengthen the overall shopping process and may result in a
shopper abandoning the search and leaving the site. As a general rule, you
should avoid a depth greater than three categories under a store.

Concepts and Terminology
Mall

Store Store

Category Category

Category Category

Category

Product Product

Item Item

CategoryCategorization

Pantorama

Eaton Center

Mark Work Warehouse

Men's Wear

Work WearPantsLevis Products

Jeans
32 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

3.2.1 Category Structure
Now let us look at how the categories are implemented in Net.Commerce. Figure
4 shows how categories can be structured:

• Root Category (1)

The top level of the store. All of the other product categories fall beneath it. It
is the parent of Category 2 and 3.

• Category (2)

Represents the product lines divided into main categories similar to the
departments in a store. It is a child of Category 1 and a parents of
Sub-Categories 4.

• Category (3)

Represent the product lines divided into main categories similar to the
departments in a store. It is a child of Category 1 and a parent of
Sub-Categories 4 and 5.

• Sub-Categories (4) (5)

The departments divided into types of products. Both are children of Category
3. Sub-Category 4 is also a child of Category 2.

Figure 4. Category Relationships

The Product Categories form, accessed from the Product Categories icon in
Store Manager, allows the creation of the category tree structure for the product
line to customize navigation within the store.

Category properties such as names, descriptions, or images that can be shown in
the online catalog can be modified. Categories can be moved or copied to
effectively manage the category tree. When the product line changes, it may be
necessary to move a category to another parent in the tree. It may be necessary
to allow shoppers to access a category from more than one parent, so it appears
in different routes. See 13.7, “Creating the Product Catalog” on page 203, for an
example of how we built our product catalog. This is represented in the
Net.Commerce database as described here:

Category database table (CATEGORY)
Contains information that describes the product categories and
subcategories for each store. Each row describes one category.

R o o t C a te g o r y

(1)

C a te g o ry

(2)

C a te g o ry

(3)

S u b -C a te g o r y

(4)

S u b -C a te g o ry

(5)

P = P a re n t C a te g o ry R e f.
C = C h i ld C a te g o ry R e f.

P = 1 , C = 2 P = 1 , C = 3

P = 2 , C = 4 P = 3 , C = 4

P = 3 , C = 5
Planning: Site Design Considerations 33

Category Relationships database table (CGRYREL)
Defines the parent/child relationships between the categories and
subcategories for each store. This information is used to structure the
product categories that are presented to shoppers. Each row
describes one relationship.

3.2.2 Product Structure
The product structure consists of these elements:

Product An instance of a commodity or service offered by a store. Some
products are standalone and have no variations but others consist of
multiple similar items with some different features.

SKU (Stock Keeping Unit) Number
An identifier for each item sold by a merchant. Often has a particular
structure to relay information about the product without physically
looking at the product.

Item A variation of a product. The different variations are distinguished by
one or more features or attributes.

Attribute Represents one feature or property of a product or item, for example,
color or size. Attributes have an associated value, for example
color=blue or size=15m.

Figure 5. Product and Item Relationships

Note the following points:

• Item (7) (8)

Instances of Product 1 with specific attributes. Each item has a SKU number.
Children only of Product 1.

• Product (1)

Describes information common to all of its children. Product (1) cannot be
purchased. Child of Categories 4 and 5.

• Product (2)

A product with no items. Has a SKU number. Child of Category 5.

Product

(1)

Product

(2)

Sub-Category

(4)

Sub-Category

(5)

Ca = Category Ref. Number
Pr = Product Ref. Number
PPr = Parent Product Ref. Number

Ca=4, Pr=1
Ca = 5, Pr = 1

Ca = 5, Pr =2

Item

(7)

Item

(8)

PPr=1, Pr=7 PPr=1, Pr=8
34 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

This is represented in the Net.Commerce database as described here:

Category/Product Relationships table (CGPRREL)
Defines the relationship between the products and their parent
categories. Each row describes one relationship.

Product table (PRODUCT)
All products and items available at a store. Items are rows in this table
that point to their parent product in this table. The table contains the
descriptive information for products.

Product Prices per Shopper Group (PRODPRCS)
Each row in this table describes a product price for a shopper group. It
is possible to have several prices for one product for several shopper
groups. If the shopper group field is blank, this is the assigned price
for normal customers.

Product Distinct Attribute (PRODDSTATR)
Contains the names of all the distinct attributes for products.

Product Attribute (PRODATR)
Associates attribute names with attribute values.

Figure 6 shows you a hierarchy of a sample product, which has four items with
attributes.

Figure 6. Sample Product with Items that Have Attributes

3.2.3 Planning Product Descriptions
There is also one other important point to think about with products. In our
sample Shop ITSO store, we have only small text for the two long description
fields in the product table. We imported this text from our back-end system table
BELDSC (see Table 12 on page 205).

In your store, you may want to have detailed descriptions. Because the content of
these fields is used to generate information that is displayed using a browser, you
can import HTML formatted text into these two long description fields. To control
the format for this description, you can use the HTML tags for such elements as

E x a m p le : P ro d u c t In fo rm a tio n

P ro d u c t N a m e

P ro d u c t N u m b e r

P ro d u c t D e s c rip tio n

A ttrib u te s

S ize

1 0 m

1 0 m

1 5 m

1 5 m

C o lo r

B lue

G ree n

B lue

G ree n

S K U N u m b e r P ric e

45 5 - 1 0B

4 5 5 - 1 0 G

45 5 - 1 5B

4 5 5 - 1 5 G

$ 1 5

$ 1 5

$ 2 0

$ 2 0

S n a ke S k in G a rd e n H o se

4 5 5

1 /2 in ch e co n o m y ru b be r ho se
Planning: Site Design Considerations 35

colors, line brakes, tags for building lists or tables, and so on. Plain text can also
be placed in the fields, and it will display as simple text.

To import this HTML formatted text in the product long description fields, you can
use the Mass Import function when you first populate the Net.Commerce
database. You may also want to put in simple descriptions to start and then
change the description fields later as a second step.

For information about how you can change this text for a single product, refer to
13.10, “Using Product Long Description Fields” on page 214.

Another approach is to use the PRURL field in the PRODUCT table. You can use
the content of this field as a URL link to another document (page). To learn how
you can use this field to show additional description information about the
product, see 13.11, “Using the Product PRURL Field” on page 218. When you
use this URL, plan to create the HTML files to which this URL points and where it
is stored to define the right URL value that is then stored in the PRURL field. The
URL value should be imported to the PRODUCT table also through the Mass
Import function. This means you have to define logic about how to build the Mass
Import file to import the right URL value for the appropriate product.

3.2.4 Planning Category and Product Templates
Category and product templates are Net.Data macros. These macros are used as
templates to create the dynamic Web pages. In these macros, you use SQL
queries to get the required data from the database, for example the product
description, the name of the image for this product, and so on. The resulting data
from the SQL query is converted into the HTML format (a Net.Data function). This
can then be shown in the browser. Also, all static information for these templates
is defined in these Net.Data macros. You can assign different macros with
different content to products or categories.

You can use Net.Data templates for special shopper groups. This gives you the
ability to present special shoppers another style of product and category pages
with content that is different from what a regular shopper sees.

In the Shopper Group Category Template table (CATESGP), you assign the name
for the corresponding category Net.Data macro (template). In the Shopper Group
Product Template table (PRODSGP), you assign the name for the corresponding
category Net.Data macro (template).

The Net.Commerce commands CategoryDisplay and ProductDisplay use the
assigned catalog or product Net.Data macro template to generate and display the
content of the pages.

In the planning phase, you should consider how to build the descriptions for
your products. Use a tool to create the HTML source files for these
descriptions. Also, consider in which file these descriptions are stored. Build
logic about how to create the Mass Import file to import the descriptions from
these files to the product table description fields. Plan the use of the PRURL
field in the same way. Use the Mass Import function.

Important
36 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

To learn how you can assign a Net.Data macro template to a category or product
without the Mass Import function, see 13.8, “Assigning Templates” on page 206.

3.3 Images and Multimedia Files

Certainly you want to show your products, a logo, or other pictures in your Web
pages. Perhaps you want to integrate such multimedia files as sound, moving
pictures, and so on. You have to decide which software you will use to create
these files. The media files are in-line, which means that they appear in the page
that the shoppers see. Sound, animation, and video files tend to be large, so use
them with discretion.

Note: Not all browsers support these in-line media files. Consequently, only
shoppers who use a browser that can play media files will be able to see them.

Images and other media files are stored on the AS/400 server system in the IFS
(integrated file system). The path and file name of the image for a product is
assigned in the Net.Commerce database PRODUCT table in the PRFULL and
PRTHMB fields. The path and file name of the image for categories is assigned in
the Net.Commerce CATEGORY database table in the CGFULL and CGTHMB
fields.

When you create your images for the products and for the categories, think about
a rule for how you will name these images. This will be very helpful later when
you import the data from your production system to the Net.Commerce database.
You can then easily define a rule, for example, for how the Mass Import file (see
15.2.2, “Mass Import” on page 321) should be created to fill the path and name
for the image in the above mentioned Net.Commerce database tables. Also, if you
populate the NetCommerce database using your own program (if this is your
decision), a rule for naming the images can be very helpful.

If you plan to have more than one template for products or categories, you
should define the logic to place the correct values in the template path and
name fields in the PRODUCTS and CATEGORIES tables during the design
process. Build the Mass Import file using this logic and use the Mass Import
function to update the tables. For more information, see 15.2.2, “Mass Import”
on page 321.

Note

Name the image based on a field with a value that is unique for each product in
your production system. For example, if the product number for the product is
4712123, name the image L4712133.gif for the large image and T4712133.gif
for the thumbnail image.

Note
Planning: Site Design Considerations 37

3.4 Working with Net.Commerce Discounts

Net.Commerce provides you with a flexible way to offer special discounted
prices. The database tables that define discounts are:

• DISCCODE — This table lists the discount codes that are assigned to the
products. Each product can have a single discount assigned. Use this table to
define a discount code as being used with products rather than orders. To
discount at the product level, this discount code is placed in the records of the
products it applies to in the PRDCONBR field of the PRODUCT table.

• DISCCALC — This table lists the discount calculation scale and type for each
discount code. Each discount code can have one calculation per shopper
group. A discount calculation with a discount code NULL identifies an order
discount rather than a product discount. The scale type determines whether
the ranges in the scale are based on Quantity (Q), Weight (W), or Dollar
amount (D).

• SCALE — This table lists the rate scales that can be applied to a discount
calculation. A scale consists of a unique reference number (a code up to 15
chars) and a description.

• RATE — This table lists the individual rates for a scale. Each scale can have
multiple rates. A rate consists of a rate method, a range end, and a rate value.
There are six computation methods, which are explained in Figure 8 on page
39. R1 uses the value as the discount amount, R2 uses the value as a unit
discount amount, and R3 uses the value as a percentage of the total amount.
The first range starts at 0 and includes the range end. The second range
starts at the first range end + 0.0001.

Figure 7 shows you an example of how to define the tables for two different
discount calculations.

Figure 7. Discount Definition in Net.Commerce Tables

DISCCALC

DISCCODE

PRODUCT

SHOPGRP

RATE

SCALESCL Scale Code
1 10% over 5
2 50 over 500

Examples:
1. 10% off purchases of more than five CDs for all shoppers
2. $50 off orders over $500 for Shopper Club members

SCL Method Range End Value
1 R3 5.00 0.00
1 R3 9999999.00 10.00
2 R1 500.00 0.00
2 R1 9999999.00 50.00

SG SG Name
3 Shopper Club

Discount Code
Reference Nbr (DCO)

Shopper Group
Nbr (SG)

Rate Scale
Reference Nbr (SCL)

Scale
Type

1 - 1 Q
- 3 2 D

DCO Code
1 CDS

DCO Product Desc
1 Moods
1 White Album

1.
2.
38 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 8 shows the different resulting discounts that are calculated when you use
the Discount by Quantity (Q in table DISCCALC) scale type and six different
computation methods. Notice that the same range end and values compute
different results depending upon which method is applied. In some cases, the
value refers to a monetary value, while in other cases (R3 and C3), the value
refers to a percent value.

Figure 8. Example Discount Calculation

Order cost calculation is performed by the Net.Commerce OrderDisplay
command using a number of PROCESS tasks in the following order:

• GET_SUB_ORD_PROD_TOT — Calculates the cost per sub-order (shipping
address)

• GET_SUB_ORD_PROD_TAX_TOT — Calculates the tax per sub-order

• GET_SUB_ORD_PROD_SH_TOT — Calculates the shipping per sub-order

• GET_ORD_PROD_TOT — Calculates the total cost of all sub-orders

• GET_ORD_PROD_TAX_TOT — Calculates the total tax of all sub-orders

• GET_ORD_PROD_SH_TOT — Calculates the total shipping of all sub-orders

To implement a discount function, override the default PROCESS task
GET_SUB_ORD_PROD_TOT, or GET_ORD_PROD_TOT, or both with one of the
five supplied overridable functions (discount functions) per PROCESS task. The
built-in functions for these tasks do not support discounts.

To enable discounts by sub-order and have the tax and shipping charges
calculated based on the discounted total, assign a discount function (OF) to the
GET_SUB_ORD_PROD_TOT task, such as:

• GetSubOrderProductTotalWithDiscountPerDiscCode — Calculates a discount for
each discount code in a sub-order. Does not support order discounts.

• GetSubOrderProductTotalWithDiscountPerDiscCodePerProduct — Calculates a
discount for each product in a sub-order that has a discount code. This can

D is c o u n t C o m p u ta tio n M e th o d s

C o d e C o m p u ta tio n M e th o d R e s u lt D is c o u n t

R 1 R a n g e o n To ta l $ 5 .0 0

R 2 R a n g e p e r U n it $ 5 .0 0 x 8 = $ 4 0 .0 0

R 3 R a n g e o n P e rc e n ta g e $ 1 6 0 .0 0 x 5 .0 0 % = $ 8 .0 0

C 1 C u m u la t iv e o n To ta l $ 2 .0 0 + $ 5 .0 0 = $ 7 .0 0

C 2 C u m u la t iv e p e r U n it $ 2 .0 0 x 5 + $ 5 .0 0 x 3 = $ 2 5 .0 0

C 3 C u m u la t iv e o n P e rc e n ta g e $ 1 6 0 .0 0 x (2 .0 0 % + 5 .0 0 %) = $ 11 .2 0

E x a m p le D is c o u n ts u s in g D is c o u n t b y Q u a n tity
(S c a le Ty p e Q in Ta b le D IS C C A L C)

E x a m p le is b a s e d o n :
a n o rd e r o f 8 ite m s w ith to ta l c o s t $ 1 6 0 .0 0

S c a le R a te s in Ta b le R AT E a re :
R a n g e E n d : 5 V a lu e : 2 .0 0
R a n g e E n d : 1 0 V a lu e : 5 .0 0
Planning: Site Design Considerations 39

produce a different result than "PerDiscCode". Does not support order
discounts.

• GetSubOrderProductTotalWithDiscountPerOrder— Calculates the discount based
on the total sub-order cost.

• GetSubOrderProductTotalWithDiscountPerDiscCodePlusPerOrder — Calculates a
discount for each discount code in a sub-order. A further discount can be
applied based on the total sub-order cost.

• GetSubOrderProductTotalWithDiscountPerDiscCodePerProductPlusPerOrder —
Calculates a discount for each product in a sub-order that has a discount
code. A further discount can be applied based on the total sub-order cost.

If you want discounts calculated per order and have the tax and shipping charges
calculated based on the undiscounted total, then assign a discount function (OF)
to the GET_ORD_PROD_TOT task, such as:

• GetOrderProductTotalWithDiscountPerDiscCode— Calculates a discount for each
discount code in an order. Does not support order discounts.

• GetOrderProductTotalWithDiscountPerDiscCodePerProduct — Calculates a
discount for each product in an order that has a discount code. This can
produce a different result than "PerDiscCode". Does not support order
discounts.

• GetOrderProductTotalWithDiscountPerOrder— Calculates the discount based on
the total order cost.

• GetOrderProductTotalWithDiscountPerDiscCodePlusPerOrder — Calculates a
discount for each discount code in an order. A further discount can be applied
based on the total order cost.

• GetOrderProductTotalWithDiscountPerDiscCodePerProductPlusPerOrder —
Calculates a discount for each product in an order that has a discount code. A
further discount can be applied based on the total order cost.

Each merchant can use one (or none) of the first five functions, and one (or none)
of the second five functions to enable discounting.

Use Site Manager Task Management to override the built-in function with one of
the previously mentioned discount functions. For information about how you can
do this, see 19.4.7, “Assigning the Overridable Function” on page 434.

3.5 Planning Caching Facilities

Plan to implement the cache functions with Net.Commerce to avoid unnecessary
workload for your Web server. There are two ways that you can use cache
functions in a Net.Commerce e-business application:

• Use Net.Commerce caching functions

With these functions, product and category pages, which are dynamically
created by the ProductDisplay and CategoryDisplay commands, are stored in
the nc_cache directory. This directory exists for each instance. The path is:
/QIBM/UserData/NetCommerce/instance/<instance_name>/nc_cache.

These commands retrieve information from your database, and display the
information as an HTML page that has been generated from a Net.Data
macro. If your product and category information has not changed since a page
40 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

was last viewed, then it should not be necessary for the page to be
dynamically re-created the next time a shopper requests it.

If you change information in the database (such as a product price), you want
to make sure that the page in the cache will be deleted. You also want to be
sure that the page will be dynamically regenerated the next time the product is
viewed by a shopper and pick up the new information. Deleting the "stale"
pages is done for you by the synchronization daemon.

Keep in mind that when you integrate a back-end system, as we did in our
ShopITSO example to get the price information, this refresh mechanism
should also be integrated. Refer to 17.3.2, “Integration with Net.Commerce
Cache Mechanism” on page 393, to see how we did this and to obtain more
information about the Net.Commerce caching functions.

• Store your static HTML files, images (GIF files), and all other static files in the
AS/400 HTTP Web server local cache

By keeping your most frequently served files loaded in the server's memory,
you can improve your server's response time for those files. For example, let
us say that you load your server's home page into memory at startup by
adding it to the cache list. In this case, the server can handle requests for the
page much more quickly than if the server had to read the file from a disk.

To learn more about using the AS/400 HTTP Web server local cache, see
13.14, “Using the HTTP Web Server Cache for Static Pages” on page 234.

3.6 Summary Checklist — Side Design Considerations

This section presents a checklist of the major topics discussed in 3.1, “General
Considerations” on page 21. The checklist also includes some additional topics
that are specific to an e-business implementation. Use the checklist either as a
quick review of everything discussed or as a reference of considerations to use
during requirements gathering.

I. Audience and Scope

A. Business Types

1. Business-to-Business

• Efficiency most important
• Online catalogs specific to each business
• Fast, easy-to-use navigation
• Interface with other businesses existing processing systems

2. Business-to-Consumer

• “Good shopping experience” most important
• Good, attractive user interfaces
• Easy-to-use contextual help
• Personalizations
• Straightforward, efficient functionality

B. Geography

1. Language support

• Translations in all areas of shopping experience or just some
• Multilingual support of customer service
Planning: Site Design Considerations 41

2. Currencies across countries

• Currency fluctuations
• Currency conversions
• Support for euro
• Pricing in local currency or U.S. dollars

3. Taxation by country

• Sales, value added tax, excise, national, local, duties, customs
• Possibility for tax exemptions

4. Shipping practices across countries

• Varying shipping charges by country
• Shipping range limitations

5. Products

• Different product lines by country
• Product price calculation and display by country

6. Customizing of merchandising strategy by country

• Use of color, images, and graphics by country
• Advertising perceptions by different cultures

7. Miscellaneous

• International privacy laws (what information can be requested of
consumers by country)

• Encryption usage by country
• Single-byte versus double-byte coding

II. Store or Mall

• Logic of product line (all the same or widely different)
• Individualism (look and feel) of each store in a mall
• Different handling of processes for multiple stores required?

III. Competitors

• Global range of competitors
• Quality of service and products to differentiate yourself from others
• Online or offline competitors

IV. Shoppers

A. Registered

• Regular shopper
• Personal information retained in database
• Receive discounts and other promotional offers
• Personalization of shopping experience

B. Guest

• One-time-only shopper
• Personal information entered only for purchase, then deleted
• No promotional offers or personalizations available—promotional offers for

all shoppers
42 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

V. Products

A. Pricing

• Sale prices and their expirations
• Discounts by quantity (or weight), customer, or category
• Inclusion of tax in product price issue

B. Entire or subset of product line for online sale

• Hierarchy by dividing products into categories
• Split very different categories to separate stores in a mall

VI. Payment Processing

• Cash or check acceptability
• SET, CyberCash, and other digital payment formats
• Credit card types accepted
• Credit and fraud checking
• Online or offline authorization
• authCapture or authOnly
• International payment conversions
• Plan to get SET certificates

VII.Order Processing

A. Inventory

• Inventory availability tracking
• Batch or real-time inventory updating
• Low inventory warnings to back-end system
• Limitation of order quantity amount
• Partial orders and back-order processes
• Shipping providers’ shipping range

B. Shipping

• Possible internal or third-party fulfillment of orders
• Shipping cost calculation

Net.Commerce delivers several possibilities, such as a flat shipping
cost for a whole order, or shipping cost by quantity, weight, and so on for
a special products or product groups. Or use a third-party package,
legacy system calculation, or custom code.

• Bill-to and ship-to addresses
• Name and address verification

C. Notification

Customer confirmation of order only after inventory and shipping checked

D. Order Status

Order status checks at any time by customer

VIII.Security

• Encryption of transmissions
• Integrity of transmitted data
• SSL and SET protocols
• Digital certificate and key generation
• Firewall strategy
• Restriction of intranet and server access
Planning: Site Design Considerations 43

• Authentication of users
• Physical location of hardware
• Monitoring and logging of system activity
• OS/400 security options
• OS/400 System Values—Set the OS/400 System security level to 50 with

the command: CHGSYSVAL SYSVAL(QSECURITY) VALUE(50)

50=Password, object, and enhanced operating system integrity

• Plan backup mechanisms

IX. Disclaimers and Store Policies

• Late deliveries
• Incorrect deliveries
• Out-of-stock products
• Returned products
• Canceled orders

X. Customer Service

• Full automation or partial automation
• Self-help by means of text files and frequently asked questions (FAQs)
• Customer feedback (e-mail or online forms)
• Opportunity to call customer service representatives on a support line

XI. Existing Methodologies

• Create interfaces to back-end systems
• EDI
• Other ERP

XII.Data Transfer

• Method of data transfer to an e-business database
• Correctness of data
• Possibility of manual data entry
• Method of data transfer from changes in your back-end system into your

e-business database
• Method of data transfer from your e-business database (for example, new

orders) to your back-end system

XIII.Performance

• Greatly affected by site traffic
• Hardware considerations
• Optimizations (user interface, database, code)
• Benchmarks to measure performance

XIV.Tools

• Reporting tools
• Administrative tools
• Custom tools

XV.Images and multimedia files

• Tools for creating these files
• Naming rules for images
• Using multimedia files carefully in case of performance
44 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

3.7 Output from the Design

This section describes which documents you should have created as a result of
the requirements in the gathering and design phase.

3.7.1 Business Objectives
Build a list of functional requirements that answers the question: What should the
application do? The summary checklist in 3.6, “Summary Checklist — Side
Design Considerations” on page 41, can be helpful.

Group these requirements together into functional units, for example, display
product page. Decide how each functional unit should be implemented. For
example, we will integrate legacy system data with the application price
calculation in Net.Commerce. Rank the requirements and objectives by priority
and structure the project plan around this ranking system.

3.7.2 Navigation Flow
The navigation flow diagram is essentially a site map for the e-commerce site. It
consists of the screens and how they flow. You need a diagram that shows the
navigation flow for the entire e-business application and for all functional units in
detail.

Figure 9 shows the navigation flow for our sample store. It is the fastest way to
place an order in an e-business application. You can also see in which cases our
back-end system is involved. For more information about our sample store, see
3.9, “Design of the ShopITSO Sample Solution” on page 57.

Figure 9. Navigation Flow for the Entire e-Business Application

Online Order
Acknowledgement

Place the
Order

Enter Payment
Information

Enter Shipping
Information

Product Page
Select Product

to Order

Navigate
Categories

View
Home Page

Product AdvisorSearch

Display Current Order
Update/Delete Item
and Place Order

accept Order

Get Price
from Back-end

Send Order Info
to Back-end

Order Status

Order Fulfillment
Status Information
to Net.Com

Order Acknowledge-
ment with E-mail
Planning: Site Design Considerations 45

The navigation flow for the functional units shows all screens that are identified
and are either unique screens or logical groupings of screens. A logical grouping
of screens consist of screens that, except for the actual (dynamic) content of the
page, have identical functionality in all ways. For example, a product page may
be a logical grouping of screens if all the products in a given catalog are to be
displayed identically. Figure 10 shows the flow for Display Product page from our
sample solution.

Figure 10. Sample Navigation Flow for Our Product Page

3.7.3 Functionality Description of Each Screen
For each unique screen in the site, you describe the screen content, what each
screen does, and how it will work.

There is one aspect that has to be handled with care. When you show the
product page, you have no information about the quantity that the customer
wants to order. At this point, you cannot deliver the discounted price for the
product if you handle calculated discounts based on quantities. You have to
decide which price information you want to show in this case. For example,
show the list price and some text information about your special price rates.

In the DisplayCurrentOrder page, we do not have this problem. Here, we get
the calculated price information from the back-end system (in our case) or from
the Net.Commrce system. This can be any calculated price.

Note

Display
Current Order

Page

called from

Product
Page

List
Product

Page

Product
Explorer

Page

Navigation
Bar

Search

Display
Category

Page
46 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

You also describe which images (product pictures, logos, or other multimedia
files) have to be shown. You can see a sample of these specifications for a
product page in Figure 11.

Figure 11. Sample of Functionally Description of Display Product Page

3.8 Mapping Your Navigation Flow to the Net.Commerce Commands

The shopping process is the flow of information from when the shopper enters the
store to when an order has been processed. Each step within the shopping
process either adds data to the Net.Commerce database or uses data in the
database to display a page. The default shopping process uses a specific group
of Net.Commerce commands in a defined order.

There are many ways that this process can be customized, both in the
information that is displayed at each stage and the number of steps actually
required. Commands, tasks, and overridable functions (OFs) represent the basic
building blocks of the Net.Commerce system to give this flexibility. All of the
navigation in the Net.Commerce e-business application is done by using these
commands. Together with the database these commands are the heart of
Net.Commerce.

Before you map your navigation flow for your e-business application to the
Net.Commerce commands, you have to know what these commands are doing in
the shopping process. You should read the handbook Net.Commerce for AS/400
Commands, Tasks, Overridable Functions, and Database Tables (dbtodcmd.pdf),
which comes with the Net.Commerce product.

HTML Layout Specifications
1. Static Text: "Catalog"
2. Link back to previous category template

with static text "RETURN TO $VAR"
where $VAR is the name of the parent
category. $VAR is generated from the
name of the parent category and will not
exceed 20 characters.

3. Static text with instructions on what this
page does. Text will not exceed 200
characters, but may wrap into several
lines on the screen.

4. Dynamic text generated from the
database with the name of the product
displayed. Text length will not exceed 35
characters.

5. Link to add this product to the order. The
image for the link is static.

6. Dynamic picture of the product being
displayed.

7. Multilined text that shows the product
price in the various currencies supported.
One currency per line.

8. Dynamic description of the product. This
is a multilined text field generated from
the database. The text may be as long as
2000 characters and should flow down
the page.
Planning: Site Design Considerations 47

The implementation of the shopping process follows the sequence described in
the following text.

Net.Data is used as the main display engine for the Net.Commerce system. As
the display engine, Net.Data should not be used to implement business logic.

To display information in a browser screen, you use a Net.Data macro that
provides the SQL statements (select) to get the required data from the database.
The resulting data from the SQL statement is converted into the HTML format (a
Net.Data function). This data is then shown by the browser. One example of this
is to show the Current Order page.

Implementing business logic is best left to commands and overridable functions
(OFs), instead of Net.Data. Commands and OFs are the recommended engine
for database inserts or updates. Net.Data should be used as a display tool only.

The Net.Data macro also uses (calls) the Net.Commerce commands that are
responsible for the shopping process and the UPDATE of the database tables.
For more information, see 3.8.2, “Using Net.Commerce Commands” on page 52.

Your next step is to decide which Net.Commerce commands fit the requirements
in your navigation flow. The following sections describe how you can do this.

3.8.1 Overview of Net.Commerce Commands
A Net.Commerce command represents a static business process that delegates
well-defined pieces of business logic to tasks. Net.Commerce commands call
tasks, which are mapped to OFs. Indirectly, Net.Commerce commands call OFs
through tasks. They can also indirectly call other commands, and OFs can call
other tasks. See Figure 12 on page 49.

You can find the handbook Net.Commerce for AS/400 Commands, Tasks,
Overridable Functions, and Database Tables (dbtodcmd.pdf), in the directory:
/QIBM/ProdData/NetCommerce/html/MRInnnn/ncbooks

The nnnn is your language code, for example, 2924 for the English language.

Note

Do not use the SQL INSERT, UPDATE and DELETE statements in the
Net.Data macros to manipulate the database. Although Net.Data supports
these SQL statements, we strongly recommend that these never be used in
any macro in a Net.Commerce system.

Use the Net.Commerce commands for this. The Net.Commerce commands are
using commit and rollback functions and guarantee the integrity of your
database.

Important
48 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 12. Commands, Tasks, and Overridable Functions

A command is hard coded to call a set of one or more tasks. The command may
call a different task from the set based on the input to the command. This means
that different OFs will be called based on the input to the command. A task may
be mapped to OFs at the store level. This makes it possible to have a task with
the same name in different stores execute different logic.

Commands and OFs are actual pieces of code, but tasks are not. Tasks are more
like specifications. They are a contract that defines the behavior and the input
and output parameters by which a called OF must abide for the system to
function properly. The Net.Commerce commands can also handle error
situations.

Commands work together with command parameters. Most commands have
required parameters and optional parameters. For an example, see Figure 15 on
page 52. The most important Net.Commerce commands are listed in Figure 13
on page 50.

For detailed information about commands, tasks, and OFs, see the handbook
Commands, Tasks, Overridable Functions, and Database Tables, which comes
with the Net.Commerce product. You can also refer to Chapter 19, “Implementing
Overridable Functions” on page 413, in this redbook.

s

Planning: Site Design Considerations 49

Figure 13. Important Net.Commerce Commands

Net.Commerce V3 includes a new flexible server architecture that allows new
functions and commands to be added to the server by registering them in the
database. When a command is sent to the server, it verifies that the command is
valid by checking it against the database and invokes the main command
function, which is a C++ function.

There are two different types of Net.Commerce commands:

• VIEW or user-interface (UI) commands — Retrieve information from the
Net.Commerce database and display store pages. This function is achieved
by calling Net.Data macros that combine SQL statements with HTML.

• PROCESS or non-user-interface (non-UI) commands — Process and write
information to the Net.Commerce database. These commands are typically
invoked by submitting input forms during the shopping process.

Many commands offer some customization ability by calling tasks, which are
registered in the database. Each task has an overridable function assigned that
you can override with your own function (either for the site or per store) to change
the way it processes information. You can also turn off some tasks (for example,

Purpose VIEW commands PROCESS commands Format#

Shopper Logon LogonForm Logon LogonForm?url=u#
Logon#

View Category Page CategoryDisplay CategoryDisplay?cgmenbr=m&cgrfnbr=c

View Product Page ProductDisplay ProductDisplay?prmenbr=m&prrfnbr=p

Shopper Registration RegisterForm RegisterNew
RegisterUpdate

RegisterForm#
Register

Shopper Address
Book

AddressForm AddressAdd
AddressUpdate
AddressDelete
AddressCheck

AddressAdd#
AddressUpdate#
AddressDelete#
AddressCheck#

Manage Shopping List InterestItem
Display

InterestItemAdd
InterestItemDelete

InterestItemDisplay?merchant_rn=m
InterestItemAdd#
InterestItemDelete#

Manage Sub-orders OrderItemList
OrderItemDisplay

OrderItemProcess
OrderItemUpdate
OrderShippingUpdate

OrderItemProcess
OrderItemUpdate
OrderShippingUpdate
OrderItemDisplay

Manage Orders OrderList
OrderDisplay

OrderProcess
OrderUnlock
OrderCancel

OrderList?status=P*
OrderDisplay?status=P*

General Purpose ExecMacro
ExecTask

ExecUrl ExecMacro/macro-name.d2w/report?para
meters#

u = URL of next page, m = Merchant Ref Number, c = Category Ref Number, p = Product Ref Number
* order status: P = pending Order, c = completed Order

full syntax for command parameter, see handbook:Commands, Tasks, Overridable Functions, and
Database Tables, which comes with the Net.Commerce product
50 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

inventory checking) by assigning the overridable function DoNothingNoArgs to the
task.

VIEW commands always finish processing by invoking a VIEW task. This VIEW
task usually has the overridable function TaskDisplay assigned, which uses
Net.Data to run a macro. The name of the macro is determined from the
database. Refer to 13.15.2, “Finding or Assigning a Net.Data Macro for a Specific
Display” on page 244, for more information.

Most Net.Commerce commands work together with command parameters. Most
commands have required parameters and optional parameters. For an example,
see Figure 15 on page 52. Figure 14 shows an overview of the command
processing.

Figure 14. Command Processing

The server loads the information about pools, commands, and tasks into a
memory cache when it starts (startup). This allows command requests to be
validated and processed quickly.

When a URL enters the system (1), the processing is started. Based on the URL,
the HTTP server passes control to the Net.Commerce director (2).

When a command is sent to the server, it verifies that the command is valid and
invokes the main command function (3), which is a C++ function. The command
requests that an individual task be executed based upon the parameters (4) (6).
Each task calls the overridable function (OF) mapped to the task (5) (7). When an
OF completes, it returns control to the command and the next task is called. In
this example, we are looking at a VIEW type command. For this reason, the last

For example: https://mymall.com/cgi-bin/ncommerce3/OrderDisplay?status=P&merchant_rn=2066

server
Daemon Net.Commerce

Database

ncommerce

Command

Overridable
Function

ncmser_1

HTML

Command &
Parameters

CMDS table

TASKS table

OrderDisplay

GET_ORD_PROD_TOT
ORD_DSP_PEN

OFS table
GetOrdProdTot
TaskDisplay
DoNothingNoArgs

MACROS table
orddspp.d2w

Logon

OrderDisplay

ExecMacro

Net.Data

Query & Cache
Command &
Task info

Call Command

Call Task
Overridable
Function

POOLS table
ncommerce

GetOrdProdTot

TaskDisplay

DoNothingNoArgs

2

1

3

5

7

9

Request task
4

6

8 Run macro

S
t
a
r
t
u
p

OF
executes
and
returns
Planning: Site Design Considerations 51

task will cause a Net.Data macro to be executed (8). The Net.Data macro builds
HTML output and returns it the HTTP Web server (9).

Many commands offer some customization ability by calling one or more tasks.
The server is asked to run the task. It does this by calling the overridable function
assigned for that merchant (or for the mall if there is no merchant assignment).

Overridable functions are also C++ functions. VIEW tasks and ERROR tasks
usually have the overridable function TaskDisplay assigned, which uses Net.Data
to run a macro. The name of the macro is determined from the MACROS table.

3.8.2 Using Net.Commerce Commands
Figure 15 shows the syntax of the Net.Commerce commands and the resulting
URL that is used from an HTML document or Net.Data macro to execute the
command. The /cgi-bin/ncommerce3/ portion of the URL causes the HTTP server
to execute the Net.Commerce Director program. The Director passes the
command name with the parameters to the Net.Commerce Daemon. In this case,
the command is OrderList.

Figure 15. Sample of Syntax of Net.Commerce Commands

Browser Director Daemon
Web

Server

Command ?//cgi-bin/ncommerce3 Parameters

/cgi-bin/ncommerce3/OrderList?merchant_rn=123&status=P

URL:

/cgi-bin/ncommerce3/ OrderList?merchant_rn=123&status=Phttp://mymall.com

Be sure to include the question mark. It is part of the Net.Commerce command
syntax. It separates the command name from the parameters.

Important
52 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

3.8.2.1 Using Net.Commerce Commands in HTML
To use the Net.Commerce commands in your static HTML or Net.Data generated
HTML, you must construct the command and the correct parameters. Figure 16
shows two techniques for doing this.

Figure 16. How to Use Commands in HTML or Net.Data Macros

The first way is to construct an anchor link in the HTML. The HREF value
contains all three parts needed to cause the command to be executed. The
second way shown is through the use of an HTML form. The action contains the
path and the command, while the parameters come from hidden input fields. The
GET method is used so that all the information is put together in the URL that is
sent to the HTTP server.

Process Orders

Anchor Link

<FORM ACTION="/cgi-bin/ncommerce3/OrderList">
<INPUT TYPE=HIDDEN NAME="merchant_rn" VALUE="123">
<INPUT TYPE=HIDDEN NAME="status" VALUE="P">
<INPUT TYPE=SUBMIT NAME="Process Orders">
</FORM>

HTML Form

/cgi-bin/ncommerce3/OrderList?merchant_rn=123&status=P
Net.Commerce Command:

When you type a command in a macro, use the following conventions:

• Ensure that there are no spaces between keywords, delimiter, and
variables.

• Enter parameters in any order.
• Enter keywords in lower case.
• Enter variables that represent column names and table names in lowercase.
• Replace spaces in values with plus signs (+).

When entering a command in a hypertext link or as the value of a URL
parameter (redirection URL), replace any symbols with their hex values. This
does not apply to commands contained in the URL of form submit buttons. The
following is a list of some common substitutions:

• Replace the slash (/) with %2F

• Replace the question mark (?) with %3F

• Replace the ampersand (&) with %3D

• Replace spaces in values with plus signs (+)

Note
Planning: Site Design Considerations 53

3.8.3 Mapping the Navigation Flow to Net.Commerce Commands
Your next step in the design of your e-business solution is to search for the
Net.Commerce commands that fit your navigation flow and the behavior of this
flow. For our sample store, we did this for all the Web pages (functional units).
Figure 17 shows an example of our navigation flow mapping to the
Net.Commerce commands for our Product page.

We searched for a Net.Commerce command that handles orders in the
commands table (Figure 13 on page 50). We found the OrderItemUpdate
command.

Using the Commands, Tasks, Overridable Functions and Database Tables
handbook (included with the Net.Commerce product), we now verified that this
command is the one we want to use. The behavior, syntax and parameters are
described in detail in this handbook. For more information, see 3.8.3.1,
“Description of Net.Commerce Command OrderItemUpdate” on page 54.

Another way to find the Net.Commerce commands is to look at the Net.Data
macros that are built when you use the Store Creator to build a new store. For
more information about the Store Creator, refer to 13.3, “Building the Store with
Store Creator” on page 187.

Figure 17. Navigation Flow to Net.Commerce Command Mapping

3.8.3.1 Description of Net.Commerce Command OrderItemUpdate
This section is an excerpt from the Commands, Task, Overridable Functions, and
Database Tables handbook that illustrates the command syntax of a
Net.Commerce command.

10 = /cgi-bin/ncommerce3/OrderItemUpdate?merchant_rn =M&
product_rn =prrfnbr&quantity =Q
&url="/cgi-bin/ncommerce3/OrderItemDisplay?merchant_rn=$(MerchantRefNum)"

Display
Current Order

Page

called
from Product

Page

List
Product

Page

Product
Explorer

Page

Navigation
Bar

Search

Display
Category

Page

10
54 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

The OrderItemUpdate command updates or creates a shipping record, depending
on whether the shipto_rn or product_rn is passed to it, respectively.

Figure 18. OrderItemUpdate Command Syntax Diagram

Parameter Values
The parameter values shown in Figure 18 are explained in the following list:

• host_name

The fully qualified name of the Net.Commerce server.

• addref

The reference number of the address to which the products and items are to
be shipped. This is an optional parameter.

• shipref

The reference number of the shipping association.

• prodref

The reference number of the product whose attributes are to be updated.

• attr

Any distinct attribute that is defined for the product in the table PRODDSTATR.

• val

The value of the distinct attribute.

• q

The quantity of the product or item to be shipped.

• shipmoderef

The reference number of the shipping mode to be used for the product or item.

• comment

A comment to be included with the order.

OrderItemUpdate Command

http://host_name/cgi-bin/ncommerce3/

OrderItemUpdate? &shipto_rn=shipref

&quantity=q

&product_rn=prodref

&attr=val

addr_rn=adref

&shipmode_rn=shmode_ref &comment=comment

&field2=f2

&field1=f1

&url=url
Planning: Site Design Considerations 55

• f1

A merchant-reserved integer value.

• f2

A merchant-reserved text value. Accepts up to 254 characters.

• url

The URL that is called when the command successfully completes.

Behavior
The addr_rn parameter is optional. If it is not supplied, the parameter defaults to
the address reference number of the row in table SHADDR, where column
SAADRFLG has the value "P" and the value in column SANICK is the shopper’s
ID from column SHLOGID in the SHOPPER table. If there is no such row in the
table SHADDR, then it creates a new row with all the other columns being NULL.

If shipto_rn is specified, it updates the entry with the specified quantity. If
product_rn is specified, it determines the SKU number based on the specified
attributes, and creates a shipto entry for the specified quantity of the item.

The command checks the validity of the address book reference number and
updates it if necessary. The number is incorrect if it refers to an address book
entry that the shopper changed after creating the shipping association. Then, for
both shipto_rn and product_rn, this command performs the following steps:

1. Unlocks the order if it is locked.

2. Calls the CHECK_INV process task to ensure there is enough inventory.

3. Calls the GET_CURRENCY process task to determine the currency to be
used.

4. Calls the GET_BASE_SPE_PRC process task to get the special price
associated with the product or item.

5. Stores the output parameters BASE_CURRENCY and
BASE_PRODUCT_PRICE from the GET_BASE_SPE_PRC process task in
the STBASEPRICE and STBASECURR columns in the SHIPTO table.

6. Calls the RESOLVE_SKU process task to determine the SKU for each product
or item.

7. Updates the comment, field1, and field2 fields.

8. Calls the EXT_SHIPTO_UPD process task to perform additional processing to
meet any unique requirements.

On successful completion, the command calls the URL specified. It also rounds
monetary amounts before storing the information in the database, according to
the rounding information defined in the CURRFORMAT and SETCURR tables.

Exception Conditions
Note the following conditions:

• If the overridable function assigned to the RESOLVE_SKU process task
determines that a required product attribute is missing, it sets the
BAD_PROD_ATTR exception task to handle the error.
56 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

• If it determines that a product with the specified attributes does not exist in the
database, it sets the MISSING_PROD_ATTR exception task to handle the
error.

• If the quantity specified is not numeric or not a positive value or errors are
detected in the values for comment, f1, or f2, it sets the BAD_ST_DATA
exception task to handle the error.

• If the overridable function assigned to the CHECK_INV process task fails, it
sets the CHECK_INV_ERR exception task to handle the error.

• If the overridable function assigned to the GET_BASE_SPE_PRC process
task fails, it sets the GET_BASE_SPE_PRC_ERR exception task to handle
the error.

• If the overridable function assigned to the EXT_SHIPTO_UPD process task
fails, it sets the EXT_SHIPTO_PROC_ERR exception task to handle the error.

3.9 Design of the ShopITSO Sample Solution

This section shows you the output of our design phase, which builds a description
of our sample store ShopITSO.

3.9.1 Business Objectives in the ShopITSO Sample Store
Following the Side Design Considerations Checklist as described in 3.6,
“Summary Checklist — Side Design Considerations” on page 41, our sample
store is based on the following business objectives:

I. Audience and Scope

A. Business Type

Our store sells computers to consumers in the USA only.

Good, attractive user interfaces that are easy to use and come quickly to
the page where the order can be placed are most important.

As you can see from our navigation flow, we do not use the shopping cart
function that Net.Commerce delivers. Our customers place selected
products directly to the current order.

B. Geography

1. Our store is built in just one language.

2. Pricing is in local currency—U.S. dollars.

3. We have a fixed tax rate for all of our products in the entire mall.

4. We will not ship outside the USA.

5. We sell one product line for the USA.

6. Merchandising is done from our home page, which includes promotions for
products.

7. Miscellaneous—There are no special considerations for our store.

II. Store or Mall

Our business is done by using one store (so in our case it is also a mall).

III. Competitors

There are no special considerations for our store.
Planning: Site Design Considerations 57

IV. Shoppers

We decided to sell our product to one-time-only shoppers.

Customer registration is not necessary in our store.

V. Products

A. Pricing

We use our back-end system to get the sale price for the products.

B. We sell a subset of products in our online store.

We build a hierarchy by dividing products into categories.

VI. Payment Processing

We offer our customers two methods of payment:

1. We accept credit cards from VISA without using SET.

2. We offer our customers the use of SET for secure payment through credit
cards.

We also use the Merchant Originated Payment option (see 6.2.1, “Merchant
Originated Payment” on page 96).

Our back-end system signals when an order has been delivered. The batch
process for request capture by the acquirer is then done automatically from
the payment gateway. We did not use the Store Manager function for request
capture).

VI. Order Processing

A. Inventory

The back-end system gets information of all placed orders from the
e-business application. Order fulfillment and inventory update is made in
the back-end system.

We allow back order. We have no inventory check in our e-business
system.

B. Shipping

We have three shipping practices that are valid for the entire order, each of
them with a special amount of shipping cost for the customer:

• Delivery in 24 hours
• Delivery in 48 hours
• Delivery in 72 hours

We use a flat shipping cost calculation that is done by Net.Commerce (see
13.3, “Building the Store with Store Creator” on page 187).

The bill-to and ship-to addresses are the same. The address is entered by
the customer before submitting the order.

Name and address verification is the default implementation of
Net.Commerce (changes are possible through a new or changed
overridable function).

C. Notification

Online customer confirmation that the order has been received is done
using Net.Commerce after online order validation is complete (address is
58 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

present and payment information or payment request authorization is
complete).

Order acknowledgement is from the back-end system through e-mail.

D. Order Status

Order status checks by the customer are possible at anytime. The
back-end system informs Net.Commerce as the order status changes (for
example, order shipped).

VII. Security

We use SSL protocol and digital certificates. In our test system, the
certificates are generated by the AS/400 server, so we did not use certificates
from a certification authority.

For the payment function, we use the SET protocol with SET certificates.

The firewall, Net.Commerce and HTTP Web server are all on the same
AS/400 system. The back-end system is another AS/400 system.

We work with OS/400 system security level 50 (system value).

VIII.Disclaimers and Store Policies

These will be part of our home page through a link.

IX. Customer Service

Self-help by means of text files and frequently asked questions (FAQs) is
planned and possible for our ShopITSO. Implementation will be in the first
release using Lotus Notes.

Customers will also be given an opportunity to call customer service
representatives on a support line.

X. Existing Methodologies

Our back-end system is integrated. It delivers the selling price for the product.
It also keeps the Net.Commerce system updated with the changes in the order
status. The back-end system gets all the orders placed from Net.Commerce
for further processing.

Therefore, some integration efforts in modifying existing application programs
should be calculated and planned.

See Chapter 5, “Planning: Integration with the Back-End Systems” on page
87, for more information.

XI. Data Transfer

For the method of data transfer to e-business database, see Chapter 15,
“Importing Business Data into Net.Commerce” on page 319.

For the method of data transfer from Net.Commerce to back-end system, see
Chapter 17, “Interfacing to Our Back-End Business System” on page 383.

XII.Performance

We use the caching options from Net.Commerce for the category and product
pages.

Also, our back-end system uses triggers to update the Net.Commerce data
when changes are made to the products in the back-end system. This takes
care of the caching mechanism, when the price for a product is changed.
Planning: Site Design Considerations 59

For the static HTML pages and the GIF files, we use the AS/400 HTTP server
local cache function.

We also made changes in the Net.Data macros to reduce the amount of SQL
queries to the database.

XIII.Tools

Refer to Chapter 7, “Planning: Tools to Build the Site” on page 103.

3.9.2 Functional Description of Each Page in the ShopITSO Sample Store
For all of our store pages, we described in detail which elements are on the page
and the behavior of the page. In this section, we describe only one sample of our
pages—the Display Current Order (Display Order Details in this implementation)
page shown in Figure 19.

The navigation bar (top frame) and catalog tree (left frame) is described in
3.9.4.1, “Navigation Flow—Navigation Bar in Frames” on page 62. The content for
pages shown in the main (right) frame are described in 3.9.4, “Navigation Flow
and Net.Commerce Commands in ShopITSO” on page 62. These pages are
Search, Order Now, Display Order Details (Display Current Order), Check Order
Status, Product page, and all pages that follow after a product is selected for
buying. The content of each page is described in detail.

Figure 19 shows you a sample so that you can see the kind of documentation that
you may want to generate when designing your site.

Figure 19. Our Display Current Order Page in ShopITSO

To build this window, we use the shipto.d2w macro. The first text that you see in
the Current Order page (in the right frame) is static HTML text. Then, you see a
table with the product description, quantity ordered, cost per item, subtotal cost,
and buttons for update and delete. This table is built through the SQL query to the
SHIPTO table, which contains the item rows for all orders. The subtotal value for
60 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

each row is calculated (it is not an element of the SHIPTO table). The total value
of the order is also calculated.

The quantity field is an HTML form input field that allows the customer to change
the quantity for any product listed. The Update button is used to update the
SHIPTO table quantity with the value typed in this quantity field (one per row).
The Remove button allows the customer to delete one product. In both cases, the
next window that is shown is the recalculated Display Current Order page (the
same page with the new values) or the NONE Order page, if there are no more
items in the order list for the customer (all products have been removed).

With the Place Order button, the customer places the order and the next page
(the Order Accepted page) will be shown.

3.9.3 Navigation Flow in the ShopITSO Sample Store
Review our total navigation flow of our sample store (Figure 20 on page 62). For a
quick navigation through the store, we do not want to use a shopping cart
(interested items). In our solution, the customer places products directly into a
pending order (select products to order). As long as the customer does not close
the browser, this pending order is available (Display Current Order) and can be
changed by the customer. The customer can change the quantity they want to
order and can also remove a product form the order list. Next, they place the
order. Then, they must enter the shipping and billing address (both addresses are
the same in our solution) and the payment information. We offer two methods to
pay through credit cards, with or without the SET protocol.

Notice also that our back-end system is integrated. We use our back-end
application programs to get the price for a product. This can be any calculation
that the application program delivers.

To show the price in the product page, we get the list price from the back-end
system. For the Display Current Order page, we get the discounted price from the
back-end system.

When the customer places their order, the back-end system receives the
information from the Net.Commerce application about the order data. The
back-end system does all the order fulfillment. Also, the back-end system sends
information about the status of the order (for example, order shipped) to the
Net.Commerce system (change the status of the order). This allows the customer
to see this information in the Order Status page.

Read more information about back-end system integration in Chapter 17,
“Interfacing to Our Back-End Business System” on page 383.
Planning: Site Design Considerations 61

Figure 20. Overview of Our e-Business Sample Application

To reduce the amount of pages in this redbook, we decided to show our
navigation flow for each page together with the Net.Commerce commands, which
we use in the following section.

3.9.4 Navigation Flow and Net.Commerce Commands in ShopITSO
The figures in the following sections show the navigation flow of all our pages that
we want to show to the customer in our application sample store. You can see
from which page or pages a specific page is called, and which page is shown,
after the customer has made their choices.

3.9.4.1 Navigation Flow—Navigation Bar in Frames
The first page that we present to our customer is the home page with welcome
text. This home page has two frames. The first frame (the top frame) has the
banner image with the navigation bar,1 which has six buttons as shown in Figure
21 on page 63. The second frame (the main frame) shows the HTML home page
shown in Figure 22 on page 63.

Online Order
Acknowledgement

Place the
Order

Enter Payment
Information

Enter Shipping
Information

Product Page
Select Product

to Order

Navigate
Categories

View
Home Page

Product AdvisorSearch

Display Current Order
Update/Delete Item
and Place Order

accept Order

Get Price
from Back-end

Send Order Info
to Back-end

Order Status

Order Fulfillment
Status Information
to Net.Commerce

Order Acknowledge-
ment with E-mail
62 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 21. Navigation Bar 1

All pages that are reachable from the navigation bar1 are HTML pages, with the
exception of the Online Shop. These HTML pages are shown in the second frame
(the main frame) through an HTML link from the navigation bar1. All the HTML
pages work with the same frames, the top and main frames, so they also all have
the same navigation bar.

Figure 22. Home Page with Navigation Bar 1

When the customer clicks the Online Shop button from navigation bar1, the first
page of our Net.Commerce e-business application, which is the Category Tree in
the left frame of a new window, is shown. All pages in our Net.Commerce
e-business application work with three frames. The top frame with the image and
navigation bar2, the left frame with the catalog tree, and the main frame where all
other pages such as the Product page are shown in Figure 23 on page 64.

N a v i g a t i o n B a r 1

H o m e
P a g e

H T M L

O n l i n e
S h o p

(1)

N e w s
P a g e

H T M L

O u r
C o m p a n y

H T M L

H e l p
H T M L

C o n t a c t
I n f o P a g e

H T M L
Planning: Site Design Considerations 63

You can see navigation bar2 which is used for all pages in our shopping process.

Figure 23. Navigation Bar 2 — Active when StartShopping Selected

3.9.4.2 Navigation Flow Home Page
Figure 24 shows the navigation possibilities, starting from our home page. The
links are done through our navigation bar1.

All pages that are marked with HTML (News, Our Company, Help, Contact Info,
and Promotion) are shown in the second frame (the main frame).

Figure 24. Navigation Flow from Our Home Page

N a v i g a t i o n B a r 2

O n l i n e
S h o p

(1)

H o m e
P a g e

H T M L

S e a r c h
H T M L

(2)

D i s p l a y
O r d e r

D e t a i l s
(4)

O r d e r
N o w

(3)

D i s p l a y
O r d e r
S t a t u s

(5)

Navigation Bar 1

1= /cgi-bin/ncommerce3/CategoryDisplay?cgmenbr=merchant&cgrfnbr=HomeCategory

Category
Tree
Page

called from
Browser

http:// hostname/homepage.htm Our
Company

HTML

News
Page HTML

Home
Page

Online Shop
(1)

Home
Page
HTML

Contact Info
HTML

Promotion
Page
HTML

Help
HTML
64 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

The Category Tree is shown in the left frame of a new window with navigation
bar2, when the customer clicked the Online Shop from the navigation bar1. From
this tree, the customer can navigate through our product catalog.

In the main frame of this page, we show our promotion page (an HTML page),
which shows our special offerings of the week. From this promotion page, the
customer can go directly to the product page of the chosen product.

The Category Tree (1) shows the second level categories, in our case, the IBM
ThinkPads, IBM Personal Computers and the IBM Servers categories. The third
level categories are shown directly under the second level categories. The first
level category, the Top Category, is not shown in this page. For more information
about this, see 13.15.1, “Net.Data Macro to Show the Category Tree” on page
243.

The Category Tree page is invoked from the navigation bar1 through the
Net.Commerce Command CategoryDisplay (see Figure 24 on page 64). Through
this command, Net.Commerce finds the Net.Data macro named cat0.d2w for the
Home Category (Top Category, in our case).

Our first window in our store application ShopITSO is shown in Figure 25. You
can see the three frames. The top frame shows the banner and navigation bar2.
In the left frame, we show the catalog tree. In the main frame, we show our
Promotion page (an HTML page), which shows our special offerings of the week.

Figure 25. Catalog Tree with Navigation Bar2 and Promotions Page

3.9.4.3 Navigation Flow from Online Shop
In Figure 26 on page 66, you find the navigation flow from our first window that is
shown when the customer starts the Online Shop from navigation bar1 (our home
page). Remember that the customer sees our catalog tree in the left frame first
with the Promotions page in the main frame (see Figure 25).
Planning: Site Design Considerations 65

Figure 26. Navigation Flow from Our Category Tree and Promotion Page

By clicking on the categories (category tree), the customer can navigate through
our product catalog, from parent category to child category, until they reach the
product list. These are the connections marked with 6a and 6b in Figure 26.

All of these pages are shown in the left frame of the window. In the main frame,
the last page displayed is shown as unchanged. For example, in Figure 27 and
Figure 28 on page 67, the last page shown in the main frame is a product page.

The Net.Commerce commands used to navigate are:

• /cgi-bin/ncommerce3/CategoryDisplay?cgmenbr=merchant&cgrfnbr=$(V_crpcgnbr

as long as the child is a category and

• /cgi-bin/ncommerce3/ProductDisplay?prrfnbr=$(V_PRRFNBR)&prmenbr=

$(V_PRMENBR) when the child is a product.

The Net.Data macros for these two display pages are cat1.d2w and prod1.d2w in
our ShopITSO sample shop.

For an example of our subcategory window in the left frame, see Figure 26. As
you can see here, it is possible to return to the subcategory from which the
customer comes (the IBM ThinkPads, in this case).

6a

7

called from

Product
Explorer

Page

List
Product

Page

or
Category

Tree
Page

NavigationBar1
OnlineShop

(1)

6a= /cgi-bin/ncommerce3/CategoryDisplay?cgmenbr=$(MerchantRefNum)&cgrfnbr=$(V_crpcgnbr)
6b=/cgi-bin/ncommerce3/ProductDisplay?prrfnbr=$(V_PRRFNBR)&prmenbr=$(V_PRMENBR)
7 =/cgi-bin/ncommerce3/ProductDisplay?prrfnbr=$(V_PRRFNBR)&prmenbr=$(V_PRMENBR)
8 =/servlet/icviewer/ca_html/shopitso_pe.html?cgrfnbr=$(V_CGRFNBR)&cgmenbr=$(MerchantRefNum)

Promotion
Page
HTML

Product
Page

8
Subcategory

Page

6b
66 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 27. Subcategory Page in Left Frame; Product Page in the Main Frame

You can see the product list page in the left frame of Figure 28. From here, the
customer can return back to the category to which this product belongs.

Figure 28. Product List Page in Left Frame; Product Page in the Main Frame

From the promotion page (7) in Figure 26, the customer can go directly to the
product page of the selected product. The link used is the Net.Commerce
command ProductDisplay.

To go to the Product Explorer page, the Net.Commerce command marked as (8)
in Figure 26 is used in the link. For more information about Product Explorer, see
Chapter 14, “Enhancing the Store Using Product Advisor” on page 275.
Planning: Site Design Considerations 67

3.9.4.4 Navigation Flow from Product Explorer Page
From the Product Explorer page, a shopper goes to the product page and sees
the description of the product.

Figure 29. Navigation Flow from the Product Explorer Page

The link to the product page is generated by the servlet. For more information
about this, see 14.1, “What a Product Advisor Is” on page 275.

3.9.4.5 Navigation Flow from the Product Page
The following points describe our Product page:

• Content

The Product page shows all of the information for this product such as the
description of the product, a product image, the product price from the
back-end system, and so on.

• Behavior

From the Product page, a shopper can add a product to the current order.
Next, they see the Display Current Order page. The information for the
product, such as product reference number, quantity ordered and so on, is
stored in the Net.Commerce database (SHIPTO).

called from

Product
Page

Category
Tree
(6)

Product
Explorer
Page (7)

9 = build by servlet - automatic link to Product Page

9

68 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 30. Navigation Flow for Product Page

The content of the product page is implemented with the product template, in our
case, the prod1.d2w Net.Data macro. This macro calls the Net.Commerce
commands to implement the behavior.

Because we get the product price from our back-end system and not from the
Net.Commerce product price tables, we have to customize this behavior in two
places. The first place is in the product template. The other place is in the
overridable function (OF) GetBaseUnitPrc. We have to replace the default
overridable function GetBaseUnitPrc with a new OF that interfaces to the
back-end system. The GetBaseUnitPrc OF is called by the
GET_BASE_UNIT_PRC task, which is called by the ProductDisplay command.
For more details, refer to 19.4, “Overridable Function by Example” on page 419.

For more information about product templates, see 13.7, “Creating the Product
Catalog” on page 203. For more information about our Net.Data macro
prod1.d2w, see 13.15.4, “Changes to Net.Data Macro for the Product Display” on
page 253.

To add the product information in the database table SHIPTO, use the
Net.Commerce command OrderItemUpdate with the parameters shown in Figure
30 on page 69 in combination with the OrderItemDisplay command. The value for
the merchant_rn parameter comes from the include file. The value for product_rn
comes from the PRODUCT table. The value for the quantity parameter comes
from the HTML text form field quantity. The value for the shipmode_rn comes

10 = /cgi-bin/ncommerce3/OrderItemUpdate?merchant_rn =$(MerchantRefNum)
&product_rn =prrfnbr&quantity =Q&shipmode_rn=$(SHIPPING_MODE)
&url="/cgi-bin/ncommerce3/OrderItemDisplay?merchant_rn=$(MerchantRefNum)"

Display
Current Order

Page

called
from Product

Page
(9)

List
Product
Page (6a)

Product
Explorer
Page (7)

Navigation
Bar2

Search (2)

Promotion
Page (6b)

10

*** (This command is coded as one long string. It is split up here across multiple lines so it would fit on the page) ***
Planning: Site Design Considerations 69

from the SHIPPING table. The value for the URL is the OrderItemDisplay

command with the merchant_rn parameter.

The OrderItemDisplay command without the parameter addr_rn sets the
SHIPTO_ASSOC view task to display a general shipping details page. If the
parameter addr_rn is specified on the OrderItemDisplay command, the
SHIPTO_DSP view task is set to display a specific shipping page.

The Net.Data macro, which is executed to show the next page in the e-business
application (in this case, the Display Current Order page), is assigned for either
the shop or the mall. Refer to 13.15.2, “Finding or Assigning a Net.Data Macro for
a Specific Display” on page 244, for information about how to get the name of the
macro assigned.

3.9.4.6 Navigation Flow from the Display Current Order Page
This section explains the Display Current Order page. The flow is shown in Figure
31 on page 71.

• Content

For a sample of the Display Current Order page, see Figure 19 on page 60.

The content of the Display Current Order page is implemented with the
Net.Data macro shipto.d2w. More information about our Net.Data macro
shipto.d2w is contained in 13.15, “Modifying Net.Data Macros” on page 241.
This macro calls Net.Commerce commands to implement the behavior.

Because we get the product price from our back-end system and not from the
Net.Commerce product price tables, we have to customize this behavior. We
have to replace the default Overridable Function (OF) GetBaseSpePrc with a
new OF that interfaces to the back-end system. The GetBaseSpePrc OF is
called by the GET_BASE_SPE_PRC task, which is called by the
OrderItemDisplay command (see 19.4, “Overridable Function by Example” on
page 419).

• Behavior

From the Display Current Order page, a shopper can change the ordered
quantity for a product, delete a product, or submit the order.

When they change the quantity or delete a product, the next window that
appears is the Display Current Order page recalculated (14). When they
submit the order, the next window that appears is the Order Accepted page
(11).

The Address Form (12) and the Payment Form (13) are not separate pages.
They are included HTML forms in the Order Accepted page (11) . The
behavior is implemented in the Order Accepted page (see 3.9.4.7, “Navigation
Flow from Order Accepted Page” on page 73).

The information for a changed product (quantity or delete) has to be updated
in the Net.Commerce SHIPTO database table.

When the customer submits the order, the Net.Commerce ORDERS and
ORDERPAY tables are updated.
70 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 31. Navigation Flow from Our Display Current Order Page

To change product information in the SHIPTO database table when the quantity
has been changed by the customer, use the Net.Commerce command
OrderItemUpdate with the parameters shown in the following example in
combination with the OrderItemDisplay command:

/cgi-bin/ncommerce3/OrderItemUpdate?merchant_rn =$(MerchantRefNum)
&shipto_rn =$(V_strfnbr)&quantity=quantity&shipmode_rn=$(V_stsmnbr)
&url="/cgi-bin/ncommerce3/OrderItemDisplay?merchant_rn=$(MerchantRefNum)

The value for the merchant_rn parameter comes from the include file. The value
for shipto_rn comes from the SHIPTO table. The value for quantity comes from
the HTLM text form field quantity. The value for the URL is the OrderItemDisplay

command with the merchant_rn parameter.

To delete a row in the SHIPTO database table when the product is deleted from
the order by the customer, use the Net.Commerce command OrderItemDelete

with the parameter shown in combination with the OrderItemDisplay command:

/cgi-bin/ncommerce3/OrderItemDelete?&shipto_rn =$(V_strfnbr)
&url="/cgi-bin/ncommerce3/OrderItemDisplay?merchant_rn=$(MerchantRefNum)

The value for the merchant_rn parameter comes from the include file. The value
for the shipto_rn comes from the SHIPTO table. The value for the URL is the
OrderItemDisplay command with parameter merchant_rn.

If there are no more items in the SHIPTO table for the customer (for example, all
items were deleted), you should tell the customer. This situation is marked with
14c in our navigation flow.

11 = OrderDisplay?status=P&merchanr_rn=$(MerchantRefNum)
12 = included in 11
13 = Included in 11
14 =OrderItemUpdate or OrderItemDelete with
OrderItemDisplay?merchanr_rn=$(MerchantRefNum)

DisplayCurrent
Order
Page

recalculated

Payment
Form
Page

Order
Accepted

Page

Address
Form
Page

called from

DisplayCurrent
Order

Page(10)

Product
Page (9)

NavigationBar2
DisplayCurrent

Order (4)

11

12
13 14

No Current
Order
Page

14c
Planning: Site Design Considerations 71

For both update and delete, the OrderItemDisplay command is responsible for
showing the next page in the e-business application (in this case, the Display
Current Order page), as described in 3.9.4.5, “Navigation Flow from the Product
Page” on page 68. The OrderItemDisplay command has no error condition
defined. Your Net.Data macro, which creates this page, should take care of error
conditions.

You can use the SQL functions message block where the results of non-zero SQL
return codes are processed to handle error conditions. The most common use for
this message block is to process the SQL code 100 where no rows were returned
from the query. You can also use a default message section that processes all
possible error codes in the same manner as we did in our shipto.d2w macro.

The following code fragment shows the error condition processing in our
shipto.d2w macro:

%function(dtw_odbc) GET_TOTAL_DETAILS() {
SELECT stprice, stquant, stcpcur, strfnbr, stsanbr, ststat, stsmnbr,
prsdesc, prrfnbr, prnbr
FROM shipto, product
WHERE stmenbr=$(MerchantRefNum) and stshnbr=$(SHOPPER_REF) and stprnbr=prrfnbr
and ststat='P'

%REPORT{
%ROW{
%}
%}
%MESSAGE{

default: {
<HR>There are no products in your order list.

You can continue shopping and add items to your order list.

Use the catalog page (the left side of this page) to navigate
through our product set,

or use the
Order Now button for direct ordering a product.
%}:continue
%}
%}

The page that is built by this error code (14c) is shown in Figure 32 on page 73.
72 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 32. No Current Order Page

Use the Net.Commerce command OrderDisplay with the following parameter to
insert a new order in the ORDER table (status = P) and the ORDERPAY table
when the customer submits the order (11):

/cgi-bin/ncommerce3/OrderDisplay?status=P&merchant_rn =$(MerchantRefNum)

The value for the merchant_rn parameter comes from the include file and the
value for status is “P”, the status for pending order.

The OrderDisplay Net.Commerce command has a huge number of tasks that are
called. Refer the handbook Net.Commerce for AS/400 Commands, Tasks,
Overridable Functions, and Database Tables (dbtodcmd.pdf), for more
information about this and other Net.Commerce commands.

One of the tasks called is the ORD_DSP_PEN view task to display the pending
order (our next page Order Accepted page (11)). We should not use a URL for
showing the next page in the e-business application. The name of the Net.Data
macro that is executed by the ORD_DSP_PEN task is order.d2w. Refer to 13.15.2,
“Finding or Assigning a Net.Data Macro for a Specific Display” on page 244, for
information about how to obtain the name of the macro assigned.

If no orders match the specified parameters, the OrderDisplay command sets the
ORD_NONE error task to handle the error. In our case, we assigned the ordnone.d2w
macro to this task to keep the customer informed. Refer to 13.16.2, “Assigning a
Net.Data Macro to an Exception Task” on page 261, for information about how to
assign a macro to an error task.

3.9.4.7 Navigation Flow from Order Accepted Page
This section describes our Order Accept process. The flow is shown in Figure 31
on page 71.

• Content

The Order Accepted page is divide in three areas. It is one page that is
scrollable.
Planning: Site Design Considerations 73

The first area shows the total values of the entire order such as order total
amount before taxes, tax, shipping charges, and the total order amount. In this
area, the customer can choose the shipping method in a selection list. When
they use the Update button, the selected shipping method with the
corresponding shipping charges are updated.

The second area shows the Address Form (12) in which the customer types
their address information including the e-mail address.

In the third area, the customer can choose if they want to pay with a credit
card with or without SET protocol (13). If they choose payment without SET
protocol, they have to type in credit card information such as credit card type,
card number, expiration month, and expiration year. If they choose to pay with
SET, Net.Commerce sends a wake-up message to the eWallet of the
customer’s browser.

Figure 33 shows the first area of the Order Accepted page.

Figure 33. Order Accepted Page — First Area

Figure 34 on page 75 shows the second area of the Order Accepted page.
74 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 34. Order Accepted Page — Second Area

Figure 35 shows the third area of the Order Accepted page.

Figure 35. Order Accepted Page — Third Area

The content of the Order Accepted page is implemented with the Net.Data
macro order.d2w. This macro calls the Net.Commerce commands to
implement the behavior. Refer to Figure 36 on page 76 during this discussion.

• Behavior

From the Order Accepted page, a shopper places their order including their
address, which shipmode they want for the whole order, and how they want to
make the payment. From this page, the shopper places the final order.

If the order can be accepted (address is filled in, payment information is
verified, or in case of payment with SET the request authorization is done
successful), the customer gets the Order Confirmation page (15).
Planning: Site Design Considerations 75

For more information about payment processing, see 16.2, “Payment Server
Payment Processing” on page 366.

Figure 36. Navigation Flow from Our Order Accepted Page

To change the shipmode (the shipping provider with the assigned shipping cost)
for the whole order (12a), use the Net.Commerce command
OrderShippingUpdate with the following parameters. The customer sees the
same page again with the new calculated amount for the shipping cost.

/cgi-bin/ncommerce3/OrderShippingUpdate?order_rn =$(order_rn)
&url="/cgi-bin/ncommerce3/OrderDisplay?merchant_rn=$(MerchantRefNum)
&status=P

The second area of the Order Accepted page shows the input fields for the
address. The third area shows the input and selection fields for the credit card
information. When the customer wants to pay without using a wallet (without
using SET), they fill in the required values in these credit card fields.

To store the address for the whole order (12) and to verify the payment
information values (13), use the Net.Commerce command AddressUpdate with the
following parameters:

/cgi-bin/ncommerce3/AddressUpdate?&sarfnbr=$(V_sarfnbr)&ALL ADDRESS
FIELDS&sanick=$(SESSION_ID)&=order_rn=$(order_rn)&merchant_rn=$(MerchantRefNum
)&cctype=$(cctype)&ccxmonth=$(ccxmonth)&cxyecar=$(cxyyecar)&url=/cgi-bin/ncomm
erce3/OrderProcess?merchant_rn=$(MerchantRefNum)

The values for all address fields come from the HTML form input fields, which are
typed in by the customer.

You can also use your payment gateway to request the capture of a payment from
the acquirer after the order is fulfilled (shipped), even if the customer does not
use SET. To do this, the customer fills in the information for the credit card that is
being used for payment (as before). You use the Net.Commerce command

12a=OrderShippingUpdate?order_rn=$(order_rn)
&url="/cgi-bin/ncommerce3/OrderDisplay?merchant_rn=$(MerchantRefNum)&status=P

12 and 15 = AddressUpdate with URL OrderProcess?merchant_rn=$(MerchantRefNum)
13 = pay_wakeup or pay_accept

Payment
Form
Page

Address
Form
Page

called from

Order
Accepted
Page (11)

DisplayCurrent
Order

Page (10)

12 13

15

Order
Confirmation

Page

Error Order
Confirmation

Page

Update
Shipmethod

12a

15a
76 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

pay_accept, instead of the OrderProcess command, in addition to the
AddressUpdate command with the same parameters as described before.

/cgi-bin/ncommerce3/AddressUpdate?&sarfnbr=$(V_sarfnbr)&ALL ADDRESS
FIELDS&sanick=$(SESSION_ID)&=order_rn=$(order_rn)&merchant_rn=$(MerchantRefNum
)&cctype=$(cctype)&ccxmonth=$(ccxmonth)&cxyecar=$(cxyyecar)&url=pay_accept?m
erchant_rn=$(MerchantRefNum)&order_rn=$(order_rn)

This is the Merchant Originated Payment process. See 6.2.1, “Merchant
Originated Payment” on page 96, for the details.

When the customer wants to pay with their wallet, the Net.Commerce command
/pay_wakeup?order_rn=$(order_rn)&merchant_rn=$(MerchantRefNum) is
used. In this case, the credit card information fields (third area) do not have to be
filled in. This is because all the information is based on the SET certificate of the
customer.

For more information about Payment, refer to 16.2, “Payment Server Payment
Processing” on page 366.

In case of error conditions (15a), for example the name in the customer address
was not filled in, the AddressUpdate command sets the BAD_ADRBK_MODIFY error task.
We assigned the err_adrbk_up.d2w macro to this error task to show the Error
Order Confirmation page to the customer. The first part of this page is shown in
Figure 37. In the err_adrbk_up.d2w macro, we used the same Net.Commerce
commands as for the Order Accepted page, with the exception of the
OrderShippingUpdate command. This is because the shipmode cannot be changed
again from this page.

After the order process is successfully completed (address is typed in and
verified and payment information is valid), the customer sees the next window
with the acknowledgement of the order (Order Confirmation 15). This is done by
the ORD_OK view task from the OrderProcess command. The Net.Data macro for
this page is orderok.d2w.

Figure 37. Error Order Confirmation Page (Part 1 of 2)

Figure 38 on page 78 shows part 2 of the Error Order Confirmation page.
Planning: Site Design Considerations 77

Figure 38. Error Order Confirmation Page (Part 2 of 2)

3.9.4.8 Order Confirmation Page
Figure 39 through Figure 41 show our Order Confirmation page. It is one page
that is scrollable.

In part 1 of the page (Figure 39), we tell the customer the assigned customer
number (because we do not have customer registration and do not work with
permanent customer numbers), the assigned order number, and the shipping
address.

Figure 39. Order Confirmation Page (Part 1 of 3)

Figure 40 shows part 2 of the Order Confirmation page. Here, we show the
products ordered, the quantity ordered, the product price, the extended price, and
the total amount of the order.
78 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 40. Order Confirmation Page (Part 2 of 3)

Part 3 of the Order Confirmation page shows our contact address, which comes
from the Net.Commerce database.

Figure 41. Order Confirmation Page (Part 3 of 3)

3.9.4.9 Navigation Flow Check Order Status Page
The Check Order Status page is called from the navigation bar2 and shows the
status of a single order (see Figure 42 on page 80). The customer has to type in
the customer and order number to get this information. Otherwise, they get an
error page.

Because our back-end system updates the status of an order (for example
shipping in process), we can display this information here. We use one Net.Data
macro, which selects the data from the Net.Commerce database. This macro is
called by the Net.Commerce command
Planning: Site Design Considerations 79

ExecMacro/$(STORENAME)/orderlstc.d2w/input, from the navigation bar. Inside this
macro, the oderlstc.d2w/report command is called to show the result.

Figure 42. Navigation Flow to Check Order Status Page

3.9.4.10 Navigation Flow Search Results Page
In our search function, a customer can search for a product by its description.
This is only a simple search function to illustration how to use Net.Data to build in
functions. In our case, we used the @DTW_rTRANSLATE to translate the input
search argument to uppercase and an SQL translate to translate the left side of a
LIKE (the value in the database) to uppercase. Because the values in our product
table are in mixed case, we must translate both values to a common case or the
LIKE function will not work.

Our code extract of our searchrslt.d2w is shown in the following example:

%function(dtw_odbc) SEARCH_PRODUCTS() {
select PRODUCT.PRRFNBR, PRODUCT.PRNBR, PRSDESC from PRODUCT
where prpub=1 and prmenbr=$(MerchantRefNum) and (translate(prsdesc) like
'%@DTW_rTRANSLATE($(search))%')

%REPORT{

The demomall has more complex search functions integrated into it. Look at
these samples to get other ideas of how to create search pages.

In our ShopITSO sample, the customer enters a search word in the first window
(the HTML page). In the next window, they get the result. For the navigation flow,
see Figure 43 on page 81.

The result can be more than one product. From the Search Results page, a
shopper can choose a product and get to the corresponding Product page.

ca lled from

O rde r
S ta tu s
P ag e

N a vig atio nB a r2
D isp la y O rde r

S tatu s (5)

O rd e r
In p u t
P ag e

1 6= /cg i-b in /nc o m m e rce 3/E x ec M a cro /$ (S TO R E N AM E)/ord erls tc .d 2 w /in p ut

1 6
80 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 43. Navigation Flow for Search Page

The Search Input page is an HTML page search.html (17), called from the
navigation bar2. This HTML page uses the Net.Commerce command ExecMacro to
call the Net.Data macro searchrst.d2w/report, which shows the Search Result
page.

Figure 44 shows the search HTML page.

Figure 44. Search Input HTML Page

In the Net.Data macro, we use the Net.Commerce command ProductDisplay to
get the Product page for the chosen product. Figure 45 on page 82 shows our
Search Result page in our ShopITSO sample store.

Product
Page

(9)

called from

Search
Results

Page

NavigationBar2
Search

(2)

18=/cgi-bin/ncommerce3/ProductDisplay?prmenbr=m&prrfnbr=p

18

Search
Input
Page

17=/cgi-bin/ncommerce3/ExecMacro/$(STORENAME)/searchrslt.d2w/report

17
Planning: Site Design Considerations 81

Figure 45. ShopITSO Search Result Page

3.9.4.11 Navigation Flow Order Now Page
In the Order Now page, a customer can enter a product SKU number together
with a quantity they want to order. If the product is found, a result page is shown
to the customer with the product description and the values entered for the
customer. When the customer can accept the order, the Display Current Order
page appears as shown in Figure 46.

Figure 46. Navigation for Order Now Page

The Order Now Input page is built through the Net.Commerce command
ExecMacro, which uses the ordernow.d2w/input Net.Data macro section. In this
macro, the ordernow.d2w/report section is used to show the Results Page Accept.

19=/cgi-bin/ncommerce3/ExecMacro?$(STORENAME)/ordernow.d2W/REPORT

20=/cgi-bin/ncommerce3/OrderItemUpdate?merchant_rn=$(MerchantRefNum)&shipmode_rn=$(SHIPPING_MODE)
&product_rn="SKU"&quantity=Q&url "=/cgi-bin/ncommerce3/OrderItemDisplay?merchant_rn=$(MerchantRefNum

Display
Current Order

(10)

called from

Results
Page

accept

NavigationBar2
OrderNow (3)

20

Order Now
Page

19
82 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

This Net.Data macro also uses the Net.Commerce command OrderItem Update to
get the ordered item into the database together with the Net.Commerce
command OrderItemDisplay to show the next page, the Display Current Order
page.

3.10 Summary Store Design Considerations

Before you implement an e-business application, you have to complete some
planning steps. In this chapter, we discussed general store design
considerations. In addition, you should also go through the other planning
chapters in this book, for example planning the infrastructure, planning
integration with the back-end system, planning payment facilities, and so on.

For the general store design, you have to perform the following planning steps,
which can be done in parallel planning rounds:

1. Plan your general e-business behavior and define the appropriate rules for the
implementation.

The summary checklist (see 3.1, “General Considerations” on page 21) can be
used to address the major points that have to be considered.

2. Define your product catalog.

3. Plan how to create the image and multimedia files, your logo, and product
pictures.

4. Plan how you will work with product descriptions (HTML files).

5. Define how you will implement pricing (discounts) facilities.

6. Define the navigation flow in your e-business store.

7. Define the look and feel (the corporate identity) for the windows that are
shown to the customer.

8. Describe the functionality and content of each window.

9. Use frames and perhaps Java Script to enhance usability.

10.Link directly to special categories or products from your home page.

11.Create special search macros.

12.Database design

Look at the Net.Commerce database. Determine if additional tables or fields
are needed. If so, determine if new triggers for this enhancements are needed.

13.Map your navigation flow to Net.Commerce commands.

14.Select, verify, and perhaps change the overridable functions that you need for
the Net.Commerce tasks.

15.Establish maintenance procedures.

a. Use a database cleanup Utility.

b. Clear log files.

16.Performance issues.

a. Plan and use caching facilities.

b. Avoid using the Net.Commerce command ExecMacro whenever possible.
Use new overridable functions or commands instead.
Planning: Site Design Considerations 83

c. Always insert and update your database tables through the Net.Commerce
commands (APIs). Do not use Net.Data macros with SQL statements to do
this.

d. Perform back-end program calls asynchronously.

e. Use database cleanup facilities.

f. Use stress test tools.

17.Establish backup and recovery.

• Database backup
• Web pages and macros
84 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Chapter 4. Planning: Language Considerations

When installing Net.Commerce on a system, it is important that you verify your
primary language and your system CCSID. The language feature for English is
2924 and has a CCSID of 037.

When you configure the Net.Commerce instance, you need the following
information:

• Language feature — Refers to which language you have and want to use
regarding your Net.Commerce program.

The other fields regarding language automatically receive the recommended
settings based on the language feature code.

• CCSID — The CCSID that your system is using.

• Language ID — The Net.Commerce instance and the database collection is
created based on this value.

• Locale — Refers to where the locale object is located.

A locale is the definition of the subset of a user's environment that depends on
language and cultural conventions.

• Default file system CCSID — The CCSID that the Web server instance uses,
which corresponds to the Net.Commerce instance.

• Default Net CCSID — The CCSID that the Web server uses to determine the
ASCII to EBCDIC translation that is required for incoming requests and HTTP
responses.

If you are planning to install an English version of Net.Commerce, you may need
to change some of the parameters to be suitable for your environment. We do not
recommend that you change any of these values unless you are an advanced
user.

Note: Make sure you have the latest PTFs installed on your AS/400 system.
© Copyright IBM Corp. 1999 85

86 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Chapter 5. Planning: Integration with the Back-End Systems

Integration with back-end or existing applications is the key to developing a
successful Net.Commerce site. The integration process usually involves both
applications and data.

Net.Commerce provides a high degree of customizing, and has a rich set of
overridable functions (OF). These OFs provide the mechanism by which legacy
application functions can be incorporated into the Net.Commerce environment.
The OFs can also be used to add a new function that may not be present in the
legacy applications. The OFs and supporting documentation are described in
detail in the Net.Commerce manuals. This chapter provides a high-level overview
of how Net.Commerce can be integrated with legacy applications and data.

While using the OFs to customize the Net.Commerce environment is optional,
most customers find that integrating legacy data is mandatory. Most customers
who have products, goods, or services that they wish to make available in a
Net.Commerce environment already have an "inventory" file, and require that
information to be used by Net.Commerce.

As described in earlier chapters, Net.Commerce uses its own files, and cannot
simply point to existing files. The challenge then becomes how to integrate the
existing information or data into the Net.Commerce files.

5.1 Data Mapping

The first step in the data mapping process is to understand the Net.Commerce
database schema. This includes the tables, required fields, and primary and
foreign keys. This information can be found in the guide Net.Commerce for
AS/400 Commands, Tasks, Overridable Functions, and Database Tables
(dbtodcmd.pdf), which is shipped in softcopy form with the Net.Commerce
product. You should review the tables and fields used by Net.Commerce and the
information required to fill these fields with meaningful data. You should develop
a paper table that maps the Net.Commerce data that you need with the source of
the data in your existing back-end system. Refer to 15.3, “Importing Data by
Example” on page 330, to see the technique that we used in our sample store.

5.2 Integrating the Data

In addition to the integration of legacy application functions into the
Net.Commerce environment, it is important to be able to integrate legacy
application data. While some view the task of integrating function, which requires
"programming" to be more difficult than integrating data, true integration of data
may require more skill. This is due to the dual aspects of integrating data.

First is the task of populating the Net.Commerce database with legacy data.
There are several techniques that can be used to accomplish this. Most are
reasonably straightforward, if not a bit tedious. Second, and perhaps more
importantly, is the task of keeping the Net.Commerce data and the legacy data
fully synchronized, so that changes to either set of files is replicated in the other.
This task may require a combination of data management skills and programming
skills, depending on the particular implementation.
© Copyright IBM Corp. 1999 87

For our design, we elected to develop an RPG program that generates a mass
import file. This file can be used to do an initial load and on a periodic basis, to
re-sync our Net.Commerce database. In addition, we elected to use triggers to
add products as they are added to the back-end system.

5.3 Integrating with Applications

Net.Commerce is a front-end application that provides the tools to quickly set up
and populate a mall through which shoppers can browse and place orders.
However, shoppers cannot purchase anything unless Net.Commerce is linked to
a back-end system that actually fulfills the order and collects the payment.
Net.Commerce requires the following back-end systems to complete the
shopping process:

• Payment system that verifies and collects credit card payment for goods
purchased

• Accounting system that handles inventory, invoicing, and accounts receivable

• Order fulfillment that handles the shipping of purchased goods

Net.Commerce provides macros and overridable functions that can be used to
link to these systems. With these links in place, Net.Commerce provides a
complete Internet shopping experience from browsing for products to actually
purchasing online followed by delivery.

When linking Net.Commerce to existing, applications you can:

• Create new commands — Net.Commerce commands represent a business
process such as processing an order.

• Modify or create overridable functions — Overridable functions in
Net.Commerce are a precise piece of business logic such as the updating of
product inventory.

• Modify or create Net.Data macros.

5.4 Synchronizing the Net.Commerce Database with Back-End Data

Overridable functions (OF) are the recommended way to deal with situations
where Net.Commerce changes data arising out of shopping activities, such as
inventory or shipping. However, there are certain cases where you have to use
some other approach to synchronize the Net.Commerce database with some
back-end or legacy system database. Some examples are:

• To read from the Net.Commerce database into a back-end system. For
example, you may want to synchronize shopper demographics with your data
warehouse.

• When there is no OF available. For example, a shop selling gambling tickets
may have rapidly changing ticket (product) descriptions, depending on the
state of the game. There is no OF that deals with product descriptions, so this
can be written directly into the database with some process that synchronizes
the descriptions with another table.

• For mass scale updates. You may want to update all product names in a
particular category because your branding has changed.
88 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

• For connectivity or security reasons. You may not want to link
Net.Commerce to your legacy system directly, because of your company's
security policies, because your legacy system is on a platform or data format
that cannot be linked easily, or because you do not have enough information
about your back-end system to code the links. In these and other cases, it may
be easier to write a batch update program that periodically updates prices,
taxes, inventory, and so on directly into the Net.Commerce database and does
not change the behavior of the OF set.

• For performance. An OF task may be quite slow because it incurs repeated
overheads. It may also improve performance if data, such as price, was
directly available in the Net.Commerce database.

The following methods can be used for database synchronization:

• Mass import, as discussed in 10.4, “Populating the Net.Commerce Database”
on page 170, can be used to update the Net.Commerce database. Some code
needs to be written to generate an input file of the required format from the
back-end data. Mass import can then be run against this file periodically using
the job scheduler.

• Synchronization tools such as Data Propagator or Data Mirror. In this case,
the user has to consider if the replication is one-way or both-ways: Can the
tool handle updates being done at both ends? Also, replicating tools such as
data propagator generally updates identical tables or columns. Therefore, it
may be necessary to create a large number of definitions if your back-end
data does not match Net.Commerce data closely in structure. However, if the
definitions are in place, these tools can provide reliable and usually very
efficient replication.

• Custom daemons that copy data periodically from one set of tables to
another. This requires you to invest more heavily in programming and
maintenance of code. This approach is useful when there are special
requirements such as a stockbroker reading prices from an online information
service or cases where only a subset of the data needs to be updated.

We strongly recommend that you use overridable functions (not Net.Data
macros) to update database information. For performance reasons, the
rollback and commit process is controlled in Net.Commerce, not Net.Data. This
makes it possible for a Net.Data macro running within Net.Commerce to
request a database update, and fail without returning a fail code.

Important
Planning: Integration with the Back-End Systems 89

90 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Chapter 6. Planning: Payment Collection

This chapter contains the information you must know to be able to use different
payment methods. The major advantage of SET over existing security systems is
the addition of digital certificates that associate the cardholder and merchant with
their financial institutions and the respective payment brands, for example,
MasterCard, Visa, and so on. Digital certificates reinforce existing trusted
business relationships and protect against fraud at a level that existing systems
do not. For example, SSL provides security in the transmission of sensitive data,
but does not guarantee the identity of the parties involved in the transaction

6.1 Secure Electronic Transaction (SET)

SET is an open-network payment-card protocol that provides greater
confidentiality, greater transaction integrity, and less opportunity for fraud at all
transactions points than any other existing secure payment system. The process
involves a series of security checks performed using digital certificates, which are
issued to participating purchasers, merchants, banks, and payment brands.

There are five main parties involved in a SET transaction:

• The cardholder

• The merchant

• The issuer (the customers financial institution, which provides the payment
card to the customer and the payment to the merchant)

• The acquirer (the merchants financial institution, which enables the merchant
to accept a payment card brand and issues the captured payment to the
merchant)

• The certificate authority (a trusted third party that can certify the identities of
the customer, the merchant and the acquiring institution to each other)

Four of these parties require their own SET software. The issuer communicates
with the acquirer over a secure network or other communications channel, and
therefore, does not need a secure Internet implementation.

SET has four components:

• A Cardholder Wallet component that is run by an online consumer enabling
secure payment card transactions over a network. SET Cardholder Wallet
components must generate SET protocol messages that can be accepted by
SET Merchant, Payment Gateway, and Certificate Authority components.

• A Merchant Server (Payment Server) component that is run by an online
merchant to process payment card transactions and authorizations. It
communicates with the Cardholder Wallet, Payment Gateway, and Certificate
Authority components.

• A Payment Gateway component that is run by an acquirer or a designated
third party that processes merchant authorization and payment messages
(including payment instructions from cardholders) and interfaces with private
financial networks.

• A Certificate Authority component that is run by a certificate authority that is
authorized to issue and verify digital certificates as requested by Cardholder
© Copyright IBM Corp. 1999 91

Wallet components, Merchant Server components, or Payment Gateway
components over public and private networks.

Some benefits to merchants for implementing SET are:

• Increased sales from existing online shoppers who can now more confidently
expand the number of merchant sites where they shop

• Additional sales from consumers who were traditionally constrained from
electronic shopping due to their concerns about security on the Internet

• Increased savings through a reduction of exception handling

• Reduced costs associated with fraud

The SET logo or SET mark is a visible symbol signifying that software complies
with the SET specification (Figure 47).

Figure 47. SET Logo

For more information about SET, read the redbook Secure Electronic
Transactions: Credit Card Payment on the Web in Theory and Practice,
SG24-4978. You can also refer to the site on the Web at: http://www.setco.org

6.1.1 Payment Server
The Payment Server provides payment services on the Internet by taking credit
card payments from consumers. The Payment Server runs at a merchant, and is
used in conjunction with online shopping software such as Net.Commerce. It
supports the SET protocol developed by Visa, Mastercard, IBM, and others. The
SET protocol uses strong cryptographic techniques to ensure the transaction
data is kept private and not improperly modified.

The Payment Server can obtain credit card approvals and capture funds by
communicating with a payment gateway, which runs at a bank (typically called an
acquirer). In addition, it can process deposits and credits or perform reversals.

Figure 48 on page 93 shows the other servers with which the Payment Server has
to interact.
92 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 48. Payment Server

The certificate authorities (CAs) are divided in brands and server type. For more
information, see 6.1.3, “SET Certificate” on page 95.

6.1.2 A Payment Server Transaction
The Payment Server interacts with other applications and servers to achieve
Secure Electronic Transactions. Also, the Net.Commerce e-business application
has commands to work with the Payment Server.

There are two Net.Commerce commands you can use. One works with the
eWallet of your customer, as described in 6.1.2.1, “Net.Commerce SET
Command” on page 93. The other works without eWallet. See 6.2.1, “Merchant
Originated Payment” on page 96, for more information.

6.1.2.1 Net.Commerce SET Command
The Net.Commerce SET command is used to ask the server to send a SET
wakeup message to the cardholders browser to launch the wallet application.
This command is launched when the cardholder clicks on the Purchase With My
Wallet button of the order page. The SET wallet will be displayed and the shopper
can pay for the order.

http://host_name/cgi-bin/ncommerce3/pay_wakeup
?merchant_rn=merchant_ref_num&order__rn=order_ref_num

6.1.2.2 The Payment Flow
The steps following Figure 49 on page 94 describe the process of a typical
transaction using the IBM Payment Server.

SET Payment Flow

Registry, CA

Net.Commerce

Payment
Server

Payment
GatewayeWallet

Browser

HTTP Flow

UserExit

Api

Merchant Host

SET Certificate Flow SET Certificate Flow

Certificate FlowSET
Planning: Payment Collection 93

Figure 49. Payment Server Transactions

1. A cardholder decides to make a purchase.

2. When the cardholder clicks the Buy button, a pay_wakeup command is sent to
the Merchant Server, such as Net.Commerce.

3. The Net.Commerce server calls the Payment Server etReceivePayment() API.

4. That command causes the Payment Server to send a payment initiation
message, known as a wakeup message, back to the Net.Commerce server.

5. The Net.Commerce server passes the message back to the cardholder’s
browser.

6. This message starts the cardholder’s wallet software.

7. The wallet software sends the PInitReq, Payment Initialization Request, to the
Payment Server.

8. A PInitRes, Payment Initialization Response, message is generated by the
Payment Server and sent back to the cardholder.

9. The wallet displays the Verify Merchant dialog box to the cardholder, who
clicks OK. This causes the wallet software to send the PReq, Purchase
Request, message to the merchant. This message includes the order
information, the payment card information, and the cardholders certificate, all
encrypted and digitally signed.

10.The Payment Server checks to see if authorization should be done at this
point. For example, if the merchant’s acquirer is closed on that day, the
process may be delayed until the acquirer is available.

eWallet

Web
Server

Payment
Server

Browser
Net.Commerce

Server

Payment
Gateway,
Acquirer

Bank

2

5

1

7

8

9 10

11

12

13

14
15

Payment
Gateway,
Acquirer

18

19

20

21

16

Back end
system

173
6

4

94 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

11.When authorization can be done, the server generates an AuthReq,
Authorization Request, sends it to the acquirer, and waits for AuthRes, an
Authorization Response message.

12.The acquirer software or Payment Gateway receives the request. Using a
normal back-end network or other communication channels, the acquiring
institution contacts the cardholders issuing institution. It checks that the
payment card is valid and that the cardholder has sufficient funds or credit to
make the purchase.

13.The AuthRes message is received by the Payment Server and processed.
Information is stored in the database for record-keeping and further order
processing.

14.A PRes or Purchase Response message is generated by the Payment Server
and sent to the cardholders wallet application.

15.Assuming the Payment Gateway has confirmed authorization, the PRes tells
the wallet software that the order has been authorized.

16.The merchant can now fulfill the order.

17.When the goods are shipped, the merchant requests payment.

18.The merchant now begins the capture process by sending a Capture Request
to the Payment Gateway. Capture is the transfer of funds from the
cardholder’s issuing institution to the merchants acquirer and onward to the
merchant.

19.The acquirer software receives the capture request and sends it a capture
response message.

20.The acquirer uses the closed (back-end) network to contact the cardholders
issuing institution and request the transfer of payment.

21.The acquirer deposits the payment to the merchant’s bank account.

6.1.3 SET Certificate
The digital certificates that are used in SET are not the same digital certificates
that are used during normal SSL. The Payment Server is not using SSL. The
Payment Server performs its own encryption of the payment data in a manner
which is much more secure than SSL. The SET process uses special certificates
and 128-bit encryption for the credit card information, even outside of North
America.

The SET specification requires a hierarchy of trust that is very similar to today’s
global payment system model. Cardholders and merchants have trusted
relationships with their financial institutions. The financial institutions have
existing relationships with one or more payment card brands. Because of the
open network environment, SET requires an additional level of trust to
authenticate the individual brands. An overall industry entity defined as the SET
root certificate authority (CA) authenticates the brands within the SET trust
hierarchy.
Planning: Payment Collection 95

Figure 50. Brand CA

SET represents and verifies each of these trusted relationships through the
issuance of digital certificates. The SET root CA issues digital certificates to
brands that meet SETCo’s brand requirements. A brand is an entity that issues
payment cards with its own distinct logo. Once a brand issues its certificates, the
brand can then sign the certificates and issue them to Cardholder CAs, Merchant
CAs, and Payment Gateway CAs.

To use SET as a merchant, you must register with a certificate authority (CA)
before you can receive SET payment instructions from cardholders or process
SET transactions through a payment gateway. You also need a copy of the
registration form from your financial institution. Your software must identify the
acquirer to the CA. For the latest information about CA for SET, go to the Web
site at: http://www.setco.org

6.2 SET without a Wallet

Another scenario to consider is when the cardholder only uses a Web browser
and supplies credit card information directly to the merchant. The credit card
information is protected by SSL when it flows to the merchant. The Payment
Server still communicates with the Payment Gateway using the SET protocol.
The IBM solution for that is Merchant Originated Payment.

6.2.1 Merchant Originated Payment
Credit card authorization through the IBM Payment Gateway, also called
Merchant Originated Payment, provides merchants with an option for shoppers
who want security without having to download and install a wallet.

Root CA

Brand CABrand CA Brand CA

Cardholder
CA

Merchant
CA PGWY CA

Cardholders Merchants
Payment
Gateway
96 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

In a typical SET implementation, the merchant customizes order forms to allow
shoppers to request the payment Initiation message, also known as the wakeup
message, from the Net.Commerce server. When the shopper’s Web browser
receives this payment initiation message, the browser launches a wallet
application, such as the IBM Consumer Wallet, which must already be installed
on the shopper’s machine. Shoppers specify payment card information, and
select the payment card to use from the wallet application window.

With Merchant Originated Payment, the wallet is not necessary. Merchant
Originated Payment is an IBM extension based on the SET protocol that allows
the merchant to receive credit card information through any mechanism, such as
over the phone or through the store’s online order forms. If the shopper submits
credit card information through the store’s online order form, when the form is
submitted, the credit card information is encrypted using SSL. It is then passed to
the acquirer, using regular SET messages, through the IBM Payment Gateway.
However, Merchant Originated Payment does not perform cardholder
authentication the way that a wallet application does. It is an attractive payment
method because shoppers do not need to download and install the wallet
software. Note these points:

• From the IBM Payment Gateway point of view, the Merchant Originated
Payment is the same as a regular payment transaction, without cardholder
authentication. The acquirer must also use the IBM Payment Gateway.

• To support Merchant Originated Payment, the Payment Gateway’s encryption
certificate must specify cardCertRequired=FALSE.

The Net.Commerce command for working with the merchant originated payment
is pay_accept?merchant_rn=$(MerchantRefNum)&order_rn=$(order_rn).

You use the Net.Commerce command pay_accept instead of the OrderProcess

command.

6.3 Payment Server Planning Tables

To use the Payment Server, there are some tasks that you must perform. Use
Table 6, Table 7 on page 98, Table 8 on page 99, and Table 9 on page 100 when
you plan the Payment Server installation.

Table 6. Payment Server Check Table

The Payment Server must be installed and created prior to configuration of the
Net.Commerce server. Otherwise, you cannot select to use the Payment Server.
You have the possibility to install the Payment Server later and then return to the
Net.Commerce configuration and change the setting.

You can only use one Net.Commerce instance per Payment Server. However, the
Payment Server can support multiple merchants and several brands.

Information Needed to Install and Configure the Payment Server Answer

Is the information in Table 7, 8, and 9 filled in?

Is the firewall configuration updated?

Is the Payment Server installed and created?
Planning: Payment Collection 97

The merchant reference number must be unique. You can have merchants with
the same merchants number in different instances.

You need the following information to complete the acquirer configuration on your
Payment Server. These fields are shown in Table 7.

Table 7. Acquirer Configuration Planning Worksheet

Field Name Value Description

Merchant number Required field — Numeric character string, 1-9 characters,
Valid values: 0-999999999:
This field can only be chosen from the list of merchants
previously configured as payment systems

Account number Required field — Numeric character string:
Obtain this value from your acquirer.

Signing brand ID Required field — Text string, 1-40 characters. The Brand ID
from the certificate of the signing brand.
Note: A merchant may support multiple brands but only one
signing brand ID per Acquirer.

SET profile Required field — Integer:
The numeric representation for the acquirer profile the
merchant is using for batch transactions. Obtain this value
initially from your acquirer.

Start time Optional field — Expressed as number of minutes after
midnight in the merchant's local time; 0=midnight:
Time of day the acquirer opens for business.

Stop Time Optional field — Expressed as number of minutes after
midnight in the merchant's local time; 0=midnight:
Time of day the acquirer closes for business.

Gateway host name Required field — Text or numeric string, 1-40 characters:
Internet host name or IP address of this Payment Gateway.

Gateway port Required field — Numeric character string, default=8888:
Port number where this acquirer accepts messages from this
particular merchant.

Gateway protocol Required field — HTTP-must be in uppercase:
Protocol used by the acquirer (HTTP).

Maximum number of
connections

Required field — Numeric character string,
> or = to 1; default=1:
Maximum number of sockets, or connections on the channel.

Read timeout Required field — Number in seconds, 1 - 65535;
default=30: Number of seconds to wait for a Payment
Gateway to read a SET message from a socket before timing
out on a socket. It is also the time between replays.

Number of immediate
retries

Required field — Numeric character string, 0-65535,
default=0:
Maximum number of replays in a row before waiting for the
interval specified on Delayed retry interval.

Delayed retry interval Required field — Number of minutes, 0-65535; default=0:
Number of minutes to wait after the maximum number of
replays has been reached before trying again.
98 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

You need the following information to complete the acquirer brand configuration
on your Payment Server. The fields shown in Table 8 are required.

Table 8. Acquirer Brand Configuration Worksheet

Confirm delay code Optional field — Numeric character string, default=blank:
Set this field to blank unless your acquirer gives you a value.

Confirm delay time Optional field — Number in minutes; default=blank:
Set this field to blank unless your acquirer gives you a value.

Pending delay code Optional field — Numeric character string; default=blank:
Set this field to blank unless your acquirer gives you a value.

Pending delay time Optional field — Number in minutes; default=blank):
Set this field to blank unless your acquirer gives you a value.

Field Name Value Description

Brand ID Required field — Text string 1 to 40 characters long-case
sensitive: Payment card brand. Obtain this value from your
acquirer.

Acquirer bank ID (BIN) Required field — Numeric string, 1 to 6 characters long:
Unique identifier for this acquirer for the brand. Obtain this
value from your acquirer.

Acquirer business ID Required field string — 1 to 32 characters long:
The business identification number of this acquirer. Obtain
this value from your acquirer.

Merchant ID Required field — Numeric character string, 1 to 30
characters long:
The SET Merchant ID. Obtain this value from your acquirer.

Have certificate Required field — Default=No:
If set to No, the Payment Gateway's certificate is requested
from the Acquirer when the Payment Server is started. The
Payment Server then changes the setting to Yes.

Terminal ID Optional to SET message, but may be required by acquirer;
numeric character string.

Chain number Optional to SET message, but may be required by the
acquirer, numeric character string.

Store number Optional to SET message, but may be required by the
acquirer, numeric character string.

Agent number Optional to SET message, but may be required by the
acquirer, numeric character string.

Field Name Value Description
Planning: Payment Collection 99

You need the information in Table 9 to request the Payment Server SET
certificate.

Table 9. Payment Server Certificate Planning Worksheet

With the information from the above tables, you are ready to configure your
Payment Server.

6.4 Back-End Systems (PO)

You have to decide how you are going to check the authorization and how you are
going to request capture. To enable manual capture, authorization and credit
transactions, and reversals of payments, you can use the Store Manager. The
Store Manager lets you mark the orders you wish to process. Capture is the
process by which your acquirer receives the payment from the customer’s
financial institution and remits the payment to you.

The following list shows the different alternatives from which you can choose. If
you are going to use a back-end system to perform order fulfillment, you may
want to request capture from the acquirer automatically when the order is fulfilled.
Then, you may select the default value, Auto Auth, and Manual Capture. You have
to update the SETSTATUS Net.Commerce table. For more information, see 17.4,
“Requesting Capture upon Order Fulfillment” on page 398. These values are
defined here:

Auto Auth and Manual Capture (the default)
When the cardholder places the order, the system automatically seeks
authorization for the purchase. However, you must initiate capture
manually (for example, after the order is fulfilled).

Auto Auth and Auto Capture
When the cardholder places the order, the system automatically seeks

Field Name Value Description

Request URL Required field — Case sensitive; provided by the acquirer.

Financial Institution 125 Required field — Questions depending on the CA being
used. Review the information you type on this screen. Errors
in this information will result in errors on your certificate.

Merchant Name Required field — Questions depending on the CA being
used. Review the information you type on this screen. Errors
in this information will result in errors on your certificate.

Merchant City Required field — Questions depending on the CA being
used. Review the information you type on this screen. Errors
in this information will result in errors on your certificate.

Merchant State Required field — Questions depending on the CA being
used. Review the information you type on this screen. Errors
in this information will result in errors on your certificate.

Merchant Postal Code Required field — Questions depending on the CA being
used. Review the information you type on this screen. Errors
in this information will result in errors on your certificate.

Merchant Country Required field — Questions depending on the CA being
used. Review the information you type on this screen. Errors
in this information will result in errors on your certificate.
100 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

authorization. Upon receiving confirmed authorization, the system
then automatically initiates capture. Whether the authorization and
capture requests are sent as one message or as two separate
messages is determined by the profile used by the acquirer.

Manual Auth and Manual Capture
Authorization and capture are each initiated separately. Capture can
be initiated only after authorization has been achieved, at which time
the transaction status becomes Capture Ready.

Manual Auth with Auto Capture
Authorization and capture are initiated manually as a single message.
Planning: Payment Collection 101

102 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Chapter 7. Planning: Tools to Build the Site

This chapter lists some tools that you may find useful in administrating and
customizing the Net.Commerce site on the AS/400 system. Please note that this
is only a partial list of tools. You may find it beneficial to use some other tools
such as an HTML authoring tool and so on.

7.1 Net.Data SQL Assist Tool

The Net.Data SQL is a useful tool for developing Net.Data macros to be used
with Net.Commerce. This section includes information about how to obtain and
use the tool.

7.1.1 General Description
The Net.Data SQL Assist is a Java-based GUI SQL statement builder that
supports these features:

• An easy-to-use, proven GUI to guide the user through the process of building
SQL statements

• Builds SELECT, INSERT, UPDATE, and DELETE statements (including
SELECT DISTINCT)

• Allows a user to build multiple conditions (including value lookup, AND/OR,
type sensitive entry fields)

• Join tables (inner, right outer, and left outer)

• Select fields to be viewed

• Select sort order

• Allows a user to enter user-defined variables (such as usrvar1) to be used in
conditions, values, and so on

• Generates a Net.Data macro file to execute the constructed SQL statement

To run the Net.Data SQL Assist from your PC, you must have the following
software:

• Java Development Kit (JDK) or Java Runtime Environment (JRE) 1.1.x. This is
available on the Web at: http://www.javasoft.com

• Access to the AS/400 Toolbox for Java. For more details, go to the Web site
at: http://www.as400.ibm.com/toolbox/welcome.htm

• The Net.Data SQL Assist Jar File from the Web site at:
http://www.software.ibm.com/data/net.data/tools/index.html

7.1.2 Using the Tool
Download the Net.Data SQL Assist tool from the Web site at:
http://www.software.ibm.com/data/net.data/tools/index.html

Place the tool into a directory on your PC (inst_dir).

The Net.Data SQL Assist is started from the command line and contained in the
file {inst_dir}/NetDataAssist.jar.
© Copyright IBM Corp. 1999 103

To start Net.Data SQL Assist with the Java Development Kit (JDK), type:

java -classpath %CLASSPATH%;{inst_dir}/NetDataAssist.jar;o:/jt400.zip
NetDataAssist

Here, o: is the drive mapped to the AS/400 Java Toolbox directory, and inst_dir is
the directory that contains the Assist tool.

To start Net.Data SQL Assist with the Java Runtime Environment (JRE), type:

jre -cp %CLASSPATH%;{inst_dir}/assist/NetDataAssist.jar;o:/jt400.zip
NetDataAssist

Here, o: is the drive mapped to the AS/400 Java tool box directory, and inst_dir is
the directory that contains the Assist tool.

If your installation is complete, you should see the welcome display shown in
Figure 51.

Figure 51. Net.Data SQL Assist Welcome Page

Click on Next to proceed to the next window. You receive the logon display as
shown in Figure 52 on page 105.
104 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 52. Log on to the AS/400 System

In the window shown in Figure 52, you must connect to your AS/400 system using
JDBC. Specify this information:

• Database URL must be jdbc:as400 followed by the AS/400 name or IP
address.

• Userid is an existing AS/400 user profile.

Driver must be AS/400 Toolbox for Java. The AS/400 toolbox classes must be in
the CLASSPATH environment as mentioned in the previous section.

Click Connect to connect the AS/400 system. If your AS/400 system was not
found or the AS/400 Java Toolbox was not found, a Java error window appears.
Upon successful connection, you should see a list of tables in the database as
shown in Figure 53 on page 106.
Planning: Tools to Build the Site 105

Figure 53. List of Tables in Schema

You are now in the main SQL designer. Click Filter table(s) to select subset from
the table list. Click View schema(s) to switch to a different library.

The SQL assistant builds an SQL statement upon your selections. You can use
the tool to perform row and column selections, join tables, sort the results, and so
on. At the end, a Net.Data macro, which will implement your request, is
generated by the tool as shown in Figure 54.

Figure 54. The Net.Data Macro Generated by SQL Assist
106 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

You can now save the generated Net.Data macro to your AS/400 system. To do
so, you must either map PC drive to the AS/400 IFS system or save the macro to
a local directory and then FTP it to the AS/400 system.

We recommend that you save your macro in the root file system and not in the
/QSYS.LIB file system. For example, you may save the macro directly to the
Net.Commerce macro directory:
/QIBM/UserData/NetCommerce/instance/<instance_name>/macro.

To run this macro, invoke the report section from your browser, for example:
http://www.myas400.com/cgi-bin/db2www/macrofilename/report

7.1.3 Usage Tips
Here are some tips that we found useful when using the Net.Data Assist tool with
the AS/400 system:

• Because the Net.Data assist is a general tool, it produces a macro with a few
lines that are not needed by the AS/400 system. We recommend, for security
reasons, that you manually remove the following lines from the macro:

– %DEFINE DATABASE="AS01.ITSOROCH.IBM.COM"

– %DEFINE LOGIN="youruser"

– %DEFINE PASSWORD="yourpass"

• SQL assist automatically generates macros that retrieve up to ten rows in one
SELECT statement, and allows you to scroll to the next and previous 10 rows.
You can change the number of rows by adjusting the value of
RPT_MAX_ROWS in the macro.

• If you save your macro in a directory or physical file that is not defined to
Net.Data, you should modify the db2www.ini file MACRO_PATH statement to
allow Net.Data to point to the directory of file. See the Net.Data documentation
for further details.

• The SQL assist uses AS/400 Java Toolbox classes to connect to the
database. If a low-speed communication link connects your AS/400 system
and your PC, the performance of loading the Java Toolbox classes from the
AS/400 system may be unacceptable. In this case, having the classes on the
PC is a better solution. Copy the jt400.zip file from the directory on the AS/400
system to directory on your local PC. The local directory on the PC must be
included in your classpath.

7.2 Entering SQL Statements Using Operations Navigator or SQLUTIL

Net.Commerce works with DB2/400 using the SQL language. All the
documentation and samples provided for the product use SQL to interact with the
database. Therefore, you must familiarize yourself with SQL syntax, terminology,
and tools.

Always test the Net.Data SQL Assist generated macro files against a test
database first to ensure that the macro file does what you expect.

Note
Planning: Tools to Build the Site 107

SQL runtime support is part of the operating system. Some other parts of SQL
are:

• Licensed program product 5769-ST1, DB2 Query Manager and SQL DevKit
for AS/400, contains the SQL precompilers, the SQL interactive interface
(STRSQL), and the ability to run SQL commands from a source file using the
RUNSQLSTM command.

• DB2 Query manager provides a prompt driven interactive interface to SQL
statements. The REGOFS and RQSCAP commands listed in Appendix A,
“Source Code Samples” on page 463, use the DB2 Query Manager.

• Client Access ODBC driver allows windows applications that are written to
MICROSOFT ODBC specifications to transparently access AS/400 database
information. For more details on ODBC driver configuration, see Chapter 18,
“Generating Net.Commerce Reports” on page 403.

• SQL call-level interface allows users of any ILE language to access SQL
functions.

7.2.1 SQLUTIL Command
The SQL Utility (SQLUTIL) command is a "green screen" interface to SQL
statements. It is provided "as is" by IBM, along with other useful tools to work with
stream files.

The tools are provided through PTF SF49052 and are included in Cumulative
Package C8230430. You can also download the tools from the Web site at:
http://service.software.ibm.com/dl/sap/saptools-d

After following the instructions for creating the tools, the SQLUTIL command is
created in library QGPTOOLS. Add the QGPTOOLS library to your library list type
SQLUTIL and press F4. The prompt shown in Figure 55 appears.

Figure 55. SQLUTIL Prompt

Start SQL utility (SQLUTIL)

Type choices, press Enter.

Output * *, *PRINT, *OUTFILE
Commitment control *NONE *NONE, *CHG, *CS, *ALL, *RR
Naming convention *SYS *SYS, *SQL
File to receive output Name

*LIBL Name, *CURLIB, *LIBL
Output member options:
Member *FIRST *FIRST
Replace or add records *REPLACE *REPLACE, *ADD
108 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

The command parameters are shown in Table 10.

Table 10. SQLUTIL Parameters

Press Enter in the prompt to display a line screen, as shown in Figure 56, where
you can type SQL commands. There is no F4 prompt support for the SQL
commands.

Figure 56. SQLUTIL Screen

SQLUTIL is a very basic tool. There is no prompt support for the SQL commands.
If you perform the select statement, it displays the result using default formatting.
However, you may find it useful for ad hoc SQL statements.

7.2.2 Operations Navigator
Operations Navigator is a Windows-like graphical interface included with your
system's base software that allows you to point-and-click your way through the
AS/400 administration tasks. The installation and configuration of the product can
be viewed on the Web at: http://www.as400.ibm.com/tstudio/opsnav/navframe.htm

The AS/400 Operations Navigator database administration function is primarily
an SQL-based graphical interface to the DB2/400 database. It also allows you to
send direct SQL statements to the DB2/400 database.

Parameter name Description

Output
(OUTPUT)

Specifies whether the output from the command is shown at the requesting workstation,
printed with the job's spooled output, or directed to a database file.

Commitment control
(COMMIT)

Specifies whether SQL statements are run under commitment control.

Naming convention
(NAMING)

Specifies the naming convention used for objects in SQL statements. *SYS is the system
naming convention and *SQL is for SQL naming convention.

File to receive output
(OUTFILE)

Specifies the database file that receives the query output.

Output member options
(OUTMBR)

Specifies the name of the database member to which the output is directed. The possible
action to take values are:
*REPLACE - The file is cleared before new records are inserted.
*ADD - New records are added after any existing record.

Type SQL statement, press Enter.

select * from work/ofs__
__
__

F3=Exit F9=Retrieve
Planning: Tools to Build the Site 109

After Operations Navigator is installed and configured, use the following
procedure to send the SQL statement to the database:

1. On the IBM AS/400 Client Access folder, click on Operations Navigator.

2. Move the cursor to the AS/400 system with which you wish to work. Click on
the + symbol to the left of the system name.

3. Scroll down and right-click on Database.

4. The menu shown in Figure 57 appears. Click on Run SQL Statement.

Figure 57. Operations Navigator Pop-Up Menu

5. Enter any valid SQL statement to run with the DB2/400 database. In our
example, we selected the product number and product description from all
rows of our product table in our WORK instance (Figure 58).

Figure 58. Operation Navigator SQL Interface

6. Click Run. The SQL statement executes and the results are returned to your
PC screen. Figure 59 on page 111 shows a partial list.
110 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 59. Operations Navigator SQL Result Set from Select Statement

Note: You should only use this SQL interface if you are familiar with the SQL
syntax.

7.3 Stream File Handling Tools

Net.Commerce keeps some of its files in the root file system. For example, the
initialization (INI) files for each instance are located in the
/Qibm/UserData/NetCommerce/instance/<instance_name> directory. IBM provides
tools for working with stream files directly from the AS/400 command line. The
tools are provided "as is" through PTF (SF49052) and are included in the
cumulative package, C8230430. You can also download the tools from the
Internet at: http://service.software.ibm.com/dl/sap/saptools-d

The current list of tools in the package includes:

DSPSTMF Display Stream File
EDTF Edit File
FINDBNDSP Find Bound Service Program
FINDMODS Find Modules
MODEXPORTS List Module Exports
RCLSPACE Reclaim Space
SQLUTIL SQL Utility (Described in this chapter)
SAVTOSTMF Save To Stream File
RSTFRMSTMF Restore From Stream File
CPYFRMSAVF Copy From Save File
CPYTOSAVF Copy To Save File

You may find EDTF to be the most useful tool in the package. After you install the
tools, you can test the EDTF command. Type EDTF and press F4. The command
prompt shown on Figure 60 on page 112 appears.
Planning: Tools to Build the Site 111

Figure 60. EDTF Command Prompt

The EDTF Command parameters are shown in Table 11.

Table 11. EDTF Command Parameters

Press the Enter key. You will see a screen-line editor, which is similar to an SEU
as shown on Figure 61 on page 113. The editor automatically detects the file type
(ASCII or EBCDIC). Press F1 to display a help screen with the available line
commands. To activate the command line, press the command to the left of the
requested line. For example, press "D" to the the left of a specific line to delete
that line.

On the editor screen, press F3 to exit and save the edited file.

Parameter Description

Stream file to edit The full path and name of the stream file you
wish to edit. *DBFILE lets us edit database
file whose name is written in the database
file to edit parameter.

Member to be edited The member name we wish to edit.

Edit Files (EDTF)

Type choices, press Enter.

Stream file to edit: '*DBFILE'

DataBase file to edit: Name
Library: *LIBL Name, *LIBL, *CURLIB

Member to be edited: *FIRST Name, *FIRST
112 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 61. EDTF Editing Screen

7.4 Adding a Soft Link to QSYS.LIB Objects

If you are using the CPYTOSTMF or CPYFRMSTMF command, many times you
may find it convenient to add a link to your QSYS.LIB files. An example of this
technique is shown in Figure 62.

Figure 62. Adding Link to QSYS.LIB

After the link is created, the following two statements produce the same result:

CPYTOSTMF FROMMBR('/qsys.lib/netcbe.lib/qcppsrc.file/getprice.mbr')
TOSTMF('/usr/test')

CPYTOSTMF FROMMBR('/qcppsrc/getprice.mbr') TOSTMF('/usr/test')

Note that the added link allows us to replace the long file name with the
equivalent short link name (qcppsrc). This can result in shortened amounts of
keying and fewer mistakes.

Record . : 1 of 89 by 9 Column: 1 of 62 by 74
Control :

CMD+....1....+....2....+....3....+....4....+....5....+....6....+....7....
****************** Beginning of data ********************
//***/
// This function will call the back end system api in order */
// to calculate an item price. */
// */
// */
//***/

#ifdef AS400
#include "coibm.h"

#endif

#include <bcd.h>
#include "objects/objects.pch"

#if defined(WIN32)

F2=Save F3=Save/Exit F10/11=Left/Right F12=Cancel F16=Find F17=Chg F15=Copy

Add Link (ADDLNK)

Type choices, press Enter.

Object > '/qsys.lib/netcbe.lib/qcppsrc.file'

New link > '/qcppsrc'

Link type *SYMBOLIC *SYMBOLIC, *HARD
Planning: Tools to Build the Site 113

114 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Chapter 8. Planning: Skills Required for Your Project

The required skills for implementing a Net.Commerce solution are listed here:

• HTML

• IBM HTTP Web Server

• Secure Socket Layer

• Net.Commerce

• Net.Data

• DB2/400

• Payment Server or a SSL Payment applications

• General AS/400 skills

– CL Programming
– Working with subsystems
– Performance tuning
– Backup and recovery

• Use of Web Browsers

We used Netscape Navigator for NCADMIN.

• Proficiency at a Programming Language

Optional skills that may be beneficial are:

• C/C++
• Firewall
• Javascript
• Java
• XML
• SQL stored procedures
• TCP/IP configuration and use
© Copyright IBM Corp. 1999 115

116 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Part 2. Implementing the Net.Commerce Site

The second part of this book takes you through the various stages of
implementing a Net.Commerce site, including setup, installation, configuration,
and more. Plus, it includes three appendices that contain source code samples,
additional performance notes, and a problem and solution guide.
© Copyright IBM Corp. 1999 117

118 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Chapter 9. Setting Up SSL Using DCM

To use Secure Sockets Layer (SSL) protocol, you need a digital certificate
assigned by a certificate signer, for example, IBM World Registry or VeriSign. To
do that, you need to have Digital Certificate Manager (DCM) installed. For more
information about the SSL, read TCP/IP Tutorial Technical Overview, GG24-3376.

9.1 Transaction Security and Secure Sockets Layer

Transaction security includes several basic elements, such as:

• Confidentiality and privacy
• Integrity
• Authentication
• Accountability

SSL is the Secure Sockets Layer protocol defined by Netscape Communications
Corporation. It provides a private channel between a client and a server that
ensures privacy of data, authentication of session partners, and message
integrity.

Digital certificates are used for session partner authentication. Server
authentication is common. Client authentication is not yet common, but it is
growing in popularity. Keys are the base for end-to-end information encryption.

Confidentiality means that the contents of messages remain private as they pass
through the Internet. Without confidentiality, your computer broadcasts messages
to the network, which is similar to shouting the information across a crowded
room. Encryption ensures confidentiality.

Integrity means that the messages are not altered while being transmitted. Any
router along the way can insert or delete text, or garble the message as it passes
by. Without integrity, you have no guarantee that the message sent matches the
message received. Encryption and a digital signature ensure integrity.

Authenticity means that you know who you are talking to and that you trust that
person. Without authenticity, you have no way to be sure that anyone is who they
say they are. Authentication ensures authenticity.

There are two ways in which the server uses authentication:

• Digital signature
• Digital certificates

A digital signature ensures accountability. But how do you know if the person
sending you a message is who they say they are?

Look at the sender's digital certificate. A public key certificate is issued by a
trusted third party, known as the certifying authority (CA). A browser and server
exchange information, including their public key certificate. SSL uses the
information to identify and authenticate the sender of the certificate.

A digital certificate is like a credit card with your picture on it and a picture of the
bank president with his arm around you. A merchant trusts you more because
© Copyright IBM Corp. 1999 119

you look like the picture on the credit card, and they know the bank president
trusts you, too.

You base your trust for the authenticity of the sender on whether you trust the
third party (a person or agency) that certified the sender. The third party, or
certification authority (CA), issues digital certificates.

Trusted third parties verify that the server really is who it claims to be. This
verification is provided with a digital certificate (the digital equivalent of your
doctor's diploma hanging on the wall). You base your trust for the authenticity of
the server on whether you trust the third party that certified the server (the school
that issued the diploma). That third party is called a certifying authority (CA).

The term trusted root is given to a trusted certifying authority (CA) on your server.
A trusted root key is the key belonging to the CA.

Authentication can be used server-to-client (server authentication) or
client-to-server (client authentication). Server authentication is described earlier.
The clients authenticate the servers. With client authentication, the client is
authenticated by the server.

Accountability means that both the sender and receiver agree that the exchange
took place. Without accountability, the addressee can easily say that the
message never arrived. Digital signatures ensure accountability. Accountability is
not part of the SSL protocol.

9.2 HTTP Server over SSL (HTTPS)

SSL ensures that data transferred between a client and a server remains private.
It allows the client to authenticate the identity of the server. In addition, SSL V3
allows a server to authenticate a client.

Figure 63 shows the high-level view of the flow that takes place when a client
(browser) sends an HTTPS request to an HTTP server.

Figure 63. HTTP Server Using SSL

Once your server has a digital certificate, SSL-enabled browsers can
communicate securely with your server using SSL. With SSL, you can easily

Browser sends HTTPS:// request

Server certificate sent back

1.The user needs to send
private data (for example,
credit card number).
3.The certificate signature
is checked by the
browser.
4.The browser confirms
that the server is the
desired one and encrypts
the data.

The information is sent to the server
encrypted with negotiated session key

2.The server retrieves a
certificate from an
authority that the browser
recognizes.

5.The server un-encrypts
the data with a negotiated
session key.
120 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

establish a security-enabled Web site on the Internet or on your corporate
network.

The benefits of HTTP using SSL include:

• Target server is verified for authenticity
• Information is encrypted for privacy
• Data is checked for transmission integrity

Because HTTPS (HTTP + SSL) and HTTP are different protocols, and usually
use different ports (443 and 80, respectively), you can run both secure and
non-secure servers at the same time. As a result, you can choose to provide
information to all users using no security, and specify certain information only to
browsers who make secure requests. This is how a retail company on the Internet
can allow users to look through merchandise without security, complete order
forms, and send their credit card numbers using SSL security. A browser that
does not have support for HTTP over SSL naturally cannot request URLs using
HTTPS. The non-SSL browsers do not allow users to send forms that need to be
submitted securely.

9.3 Digital Certificates and Certificate Authority

A digital certificate identifies a user or a system and is required before SSL can
be used. Once a server has a digital certificate, SSL-enabled browsers, such as
Netscape Navigator, can communicate securely with the server using SSL.

A digital certificate is issued by a certificate authority (CA). CAs are entities that
are trusted to properly issue certificates and have controls in place to prevent
fraudulent use. If you can trust a CA, you can be reasonably certain that any
certificate they issue properly represents the individual that is holding it.

Note: The certificate authority charges a fee for issuing a certificate.

Some examples of universally recognized Internet certificate authorities (CA)
include:

• Thawte
• VeriSign
• US Postal Service
• AT&T
• MCI

For testing purposes, or for applications that will be used exclusively in an
intranet environment, you may issue digital certificates using an intranet
certificate authority. The AS/400 system with Digital Certificate Manager (DCM)
can act as an intranet certificate authority.

For secure communications, the receiver must trust the CA that issued the
certificate, whether the receiver is a browser or a server. Any time a sender signs
a message, the receiver must have the corresponding CA certificate and public
key designated as the trusted root key.
Setting Up SSL Using DCM 121

9.4 AS/400 Implementation of Digital Certificate Management

You can configure your AS/400 system as an intranet certificate authority. Digital
Certificate Manager (DCM) is a Web-browser based administration facility that
allows you to create, manage, and use certificates within an enterprise and with
partners of an enterprise. You can use DCM to request digital certificates from
Internet Certificate Authorities such as VeriSign and Thawte. To use all the
options available in DCM, you must have *SECOFR and *SECADM authority.

To access the Digital Certificate Manager, click on the hyperlink for Digital
Certificate Manager from the AS/400 Tasks page. When using Digital Certificate
Manager, you can click the Help button on any page, at any time, to access
online help.

9.4.1 Configuring a Digital Certificate Environment
You can use your AS/400 system to configure a digital certificate environment.
You can also configure the HTTP server to use digital certificates and run over
SSL.

Follow this series of steps for configuring an intranet digital certificate
environment that uses the AS/400 system as a certificate authority:

1. Use DCM to create an intranet CA in one or more AS/400 systems.

2. Using DCM, the intranet CA issues server certificates that can be used on the
local server (the same AS/400 system where the CA is configured), or
exported to a remote server.

3. For the clients to recognize and trust the server certificates issued by the
intranet CA, install the CA certificate in the browsers and designate it as a
trusted root.

4. If the server requests client certificates for client authentication, the users
must request and install client certificates in their browsers.

5. Configure the HTTP server to enable SSL (SSL On) and specify the key-ring
file where the server certificate is stored (keyfile). To optionally authenticate
client certificates (SSL_ClientAuth client), add PROTECTION/PROTECT
directives to protect resources.

9.5 Creating a Self-signed Certificate

This section describes how to create a self-signed certificate using your AS/400
system as an intranet certificate authority. The steps used in V4R3 and V4R4 of
DCM are very similar. Watch for different procedures for the different releases. To
test your Net.Commerce site before you deploy it, you have to create a
self-signed certificate.

Because self-signed certificates are not recognized by a visitor’s browser as
coming from a trusted third party, they should not be used in customer transaction
situations over the Internet. Use them only on your test and development
systems, and for demonstration purposes. You can also use a self-signed
certificate for intranet applications.
122 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

To obtain a self-signed certificate, perform the following tasks:

1. Create an intranet certificate authority.
2. Create a server certificate with your intranet CA.
3. Configure your HTTP server to use the server certificate.

9.5.1 Creating an Intranet Certificate Authority
Digital Certificate Manager (DCM) allows you to create your own intranet CA on
your AS/400 system and use it to issue server and client certificates for testing
purposes or applications within your organization. This section outlines the steps
you must perform to create a CA on your AS/400 system. You only need to
perform this task if the system administrator has not previously created an
intranet certificate authority, and if you want to use your AS/400 system to issue
intranet server certificates. We recommend that you always create a CA on your
AS/400 system in case you need one for testing.

To create an intranet CA on your AS/400 system, follow these steps:

1. Start the HTTP *ADMIN server on your AS/400 system. From the command
line, type:

STRTCPSVR SERVER(*HTTP) HTTPSVR(*ADMIN)

2. Access the AS/400 Tasks page from your browser by entering the URL:
http://System_name:2001

3. You are prompted to enter a user name and password. Sign on with a user
that has *SECOFR and *SECADM authority.

The AS/400 Tasks Page appears as shown in Figure 64.

Figure 64. AS/400 Tasks Page

4. Click Digital Certificate Manager.

5. Click Certificate Authority (CA).
Setting Up SSL Using DCM 123

6. Click Create a Certificate Authority.

7. Complete the Create a Certificate Authority form as shown in Figure 65.
Replace the field values appropriately with your organization’s information.

Figure 65. Creating an Intranet Certificate Authority

Click OK.

8. After DCM processes the form, it stores a copy of the CA certificate and other
information in the following IFS directory:

/QIBM/USERDATA/ICSS/CERT/CERTAUTH/

At this point, you can install the CA certificate on your browser so that it
recognizes the certificates issued by the intranet CA. DCM displays a page
similar to the one shown in Figure 66 on page 125. The contents of the page
vary based on the release.

If a certificate authority (CA) was previously created on your system, the
Create a Certificate Authority link does not appear.

Note
124 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 66. CA Certificate Created Successfully

Click Receive Certificate if you want to install the CA certificate on your
browser now. Or, click OK to proceed to the next setup window, and install the
CA certificate on your browser at a later time.

9. Complete the CA Policy Data form to set the client certificate policy for your
CA. See Figure 67.

Figure 67. Certificate Authority Policy

This is where you define whether your CA can issue and sign client
certificates. If the CA can issue client certificates, indicate the length of time
for which the certificates will be valid.

10.The following message appears:

The policy data for the Certificate Authority was successfully changed.

At this point, you can continue to create a server certificate signed by your
certificate authority. This allows server authentication by clients that use this
system as a server.

If you are using V4R3, skip to 9.5.2, “Creating a Server Certificate with Your
Intranet CA (V4R3)” on page 126.

If you are using V4R4 of DCM, you are presented with a window that allows
you to trust this CA for applications. A sample is shown in Figure 68 on page
126. On this panel, select any applications that are going to use this CA for
security. If you installed and configured SSL in the HTTP instance used by
Setting Up SSL Using DCM 125

Net.Commerce, an entry is listed for the HTTP server instance name. The
entry is in the form QIBM_HTTP_SERVER_instancename, where instancename is the
name of the HTTP server instance.

Figure 68. Trusting the CA for Applications

11.After you select any applications, click OK. You will receive a message
indicating that the system will now create a system certificate.

If you are using V4R4, go to 9.5.3, “Creating a System Certificate with Your
Intranet CA (V4R4)” on page 129.

9.5.2 Creating a Server Certificate with Your Intranet CA (V4R3)
After creating the intranet CA, DCM prompts you to create a server certificate. To
use Secure Sockets Layer (SSL) for secure Web serving, your server must have
a digital certificate. When you create a server certificate in DCM, the server
certificate and keys are stored in the following default directory and file:

/QIBM/USERDATA/ICSS/CERT/SERVER/DEFAULT.KYR
126 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

To create a server certificate with your intranet CA, complete the following steps:

1. Complete the Create a Server Certificate form as shown in Figure 69. Replace
the field values with your organization’s information.

The options for the key size are determined by the IBM Cryptographic Access
Provider (5769-ACx) licensed program product installed on your system. This
is the key size that is used to generate your public and private keys.

Figure 69. Create a Server Certificate Page

By default, the system inserts the fully qualified name of the AS/400 system
into the system name field. You can give the server any name. However, the
fully qualified TCP/IP host name is usually used for the server name. Some
CAs require that the state name be spelled out completely. We recommend
that you always use the entire name rather than a short form.

2. Click OK.

The Server Certificate Created Successfully page appears as shown in Figure
70 on page 128.

When you create a server certificate, Digital Certificate Manager (DCM) stores
a copy of the CA certificate in the server key ring and designates it as a trusted
root.

Note
Setting Up SSL Using DCM 127

Figure 70. Server Certificate Created Successfully Page

From this page, you can select whether the HTTP ADMIN server or the
Directory Services server (LDAP) uses this server certificate for SSL
connections. Do not select any of these options.

3. Copy the following file and path name where the server certificate is stored to
the clipboard:

/QIBM/USERDATA/ICSS/CERT/SERVER/DEFAULT.KYR

Click OK. Click Done.

9.5.2.1 Creating a Server Certificate with an Existing Intranet CA
The steps to create a server certificate described in the previous section assume
that you are creating the intranet CA for the first time. If your administrator has
already created an intranet CA and server certificate, you can use the existing
server certificate in your HTTP server configuration.

If you want to create a new server certificate using an existing intranet CA, start
by clicking Create a server certificate under Server Certificates in DCM (Figure
71).

Figure 71. Creating a Server Certificate with an Existing Intranet CA
128 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Select Local Certificate Authority, and click OK.

The Create Server Certificate page appears next as shown in Figure 69 on page
127.

9.5.2.2 Authorizing QTMHHTTP to the Key Ring File
You may need to give QTMHHTTP (or the user profile under which your HTTP
server runs) authority to the key ring and stash files. The key ring and stash files
are created with *PUBLIC authority *EXCLUDE. QTMHHTTP (or the user profile
under which the HTTP server runs) must at least have read rights to those files.

Perform the following steps:

1. To authorize QTMHHTTP to the key ring and stash file, type the command:

WRKLNK ’/QIBM/UserData/ICSS/Cert/Server’

2. Enter 5 (Next level) to display the files in the directory.

3. Enter 9 (Work with authority) by the key ring file (DEFAULT.KYR).

4. Enter 1 (Add user). Here, note that User=QTMHHTTP and Data Authority=*R.

5. Repeat steps one through three to authorize QTMHHTTP to the stash file
(DEFAULT.sth).

9.5.3 Creating a System Certificate with Your Intranet CA (V4R4)
After creating the intranet CA, DCM prompts you to create a system (or server)
certificate. To use Secure Sockets Layer (SSL) for secure Web serving, your
server must have a digital certificate. When you create a system certificate in
DCM, the system certificate and keys are stored in the following default directory:

/QIBM/USERDATA/ICSS/CERT/SERVER/

This is also known as the certificate store *SYSTEM.

To create a system certificate with your intranet CA, complete the following steps:

1. Complete the Create a Server Certificate form as shown in Figure 72 on page
130. Replace the field values with your organization’s information.

The options for the key size are determined by the IBM Cryptographic Access
Provider (5769-ACx) licensed program product installed on your system. This
is the key size that is used to generate your public and private keys.
Setting Up SSL Using DCM 129

Figure 72. Create a System Certificate Page

By default, the system inserts the fully qualified name of the AS/400 system
into the system name field. You can give the server any name. However, the
fully qualified TCP/IP host name is usually used for the server name. Some
CAs require that the state name be spelled out completely. We recommend
always using the entire name rather than a short form.

2. Click OK.

The System Certificate Created Successfully page appears (Figure 73 on
page 131).
130 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 73. System Certificate Created Successfully Page

3. From this page (Figure 73), you can select which applications use this system
certificate for SSL connections. After you make your selection, click OK. A
message will appear that confirms that any applications you selected will use
this system certificate. Click Done.

9.5.3.1 Creating a Server Certificate with an Existing Intranet CA
The steps to create a server certificate described in the previous section assume
that you are creating the intranet CA for the first time. If your administrator has
already created an intranet CA and server certificate, you can use the existing
server certificate in your HTTP server configuration.

Follow these steps to create a new system certificate using an existing intranet
CA:

1. Click System Certificates->Work with certificates (A) in DCM. The panel
shown in Figure 74 on page 132 appears. Enter the certificate store password
when prompted.
Setting Up SSL Using DCM 131

Figure 74. Digital Certificate Manager - Work with Certificates

2. Click Create (B) to create a new system certificate. The display shown in
Figure 75 appears.

Figure 75. Creating a System Certificate with an Existing Intranet CA

3. Select Local Certificate Authority, and click OK.

You are now at the same place in the process that the system takes you to when
you create a system certificate during the Create CA process. Go to step 1 in
9.5.3, “Creating a System Certificate with Your Intranet CA (V4R4)” on page 129,
and complete the procedure found there.

9.5.4 Configuring Web Server to Use SSL Server Authentication (V4R3)
The Web server must be configured to run over SSL and use the server
certificate you created in 9.5.2, “Creating a Server Certificate with Your Intranet
CA (V4R3)” on page 126. To configure your HTTP server to run over SSL and use
a server certificate, perform the following tasks:
132 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

1. From Digital Certificate Manager, click Return to AS/400 Tasks. The AS/400
Tasks page is displayed as shown in Figure 64 on page 123.

2. Click IBM HTTP Server for AS/400.

3. Click Configuration and Administration.

4. In the left frame, click Configurations.

5. Select your HTTP configuration file in the drop-down box immediately beneath
the Configurations link as shown in Figure 76.

Figure 76. HTTP Server Configuration

6. Click on Security configuration. Complete the Security configuration page
(Figure 77 on page 134).

a. Check Allow SSL connections.

b. Accept the default SSL port (443), or specify the port you wish to use for
SSL.

c. De-select Enable SSL client authentication.

d. Add the key ring path and file name. If you copied it to the clipboard, you
can paste it now. If not, the key ring and file name is:

/QIBM/USERDATA/ICSS/CERT/SERVER/DEFAULT.KYR
Setting Up SSL Using DCM 133

Figure 77. Security Configuration Page

e. Click Apply.

You should see this message at the top of the screen:

The configuration file was successfully updated. Server instances that
are using this configuration must be stopped and started for the changes
to take affect.

You should also see your key ring file added in the Key rings box.

7. Stop the server instance and start it again. In the left window pane, click
Server Instances.

8. Click Work with server instances.

9. From the drop-down box, select your server instance (Figure 78 on page 135).
134 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 78. Work with Server Instances

Click Stop. Wait until you see this message at the top of your window:

The server instance was successfully stopped.

10.From the drop-down box, select your server instance (Figure 78).

Click Start.

You should see this message:

The server instance was successfully started.

You have now successfully configured your Web server to use SSL with server
authentication.

9.5.5 Configuring Web Server to Use SSL Server Authentication (V4R4)
The Web server must be configured to run over SSL and use the server
certificate you created in 9.5.3, “Creating a System Certificate with Your Intranet
CA (V4R4)” on page 129. To configure your HTTP server to run over SSL and use
a server certificate, you must perform the following tasks:

1. From Digital Certificate Manager, click Return to AS/400 Tasks. The AS/400
Tasks page is displayed (Figure 64 on page 123).

2. Click IBM HTTP Server for AS/400.

3. Click Configuration and Administration.

4. In the left frame, click Configurations.

5. Select your HTTP configuration file in the drop-down box located beneath the
Configurations link as shown in Figure 79 on page 136.
Setting Up SSL Using DCM 135

Figure 79. HTTP Server Configuration

6. Click on Security configuration. The display shown in Figure 80 on page 137
appears.

7. Complete the Security configuration page.

a. Check Allow SSL connections.

b. Accept the default SSL port (443), or specify the port you wish to use for
SSL.

The Application ID value on the page (Figure 80 on page 137) may show
one of several values. The value may be No ID created yet or
QIBM_HTTP_SERVER_xxxxxxxx, where xxxxxxxx is the name of this configuration
or the name of the configuration from which this configuration was built.
Even if all the values are specified correctly, you should still click Apply in
the next step.

Note
136 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 80. Security Configuration Page

c. Click Apply.

You should see this message at the top of the screen:

The configuration file was successfully updated. Server instances that are
using this configuration must be stopped and started for the changes to take
affect.

You should also see the Application ID added or changed to the value
QIBM_HTTP_SERVER_xxxxxxxx, where xxxxxxxx is the name of this configuration
(TEST in this example). Record the Application ID. You will need to know it to
complete the SSL configuration. You now need to enable this HTTP server
configuration as a secure application in Digital Certificate Manager (DCM).

8. In the left frame, click Digital Certificate Manager. The DCM welcome page
is shown in a new browser window.

9. Click System Certificates->Work with secure applications in DCM. The
panel shown in Figure 81 on page 138 appears. Enter the certificate store
password when prompted.
Setting Up SSL Using DCM 137

Figure 81. Work with Secure Applications in DCM

10.Scroll down the list of applications until you find the Application ID you want to
secure. Select the application, and click Work with system certificate in the
right frame. This allows you to select which certificate will be used for SSL.
The display shown in Figure 82 appears.

Figure 82. Work with System Certificate

11.An application may only use one certificate. However, one certificate may be
used with multiple applications. You may use the View button to display the
details about the certificates available. Select a system certificate from the list
to be used with this application (VSCERT3 in this example), and click
Assign new certificate. A message appears, which states:

The system certificate was assigned to the application.
138 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

When the certificate is assigned the CA that issued the certificate, it is set as a
trusted root for the application. You can use the Work with Certificate
Authority button shown in Figure 81 on page 138 to check the CA assignment
for an application.

12.Click OK. The display shown in Figure 81 on page 138 appears. You should
now stop the server instance, and start it again.

13.Return to the browser window that contains the IBM HTTP Server
Configuration and Administration page (Figure 79 on page 136). In the left
window pane, click Server Instances.

14.Click Work with server instances.

15.From the drop-down box, select your server instance (Figure 83).

Figure 83. Work with Server Instances

Click Stop. Wait until you see this message at the top of your window:

The server instance was successfully stopped.

16.From the drop-down box, select your server instance (see Figure 83).

Click Start.

You should see this message:

The server instance was successfully started.

You have now successfully configured your Web server to use SSL with server
authentication.

9.6 Requesting a Server Certificate from an Internet CA

This section describes how to obtain a server certificate from an Internet
certificate authority.

To conduct commercial business on the Internet, you should request your server
certificate from an Internet certificate authority. For example, you may consider a
CA, such as VeriSign or Thawte, which are widely known by clients, browsers,
and servers.

For your private Web network within your own company, university, or group, or
for testing purposes, using Digital Certificate Manager (DCM) lets you act as your
Setting Up SSL Using DCM 139

own CA. Section 9.5, “Creating a Self-signed Certificate” on page 122, explains
this procedure.

To use a server certificate issued by an Internet CA, perform these steps:

1. Request the server certificate from an Internet CA.
2. Receive a server certificate for this server.
3. Configure the HTTP server to use SSL and server authentication.

9.6.1 Requesting a Server Certificate from an Internet CA (V4R3)
To use SSL for secure Web serving, your server must have a digital certificate.
You can use an intranet CA to issue a server certificate, or you can use an
Internet CA. Refer to 9.5, “Creating a Self-signed Certificate” on page 122, for
more information.

When you choose to use an Internet CA to issue a server certificate, you must
first request the certificate. Follow these steps:

1. From the Digital Certificate Manager (DCM) page, click Server Certificates in
the left-hand frame to display an extended list of server tasks.

2. Click on Create a server certificate from the list to display the Select a
Certificate Authority page.

3. Select VeriSign or other Internet Certificate Authority as shown in Figure
84.

Figure 84. Requesting a Certificate from VeriSign or Other Internet CA

Click OK to display the Create a Server Certificate form.

4. Complete the Create a Server Certificate form as shown in Figure 85 on page
141. Replace the field values with your organization’s information.

The options for the key size are determined by the IBM Cryptographic Access
Provider (5769-ACx) licensed program product installed on your system. This
is the key size that will be used to generate your public and private keys.
140 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 85. Requesting a Server Certificate from an Internet CA

By default, the system inserts the fully qualified name of the AS/400 system
into the system name field. Do not change this name. This is the name used to
describe your server. You can give the server any name, although the fully
qualified TCP/IP host name is usually used for the server name.

5. Click OK to process the Create a Certificate Request form.

You receive the Server Certificate Request Created page as shown in Figure
86.

Figure 86. Server Certificate Request Generated by DCM

Do not click Done or close the browser yet. You need to cut and paste the
certificate request when you submit the Certificate Signing Request to the
Internet CA.

Note
Setting Up SSL Using DCM 141

6. Copy the Server Certificate Request to your clipboard. Start at -----BEGIN NEW

CERTIFICATE REQUEST----- and end at -----END NEW CERTIFICATE REQUEST-----.
Click Done to close the page.

7. Follow your Internet CA procedures to paste the certificate request. For
example, to request a certificate from VeriSign, follow the instructions that are
described at the following Web site: http://www.verisign.com

When VeriSign is satisfied that you have met all of its requirements, it e-mails
the secure server certificate to you. You should receive it in three to five
business days. Other certificate authorities have their own procedures.

9.6.2 Receiving a Server Certificate for This Server (V4R3)
After you receive the certificate from the Internet CA, copy the signed server
certificate to a text file that DCM can access when you perform the Receive
server certificate task. Perform the following steps:

1. Copy the signed server certificate presented to you by the Internet CA to your
clipboard. Start at -----BEGIN CERTIFICATE REQUEST-----, and end at -----END
CERTIFICATE REQUEST-----.

2. Paste the signed server certificate in your clipboard into a .txt file. Use a text
editor of your choice, for example, Notepad, to create a .txt file and paste the
server certificate issued by the Internet CA.

3. Save the file in your AS/400 system IFS. Use a mapped network drive and
save the .txt file that contains the server certificate issued by the Internet CA
in the following path (enter a file name of your choice):

/QIBM/USERDATA/ICSS/CERT/SERVER/rcvcert.txt

4. In DCM, click Receive a server certificate, and complete the Receive a
Server Certificate page (Figure 87).

Figure 87. Receiving a Server Certificate Issued by an Internet CA

5. The Certificate Received page is displayed. You have the option to use the
received certificate with the ADMIN or LDAP server. Do not select these
options. Click OK.

6. You should receive a Server Configuration Status message indicating the
server certificate operations are complete. Click Done.

7. You must now set the key as the default key. In DCM, click Key management.
Complete the Key Management page, and select Work with keys (Figure 88
on page 143).
142 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 88. Key Management Page

8. Select the key with the label corresponding to the certificate you received from
the Internet CA (VeriSign_Cert in our example). Select Set key to be the
default, and click OK.

9.6.3 Requesting a System Certificate from an Internet CA (V4R4)
To use SSL for secure Web serving, your system must have a digital certificate.
You can use an intranet CA to issue a system certificate, or you can use an
Internet CA. Refer to 9.5, “Creating a Self-signed Certificate” on page 122, for
more information.

When you choose to use an Internet CA to issue a system certificate, you must
first request the certificate. Follow these steps:

1. Click System Certificates->Work with certificates (A) in DCM. The panel
shown in Figure 89 on page 144 appears. Enter the certificate store password
when prompted.
Setting Up SSL Using DCM 143

Figure 89. Requesting a Certificate from VeriSign or Other Internet CA

2. Click Create (B) to create a new system certificate. The display shown in
Figure 90 appears.

Figure 90. Creating a System Certificate with an Internet CA

3. Select VeriSign or other Internet Certificate Authority, and click OK.

4. Complete the Create a Server Certificate form as shown in Figure 72 on page
130. Replace the field values with your organization’s information.

The options for the key size are determined by the IBM Cryptographic Access
Provider (5769-ACx) licensed program product installed on your system. This
is the key size that is used to generate your public and private keys.
144 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 91. Create a System Certificate Page

By default, the system inserts the fully qualified name of the AS/400 system
into the system name field. Do not change this name. This is the name used to
describe your server. You can give the server any name. However, the fully
qualified TCP/IP host name is usually used for the server name.

5. Click OK. The System Certificate Request Created page appears (Figure 92
on page 146).
Setting Up SSL Using DCM 145

Figure 92. System Certificate Request Created Page

6. Copy the Server Certificate Request to your clipboard. Start at -----BEGIN NEW

CERTIFICATE REQUEST----- and end at -----END NEW CERTIFICATE REQUEST-----.
Click Done to close the page.

7. Follow your Internet CA procedures to paste the certificate request. For
example, to request a certificate from VeriSign, follow the instructions that are
described at the Web site: http://www.verisign.com

When VeriSign is satisfied that you have met all of its requirements, it e-mails
the secure server certificate to you. You should receive it in three to five
business days. Other certificate authorities have their own procedures.

9.6.4 Receiving a System Certificate (V4R4)
After you receive the certificate from the Internet CA, you need to copy the signed
server certificate to a text file that DCM can access when you perform the
Receive server certificate task. Perform the following steps:

1. Copy the signed server certificate presented to you by the Internet CA to your
clipboard. Start at -----BEGIN CERTIFICATE REQUEST-----, and end at -----END
CERTIFICATE REQUEST-----.

2. Paste the signed system certificate from your clipboard into a .txt file. Use a
text editor of your choice, for example, Notepad, to create a .txt file and paste
the server certificate issued by the Internet CA.

3. Save the file in your AS/400 system IFS. Use a mapped network drive, and
save the .txt file that contains the server certificate issued by the Internet CA.

Do not click Done or close the browser yet. You need to cut and paste the
certificate request when you submit the Certificate Signing Request to the
Internet CA.

Note
146 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

In our example, we created a directory structure and file with the following
path:

/verisign/certificates/vscert3.txt

4. In DCM, click Receive a system certificate. The display shown in Figure 93
appears.

Figure 93. Receiving a System Certificate Issued by an Internet CA

5. Complete the Receive a System Certificate page (Figure 93) by typing the
directory path and file name where you stored the signed system certificate
received for the Internet CA. Click OK. The Certificate Received page as
shown in Figure 94 is displayed.

Figure 94. Confirmation of Successful Receipt

6. Click OK. You will return to the Receive a System Certificate page (Figure 93).
Click Cancel. You now need to specify which applications will use this system
certificate. Refer to 9.5.5, “Configuring Web Server to Use SSL Server
Authentication (V4R4)” on page 135, for a sample procedure.
Setting Up SSL Using DCM 147

148 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Chapter 10. Setting Up the Network

This chapter contains the information that you must know to implement the
infrastructure for your Net.Commerce. Before you implement your Net.Commerce
solution, you must carefully plan how you are going to connect to the Internet,
protect your recourses, connect your Net.Commerce server with your back-end
system. Plus, you must install all of the necessary program products. For
planning information, please read Chapter 2, “Planning: The Infrastructure” on
page 9, before you continue.

10.1 Security

It is important that your implementation follow your company security policy. Here
are some examples from different parts of a security policy.

10.1.1 General I/T Security Policy Statement
Normally, an I/T security policy has several pages. What we provide here are only
some small parts from an example I/T security policy. In the following example,
we call the company Mycompany.

• A Mycompany Information System (IS) is any automated information or
telecommunications system owned, leased, or operated by Mycompany.

• Mycompany will implement at least the minimum security requirements as
identified in this policy, to protect IS resources and information (non-sensitive
and sensitive data) processed, stored, or transmitted by Mycompany ISs.
Based on risk management, they may apply additional safeguards to provide
the most restrictive set of controls (privileges) that permit the performance of
authorized tasks (principle of least-privilege).

• Sensitive information in Mycompany ISs must be safeguarded against
unauthorized disclosure, modification, access, use, destruction, or delay in
service.

• All ISs processing, storing, or transmitting sensitive information must be
accredited.

• Connectivity is prohibited between Mycompany IS and any other systems or
networks not under Mycompany authority, unless formally approved by an
appropriate Company Accrediting Authority.

• All Mycompany ISs are for Mycompany business only and users have no
expectation of privacy while using these resources.

• All persons who use, manage, operate, maintain, or develop Mycompany ISs,
applications, or data must comply with these policies.

10.1.2 Internet Services Policy
Mycompany owned or controlled ISs may only access the Internet through
Mycompany approved gateways.

This limitation means that Mycompany owned, controlled, or authorized computer
equipment, regardless of its location or means of connection to any network or
system, may not be used to access the Internet, directly or indirectly. The only
way is if the connection is through a Mycompany-approved Internet gateway
© Copyright IBM Corp. 1999 149

(firewall). While the configuration of some networks make it technically possible
to access the Internet without going through an approved gateway, such access
is not authorized.

Exceptions to this policy must be approved in writing by the Director of the
Telecommunications Department.

10.2 Server Placement

When implementing a Net.Commerce solution, you have to follow your
company’s security policy. In our example, we only allow a connection to the
Internet through a firewall. Since we must protect our data on both the back-end
system and the Net.Commerce server, we have to protect it with a firewall.

We use private IP-addresses on our example network. Private IP-addresses
cannot be used on the Internet. Internet routers do not route private
IP-addresses. The easiest way to make our Net.Commerce server on our private
network visible on the Internet is to use Network Address Translation (NAT) in the
firewall. We are not going to let our Net.Commerce server be directly attached to
the Internet.

10.2.1 Scenario Objectives
The objectives of this scenario are to:

• Allow internet clients to access the Net.Commerce server
• Allow the back-end system to update the Net.Commerce server database

10.3 Firewall

Since we must protect our data on the Net.Commerce server and on our
back-end system, we are going to implement a firewall solution. In our example,
we are going to use the Firewall for AS/400 to protect us and our network.

Because the Net.Commerce server is a public server and accessed from the
Internet, it needs a public address. We are going to use NAT to map a private
address to a public address, for use over the Internet. We are going to use the
non-secure port of the firewall as the public address for the Net.Commerce
server.

This section describes the tasks that you must perform to install and configure a
firewall using NAT. Figure 95 on page 151 shows our network configuration for
this scenario.
150 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 95. Scenario Network Configuration

Our scenario configuration includes two AS/400 servers in the mycompany.com
network. AS01 houses the firewall, as well as a Net.Commerce server, behind the
firewall. Internet clients access the public Web server by using the same IP
address as the non-secure port of the firewall, 204.146.18.33. The Web server IP
address is actually the AS/400 system *INTERNAL port IP address 192.168.3.19
(F). You can use NAT to map the private address to the public one. AS02 is the
back-end system in the secure network.

10.3.1 Task Summary
The following is a summary of tasks used to implement this NAT environment:

1. Install the firewall and start it successfully.

2. Perform basic configuration for the local firewall. Select the services that you
want your internal users to have on the Internet (HTTP and mail, for example).
Select a public HTTP server behind the firewall. In our scenario, we do not
allow internal users to connect to the Internet.

3. Start NAT.

4. Add a default route to AS01 TCP/IP configuration pointing to the *INTERNAL
port of the firewall as the next hop to enable responses from the HTTP server
behind the firewall to the Internet clients.

5. Restart the filters.

6. Verify the following items:

• An Internet user can open a Web page on the Net.Commerce server
behind the firewall.

• Internal clients can use SOCKS and Proxy to open a Web page on the
Internet (this is optional).

B C

E

F

1 92 .1 6 8 .3 .0
G

1 0 .1 .1 .0

G

.4

.1 4

.2 0

.1 9

2 0 4 .1 4 6 .1 8 .0

.3 3.2

.3

P C 8

A S 0 1

A S 0 2
B a ck e n d
sys te m

pr iva te .m yco m pa n y .co m

.1

F IR E W A L L

N e t.C o m m e rce
S e rve r

R o ute r

In te rn e t

Z

m yco m p a n y .co m
Setting Up the Network 151

10.3.2 Installing the AS/400 Firewall
Install the firewall at the local site using the instructions in the manual Getting
Started with IBM Firewall for AS/400, SC41-5424. A summary of the installation
parameters is shown on the Complete the Firewall Installation summary page in
Figure 96.

Figure 96. Firewall Installation Summary Page

Figure 97. Starting the Firewall

Start the firewall (Figure 97) by clicking Start.

10.3.3 Performing Basic Configuration
Perform the basic configuration of the local firewall (FIREWALL). For further
information, refer to Getting Started with IBM Firewall for AS/400, SC41-5424,
152 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

and the redbooks AS/400 Internet Security: IBM Firewall for AS/400, SG24-2162,
and IBM Firewall for AS/400 V4R3: VPN and NAT Support, SG24-5376.

The Review Configuration page shown in Figure 98 on page 154 and Figure 99
on page 155 show our configuration on the local system, AS01. Refer to Figure
95 on page 151 for the scenario network configuration.

Notice that we entered the name of the Net.Commerce server and its public IP
address. In this example, the public IP address of the Net.Commerce server is
the same as the non-secure port of the firewall. The next section of the page asks
if the public server is behind the firewall. If so, enter the public ports that will be
used for HTTP and HTTPS. We selected the well-known ports of 80 and 443 for
HTTP and HTTPS, respectively. We also entered the private IP address of the
Net.Commerce server, which is the home AS/400 *INTERNAL port (F in Figure
95 on page 151) of the firewall. Remember that the Net.Commerce server is on
the same AS/400 system that houses the firewall. Information about the
Net.Commerce server is used to automatically generate the appropriate NAT
settings and filter rules for accessing the Net.Commerce server behind the
firewall.
Setting Up the Network 153

Figure 98. Firewall Basic Configuration Summary Page (Part 1 of 2)
154 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 99. Firewall Basic Configuration Summary Page (Part 2 of 2)

Complete the following steps:

1. Click OK. A confirmation page (Figure 100) is shown. It indicates that the
firewall is configured. It is not necessary to restart the firewall at this time
because we have more configuration work to do.

Figure 100. Confirmation that the Firewall Is Configured

2. Click No.

10.3.4 Changing NAT Rules
Basic configuration automatically creates the NAT filter rules to allow HTTP and
HTTPS traffic. However, if you want to use Secure Electronic Transaction (SET),
Setting Up the Network 155

you must create the additional rules that we have to communicate with eWallet on
the shopper’s PC and with the Payment Gateway. The default ports for eWallet
communication is 8614, 8620, XXX and for the Gateway Server 8888. If your SET
certifying authority is using some special port for SET certificate, you have to
consider that too.

For further information about NAT, refer to Getting Started with IBM Firewall for
AS/400, SC41-5424, and the redbook IBM Firewall for AS/400 V4R3: VPN and
NAT Support, SG24-5376.

For information regarding SET, refer to the site on the Web at:
http://www.setco.org

In this example, we add the eWallet rule (port 8614) to the NAT. You have to add
a rule for each port that you want to use on your server. We also change the NAT
filter rules to translate all ports.

Figure 101. Selection of NAT from the Configuration Menu

To begin, perform the following steps:

1. Click NAT on the Configuration Menu page (Figure 101).

The Network Address Translation Settings page appears as shown in Figure
102 on page 157. Notice that IBM Firewall for AS/400 already generated two
MAP settings for us. They are based on the information we provided in the
Public server 1 section of Basic configuration (Figure 98 on page 154).
156 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 102. Network Address Translation Settings Page

2. Select the last MAP setting in the list (Figure 102). Click Delete.

3. Select the remaining MAP setting in the list (Figure 102). Click Change. The
Change Network Address Translation page is shown (Figure 103 on page
158).

Figure 103 shows the Change Network Address Translation page. Change the
From port to "0" and the To port to "0". Port 0 tell the NAT translation to pass
all communication on all ports. Changing the NAT port to 0 makes us depend
on the filter rules for protection of the Net.Commerce server. Therefore, it is
very important that you only allow the IP-packets that you want to get through
the firewall filters. During the SET payment, the Payment Server uses
randomly selected ports above 1023 to communicate to the Payment
Gateway.

Remember that the From port is always the secure (hidden) address and
the To address is the registered address that you want to publish.

Tip
Setting Up the Network 157

Figure 103. Change the NAT MAP Setting

4. Because the From IP address is always the secure (hidden) address, in our
environment, this is 192.168.3.19, and the port to map is 0 (all port). The To IP
address is the address that we want to publish, which is 204.146.18.33 (the
non-secure port of the firewall), also using port 0 (all port). After entering the
required information, click OK to continue.

Figure 104. Displaying NAT Settings

5. The resulting NAT setting is shown for confirmation (see Figure 104). If you
have more settings to add, you can do so now. In this scenario, this is the only
NAT setting we need to add. Click Done.

You are returned to the Firewall Installation Tasks page.
158 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

10.3.5 Starting NAT
Click the Administration icon. Then, click Status from the Administration Menu
page. Start NAT as shown in Figure 105.

Figure 105. Starting NAT from the Status Page

10.3.6 Adding Filter Rules for SET
Basic configuration automatically creates the filter rules to allow HTTP and
HTTPS traffic. However, you must create the additional rules for SET. We have to
communicate with the eWallet and with the Payment Gateway. The default port
for eWallet is 8614, 8620, XXXX and to Gateway Server 8888. You must be sure
that you do not override the rules that Basic configuration created and to make it
easier to recognize rules that you manually add after the initial configuration of
the firewall. We recommend that you create a section at the bottom of the filter
rules just before the Ending defense section. Enter a title such as Custom Rules.

10.3.7 Filter Rules for Requesting a Certificate
You need to add the rules listed in this section to allow the Payment Server to
request a digital SET certificate from a certify authority that uses port 5065 for a
certificate request. If your certificate authority is using port 80 or 443 for
certificate requests, you do not need to add any filter rules for the certificate
request. Those filters were created when you selected to have the public server
behind the firewall, during the basic configuration of the firewall. See Figure 98 on
page 154.

Always test your filter rules before you use them. One simple misspelling can
open your filter.

Important
Setting Up the Network 159

Add the following four filter rules to your firewall:

permit 192.168.3.19 255.255.255.255 0.0.0.0 0.0.0.0 tcp ge 1024 eq 5065 secure
route inbound f=y l=y t=0 # Permit SET Cert. request 1/2

permit 192.168.3.19 255.255.255.255 0.0.0.0 0.0.0.0 tcp ge 1024 eq 5065
non-secure route outbound f=y l=n t=0 # Permit SET Cert. request 2/2

permit 0.0.0.0 0.0.0.0 204.146.18.33 255.255.255.255 tcp eq 5065 ge 1024
non-secure both inbound f=y l=n t=0 # Permit SET Cert. request response 1/2

permit 0.0.0.0 0.0.0.0 192.168.3.19 255.255.255.255 tcp eq 5065 ge 1024 secure
both outbound f=y l=n t=0 # Permit SET Cert. request response 2/2

You should consider to remove or change these filter rules to deny when you
have received your digital SET certificate.

For more information about adding and implementing filter rules, please refer to
IBM Internet Security: IBM Firewall for AS/400, SG24-2162.

10.3.8 Setting Up SOCKS for a Certificate Request
If you are going to request a digital SET certificate from VeriSign, you have to
configure SOCKS client support on your AS/400 system. You have to use
Operations Navigator to configure the SOCKS on your AS/400 system.

Go to TCP/IP Properties and select the SOCKS tab. The SOCKS information
window appears (Figure 106).

Figure 106. Operations Navigator — TCP/IP Properties SOCKS before Configuration
160 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

You are now ready to configure SOCKS information for your AS/400 system. To
configure the SOCKS information for the AS/400 system, you must provide at
least two pieces of information:

• The network that is directly connected to the AS/400 system. A SOCKS server
is not needed to reach the network.

• The network that requires the use of a SOCKS server for access and the
SOCKS server to use to access the network.

As an option, you can add a DNS server to be used by SOCKS.

10.3.8.1 Defining the Direct Network
Do not use the SOCKS server to connect to any network that is directly
connected to the system. To prevent the AS/400 system from connecting through
the SOCKS server, the directly connected network should be defined.

To define the directly connected network, complete these steps:

1. In the SOCKS information window, click the Add button. The Add SOCKS
Destination window appears (Figure 107).

Figure 107. Add SOCKS Destination with Direct Connection Information

2. Type the network address of the secure network in the IP address field. In our
sample network, we use 10.0.0.0.

3. Type the subnet mask that describes your secure network in the Mask field. In
our sample network, we use a subnet mask of 255.0.0.0.

4. Click the down arrow in the Connection field, and select Direct from the list of
options.

5. Click OK to add the destination information.

You have now defined the “10.” network as a direct network. SOCKS does not
access any host with an address that starts with “10.”

10.3.8.2 Defining the Network Connection Using SOCKS
Now, you must define the network to use with the SOCKS server. In this example,
we use the SOCKS server to access all networks except the direct connection.
Setting Up the Network 161

To define the network for use with SOCKS, follow these steps:

1. In the SOCKS information window, click the Add button. The Add SOCKS
Destination window appears (Figure 108).

Figure 108. Add SOCKS Destination with SOCKS Server Connection

2. Type the address 0.0.0.0 in the IP address field.

3. Type the subnet mask 0.0.0.0 in the Mask field.

When a destination address is “ANDed” with a mask of 0.0.0.0, the result is
0.0.0.0. By specifying a mask and address of all zeros, all IP addresses match
this destination description.

4. Click the down arrow in the Connection field, and select SOCKS Server from
the list of options.

5. Type the IP address of the SOCKS server in the Server IP Address field. On
the AS/400 system with the firewall installed, this is the IP address of the
*INTERNAL port of the firewall. On other AS/400 systems in the secure
network, this is the IP address of the secure port of the firewall.

6. Verify that the Port field is set to "Any". This specifies the remote ports for
which this connection can be used.

7. Click OK to add the destination information.

You have now defined the destination information for SOCKS. You may also need
to configure the SOCKS domain name server.

10.3.8.3 Defining the SOCKS Domain Name Server
The SOCKS domain name server field specifies the IP address of a DNS server
that can resolve names or IP addresses that reside on a non-secure network.
Leave this field blank if the domain name servers configured with TCP/IP resolve
the addresses.

For name or IP address resolution, the system queries the DNS servers
configured with TCP/IP first. If they cannot resolve the name or address, the
system queries the DNS server that you specify.
162 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

If you do not have an internal DNS server, point the AS/400 system at the firewall
for DNS services. If the internal DNS server cannot resolve external information,
type the IP address of the firewall in the SOCKS domain name server field. On
the AS/400 system with the firewall installed, this is the IP address of the
*INTERNAL port of the firewall. On the other AS/400 systems in the secure
network, this is the IP address of the secure port of the firewall.

After you enter all of your SOCKS information, your SOCKS information window
should appear similar to the one shown in Figure 109. Click OK to save the
configuration. The Operations Navigator window appears.

Figure 109. Point to the SOCKS Domain Name Server

10.3.9 Filter Rules for SET Communication
You need to add the following rules to allow the Card Holder Requests to and
from the eWallet, Pay Authorizations and Payment Capture to the Payment
Gateway. Here are the filter rules to allow communication between the Payment
Server and the eWallet. In our example, it is port 8620:

At least one DNS server must be configured by using CFGTCP option 12
before SOCKS checks the domain name server configured for SOCKS.

Note
Setting Up the Network 163

permit 0.0.0.0 0.0.0.0 204.146.18.33 255.255.255.255 tcp ge 1024 eq 8620
non-secure both inbound f=y l=y t=0

permit 0.0.0.0 0.0.0.0 192.168.3.19 255.255.255.255 tcp ge 1024 eq 8620
secure route outbound f=y l=y t=0

permit 192.168.3.19 255.255.255.255 0.0.0.0 0.0.0.0 tcp eq 8620 ge 1024
secure route inbound f=y l=y t=0

permit 192.168.3.19 255.255.255.255 0.0.0.0 0.0.0.0 tcp eq 8620 ge 1024
non-secure route outbound f=y l=y t=0

Here are the filter rules to allow communication between the Payment Server and
the Payment Gateway. In our example, it is port 10010. The default port for
communication with an acquirer (Payment Gateway) is 8888.

permit 192.168.3.19 255.255.255.255 0.0.0.0 0.0.0.0 tcp ge 1024 eq 10010
secure route inbound f=y l=y t=0

permit 192.168.3.19 255.255.255.255 0.0.0.0 0.0.0.0 tcp ge 1024 eq 10010
non-secure route outbound f=y l=y t=0

permit 0.0.0.0 0.0.0.0 204.146.18.33 255.255.255.255 tcp eq 10010 ge 1024
non-secure both inbound f=y l=y t=0

permit 0.0.0.0 0.0.0.0 192.168.3.19 255.255.255.255 tcp eq 10010 ge 1024
secure route outbound f=y l=y t=0

For more information about how to add and implement filter rules, please refer to
IBM Internet Security: IBM Firewall for AS/400, SG24-2162.

10.3.10 Configuring a Default Route to Route Web Server Responses
Because you have the Net.Commerce server on the same AS/400 system that
houses the firewall (AS01 in our scenario), you must add a default route that
specifies the *INTERNAL IP address of the firewall (interface E, Figure 95 on
page 151) as the next hop. This allows the Internet clients to receive responses
from the server (which must be routed through the firewall). Refer to Figure 111
on page 165 for an example of the default route configuration on AS01 entry.

10.3.11 Restarting the Filters
To restart the filters, click the firewall Administration icon, and then click Status
from the Administration Menu page. Select Restart for the filters and click OK.
Refer to Figure 105 on page 159 for an example of the Status page.

These filter rules may not apply to your system. The ports used by your
acquirer may differ from the ports used in our example.

Important
164 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

10.3.12 Verifying Access to the Web Server and Internet
After completing the steps in our scenario, we performed the following verification
testing. We successfully opened a Web page:

• On the Net.Commerce server behind the firewall (AS01) from the Internet.

• On the Internet from an internal client in the secure network using SOCKS as
well as Proxy (this is optional).

If you want to have more information about filter rules and NAT, please refer to
IBM Internet Security: IBM Firewall for AS/400, SG24-2162, and IBM Firewall for
AS/400 V4R3: VPN and NAT Support, SG24-5376.

10.3.13 Additional Configuration Information
This section shows the TCP/IP configuration and network server descriptions for
the firewall configuration FIREWALL on system AS01.

Figure 110. AS/400 System TCP/IP Interfaces

Figure 111. AS/400 System Routing Configuration

Work with TCP/IP Interfaces
System: AS01

Type options, press Enter.
1=Add 2=Change 4=Remove 5=Display 9=Start 10=End

Internet Subnet Line Line
Opt Address Mask Description Type

10.1.1.3 255.255.255.0 TRLAN2 *TRLAN
127.0.0.1 255.0.0.0 *LOOPBACK *NONE
192.168.3.19 255.255.255.0 FIREWAL00 *TRLAN

Work with TCP/IP Routes
System: AS01

Type options, press Enter.
1=Add 2=Change 4=Remove 5=Display

Route Subnet Next Preferred
Opt Destination Mask Hop Interface

*DFTROUTE *NONE 192.168.3.20 *NONE
Setting Up the Network 165

Figure 112. Network Server Description (Part 1 of 7)

Figure 113. Network Server Description (Part 2 of 7)

Figure 114. Network Server Description (Part 3 of 7)

Display Network Server Desc AS01
04/05/99 11:37:45

Network server description : FIREWALL
Option : *BASIC

Resource name : LIN03
Network server type : *BASE
Online at IPL : *YES
Vary on wait : *NOWAIT
Language version : 2924
Country code : 1
Code page : 850
NetBIOS description : QNTBIBM
Start NetBIOS : *NO
Start TCP/IP : *YES

Display Network Server Desc AS01
04/05/99 11:37:45

Network server description : FIREWALL
Option : *BASIC

Configuration file : *NONE
Library :

Synchronize date and time : *YES
Text : *FIREWALL

Display Network Server Desc AS01
04/05/99 11:37:45

Network server description : FIREWALL
Option : *PORTS
Ports :

-----Attached lines------
Port Attached
number line
1 FIRNAT101
2 FIRNAT102
*INTERNAL FIRNAT100
166 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 115. Network Server Description (Part 4 of 7)

Figure 116. Network Server Description (Part 5 of 7)

Figure 117. Network Server Description (Part 6 of 7)

Display Network Server Desc AS01
04/05/99 11:37:45

Network server description : FIREWALL
Option : *STGLNK
Storage space links :

----------------------------Storage space links----------------------------
Network
server
storage Drive Text
FIRNAT100 K

Display Network Server Desc AS01
04/05/99 11:37:45

Network server description : FIREWALL
Option : *TCPIP
TCP/IP port configuration :

---------------------TCP/IP port configuration---------------------
Maximum

Internet Subnet transmission
Port address mask unit
1 10.1.1.2 255.255.255.0 1500
2 204.146.18.33 255.255.255.0 1500
*INTERNAL 192.168.3.20 255.255.255.0 15400

Display Network Server Desc AS01
04/05/99 11:37:45

Network server description : FIREWALL
Option : *TCPIP
TCP/IP route configuration :

--------------TCP/IP route configuration---------------
Route Subnet Next
destination mask hop
*DFTROUTE *NONE 204.146.18.1
Setting Up the Network 167

Figure 118. Network Server Description (Part 7 of 7)

For more detailed information about firewall implementation, please read the
redbook AS/400 Internet Security: IBM Firewall for AS/400, SG24-2162. For
detailed information about Network Address Translation (NAT), please read the
redbook IBM Firewall for AS/400 V4R3: VPN and NAT Support, SG24-5376.

10.3.14 OS/400 TCP/IP Configuration
Because you have a Net.Commerce server on the same AS/400 system that
houses the firewall (AS01), you must add a default route specifying the
*INTERNAL IP address of the firewall (interface E in Figure 95 on page 151) as
the next hop. This allows Internet clients to receive responses from the server
(which must be routed through the firewall). Refer to Figure 111 on page 165 for
an example of the default route configuration on AS01.

There is no need to make manual changes to the firewall network server
description for this scenario. Figure 119 and Figure 120 on page 169 show the
TCP/IP interface and route configuration on system AS01.

Figure 119. AS/400 System TCP/IP Interfaces — AS01

Display Network Server Desc AS01
04/05/99 11:37:45

Network server description : FIREWALL
Option : *TCPIP

TCP/IP local host name : *NWSD

TCP/IP local domain name : *SYS

TCP/IP name server system : *SYS

Work with TCP/IP Interfaces
System: AS01

Type options, press Enter.
1=Add 2=Change 4=Remove 5=Display 9=Start 10=End

Internet Subnet Line Line
Opt Address Mask Description Type

10.196.5.3 255.255.255.0 TRLAN2 *TRLAN
127.0.0.1.15 255.0.0.0 *LOOPBAK *NONE
192.168.3.2 255.255.255.0 FIREWALL00 *TRLAN
168 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 120. AS/400 System Routing Configuration — AS01

10.4 Backend System Connection

As a part of your Net.Commerce implementation, you must have a connection
between your Net.Commerce system and your backend system. We do not
discuss security on the back-end system or any other security on the local
network.

If you are interested in IP filtering on the AS/400 system, please read the redbook
IBM Firewall for AS/400 V4R3: VPN and NAT Support, SG24-5376.

To communicate between the Net.Commerce server and the back-end system,
you must have some sort of communication. We assume that you have a Local
Area Network (LAN) that connects your two systems.

Work with TCP/IP Routes
System: AS01

Type options, press Enter.
1=Add 2=Change 4=Remove 5=Display

Route Subnet Next Preferred
Opt Destination Mask Hop Interface

*DFTROUTE *NONE 192.168.3.2 *NONE
Setting Up the Network 169

170 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Chapter 11. Installing Net.Commerce

This chapter describes how to perform pre-installation procedures and how to
install the Net.Commerce on the AS/400 platform.

11.1 Pre-Installation Procedures

Before you install Net.Commerce, you must perform several pre-installation
procedures. These procedures include determining the host name for your
machine, determining or creating the relational database directory entry, and
creating an AS/400 user ID.

To determine the unique fully qualified host name and domain name, use the
CFGTCP command and select option 12 (change local domain).

To determine the relational database directory entry, go to the AS/400 command
line and type WRKRDBDIRE. Press PF4 to bring up the command prompt. Make a
note of the directory entry name. If the directory does not exist, you must create
one by selecting option 1 from the Work With Relational Database Directory
Entries screen.

To create an AS/400 ID with QSECOFR authority, special authority *IOSYSCFG
and *SECADM, perform the following steps:

1. Go to the AS/400 command line and type: CRTUSRPRF
2. Press PF4 for a prompt.
3. Fill in the necessary parameters. Press Enter to create the user ID.

Please check and make sure you have the most current list of PTFs applied on
your system. Use the DSPPTF command to display the PTFs on your machine and
compare them with the latest PTF list.

11.2 Installing Net.Commerce

This section covers installation of all the components of the Net.Commerce on a
single AS/400 system. For more information, please refer to Net.Commerce for
AS/400 Installing and Getting Started Guide (ncinst.pdf), GC09-2864.

1. Refer to 2.2.1, “AS/400 Net.Commerce Software Requirements” on page 10,
for a list of required software. Ensure that the required software and PTFs are
installed.

2. Log on to your AS/400 system with the same user ID that you created in the
previous section.

3. Insert the Net.Commerce CD-ROM into your AS/400 CD-ROM drive.

4. Type the RSTLICPGM command on the command line.

5. Press PF4 for a prompt.

6. Type the product number (5798NC3) and device name in the appropriate entry
fields.

An acknowledgement message appears and indicates that you have installed
Net.Commerce successfully.

7. Acquire and install any PTFs that are required for the newly installed products.
© Copyright IBM Corp. 1999 171

172 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Chapter 12. Configuring Net.Commerce

This chapter describes how to configure the Net.Commerce instances using the
Net.Commerce Configuration Manager. Specifically, if you want to implement the
ITSO Redbook solution, you need to configure three Net.Commerce instances.
The "Test" instance is for developing code. "Work" is for importing data after the
development. "Product" is the production instance. For more information, such as
a detailed explanation of setting options, what happens during configuration, and
how the database collection is created, please refer to Net.Commerce for AS/400
Installing and Getting Started Guide (ncinst.pdf), GC09-2864.

12.1 Creating New Net.Commerce Instances

After installing the Net.Commerce system, you must configure an instance as
explained in these steps:

1. Ensure that you are logged on to the AS/400 system using the user ID that
was created earlier.

2. To prevent timeouts during long Net.Commerce configuration processes, such
as when the database schema is created and populated with sample data,
alter the *ADMIN Web server instance as described here:

a. If the HTTP administration Web server is running, stop the server by using
the command:

ENDTCPSVR SERVER(*HTTP) HTTPSVR(*ADMIN)

This redbook is based on Net.Commerce for AS/400 V3.2 running on OS/400
V4R3. While most of the redbook still applies to Net.Commerce V3.2 running
on later versions of OS/400, some specific instructions are only for V4R3.
Chapter 9, “Setting Up SSL Using DCM” on page 119, of this updated softcopy
version has been modified to include DCM V4R4. If you are configuring or
running Net.Commerce V3.2 on V4R4, please make sure you obtain
Informational APAR II12011 and II12041. They contain important setup and
WebSphere information. To access the APAR information, log on to:
http://www.as400service.ibm.com/

Click the + (plus sign) next to Tech Info & Databases->Software Problems -
APARS->All Info APARs by Release->Search. Enter the APAR number, and
click Search. The search should return the title of the APAR. Click the
hyperlink by the title, and read the APAR information.

You should also check the readme file. To access the readme file, log on to:
http://www.software.ibm.com/commerce/net.commerce

Click Support in the left frame. In the right frame, support areas are listed.
Click IBM Net.Commerce in the Technical Library area. Click OS400 in the
header bar. From here, you can view the readme file and the list of PTFs
needed for different levels of the OS/400 operating system.

Note
© Copyright IBM Corp. 1999 173

b. From the command line, type:

WRKHTTPCFG *ADMIN

c. Add the following line to the end of the configuration file:

ScriptTimeOut 120 minutes
OutputTimeOut 120 minutes

d. Start the HTTP administration Web server. The AS/400 command to invoke
this is:

STRTCPSVR SERVER(*HTTP) HTTPSVR(*ADMIN)

3. Start your Web browser, and ensure that the following are disabled:

• Memory cache
• Disk cache
• Proxy servers (also known as socks servers)

4. To display the main Net.Commerce Configuration Manager page, complete
the following steps:

a. Type the following URL to display the AS/400 Tasks Page:

http://AS01.MYCOMPANY.COM:2001

b. Click the IBM Net.Commerce for AS/400 link. This displays the
Configuration Manager page as shown in Figure 121 on page 175.

Make sure both ScriptTimeOut and OutputTimeOut values are set to 120
minutes to ensure a complete installation. Otherwise, unpredictable
results may occur that make it difficult to debug.

Note
174 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 121. Configuration Manager

5. Click on New button to display the Settings window.
Configuring Net.Commerce 175

Figure 122. Create a New Net.Commerce Instance

6. To complete the Net.Commerce tab, perform the following steps:

a. Type Test as the Instance Name.

b. Leave default values for Communication Port Base and Number of Server
Processes.

c. Check the Server Options. For ShopITSO, we checked the Enable
Advanced Cache and Use Default Merchant Key boxes.
176 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 123. Web Server Tab

7. To complete the Web Server tab, perform the following steps:

a. Type the fully quantified Web server name: Test.MYCOMPANY.COM

b. Select IBM HTTP Web Server as the Web server.

c. Choose Using Separate Web Server to have a unique Web server
configuration for each instance.
Configuring Net.Commerce 177

Figure 124. Database Tab

8. To complete the Database tab, perform the following steps:

a. Type AS01 as the Database Name which can be retrieved from the WRDBDIRE

command.

b. Select IBM DB2/400 as the DBMS.

c. Enter a Database Logon Password.

When you need to change this password, you must use the Configuration
Manager interface. Do not use the AS/400 native interface to change the
password. While you can change the password associated with the user
profile on the AS/400 system, the Net.Commerce functions that need the
password will not be informed of the new password.

d. Enter the same password in the Confirm Password field.

e. You may choose to populate the database with sample data.
178 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 125. Language Tab

9. Leave the default information for the Language tab.
Configuring Net.Commerce 179

Figure 126. Payment Tab

10.To complete the Payment Tab for the Payment Server configuration, perform
the following steps:

a. Only one Net.Commerce instance can use Payment Server. Also, the
payment server must be installed (RSTLICPGM 5733-PY1) and created
(CRTPYMSVR KEYPWD(PASSWORD)) prior to configuration.

b. Leave the default settings for Server Cycle Time, Processing Interval, and
Transaction Timeout.

11.Click on the Finish button.

12.To remove "ScriptTimeOut 120 minutes" and "OutputTimeOut 120 minutes"
from the *ADMIN configuration, enter the command:

WRKHTTPCFG *ADMIN

13.Stop and start the *ADMIN instance with the following commands:

ENDTCPSVR SERVER(*HTTP) HTTPSVR(*ADMIN)
STRTCPSVR SERVER(*HTTP) HTTPSVR(*ADMIN)

14.Use the steps found in 9.5.4, “Configuring Web Server to Use SSL Server
Authentication (V4R3)” on page 132, or in 9.5.5, “Configuring Web Server to
Use SSL Server Authentication (V4R4)” on page 135, to enable SSL security
in the HTTP server for your Net.Commerce instance. Do not use
WRKHTTPCFG in V4R4. The HTTP configuration name will either be the
name you specified when you created the Net.Commerce instance (TEST in
180 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

this example), or it will be QNETCOMM. Use the certificate you created in
either 9.5, “Creating a Self-signed Certificate” on page 122, or 9.6,
“Requesting a Server Certificate from an Internet CA” on page 139.

15.Start the IBM HTTP instance test using the command:

STRTCPSVR SERVER(*HTTP) HTTPSVR(TEST)

Or, start the instance from the AS/400 Task Page.

16.Start the Net.Commerce instance with the following command:

STRNETCSVR INSTANCE(TEST)

The HTML path populates automatically by the command or from the AS/400
Task Page.

To set up the instances "Work" and "Prod", follow steps 1 through 16 and
substitute "test" with the appropriate instance name. Please be sure to have a
unique Web server instance with a unique IP address for each Net.Commerce
instance. You should skip the steps to remove the ScriptTimeOut and
OutputTimeOut directives from the *ADMIN server (steps 12 and 13) until after
you build all of your instances.

12.2 Deleting Net.Commerce Instances

To delete a Net.Commerce instance, you must use the following steps:

1. Stop the Net.Commerce instance, if it is running, with the command:

ENDNETCSVR <(Instance Name)>

2. Stop the Web server if it is running with the command:

ENDTCPSVR SERVER(*HTTP) HTTPSVR(<Instance Name>)

3. Delete the Net.Commerce instance using the Configuration Manager
accessed from the AS/400 Task Page.

4. Delete the instance library named <instance_name> using the command:

DLTLIB <instance_name>

5. Delete the user profile that was created during the configuration of the deleted
Net.Commerce instance with the command:

DLTUSRPRF <Instance_Name> OWNOBJOPT(*DLT)

This deletes the user profile and all of the objects that the user profile owns,
including items in the root file system. Several attempts may be required to
delete all of the owned objects.

Before you start your HTTP server, check the ServerInit directives in the
HTTP configuration. A change may be required depending on the level of
WebSphere installed on the system. An incorrect setting results in the
termination of the HTTP server jobs for the instance. Refer to the
documentation found in Informational APAR II12011 and II12041. For
instructions about obtaining these APARs, refer to “Note” on page 173.

Note
Configuring Net.Commerce 181

6. Delete the directories and files that are associated with the deleted instance
within the IFS directory:
\QIBM\USERDATA\NETCOMMERCE\INSTANCE\<instance_name>

12.3 Deleting Net.Commerce Licensed Program Product

If you want to delete the licensed program product (LPP), you must end all jobs
that have a lock on the QNETCOMM library. To detect jobs that are locking the
library, issue the command:

WRKOBJLCK OBJ(QNETCOMM) OBJTYPE(*LIB)

End the QNETCOMM subsystem with the command:

ENDSBS(QNETCOMM)

To delete the program product, issue the command:

DLTLICPGM 5798NC3

12.4 Database Server Problem Determination Procedure

Some of the Net.Commerce features, such as product advisor, use JDBC to
connect to the Net.Commerce database schema. The database server job’s job
log can assist you in problem determination of ODBC and JDBC connection.

Use the following procedure to locate the relevant database server job and
display its job log:

1. Type WRKOBJLCK and press F4. Fill the parameters as shown in Figure 127.
Replace the Object keyword value (work) with your instance user profile.

Figure 127. Find the Serving Database Job

2. Press the Enter key. You will see a list of jobs on the screen as shown in
Figure 128.

Work with Object Locks (WRKOBJLCK)

Type choices, press Enter.

Object work Name
Library *LIBL Name, *LIBL, *CURLIB

Object type *usrprf *ALRTBL, *AUTL, *BNDDIR...
Member *NONE Name, *NONE, *FIRST, *ALL
Output * *, *PRINT
182 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 128. List of Jobs Used by Net.Commerce Instance User

3. The jobs named QZDASOINIT are the database server jobs. Type 5 to the left
of this job and press Enter. You will see the work with jobs menu as shown in
Figure 129 on page 183.

Figure 129. Work with the Database Server

4. Choose option 10, Display job log. Press Enter to see the database server job
log as shown in Figure 130 on page 184.

Work with Object Locks
System: AS01

Object: WORK Library: QSYS Type: *USRPRF

Type options, press Enter.
4=End job 5=Work with job 8=Work with job locks

Opt Job User Lock Status
QNEKEYMGR WORK *SHRRD HELD
QNESERVER WORK *SHRRD HELD
QNESERVER WORK *SHRRD HELD
QNETCDMN WORK *SHRRD HELD
QNETCOMM WORK *SHRRD HELD

Work with Job
System: AS01

Job: QZDASOINIT User: QUSER Number: 559302

Select one of the following:

1. Display job status attributes
2. Display job definition attributes
3. Display job run attributes, if active
4. Work with spooled files

10. Display job log, if active or on job queue
11. Display call stack, if active
12. Work with locks, if active
13. Display library list, if active
14. Display open files, if active
15. Display file overrides, if active
16. Display commitment control status, if active

More...
Selection or command
===>

F3=Exit F4=Prompt F9=Retrieve F12=Cancel
Configuring Net.Commerce 183

Figure 130. Database Server Job Log

In the job log screen, you can see a detailed message by pressing F10.

The work with job for the database server allows you to perform more operations
such as changing the priority or start debug by using the STRSRVJOB command.

Display Job Log
System: AS01

Job . . : QZDASOINIT User . . : QUSER Number . . . : 559302

Dependent file ICV177_0 in library WORK deleted.
Dependent file ICV1700001 in library WORK deleted.
Dependent file I_ICT00011 in library WORK deleted.
Dependent file I_ICT00012 in library WORK deleted.
Dependent file I_ICT00009 in library WORK deleted.
Dependent file I_ICT00010 in library WORK deleted.
Constraint was removed.
1 constraint(s) removed from file IC177.
Output operations to file CGRYR00002 in WORK not allowed.
Output operations to file CGRYR00002 in WORK not allowed.

Bottom
Press Enter to continue.
184 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Chapter 13. Building the Mall and Store

There are two different types of Net.Commerce site that can be created:

• A multiple store site or mall contains a number of stores that shoppers access
from a single mall home page or directory. In Net.Commerce, it is a single
Net.Commerce instance with multiple stores configured in the same database.
In this system, there will be multiple merchants and administrators. The
shopping process may be customized for each merchant.

• A single store site is a store that exists independently of any other online store
or mall. In Net.Commerce, it is a single Net.Commerce instance with only one
store configured in the database. In this system, there will be one merchant,
one shopping process, and perhaps only one administrator.

The creation of the stores within the site can be done in two different ways for
either type of site, either using Store Creator or using functions of Site Manager
and Store Manager. See also Chapter 21, “Site Administration” on page 453.

13.1 Net.Commerce Sample Stores

Net.Commerce provides samples that you can use as starting points for creating
stores or malls. Each sample shows how you can use specific features of
Net.Commerce to build a customized store or mall. Each is intended to help you
generate business ideas.

Also the East West Food Mart tutorial is delivered with the Net.Commerce
product. This tutorial is intended for the administrator who will build and manage
a Net.Commerce store. It provides step-by-step instructions on how to create a
store from a DB2 database, by using the Site Manager and the Store Manager in
the Administrator interface, the mass import utility, and by writing and customizing
your own Net.Data macros. It also describes how to add unique store features
using Java Script. You will find this tutorial in the directory
/QIBM/ProdData/NetCommerce/html/MRIxxxx/ncbooks, where xxxx stands for your
language code (for example, 2924 for the English language).

The following Net.Commerce samples are available:

• Metropolitan mall (demomall) — Demonstrates a mall scenario that
implements the basic features of Net.Commerce with minimal customizing.

• Euro mall — Is similar to the Metropolitan mall. It uses the same products and
has the same stores as the Metropolitan mall. It also demonstrates the use of
the euro currency.

• East West Food Mart — Demonstrates a business-consumer scenario that
has been customized to create a simple and expedient shopping flow.

To view a sample, you first need to select the sample database under the
Database tab, during instance configuration. Then, you can view it through your
browser by typing in its URL. See Figure 124 on page 178 in 12.1, “Creating New
Net.Commerce Instances” on page 173.

The Euro mall is intended to demonstrate some of the features and functions that
you can use to include euro support in your own mall. The Euro mall comes
complete with sample data and hypothetical conversion rates. You can view and
© Copyright IBM Corp. 1999 185

try out the Euro mall to see how an euro-enabled mall can function, and modify
your own mall based on the Euro mall.

The mall contains the following stores that you can replace or modify:

• 6th Avenue — A department store that sells hardware, computers, and
clothing. All product prices are stored in the database in EUR. This store
accepts several shopping currencies: ATS, BEF, DEM, IEP, ITL, LUF, PTE,
ESP, FRF, and EUR. All shopping currencies are dual displayed using EUR as
the counter value currency. For FRF, in addition to EUR, this store displays
FIM, ITL, and NLG as counter value currencies.

• Basics — A clothing store for men which specializes in pants and tops. This
store accepts EUR and FRF as the shopping currencies. In addition, by
overriding the mall-level currency formatting information in the table
CURRFORMAT with merchant-specific values, this store displays the euro
symbol as a GIF file, rather than using the mall level default of the euro. The
euro symbol works only when shoppers use browsers that support HTML 4.0
and operating systems that can display the euro symbol.

• Next Generation — A computer store that features Product Advisor for
helping the shopper find computer equipment to purchase. All product prices
are in FRF. Therefore, the store accepts FRF as the shopping currency. This
store also presents monetary amounts through dual display of EUR and FRF.

• All other stores are under construction and do not contain data. These stores
are provided as placeholders.

13.2 Store Creation Choices

As mentioned before, you have two choices to create a store. You can use the
Store Creator or the Site and Store Manager functions. Of course, using the Store
Creator is the easy way to get a new store.

Figure 131 on page 187 shows the differences. With Store Creator, you have only
to complete the processes for product catalog creation, assign Shopper Groups
(your shop has no Shopper Groups), define Discounts (in our shop, the pricing
function comes from the back-end system), and define SET Payment.
186 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 131. Store Creation Choices

13.3 Building the Store with Store Creator

Store Creator provides an easy-to-use graphical application that steps a user
through the creation of a store in nine easy steps. It supports three store models:

• One Stop Shop — A simple business-to-consumer store model that does not
require shoppers to register.

• Personal Delivery — A business-to-consumer store model that offers more
shopper functions including registration and address book.

• Business to Business — A business-to-business store model that includes
an approvals process for purchases.

Store Creator is only accessible by an administrator in the Site Administrators or
Store Creators access group.

Figure 132 on page 188 through Figure 134 on page 189 show the three different
store models One Stop Shop, Personal Delivery, and Business to Business.

Store Manager

Access Control

Site Manager

Shipping Services

Store HTML Files

Shipping Providers

Store Records

Store Information

Store Creator
1. Store Model

2. Contact
Information
3. Sample Data & Description

4. Currency & Tax Rates

5. Payment Methods

6. Shipping Providers

7. Store Style

8. Page Layouts

9. Create or Update

Product Catalog Creation

Shopper Groups

Discounts

SET Payment

Update Customize

Update

Customize

Creates ALL required pages for store shopping process
Building the Mall and Store 187

Figure 132. One Stop Shop Store Model

The One Stop Shop model works without shopper registration. The customer has
no address book, and the ship-to and bill-to addresses are the same for the whole
order.

Figure 133. Personal Delivery Store Model

The Personal Delivery model works with shopper registration. The customer can
work with an address book. Shoppers place items in an order list. These items
are kept there until the shopper orders them or removes them. If the shopper has
done neither, the items remain in the order list for future visits.
188 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 134. Business to Business Shop Model

The Business to Business store model has a corporate purchasing structure. It
allows merchants to group their business clients into different shopper groups,
called office groups, which can be used to target the groups with different product
offerings and prices.

The store manager is responsible for approving office groups and defining the
product prices and product pages that will be available to each group. Before
making a purchase, each shopper must register with an office group and receive
approval from the office group manager.

13.3.1 Objects Built by Store Creator
The Net.Data macros and HTML source files, which are built when you use the
Store Creator function, are located in the following IFS (Integrated File System)
directories (path):

• HTML source file:

/QIBM/UserData/NetCommerce/instance/inst_name/html/index.html

• Macros for category displays:

/QIBM/UserData/NetCommerce/instance/inst_name/macro/category/
Shop_name/cat1.d2w

• Macros for product display:

/QIBM/UserData/NetCommerce/instance/inst_name/macro/product/
Shop_name/prod1.d2w

• All other macros for controlling your e-business and the include file:

/QIBM/UserData/NetCommerce/instance/inst_name/macro/Shop_name/
Building the Mall and Store 189

13.4 Building the Store with Site and Store Management Functions

If Store Creator is not used to create stores, then the Site Administrator uses the
following Site Manager functions.

For a Mall, use the following Site Manager functions:

• Mall Information form — Used to enter information about the mall, and
create a directory of stores.

• Store Records form — Used to create the store record in the Net.Commerce
database. In a Mall, this is used multiple times.

• Shipping Providers form — Compiles a list of shipping providers. In a Mall,
stores selects which shipping providers they will support from this list.

Other Site Manager forms that may be required include:

• Access Control form — Used to create administrator users and assign them
to an Access Group for a particular store or site administration or store
creation.

• Shopper Information form — Used to create or modify shoppers. For
example, a shopper may have forgotten their password.

• Currency Mapping form — Used to create a list of currencies for the SET
payment support.

• Task Management form — Used to override functions and macros for the
shopping process tasks with a customized version for a store.

• Access Groups form — Used to create new access groups that can perform
specific Net.Commerce commands.

• Command Security form — Used to set whether SSL security or logon
authentication is required to run particular commands.

Site Manager is only accessible by an administrator in the Site Administrators
access group.

Store Manager allows you to create and manage all aspects of the store specific
information. It is used to perform the following tasks:

• Enter or change store and merchant information
• Create and manage product categories
• Create and manage product information
• Define discounts
• Manage shipping services
• Create and manage shopper groups
• View shopper information and create customer information

Store Creator also creates a include file with the name of shop_name.inc. This
include file delivers define statements that are used in all Net.Data macros for
this shop. For example, there is a define value for the merchant number.
Therefore, it is not necessary to retrieve this number from the DB2/400
database.

Note
190 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

• Manage orders
• Configure and manage payments

Store Manager is only accessible by an administrator in the Site Administrators or
Store Administrators access group. The payment functions are also accessible by
an administrator in the Payment Administrators access group. A Store
Administrators access group exists for each store so that each administrator can
be restricted to one or more store’s data.

Template Designer is a Java applet for designing mall and store Web pages. It
can be used to build HTML pages (for example Home pages), category, and
product pages.

For more information about Template Designer, see 14.4, “Using Template
Designer to Customize Product Advisor Pages” on page 299.

13.5 Implementing the ShopITSO Sample Solution

After the first steps described in Chapter 11, “Installing Net.Commerce” on page
171, and Chapter 12, “Configuring Net.Commerce” on page 173, we are ready to
create our sample store. To implement ShopITSO, described in 3.9, “Design of
the ShopITSO Sample Solution” on page 57, we use the Store Creator and create
our shop with the One Stop Shop store model.

The One Stop Shop store model, as shown in Figure 135, meets the navigation
flow in the shop according to our design objectives best. To implement our shop
as we designed it, we had to modify the Net.Data macros generated by Store
Creator, for example, to implement the possibility to enter quantity for the product
to buy.

Another aspect to work with the One Stop Shop is the way the shop pages are
presented. One Stop Shop uses frames. This also is a requirement in our design.

The fact that Store Creator creates an include file (see “Note” on page 190) was
also a motive to use the Store Creator with the One Stop Shop model.

Figure 135. One Stop Shop Store Model

To become familiar with the Net.Data macros, we also looked at the macros that
are generated by the Net.Commerce demos, such as the Metropolitan mall and
Building the Mall and Store 191

macros that were generated by the Store Creator using the Personal Delivery
store model. For more information about the sample stores, see 13.1,
“Net.Commerce Sample Stores” on page 185, and the online help from
Net.commerce.

The following sections describe the steps that we completed to build our sample
ShopITSO in detail.

13.6 Building the ShopITSO Sample Store with Store Creator

To create our sample store, we followed this sequence of events:

1. Login as ncadmin in the Net.Commerce Administrator Web page at the
following URL:

http://fullyqualifiedhost_name/ncadmin/

2. Click on STORE CREATOR.

3. Load the Store Creator applet from the Store Creator view, shown in Figure
136, by clicking in the Load button. Two windows pop up: the Store Creator
Status window and the Store Creator window.

Figure 136. Store Creator View in the Net.Commerce Administrator Page

4. Minimize the Store Creator Status window, shown in Figure 137 on page 193,
while working with the Store Creator window.

Creating several stores with different models through the Store Creator is
possible. Doing this in the implementation phase is a good approach. It allows
you to set up as many stores as you want for testing purposes, and delivers
you a pro store model different Net.Data macros. All stores work with the same
system name in the URL. Only the store name that follows the system name in
the URL are different.

Note
192 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 137. Store Creator Status Window

5. From the Store Creator window, shown in Figure 138, select Create a new
store and click the Next button.

Figure 138. Store Creator — Welcome Window

6. Select One Stop Shop for the store model, as shown in Figure 139 on page
194. Click the Next button.

Do not close the Store Creator Status window. If you close this window, the
Store Creator window will also close!

Important
Building the Mall and Store 193

Figure 139. Store Creator — Step 1. Select a Store Model

7. Enter the contact information, as shown in Figure 140 on page 195, and click
the Next button.

The value you enter in the Store Name is used as part of the URL name and
also the directory names in the IFS, where all the macros are stored. It is the
name that follows the system name in a URL.

For example, http://myServer/ShopITSO where ShopITSO is the name that we
entered in the Store Name field. Any spaces you typed in the Store Name are
dropped.

When you use a mix of small and capital letters, be sure that the Pass directive
in the HTTP configuration matches this. URLs are always case sensitive.

For our example above, we added the following Pass directive in the HTTP
configuration file:

Pass /shopitso/* /QIBM/UserData/NetCommerce/instance/instance_name/html/ShopITSO/*
Pass /shopITSO/* /QIBM/UserData/NetCommerce/instance/instance_name/html/ShopITSO/*
Pass /SHOPITSO/* /QIBM/UserData/NetCommerce/instance/instance_name/html/ShopITSO/*

With these three Pass directives, the customer can work with all three
variations of the URLs: http://myServer/shopitso, http://myServer/shopITSO,
and http://myServer/SHOPITSO.

Important
194 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 140. Store Creator — Step 2. Enter Contact Information

8. Select No Sample Products in the Sample Products selection list to create a
store with no generated sample products. Enter the store front description
(using HTML tags if needed), as shown in Figure 141 on page 196, and click
the Next button.

There are four bundles of sample data provided as mass import files that the
store creator will automatically import. The No Sample Product bundle just
creates a root category named Top Category.

If you loaded sample data, you can either remove that data using the Product
Categories and Product Information forms in Store Manager or you can:

a. Go to the Store Creator.
b. Select your store.
c. Go to step 3.
d. Change Product Type to "No Product Information".
e. Go to step 9.
f. Select Update.

Once the data is customized outside of Store Creator, you should no longer
use Store Creator because you may lose changes.

For your first installation in a test environment, it is helpful to select a
sample product pallet. Then, you get a shop that has full functionality. You
can test your first Net.Data macro changes against this store to see the
results. Do not forget to delete these products later from the database.

Note
Building the Mall and Store 195

Figure 141. Store Creator — Step 3. Add Sample Products and Store Description

9. Specify tax names and rates, as shown in Figure 142 on page 197, and click
the Next button.

If you wish to use flat Tax Rates for all items in an order, enter them in this
form. You have the possibility to enter six different tax rates (if you have more
than one tax), which are calculated for the whole order. The store tax rates will
be stored in the MERCHANTTAX table and will be used instead of the MALL
tax rates.

The tax rates that you enter in this form applies to all items in an order.

Note
196 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 142. Store Creator — Step 4. Specify Tax Rates

10.Select payment methods, as shown in Figure 143 on page 198. Click the Next
button.

You can select which credit cards will be accepted for basic credit card
payments. SET payment will not be configured by Store Creator. If you wish
to use it, you have to configure it separately. See 16.1.1, “Installing Payment
Server” on page 343, and 16.1.6, “Acquirer Configuration of the Payment
Server” on page 353. The selected cards will be listed for the shopper to
select during payment.

Note
Building the Mall and Store 197

Figure 143. Store Creator — Step 5. Select Payment Methods

11.Specify shipping providers and charges, as shown in Figure 144 on page 199,
and click the Next button.

The Shipping Providers (Shipping Service Name) and charges for your
store are defined for the entire order. Only flat-rate charges can be defined.

For more complex shipping charge calculations, use the Shipping Services
form in the Store Manager function.

Note
198 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 144. Store Creator — Step 6. Specify Shipping Providers

12.Select Corporate for the store style, as shown in Figure 145 on page 200, and
click the Next button.

To activate the shipping charge calculation for the flat rate changes, you have
to assign the value SCSHP to all of your products in your store through the
Store Management function. This value has to be chosen in the Product
Shipping Code selection list of the Product/Item Information form, that you get
when you choose the Product Information button in the left site of the Store
Manager window. See Figure 153 on page 208.

To avoid this manual entry for all of your products, you can use an SQL update
query to set the value in the field PRPSNBR of the PROCUCT table. Be
careful. The value is than not SCSHP as mentioned before. It must be the
value of the merchant reference number that will be created, when you are
finished with the creation of the store through the Store Creator. You can find
this value in the define variable MerchantRefNum in the include file for this
store. The include file is in the directory
/QIBM/UserDataNetCommerce/instance/instance_name/macro/Shop_name/. Also the
merchant reference number is stored in the merchant table MERFNBR field,
where you can find it.

It is also possible to set the value for the PRPSNBR field in the product table
through the mass import function, after the store is created. Use the
PRSCODE parameter with the #PRODUCT command and assign the merchant
reference number.

Important
Building the Mall and Store 199

Figure 145. Store Creator — Step 7. Select a Store Style

13.Select list layout for the category pages, as shown in Figure 146. Click the
Next button.

Figure 146. Store Creator — Step 8. Select Page Layouts
200 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

14.Review your selections, as shown in Figure 147, and click Create Store to
create the store.

Figure 147. Store Creator — Step 9. Review Your Selections

15.After the creation process is finished, the results window, shown in Figure 148
on page 202, describes how to access the new store.

Click Close to close the Store Creator window. The Store Creator Status
window closes automatically.
Building the Mall and Store 201

Figure 148. Store Creator — Results Display

16.Add the Pass directives for the new store in the Web Server Configuration File
of the HTTP instance.

Pass /QIBM/UserData/NetCommerce/instance/instance_name/html/shop_name

The pass directives for our sample ShopITSO are:

Pass /shopitso/* /QIBM/UserData/NetCommerce/instance/work/html/ShopITSO/*
Pass /shopITSO/* /QIBM/UserData/NetCommerce/instance/work/html/ShopITSO/*
Pass /SHOPITSO/* /QIBM/UserData/NetCommerce/instance/work/html/ShopITSO/*

With these three pass directives, the customer can work with all three
variations of the URL: http://myServer/shopitso, http://myServer/shopITSO,
and http://myServer/SHOPITSO.

Section A.11, “AS/400 Web Server Configuration File” on page 519, shows our
configuration file with which we worked.

17.Stop and restart the HTTP server through the HTTP server configuration
function in the AS/400 task or use following AS/400 commands from a 5250
session:

ENDTCPSVR SERVER(*HTTP) HTTPSVR(instance_name)
STRTCPSVR SERVER(*HTTP) HTTPSVR(instance_name)

18.Finally, to access the new store, open a browser and follow the URL link
indicated in Figure 148.

The resulting store, previous to our customizing, is shown in Figure 149 on
page 203.
202 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 149. Shop ITSO Just after Creation by Store Creator

After creating the store with the Store Creator, you need to create the product
catalog, see 13.7, “Creating the Product Catalog” on page 203.

A root category named Top Category has been created for you. You need to
create additional categories and the products under this root.

13.7 Creating the Product Catalog

Figure 150 summarizes the steps for creating the Product Catalog in the
Net.Commerce e-business application. This section describes, in detail, how we
implemented the Product Catalog for our sample store ShopITSO.

Figure 150. Creating the Product Catalog

Design Category and Product Data

Create Category Structure

Create other Shopping Metaphors (for exam ple, Search)

Create Product Data or Im port Data

Create Category and Product Tem plates
Building the Mall and Store 203

1. Design Category and Product Data.

To learn how the category and product data in Net.Commerce are defined and
work, see 3.2, “Planning the Product Catalog” on page 31.

2. Create Category Structure.

First, we imported our products with the mass import function (see 15.3.2,
“The LOADPRD Utility — Description” on page 330) above the root category
named Top Category, which was build by the Store Creator.

Our mass import function from Net.Commerce imported only one category
with the name Top Category. All products belong to this category.

After the mass import, we used the Store Manager to build the hierarchy and
add new categories. See 13.12, “Customizing the Category Tree” on page
222.

3. Create Product Data or Import Data.

We used the mass import function to import the products from the back-end
system to the Net.Commerce database together with the category. See point 2
above.

Before the mass import step, we proved our production databases to find out
which characteristics in our production tables can be used to build the mass
import file for the mass import. We found out that our tables already have
some characteristics to build the content for the Net.Commerce database
tables. For more information about mass import, see 15.3, “Importing Data by
Example” on page 330.

Table 12 on page 205 shows an extract from the matching table that we built. It
points out which tables and fields are used from our production system to fill
the mass import file.

In our sample store, we have only small text for the two long description fields
in the product table. We imported this text from our back-end system table
BELDSC (see Table 12).

In a real store, you have to import the values for these two fields from an
HTML source file. The reason is that the contents of these fields are used to
show them later in the browser and therefore, should be in the HTML format
(see also in 3.2.3, “Planning Product Descriptions” on page 35). This can also
be done in a second mass import step.

A second approach to have the long description available for a product is to
use the PRURL field in the product table. In this field, you enter a URL path. In
your product template, you can use this URL to make a link to an HTML file
that has the description for the product. For a sample of how this works, see
13.11, “Using the Product PRURL Field” on page 218.
204 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Table 12. Fields Used from the Back-End System Table for Product Catalog

4. Create Category and Product Templates.

In ShopITSO, we used the Net.Data macros cat1.d2w for all of our categories
and prod1.d2w for all our products, which were created by the Store Creator.
Also, our mass import file used these names to fill the fields in the above
mentioned template tables.

Perhaps you do not have such a simple solution because you work with
multiple templates and with multiple shopping groups. These particular cases
require more effort to complete the assignment and to create more than one
template for a product or category. See 3.2.4, “Planning Category and Product
Templates” on page 36, for more information. To learn how you can assign a
Net.Data macro template to a category or product without the mass import,
see 13.8, “Assigning Templates” on page 206.

5. Create other Shopping Metaphors.

We use the Product Advisor functionality to provide product comparison and
product exploration pages. See Chapter 14, “Enhancing the Store Using
Product Advisor” on page 275.

Prod.Table
Name

Field inProd.
Table or
Constant
Value

Import File
Command and
Used Field
Name

Fills
Net.Commerce
Table

Net.Commerce
Description

BECATEG BETEXT #CATEGORY
CGNAME

CATEGORY Category name

BETEXT #CATEGORY
CGSDESC

CATEGORY Short Description

BETEXT #CATEGORY
CGLDESC

CATEGORY Long Description

BETEXT #CATEGORY
Parent_cat_na
me

CGPRREL used to build the
reference number
for parent category

Constant: 1 #CATEGORY
CRSEQNBR

CGPRREL CRSEQNBR

BETEXT #CATESGP
cat-name

CATESGP used to build the
reference number
for category

Constant
/ShopITSO/c
at1.d2w

#CATESGP
CSDISPLAY

CATESGP CSDISPLAY

BEPROD BEPNBR #PRODUCT
PRNBR

PRODUCT PRNBR

BESDSC #PRODUCT
PRSDESC

PRODUCT PRSDESC

BELDSC #PRODUCT
PRLDESC1

PRODUCT PRLDESC1
Building the Mall and Store 205

13.8 Assigning Templates

As mentioned in 3.2.4, “Planning Category and Product Templates” on page 36,
fill the assigned template path and name through the mass import function. In this
section, we show you how to update this information for a single product or
category. Both the assignment for categories and product templates are possible
through the Store Manager function.

13.8.1 Assigning Templates to Categories
To assign templates to categories, use the Store Manager and follow these steps:

1. Login as a Net.Commerce administrator with access to the store whose
information you are changing in the Net.Commerce Administration Web page
at the following URL:

http://fullyqualifiedhost_name/ncadmin/

2. Select Product Categories in the left frame of the window.

3. Select ShopITSO (your store name) in the Store selection list.

4. Click on the category you want to assign or prove. See Figure 151.

Figure 151. Product Categories

5. Click the TEMPLATE button.

6. Click the SEARCH button.

To obtain a larger second half of the screen, set the cursor of the black line
and move this line above.

Tip
206 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Now you can see the assigned template path ShopITSO name cat0.d2w for
the chosen category, as shown in Figure 152.

7. In this window, make your changes as required. To learn how to add a
template for a new category, see 13.12, “Customizing the Category Tree” on
page 222. Begin with Figure 178 on page 224.

Figure 152. Assigned Category Template

13.8.2 Assigning Templates to Products
To assign templates to products, use the Store Manager and follow these steps:

1. Login as ncadmin in the Net.Commerce Administration Web page at the
following URL:

http://fullyqualifiedhost_name/ncadmin/

2. Select Product Information in the left frame of the window.

3. Select Store ShopITSO (your store name) in the Store selection list.

4. Choose Product or Item in the Input For selection list. See Figure 153 on
page 208.
Building the Mall and Store 207

Figure 153. Product/Item Information

5. Click the SEARCH button.

6. Click on the product or item you want to change.

The chosen product or item is shown in the Product Number or Item SKU field.
See Figure 154.

Figure 154. Product/Item Information — Product List

To obtain a larger second half of the screen, set the cursor of the black line
and move this line above.

Tip
208 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

7. Select TEMPLATES in the left frame of the window.

8. Select None (default template) in the Shopper Group selection list.

9. Push the SEARCH button.

Now you can see the assigned template path ShopITSO name prod1.d2w for
the chosen product like in Figure 155. The Shopper Group field is blank. This
means this template is not assigned to a shopper group.

Figure 155. Product Template Assignment

10.Make your changes as required here:

a. Select Shopper Group None (default template) in the selection list.

b. Type in the path and name of the template as:

ShopITSO/prod1.d2w

c. Push the SAVE button. Figure 156 shows these changes.

Figure 156. Update Template Assignment
Building the Mall and Store 209

If the update completed successfully, a message appears as shown in Figure
157.

Figure 157. Product Template Updated Successfully

13.8.3 Quick Test for Template Views
For a quick look at how your product or category page will appear, you can use
the following approach for a product template. To look for a category template
page, the steps are similar, with the exception that you start with the Product
Categories form from the Store manager. See 13.8.1, “Assigning Templates to
Categories” on page 206.

To view a window where your can see how your page will appear, complete the
following steps:

1. Follow steps 1 through 11, which are described in 13.8.2, “Assigning
Templates to Products” on page 207.

2. Click on the template you want to see.

A window appears similar the one shown in Figure 158 on page 211.
210 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 158. Product Template Assignment

3. Click the VIEW TEMPLATE button. The test template for the chosen product
appears (Figure 159).

Figure 159. Test View from the Product Template

Figure 160 on page 212 shows our product page with the same product as shown
on Figure 159 in the real ShopITSO application. Notice that now the height of the

Because this view is only built with the Net.Date macro information, you cannot
see the frames around the page as in your real e-business application.

Note
Building the Mall and Store 211

product page in the main frame does not fit the browser window size, and a scroll
bar appears on the right side of the main frame.

Figure 160. Product Page in ShopITSO

13.9 Assigning Product Images to Products

The best way to store the image path and name in the Net.Commerce
PRODUCTS database table is to use the mass import function. See 3.3, “Images
and Multimedia Files” on page 37, and 15.2.2, “Mass Import” on page 321. You
can also use the Store Manager function to update both the PRTHMB and
PRFULL image fields for a single product.

In our case, our mass import file did not fill this field for the PRODUCT table. We
did this intentionally to show you another way of how you can solve this problem.
After we received the product data from the mass import, we used interactive
SQL statements to make our changes. Because we are using the same image file
for many similar products, the SQL technique allows us to update many records
with a single SQL command. If you do not have Interactive SQL installed on your
system, you should generate mass import records and use the mass import utility
to update your product records.

In our ShopITSO, we have the following images for products available. See Figure
161 on page 213. The image names have a short form of our product names field
PRSDESC in the Net.Commerce table product.
212 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 161. Images Available for Products

We used the following SQL statement to see our product names in the products
table for our shop (merchant number is 28):

SELECT SUBSTR(PRSDESC, 1,30), SUBSTR(PRTHMB, 1,27), SUBSTR(PTFULL, 1,27)
FROM WORK/PRODUCT
WHERE PRMENBR=28

Figure 162 shows the results of this SQL query.

Figure 162. Our Product Names

Use the AS/400 command ADDLIBLE QNETCOMM to add the Net.Commerce
program library to your library list before you use interactive SQL. This library
contains the trigger programs that take care of the integrity of your database.

If you do not add this library, you receive the error message: Trigger program or

external procedure detected an error.

Note

Display Data
Data width : 80

Position to line Shift to column
....+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
SUBSTR function SUBSTR function SUBSTR function
ThinkPad 360PE
ThinkPad 360PE
ThinkPad 360Cs
ThinkPad 360C
ThinkPad 360C
ThinkPad 360P
ThinkPad 360CSE
ThinkPad 360CSE
ThinkPad 360CE
ThinkPad 360CE
ThinkPad 730TE
ThinkPad 730TE
ThinkPad 730T
ThinkPad 730T - -
ThinkPad 730T - -
ThinkPad 730T - -
ThinkPad 365CSD - -
ThinkPad 365CD - -
ThinkPad 365CS - -

More...
F3=Exit F12=Cancel F19=Left F20=Right F21=Split
Building the Mall and Store 213

The next step was to assign the image names to the product. Because of our
name rule, this was not a big effort. Therefore, it was easy to build SQL
statements for updating the product table.

Figure 163. SQL Statements for Updating the Image Path and Names

The SQL statement like ’ThinkPad 360P’ only updated one row. The product with
description ThinkPad 360 PE was not updated (this product should have the
image Tp360Pe assigned). The SQL statement like ’%ThinkPad 360C%’ made the
update for all products with the name ThinkPad 360C, ThinkPad 360CS, and
ThinkPad 360CSE. We repeated this last step for all our products.

13.10 Using Product Long Description Fields

As mentioned in 3.2.3, “Planning Product Descriptions” on page 35, you should
complete the necessary product descriptions throughout the mass import
function. In this section, we show you how you can update this information for a
single product.

To make any changes that are related to the several product tables in
Net.Commerce, you can use the Store Manager product forms. This section
describes how you can change the information for the product long description
fields. To change the description for products, use the Store Manager and follow
these steps:

1. Login as ncadmin in the Net.Commerce Administration Web page at the
following URL:

http://fullyqualifiedhost_name/ncadmin/

2. Select Product Information in the left frame of the window.

3. Select Store ShopITSO (your store name) in the Store selection list.

4. Choose Product or Item in the Input For selection list. See Figure 153 on
page 208.

5. Click the SEARCH button.

Enter SQL Statements

Type SQL statement, press Enter.
> update work/product set PRthmb = '/shopitso/gifsm/Tp-360p.gif'
where prmenbr=28 and prsdesc like 'ThinkPad 360P'
1 rows updated in PRODUCT in WORK.

> update work/product set PRfull = '/shopitso/giflg/Tp-360p.gif'
where prmenbr=28 and prsdesc like 'ThinkPad 360P'
1 rows updated in PRODUCT in WORK.

> update work/product set PRthmb = '/shopitso/gifsm/Tp-360c.gif'
where prmenbr=28 and prsdesc like '%ThinkPad 360C%'
7 rows updated in PRODUCT in WORK.

> update work/product set PRfull = '/shopitso/giflg/Tp-360c.gif'
where prmenbr=28 and prsdesc like '%ThinkPad 360C%'
7 rows updated in PRODUCT in WORK.

===>
Bottom

F3=Exit F4=Prompt F6=Insert line F9=Retrieve F10=Copy line
F12=Cancel F13=Services F24=More keys
214 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

6. Click on the product or item you want to change.

7. The chosen product or item is shown in the Product Number or Item SKU field.
You can see also all fields that you can update. See Figure 164.

Figure 164. Product/Item Information (Part 1 of 6)

8. Use the scroll bar on the right side to see the entire window.

Look at the Description Field 1 and Description Field 2. Here, we entered
normal text. See Figure 165 on page 216.

To get a larger second half of the screen, set the cursor of the black line and
move this line above.

Tip

Make the second part of the window smaller to see the fields you can
change.

Tip
Building the Mall and Store 215

Figure 165. Product/Item Information (Part 2 of 6)

9. In Description Field 3, we entered HTML coded text. See Figure 166.

Figure 166. Product/Item Information (Part 3 of 6)

10.Use the scroll bar on the right side of the Description Field 3 to see more text
(Figure 167 on page 217).
216 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 167. Product/Item Information (Part 4 of 6)

11.Use the scroll bar on the right side of the Description Field 3 a second time to
see more text (in Figure 168).

Figure 168. Product/Item Information (Part 5 of 6)

12.Push the SAVE button.

13.If the product record is successfully updated, a message is displayed in the
lower frame, as shown in Figure 169. Click the RETURN button to go back to
the Product/Item page.

Figure 169. Product/Item Information (Part 6 of 6)

Figure 170 on page 218 shows how the product page appears when you use
HTML formatted text in the description field.
Building the Mall and Store 217

Figure 170. Product Page with HTML Formatted Long Description Field

13.11 Using the Product PRURL Field

In this section, we give you an example of how you can use the PRURL field in
the PRODUCT table to make a link to an HTML file, which has additional
description for the product. We did this only for one product. When you plan to
use this approach for many or all of your products, you should use mass import to
make your update in the product table for the PRURL field. See 3.2.3, “Planning
Product Descriptions” on page 35.

We completed the following steps for one of our sample products:

1. Create an HTML source file with additional text. This can be any HTML
source, perhaps with images or other multimedia files in it. See the following
source code:

<HR><TABLE width=100% cellspacing=30 border=0>
<TR valign=top><TD width=33%> </TD>
<TD with=30%><H1>Additional Text</h1></TD>
<TD>This is text from the product.html that is assigned to the product
through the PRURL field in the PRODUCT table.

We used here some HTML tags.</TD></TR>
<A HREF="/cgi-bin/ncommerce3/ProductDisplay?prrfnbr=1450&prmenbr=28"
TARGET="main">return to product page
</TABLE>
<HR>

Notice that we named our HTML source file based on the product SKU name.
This is a good approach to have a logical name to know which source file
belongs to which product. When you use mass import to fill the PRURL field of
the product table, apply a meaningful name to a rule for matching the right
values for the import file.

2. Update the PRODUCT table to include the value of the URL of the HTML
source file. In our case, this file is stored in the same IFS directory where all
our other HTML files for the store ShopITSO are stored. It is the directory
/QIBM/UserData/NetCommerce/instance/work/html/ShopITSO/.
218 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

We used the following Pass statement in our HTTP Web Server Configuration
file:

Pass /ShopITSO/* /Qibm/UserData/NetCommerce/instance/work/html/ShopITSO/*

It maps the /ShopITSO/ portion of the URL to the real directory where the files
are located. See also A.11, “AS/400 Web Server Configuration File” on page
519. We can use the short name /ShopITSO/20B0G.html in the PRURL field of
the PRODUCT table. See Figure 172 on page 220.

Because we activated the HTTP Web Server Local Cache for all the files that
are stored in this directory, the 2oBoG.html HTML source file is also cached.
See 13.14, “Using the HTTP Web Server Cache for Static Pages” on page
234.

Follow these steps to update the PRURL field throughout the Store Manager
product forms:

a. Login as ncadmin in the Net.Commerce Administration Web page at the
following URL:

http://fullyqualifiedhost_name/ncadmin/

b. Select Product Information in the left frame of the window.

c. Select Store ShopITSO (your store name) in the Store selection list.

d. Choose Product or Item in the Input For selection list.

e. Click the SEARCH button.

f. Click on the product or item that you want to change.

g. The chosen product or item is shown in the Product Number or Item SKU
field, and you can see also all fields that you can update. See Figure 171
on page 220.

To get a larger second half of the screen, set the cursor of the black line
and move this line above.

Tip

Make the second part of the window smaller to see the fields you can
change.

Tip
Building the Mall and Store 219

Figure 171. Update Product Table — PRURL Field (Part 1 of 2)

Use the scroll bar on the right side to see the entire window.

h. Look for the Soft Goods URL input field. Enter the value for the PRURL
field here. See Figure 172.

i. Push the SAVE button.

j. If the product record is successfully updated, a message is displayed in the
lower frame, as shown in Figure 172. Click the RETURN button to go back
to the Product/Item page.

Figure 172. Update Product Table — PRURL Field (Part 2 of 2)

3. Create a new product template in which you also select the PRURL field in the
SQL query and make the changes to display the link to this URL.
220 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

We did this on the basis of prod1.d2w. That means that we copied it, named it
prod2.d2w, and made the previously mentioned changes. You can find this
macro in A.9.4, “Product Macro PROD2.D2W” on page 487.

4. Assign the new product template to the product. To learn how to do this, see
13.8.2, “Assigning Templates to Products” on page 207.

Figure 173 shows the product page for a product that has the PRURL field filled in
and uses the prod2.d2w template with the link to the description HTML file in the
IFS.

Figure 173. Product Page with Link to Description

Through the link to the 20B0g.html file, the customer can see the additional
product description. See Figure 174. They can return from there to the Product
page.

Figure 174. Link Page from Product Page
Building the Mall and Store 221

13.12 Customizing the Category Tree

Because our back-end system delivers only a one-level category, the Top
Category for all our products, we manually modified the category tree from the
Net.Commerce Store Manager interface to add more categories. We also
modified it to get a three-level category tree as a result.

After the mass import of our products, we obtained the one-level deep (flat)
category tree shown in Figure 175.

Figure 175. Category Tree — One Level Deep (Flat)

As shown in Figure 176 on page 223, we added three new one-level categories:

• IBM ThinkPads
• IBM Personal Computers
• IBM Servers

After creating the above mentioned one-level categories, we moved all our
products from the Top Category to the IBM ThinkPads category. Notice that IBM
ThinkPads is the only category with products. The other two categories are empty
and were added only as examples.

IBM ThinkPad 300 Series

IBM ThinkPad 700 Series

IBM ThinkPad Power Series

IBM ThinkPad 360

IBM ThinkPad 365

IBM ThinkPad 701

IBM ThinkPad 730

IBM ThinkPad 755

IBM ThinkPad 760

IBM ThinkPad 820

IBM ThinkPad 850

Top Category

ShopITSO
222 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 176. Category Tree — Three Levels

The following steps show how we did this customizing:

1. Log on as ncadmin in the Net.Commerce Administrator Web page at the
following URL:

http://fullyqualifiedhost_name/ncadmin/

2. Load the Product Categories page from the Store Manager view, as shown in
Figure 177, by clicking the Product Categories button.

Figure 177. Store Manager View in Net.Commerce Administrator Page

3. Select the ShopITSO store and click the expand categories icon, as shown in
Figure 178 on page 224, to show the root category of the store.

IBM ThinkPad 300 Series

IBM ThinkPad 700 Series

IBM ThinkPad Power Series

IBM ThinkPad 360

IBM ThinkPad 365

IBM ThinkPad 701

IBM ThinkPad 730

IBM ThinkPad 755

IBM ThinkPad 760

IBM ThinkPad 820

IBM ThinkPad 850

Top Category

ShopITSO

IBM ThinkPads

IBM Personal Computers

IBM Servers
Building the Mall and Store 223

Figure 178. Product Categories — ShopITSO Store

4. For the Top Category category, click the expand categories icon to show the
level one categories (Figure 179).

Figure 179. Product Categories — Top Category

5. Select Top Category and click the Add button, as shown in Figure 180 on
page 225.
224 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 180. Product Categories — Level One Categories (Select to Add Category)

6. Enter IBM ThinkPads as the new category name and click the Save button, as
shown in Figure 181. You return to the Product Categories page.

Figure 181. Products Categories — Add New Category

7. Select IBM ThinkPads and click the Template button to assign a category
template (Figure 182 on page 226).
Building the Mall and Store 225

Figure 182. Products Categories — Level One Categories (Select to Assign Template)

8. Select None (default template) for the shopper group and select
ShopITSO/cat1.d2w for the template. Click the Save button, as shown in
Figure 183, to save the category template assignment.

Figure 183. Category Template Assignment — Save Template Assignment

9. If the category template record is successfully updated, a message is
displayed in the lower frame, as shown in Figure 184 on page 227. Click
RETURN to go back to the Product Categories page.
226 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 184. Category Template Assignment — Return to Product Categories

10.To move the IBM ThinkPad Power Series from category level one to category
level two under IBM ThinkPads, click to select the IBM ThinkPad Power Series
category. Then, click the MARK button as shown in Figure 185.

Figure 185. Products Categories — Level One Categories (Select to Mark)

11.Click on the IBM ThinkPads category you need to select it. Click the MOVE
button as shown in Figure 186 on page 228.
Building the Mall and Store 227

Figure 186. Products Categories — Level One Categories (Select to Move)

12.After the category is moved, click the expand category icon, as shown in
Figure 187, to display category levels one and two of the modified category
tree.

Figure 187. Products Categories — Level One and Two Categories

13.Repeat steps 5 through 9 to create the other two one-level categories: IBM
Personal Computers and IBM Servers.

14.Repeat steps 10 through 12 to move the rest of the categories under IBM
ThinkPads to create level two and three categories. Refer to Figure 176 on
page 223.
228 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

The final three-level category tree is shown in Figure 188.

Figure 188. Products Categories — Level One, Two, and Three Categories

13.13 Customizing the HTML Pages

Because of performance considerations, we decided to use HTML pages for all
the static pages and frames of the site. Only the dynamically generated pages
are served by Net.Commerce in our shop.

During the configuration of the Net.Commerce instance, we enabled the caching
functionality for our Net.Commerce instance to serve dynamically generated
pages from the cache directory. We did this instead of accessing the database for
pages that were already served.

Keep in mind that only pages, which are called by the Net.Commerce commands
CategoryDisplay and ProductDisplay, are cached. Pages that are generated by
Net.Data macro (for example, Display Current Order). Pages that are called
through the ExecMacro Net.Commerce command are not cached.

The HTML files, Net.Data macros, and the Net.Data include files that are
generated by the Store Creator are listed in Table 13 on page 230. This table also
shows if the resulting Web page is dynamically generated by an SQL query to the
database, and if it can be cached by the Net.Commerce server.

Also notice that the Web pages, such as the banner, frames, main, and
navigation side, are not generated dynamically using SQL queries. Their content
is pure HTML.
Building the Mall and Store 229

Finally notice that the home page is a dynamically generated page that uses SQL
queries in the Net.Data macro.

Table 13. Items Generated by Store Creator

In Table 13, the instance_path is
/QIBM/UserData/NetCommerce/instance/instance_name.

We do not use the marked Net.Data macros in Table 13 for our ShopITSO
sample. For all of these macros, we build new HTML files that are cached by the
AS/400 HTTP server using the Local cache function. See 13.14, “Using the HTTP
Web Server Cache for Static Pages” on page 234. You can find our sources for
the HTML pages in A.8, “HTML Samples” on page 475.

We strictly followed our navigation flow from the design. See 3.9.4, “Navigation
Flow and Net.Commerce Commands in ShopITSO” on page 62.

The figures on the following pages show all of our HTML pages that we used in
ShopITSO. Notice that our pages are very simple. In a real store, you do more
work here to get fancy and informational pages.

The first page that the shopper sees is our home page. See Figure 189 on page
231. It is build by the Index.html file, which controls the frameset with two frames,

IFS Path Dynamic Cached

instance_path/html/store_name/index.html N/A No

instance_path/macro/category/store_name/cat1.d2w Yes Yes

instance_path/macro/product/store_name/prod1.d2w Yes Yes

instance_path/macro/store_name/banner.d2w No No

instance_path/macro/store_name/contact.d2w Yes No

instance_path/macro/store_name/err_adrbk_up.d2w Yes No

instance_path/macro/store_name/err_check_inv.d2w Yes No

instance_path/macro/store_name/err_shaddr.d2w Yes No

instance_path/macro/tore_name/frames.d2w No No

instance_path/macro/store_name/home.d2w Yes No

instance_path/macro/store_name/main.d2w No No

instance_path/macro/tore_name/nav_side.d2w No No

instance_path/macro/store_name/order.d2w Yes No

instance_path/macro/store_name/oderlstc.d2w Yes No

instance_path/macro/store_name/orderok.d2w Yes No

instance_path/macro/store_name/ordnone.d2w Yes No

instance_path/macro/store_name/search.d2w Yes No

instance_path/macro/store_name/searchrslt.d2w Yes No

instance_path/macro/store_name/shipto.d2w Yes No

instance_path/macro/store_name/ShopITSO.inc N/A N/A
230 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

the banner frame, which presents the banner1.html, and the main frame, which
presents here our home page (home.html).

All HTML pages that you can call through banner1.html are displayed in the main
frame. The Online Shop is an exception. See the explanation following Figure 193
on page 233.

Figure 189. ShopITSO Home Page with First Banner

The News Page (news.html) has a link to the IBM Net.Commerce Site where you
can get the latest information about IBM Net.Commerce.

Figure 190. ShopITSO News Page

Our Company (company.html) has two links to IBM sites on the World Wide Web.
See Figure 191 on page 232.
Building the Mall and Store 231

Figure 191. ShopITSO Our Company Page

The Help Page (help.html) is still under construction (Figure 192).

Figure 192. ShopITSO Help Page

The Contact Info page (contact.html) has the same information as the original
contact page that is delivered with the Store Creator. The difference is that the
original page was built by a Net.Data macro with an SQL query to get the
information about the merchant from the merchant table. Because this
information is more static (it changes not or very seldom), it can use an HTML
page with static text.
232 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 193. ShopITSO Contact Info Page

The link from the Online Shop button from banner1.html evokes the catalog.html,
which starts our Net.Commerce e-business application.

It controls two framesets: the banner2.html, which presents the banner, and the
navigation bars. The second is divided into two frames. Our catalog tree and the
main frame, which presents our promotions page (promotions.html), is on the left
side frame (named left). See Figure 194. For more information about our catalog
tree, see 3.9.4.3, “Navigation Flow from Online Shop” on page 65.

Figure 194. ShopITSO Online Shop Page with Promotion Page

The Search page (search.html) is an HTML page where the customer can enter a
search string to search for a product. For more information about our search
function, see 3.9.4.10, “Navigation Flow Search Results Page” on page 80.
Building the Mall and Store 233

Figure 195. ShopITSP Search Page Part1

The search.html uses the NetCommerce command ExecMacro to invoke the
Net.Data macro searchrst.d2w/report, which shows the Search Result page
(Figure 196).

Figure 196. ShopITSO Search Result Page

The page for Order Now is built by a Net.Data macro. The pages Display Order
Details and Check Order Status are invoked by Net.Commerce commands.

13.14 Using the HTTP Web Server Cache for Static Pages

By keeping your most frequently served files loaded in the server's memory, you
can improve your server response time for those files. For example, consider that
you load your server home page into memory at startup by adding it to the cache
list. In this case, the server can handle requests for the page much more quickly
234 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

than if it had to read the file from a disk. Keep in mind that for each file you load
into memory, you are making that amount of memory unavailable for other uses
that can affect performance.

In our sample ShopITSO store, we use the AS/400 HTTP Web Server Local
caching function for all our static HTML pages such as the home page and all
images. To activate the Local caching on the AS/400 HTTP Server, make the
following entry in your HTTP server configuration file:

Maximum memory for file caching: Parameter name CacheLocalMaxBytes

Complete the following steps:

1. Define the maximum memory for file caching. Use a value from 1 KB through
32,767 MB.

CacheLocalMaxBytes 2 M

2. Define the maximum number of files you want stored in the cache at one time
in the Maximum number of files to cache.

CacheLocalMaxFiles 200

3. Use LiveLocalCache On when a file is modified, and the server will serve the
latest version of cached files. Otherwise, use Off.

LiveLocalCache Off

4. Make an entry for all the static files (.html and .gif files in our store) that you
want to cache. You can use a generic name (*) for the file name for all files in
a path, but you have to type the full path:

CacheLocalFile

/QIBM/userdata/netcommerce/instance/work/html/shopitso/thinkpad/lrg/*.gif

CacheLocalFile

/QIBM/userdata/netcommerce/instance/work/html/shopitso/thinkpad/sml/*.gif

CacheLocalFile

/QIBM/userdata/netcommerce/instance/work/html/shopitso/*.html

CacheLocalFile /QIBM/userdata/netcommerce/instance/work/html/shopitso/*.gif

You can make your entry through the HTTP server administration and
configuration Web page using the Local caching form. Or, use the AS/400
command WRKHTTPCFG (<instance_name>) to edit the HTTP configuration file.

The values we set in the HTTP server configuration file for our HTTP instance
work are shown in Figure 197 on page 236.

Changes you make to the Local caching form, the Performance form, and the
Timeouts form in the HTTP server configuration file all influence the
performance of your server.

Note
Building the Mall and Store 235

Figure 197. Configuration Form for Local Caching — HTTP Server Configuration

After you make the entries for the Local caching function, you have to end and
restart the HTTP server instance. Do this with the following AS/400 commands:

ENDTCPSVR SERVER (*HTTP) HTTPSVR(<instance_name>)
STRTCPSVR SERVER (*HTTP) HTTPSVR(<instance_name>)

The following figures illustrate the screens that are shown when using the
WRKHTTPCFG AS/400 command. Figure 198 on page 237 shows our entry for the
parameters mentioned earlier in points one through three.

We found that it was not possible to type in a path name and a generic file
name with the * value in the Local caching form of the Web-based
administration function. To avoid this problem, we used the AS/400 WRKHTTPCFG

command to make these entries.

Note
236 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 198. Local Cache File Parameter

Figure 199 shows one entry for our .gif files that are stored in the
/qibm/userdata/netcommerce/instance/work/html/shopitso/thinkpad/lrg/ directory.

You can change this entry be entering selection 2 in the Opt field.

Figure 199. Local Cache File Entry

13.14.1 HTTP Server Trace Output File
To prove if the pages you want to cache in the HTTP server are really cached,
you can start the HTTP server with the -vv value. This makes it possible to trace
the HTTP server. Use the AS/400 command STRTCPSVR SERVER (*HTTP)

HTTPSVR(<instance_name>). Press PF4 to prompt. Type -vv in the Instance startup
values field.

To view the HTTP server service trace output file, use the AS/400 commands
noted in the following steps:

1. Use the WRKACTJOB command for the QHTTPSVR subsystem to find the job for your
HTTP instance.

Work with HTTP Configuration
System: AS01

Configuration name : WORK

Type options, press Enter.
1=Add 2=Change 3=Copy 4=Remove 5=Display 13=Insert

Sequence
Opt Number Entry

02010 CGIConvMode %%EBCDIC%%
02020 keyfile /QIBM/userdata/icss/cert/server/server.kyr
02030 ScriptTimeOut 5 minutes
02040 PersistTimeout 30 seconds
02050 ServerTerm /QSYS.LIB/QHTTPSVR.LIB/QZHJSVLT.SRVPGM:Adapt >
02060 CacheLocalMaxBytes 2 M
02070 CacheLocalMaxFiles 200
02080 LiveLocalCache Off

2 02090 CacheLocalFile /QIBM/userdata/netcommerce/instance/work >
02100 CacheLocalFile /QIBM/userdata/netcommerce/instance/work >

More...
F3=Exit F5=Refresh F6=Print List F12=Cancel F17=Top F18=Bottom
F19=Edit Sequence

Change HTTP Configuration Entry
System: AS01

Sequence Number : 02090
Entry CacheLocalFile /QIBM/userdata/netcom
merce/instance/work/html/shopitso/thinkpad/lrg/*.gif

Bottom
Press Enter to complete.

F3=Exit F12=Cancel
Building the Mall and Store 237

Figure 200. Find HTTP Server Job

2. Type 5 in the Opt field for the first job that you can find for your HTTP
instance. Press Enter.

Figure 201. Work with HTTP Server Job

3. Type 4 to work with spooled files for this job. Press Enter.

MAIN AS/400 Main Menu
System: AS01

Select one of the following:

1. User tasks
2. Office tasks
3. General system tasks
4. Files, libraries, and folders
5. Programming
6. Communications
7. Define or change the system
8. Problem handling
9. Display a menu
10. Information Assistant options
11. Client Access/400 tasks

90. Sign off

Selection or command
===> wrkactjob sbs(qhttpsvr)

F3=Exit F4=Prompt F9=Retrieve F12=Cancel F13=Information Assistant
F23=Set initial menu
(C) COPYRIGHT IBM CORP. 1980, 1998.

Work with Active Jobs AS01
04/05/99 10:48:47

CPU %: .0 Elapsed time: 00:00:00 Active jobs: 391

Type options, press Enter.
2=Change 3=Hold 4=End 5=Work with 6=Release 7=Display message
8=Work with spooled files 13=Disconnect ...

Opt Subsystem/Job User Type CPU % Function Status
5 WORK QTMHHTTP BCH .0 PGM-QZHBHTTP TIMW

WORK QTMHHTTP BCI .0 TIMW
WORK QTMHHTTP BCI .0 TIMW
WORK QTMHHTTP BCI .0 TIMW
WORK QTMHHTTP BCI .0 TIMW

Bottom
Parameters or command
===>
F3=Exit F5=Refresh F7=Find F10=Restart statistics
F11=Display elapsed data F12=Cancel F23=More options F24=More keys
238 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 202. Star t Work with Spooled Files

4. Type 5 to display the spooled file. Press Enter.

Figure 203. Star t Display Spooled Files

5. Here you see the first site of the HTTP server trace protocol. Type cache in the
Find field. Use the PF16 function key to find the protocol notes for the Local
cache functions.

Work with Job
System: AS01

Job: WORK User: QTMHHTTP Number: 558327

Select one of the following:

1. Display job status attributes
2. Display job definition attributes
3. Display job run attributes, if active
4. Work with spooled files

10. Display job log, if active or on job queue
11. Display call stack, if active
12. Work with locks, if active
13. Display library list, if active
14. Display open files, if active
15. Display file overrides, if active
16. Display commitment control status, if active

More...
Selection or command
===> 4

F3=Exit F4=Prompt F9=Retrieve F12=Cancel

Work with Job Spooled Files

Job: WORK User: QTMHHTTP Number: 558327

Type options, press Enter.
1=Send 2=Change 3=Hold 4=Delete 5=Display 6=Release 7=Messages
8=Attributes 9=Work with printing status

Device or Total Current
Opt File Queue User Data Status Pages Page Copies
5 QPZHBTRC PRTDEFAULT WORK RDY 17 1

QPRINT PRTDEFAULT OPN 0 1

Bottom
Parameters for options 1, 2, 3 or command
===>
F3=Exit F10=View 3 F11=View 2 F12=Cancel F22=Printers F24=More keys
Building the Mall and Store 239

Figure 204. First site of HTTP Server Trace Protocol

Figure 205 on page 241 shows you the protocol entries for the Local cache
function.

Display Spooled File
File : QPZHBTRC Page/Line
1/6
Control Columns
1 - 130
Find cache

*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8....+....9....+....0....+....
1....+....2....+....3

HTTP SERVER SERVICE TRACE OUTPUT FILE
TIMESTAMP THREAD MESSAGE
---------------------------- --------
--
[05/Apr/1999:10:42:43 +0000] 00000018 MAIN Job = WORK QTMHHTTP 558327; Thread = 00000018; Pid = 48114:
Instance = WORK;
[05/Apr/1999:10:42:43 +0000] 00000018 This is IBM HTTP Server for AS/400 1.0
[05/Apr/1999:10:42:43 +0000] 00000018 Built on Feb 26 1999 at 16:17:41.
[05/Apr/1999:10:42:43 +0000] 00000018 Started at Mon Apr 5 10:42:43 1999
[05/Apr/1999:10:42:43 +0000] 00000018 Running as "QTMHHTTP", UID:508, GID:0.
[05/Apr/1999:10:42:43 +0000] 00000018 Starting.. httpd
[05/Apr/1999:10:42:43+0000]00000018Added.......thread-initfunctionsformodule"HTMemPool"inslot3.
[05/Apr/1999:10:42:43 +0000] 00000018 0
[05/Apr/1999:10:42:43 +0000] 00000018 0
[05/Apr/1999:10:42:43 +0000] 00000018 0
[05/Apr/1999:10:42:43 +0000] 00000018 0
[05/Apr/1999:10:42:43+0000]00000018Added.......thread-initfunctionsformodule"HTList"inslot4.
[05/Apr/1999:10:42:43 +0000] 00000018 0
[05/Apr/1999:10:42:43 +0000] 00000018 0
[05/Apr/1999:10:42:43 +0000] 00000018 0
[05/Apr/1999:10:42:43 +0000] 00000018 0

More...
F3=Exit F12=Cancel F19=Left F20=Right F24=More keys
240 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 205. Protocol Entries for Local Cache Function

13.15 Modifying Net.Data Macros

As mentioned before, the store that was built with the Store Creator does not
meet all of our business requirements. We want to have more functionality. For
example, the customer should have the possibility to enter a quantity for the
product they want to buy. To implement this functionality, we have to change
some Net.Data macros.

To change the Net.Data macros, you need skills in using Net.Data and HTML.
You should also know which Net.Commerce commands you need to build the
behavior of the shopping process. See 3.8.3, “Mapping the Navigation Flow to
Net.Commerce Commands” on page 54.

For information about how to integrate the Net.Commerce commands in a
Net.Data macro, see 3.8.2, “Using Net.Commerce Commands” on page 52.

For more information about Net.Data, go to the following sites on the Web:

• For cross-platform information: http://www.software.ibm.com/data/net.data/

• For AS/400 information:
http://www.as400.ibm.com/tstudio/netdata/news/newfun6.htm

• For Net.Data literature:
http://www.software.ibm.com/data/net.data/library.html

Display Spooled File
File : QPZHBTRC Page/Line 8/27
Control Columns 1 - 130
Find cache

*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8....+....9....+....0....+....1....+..
..2....+....3
[05/Apr/1999:10:42:43 +0000] 00000018 cache_local. max bytes = 2097152.
[05/Apr/1999:10:42:43 +0000] 00000018 cache_local. max files = 200.
[05/Apr/1999:10:42:43 +0000] 00000018 cache_local. will not check locally-cached files for updates.
[05/Apr/1999:10:42:43 +0000] 00000018 Caching..local file
/QIBM/userdata/netcommerce/instance/work/html/shopitso/thinkpad/lrg
[05/Apr/1999:10:42:43 +0000] 00000018 Caching. local file
/QIBM/userdata/netcommerce/instance/work/html/shopitso/thinkpad/sml
[05/Apr/1999:10:42:43 +0000] 00000018 Caching. local file
/QIBM/userdata/netcommerce/instance/work/html/shopitso/*.html [-].
[05/Apr/1999:10:42:43 +0000] 00000018 Caching. local file
/QIBM/userdata/netcommerce/instance/work/html/shopitso/*.gif [-].
[05/Apr/1999:10:42:43 +0000] 00000018 Log......... fastpath is ON.
[05/Apr/1999:10:42:43 +0000] 00000018 cache_local.
"/QIBM/userdata/netcommerce/instance/work/html/shopitso/thinkpad/lrg/*.gif"
[05/Apr/1999:10:42:43 +0000] 00000018 cache_local.
"/QIBM/userdata/netcommerce/instance/work/html/shopitso/thinkpad/sml/*.gif"
[05/Apr/1999:10:42:43 +0000] 00000018 cache_local.
"/QIBM/userdata/netcommerce/instance/work/html/shopitso/*.html"
[05/Apr/1999:10:42:43 +0000] 00000018 HTStat.. on file
"/QIBM/userdata/netcommerce/instance/work/html/shopitso/index.html" -->
[05/Apr/1999:10:42:43 +0000] 00000018 Caching..... file
/QIBM/userdata/netcommerce/instance/work/html/shopitso/index.html
[05/Apr/1999:10:42:43 +0000] 00000018 Searching... for suffix 1: ".html"
[05/Apr/1999:10:42:43 +0000] 00000018 Last-Mod.... for cached file is Thu, 25 Mar 1999 14:55:50 GMT
[05/Apr/1999:10:42:43 +0000] 00000018 HTStat.. on file
"/QIBM/userdata/netcommerce/instance/work/html/shopitso/store.html" -->
[05/Apr/1999:10:42:43 +0000] 00000018 Caching..... file
/QIBM/userdata/netcommerce/instance/work/html/shopitso/store.html
[05/Apr/1999:10:42:43 +0000] 00000018 Searching... for suffix 1: ".html"
[05/Apr/1999:10:42:43 +0000] 00000018 Last-Mod.... for cached file is Fri, 02 Apr 1999 20:39:13 GMT

More...
F3=Exit F12=Cancel F19=Left F20=Right F24=More keys
Building the Mall and Store 241

Table 14 describes the changes made to the Net.Data macros that were created
from the Store Creator. These changes are necessary to fit our design for our
sample ShopITSO store.

Table 14. Net.Data Macros Changes Made for ShopITSO

We created a new Net.Data macro for the Top Category named cat0.d2w. See
13.15.1, “Net.Data Macro to Show the Category Tree” on page 243.

Net.Data Macro Reason for Change

cat1.d2w SQL function GET_SHIPPING_REF_NUM() deleted. Not used
here because it is in the prod1.d2w.

prod1.d2w Possibility to enter quantity.

err_adrbk_uo.d2w Possibility to work with SET payment function.

order.d2w Possibility to work with SET payment function
SQL function GET_1800NUMBER() deleted
SQL DETERMINE_SHIPPING_LIST() changed
$(CURRENCY) replaced with $(V_oycpcur)

oderlstc.d2w New HTML design.
New shipped status and shipping date from back-end-system
(update from back-end-system in ORDERS table.

orderok.d2w Add quantity information and total position price in order list
New HTML design.

search.d2w We made a new static HTML page for this window, which is cached
through the Local cache function of the AS/400 Web server.

searchrslt.d2w New SQL statement. We want this search function only for the
description field in the product table.

shipto.d2w Possibility to change quantity.

Net.Commerce can cache Web pages to improve performance. If basic or
advance cache support is enabled, copies of the pages are cached in two
directories protect and unprotect under the cache directory
/QIBM/UserData/NetCommerce/instance/<instance_name>/ nc_cache.

The Synchronization daemon of Net.Commerce recognizes changes that are
made in the Net.Commerce DB2/400 database from which the pages are built
and automatically deletes the cached files affected.

When you change macros for category of product templates, you must delete
each file for the categories or products manually from the cache directory.
Otherwise, the cached copy continues to be served and your changes do not
take affect.

For more details about the Net.Commerce cache function, refer to
Net.Commerce for AS/400 Installing and Getting Started Guide (ncinst.pdf),
GC09-2864, and Net.Commerce for AS/400 Net.Commerce Utilities,
(nc_util.pdf) available in softcopy with the Net.Commerce product.

Important
242 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

We created the new err_stdata.d2w Net.Data macro to inform the customer that
they entered a wrong value in the quantity field. See 13.16, “Exception Handling
Conditions by Example” on page 258.

13.15.1 Net.Data Macro to Show the Category Tree
Following our design requirements, we have to build a new macro that shows the
three-level deep category structure. See Figure 206.

This Catalog Tree is integrated in the left frame of the first Net.Commerce site. It
comes up when the customer starts the Online Shop from the Home Page. See
Figure 189 on page 231. From this tree, they can navigate through our product
catalog.

The tree shows the second-level categories, in our case, the IBM ThinkPads, IBM
Personal Computers, and the IBM Servers categories. The third-level categories
are shown directly under the second-level categories. The first-level category, the
Top Category, is not shown on this page.

Figure 206. First Site in Our ShopITSO with Catalog Tree

To get the data for this hierarchy, we used the following SQL functions in the
Net.Data macro:

%define {
SHOWSQL="YES"
rootTable = %table
rowIndexRoot = "1"
parentH1=""
catChild=""

You can use any editor to create or change Net.Data macros. We recommend
that you use an editor that shows line numbers for the source code. This is
useful when you test your macros because any errors in the macro that
occurred are shown with a line number. We used the Net Objects Script Builder
software to change the Net.Data macros.

Note
Building the Mall and Store 243

%}

%{== all categories below top category ==%}
%function(dtw_SQL) GET_CATEGORY_ROOT1(OUT table) {

SELECT CGRFNBR, CGNAME
from category, cgryrel
where CATEGORY.CGRFNBR = CGRYREL.CRCCGNBR and CATEGORY.CGMENBR = $(MerchantRefNum)

and CGRYREL.CRPCGNBR = $(HomeCategory) and cgpub=1
%REPORT {
%ROW {
%}

%}
%MESSAGE {

default: { %} :continue %}
%}
%{== all categories below root1 category ==%}
%function(dtw_SQL) GET_CATEGORY_CHILD() {

SELECT CGRFNBR, CGNAME
from category, cgryrel
where CATEGORY.CGRFNBR = CGRYREL.CRCCGNBR and CATEGORY.CGMENBR = $(MerchantRefNum)

and CGRYREL.CRPCGNBR = $(parentH1) and cgpub=1
%REPORT {
%ROW {
@DTW_ASSIGN(catChild, V_cgrfnbr)
<TD> </TD>
<TD> <A

HREF="/cgi-bin/ncommerce3/CategoryDisplay?cgmenbr=$(MerchantRefNum)&cgrfnbr=$(V_cgrfnbr)"
TARGET="left">$(V_cgname)

</TD> </TR>

%}

%}
%MESSAGE {

default: { %} :continue %}
%}

%{== macro for loop ==%}
%macro_function GET_ROOT_INDEX (IN table){
%while (rowIndexRoot <= numRows) {

<TR> <TD> </TD>
@DTW_ASSIGN(parentH1, @DTW_TB_RGETV(rootTable, rowIndexRoot, "1"))
<td> <TD colspan=2> @DTW_TB_RGETV(rootTable, rowIndexRoot, "2")</TD>

@GET_CATEGORY_CHILD()
@DTW_ADD(rowIndexRoot, "1", rowIndexRoot)
%}

%}

%HTML(REPORT) {
<HTML> <HEAD> <TITLE>Document Title</TITLE> </HEAD>
<BODY>
@GET_CATEGORY_ROOT1(rootTable)
@DTW_TB_ROWS(rootTable, numRows)
@GET_ROOT_INDEX(rootTable)
</BODY>
</HTML>
%}

We made a copy of the cat1.d2w Net.Data macro and named it cat0.d2w. In this
macro, we integrated the above mentioned new SQL functions. Also in this new
macro, we integrated the activation for the product advisor. See 14.5, “Publishing
Product Advisor Pages” on page 316.

The next step was to assign this cat0.d2w macro to the Top Category. To learn
how to do this, see 13.8, “Assigning Templates” on page 206. You can find the
final cat0.d2w and cat1.d2w Net.Data macros in A.9, “Net.Data Sample Macros”
on page 480.

13.15.2 Finding or Assigning a Net.Data Macro for a Specific Display
To find out which Net.Data macro that is created by the Store Manager is called
from a specific task, use the Site Manager function Task Management form. Also
when you want to assign your own new macro to a Net.Commerce task, you can
244 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

follow this description. It works for all Net.Commerce display commands in a
similar manner, with the exception of the CategoryDisplay or ProductDisplay
pages.

The last mentioned two commands work with the category or product Net.Data
template macros. For more information about this template, see 13.8, “Assigning
Templates” on page 206.

For example, the following process explains how to find the Net.Data macro
name for the OrderDisplay Net.Commerce command for a particular stop:

1. Start the Net.Commerce Administration Task with the following URL:

http://fullyqualifiedhost_name/ncadmin/

2. Login with your Site Manager user and password or use the ncadmin user and
choose Site Manager.

3. Select Task Management on the left side of the window.

4. Select VIEW as the Task Type in the selection list.

5. In the second half of the left window, search for task ORD_DSP_PEN and
mark it. You see a window similar to the one shown in Figure 207.

Figure 207. Task Management — View Task

6. Choose Task Assignment on the left side of the window. The window appears
as shown in Figure 208 on page 246.

To get a larger second half of the screen, set the cursor of the black line and
move this line above.

Tip
Building the Mall and Store 245

Figure 208. Task Assignment — View Task

7. Click the MACRO button. You receive the Macro Assignment window.

8. Select the store name you want to look for in the Select Mall/Store selection
list (in our case, ShopITSO).

You can see the path and macro name in the field Macro Filename as shown
in Figure 209.

Figure 209. Macro Assignment for ORD_DSP_PEN Task
246 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

13.15.3 Original Net.Data Macro for the Product Display
For an example of a Net.Data macro that the Store Creator delivers with the Stop
Shop model, consider the macro for the product display shown in the following
example. The name is prod1.d2w.

To make it more readable, we highlighted all function calls. All Net.Commerce
commands that are in this macro are in italic letters.

You can find all our final Net.Data macros that are used in our ShopITSO in A.9,
“Net.Data Sample Macros” on page 480.

%include "ShopITSO/ShopITSO.inc"

%{==

The sample Templates, HTML and Macros are furnished by IBM as simple
examples to provide an illustration. These examples have not been
thoroughly tested under all conditions. IBM, therefore, cannot guarantee reliability,
serviceability or function of these programs. All programs contained herein are provided to
you "AS IS".

The sample Templates, HTML and Macros may include the names of individuals,
companies, brands and products in order to illustrate them as completely as
possible. All of these are names are fictitious and any similarity to the names
and addresses used by actual persons or business enterprises is entirely coincidental.

Licensed Materials - Property of IBM

5697-D245798-NC3

(c) Copyright IBM Corp. 1998. All Rights Reserved

US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM Corp

==%}

%define {
SHOWSQL="NO"
SHIPPING_REF="0"
ATTRIBUTES = "FALSE"
ITEMS = "FALSE"
ITEM_ATTR_NAME = ""
ADDRESS_REF = ""
%}

%function(dtw_odbc) GET_ADDRESS_REF_NUM() {
select sarfnbr
from shaddr, shopper
where shlogid='$(SESSION_ID)' and sanick=shlogid and shrfnbr=sashnbr and saadrflg='P'
%REPORT{
%ROW{

@DTW_assign(ADDRESS_REF, V_sarfnbr)
%}

%}
%MESSAGE{
default: { %}: continue

%}

If there is no specific macro for the store, you get the message: The store

currently uses the mall setting for the above task.

Select Mall in the Select Mall/Store selection list to see the macro name for the
mall. You can also assign a new Net.Data macro for a specific store in this
window.

Note
Building the Mall and Store 247

%}

%function(dtw_odbc) GET_SHIPPING_REF_NUM() {
select mmrfnbr, mmsmnbr, spchrge
from mshipmode, shipping
where mmmenbr=$(MerchantRefNum) and spmenbr=mmmenbr and spmmnbr=mmrfnbr
order by spchrge ASC

%REPORT{
%ROW{

%IF (ROW_NUM == "1" && V_mmsmnbr != "0" && SHIPPING_REF == "0")
@DTW_assign(SHIPPING_REF, V_mmrfnbr)

%ELIF (ROW_NUM == "2" && V_mmsmnbr != "0" && SHIPPING_REF == "0")
@DTW_assign(SHIPPING_REF, V_mmrfnbr)

%ELIF (ROW_NUM == "3" && SHIPPING_REF == "0")
@DTW_assign(SHIPPING_REF, V_mmrfnbr)

%ENDIF

%}
%}
%MESSAGE{
default: {SHIPPING MODE ERROR %}: continue

%}
%}

%function(dtw_odbc) DISPLAY_BACKUP(){
select distinct cgname
from category
where cgrfnbr=$(CGRY_NUM) and cgmenbr=$(MerchantRefNum)

%REPORT{

<TABLE BORDER=0 CELLPADDING=0 CELLSPACING=0 WIDTH=100%>

%ROW{

<A
HREF="/cgi-bin/ncommerce3/CategoryDisplay?cgrfnbr=$(CGRY_NUM)&cgmenbr=$(MerchantRefNum
)">RETURN TO $(V_cgname)

%}

</TABLE>
%}
%MESSAGE{100:{%} :continue %}

%}

%function(dtw_odbc) CHECK_PRODUCT_ATTR() {
selectpdname
from proddstatr
where pdprnbr=$(prrfnbr) and pdmenbr=$(MerchantRefNum)

%REPORT{
%ROW{
@DTW_assign(ATTRIBUTES, "TRUE")
%}

%}
%MESSAGE{
default: { %}: continue

%}
%}

%function(dtw_odbc) CHECK_ITEMS() {
selectprrfnbr
from product
where prprfnbr=$(prrfnbr) and prmenbr=$(MerchantRefNum)

%REPORT{
%ROW{
@DTW_assign(ITEMS, "TRUE")
%}

%}
%MESSAGE{
default: { %}: continue
248 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

%}
%}

%function(dtw_odbc) DISPLAY_PRODUCT_BANNER(){
select prrfnbr, prnbr, prsdesc
from product
where prrfnbr=$(prrfnbr) and prmenbr=$(prmenbr)

%REPORT{

%ROW{

%IF (ATTRIBUTES == "FALSE" && ITEMS == "FALSE")
<TR>
<TD ALIGN="center" VALIGN="top" BGCOLOR=$(BodyColor2)>
$(V_PRSDESC)
</TD>
</TR>
<TR>
<TD ALIGN="right" VALIGN="top">
<A
HREF="/cgi-bin/ncommerce3/OrderItemUpdate?merchant_rn=$(MerchantRefNum)&product_rn=$(V
_prrfnbr)&quantity=1&shipmode_rn=$(SHIPPING_REF)&url=%2Fcgi-bin%2Fncommerce3%2FOrderIt
emDisplay%3Fmerchant_rn%3D$(MerchantRefNum)" TARGET="list">

</TD>
</TR>

%ELSE
<TR>
<TD ALIGN="center" VALIGN="top" BGCOLOR=$(BodyColor2) COLSPAN=2>
$(V_PRSDESC)
</TD>
</TR>

<TR>
<TD ALIGN="center" VALIGN="top" COLSPAN=2 HEIGHT=20>
</TD>
</TR>

%ENDIF

%}

%}
%MESSAGE{100:{ Product Banner Error%} :continue %}

%}

%function(dtw_odbc) DISPLAY_PRODUCT_PRICE(){

SELECT prnbr, ppprc, ppcur
FROM product, prodprcs
WHERE prmenbr=$(MerchantRefNum) and prrfnbr=$(prrfnbr) and ppprnbr=$(prrfnbr)

%REPORT{

%ROW{

<TR><TD>
</TD></TR>

<TR BGCOLOR="$(BodyColor2)">
<TD ALIGN="center" COLSPAN=2>
Price : $(V_ppprc) $(V_ppcur)
</TD>
</TR>

<TR><TD>
</TD></TR>

%}

%}
%MESSAGE{100:{ %} :continue %}

%}

%function(dtw_odbc) DISPLAY_PRODATTR_PRICE(){

SELECT distinct paname, paval
FROM PRODUCT, PRODATR, PRODDSTATR
Building the Mall and Store 249

WHERE pamenbr=$(MerchantRefNum) and prmenbr=$(MerchantRefNum) and paprnbr=prrfnbr and
prprfnbr=$(prrfnbr)
and paname=pdname

%REPORT{

<FORM ACTION="/cgi-bin/ncommerce3/OrderItemUpdate" TARGET="list" METHOD="post">
<INPUT TYPE=hidden NAME=merchant_rn VALUE=$(MerchantRefNum)>
<INPUT TYPE=hidden NAME=product_rn VALUE=$(prrfnbr)>
<INPUT TYPE=hidden NAME=shipmode_rn VALUE=$(SHIPPING_REF)>
<INPUT TYPE=hidden NAME=url
VALUE="/cgi-bin/ncommerce3/OrderItemDisplay?merchant_rn=$(MerchantRefNum)">

<TR><TD>
</TD></TR>

%ROW{

%IF (ITEM_ATTR_NAME != V_paname)

</SELECT>
</TD></TR>
@DTW_assign(ITEM_ATTR_NAME, V_paname)
<TR><TD ALIGN="right">
$(V_paname)
</TD>
<TD>
<SELECT NAME="$(V_paname)">
<OPTION VALUE="$(V_paval)">$(V_paval)</OPTION>

%ELSE

<OPTION VALUE="$(V_paval)">$(V_paval)</OPTION>

%ENDIF

%}

</SELECT>
</TD></TR>
<TR><TD>xxx<INPUT TYPE="text" NAME="quantity" VALUE="1" SIZE="10" MAXLENGTH="32"></TD></TR>

<TR><TD ALIGN="center" COLSPAN=2>yyy<input type=submit value="Add to Order List"></TD></TR>

</FORM>
<TR><TD>
</TD></TR>

%}
%MESSAGE{100:{ PROBLEM%} :continue %}

%}

%function(dtw_odbc) DISPLAY_PRODITEM_PRICE(){

SELECT ppprnbr, prnbr, prsdesc, ppprc, ppcur
FROM product, prodprcs
WHERE prmenbr=$(MerchantRefNum) and prprfnbr=$(prrfnbr) and ppprnbr=prrfnbr

%REPORT{

%ROW{

<TR>
<TD ALIGN="left" BGCOLOR="$(BodyColor2)">

$(V_prsdesc)

$(V_ppprc) $(V_ppcur)

</TD>
<TD ALIGN="right" VALIGN="top">
<A
HREF="/cgi-bin/ncommerce3/OrderItemUpdate?merchant_rn=$(MerchantRefNum)&product_rn=$(V
250 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

_ppprnbr)&quantity=1&shipmode_rn=$(SHIPPING_REF)&url=%2Fcgi-bin%2Fncommerce3%2FOrderIt
emDisplay%3Fmerchant_rn%3D$(MerchantRefNum)" TARGET="list">

</TD>

</TR>

<TR>
<TD ALIGN="left">

</TD>
</TR>

%}

<TR><TD>
</TD></TR>

%}
%MESSAGE{100:{ %} :continue %}

%}

%function(dtw_odbc) DISPLAY_PRODUCT_IMAGE(){

SELECT prthmb, prfull
FROM product
WHERE prmenbr=$(MerchantRefNum) and prrfnbr=$(prrfnbr)

%REPORT{

%ROW{

%IF (V_prfull != "")
<TR>
<TD COLSPAN=2 ALIGN="center">

</TD>
</TR>

%ELIF (V_prthmb != "")
<TR>
<TD COLSPAN=2 ALIGN="center">

</TD>
</TR>

%ELSE
<TR>
<TD COLSPAN=2 ALIGN="center">
<I>Sorry, An image of the product is not available.</I>
</TD>
</TR>

%ENDIF

%}

%}
%MESSAGE{100:{ %} :continue %}

%}

%function(dtw_odbc) DISPLAY_PRODUCT_INFO(){

SELECT prldesc1, prldesc2, prldesc3
FROM product
WHERE prmenbr=$(MerchantRefNum) and prrfnbr=$(prrfnbr)

%REPORT{

%ROW{

<TR>
<TD COLSPAN=2>

$(V_prldesc1)
$(V_prldesc2)
Building the Mall and Store 251

$(V_prldesc3)

</TD>
</TR>

%}

%}
%MESSAGE{100:{ %} :continue %}

%}

%{==%}
%{ HTML Report Section
%{==%}

%HTML_REPORT{

<HTML>

<HEAD>
<META HTTP-EQUIV=Expires CONTENT="Mon, 01 Jan 1996 01:01:01 GMT">
</HEAD>

<BODY BGCOLOR="$(BodyColor1)" TEXT="$(TextCol)" LINK="$(LinkCol)" VLINK="$(VLinkCol)"
ALINK="$(ALinkCol)">

@GET_ADDRESS_REF_NUM()
@GET_SHIPPING_REF_NUM()

<TABLE BORDER=0 CELLPADDING=0 CELLSPACING=0 WIDTh=100%>
<TR>

<TD ALIGN="left">
<H3>Catalog</H3>
</TD>
<TD ALIGN="right" VALIGN="top">
%IF (CGRY_NUM != "")
@DISPLAY_BACKUP()
%ENDIF
</TD>

</TR>
<TR>
<TD bleft" COLSPAN=2>

Browse the catalog to view product information and to add items to the order list.

</TD>
</TR>

</TABLE>

@CHECK_PRODUCT_ATTR()
%IF (ATTRIBUTES == "FALSE")
@CHECK_ITEMS()
%ENDIF

<TABLE BORDER=0 CELLPADDING=0 CELLSPACING=0 WIDTh=100%>

@DISPLAY_PRODUCT_BANNER()

%IF (ATTRIBUTES == "TRUE")

@DISPLAY_PRODUCT_IMAGE()
@DISPLAY_PRODATTR_PRICE()
@DISPLAY_PRODUCT_INFO()
%ELIF (ITEMS == "TRUE")

@DISPLAY_PRODUCT_INFO()
@DISPLAY_PRODUCT_IMAGE()
@DISPLAY_PRODITEM_PRICE()

%ELSE
@DISPLAY_PRODUCT_IMAGE()
@DISPLAY_PRODUCT_PRICE()
252 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

@DISPLAY_PRODUCT_INFO()
%ENDIF

</TABLE>

</BODY>
</HTML>

%}

13.15.4 Changes to Net.Data Macro for the Product Display
We made the following changes (in order) in the Net.Data macro for the display
product page (name prod1.d2w) to meet our requirements for the sample store:

1. Added the input field for quantity.
2. Improved performance.
3. Changed the frame navigation.
4. Enhanced the ability to get a product price from the back-end system.
5. Added the ability to prove if the quantity in the input field is valid.

The following sequence outlines how we made these changes in the prod1.d2w
macro:

1. Added the input field for quantity.

In all SQL functions that use the Net.Commerce command OrderItemUpdate,
we have to add an input field to obtain the quantity. This input field has to be in
an HTML form tag.

Because we deleted some SQL functions and built a new structure, we only
have to make the changes in the DISPLAY_PRODUCT_IMAGE and
DISPLAY_PRODATTR_VALUES SQL functions.

2. Improved performance.

We deleted some SQL functions. You can find the reason for these changes in
Table 15 on page 254. For good performance, we have now only one SQL
function, the DISPLAY_PRODUCT_IMAGE, to get the product short
description, the name of the product images, and the three fields for the
product long description. This was possible because we have no item
products in our store.

When you change macros for the category of the product display pages, you
have to delete each file for the concerned categories or products manually from
the cache directory. Otherwise, your changes will not take in effect.

Net.Commerce recognizes only changes that are taken in the DB2/400
database. In this case, it deletes the cache file automatically.

Important
Building the Mall and Store 253

Table 15. SQL Functions Deleted in the Net.Data Macro

3. Changed the frame navigation.

Because we work with frames other than the original Stop Shop Model from
the Store Creator, we have to change the HTML TARGET value in the SQL
functions DISPLAY_PRODUCT_IMAGE and DISPLAY_PRODATTR_VALUES
form TARGET="list" to TARGET=main".

4. Enhanced the ability to get a product price from the back-end system.

The Net.Commerce command ProductDisplay is used to display a product
page through the MacroDisplay overridable function.

This command also calls the GET_CURRENCY and GET_BASE_UNIT_PRC process
tasks. The default MacroDisplay overridable function adds the name-value

Function Name Behavior Reason

GET_SHIPPING_REF_NUM Delivers a shipping charge New SQL statement

DISPLAY_BACKUP Goes back to show the
parent category

We work with frames.
This link is not
necessary.

CHECK_ITEMS Proves if there are items We have no items in our
product line. We work
only with products and
products with attributes.

DISPLAY_PRODUCT_BANNER Delivers product short
description from table
PRODUCT and calls
command
OrderItemUpdate, when
the product is no item or
attribute

We do this in one
function, so we
integrated this in
DISPLAY_PRODUCT_I
MAGE.
Advantage: Only one
SQL query

DISPLAY_PRODUCT_PRICE Delivers price for products
from table PRODPRCS

We get our price from
the backend-system, so
we do not need this
function.

DISPLAY_PRODATTR_PRICE Delivers product attribute
values (not the price, the
name of the function is
mislead) and calls
command
OrderItemUpdate, when
product is an attribute.

We do this in the
function
DISPLAY_PRODATTR_
VALUES, which is only
called when the product
is an attribute.

DISPLAY_PRODITEM_PRICE Delivers price for products
witch are items and calls
command
OrderItemUpdate, when
product is an item.

We get our price from
the back-end system,
and we have no product
items.

DISPLAY_PRODUCT_INFO Delivers the three long
product description fields
from table PRODUCT.

We do this in the
function
DISPLAY_PRODUCT_I
MAGE
Advantage: Only one
SQL query
254 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

pair currency and price variables for use by the Net.Data macro. They are the
output parameter of the GET_CURRENCY and GET_BASE_UNIT_PRC tasks.

For the GET_BASE_UNIT_PRC task (and also for the GET_BASE_SPE_PRC task, which is
used by the OrderItemDisplay Net.Commerce command, that we use later in
our navigation flow to display the content of the current order), we wrote a new
overridable function. See 19.4, “Overridable Function by Example” on page
419, to get the product price from the back-end system. We assigned a new
overridable function to both GET_BASE_xxx_PRC tasks for our shop through the
Side Manager Task Management form.

In the macro for the display product page, we only have to use the currency
and price variables to display this price from the back-end system. These
variables are used in the HTML Report section.

5. Added the ability to prove if the quantity in the input field is valid.

All error conditions are done in Net.Commerce through the exception
conditions of the Net.Commerce tasks. The Net.Data macro handles only
exception conditions that result from the SQL select query.

To prove if the customer typed a valid value in the quantity input field, we have
to use the Net.Commerce exception handling mechanism. You can find how
this works in 13.16, “Exception Handling Conditions by Example” on page 258.

13.15.5 Our New Net.Data Macro for Display Product Page
The following code sample shows our new prod1.d2w product template macro.
You can find all other used macros in our ShopITSO in A.9, “Net.Data Sample
Macros” on page 480.

%include "ShopITSO/ShopITSO.inc"
%{==
The sample Templates, HTML and Macros are furnished by IBM as simple
examples to provide an illustration. These examples have not been
thoroughly tested under all conditions. IBM, therefore, cannot guarantee reliability,
serviceability or function of these programs. All programs contained herein are provided to
you "AS IS".

The sample Templates, HTML and Macros may include the names of individuals,
companies, brands and products in order to illustrate them as completely as
possible. All of these are names are fictitious and any similarity to the names
and addresses used by actual persons or business enterprises is entirely coincidental.

Licensed Materials - Property of IBM

5697-D245798-NC3

(c) Copyright IBM Corp. 1998. All Rights Reserved

US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM Corp
==%}
%define {
SHOWSQL="YES"

SHIPPING_REF="0"
ATTRIBUTES = "FALSE"
ITEM_ATTR_NAME = ""
ADDRESS_REF = ""

DESC1=""
DESC2=""
DESC3=""

%}

%function(dtw_odbc) GET_ADDRESS_REF_NUM() {
select sarfnbr
from shaddr, shopper
where shlogid='$(SESSION_ID)' and sanick=shlogid and shrfnbr=sashnbr and saadrflg='P'
%REPORT{
Building the Mall and Store 255

%ROW{
@DTW_assign(ADDRESS_REF, V_sarfnbr)
%}

%}
%MESSAGE{
default: { %}: continue

%}
%}

%function(dtw_odbc) GET_SHIPPING_REF_NUM() {
select spmmnbr, spchrge
from shipping
where spmenbr=$(MerchantRefNum)
order by spchrge ASC

%REPORT{
%ROW{
%IF (ROW_NUM == "1" && SHIPPING_REF == "0")

@DTW_assign(SHIPPING_REF, V_spmmnbr)
%ELIF (ROW_NUM == "2" && SHIPPING_REF == "0")

@DTW_assign(SHIPPING_REF, V_spmmnbr)
%ELIF (ROW_NUM == "3" && SHIPPING_REF == "0")

@DTW_assign(SHIPPING_REF, V_spmmnbr)
%ENDIF

%}
%}
%MESSAGE{
default: {SHIPPING MODE ERROR %}: continue

%}
%}

%function(dtw_odbc) CHECK_PRODUCT_ATTR() {
selectpdname
from proddstatr
where pdprnbr=$(prrfnbr) and pdmenbr=$(MerchantRefNum)
%REPORT{
%ROW{
@DTW_assign(ATTRIBUTES, "TRUE")
%}

%}
%MESSAGE{
default: { %}: continue

%}
%}

%function(dtw_odbc) DISPLAY_PRODUCT_IMAGE(){
SELECT prthmb, prfull, prsdesc, prldesc1, prldesc2, prldesc3, prnbr
FROM product
WHERE prmenbr=$(MerchantRefNum) and prrfnbr=$(prrfnbr)

%REPORT{
%ROW{

<TR BGCOLOR="$(BodyColor2)"><TD>
$(V_PRSDESC)</TD>

<TD ALIGN="left" >
SKU: $(V_prnbr)</TD></TR>

<tr> <TD> </TD> </TR> <tr> <TD> </TD> </TR>
%IF (V_prfull != "")
<TR><TD COLSPAN=2 ALIGN="left"></TD></TR>
%ELIF (V_prthmb != "")
<TR><TD COLSPAN=2 ALIGN="left"></TD></TR>

%ELSE
<TR><TD COLSPAN=2 ALIGN="left"><I>Sorry, An image of the product is not

available.</I></TD></TR>
%ENDIF

@DTW_assign(DESC1, V_prldesc1)
@DTW_assign(DESC2, V_prldesc2)
@DTW_assign(DESC3, V_prldesc3)
%}

%IF (ATTRIBUTES == "FALSE")
<TR>
<FORM ACTION="/cgi-bin/ncommerce3/OrderItemUpdate" TARGET="main" METHOD="post">

<TD> Please type quantity you want to order:
<INPUT TYPE=text NAME=quantity VALUE=1 SIZE=5 MAXLENGTH=32> </TD>

<INPUT TYPE=hidden NAME=merchant_rn VALUE=$(MerchantRefNum)>
<INPUT TYPE=hidden NAME=product_rn VALUE=$(prrfnbr)>
<INPUT TYPE=hidden NAME=shipmode_rn VALUE=$(SHIPPING_REF)>
256 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

<INPUT TYPE=hidden NAME=url
VALUE="/cgi-bin/ncommerce3/OrderItemDisplay?merchant_rn=$(MerchantRefNum)">

<TD ALIGN="left" COLSPAN=2><input type=image SRC="$(AddButton)"></TD></TR>
</FORM>

<TR><TD>
</TD></TR>
%ENDIF
%}
%MESSAGE{100:{ %} :continue %}

%}

%function(dtw_odbc) DISPLAY_PRODATTR_VALUES(){
SELECT distinct paname, paval
FROM PRODUCT, PRODATR, PRODDSTATR
WHERE pamenbr=$(MerchantRefNum) and prmenbr=$(MerchantRefNum) and paprnbr=prrfnbr and

prprfnbr=$(prrfnbr)
and paname=pdname

%REPORT{
<TR>
<FORM ACTION="/cgi-bin/ncommerce3/OrderItemUpdate" TARGET="main" METHOD="post">
<TD> Please type quantity you want to order:
<TD> <INPUT TYPE=text NAME=quantity VALUE=1 SIZE=5 MAXLENGTH=32> </TD>

<INPUT TYPE=hidden NAME=merchant_rn VALUE=$(MerchantRefNum)>
<INPUT TYPE=hidden NAME=product_rn VALUE=$(prrfnbr)>
<INPUT TYPE=hidden NAME=shipmode_rn VALUE=$(SHIPPING_REF)>
<INPUT TYPE=hidden NAME=url

VALUE="/cgi-bin/ncommerce3/OrderItemDisplay?merchant_rn=$(MerchantRefNum)">

</TD></TR>

%ROW{
%IF (ITEM_ATTR_NAME != V_paname)

</SELECT>
@DTW_assign(ITEM_ATTR_NAME, V_paname)
<TR><TD ALIGN="right">$(V_paname) </TD>
<TD>
<SELECT NAME="$(V_paname)"><OPTION VALUE="$(V_paval)">$(V_paval)</OPTION>
%ELSE
<OPTION VALUE="$(V_paval)">$(V_paval)</OPTION>
%ENDIF

%}
</SELECT>
</TD></TR>
<TR><TD>
</TD></TR>

<TR><TD ALIGN="center" COLSPAN=2><input type=image SRC="$(AddButton)"></TD></TR>
</FORM>
<TR><TD>
</TD></TR>
%}
%MESSAGE{100:{ PROBLEM%} :continue %}

%}

%{==%}
%{ HTML Report Section
%{==%}
%HTML_REPORT{
<HTML>
<HEAD>
<META HTTP-EQUIV=Expires CONTENT="Mon, 01 Jan 1996 01:01:01 GMT">
</HEAD>
<BODY>
@GET_ADDRESS_REF_NUM()
@GET_SHIPPING_REF_NUM()
@CHECK_PRODUCT_ATTR()
<TABLE BORDER=0 CELLPADDING=0 CELLSPACING=0 WIDTH=100%>
@DISPLAY_PRODUCT_IMAGE()
%IF (ATTRIBUTES == "TRUE")
@DISPLAY_PRODATTR_VALUES()

%ENDIF
<TR BGCOLOR="$(BodyColor2)"><TD ALIGN="center">Price : $(price)
$(currency)
</TD> </TR><P>
<TR> <TD COLSPAN=2> $(DESC1)
 $(DESC2)
 $(DESC3)

</TABLE>
</BODY>
</HTML>
%}
Building the Mall and Store 257

13.16 Exception Handling Conditions by Example

To prove if the given value in the quantity input field of the Display Product page
is valid, we use the Net.Commerce exception conditions handling mechanism.
This exception conditions handling to occur in the same manner for all errors that
are proved, as described here for this sample:

1. Find out which exception conditions your used Net.Commerce command
provides (see the handbook Commands, Tasks, Overridable Functions, and
Database Tables, which comes with the Net.Commerce product).

2. Look at the description for the corresponding exception task to find out the
behavior (in the same above mentioned handbook).

3. Create a new Net.Data macro for the error page that should be shown to the
customer or use an existing one. Perhaps you do not have to make changes.
Use the error code and the available name-value pairs.

Consider the choices the customer has in the error page and consider the
page that should be shown next (after the error page) and use the
corresponding Net.Commerce command to show this page.

4. Assign the Net.Data macro to the corresponding exception task for your shop
or for the whole mall.

Now, we go back to our problem to prove if the value of the quantity is valid. The
Net.Commerce command ProductDisplay has no exception conditions.

ProductDisplay only shows an HTML page (a dynamic page in this case), which
has an HTML form tag, that gets input values from the browser. Therefore, the
prove mechanism (exception handling) can only be in the next interaction with the
server. In our case, the ProductDisplay page calls the OrderItemUpdate

Net.Commerce command together with the URL OrderItemDisplay. See 3.8.3,
“Mapping the Navigation Flow to Net.Commerce Commands” on page 54.

The OrderItemUpdate command has an exception condition that calls the
BAD_ST_DATA exception task, if the quantity specified is not numeric or a positive
value (in our case, this value comes from the product page), which handles the
error.

Look at the description of the BAD_ST_DATA exception task in the Commands,
Tasks, Overridable Functions and Database handbook. In this handbook, you will
find that the task delivers an ERROR_CODE. The string value is 220, and the
name of the invalid field in string variable field. This error task also generates a
page that will be displayed through the TaskDisplay in this case, instead of the
OrderItemDisplay. This page is also a Net.Data page, which is assigned to the
BAD_ST_DATA task for the mall or shop.

Now determine which Net.Data macro is assigned to the BAD_ST_DATA exception
task. To learn how to do this, see 13.16.2, “Assigning a Net.Data Macro to an
Exception Task” on page 261.

Take that macro and copy it to your store macro directory (see the following
example), when it is not already there. Make the necessary changes on it. See
13.16.1, “Changes in the err_stdata.d2w Macro” on page 259.
258 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Your store macro directory is:

/QIBM/UserData/NetCommerce/instance/instance_name/macro/shop_name/

For our store, it is:

/QIBM/UserData/NetCommerce/instance/work/macro/ShopITSO/

If you only created a store with the Store Creator Stop Shop model, you will not
find any macro for the BAD_ST_DATA exception. The Store Creator does not create
this macro for you. The Stop Shop model works without a user input field for
quantity, so it is not necessary to have it normally there. You have to create the
macro on your own.

If you created any store in the mall with the Store Creator and the Personal
Delivery store model, you will find the path (the store name in this case) and the
err_stdata.d2w name for the Net.Data macro for the BAD_ST_DATA exception
task in the corresponding store. If you installed the Metropolitan mall or other
Net.Commerce demo stores, you can find an association for these stores too.

If you did not find any macro association to the BAD_ST_DATA exception task in your
mall, you can also search for a sample of the Net.Data err_stdata.d2w macro in
the following path:

/QIBM/ProdData/macro/MRIx/ncsample

Or, search for it in the /QIBM/UserData/ or in the /QIBM/ProdData/ directory. Copy
this macro to your store macro directory.

You can also use our err_stdata.d2w macro as described in the following section,
which discusses the important changes you can make.

The last step is to assign the new Net.Data macro to the error task BAD_ST_DATA for
your store through the Task Management form of the Site Manager function. For
more information, see 13.16.2, “Assigning a Net.Data Macro to an Exception
Task” on page 261.

13.16.1 Changes in the err_stdata.d2w Macro
Keep in mind that the error page should show the customer the error reason and
should have a possibility to go further with the shopping flow. This page should
call the next possible page, so that the customer can go forward in the
application. In our solution, the customer gets the current order list when they
click the Go Further button (Net.Commerce command OrderItemDisplay).

Be sure that you make the following changes in the error macro:

• Use the right include file with the name of your store. For our store, the name
is ShopITSO/ShopITSO.inc.

• Have the same GET_SHOPPER_REF_NUM SQL function.

MRIxxxx is the language code of the Net.Commerce license program. If you
installed the English version, it is MRI2924. Replace xxxx with your language
code.

Note
Building the Mall and Store 259

• To display also a image as we do (you can use any image), type the correct
path name. We used the image from the ncsample directory
/ncsample/warning.gif and copied it to our ShopITSO html directory:

Your store macro directory is:

/QIBM/UserData/NetCommerce/instance/instance_name/html/shop_name/

For our store, it is:

/QIBM/UserData/NetCommerce/instance/work/html/ShopITSO/

• Use the error code (220 in our case) and the name-value pair (variable field
and quantity).

Our err_stdata.d2w macro follows here:

%include "ShopITSO/ShopITSO.inc"

%define {
SHOWSQL="NO"
%}

%{==== Retrieves the Shopper Reference Number ====%}

%b) GET_SHOPPER_REF_NUM() {
select shrfnbr from shopper where shlogid = '$(SESSION_ID)'
%REPORT{
%ROW{
@DTW_assign(SHOPPER_REF, V_shrfnbr)

%}
%}
%MESSAGE{
default: { ERROR in GET_SHOPPER_REF_NUM %}

%}
%}

%HTML_REPORT{
<HTML>

<HEAD>
<META HTTP-EQUIV=Expires CONTENT="Mon, 01 Jan 1996 01:01:01 GMT">
</HEAD>

<BODY BGCOLOR="$(BodyColor1)" TEXT="$(TextCol)" LINK="$(LinkCol)" VLINK="$(VLinkCol)"
ALINK="$(ALinkCol)">

<TABLE WIDTH=500 CELLPADDING=0 CELLSPACING=0 BORDER=0>
<TR>

<TD ALIGN="left" VALIGN="center">
<H3>Order Details Error</H3>
</TD>
</TR>

</TABLE>
@GET_SHOPPER_REF_NUM()

<TABLE>
<TR>

<TD align=center width=85>

</TD>
<TD>
There was a problem with your submission.

<P>
%if ("$(error_code)" == "220")

You typed "$(quantity)" in the field $(field). A numeric value above zero is
required.
%endif

</TD>
</TR>
<TR>

<TD align=center width=85>
</TD>
<TD>
260 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

<I>Click the go further button to get the order details page.</I>

<I>When you come from a Product Page select the product again and type a valid
quantity.</I>

<I>When you come from the Order Details Page make the change to the quantity again.</I>
</TD>
</TR>

</TABLE>

<TABLE WIDTH=300>
<TR>

<FORM ACTION="/cgi-bin/ncommerce3/OrderItemDisplay">
<INPUT TYPE="hidden" NAME="merchant_rn" VALUE="$(MerchantRefNum)">
<TD WIDTH=100 ALIGN="right"><INPUT TYPE="submit" VALUE="go further">
</TD>
</FORM>

</TR>
</TABLE>

</BODY>

</HTML>

%}

The page that is generated through this macro appears similar to the example
shown in Figure 210. This page is shown when the shopper types in a wrong
character in the input field for the quantity and the corresponding submit button
(in our case, in the add button from the Product page or the update button in the
Display Current Order page).

Figure 210. Bad Quantity Exception Page

13.16.2 Assigning a Net.Data Macro to an Exception Task
This section explains how to assign a Net.Data macro to an Net.Commerce
exception task to display information for the shopper. We assign our
err_stdata.d2w macro that we built to inform the customer that they have to enter
a valid quantity to the error task BAD_ST_DATA through a Task Management form of
the Site Manager function. Follow this process:

1. Start the Net.Commerce Administration Task with the following address:

http://fullyqualifiedhost_name/ncadmin/
Building the Mall and Store 261

2. Login with your Site Manager user and password or use the ncadmin user and
choose the Site Manager task.

3. Select Task Management on the left side.

4. Select ERROR as the Task Type in the selection list.

5. In the second half of the left window, search for the task BAD_ST_DATA and
mark it. The window, as shown in Figure 211, appears.

Figure 211. Task Management — Error Task

6. Choose Task Assignment on the left side of the window. The window shown
in Figure 212 appears.

Figure 212. Task Management — Error Task Assignment

7. Click the MACRO button. The Macro Assignment window appears.
262 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

8. Select the store name you want to look for in the Select Mall/Store selection
list (in our case, ShopITSO). If there is no assignment for your store, the text
shown in Figure 213 appears.

Figure 213. Macro Assignment — Task Management Page

9. To assign the macro name for your store, type in the path and macro name for
your store in the Macro Filename field. In our case, it is
ShopITSO/err_stdata.d2w. Click the Save button. The window shown in Figure
214 appears with the message indicating that the update was completed
successfully.

Figure 214. Macro Assignment for the New Net.Data Macro
Building the Mall and Store 263

13.17 Assigning SSL Protocol to Net.Commerce Commands

A major concern of all users of the World Wide Web is security. This is especially
important for commercial transactions containing personal data or credit card
details.

Security protocols such as Secure Socket Layer (SSL) protect data sent across
the Internet by addressing the following concerns:

• Confidentiality — Message content remains private.
• Integrity — Messages are not altered while being transmitted.
• Accountability — Both parties agree that the exchange happened.
• Authenticity — Both parties trust each other’s identity.

Net.Commerce uses the SSL protocol to secure transactions:

• RSA public key technology
• The concept of keys to encrypt and decrypt messages

SSL communication is a two-phase process:

1. Handshaking

• Determine the identity of the other party.
• Negotiate how the data is going to be sent.

2. Transfer information

• A key exchange takes place.
• A browser uses a key to encrypt or decrypt messages.
• A server receives data and decrypts it, or encrypts data and sends it.

The Command Security function in Net.Commerce Administrator allows you to
view and update whether SSL security or authentication (logon) is required to run
certain commands. The server automatically re-directs the shopper’s browser to
a new URL if the requested URL does not begin with https: or if the shopper is not
logged in. We did not change any security assignment in our ShopITSO sample.

To view or update the security assignment, follow these steps:

1. Login as ncadmin in the Net.Commerce Administration Web page at the
following URL:

http://fullyqualifiedhost_name/ncadmin/

2. Select SITE MANAGER in the left frame of the window.

3. Select COMMAND SECURITY in the left frame of the window.

A window appears as shown in Figure 215 on page 265.

In the selection list Store, you see Default Assignment. This means that in the
Assigned Commands list (SSL) (Authentication), you see the delivered
security assignment to the Net.Commerce commands. This assignment is
used for all stores when the store itself has no assignment.
264 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 215. Command Security (Part 1 of 7)

4. You can update your store when you choose your store name in the Store
selection list.

Figure 216. Command Security (Part 2 of 7)

The Assigned Commands (SSL) (Authentication) is not filled in. See Figure
216.

5. Choose a Net.Commerce command from the Commands selection list, for
example, Address Update, as shown in Figure 217 on page 266.
Building the Mall and Store 265

Figure 217. Command Security (Part 3 of 7)

6. Click the Add to List button. A window appears similar to the example in
Figure 218.

Figure 218. Command Security (Part 4 of 7)

7. Click the UPDATE button.

A window similar to the one shown in Figure 219 on page 267 appears. It
indicates that the update was completed successfully.

Notice that the Authentication is set to "No". This is because we have not
marked Enable Authentication.
266 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 219. Command Security (Part 5 of 7)

We added a second Net.Commerce command (pay_accept) and made the
update. You can see the list that results in Figure 220.

Figure 220. Command Security (Part 6 of 7)

8. When you also want to enable Authentication (Shopper must logon with a user
ID and password), mark the Net.Commerce command you want to change.

9. Check the Enable Authentication box and click the UPDATE button.

Now, you have the two Net.Commerce commands with different security
assignments. This is shown in Figure 221 on page 268.
Building the Mall and Store 267

Figure 221. Command Security (Part 7 of 7)

After you make your changes, end and start the HTTP server instance. Use these
AS/400 commands to do this:

ENDTCPSVR SERVER (*HTTP) HTTPSVR(<instance_name>)
STRTCPSVR SERVER (*HTTP) HTTPSVR(<instance_name>)

13.18 Disabling Check Inventory

The CHECK_INV process task is called from the Net.Commerce commands
OrderDisplay, OrderItemProcess, and OrderItemUpdate.

The default implementation of the Net.Commerce CHECK_INV process task
determines whether there is enough inventory in stock to cover a request for a
given quantity of a given product. If not, it sets the CHECK_INV_ERR exception task,
and handles the exception by writing an HTTP response (shows the window that
is built by the assigned macro to the CHECK_INV_ERR exception task, the
err_check.inv.d2w macro). This macro is delivered through the Store Creator.

Figure 222 on page 269 displays the message that is shown to the customer
when the quantity orders are not available.
268 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 222. Out of Stock Message

Because we want to accept any ordered quantity in our ShopITSO e-business
application and the order fulfillment is done by our back-end system, we have to
disable this behavior.

You can do this by assigning the overridable function DoNothingNoArgs to the
CHECK_INV process task. To do this, follow these steps:

1. Login as ncadmin in the Net.Commerce Administration Web page at the
following URL:

http://fullyqualifiedhost_name/ncadmin/

2. Select SITE MANAGER in the left frame of the window.

3. Select TASK MANAGEMENT in the left frame of the window.

4. Select PROCESS in the Select Task Type selection list.

5. Search and select CHECK INV in the second part of the window.

The window shown in Figure 223 on page 270 appears.

To get a larger second half of the screen, set the cursor of the black line and
move this line above.

Tip
Building the Mall and Store 269

Figure 223. Task Management — CHECK_INV (Part 1 of 4)

6. Select TASK ASSIGNMENT in the left frame of the window.

The window shown in Figure 224 appears. You can see that for ShopITSO,
there is "No Assignment". This means that the value that is assigned for the
mall is also used for our shop.

Figure 224. Task Management — CHECK_INV (Part 2 of 4)

7. Select DoNothingNoArgs in the Overridable Functions selection list. See
Figure 225 on page 271.
270 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 225. Task Management — CHECK_INV (Part 3 of 4)

8. Click the UPDATE button.

If the update is done successfully, the window shown in Figure 226 appears.

Figure 226. Task Management — CHECK_INV (Part 4 of 4)

9. Stop and restart the Net.Commerce instance through the AS/400 Task
function or use the following AS/400 commands from a 5250 session:

ENDNETCSVR NetCommerce_instance-name
STRNETCSVR NetCommerce_instance-name

For our store that works with the instance work, it is:

ENDNETCSVR WORK
STENETCSVR WORK
Building the Mall and Store 271

13.19 Customizing System Error Pages

The term System Errors converts a number of types of problem from incorrect
user input to complete system failure. These errors result in either:

• Messages appended to the server logs. These usually relate to problems
starting the server daemons. They can be caused by configuration errors,
socket problems or database connectivity problems. Changing the logging
level of the server also causes messages to be appended to the server logs.

• HTML error pages sent to the shopper. These can either be caused by the
director responding to invalid syntax or can relate to more severe problems
with the server or database.

The same system problem (for example, the server cannot connect to the
database) may result in a log entry and for each user who tried to use the
Net.Commerce system a system error page. Figure 227 shows the system error
flow.

Figure 227. System Error Flow

The system error pages are static HTML files stored in the
QIBM/ProdData/NetCommerce/html/MRIxxxx/ncerror directory. The directory is
mapped in the HTTP Web server configuration file to URL /ncerror.

Each page corresponds to a particular system error. Some of these can indicate a
user error or typing mistake in a URL of the store. Other pages may indicate a

D B M S

server

d irecto r

w eb server

B row ser

S tartup errors
D ebu g trace

S ystem
E rror

Pages

D atabase

N et.C o m m erce
H T M L d irectory

Server L og s

Log m essage
fo r adm in istrato r

H T M L page
fo r shopper

80 443
272 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

server or database failure. Table 16 shows the reason, filename, and message
number of the system error pages.

Table 16. Table System Error Pages

Note: The Product Advisor also has static HTML error pages in this directory.

There is also a macro file (tsslfail.d2w), which is classified as a system error
because it can occur at anytime when a new user visits the site. It is stored in the
QIBM/ProdData/NetCommerce/macro/MRIxxxx directory. It indicates that the
browser type of the shopper is not listed in the BROWSER table in the database.
This means that we do not know if a browser supports SSL, tables, or frames.
The macro allows the user to attempt to connect through SSL. If it is successful,
the BROWSER table is updated.

The system error pages are static HTML files. All pages are global for the mall.
You can customize the error pages. For example, you can change graphics and
text to your mall style, or add links to your home page or e-mail support.

Consider that you have no variables to indicate which specific error occurred or
what the command parameters were. Therefore, you do not have the URL of the
original request available to retry.

Your error page must be general purpose so that it caters to all circumstances
that generate that error and allows the user to respond accordingly. Figure 228 on
page 274 shows one of the original system error pages.

Message Number File Name Reason
CMN0302E noserver.html Server not responding

Director cannot connect to the server

CMN0950E cmdinc.html Command Structure Failure
Command has been mistyped or used without
the correct parameters

CMN0953E datapop.html Data Population Failure
a value sent to certain commands doesn't match
a row in the DB

CMN0957E sql.html SQL Failure
The DB manager may be down or the
Net.Commerce DB may be corrupt.

CMN0958E config.html Configuration Failure
API DLL/function cannot be found or if the
director cannot communicate with the server

CMN0959E oom.html Memory Failure
CMN0960E env.html Environment Failure

when there is a missing parameter in mserver.ini

CMN0961E cmdexe.html Command Execution Failure
when a command cannot execute or complete

CMN0962E auth.html Authorization Failure
when a user tries to access an Administrator
page that they do not have authority for.
Building the Mall and Store 273

Figure 228. Original System Error Page

We changed the cmdinc.html file. See A.8.13, “CMDINC HTML” on page 479, for
more information. The new content of this page is shown in Figure 228.

Figure 229. Changed System Error Page
274 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Chapter 14. Enhancing the Store Using Product Advisor

This chapter covers the following topics:

• A short description of what is Product Advisor

• The approach we used to enhance our sample store using Product Advisor

• How we used Template Designer to customize Product Advisor pages for our
sample store

• How we implemented Product Advisor metaphors for our sample store

• The approach we used for publishing the Product Advisor metaphors in the
category pages

In this chapter, we primarily document what we did to implement Product Advisor
in our sample store. You may need to perform additional steps in your
environment.

14.1 What a Product Advisor Is

Product Advisor is an application that is integrated into Net.Commerce V3.2 to
enhance the navigation of the product catalog. It allows you to build your own
product expertise into the navigational structure of the catalog by creating
intelligent shopping metaphors. The metaphors mimic real-life shopping activities
such as answering the questions of a salesperson and comparing similar
products.

Product Advisor works best where there are similar products with multiple
attributes in the Net.Commerce database. It builds its own database tables to
specify how the metaphors will be presented. Before you can decide to use
Product Advisor and build metaphors, you must make sure your category and
product data is suitable for use with Product Advisor. You can only use Product
Advisor effectively if:

• Similar Products that can be compared with eachother appear in the same
category.

• The features that will be used to make the comparison were entered as
product or item attributes in the Net.Commerce database.

If you use the Sales Assistance metaphor, you need to capture the product
expertise of your sales force as questions and answers. These questions and
answers depend on the attributes that you create.

Once the data and metaphors are designed, you need to create the data in the
Net.Commerce database.

Product Advisor consists of a set of creation tools that are Java applets that run in
a browser. They store the structure of the metaphor data in the Net.Commerce
database. You also need to use the Template Designer to create HTML files for
the metaphor pages. You embed special tags in these files to specify where the
metaphor content is placed.
© Copyright IBM Corp. 1999 275

The creation tools of Product Advisor are Java applets that run in a browser.
These tools include:

Catalog Builder Determines the data types and sizes of the product
attributes (features) that will be used in shopping metaphors.

Metaphor Builder Determines how the features will be displayed in a metaphor
and how different metaphors link together.

Template Designer Creates HTML template files containing special Product
Advisor tags for the metaphor pages.

The run-time components of Product Advisor are Java servlets that run as part of
the Web server. Metaphor Viewers use the metaphor data in the Net.Commerce
database and the template files to build the metaphor views.

14.1.1 Catalog Builder
You use the Catalog Builder to select the product features that will be displayed
and to indicate how this information will be used by the metaphors. The shopping
metaphor builders define how the catalog will be presented to shoppers.

The catalog keeps track of how many products are offered in each product
category. If a category contains subcategories, the count indicates the total
number of products in all subcategories.

The Catalog Builder does not add, change, or delete information about your
products. It allows you to choose which data to display in the catalog and how
you want it displayed. You must run Catalog Builder before you can build the
metaphors for a category.

14.1.1.1 Shopping Metaphors
People shop in different ways depending on their needs and their product
knowledge. The Product Advisor organizes and presents your catalog data in
different ways, so that shoppers can search for products in the manner that is
best for them. The different styles of presentation are called shopping metaphors,
and the tools that you use to set up the metaphors for each category of products
are called shopping metaphor builders. For each metaphor, you use the
corresponding metaphor builder to define settings that determine which data from
the catalog will be presented and how it will be presented. You also use it to
specify a template, which determines the overall appearance of the Web pages
that the shopper will see. If you set up the templates with metaphor links, the
shopper can switch to a different metaphor for the same category at anytime.

There are three shopping metaphors in the Product Advisor:

Sales assistance
A shopper with no technical product knowledge that usually asks
questions of a sales assistant in a real store. You can build sample
questions that choose particular products or attribute combinations
based on the answers given by the shopper. This allows you to build
your product knowledge into the catalog and make the shopper's
decision process easier.

Product exploration
A shopper who is familiar with a family of similar products may look for
particular features. When you have many products in a category with a
276 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

number of similar attributes (for example, size, color, and material),
Product Exploration allows the shopper to look for all products with
one attribute and then all remaining products with another attribute
and so on until the shopper narrows the list down.

Product comparison
If there are multiple similar products with a few attributes that
differentiate them, the shopper can compare them side-by-side to help
make a decision.

14.2 Enhancing Our Sample Store Using Product Advisor

To enhance our sample store, we used all the Product Advisor metaphors:

• Product Exploration metaphor
• Product Comparison metaphor
• Sales Assistant metaphor

Because our sample store only has products in the IBM ThinkPads category, we
implemented the Product Advisor catalog only for that category.

14.3 Implementing Product Advisor Metaphors

There are several steps required to implement the Product Advisor metaphors.
They include:

1. Loading the Product Advisor Applet
2. Running the Catalog Builder
3. Running the Product Exploration Builder
4. Running the Product Comparison Builder
5. Running the Sales Assistant Builder

The first two steps must be performed in order. The remaining steps are optional
and only required if you want to use the metaphor associated with the step. For
example, if you want to support only the Product Comparison metaphor you
would perform steps one, two, and four.

14.3.1 Loading the Product Advisor Applet
The first step is to load the Product Advisor Applet to the administration PC. This
is a Java applet that is downloaded as needed. The length of time required to
perform this task is based on the network throughput.

To start the Product Advisor applet, complete these steps:

1. Login as ncadmin in the Net.Commerce Administrator Web page at the
following URL:

http://fullyqualifiedhost_name/ncadmin

2. From the Product Advisor page in the Store Manager view, shown in Figure
230 on page 278, select the ShopITSO store. Click the Load button to load
the Product Advisor applet.
Enhancing the Store Using Product Advisor 277

Figure 230. Product Advisor Page in the Net.Commerce Administrator

To monitor the JDBC server process that communicates with Product Advisor,
connect to the AS/400 system and issue the command:

WRKACTJOB SBS(QSERVER)

Figure 231. Work with Active Jobs

3. All categories are marked broken the first time that the Product Advisor is
opened. Select File —> Resynchronize All, as shown in Figure 232 on page
279, to start resynchronization.

Work with Active Jobs AS01
04/02/99 14:40:44

CPU %: 13.3 Elapsed time: 00:00:20 Active jobs: 400

Type options, press Enter.
2=Change 3=Hold 4=End 5=Work with 6=Release 7=Display message
8=Work with spooled files 13=Disconnect ...

Opt Subsystem/Job User Type CPU % Function Status
QSERVER QSYS SBS .0 DEQW
QPWFSERVSD QUSER BCH .0 SELW
QPWFSERVSO QUSER PJ .0 DEQW
QSERVER QPGMR ASJ .0 EVTW
QZDASOINIT QUSER PJ 1.1 DEQW
QZDASRVSD QUSER BCH .0 SELW

Parameters or command
===>
F3=Exit F5=Refresh F7=Find F10=Restart statistics
F11=Display elapsed data F12=Cancel F23=More options F24=More keys
278 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 232. Product Advisor — Starting Resynchronize All

4. From the resynchronize panel, shown in Figure 233, click the Start button to
begin resynchronization.

Figure 233. Product Advisor — Resynchronization Panel

5. When the data resynchronization finishes successfully, the window shown in
Figure 234 pops up. Click OK to continue.

Figure 234. Product Advisor — Successful Resynchronization Panel

6. When the window about including new products appears, shown in Figure 235
on page 280, click Yes to continue.
Enhancing the Store Using Product Advisor 279

Figure 235. Product Advisor — Include New Products Panel

The Product Advisor applet is ready for use when the resynchronization
process completes. The window shown in Figure 236 appears.

Figure 236. Product Advisor Applet

14.3.2 Using Catalog Builder
The Catalog Builder allows you to specify which features will be available for use
in the metaphors and how they will be used. You must run the Catalog Builder
before you can build the metaphors for a category. Product Advisor uses some
fields from standard Net.Commerce tables:

• PRNBR — SKU Number
• PRSDESC — Product Name
• PRTHMB — Thumbnail Image
• PRURL — URL
• PPPRC — Price

All user-defined attributes from the PRODATR table are also included. For each
feature, you can set:

• Feature Name —The name that will be displayed in the metaphors.

• Field Size — The maximum input field size used in HTML fields such as
selection lists.

• Include — Whether the feature will be included in metaphors.
280 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

• Type (Character, Integer, Decimal,...) — Determines what operations will be
allowed on the feature values and how they will be formatted.

• Usage (Data, Image, URL, Price) — How the feature values will be used in the
HTML output. For example, Data is displayed "as is", but Image will be used in
a tag.

• Unit — Unit of measure that will be appended every time the value is
displayed (for example, MB or In).

The Catalog Builder must be run before you build the metaphors. The exception
is Sales Assistant, which allows you to build some questions and answers that do
not use attribute values.

When creating a catalog, there are many options that can be done or changed.
For our example, we chose not to include thumbnail images. This was done to
keep the example simple and to make a change that is easily noticed. By
removing the thumbnails, we decreased the amount of time it takes to serve the
pages because the image files are not included.

Complete the following steps to run Catalog Builder:

1. From the Product Advisor window, select the Catalog Builder icon for the IBM
ThinkPads category, as shown in Figure 237. Select File —> Open (or click
the folder toolbar button) to open the Catalog Builder applet.

Figure 237. Product Advisor — Opening Catalog Builder

2. Double-click on the Include field of the Thumbnail Image feature, as shown in
Figure 238 on page 282, to change its value from "Yes" to "No". Select File
—> Save (or click the diskette toolbar button) to save the changes.
Enhancing the Store Using Product Advisor 281

Figure 238. Catalog Builder — Saving Changes

3. The Save Complete panel shown in Figure 239 pops up when the save
process is finished. Click OK to continue.

Figure 239. Catalog Builder — Save Complete Panel

4. Select File —> Exit (or click the X in the top corner of the window) to exit the
Catalog Builder.

5. In the Product Advisor window, the status icon for the IBM ThinkPads category
is changed from Enabled (empty box) to Prepared (selected box), as shown in
Figure 240 on page 283.
282 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 240. Product Advisor — Catalog Prepared

14.3.3 Using Product Exploration Builder
The Product Exploration builder allows you to specify which features will appear
in a Product Exploration metaphor, the order in which they will be listed and
sorted, and the "widget" used for selection. The widgets relate to HTML form
input types. We used:

• Checkbox — Useful for textual features with few choices where multiple
selections may be used.

• Single list — Useful for numeric features with many choices where greater
than or less than may be used.

• Multi list — Useful for textual features with many choices where multiple
selections may be used.

To build a Product Exploration metaphor, you should decide from which of the
available features the shopper would want to select and the appropriate widget
for the selection. Features that you select, such as Don’t Show, are those that
have too many values to narrow the selection (for example, part number or price).

Remember, we are documenting the options we took for our sample. Your options
may be different. Select the options that are correct for your environment and
design.

Complete the following process to build the Product Exploration metaphor:

1. From the Product Advisor window, select the Product Exploration Builder
icon for the IBM ThinkPads category, as shown in Figure 241 on page 284.
Then, select File —> Open to open the Product Exploration Builder applet.

We chose the IBM ThinkPads category because that was the only category
with a catalog created. Notice the check under the book icon. If you click on
any category that does not have a catalog created, the Open option is
disabled for that selection.
Enhancing the Store Using Product Advisor 283

Figure 241. Product Advisor — Opening Product Exploration Builder

2. Double-click on the Display field of the Part Number feature, as shown in
Figure 242, to change its value from "Show" to "Don’t Show". Remember this
is just our option. Your options may be different. Select the options that are
correct for your environment and design.

Figure 242. Product Exploration Builder — Changing Display Value

3. Click on the Widget field of the Short Description feature, as shown in Figure
243 on page 285, to change its value from "Hyper-text link" to "Multi list".
284 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 243. Product Exploration Builder — Changing Widget Value

4. Repeat step three for the rest of the features, as shown in Figure 244, by using
the following values:

• Bus — Check box
• CD-ROM — Check box
• Form Factor — Check box
• Hard Drive — Single list
• Memory — Single list
• Operating System — Multi list
• Processor — Multi list
• Price — Multi list

Then, select File —> Select Template for Viewing to select the template for
viewing the Product Exploration page.

Figure 244. Product Exploration Builder — Selecting Template for Viewing

5. From the Select Template for Viewing panel, shown in Figure 245 on page
286, select /ca_html/shopitso_pe.html (created in 14.4.2, “Customizing the
Product Exploration Page” on page 302). Click OK to continue.
Enhancing the Store Using Product Advisor 285

Figure 245. Product Exploration Builder — Select Template for Viewing Panel

6. Select File —> Save and View in Browser (or click the glasses toolbar
button), as shown in Figure 246, to save and view the Product Exploration
page in a browser.

Figure 246. Product Exploration Builder — Viewing Product Exploration Page

7. The Product Exploration page, as shown in Figure 247, pops up in a browser.
Close the browser to continue.
286 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 247. Product Exploration Page

8. Select File —> Exit (or click the X in the top corner of the window) to exit the
Product Exploration Builder and return to the Product Advisor.

14.3.4 Using Product Comparison Builder
The Product Comparison builder allows you to specify which features will appear
in a Product Comparison metaphor, the order in which they will be listed, and
which features will link to the product pages. You should specify "Don't Show" for
features that cannot usefully be compared (for example, picture or part number).
You must make sure one feature links to product pages.

Remember, we are documenting the options we took for our sample. Your options
may be different. Select the options that are correct for your environment and
design.

Complete the following steps to build the Product Comparison metaphor:

1. From the Product Advisor window, select the Product Comparison Builder
icon for the IBM ThinkPads category, as shown in Figure 248 on page 288.
Then, select File —> Open (or click the folder toolbar button) to open the
Product Comparison Builder applet.

We chose the IBM ThinkPads category because that was the only category
with a catalog created (notice the check under the book icon). If you click on
any category that does not have a catalog created, the Open option will be
disabled for that selection.
Enhancing the Store Using Product Advisor 287

Figure 248. Product Advisor — Opening Product Comparison Builder

2. Select File —> Select Template for Viewing, as shown in Figure 249, to
select the template for viewing the Product Comparison page.

Figure 249. Product Comparison Builder — Selecting Template for Viewing

3. From the Select Template for Viewing panel, shown in Figure 250, select
/ca_html/shopitso_pc.html (created in 14.4.3, “Customizing the Product
Comparison Page” on page 307). Click OK to continue.
288 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 250. Product Comparison Builder — Select Template for Viewing Panel

4. Select File —> Save and View in Browser (or click the glasses toolbar
button) as shown in Figure 251, to save and view the Product Comparison
page in a browser.

Figure 251. Product Comparison Builder — Viewing Product Comparison Page

Refer to C.1.1, “Net.Commerce Online Documentation” on page 529, for
details about accessing the documentation.

5. The Product Comparison page, shown in Figure 252 on page 290, pops up in
a browser. Notice how the Product Comparison page compares the different
products in the table. Close the browser to continue defining the metaphors.
Enhancing the Store Using Product Advisor 289

Figure 252. Product Comparison Page

6. Select File —> Exit (or click the X in the top corner of the window) to exit the
Product Comparison Builder and return to Product Advisor.

14.3.5 Using Sales Assistant Builder
The Sales Assistant builder allows you to build the question and answer trees for
the Sales Assistance metaphor. You start by adding a question and then multiple
answers under the question. Each answer can have constraints applied and can
link to:

• Another question
• Another Sales Assistance metaphor
• Another metaphor (Product Exploration or Product Comparison)
• Another Web page URL

The default link, which is used if there are no further questions or metaphor links,
can be changed. The initial setting is the Product Comparison metaphor.

A useful function in Sales Assistant builder is the ability to import the question
and answer tree from another category. You can build Sales Assistance
metaphors without the catalog data as long as you do not intend to use
constraints or other metaphors. For example, you can build a sequence of
questions and answers that just link to a particular category or product.

Remember, we are documenting the options we took for our sample. We added
one question and five answers. In the real world, you will have many more
questions and answers. Select the options that are correct for your environment
and design.

Complete these tasks to build the Sales Assistant metaphor:

1. From the Product Advisor window, select the Sales Assistant Builder icon for
the IBM ThinkPads category, as shown in Figure 253 on page 291. Then,
select File —> Open (or click the folder toolbar button) to open the Sales
Assistant Builder applet.
290 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

We chose the IBM ThinkPads category because that was the only category
with a catalog created (notice the check under the book icon). If you click on
any category that does not have a catalog created, the Open option will be
disabled for that selection.

Figure 253. Product Advisor — Opening Sales Assistant Builder

2. Select Edit —> Add New (or click the white rectangular toolbar button), as
shown in Figure 254, to add the first question of the Sales Assistant.

Figure 254. Sales Assistant Builder — Adding a Question

3. In the Add a Question panel, type: What Operating System are you looking for?,
as shown in Figure 255 on page 292. Click the OK button to continue.
Enhancing the Store Using Product Advisor 291

Figure 255. Sales Assistant Builder — Add a Question Panel

4. Select the question. Then, select Edit —> Add New (or click the white
rectangle toolbar button), as shown in Figure 256, to add the first answer for
the question.

Figure 256. Sales Assistant Builder — Adding an Answer

5. Type IBM AIX in the Add an Answer panel, as shown in Figure 257 on page
293, and click the Add Another button to continue. Add the following answers:

• IBM DOS

• MS Windows 95

• MS Windows NT

• Other

Click OK to continue.
292 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 257. Sales Assistant Builder — Add an Answer Panel

6. Select the IBM AIX answer. Then, select Link —> Link Product Features...
(or click the green cube toolbar button), as shown in Figure 258, to select the
features for product constrains.

Figure 258. Sales Assistant Builder — Selecting Product Constrains

7. From the Select products constrains panel shown in Figure 259 on page 294,
select the Operating System feature. Then, select the IBM AIX feature value.
Click the Add >>> button. Then, click OK to continue.
Enhancing the Store Using Product Advisor 293

Figure 259. Sales Assistant Builder — Select Product Constrains Panel

8. Select the IBM AIX answer. Then, select Link —> Link Another Metaphor...,
as shown in Figure 260, to change the default link metaphor.

Figure 260. Sales Assistant Builder — Linking to Another Metaphor

9. From the Link to Another Metaphor panel, shown in Figure 261 on page 295,
select Product Exploration/IBM ThinkPads and click the List... button to
continue.
294 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 261. Sales Assistant Builder — Link to Another Metaphor Panel

10.From the Select Template for Viewing panel, as shown in Figure 262, select
/ca_html/shopitso_pe.html for the template file. Click the OK button to
continue.

Figure 262. Sales Assistant Builder — Select Template for Viewing Panel

11.From the Link to Another Metaphor panel, click the OK button to continue.

The Sales Assistant Builder, shown in Figure 263 on page 296, now displays
the new metaphor link just defined and the new product count constrained
from 98 down to 7.
Enhancing the Store Using Product Advisor 295

Figure 263. Sales Assistant Builder — Link Metaphor and Product Constrains Added

12.Repeat steps six through eleven for the rest of the answers. Constrain the
product count for each answer to:

• IBM DOS: 32
• MS Windows 95: 11
• MS Windows NT: 8
• Other: 40

13.Select File —> Select Template for Viewing, as shown in Figure 264, to
select the template for viewing the Sales Assistant page.

Figure 264. Sales Assistant Builder — Selecting Template for Viewing

14.From the Select Template for Viewing panel, shown in Figure 265 on page
297, select /ca_html/shopitso_sa.html (created in 14.4.4, “Customizing the
Sales Assistant Pages” on page 312). Click OK to continue.
296 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 265. Sales Assistant Builder — Select Template for Viewing Panel

15.Select File —> Save and View in Browser (or click the glasses toolbar
button) as shown in Figure 266, to save and view the Sales Assistant page in a
browser.

Figure 266. Sales Assistant Builder — Viewing Sales Assistant Page in a Browser

16.The Sales Assistant page, shown in Figure 267 on page 298, pops up in a
browser. Notice how the Sales Assistant page ask the questions to determine
where to go next. Close the browser to continue working with Sales Assistant
definition.
Enhancing the Store Using Product Advisor 297

Figure 267. Sales Assistant Page

17.Select File —> Exit (or click the X in the top corner of the window) to exit the
Sales Assistant Builder and return to the Product Advisor.

Notice that in the Product Advisor window (Figure 268), which is now the
status icon for the IBM ThinkPads category for the Product Exploration, the
Product Comparison and Sales Assistant metaphors are changed from
Enabled (empty box) to "Prepared" (clicked box).

Figure 268. Product Advisor — Catalog and All Metaphors Prepared

18.Select File—>Exit (or click the X in the top corner of the window) to exit
Product Advisor.
298 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

14.4 Using Template Designer to Customize Product Advisor Pages

After we set up Product Advisor, we create pages to link to the metaphors.
Net.Commerce has sample templates included that can be used with Product
Advisor. For you to use these templates with your implementation, you must
customize them. We chose Template Designer as the tool to use for this task.
Complete the following steps:

1. Login as ncadmin in the Net.Commmerce Administrator Web page at the
following URL:

http://fullyqualifiedhost_name/ncadmin/

2. From the Template Designer page in the Store Manager view, shown in Figure
269, select the ShopITSO store. Load the Template Designer applet by
clicking the Load button. Two windows pop up: the Template Designer Status
window and the Template Designer window.

Figure 269. Template Designer Page in the Net.Commerce Administrator

3. Minimize the Template Designer Status window, shown in Figure 270 on page
300, while working with the Template Designer window.

Do not close the Template Designer Status window. If you close this
window, the Template Designer window will also close!

Important
Enhancing the Store Using Product Advisor 299

Figure 270. Template Designer Status Window

14.4.1 Building the Base Pages for Product Advisor
The first step in customizing the Product Advisor pages is to create the three
pages we will use for the metaphors. These are created from the samples
shipped with Net.Commerce. You should repeat the following procedure three
times to build the three pages for the metaphors.

Use Table 17 as a guide to substitute the names of the template (tmplsamp) and
save as name (saveas) in the following procedure. The names shown in the table
are the names we used in our sample store. You should change the names to
reflect your store configuration.

Table 17. Names Used for SHOPITSO Templates

Complete the following steps:

1. From the Template Designer window, shown in Figure 271 on page 301, select
File —> Open... (or click the folder toolbar button) to open a template.

Template Type Sample Name (tmplsamp) Save as Name (saveas)

_1. Product Exploration pe_te.html shopitso_pe.html

_2. Product Comparison pc1_te.html shopitso_pc.html

_3. Sales Assistant sa_te.html shopitso_sa.html
300 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 271. Template Designer Window — Open File

2. From the open file panel, shown in Figure 272, select the product advisor file
type. Then, select the file name (tmplsamp from Table 17 on page 300). Then,
click the OK button to open the sample Product Exploration template.

Figure 272. Template Designer — Open Product Exploration Sample Template

3. Select File —> Save As... to save the template with a different name, as
shown in Figure 273 on page 302.
Enhancing the Store Using Product Advisor 301

Figure 273. Product Exploration — Saving the New Product Exploration Template

4. Enter the file name (saveas from Table 17 on page 300). Click OK, as shown in
Figure 274.

Figure 274. Product Exploration Template — Save Panel

5. Repeat steps one through four until you build all of the required pages.

After you create the base pages, customize them as described in the following
section.

14.4.2 Customizing the Product Exploration Page
This section describes how to customize the Product Exploration page. Perform
the following series of steps to make the required changes:

1. From the Template Designer window, shown in Figure 275 on page 303, select
File —> Open... (or click the folder toolbar button) to open a template.
302 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 275. Template Designer Window — Open File

2. From the open file panel, select the product advisor file type. Then, select
the shopitso_pe.html file name. Click the OK button to open the Product
Exploration template.

3. Click on the product links object labeled Product Links to select it, as shown
in Figure 276. Then, select Edit —> Cut (or click the scissors toolbar button)
to remove the object from the template.

Figure 276. Product Exploration Template — Product Links Object
Enhancing the Store Using Product Advisor 303

4. Click on the text object that contains the text Products: to select it (see Figure
277). Then, select Edit —> Cut (or click the scissors toolbar button) to remove
the object from the template.

Figure 277. Product Exploration Template — Text Object

5. Double-click the image object that contains the Sales Assistant image, as
shown in Figure 278, to open the object’s panel.

Figure 278. Product Exploration Template — Sales Assistant Image Object

6. From the image object panel, shown in Figure 279, click the Special Link...
button to change the target link of the object.
304 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 279. Product Exploration Template — Image Object Panel

7. From the object link panel, shown in Figure 280, select Product Advisor Page
for the type of link. Then, select /ca_html/shopitso_sa.html for the template
file to link to. Click the OK button to save the changes and return to the image
object panel.

Figure 280. Product Exploration Template — Object Link Panel

8. From the image object panel, shown in Figure 281 on page 306, click the OK
button to save the changes and return to the Template Designer.

Notice that the Link to a URL field now points to the link just defined. To see
the complete URL, place the cursor in the Link to URL field and use the arrow
keys.
Enhancing the Store Using Product Advisor 305

Figure 281. Product Exploration Template — Image Object Panel

9. Repeat steps five through eight for the Product Comparison image object. Use
/ca_html/shopitso_pc.html for the link file in the object link panel, as shown in
Figure 282.

Figure 282. Product Exploration Template — Object Link Panel

10.Select Settings —> Product Advisor Template..., as shown in Figure 283 on
page 307, to open the template panel.
306 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 283. Product Exploration Template — Opening the Product Advisor Template

11.From the template panel, shown in Figure 284, select Left for template
alignment. Click OK.

Figure 284. Product Exploration Template — Product Advisor Template Panel

12.Select File —> Save (or click the diskette toolbar button) to save the changes.

14.4.3 Customizing the Product Comparison Page
This section describes how to customize the Product Comparison page. Perform
the following steps to make the required changes:

1. From the Template Designer window, shown in Figure 285 on page 308, select
File —> Open... (or click the folder toolbar button) to open a template.
Enhancing the Store Using Product Advisor 307

Figure 285. Template Designer Window — Open File

2. From the open file panel, select the product advisor file type. Then, select the
shopitso_pc.html file name. Click the OK button to open your Product
Comparison template.

Figure 286. Product Comparison — Saving New Product Comparison Template

3. Double-click the image object that contains the Sales Assistant image, as
shown in Figure 287 on page 309, to open the object’s panel.
308 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 287. Product Comparison Template — Sales Assistant Image Object

4. From the image object panel, shown in Figure 288, click the Special Link...
button to change the target link of the object.

Figure 288. Product Comparison Template — Image Object Panel

5. From the object link panel, shown in Figure 289 on page 310, select Product
Advisor Page for the type of link. Then, select /ca_html/shopitso_sa.html
for the template file to link. Click the OK button to save the changes and return
to image object panel.
Enhancing the Store Using Product Advisor 309

Figure 289. Product Comparison Template — Object Link Panel

6. From the image object panel, as shown in Figure 290, click the OK button to
save the changes and return to the Template Designer.

Notice that the Link to a URL field now points to the link just defined. To see
the complete URL, place the cursor in the Link to URL field and use the arrow
keys.

Figure 290. Product Comparison Template — Image Object Panel

7. Repeat steps three through six for the Product Exploration image object. Use
/ca_html/shopitso_pe.html for the link file in the object link panel, as shown in
Figure 291 on page 311.
310 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 291. Product Comparison Template — Object Link Panel

8. Select Settings —> Product Advisor Template..., as shown in Figure 292, to
open the template panel.

Figure 292. Product Comparison Template — Opening the Product Advisor Template

9. From the template panel, shown in Figure 293 on page 312, select Left for
template alignment, and click OK.
Enhancing the Store Using Product Advisor 311

Figure 293. Product Comparison Template — Product Advisor Template Panel

10.Select File —> Save (or click the diskette toolbar button) to save the changes.

14.4.4 Customizing the Sales Assistant Pages
This section describes how to customize the Product Comparison page. Perform
the following procedure to make the required changes:

1. From the Template Designer window, shown in Figure 294, select File —>
Open... (or click the folder toolbar button) to open a template.

Figure 294. Template Designer — Open File

2. From the open file panel select the product advisor file type, the select the
shopitso_sa.html file name. Click the OK button to open your Sales Assistant
template.

3. Double-click on the image object that contains the Product Exploration image,
shown in Figure 295 on page 313, to open the object’s panel.
312 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 295. Sales Assistant Template — Product Exploration Image Object

4. From the image object panel, as shown in Figure 296, click the Special Link...
button to change the target link of the object.

Figure 296. Sales Assistant Template — Image Object Panel

5. From the object link panel, shown in Figure 297 on page 314, select Product
Advisor Page for the type of link. Select /ca_html/shopitso_pe.html for the
template file to which to link. Click the OK button to save the changes and
return to the image object panel.
Enhancing the Store Using Product Advisor 313

Figure 297. Sales Assistant Template — Object Link Panel

6. From the image object panel, shown in Figure 298, click the OK button to save
the changes and return to the Template Designer.

Notice that the Link to a URL field now points to the link just defined. To see
the complete URL, place the cursor in the Link to URL field and use the arrow
keys.

Figure 298. Sales Assistant Template — Image Object Panel

7. Repeat steps three through six for the Product Comparison image object. Use
/ca_html/shopitso_pc.html for the link file in the object link panel, as shown in
Figure 299 on page 315.
314 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 299. Sales Assistant Template — Object Link Panel

8. Select Settings —> Product Advisor Template..., as shown in Figure 300, to
open the template panel.

Figure 300. Sales Assistant Template — Opening the Product Advisor Template Panel

9. From the template panel, as shown in Figure 301 on page 316, select Left for
the template alignment, and click OK.
Enhancing the Store Using Product Advisor 315

Figure 301. Sales Assistant Template — Product Advisor Template Panel

10.Select File —> Save (or click the diskette toolbar button) to save the changes.

11.Select File —> Exit (or click the X in the upper right corner of the window) as
shown in Figure 302, to exit the Template Designer.

Figure 302. Sales Assistant Template — Exiting Template Designer

12.The question is asked: Are you are sure you want to exit Template Designer?

Click Yes.

14.5 Publishing Product Advisor Pages

To automate the process of publishing the Product Advisor metaphors defined for
the IBM ThinkPads category, we used the following approach:

1. Use the category CustomField1 as a flag (resides in the Shopper Group
Category Template table (CATESGP):

– Value of 1 — Product Advisor metaphors must be published
– Other value — No Product Advisor metaphor to publish

2. Modify the cat0.d2w category macro to add a URL link to the Product
Exploration metaphor when the category CustomField1 has the value of 1.
316 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

To implement this approach, follow these steps:

1. Login as ncadmin in the Net.Commerce Administration Web page at the
following URL:

http://fullyqualifiedhost_name/ncadmin/

2. From the Product Categories page in the Store Manager view, as shown in
Figure 303, select the ShopITSO store. Click on IBM ThinkPads to select it.
Then, click the Edit button.

Figure 303. Product Categories — Editing Category with Product Advisor Metaphors

3. Set Custom Field 1 value to 1, as shown in Figure 304 on page 318. Click
Save to save the changes.
Enhancing the Store Using Product Advisor 317

Figure 304. Product Categories — Setting Custom Field 1 to the Value of 1

4. Modify the ShopITSO/cat0.d2w category macro. Add the following code in the
DISPLAY_CATEGORIES function:

%function(dtw_odbc) DISPLAY_CATEGORIES(){
select CATEGORY.CGRFNBR, CATEGORY.CGMENBR, CATEGORY.CGNAME, CATEGORY.CGTHMB,

CATEGORY.CGFIELD1, CGRYREL.CRSEQNBR, CATEGORY.CGLDESC, CGRYREL.CRPCGNBR
from CATEGORY, CGRYREL
where CRCCGNBR=CGRFNBR and crpcgnbr=$(cgrfnbr) and crmenbr=$(cgmenbr) and cgpub=1
order by crseqnbr

%REPORT{

<TABLE BORDER=0 CELLPADDING=0 CELLSPACING=0 WIDTH=100%>
<TR>
<TD ALIGN="left" VALIGN="top">
%ROW{
<A
HREF="/cgi-bin/ncommerce3/CategoryDisplay?cgrfnbr=$(V_CGRFNBR)&cgmenbr=$(V_CGMENBR)&CGRY_
NUM=$(CGRYNUM)">$(V_CGNAME)
%IF (V_CGFIELD1 == "1")
<A
HREF="/servlet/icviewer/ca_html/shopitso_pe.html?cgrfnbr=$(V_CGRFNBR)&cgmenbr=$(Me
rchantRefNum)" TARGET="main"><IMG SRC="/shopitso/padvisor.gif" ALT="Product
Exploration" BORDER="1" ALIGN="bottom">
%ENDIF

@DTW_ASSIGN(save_crpcgnbr, V_CRPCGNBR)
%}

@DTW_assign(BACKUP, save_crpcgnbr)
</TD>
</TR>
</TABLE>

%}
%MESSAGE{100:{%} :continue %}

%}
318 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Chapter 15. Importing Business Data into Net.Commerce

Many Net.Commerce customers already have their own back-end applications for
running their business. These back-end applications access and use data in
existing databases that contain information relating to customers, products,
billing, and inventory control.

This chapter looks at the options available for loading data from our back-end
database into our Net.Commerce database. It also discusses the important task
of keeping the Net.Commerce data and the back-end system data fully
synchronized.

When a Net.Commerce instance is created, the database created has sufficient
information in it to allow the mall to be administrated. However, it has no product,
category, or price information unless the option was taken to install a demo store
or mall.

The Net.Commerce database tables contain all the information Net.Commerce
needs to store information about the mall or store and its operation, such as
products, categories, and prices. Initially these product, price, and category
tables are empty, so this information must be fed into the Net.Commerce
database. This information can be added to the database from the administrator
screens. However, if there is a large amount of data to be added to the database,
manual addition may be impractical. In this case, customers may want to load
data from their current back-end system for the initial dataload phase and for
ongoing changes.

15.1 General Considerations for Loading Data

The skills required and the method you use for loading the data into your store or
mall depends on your data source and the skills you have available. If you are
creating your store or mall for the first time, you can use the Net.Commerce tools,
Store Creator and Administrator, to enter all of your store information from
scratch. For most customers, this is not the case and you need to perform some
form of data loading and synchronizing of the data from existing data sources.

15.1.1 Loading the Net.Commerce Database
When setting up an individual store in a Net.Commerce site, the store manager
has the ability to enter a wide variety of data, including productspecific data. This
can be done through the Net.Commerce administrator. Entering data for a single
product requires filling in several "screens" worth of fields. This certainly works,
but for a store that is to have thousands or even tens of thousands (or more) of
items, this process is less than desirable. Fortunately, Net.Commerce includes a
utility to incorporate existing data without having to manually key the information
through the Net.Commerce store administrator panels. This utility, called Mass
Import, is discussed in 15.2.2, “Mass Import” on page 321. In addition to using
Net.Commerce's Mass Import utility, other techniques for populating the
Net.Commerce files are also available. These techniques include using
platform-specific utilities (such as DFU (data file utility)) on the AS/400 system,
generic DB/2 tools (such as DataPropagator Relational x.x for AS/400), tools
such as NotesPump, or writing a custom program to accomplish the task. Finally,
simply populating the Net.Commerce files one time may not be all that is required
© Copyright IBM Corp. 1999 319

to integrate Net.Commerce and legacy applications. A customer may continue to
use the legacy applications in a non-Web environment, and require the
Net.Commerce data to be synchronized with the non-Net.Commerce data.

15.2 Options for Loading Data

There are two possible ways to load data into the Net.Commerce database from
the back-end system:

• Write your own program to write data directly into the Net.Commerce
database.

• Use the Mass Import utility which is part of the Net.Commerce product.

Generally, you should try to avoid using any other method other than mass
import‘. The only reason for using other methods is the performance penalty that
you pay for using mass import. Some programming may be required to generate
the input files to use with the Mass Import utility.

15.2.1 Writing Your Own Program to Import Data
If you do not want to use the mass import utility, then you can use one of the tools
provided with the AS/400 system to populate the database. The tables related to
each instance are stored in a library of the same name as the instance.

The ways of accessing a collection of tables on the AS/400 system are:

• Native database manipulation commands, such as Open Physical File, from
an AS/400 supported language such as RPG

• Embedded SQL from a language supported on the AS/400 system

• An ODBC-compliant application tool, such as Powerbuilder or Delphi, in
combination with the Client Access ODBC driver

• Interactive SQL using the STRSQL command

• A data replication product such as Data Propagator

However, if you are not using mass import, you must take care to ensure that
referential integrity is satisfied. This can be quite complex and requires a deep
understanding of the Net.Commerce data model. Furthermore, you have to
handle any future changes in the Net.Commerce data model.

Using the direct approach can be useful when updating particular columns since
it will run faster than the Mass Import utility. Plus, it will not require the additional
step of creating the mass import input file.

Examples of updates that can benefit from this approach are:

• Updating price information for all the products. You can write a utility program
or SQL query that copies the price values from a table in your legacy system
into the PPPRC column of the PRODPRCS table.

• Updating merchant customizable fields.

• Updating product descriptions.
320 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

15.2.2 Mass Import
Mass import is a utility supplied with Net.Commerce that allows the
Net.Commerce database to be populated from pre-formatted data in a text file.
This utility is used to populate the demo mall Net.Commerce database if the
option is chosen to install the demo mall when configuring a Net.Commerce
instance.

The Mass Import utility allows you to populate the Net.Commerce database with
information about categories and products. The utility imports data from a
delimited flat file on the IFS (including /QSYS.LIB) into the product and category
related tables in the DB2/400 database. The product and category related tables
contain information about categories, products, items, and their
inter-relationships. These tables are:

• CATEGORY — Category
• CATESGP — Shopper Group Category Template
• CGRYREL — Category Relationship
• PRODUCT — Product
• CGPRREL — Category Product Relationship
• PRODDSTATR — Product Distinct Attribute
• PRODATR — Product Attribute
• PRODPRCS — Product Price
• PRODSGP — Shopper Group Product Template

The Mass Import utility simplifies the process of importing data in the following
ways:

• It automatically generates reference numbers to prevent referential integrity
errors.

• It automatically checks whether or not records exist in the database. If a
record exists, it updates the record; otherwise it inserts a new record.

The Mass Import utility is ideal for importing large quantities of product data into
the database tables. If you continue to use your back-end system for entering
product data, we also recommend that you use the mass import to synchronize
the changes from the back-end tables to Net.Commerce tables.

If you have to insert or update individual rows directly into the Net.Commerce
database, use the forms provided by the Net.Commerce Administrator function.

To import product and category data, there are two steps involved:

1. Create an import file. We provide an example of using custom ILE RPG
program to extract data from our back-end system to an import file.

2. Run the Mass Import utility using the mass import file created in the previous
step.

Please note that the Mass Import utility does not perform as well as directly
interacting with the Net.Commerce database. However, it is the correct and
safest way to download data from back-end systems to the Net.Commerce
database.

15.2.2.1 Import File Creation
Before you can use the Mass Import utility, you must create an import file that
contains the commands and the data with which to populate the product and
Importing Business Data into Net.Commerce 321

category-related tables. The file is treated as a continuous string of transactions,
with the columns and rows of data separated by a delimiter. The easiest way to
create the import file is to write your own conversion script. We provide an
example written in ILE RPG. You can also create the import file manually by using
text editor such as Note Pad.

The following commands can be included in the import file:

#COLUMNDELIMITER Defines the character that is used as a column delimiter.

#ROWDELIMITER Defines the character that is used as a row delimiter.

#STORE Specifies the name of the store for which the product and
category records are being created.

#CATEGORY Populates the Category table and the Category
Relationship table.

#CATESGP Populates the Shopper Group Category Template table.

#PRODUCT Populates the Product table.

#CGPRREL Populates the Category Product Relationship table.

#PRODDSTATR Populates the Product Distinct Attribute table.

#PRODATR Populates the Product Attribute table.

#PRODPRCS Populates the Product Price table.

#PRODSGP Populates the Shopper Group Product Template table.

All of the above commands can be specified more than once. For example, you
can define the row delimiter as ",". Then, later in the file, you may need to add
product transactions that contain this delimiter in the product descriptions. In this
case, you can define a new row delimiter for all of the affected product
transactions.

Note: Following each #STORE command, you must add the product and
category commands to the import file in the sequence shown above. If you do not
follow this sequence, referential integrity problems may result. You can type the
commands in uppercase, lowercase, or mixed case, for example:

#PRODATR
#prodatr
#ProdAtr

If you want to leave a column in a transaction empty, you must still insert a
delimiter to create a placeholder for that column. If you insert a new record into
the database and you leave a column empty (if a default value exists as specified
in the database schema), the Mass Import utility automatically inserts the default
value into the column. If you update a record and you leave a column empty, the
existing column value remains. Columns are updated only when you specify new
values.

Figure 305 on page 323 shows an example of an import file.
322 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 305. Sample Import File

Note: Do not import double quotes (") into the database.

One import file can contain many store directives, each populating a store in the
required mall. A #STORE directive tells the Mass Import utility that the lines
following it, until the next #STORE directive, are all for the store indicated. Mass
import ensures that the correct referential integrity constraint information is
generated so that more than one store can have the same category and product.
A #STORE directive for a store can appear more than once in the file. Each store
directive and the lines following it until the next #STORE directive can be
separated into a separate input file for mass import. Thus, if you are creating
these files from an existing database, you can generate one import file for all the
categories in each store from one set of tables and then generate another input
file for all the products in each store. However, you must make sure that no
referential integrity constraints are violated by keeping the order of the import
commands correct as discussed earlier. For example, you should not attempt to
insert a new product before inserting the category it goes under.

#STORE;East West Food Mart
#CATEGORY;Water;;;;c1wa_n.gif;;1;c1wa_h.gif;;Beverages;1
#CATESGP;Water;;toc.d2w;;;;
#PRODUCT;100;;Evian;;;;wac1100a.gif;;1;;;;;;;FD01;;;;
#PRODDSTATR;100;Size
#PRODPRCS;100;;;USD
#PRODSGP;100;Frequent Shoppers;freqshp.d2w
#PRODSGP;100;Gold Club;goldclb.d2w;club for senior shoppers
#CGPRREL;Water;100;1
#PRODUCT;100-S;100;Evian;;;;wac1102a.gif;;1;;;;;;;FD01;;;999;
#PRODATR;100-S;Size;500 mL
#PRODPRCS;100-S;;1;USD
#PRODSGP;100-S;Frequent Shoppers;freqshp.d2w
#PRODSGP;100-S;Gold Club;goldclb.d2w;club for senior shoppers
#PRODUCT;100-M;100;Evian;;;;wac1102a.gif;;1;;;;;;;FD01;;;999;
#PRODATR;100-M;Size;1 L
#PRODPRCS;100-M;;2;USD
#PRODSGP;100-M;;;;
#PRODUCT;100-L;100;Evian;;;;wac1102a.gif;;1;;;;;;;FD01;;;999;
#PRODATR;100-L;Size;1.5 L
#PRODPRCS;100-L;;3;USD
#PRODSGP;100-L;Frequent Shoppers;freqshp.d2w
#PRODSGP;100-L;Gold Club;goldclb.d2w;club for senior shoppers
#PRODUCT;101;;San Pellegrino;;;;wac1101a.gif;;1;;;;;;;FD01;;;;
#PRODDSTATR;101;Size
#PRODPRCS;101;;;USD
#PRODSGP;101;Frequent Shoppers;freqshp.d2w
#PRODSGP;101;Gold Club;goldclb.d2w;club for senior shoppers
#CGPRREL;Water;101;2
#PRODUCT;101-S;101;San Pellegrino;;;;wac1101a.gif;;1;;;;;;;FD01;;;999;
#PRODATR;101-S;Size;500 mL
#PRODPRCS;101-S;;1;USD
#PRODSGP;101-S;Frequent Shoppers;freqshp.d2w
#PRODSGP;101-S;Gold Club;goldclb.d2w;club for senior shoppers
#PRODUCT;101-M;101;San Pellegrino;;;;wac1101a.gif;;1;;;;;;;FD01;;;999;
#PRODATR;101-M;Size;1 L
#PRODPRCS;101-M;;2;USD
#PRODSGP;101-Infrequent Shoppers;freqshp.d2w
#PRODSGP;101-M;Gold Club;goldclb.d2w;club for senior shoppers
#PRODUCT;101-L;101;San Pellegrino;;;;wac1101a.gif;;1;;;;;;;FD01;;;999;
#PRODATR;101-L;Size;1.5 L
#PRODPRCS;101-L;;3;USD
#PRODSGP;100-L;Frequent Shoppers;freqshp.d2w
#PRODSGP;100-L;Gold Club;goldclb.d2w;club for senior shoppers
#CATEGORY;Softdrinks;;;;c1so_n.gif;;1;c1so_h.gif;;Beverages;2
#CATESGP;Softdrinks;;toc.d2w;;;;
Importing Business Data into Net.Commerce 323

15.2.2.2 Using the Mass Import Utility
Once you complete the import file, you can run the Mass Import utility. Before
calling the Mass Import utility, you need to know the name of the local or remote
database, as defined in the relational database directory of the AS/400 system.
This will be the name of the database where the Net.Commerce tables are
located. To work with database directory entries, type WRKRDBDIRE, and press
Enter. A screen similar to the example in Figure 306 is displayed.

Figure 306. WRKRDBDIRE — Checking the Location of a Database

If you are using the local database, then the relational database name
corresponding to the location *LOCAL is the name of the database that you use.
Otherwise, use the RDB name corresponding to the remote location you want. In
our example, the local database is named AS01.

To run the Mass Import utility, use the Import Net.Commerce Data (IMPNETCDAT)
command. The command is located in library QSYS. Type IMPNETCDAT and press
F4. The command prompt, shown in Figure 307 on page 325, is displayed.

Work with Relational Database Directory Entries

Position to

Type options, press Enter.
1=Add 2=Change 4=Remove 5=Display details 6=Print details

Relational Remote
Option Database Location Text

AS01 *LOCAL

Bottom
F3=Exit F5=Refresh F6=Print list F12=Cancel
(C) COPYRIGHT IBM CORP. 1980, 1998.
324 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 307. IMPNETCDAT — Command Prompt

Table 18 describes the IMPNETCDAT command.

Table 18. Command IMPNETCDAT Parameters

Parameter name Description

Instance name The name of the Net.Commerce instance
into which the data will be imported. This is
the library and user profile name relating to
the instance.

Password The Net.Commerce instance database
password. This is the instance user profile’s
password. This parameter is not required if
the command is being invoked by the
database owner. In our example, the user
profile test will not have to type the
password.

Import File The name of the file that contains the
product and category data to be imported. It
can be a database file member or a stream
file. Its path name must conform to the IFS
directory naming conventions. For example,
QSYS.LIB/LIBA.LIB/FILEA.FILE/
MBRA.MBR is the form required by the
QSYS.LIB file system. If you use your own
utility to create the import file, you may find it
more convenient to store the import file in
QSYS.LIB since you can view its contents
more easily.

Import Net.Commerce Data (IMPNETCDAT)

Type choices, press Enter.

Instance name > TEST Name
Password >PASSWORD
Import file > '/shaharm/impt'

Database > AS01

Additional Parameters

Log file > '/shaharm/import.log'

Commit Count Number
Importing Business Data into Net.Commerce 325

15.2.2.3 Checking the Results of the Mass Import Utility
Standard output is used by the Mass Import utility to report some general
information. If you use the Mass Import utility interactively, you will see the results
on your screen. If the mass import was submitted to batch, the results are
directed to a spooled file. Figure 308 shows an example of the standard output
produced as a result of running the IMPNETCDAT command.

Figure 308. Mass Import Sample Log File

Database The name of the database into which the
data is being imported. The Mass Import
utility uses DRDA to connect to the
database. This parameter refers to the
database name found in the Relational
Database Directory of the AS/400 system. In
our example, we use the name AS01 since it
is our *local rdb entry name.

Log File The name of the file in which you want the
Mass Import utility to record its activities. If
this parameter is not specified, this default
log file is created:
/QIBM/Userdata/NetCommerce/instance/
<instance_name>/logs/massimpt.log. The
log file can be directed to QSYS.LIB. If the
location of the log file is not on the
/QSYS.LIB file system, you can view the log
file contents by using the AS/400 command
EDTF (available as a PTF).

Commit Count The number of transactions within a commit
scope. The default is 1. You can only enter
integers for this parameter. If a commit count
of 0 is specified, the data import is committed
after all the records are processed and the
database connection is terminated. You can
improve performance by adjusting the
commit count parameter. A higher commit
count setting means that the database will
be committed less frequently, which saves
some time.

Parameter name Description

Mass Import Utility for Net.Commerce Version 3.1
(c) Copyright IBM Corporation 1997, 1998. All rights reserved.
19990312110615Fri Mar 12 11:06:15 1999

CMN1304I Started reading input file. Processing began.
19990312110615CMN1601I For utility processing details, see the log file /sha
19990312110615

Number of Successful Transactions : 55
Number of Failed Transactions : 0
19990312110622

Fri Mar 12 11:06:22 1999
CMN1305I Finished reading input file. Processing completed.
19990312110623
326 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

The mass import log file as entered in the IMPNETCDAT log file parameter
contains detailed information with the description of any errors. Figure 309 shows
an example of the mass import log file.

Figure 309. Log File Example

In this part of the log file, we tried to insert non-numeric price and tried to link
non-existing product to an existing category. Basically, we can expect to find two
types of errors:

• Technical errors such as non-numeric data, wrong number of columns, and
so on. These errors are the result of import file with incorrect syntax.

• Logical database errors such as inserting a product-category relationship for
non-existing category. These problems can be caused by the wrong order of
the directives in the mass import input file.

****************** Beginning of data ********************
Fri Mar 12 11:21:32 1999 CMN1304I Started reading input file. Processing be
19990312112132CMN1303I Connected successfully to the database.
19990312112132CMN1310I Number of Transactions processed : 1
19990312112132CMN1310I Number of Transactions processed : 2
19990312112132CMN1310I Number of Transactions processed : 3
19990312112132CMN1043E Product Price table update failed, (SQL class) ret

UPDATE prodprcs set ppsgnbr=NULL,ppprc=ZZZ0.00,ppcur='USD',pppre=0,ppdeffs=
19990312112133CMN1302I The following transaction failed...

[00004]#PRODPRCS;1;;ZZZ0.00;USD;;;;&
19990312112133

CMN1312W Any uncommitted transactions within the commit scope are rolled ba
19990312112133

CMN1035E Product '88' does not exist in the table PRODUCT.
SELECT PRRFNBR FROM PRODUCT WHERE PRNBR='88' AND PRMENBR=2067

STATUS CMN0003S: Database 'AS01' has been commited.

19990312112136

Number of Successful Transactions : 47
Number of Failed Transactions : 3

19990312112136

If you see an SQL error number in the log file, such as 0117, you can issue the
DSPMSGD command and find the exact error description (see Figure 310 on page
328).

Tip
Importing Business Data into Net.Commerce 327

Figure 310. Find Info SQL Message Description

15.2.2.4 Using the System Export Utility
The AS/400 system has an export utility that allows you to export database file to
a flat file on the IFS. The export utility is invoked by the Copy to Import File
(CPYTOIMPF) command. In most cases, you have to manipulate the data in the
existing back-end application to prepare the import file. However, if you have a
database file that is ready for importing, you can use the AS/400 export utility to
create the import file. For an example, see Figure 311 on page 329.

Display Message Description (DSPMSGD)

Type choices, press Enter.

Range of message identifiers:
Lower value > SQL0117 Name, *ALL, *FIRST
Upper value *ONLY Name, *ONLY, *LAST

Message file > QSQLMSG Name
Library *LIBL Name, *LIBL, *CURLIB...

Detail *FULL *BASIC, *FULL
Format message text *YES *YES, *NO
Output * *, *PRINT

Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys
328 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 311. AS/400 Native Export to Flat File Command Example

The export utility copies the physical file PRODFILE from library MYLIB to an IFS
file named import_net_commerce_file. It contains the default column delimiter ",".
The IFS file can then be imported by using the IMPNETCDAT command (if the
original file already contained the required data for the IMPNETCDAT command).

15.2.2.5 Improving Mass Import Performance
To process records more rapidly, the Mass Import utility keeps common data,
such as the parent category, in a cache for re-use with subsequent records. This
saves the utility from having to query the database for each record. To benefit
from the performance advantages that caching provides, you need to order
records as described here:

1. Enter the records pertaining to categories in the order given in 15.2.2.1,
“Import File Creation” on page 321. The first record in the category group must
be #CATEGORY. The category group consists of the tables CATEGORY and
CATESGP.

2. Enter the records pertaining to products as a group in the order described in
15.2.2.1, “Import File Creation” on page 321. The first record in the product
group must be #PRODUCT. The product group consists of the tables
PRODUCT, PRODDSTATR, PRODATR, PRODPRCS, and PRODSGP.

3. Enter child products immediately after the parent product.

Copy To Import File (CPYTOIMPF)

Type choices, press Enter.

From file:
File > PRODFILE Name
Library > MYLIB Name, *LIBL, *CURLIB

Member *FIRST Name, *FIRST
To data base file:
File Name
Library *LIBL Name, *LIBL, *CURLIB

Member *FIRST Name, *FIRST
To stream file > '/shaharm/import_net_commerce_file'

Replace or add records *ADD *ADD, *REPLACE
To CCSID *FILE 1-65533, *FILE
Record delimiter *EOR Character value, *EOR...
Record format of import file . . *DLM *DLM, *FIXED
String delimiter *NONE Character value, *NONE
Field delimiter ',' Character value

More...
Null field indicator *NO *NO, *YES
Decimal point *PERIOD *PERIOD, *COMMA
Date format *ISO *ISO, *USA, *EUR, *JIS, *YYMD
Time format *ISO *ISO, *USA, *EUR, *JIS

Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys
Importing Business Data into Net.Commerce 329

4. Enter child categories immediately after the parent category.

5. Enter category product relationship records (using the #CGPRREL command)
after the corresponding product and category groups.

6. As the sizes of the tables increase, remove any obsolete data from the tables.
You can use the Database Cleanup Utility to quickly remove large amounts of
data. Refer to the book Net.Commerce for AS/400 Net.Commerce Utilities,
(nc_util.pdf) for details about the requirements for running the Database
Cleanup utility.

15.3 Importing Data by Example

Our back-end system consists of product and category database tables. We
developed a user-written data loading program that allows us to perform massive
dataloads. Our program will also be used to take care of single row operations for
the product file. It inserts and updates information in the product table in the
Net.Commerce database based on operations in the back-end system product
table.

15.3.1 Consideration for the Example Solution
Since we want to ensure referential integrity in the Net.Commerce database, we
chose the safest approach to our solution and used the Mass Import utility. We
needed some mapping between the back-end system tables to Net.Commerce
tables. Therefore, we chose to write a custom routine to map the database to an
import file.

15.3.2 The LOADPRD Utility — Description
The LOADPRD utility is an example utility to load data from back-end tables to
Net.Commerce table. The back-end system tables contain packed fields and are
typical of existing AS/400 applications.

Here is the list of files and fields that we used from the back-end system:

• BEPROD — Product table with the columns:

BEPNBR Product number
BESDSC Short description
BELDSC Long description
BEPRIC Product price
BECUR Price currency
BEGRPC Product group code
BEINVI Items in inventory
BEINVC Inventory unit code

• BECATEG — Product category table with the columns:

BECODE Category code
BETEXT Category description

• BEMEASUR — Unit of measure table with the columns:

MSCODE Measurement unit code
MSTEXT Measurement unit text
330 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

The utility creates an import file for loading the products, product prices,
categories, and product-categories relationships. It also performs the following
actions:

• Transforms numeric data to character data.

• Translates the measurement codes used in the legacy system to
measurement text values for Net.Commerce

• Chains between products and categories

• Adds the correct Mass Import commands for: #STORE, #PRODUCT,
#CATEGORY, PRODPRCS, and #CGPRREL to the output file.

We found it convenient to draw a table in which we mapped the columns needed
by the Net.Commerce Mass Import utility to their equivalent back-end system
sources. Table 19 displays some of the decisions we made in our example.

Table 19. Map of Mass Import Columns to Back-End System Tables

See the load program LOADPRDR for other mapping decisions we made.

The objects included in this utility are:

• LOADPRD — Load Product Data command
• LOADPRD — CPP program for LOADPRD command
• LOADPRDR — ILE RPG program which performs the actual creation of the

import file
• LOADALL — CL program to import all products for store

Figure 312 on page 332 displays the LOADPRD prompt.

Mass Import Command and
Net.Commerce Column

Column Source in Back-end Tables

Category name — Directive #CATEGORY
column cgname

The column BETEXT in the categories table
BECATEG

Product number — Directive #PRODUCT
column prnbr

The Column BEPNBR in the products table
BEPROD

Items in stock — Directive #PRODUCT
column prvent.

Character representation of column BEINVI in
table BEPROD.

Unit of measure — Directive #PRODUCT
column prsmeas

The column MSTEXT in the measurement
table BEMEASUR

Template macro — Directive #PRODSGP
column psdisplay.

Set to constant value storename/prod1.d2w
with directory name equals to the store name.

Product category — Directive #CGPRREL
columns cat_name and prnbr.

Use the BEPROD product table column
BEGRPC for the prnbr column and the text
column BETEXT in table BECATEG for the
cat_name column.

Product image file path — Directive
#PRODUCT column prfull

We have no way to derive this column from our
back-end system. Column remains null in the
mass import file.
Importing Business Data into Net.Commerce 331

Figure 312. The LOADPRD Command Prompt

The LOADPRD command parameters are shown in Table 20.

Table 20. Command LOADPRD Parameters.

Figure 313 on page 333 shows the source to the command interface for our utility.

Parameter Parameter Description

Store name (STORE) The store name for which the mass import
file is being created. This is a required
parameter. The store name is case
sensitive.

Product number (PRODUCT) The product number that we want to load.
The default is *ALL, which loads all our
products. Specific existing product number
that can be used to load ongoing changes in
the back-end database to Net.Commerce
database.

Create category(CRTCAT) Specifies whether to create category
information in the mass import file. The
default is *NO. *YES can only be specified
when the PRODUCT parameter value is set
to *ALL

Out file name(OUTFILE) The name of the import file to create. If this
file does not exist, the command creates it. If
the file exists, the command appends the
new mass import directives to the existing
file. The default is *TEMP, which creates the
file in QTEMP by the name of #NETCIMP.

Prepare Product Load (LOADPRD)

Type choices, press Enter.

Store name
Product Number *ALL Character value, *ALL
Create Category *NO *NO, *YES
Out file name *TEMP Name, *TEMP
LIBRARY Name .
332 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 313. Command LOADPRD Source File

Figure 314 and Figure 315 on page 334 show the command processing program
(CPP) for command LOADPRD.

Figure 314. The LOADPRD Command CPP Source Code (Part 1 of 2)

CMD PROMPT('Prepare Product Load')

PARM KWD(STORE) TYPE(*CHAR) LEN(20) MIN(1) +
CASE(*MIXED) PROMPT('Store name')

PARM KWD(PRODUCT) TYPE(*CHAR) LEN(12) DFT(*ALL) +
SPCVAL((*ALL ' ')) PROMPT('Product Number')

PARM KWD(CRTCAT) TYPE(*CHAR) LEN(4) RSTD(*YES) +
DFT(*NO) VALUES(*NO *YES) PROMPT('Create +
Category')

PARM KWD(OUTFILE) TYPE(QUAL1) DFT(*TEMP) +
SNGVAL((*TEMP)) PROMPT('Out file name')

QUAL1: QUAL TYPE(*NAME) LEN(10)
QUAL TYPE(*NAME) LEN(10) PROMPT(LIBRARY)

*************** Beginning of data ******************************
/***/
/* This program demonstrates the integration of back-end */
/* system for data loading into net commerce. */
/* */
/* Arguments: */
/* pr_store - Store name */
/* pr_prd - Product number */
/* pr_cat - Create category ? */
/* pr_outf - Out File Name */
/* Author: Shahar mor */
/* Provided AS IS */
/***/

PGM PARM(&pr_store +
&pr_prd +
&pr_cat +
&pr_outf +

)

DCL VAR(&Pr_store) TYPE(*CHAR) LEN(20)
DCL VAR(&pr_prd) TYPE(*CHAR) LEN(12)
DCL VAR(&pr_cat) TYPE(*CHAR) LEN(4)
DCL VAR(&pr_outf) TYPE(*CHAR) LEN(20)

DCL VAR(&parml) TYPE(*CHAR) LEN(37)
DCL VAR(&c_file) TYPE(*CHAR) LEN(10)
DCL VAR(&c_lib) TYPE(*CHAR) LEN(10)
DCL VAR(&Error) TYPE(*CHAR) LEN(1) +

VALUE('1')

DCL VAR(&msgflib) TYPE(*CHAR) LEN(10)
DCL VAR(&msgf) TYPE(*CHAR) LEN(10)
DCL VAR(&msgid) TYPE(*CHAR) LEN(7)
DCL VAR(&msgdta) TYPE(*CHAR) LEN(128)
Importing Business Data into Net.Commerce 333

Figure 315. The LOADPRD Command CPP Source Code (Part 2 of 2)

The following example shows the source to an ILE RPG program that will perform
the transformation from our back-end database to an import file. This program
implements our mapping decisions as described in Table 19 on page 331:

H**
H* This program is an example of creating file for mass import
H*
H* Input:
H* InStore- Store for products
H* InCat - Create Category Load records ?
H* InProd - Product number or blank for all
H* IoErr - Return error flag
H* Author: Shahar mor
H* Provided AS IS

H**
H DFTACTGRP(*NO) ACTGRP(*CALLER)
F*
F* Products File
FBEPROD IF E K DISK RENAME(BEPROD:RBEPROD)
F
F* Measurments unit table
FBEMEASUR IF E K DISK RENAME(BEMEASUR:RBEMEASUR)
F*
F* Products File
FBECATEG IF E K DISK RENAME(BECATEG:RBECATEG)
F

/* Set the outfile */
CHGVAR VAR(&c_file) VALUE(%SST(&pr_outf 1 10))
IF COND(&c_file = '*TEMP') THEN(DO)
CHGVAR VAR(&c_file) VALUE('#NETCIMP')
CHGVAR VAR(&c_lib) VALUE('QTEMP')

ENDDO
ELSE CMD(DO)
CHGVAR VAR(&c_file) VALUE(%sst(&pr_outf 1 10))
CHGVAR VAR(&c_lib) VALUE(%sst(&pr_outf 11 10))

ENDDO
/* Prepare New file */

CRTPF FILE(&c_lib/&c_file) RCDLEN(500)
MONMSG MSGID(CPF0000)

/* Prepare parameter for the rpg import program */
CHGVAR VAR(&parml) VALUE(&pr_store || &pr_prd || +

&pr_cat)
/* Call the File program */

OVRDBF FILE(OUTFILE) TOFILE(&c_lib/&c_file)
CALL PGM(LOADPRDR) PARM(&parml)

/* Check for result */
IF COND(%SST(&parml 37 1) = &error) THEN(DO)

CHGVAR VAR(&msgdta) VALUE('The creation of import
for product:' *BCAT &pr_prd *BCAT 'For +
store:' *BCAT &pr_store *BCAT 'Failed')

SNDPGMMSG MSGID(CPF9897) MSGF(QCPFMSG) MSGDTA(&msgdta
TOPGMQ(*SAME) MSGTYPE(*ESCAPE)

ENDDO
/* Clean up and return */

DLTOVR FILE(OUTFILE)
RETURN

STDERR: RCVMSG MSGTYPE(*EXCP) MSGDTA(&msgdta) +
MSGID(&msgid) MSGF(&msgf) +
MSGFLIB(&msgflib)

MONMSG MSGID(CPF0000 MCH0000)
SNDPGMMSG MSGID(&msgid) MSGF(&msgflib/&msgf) +

MSGDTA(&msgdta) MSGTYPE(*ESCAPE)
MONMSG MSGID(CPF0000 MCH0000)
RETURN

ENDPGM
334 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

F* Ouput flat file
FOUTFILE O F 500 DISK
D*
D* Parameter Structure
D PrRqs DS
D InStore 20 Product number
D InProd 12 Product number
D InCrtc 4 Product number
D IoErr 1
D*
DLin1 S 500 Varying
DLin2 S 500 Varying
DLin3 S 500 Varying
DLin4 S 500 Varying
DLine1 DS 500
DLine2 DS 500
DLine3 DS 500
DLine4 DS 500
D*
D* Constants (Tailor to delimiter and Seperators Should be here)
DSeperator C ';'
DAllProd C CONST(' ')
DDelimiter C '&'
DCatMacro C '/cat1.d2w'
DProdMacro C '/prod1.d2w'
DRoot C 'Top Category'
DSeqnbr C '1'
D*
DSetNulls PR 50A
D NbrNulls 3S 0 VALUE

C**
C* Main logic

C**
C*
C *ENTRY PLIST
C PARM PrRqs
C
C*
C* Check for product existence(Single record approach)
C EVAL IoErr = *OFF
C IF InProd <> AllProd
C InProd CHAIN(E) RBEPROD
C IF Not %found
C MOVE *ON IoErr
C ENDIF
C ENDIF
C*
C* Perform The loading
C IF IoErr = *OFF
C EXSR PrpHdr
C*
C* Should we prepare category Records ?
C IF InCrtc = '*YES'
C EXSR PrpCateg
C ENDIF
C*
C IF InProd <> AllProd
C EXSR PrpProd
C ELSE
C EXSR PrpAll
C ENDIF
C ENDIF
C*
C EVAL *Inlr = *ON
C**
C PrpCateg BEGSR
C**
C*
C* Prepare Categories records for mass import.
C* Our shop contains only one level of categories.
C* Our shop will use the category description as the category name
C*
C *LOVAL SETLL RBECATEG
C READ(E) RBECATEG
C*
C DOW Not %EOF(BECATEG)
C EVAL Lin1 = '#CATEGORY' + Seperator
C EVAL Lin1 = Lin1 + %trim(BETEXT) + Seperator Category name
Importing Business Data into Net.Commerce 335

C EVAL Lin1 = Lin1 + %trim(BETEXT) + Seperator Short description
C EVAL Lin1 = Lin1 + %trim(BETEXT) + Seperator Long description
C EVAL Lin1 = Lin1 + %trim(SetNulls(6))
C EVAL Lin1 = Lin1 + %trim(Root) Long description
C EVAL Lin1 = Lin1 + Seperator
C EVAL Lin1 = Lin1 + Seqnbr Long description
C EVAL Lin1 = Lin1 + Delimiter
C EVAL Line1 = %subst(Lin1:1:%Len(Lin1))
C WRITE OUTFILE Line1
C EVAL Lin1 = '#CATESGP' + Seperator
C EVAL Lin1 = Lin1 + %trim(BETEXT) + Seperator
C EVAL Lin1 = Lin1 + %trim(SetNulls(1))
C EVAL Lin1 = Lin1 + %trim(InStore)
C EVAL Lin1 = Lin1 + %trim(CatMacro)
C EVAL Lin1 = Lin1 + %trim(SetNulls(3))
C EVAL Lin1 = Lin1 + Delimiter
C EVAL Line1 = %subst(Lin1:1:%Len(Lin1))
C WRITE OUTFILE Line1
C READ(E) RBECATEG
C ENDDO
C*
C ENDSR
C**
C PrpHdr BEGSR
C**
C*
C* Prepare Header with store information
C*
C EVAL Lin1 = '#ROWDELIMITER;'
C EVAL Lin1 = Lin1 + Delimiter
C EVAL Lin1 = Lin1 + Delimiter
C EVAL Line1 = %subst(Lin1:1:%Len(Lin1))
C WRITE OUTFILE Line1
C*
C EVAL Lin1 = '#STORE;'
C EVAL Lin1 = Lin1 + %trim(InStore)
C EVAL Lin1 = Lin1 + Delimiter
C EVAL Line1 = %subst(Lin1:1:%Len(Lin1))
C WRITE OUTFILE Line1
C*
C ENDSR
C**
C PrpAll BEGSR
C**
C*
C* Prepare all products to import file
C*
C *LOVAL SETLL RBEPROD
C READ(E) RBEPROD
C*
C DOW Not %EOF(BEPROD)
C EXSR PrpProd
C READ(E) RBEPROD
C ENDDO
C*
C ENDSR
C**
C PrpProd BEGSR
C**
C*
C* Prepare current record to import file
C*
C EVAL Lin1 = '#PRODUCT;'
C EVAL Lin2 = '#PRODPRCS;'
C EVAL Lin3 = '#PRODSGP;'
C EVAL Lin4 = '#CGPRREL;'
C*
C***
C* Setting the General Product information (See #PRODUCT on Doc)
C*
C* Every Seperator(;) Is representing null field. It Will be inserted
C* To the net commerce database with default values.
C*
C* You could perform some more data mapping in this stage. You could
C* Also Insert some different default data. For example, In The Product
C* Image file field(PRFULL) We could insert default path with the
C* product number as the file name.
C***
336 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

C*
C EVAL Lin1 = Lin1 + %trim(BEPNBR) Product Number
C EVAL Lin1 = Lin1 + Seperator Null parent
C EVAL Lin1 = Lin1 + Seperator +%trim(BESDSC) Short desc.
C EVAL Lin1 = Lin1 + Seperator + %trim(BELDSC) Short desc.
C EVAL Lin1 = Lin1 + %trim(SetNulls(11))
C*
C* Need to translate the legacy code to net commerce text code
C BEINVC CHAIN(E) RBEMEASUR
C IF %Found
C EVAL Lin1 = Lin1 + %trim(MSTEXT)
C ELSE
C EVAL Lin1 = Lin1 + Seperator
C ENDIF
C*
C EVAL Lin1 = Lin1 + %trim(SetNulls(4))
C EVAL Lin1 = Lin1 + %trim(%editc(BEINVI:'Z')) Product Number
C EVAL Lin1 = Lin1 + %trim(SetNulls(10))
C EVAL Lin1 = Lin1 + Delimiter Null Fields
C EVAL Line1 = %subst(Lin1:1:%Len(Lin1))
C* Setting the Price information(See #PRDPRCS on Documantation)
C EVAL Lin2 = Lin2 + %trim(BEPNBR) Product Number
C EVAL Lin2 = Lin2 + Seperator + Seperator
C EVAL Lin2 = Lin2 + %trim(%editc(BEPRIC:'3')) Product Price
C EVAL Lin2 = Lin2 + Seperator
C EVAL Lin2 = Lin2 + BECUR Product Currency
C EVAL Lin2 = Lin2 + %trim(SetNulls(4))
C EVAL Lin2 = Lin2 + Delimiter Null Fields
C EVAL Line2 = %subst(Lin2:1:%Len(Lin2))
C* Setting the Product template (See #PRODSGP on Documantation)
C EVAL Lin3 = Lin3 + %trim(BEPNBR) Product Number
C EVAL Lin3 = Lin3 + Seperator + Seperator
C EVAL Lin3 = Lin3 + %trim(InStore)
C EVAL Lin3 = Lin3 + %trim(ProdMacro)
C EVAL Lin3 = Lin3 + %trim(SetNulls(3))
C EVAL Lin3 = Lin3 + Delimiter Null Fields
C EVAL Line3 = %subst(Lin3:1:%Len(Lin3))
C*
C* Setting the Category information for this product
C*
C WRITE OUTFILE Line1
C WRITE OUTFILE Line2
C WRITE OUTFILE Line3
C*

B001C IF InCrtc = '*YES'
C BEGRPC CHAIN(E) RBECATEG
C IF %Found
C EVAL Lin4 = Lin4 + %trim(BETEXT) Category
C EVAL Lin4 = Lin4 + Seperator
C EVAL Lin4 = Lin4 + %trim(BEPNBR) Product Number
C EVAL Lin4 = Lin4 + Seperator
C EVAL Lin4 = Lin4 + Delimiter Null Fields
C EVAL Line4 = %subst(Lin4:1:%Len(Lin4))
C WRITE OUTFILE Line4

E001C ENDIF
C ENDIF
C*
C ENDSR
C**
PSetNulls B
DSetNulls PI 50A
D NbrNulls 3S 0 VALUE
DNullFld S 50
C*
C* Will Set seperators to Number of null Field required
C*
C EVAL NullFld = *BLANK
C DO NbrNulls
C CAT Seperator:0 NullFld
C ENDDO
C*
C Return NullFld
C*
PSetNulls E
Importing Business Data into Net.Commerce 337

We can define a process in which mass import file creation and the Mass Import
utility will run in one step. The process will convert our back-end database to
Net.Commerce tables.

Figure 316 on page 339 shows an example of the CL program LOADALL that
uses the LOADPRD command with Net.Commerce Mass Import utility to load the
back-end data into the Net.Commerce database.

• Pay attention to the usage of the %EDITW that converts numbers to
formatted text.

• Use the %TRIM function to avoid long blanks in the input.

• The + sign is used to concatenate strings instead of the CAT operation.

• The output file is program described file in the QSYS.LIB file system. You
may use the DSPPFM command to display its contents. You may find it
convenient to copy the file to the IFS root file system by using the CPYTOSTMF

command.

• The SetNull internal function is used to insert place holders for columns
defined by the mass import directives, but we have no way of supplying
them.

Note
338 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 316. LOADALL Utility Source Code

15.3.3 Ongoing Synchronization of Database Activity
In our example, we use the LOADPRD utility to keep synchronization between
our back-end products table to Net.Commerce tables. We attach a trigger
program to our existing back-end products table. Whenever a product is inserted
or updated, our trigger program is called and uses LOADPRD to create the import
file for specific changed product. The import file is imported to the
Net.Commerce database once in a while using the Mass Import utility.

To implement our on-going synchronization approach, we must first write the
trigger program. Figure 317 and Figure 318 on the following pages show our
trigger program BEPRODT source code.

/***/
/* This program will load data from back-end system to */
/* Net.Commerce database. */
/* */
/* Author: Shahar mor */
/* Provided AS IS */
/***/

PGM

/**/
/* Phase 1 - Prepare the requested file . This phase will create */
/* Import file for store 'NetAway' with all categories and products */
/* */
/* The import file will be located in qtemp and will be named */
/* #NETCIMP. */
/**/

LOADPRD STORE(NetAway) CRTCAT(*YES)
/**/
/* Phase 2 - Use mass import to populate data to the Net.Commerce */
/* database. Mass import with the following parameters: */
/* */
/* Instance = The name of the Net.Commerce instance(TEST) */
/* Passwd = The password of the user profile who ownes the schema.*/
/* In our example it is the password of usrprf TEST */
/* Infile = The import file we created with LOADPRD */
/* Database = The AS/400 local database(AS01 in our example) */
/* Log = The path of the log file to keep the mass import results*/
/* (We placed this file in library loglib. The log file */
/* is program defined table) */
/* CmtCount = The commit count. In order to improve the perform. */
/* of the import we chose to commit only every 10 */
/* transactions */
/**/

CRTPF FILE(LOGLIB/LOGFILE) RCDLEN(500) TEXT('Mass +
import log file')

IMPNETCDAT INSTANCE(TEST) PASSWD(PWTEST) +
INFILE('/qsys.lib/qtemp.lib/#netcimp.file/#+
netcimp.mbr') DATABASE(AS01) +
LOG('/qsys.lib/loglib.lib/logfile.file/logf+
ile.mbr')

ENDPGM
Importing Business Data into Net.Commerce 339

Figure 317. BEPRODT Source File (Part 1 of 2)

H**
H* This trigger program will be called after insert/update operation *
H* to the back-end system product table. The changed/new record will *
H* be written to an import file using the LOADPRD utility *
H* *
H* The import file will be proccesed at later time by the *
H* Net.Commerce mass import utility. *
H* Author: Shahar mor *
H* Provided AS IS *
H**
D*
D* The General buffer for trigger programs
D*
D Parm1 DS
D Filenm 1 10
D Libnm 11 20
D Mbrnam 21 30
D Trgevn 31 31
D Trgtim 32 32
D Trglvl 33 33
D Trgreserv 34 36
D Trgccsid 37 40B 0
D Trgreserv2 41 48
D Oldofs 49 52B 0
D Oldlen 53 56B 0
D Omapof 57 60B 0
D Omapln 61 64B 0
D Newofs 65 68B 0
D Newlen 69 72B 0
D Nmapof 73 76B 0
D Nmapln 77 80B 0
D Trgreserv3 81 96
D*
D* Pointers for record reference
D Intarr S 1A based(intptr) dim(32767)
D Intptr S *
D*
D Parm2 ds
D Len 9b 0

D Bimage S *
D Aimage S *

D Bfile E DS EXTNAME(BEPROD)
D BASED(Bimage)
D PREFIX(B)
D Afile E DS EXTNAME(BEPROD)
D BASED(Aimage)
D PREFIX(A)
D*
D UpdNetc PR EXTPGM('QCMDEXC')
D Cmd 3000A OPTIONS(*VARSIZE) CONST
D Cmdlen 15P 5 CONST
D*
DCmdStr S 1000 VARYING
DStoreName C 'ShopITSO'
D***
D* *** MAIN *** *
D***
C

001 C EXSR Init
C EXSR LoadPrd
C
C RETURN
340 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 318. BEPRODT Source File (Part 2 of 2)

The program is called when a database event occurs and receives parameters
from the database manager. It maps the parameters to the BEPROD table
structure and calls the LOADPRD command to create the import file directives in
a temporary table called PRODTEMP. The trigger program also clears the
Net.Commerce cache. This process is described in Chapter 17, “Interfacing to
Our Back-End Business System” on page 383. Use the CRTBNDRPG command to
create the trigger program.

After successful compilation of the BEPRODT program, we can now use it as a
trigger program for update and insert operations. Figure 319 on page 342 shows
an example for adding the update trigger event to the product file BEPROD in the
library NETCBE. The trigger is fired after an update event only if the record was
changed. The before and after images are different.

C**
C LoadPrd begsr
C***
C*
C* Prepare string for LOADPRD into temporary file. In our example we
C* Use constant store name.
C*
C EVAL CmdStr = 'LOADPRD STORE(' + StoreName + ')' +
C ' PRODUCT(' +
C %trim(ABEPNBR) + ')' +
C ' OUTFILE(NETCBE/PRODTEMP)'
C CALLP UpdNetc(CmdStr:
C %len (CmdStr))
C*
C*
C* In case of price change clear the cach. we use constant merchant
C IF BBEPRIC <> ABEPRIC
C EVAL CmdStr = 'CLRCACH MERCHANT(6)' +
C ' PRODUCT(' +
C %trim(ABEPNBR) + ')'
C CALLP UpdNetc(CmdStr:
C %len (CmdStr))
C ENDIF
C*
C ENDSR
C**
C init begsr
C***
C *entry plist
C parm parm1
C parm parm2

C eval intptr = %addr(parm1)
C eval bimage = %addr(intarr(oldofs+1))
C eval aimage = %addr(intarr(newofs+1))

C endsr
Importing Business Data into Net.Commerce 341

Figure 319. Add Physical File Trigger (ADDPFTRG) Display

Add Physical File Trigger (ADDPFTRG)

Type choices, press Enter.

Physical file > BEPROD Name
Library *LIBL Name, *LIBL, *CURLIB

Trigger time > *AFTER *BEFORE, *AFTER
Trigger event > *UPDATE *INSERT, *DELETE, *UPDATE
Program > BEPRODT Name
Library *LIBL Name, *LIBL, *CURLIB

Replace trigger *NO *NO, *YES
Allow Repeated Change *NO *NO, *YES
Trigger update condition > *CHANGE *ALWAYS, *CHANGE

The trigger program shown in Figure 319 was not optimized for daily operation.
We include the program just to show you some capabilities of day-to-day
synchronization using triggers and mass import of one row at-a-time.

Important
342 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Chapter 16. Setting Up Payment Methods

This chapter contains important information that you must know in order to use
the different payment methods. Before you install and configure the Payment
Server, you must read Chapter 6, “Planning: Payment Collection” on page 91.

16.1 Secure Electronic Transaction

Secure Electronic Transaction (SET) is an open-network, payment-card protocol.
It provides greater confidentiality, greater transaction integrity, and less
opportunity for fraud at all transaction points than any other existing secure
payment system. The process involves a series of security checks performed
using digital certificates, which are issued to participating purchasers, merchants,
banks, and payment brands.

SET has four components:

• A Cardholder Wallet component that is run by an online consumer enabling
secure payment card transactions over a network. SET Cardholder Wallet
components must generate SET protocol messages that can be accepted by
SET Merchant, Payment Gateway, and Certificate Authority components.

• A Merchant Server component that is run by an online merchant to process
payment card transactions and authorizations. It communicates with the
Cardholder Wallet, Payment Gateway, and Certificate Authority components.

• A Payment Gateway component that is run by an acquirer or a designated
third party that processes merchant authorization and payment messages
(including payment instructions from cardholders) and interfaces with private
financial networks.

• A Certificate Authority component that is run by a Certificate Authority that
is authorized to issue and verify digital certificates as requested by Cardholder
Wallet components, Merchant Server components, or Payment Gateway
components over public and private networks.

For more information about SET, go to the Web site at: http://www.setco.org

16.1.1 Installing Payment Server
The product is installed in the standard manner using the Restore LIC Program
(RSTLICPGM) command. The objects created during installation are:

• QPYMSVR library (the library contains programs, service programs,
commands, a message file, and a header file)

• QPYMSVR user profile

• /QIBM/ProdData/HTTP/Protect/PymSvr directory and subdirectories

• /QIBM/ProdData/PymSvr directory and subdirectories

The product can be deleted by using the Delete LIC Program (DLTLICPGM)
command. The QPYMSVR user profile is not deleted.
© Copyright IBM Corp. 1999 343

16.1.2 Creating a Payment Server
You have to create a Payment Server before you can request a digital certificate
from a CA. The Payment Server has to be created before the Net.Commerce
server if you want to select the use of the Payment Server with your
Net.Commerce site. You may install the Payment Server later and then go back to
the Net.Commerce configuration and change the setting. It is easier to add the
Payment Server during the initial setup of the Net.Commerce instance.

When you choose to use a CA to issue a server certificate, you must first request
the certificate. To do so, follow these steps:

1. From the AS/400 Task page (Figure 320), click IBM Payment Server for
AS/400.

Figure 320. AS/400 Task Page

2. On the IBM Payment Server for AS/400 page, click on Administration in the
left-hand frame to display an extended list of server tasks. This takes you to
the display shown in Figure 321 on page 345.
344 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 321. Payment Server for AS/400

3. Click on Create to go to the Create Payment Server page.

4. On the Create Payment Server page, type in a Key database password (Figure
322 on page 346), and click Create.

Write down the password, and save it on a secure place. You will need it when
you request a digital certificate for your SET Merchant, or every time you start
your Payment Server.

If you lose your password, there is no way to recover your certificates. You
will need to request them again. This is different than other AS/400
passwords, where the security officer can reset the password for you and
nothing is lost. We recommend that you back up your data just prior to
changing the password.

Important
Setting Up Payment Methods 345

Figure 322. Payment Server Administration Create Page

The Payment Server is created (Figure 323).

Figure 323. Payment Server Administration Creation Done Page
346 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

16.1.3 Basic Configuration of the Payment Server
To use your Payment Server, you have to complete its basic configuration. To do
this, follow these steps:

1. From the IBM Payment Server for AS/400 page, click Configuration in the
left-hand frame to display an extended list of server tasks.

2. Click on Basic from the list to perform the basic configuration.

3. On the Basic Configuration page (Figure 324), only make changes if your
acquirer has told you to do so.

Figure 324. Payment Server Configuration Basic Page

Click Update.

You receive a message, which indicates that the configuration update is
successful (Figure 325 on page 348).
Setting Up Payment Methods 347

Figure 325. Payment Server Basic Configuration Complete Page

16.1.4 SET Protocol Configuration of the Payment Server
The next step in the configuration of the Payment Server is to configure the SET
Protocol. Complete the following steps:

1. Click on SET Protocol from the list to perform the SET Protocol configuration.

2. On the SET Protocol Configuration page (Figure 326 on page 349), only make
changes if your acquirer tells you to make them.
348 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 326. Payment Server SET Protocol Configuration Page

Click Update.

You receive a message, which indicates that the configuration update is
successful (Figure 327).

Figure 327. Payment Server SET Protocol Configuration Complete Page
Setting Up Payment Methods 349

16.1.5 Payment Systems Configuration of the Payment Server
The next step in configuring the Payment Server is to configure the Payment
System. This is done using the Net.Commerce Administrator page. To use your
Payment Server with your Net.Commerce server, you have to configure both the
Net.Commerce server and the Payment Server. To do so, follow this process:

1. From your administration PC browser, open your Net.Commerce Administrator
page, (http://<host_name.net>/ncadmin/), and logon (Figure 328).

Figure 328. Net.Commerce Administrator Logon Page

2. From the Net.Commerce Administrator page (Figure 329 on page 351), click
Store Manager in the left-hand frame to display an extended list of server
tasks.
350 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 329. Net.Commerc Administrator Page

3. Click on Payment Configuration from the list to perform the payment
configuration (Figure 330).

Figure 330. Net.Commerce Store Manager

4. On the Payment Configuration page (Figure 331 on page 352), select the store
where you want to use SET. Select the Authority & Capture Option that you
want to use.
Setting Up Payment Methods 351

Figure 331. Net.Commerce Payment Configuration

5. Click Update. This adds the payment system for the selected merchant to the
Payment Server. The Net.Commerce Payment Acquirer Configuration page
(Figure 332) appears.

Figure 332. Net.Commerce Payment Acquirer Configuration
352 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

16.1.6 Acquirer Configuration of the Payment Server
The next step in the configuration of the Payment Server is to configure the
acquirers. Follow these steps:

1. On the Acquirer Configuration page (Figure 332 on page 352), click Add. The
Acquirer Configuration Form page (Figure 333) appears.

2. On the Acquirer Configuration Form page (Figure 333), complete the
information that you received from your acquirer. The merchant number is
completed based on the store that you selected in Figure 331 on page 352.
Use your values from Table 7 on page 98 as input to your fields.

Figure 333. Payment Server Acquirer Configuration Form Page

3. Click Add.

You receive a message that the acquirer profile is added (Figure 334 on page
354).
Setting Up Payment Methods 353

Figure 334. Payment Server Acquirer Profile Added Page

4. Select the merchant, and click Update.

5. On the Acquirer Brand Configuration page (Figure 335), click Add.

Figure 335. Payment Server Acquirer Add Brand Page
354 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

6. On the Acquirer Brand Configuration Form page (Figure 336), enter the
information you received from your acquirer. Use your values from Table 8 on
page 99 as input to your fields.

Figure 336. Payment Server Acquirer Brand Configuration Form Page

7. Click Add. The Payment Server Acquirer Brand Profile Added page (Figure
337) displays.

Figure 337. Payment Server Acquirer Brand Profile Added Page
Setting Up Payment Methods 355

16.1.7 SET Certificate
The digital certificate that is used in SET is not the same digital certificate that is
used during SSL. The SET process uses special certificates. It also uses 128-bit
encryption for the credit card information, even outside of North America.

To use SET as a merchant, you must register with a certificate authority (CA)
before you can receive SET payment instructions from cardholders or process
SET transactions through a payment gateway. You also need a copy of the
registration form from your financial institution. Your software must identify the
acquirer to the CA.

16.1.8 Requesting a SET Merchant Certificate from a CA
To conduct commercial business on the Internet, you should request your SET
merchant certificate from a certificate authority, such as VeriSign or Globeset.
This section describes how to obtain a SET merchant certificate from a certificate
authority. To use SET for secure payment, your server must have a digital
certificate.

When you choose to use a CA to issue a server certificate, you must first request
the certificate. Follow these steps:

1. From the IBM Payment Server for AS/400 page, click Certificates in the
left-hand frame to display an extended list of server tasks.

2. Click Request from the list to request a certificate.

3. On the Certificate Management Login Page (Figure 338), enter your Key
database password that you selected when you created your Payment Server
in 16.1.2, “Creating a Payment Server” on page 344.

Figure 338. Payment Server Certificate Management Login Page
356 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Click OK to display the Request Certificate page.

4. Enter the URL to your CA in the Request URL field. Click Continue. The
Payment Server Certificate Request page (Figure 339) is displayed.

Figure 339. Payment Server Certificate Request

Click Continue.

If you do not already have a valid SET certificate installed, you will be
prompted to enter a root hash code that you received from your acquirer.

Click Continue to display the Payment Server Request Certificate Brand
page.

5. On the Payment Server Request Certificate Brand page, select the brand for
the certificate and click Continue (Figure 340 on page 358).

It is important that you configure acquirers and brands first with the
information received from the acquirer.

Important
Setting Up Payment Methods 357

Figure 340. Payment Server Request Certificate Brand

6. You may be asked to enter the root hash, which is a 40-character string.

On the Payment Server Certificate Root Hash page, enter the root hash code
that you received from your acquirer (Figure 341 on page 359).

Click Continue.
358 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 341. Payment Server Certificate Root Hash

7. On the Payment Server Certificate Request Policy page, you have to read and
agree with the policy (Figure 342 on page 360). Click Continue.
Setting Up Payment Methods 359

Figure 342. Payment Server Certificate Request Policy

8. On the Payment Server Certificate Request Information page (Figure 343 on
page 361), enter the certificate information requested by the certificate
authority. Use your values from Table 9 on page 100 as input to your fields.

Click Continue.
360 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 343. Payment Server Certification Request Information Page

9. The Payment Server Certificate Request Complete page is displayed (Figure
344), and the certification receive process is finished. Click Done.

Figure 344. Payment Server Certificate Request Complete Page
Setting Up Payment Methods 361

You have now installed your brand’s digital SET certificate on your Payment
Server.

16.1.9 Starting and Ending the Payment Server
The Payment Server checks the date, time, and time zone when you use it for
shopping. It is important that the system values for the date, time, and time zone
in your AS/400 system is correctly set. The Payment Server also checks the date,
time, and time zone that is sent to it from the eWallet, and compares it with its
own values.

To display your date-and-time-related system values, complete these steps:

1. On an AS/400 command line, type:

DSPSYSVAL SYSVAL(QDATE)

Press Enter to see the Date System Value.

If the value is incorrect, you have to change it. On an AS/400 command line,
type:

CHGSYSVAL SYSVAL(QDATE) VALUE('mm/dd/yy')

In this statement, mm/dd/yy occurs in the command, where mm = month, dd =
day, and yy = year.

2. On an AS/400 command line, type:

DSPSYSVAL SYSVAL(QTIME)

Press Enter to see the Time System Value. If the value is incorrect, you have
to change it. On an AS/400 command line, type:

CHGSYSVAL SYSVAL(QTIME) VALUE('hh:mm:ss')

In this statement, hh = hour, mm = minute, and ss = second.

3. On an AS/400 command line, type:

DSPSYSVAL SYSVAL(QUTCOFFSET)

Press Enter to see the Coordinated Universal Time Offset System Value. This
value specifies the difference in hours and minutes between UTC, also known
as Greenwich mean time (GMT), and the current system time.

If the value is incorrect, you must change it. On an AS/400 command line,
type:

CHGSYSVAL SYSVAL(QUTCOFFSET) VALUE('-hh:mm')

In this statement, the symbol "-" can be either "+" or "-" depending on where
your time zone is in relation with GMT. hh = hour and mm = minute.

16.1.9.1 Starting the Payment Server
The Payment Server starts automatically when you start your Net.Commerce
instance. There are two ways to start your Payment Server manually.

The format of the date field is not the same in all countries. Verify your
format before you change it.

Note
362 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

One way is to start the Payment Server from the IBM Payment Server for AS/400
page (Figure 345). To do so, follow these steps:

1. Click Administration —> Start.

Figure 345. Payment Server Page

2. On the Start Payment Server page (Figure 346), enter the Key database
password. Click Start.

Figure 346. Star t Payment Server

Then, the Payment Server starts as shown in Figure 347 on page 364.
Setting Up Payment Methods 363

Figure 347. Payment Server Star ting Page

The other way to start your Payment Server is to use AS/400 commands:

1. On an AS/400 command line, type:

STRPYMSVR KEYPWD(password)

Where password occurs in the command, type the Key database password.

2. Press Enter. The following message appears: Payment server starting.

The Payment Server job QUSRPYMSVR is now running in subsystem
QSYSWRK.

16.1.9.2 Ending the Payment Server
There are two ways to end your Payment Server. The first way is to end it from
the IBM Payment Server for AS/400 page (Figure 348 on page 365). The steps for
this process are described here:

1. Click Administration —> End.
364 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 348. Payment Server Page

2. On the End Payment Server page (Figure 349), enter the Key database
password. Click End.

Figure 349. End Payment Server

The Payment Server ends, as shown in Figure 350 on page 366.
Setting Up Payment Methods 365

Figure 350. Payment Server Ending

The other way to end your Payment Server is to use AS/400 commands. This
process is described here:

1. On an AS/400 command line, type:

ENDSTRPYMSVR

2. Press Enter. The following message appears: Payment Server ending.

The Payment Server job QUSRPYMSVR is now ending in the subsystem
QSYSWRK.

16.2 Payment Server Payment Processing

To enable manual capture, authorization and credit transactions, and reversals of
payments, you can use the Store Manager. The Store Manager lets you mark the
orders that you wish to process.

Capture is the process by which your acquirer receives the payment from the
customer’s financial institution and remits the payment to you. Orders that are
awaiting capture are in the "Capture Ready" state. You can use the Store
Manager to change their state to "Capture Requested." The Net.Commerce
Background server wakes up periodically, finds the orders that are marked for
processing, sends the requests to the acquirer, waits for the responses, and
changes the states according to the responses.

16.2.1 Managing Payment Transactions
You can use the Store Manager to perform the following payment functions:

• Search the payment transactions on the database
• Request authorization on a payment transaction
366 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

• Request authorization reversal on a payment transaction
• Request capture on a payment transaction
• Request capture reversal on a payment transaction
• Request credit on a payment transaction
• Request credit reversal on a payment transaction
• Reset to the previous manual state

16.2.2 Types of Payment Server Functions
You can use the Store Manager to process the following transactions manually:

• Request Authorization — You wish to receive authorization for the
customer’s purchase to fulfill the order. The order must be in the Auth Ready
state.

• Request Authorization Reversal — The purchase is authorized by the
cardholder’s financial institution, but you have not yet requested capture. Plus,
you wish to cancel the purchase or change the approved amount (downward).
The order must be in the Capture Ready state.

• Request Capture — The transaction is authorized by the customer’s financial
institution, and you wish to receive payment from your acquirer. The order
must be in the Capture Ready state.

• Request Capture Reversal — The capture has succeeded, but you have not
yet received payment. Now, you wish to reverse all or part of the capture. The
order must be in a Capture Completed state.

• Request Credit — Payment has already been made, but you wish to give the
customer a credit for all or part of the purchase. The order must be in a
Capture Completed or Credit Completed state (the latter because you can
request credit on an order more than once).

• Request Credit Reversal — Credit to the customer succeeded, but the
customer has not yet received a refund. Plus, you wish to cancel the credit.
For example, perhaps the customer decided to keep the goods after all, or the
initial credit request was an error. The order must be in a Credit Completed
state.

16.2.3 Searching the Payment Transactions in the Database
To find the Payment transactions you wish to process, follow these steps:

1. Open Net.Commerce Administrator.

2. On the task bar, click Store Manager. Then, select Payment Processing
(Figure 351 on page 368).
Setting Up Payment Methods 367

Figure 351. Payment Transaction Database Page

You can search the database for information contained in any of the
non-italicized fields on the form that appears.

3. Click Search.

A list of payment transactions in the database appears in the bottom frame.

16.2.4 Requesting Authorization on a Payment Transaction
After a customer decides to make a purchase, the first step in the payment cycle
is to have the transaction authorized. To do this, the Payment Server must send
the purchase information to an acquirer’s Payment Gateway. The acquirer
communicates with the customer’s financial institution over legacy networks. If
the purchase is acceptable to the customer’s institution, the acquirer sends you
an authorization message. If the purchase is not acceptable, a failed
authorization message is sent.

Normally, you wait until you receive authorization, fulfill the order, and then initiate
the capture. However, it is possible to handle these steps automatically (for
example, if you are selling information or software that can be fulfilled directly
from the store). Whether the system manages capture automatically or manually
is determined during the acquirer configuration.

If you set up your Net.Commerce server for manual authorization, you must
manually request authorization. The authorization request is done from Payment
Processing, under Store Manager. For further information, refer to Net.Commerce
for AS/400: The Net.Commerce Payment Module Version 3.2. You can find it in
the AS/400 file system /Qibm/ProdData/NetCommerce/html/Mri2924/ncbooks/
set.pdf.

16.2.5 Requesting Authorization Reversal on a Payment Transaction
After a transaction is authorized, and before capture is initiated, it is possible to
reverse the authorization.
368 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

The authorization reversal request is done from the Payment Processing under
Store Manager. For further information, refer to Net.Commerce for AS/400: The
Net.Commerce Payment Module Version 3.2. You can find this document in the
AS/400 file system /Qibm/ProdData/NetCommerce/html/Mri2924/ncbooks/
set.pdf.

16.2.6 Requesting Capture on a Payment Transaction
Once the transaction is authorized and the order is fulfilled, you can request
capture. Capture is the process by which your acquirer receives the payment
from the customer’s financial institution and remits the payment to you. To
request capture, complete the following steps:

1. Open Net.Commerce Administrator.

2. On the task bar, click Store Manager, and then click on Payment
Processing.

3. From the Select Store drop-down list, select the appropriate store.

4. From the SET Transaction Status window, select Capture Ready.

5. Click Search. The information about transactions whose status is "Capture
Ready" appears in the bottom frame (Figure 352).

Figure 352. Payment Processing — Capture Ready

6. Select the order or orders for which you wish to request capture by clicking
their Select check boxes. To process all the orders, click the Select All button.

7. Click Perform selected action on checked transactions to open the pop-up
window. Select Request Capture (Figure 353 on page 370).
Setting Up Payment Methods 369

Figure 353. Payment Processing — Request Capture

8. Click Perform. A new table appears that shows additional details about the
selected orders (Figure 354).

Figure 354. Payment Processing — Request Capture Details

9. After checking the Amount to be Captured column to ensure that the order
amounts are accurate, and changing them if necessary, click OK.
370 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 355. Payment Processing — Amount to Be Captured

A confirmation message appears. The transaction status changes to "Capture
Requested."

16.2.7 Requesting Capture upon Order Fulfillment
If you are going to use a back-end system to perform order fulfillment, you may
want to request a capture from the acquirer automatically when the order is
fulfilled. To do that, you must update the SETSTATUS Net.Commerce table. Refer
to 17.4, “Requesting Capture upon Order Fulfillment” on page 398.

16.2.8 Requesting Capture Reversal on a Payment Transaction
When you request a capture, the Payment Server automatically initiates the
capture process with the Acquirer’s Payment Gateway. If you need to cancel the
capture after the success message is sent from the Payment Gateway but before
the payment is received, you can reverse the capture.

You can only request a capture reversal of a completed capture before the batch
containing the capture transaction is closed. This is true for both implicit and
explicit batch processing. If you are using implicit batch processing, the Payment
Gateway rejects the request. If you are using explicit batch processing, the
Payment Server rejects the request.

The capture reversal request is done from the Payment Processing under Store
Manager. For further information, refer to Net.Commerce for AS/400: The
Net.Commerce Payment Module Version 3.2. You can find this document in the
AS/400 file system /Qibm/ProdData/NetCommerce/html/Mri2924/ncbooks/
set.pdf.

16.2.9 Requesting Credit on a Payment Transaction
You can only request a credit on a completed capture after the batch containing
the capture transactions closed. This is true for both implicit and explicit batch
processing.
Setting Up Payment Methods 371

The credit request is done from Payment Processing under Store Manager. For
further information, refer to Net.Commerce for AS/400: The Net.Commerce
Payment Module Version 3.2. You can find this document in the AS/400 file
system /Qibm/ProdData/NetCommerce/html/Mri2924/ncbooks/set.pdf.

16.2.10 Requesting Credit Reversal on a Payment Transaction
If you requested credit for a customer in error, you can request a credit reversal
provided that the customer has not already received the credit. You can only
request the credit reversal of a completed credit before the batch containing the
Credit Transactions closes. This is true for both implicit and explicit batch
processing. If you are using implicit batch processing, the Payment Gateway
rejects the request. If you are using explicit batch processing, the Payment
Server rejects the request.

The credit request is done from Payment Processing under Store Manager. For
further information, refer to Net.Commerce for AS/400: The Net.Commerce
Payment Module Version 3.2. You can find it in the AS/400 file system
/Qibm/ProdData/NetCommerce/html/Mri2924/ncbooks/set.pdf.

16.3 Installing a SET Compliant eWallet

To show the installation process of a SET compliant eWallet, we are going to use
a test version of IBM Consumer Wallet. Complete the following series of tasks:

1. Start the setup program. In our case, the file is:

c:\download\ibmwallet981215rel.exe

2. From the Welcome window shown in Figure 356, click the Next button to begin
the installation.

Figure 356. IBM Consumer Wallet Setup — Welcome Window

3. From the Software License Agreement window shown in Figure 357 on page
373, click the Yes button to accept the license agreement.
372 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 357. IBM Consumer Wallet Setup — Software License Agreement Window

4. From the Choose Destination Location window shown in Figure 358, click the
Next button to accept default destination location directory.

Figure 358. IBM Consumer Wallet Setup — Choose Destination Location Window

5. From the Select Program Folder window shown in Figure 359 on page 374,
click the Next button to accept the default Program Folder.
Setting Up Payment Methods 373

Figure 359. IBM Consumer Wallet Setup — Select Program Folder Window

6. From the Question panel shown in Figure 360, click the Yes button to allow the
setup program to perform a search for supported browsers to update.

Figure 360. IBM Consumer Wallet Setup — Perform Search Question Panel

7. From the Update Web Browsers window shown in Figure 361, click the Next
button to update the default browsers that are selected.

Figure 361. IBM Consumer Wallet Setup — Update Web Browser Window
374 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

8. From Setup Complete window shown in Figure 362, click the Finish button to
complete the setup.

Figure 362. IBM Consumer Wallet Setup — Setup Complete Window

Now, your eWallet is installed and ready to request a SET certificate from your
acquirer and load it into your eWallet.

16.4 Getting a SET Certificate for the IBM Consumer Wallet

To show the process of requesting a SET certificate from your acquirer and
loading it into your eWallet, we are going to use the IBM SetCA internal test Web
site and a test IBM Consumer Wallet. Follow this process:

1. Connect to the acquirer’s Web page for certificate requests as shown in Figure
363. Then, click on the URL that points to your credit card.

Figure 363. IBM Consumer Wallet Certificate Setup — Sample Acquirer Web Page
Setting Up Payment Methods 375

2. From the New User Sign On window shown in Figure 364, type a user ID, and
a password and its confirmation. Click OK to create the user and sign on.

Figure 364. IBM Consumer Wallet Certificate Setup — New User Sign On Window

3. From the dialog panel of the eWallet window shown in Figure 365, click the
Yes button to add a new account.

Figure 365. IBM Consumer Wallet Certificate Setup — Add Account Window

4. From the Add a Payment Card panel shown in Figure 366 on page 377, click
the Summary button to complete all required information from a single
window.
376 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 366. IBM Consumer Wallet Certificate Setup — Add Payment Card

5. From the Add a Payment Card summary panel shown in Figure 367 on page
378, complete the following fields with the information provided by your
acquirer:

• Card description
• Card brand
• Account number
• Card type
• Expiration month and year
• Certificate language

Click the Finish button to add the payment card.
Setting Up Payment Methods 377

Figure 367. IBM Consumer Wallet Certificate Setup — Add Payment Card Summary

6. From the Accounts view of the eWallet window shown in Figure 368, click the
Get Certificate button to get the certificate from the acquirer.

Figure 368. IBM Consumer Wallet Certificate Setup — Accounts View Window

7. From the Policy Management panel shown in Figure 369 on page 379, read
the policy agreements of your acquirer. Click the Accept button to accept
them.
378 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 369. IBM Consumer Wallet Certificate Setup — Policy Agreement Panel

8. From the Certificate Registration Form page 1 shown in Figure 370, complete
the following required fields:

• First name
• Last name
• Age

Click Page Down to go to page 2.

Figure 370. IBM Consumer Wallet Certificate Setup — Certificate Registration (Page 1)
Setting Up Payment Methods 379

9. From the Certificate Registration Form page 2 shown in Figure 371, complete
the following required fields:

• Address
• City
• State and country

Click Page Down to go to page 3.

Figure 371. IBM Consumer Wallet Certificate Setup — Certificate Registration (Page 2)

10.From the Certificate Registration Form page 3 shown in Figure 372 on page
381, click OK to send the registration form.
380 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 372. IBM Consumer Wallet Certificate Setup — Certificate Registration (Page 3)

11.From the Certificate Authority Message panel shown in Figure 373, click the
Close button.

Figure 373. IBM Consumer Wallet Certificate Setup — Certificate Authority Message

The eWallet program closes and a success certificate setup message is
displayed in the acquirer Web page, as shown in Figure 374 on page 382.
Setting Up Payment Methods 381

Figure 374. IBM Consumer Wallet Certificate Setup — Success Certificate Setup Page

Now your eWallet is ready to use the SET protocol to authorize credit card
transactions with your acquirer.
382 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Chapter 17. Interfacing to Our Back-End Business System

This chapter explores the integration of our ShopITSO store with an existing
back-end system. In our example, we simplified some of the data mapping by
ensuring that our back-end system had all of the necessary data. Differences in
the data map between the Net.Commerce database and the back-end system
can be resolved in the APIs that interface the two systems.

17.1 Description of Our Example

There are four integration issues that we had to deal with in our site design
example:

• Integration with the order process so that Net.Commerce retrieves the product
price using the back-end pricing mechanism. Orders originated from the
Net.Commerce site are passed to the back-end system for fulfillment. The
back-end system must also e-mail the order confirmation to the client. The
back-end system also e-mails the order confirmation to the client.

• Integration with the Net.Commerce database and cache mechanism to
propagate changes in the back-end product information to Net.Commerce
product related tables and to purge outdated product pages from the
Net.Commerce cache.

• Integration with the back-end shipping module to request capture from the
acquirer upon order fulfillment.

• Initial data load from the back-end system tables to the Net.Commerce
database. This process is described in Chapter 15, “Importing Business Data
into Net.Commerce” on page 319.

This chapter describes the way that we implemented our solution to these
specific back-end integration issues. It is important to understand that there may
be other integration issues that you may have to manage. For example, consider
these cases:

• Loading current customer data to Net.Commerce shopper tables in case your
site works with registered users.

• Implementing an overridable function to check the inventory on the back-end
system before order approval.

• Giving the shopper the possibility to query the order status directly from the
back-end system.

• Enabling data propagation from the Net.Commerce tables to the back-end
system tables.

17.2 The Pricing and Orders Process

Figure 375 on page 384 describes the pricing and order integration between
Net.Commerce and our back-end system.
© Copyright IBM Corp. 1999 383

Figure 375. Back End System Integration — Order Flow and Pricing

The existing back-end system receives orders from a workstation order entry
application. After the user completes the order, the order request is written by the
existing application to a BEWORK order table. The existing application also has
an existing API to retrieve the product price. This API is implemented by the RPG
program GETPRICER. The price retrieval process is described in detail in
Chapter 19, “Implementing Overridable Functions” on page 413. The back-end
system has a fully functional order fulfillment process that reads the BEWORK
table and processes the orders from it.

When a user enters the Net.Commerce shop, they must see the correct prices for
the products for which they are looking. In our site example, the only source for
the product price is the back-end pricing system. In the site implementation, we
changed the tasks GET_BASE_UNIT_PRC and GET_BASE_SPE_PRC to use
our overridable function GETPRICE. GETPRICE is called by Net.Commerce. It
gets some parameters and invokes the back-end system GETPRICER API. The
GETPRICE overridable function is described in Chapter 17, “Interfacing to Our
Back-End Business System” on page 383.

After the user places the purchase order, use the back-end system order
fulfillment mechanism to fulfill the order. The Net.Commerce command
OrderProcess is used to place orders from shoppers, among other tasks, the
OrderProcess call task EXT_ORD_PROC. In our site implementation, we
changed the task EXT_ORD_PROC to use our overridable function EXTORDER.
Our function places an entry in a data queue for later processing and returns

All aspects of order
fullfilment are the
samefor
Net.Commerce and
terminal originated
orders

Regular ordersdataentry

Net.Commerce
system

WebOrder

Informback end
systemof neworder

E-mail order confirmation to
client

Net.Commercedataentry

Get realtime
price information

usingOF
GETPRICEand
RPGprogram
GETPRICER

Back-End System

BEWORK
Table

EXTORDER
overridable function
andEXTORDERR

RPGprogram

Back-End
Order

Fullfilment
database

and
programs
384 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

control to Net.Commerce. The data queue is processed by RPG PROGRAM
EXTORDERR, which sends e-mail confirmation to the customer and inserts a row
to the order work table BEWORK. After the new order is placed in the BEWORK
table, the back-end system processes the order in exactly the same way it
processes the orders from the back-end system order entry application.

Figure 376 describes the programs involved in the order process.

Figure 376. Process Order from the Net.Commerce Site

Figure 377 on page 386 and Figure 378 on page 387 display the EXTORDER
overridable function source code. See Chapter 19, “Implementing Overridable
Functions” on page 413, for more details on overridable functions.

E X TO RD E R
overr idab le

fun ction

N et.Co m m erce
EX T_O RD _P R O C

task

E X T O R DE R R
R P G program

T he
com m un ica tion

da ta queue

Passes order deta ilsPa sses o rd er
deta ils

P repare o rde r and send
e-m a il no tif ica tion

B ack-end
system

N et.C om m erce
Interfacing to Our Back-End Business System 385

Figure 377. The EXTORDER Source (Part 1 of 2)

//***/
// This function will inform the back end system of the */
// arrival of new order. The function will place some basic */
// details in a data queue object. */
// */
// It will be called by the EXT_ORD_PROC task */
// */
// Author: Shahar mor */
// Provided AS IS */
//***/

#ifdef AS400
#include "coibm.h"

#endif

#include <qsnddtaq.h> // Data queue (1)
#include "objects/objects.pch" // Net.Commerce include

// The following define is for compatibility with other platform compilers

#if defined(WIN32)
#define __DLL_EXPORT__ __declspec(dllexport)

#else
#define __DLL_EXPORT__

#endif

// Handling the trace option. Un remark the next line to enable trace.
//#define __TRACE_ExtOrder__
#ifdef __TRACE_ExtOrder__
typedef TraceYes Trace;
#else
typedef TraceNo Trace;
#endif

#define Q_LEN 360 // Data queue entry length

static Trace trace ("GetPrice ("__FILE__")");

typedef struct Q_entry { (2)
char RefNumber[15];
char MerchNumber[30];
char ShopperId[31];
char TotalPrice[15];
char TotalTax[15];
char Email[254];

} Q_entry; // Data queue entry structure

class __DLL_EXPORT__ ExtOrder : public NC_OverridableFunction
{
public:
ExtOrder() { }

virtual ~ExtOrder() { }

void operator delete (void *p){ ::delete p; }
386 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 378. The EXTORDER Source (Part 2 of 2)

Consider these remarks about the EXTORDER program:

• Since we use AS/400 data queue support, we must include the data queue
header file in our source.

// Handle failed registration */

virtual void FailedRegistration (NC_RegistrationID &RegID, const ErrorMsg_Reg *Err)
{
error << indent << "Error : ExtOrder Registration failed" << endl;

}
// Main function */

virtual bool Process (const HttpRequest &Req, HttpResponse &Res, NC_Environment &Env)
{

Q_entry BackEndSystem; // Queue structure
String Stmt;
Row SqlRow;
char Test[300];

// Define the environment
static const StringWithOwnership _PARAM_NAME_ORDER_REF_NUM("ORDER_REF_NUM");

// Get function parameters from the env.
// 1. The order reference number

String* OrderRefNum = (String*) Env.Seek(_PARAM_NAME_ORDER_REF_NUM);
if (OrderRefNum == NULL)
{

error << indent << "Error : Cant get order number " << endl;
return false;

}
String stmt; (3)

stmt << "SELECT trim(char(ORRFNBR)), ORMORDER, ORPRTOT,";
stmt << "ORTXTOT, SHLOGID , trim(SAEMAIL1), SARFNBR FROM ORDERS, SHOPPER ,SHADDR

";
stmt << "WHERE ORRFNBR =" << *OrderRefNum;
stmt << " AND ORSHNBR = SASHNBR";
stmt << " AND ORSHNBR = SHRFNBR";
stmt << " ORDER BY SARFNBR DESC";
strcpy(Test,stmt.c_str());

SQL Sql(*(DataBaseManager::GetCurrentDataBase()), stmt);

if (Sql.getNextRow(SqlRow) != ERR_DB_NO_ERROR)
{

return false;
}

// Send the data queue entry

memset(&BackEndSystem,' ',sizeof(BackEndSystem)); (4)
strcpy(BackEndSystem.RefNumber,SqlRow.getCol(1).c_str());
strcpy(BackEndSystem.MerchNumber,SqlRow.getCol(2).c_str());
strcpy(BackEndSystem.TotalPrice,SqlRow.getCol(3).c_str());
strcpy(BackEndSystem.TotalTax,SqlRow.getCol(4).c_str());
strcpy(BackEndSystem.ShopperId,SqlRow.getCol(5).c_str());
strcpy(BackEndSystem.Email,SqlRow.getCol(6).c_str());

QSNDDTAQ("TESTQ ", /* dtaq name */
"NETCBE ", /* dtaq lib */ (5)

Q_LEN , /* length of data */
&BackEndSystem); /* data */

return true;
}
};
static bool X2 = NC_ApiManager::GetUniqueInstance().RegisterApi("IBM", "NC",

"ExtOrder", 1.0, new ExtOrder);
Interfacing to Our Back-End Business System 387

• The Q_entry structure describes the data that we will send to the
communication data queue. The exact same structure will be used by the
EXTORDERR program.

• The OF uses Net.Commerce database classes to select data from the
database. In our example, we prepare a select statement that retrieves order
details from different Net.Commerce tables. You can retrieve the database
values in the RPG program EXTORDERR. However, you may find it easier to
use the Net.Commerce database classes.

• The returned data from the tables is fetched by using the Net.Commerce
database classes.

• The returned data is sent to the data queue. The RPG program EXTORDERR
receives the data from the data queue and continues the process.
Net.Commerce receives positive response from our function. The shopper
receives positive response on their browser unless for some reason our select
statement failed to fetch the order details from the Net.Commerce database.

Figure 379 through Figure 382 on the following pages list the RPG EXTORDERR
program that is used to process the data queue entries sent by the EXTORDER
overridable function.
388 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 379. The EXTORDERR Program Source (Part 1 of 3)

H**
H* This program will wait on data queue for notification on new *
H* orders from the Net.Commerce web site. It will then be able to *
H* activate the order fulfillment process in the back end system and *
H* optionally send e-mail confirmation to the customer. *
H* *
H* Entries in the data queue will be placed by the overridable *
H* function extorder. *
H* Author: Shahar mor *
H* Provided AS IS *

H**
H*
H DFTACTGRP(*NO) ACTGRP(*CALLER) BNDDIR('QC2LE') (1)
F*
FBEWORK O E DISK RENAME(BEWORK:RBEWORK)
F*
DDqEntry DS (2)
D RefNumber 16
D MerNumber 31
D ShopperId 32
D TotalPrice 16
D TaxPrice 16
D ShoppEmail 255
D*
DReturnLen S 5P 0
DTrimChar S 15A
DMsg S 512A
D*
DForEver C CONST(-1)
DDataQueue C CONST('TESTQ')
DDataqLib C CONST('NETCBE')
DEndProg C CONST('000000000000000')
DNetCommerce C CONST('Net.Commerc')
DProcess C CONST('1')
DEndLine C CONST(X'0D')
D*
D* Prototype external QRCVDTAQ program
D Rcvdtaq PR EXTPGM('QRCVDTAQ')
D QueueName 10A CONST
D QueueLib 10A CONST
D DtaLen 5P 0
D Dta 3000A OPTIONS(*VARSIZE)
D WaitTime 5P 0 CONST
D*
D* Prototype internal check e mail validity routine
DIsEmail PR 1N
D EmailAddr 254A CONST
D*
D* Prototype internal null removal
DRmvNull PR 200A
D Dta 200A CONST OPTIONS(*VARSIZE)
D StrLen 5P 0 VALUE
D*
D* Prototype external c function
Datof PR 8F EXTPROC('atof') (3)
D StringPtr * VALUE
D*
C*
C**
C* Main program logic
C**
C*
C EXSR GetEntry
C DOW RefNumber <> EndProg
C EXSR BackEnd
C IF IsEmail(ShoppEmail)
C EXSR SendMail
C ENDIF
C EXSR GetEntry
C ENDDO
C*

C EVAL *INLR = *on
Interfacing to Our Back-End Business System 389

Figure 380. The EXTORDERR Program Source (Part 2 of 3)

C***
C GetEntry BEGSR

C***
C*
C* Recieve the next entry from the Net.Commerce site
C*
C CALLP RcvDtaq(DataQueue:
C DataqLib:
C ReturnLen:
C DqEntry:
C ForEver)
C*
C ENDSR

C***
C SendMail BEGSR (4)

C***
C*
C* Prepare and send e-mail confirmation.
C*
C EVAL Msg = 'Dear customer,' + EndLine
C + 'Thank you for Buying in our shop'
C + EndLine + 'Your order number is:'
C + %trim(RmvNull(MerNumber:31))
C + EndLine + 'Your customer number is:'
C + %trim(RmvNull(ShopperId:32))
C + EndLine + 'please visit our site '
C + 'at www.redbooks.ibm.com to check '
C + 'your order status'
C*
C CALL 'ORDERC'
C PARM Msg
C PARM ShoppEmail
C*
C ENDSR

C***
C BackEnd BEGSR (5)

C***
C*
C* Integrate with back end system is done here(Write to work file)
C*
C MOVE *DATE BODATE
C TIME BOTIME
C EVAL BOAFLG = Process
C EVAL BOWS = NetCommerce
C EVAL BOONUM = %trim(RmvNull(MerNumber:31))
C EVAL TrimChar = RmvNull(TotalPrice:16)
C EVAL BOSUM = atof(%ADDR(TrimChar))
C WRITE RBEWORK
C
C ENDSR

C**
PIsEmail B
DIsEmail PI 1N
D EmailAddr 254A CONST
C*
DValid S 1N
DApos S 3P 0
DDpos S 3P 0
DLpos S 3P 0
DI S 3P 0
DJ S 3P 0
C*
C* Will Check for email validity
C*
C IF EmailAddr = *BLANK
C RETURN *OFF
C ENDIF
C*
C EVAL Valid = *ON
C ' ' CHECKR EmailAddr Lpos
C EVAL Apos = %scan('@':EmailAddr)
C*
390 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 381. The EXTORDERR Program Source (Part 3 of 3)

Consider these remarks in regard to the EXTORDERR program:

• The program must use the QC2LE binding directory since it will use the C
function to convert the character string to a number. Using C routines is the
recommended method of converting string to numeric representation.
However, nothing prevents you from using your own internal routines for this
task. The conversion is needed since the C++ overridable function sends
numeric values as strings to the data queue.

• The Dqentry structure describes the data queue entry. The data queue entry is
placed in the data queue by the overridable function EXTORDER, which
Net.Commerce calls from the EXT_ORD_PROC task.

• Map the external C function to convert strings to doubles. All entries in the
data queue are placed as strings. Numeric fields, such as total price, should
be converted to numeric representation before processing.

• The e-mail integration sends simple confirmation. Program ORDERC, listed in
Appendix A, “Source Code Samples” on page 463, actually sends the e-mail
message.

C* Find last occurance of the decimal point character
C EVAL I = 1
C EVAL J = 1
C DOW J > 0
C EVAL J = %scan('.':EmailAddr:I)
C IF J <> 0
C EVAL I = J+1
C ENDIF
C ENDDO
C EVAL Dpos = I - 1
C*
C IF Apos < 1 or
C (Dpos - Apos) < 2 or
C (Lpos - Dpos) > 3 or
C (Lpos - Dpos) < 2
C EVAL Valid = *OFF
C ENDIF
C*
C Return Valid
C*
PIsEmail E

C**
PRmvNull B (6)
D*
DRmvNull PI 200A
D Dta 200A CONST OPTIONS(*VARSIZE)
D StrLen 5P 0 VALUE
DReturnStr S 200A
DNull C CONST(X'00')
C*
DI S 3P 0
C*
C EVAL I = 1
C EVAL ReturnStr = %subst(dta:1:StrLen)
C DOW I <= Strlen
C IF %subst(ReturnStr:I:1) = Null
C EVAL %subst(ReturnStr:I:1) = *BLANK
C ENDIF
C EVAL I = I + 1
C ENDDO
C*
C Return ReturnStr
C*

PRmvNull E
Interfacing to Our Back-End Business System 391

• The program inserts a row to the BEWORK table. The back-end application
uses this table to process orders. The row contains information that was sent
to the data queue by the overridable function EXTORDER.

• The string from C++ contains NULLS(X’00’). To perform string operations in
RPG, we use the internal RmvNull procedure to remove all nulls from the data
queue strings before processing.

In summary, Net.Commerce uses our own functions to calculate the price and
perform order fulfillment. Our functions are used as a gate between the
Net.Commerce frame to the back-end business process.

17.3 Table Synchronization and Cache Mechanism

Since we use the back-end system to maintain the product and pricing
information, we must consider these points:

• Every change in product information on the back-end system should be
reflected in the Net.Commerce system. For example, if a product was added
to the back-end system, it should be automatically added to the
Net.Commerce database. If a product description was changed in the
back-end system, it must also change in the Net.Commerce database.

• Net.Commerce uses a caching mechanism for storing product details.
Whenever the back-end system price is changed, we must signal
Net.Commerce that the cached page is no longer reflecting the correct price
and should be purged from the cache.

Figure 382 displays the synchronization mechanism that we used to handle these
issues.

Figure 382. Back-End System Table Synchronization and Cache Handling

Back-end
discounts

table
BEDISC

Back-end
products

table
BEPROD

Trigger program
BEPORDT

Trigger program
BEDISCT

Activate by trigger
program
Activate by trigger
program

Mass
import

file

Back-end system

Mass Import
utility

Product-
related
tables

Cache log
table

Net.Commerce

Clear cache
program
392 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

17.3.1 Product Information Synchronization
We developed the LOADPRD command described in Chapter 15, “Importing
Business Data into Net.Commerce” on page 319, to perform initial data mapping
and loading from the back-end system. The LOADPRD utility also supports the
importing of one specific product detail.

To synchronize the product information from the back-end system with the
product related tables in Net.Commerce, we wrote a trigger program BEPRODT
and connected it to the back-end system product table BEPROD. The
synchronization process follows this sequence:

1. The trigger program is called after the row insertion or is updated to the
back-end products table BEPROD.

2. The trigger program calls the LOADPRD command for the specific changed
product. The LOADPRD command adds rows to a mass import file.

3. The mass import file is used by Net.Commerce mass import utility to update
Net.Commerce product-related tables. The mass import processes the import
file to reflect the changes in the back-end system product information. We can
run the mass import once a day or at any frequency we choose depending on
our business requirements.

The trigger program BEPRODT is described in Chapter 15, “Importing Business
Data into Net.Commerce” on page 319.

17.3.2 Integration with Net.Commerce Cache Mechanism
Net.Commerce uses the caching mechanism for displaying products details. In
our example, Net.Commerce retrieves the prices from the back-end system.
Therefore, it has no way of knowing that a cached product page no longer reflects
the current price and it may serve outdated information from the cache.

To explain our solution for this problem, we must shortly describe the
Net.Commerce cache system principals and capabilities.

17.3.2.1 Net.Commerce Cache Mechanism
When a shopper clicks on a link to view a product or category page, only small
amounts of system time and resources are actually spent within the server. Most
of the time is spent parsing the HTTP request, accessing the database, and
dynamically creating the HTML page that the shopper wants to see. Heavy site
traffic and a large number of product and category entries in the database can
further increase the time it takes for pages to load.

Most HTTP requests on the server are for product and category pages, which are
dynamically created by the ProductDisplay and CategoryDisplay commands,
respectively. These commands retrieve information from your database, and
display the information as an HTML page that was generated from a Net.Data
macro. If your product and category information did not change since a page was
last viewed, then it should not be necessary for the page to be dynamically
re-created the next time a shopper requests it. Serving an equivalent "static"
page that has been stored in a cache would be faster. The scope of the caching
methods provided by Net.Commerce is mall-wide. If you have a mall (or instance)
that contains numerous stores, and you enable and configure caching, the
caching will be turned on and work the same for all the stores in that mall
(instance). Also, only the site administrator can configure and activate caching.
Interfacing to Our Back-End Business System 393

Store administrators who only have store-level authority cannot configure or
activate caching.

Files are stored in the cache on demand. This means that they are not stored in
the file system until requested. Only those pages that are created by the
commands ProductDisplay and CategoryDisplay are cached by the
Net.Commerce caching methods. These commands typically query the
PRRFNBR (product reference number) column in the PRODUCT table and the
CGRFNBR (category reference number) column in the CATEGORY table. They
also query their matching merchant reference numbers from the PRMENBR and
CGMENBR columns.

If the file corresponding to the page being accessed is not in the cache file
storage, it is generated dynamically in the usual way. The CategoryDisplay or
ProductDisplay command calls Net.Data, Net.Data accesses the database and
creates the HTML file. Then, the command returns the results, additional
parameters are collected, and the final page is sent to the shopper's browser.
This HTML page is then stored in the cache, and does not have to be
regenerated until the data on which it is based is modified.

If you change information in the database (such as a product price), make sure
that any page in the cache that contains the changed information is deleted. Also
verify that the page is dynamically re-generated when the product is next viewed
by a shopper picking up the new information. This is done for you by the
synchronization daemon. When you change certain product or category
information in the database, a log record is added to the CACHLOG table. The
synchronization daemon queries this table at regular, specified intervals,
identifies which HTML pages are affected by the changes, and purges (deletes)
them from the cache. This ensures that shoppers will not access any pages that
are outdated or incomplete.

For pages to be purged, the synchronization daemon must be properly configured
and running. It is not necessary to create any new triggers to purge outdated
product or category pages that were generated from the supplied product and
category tables. However, you may need to create a custom trigger if you used
any external methods that affect the product information page. For example,
suppose you created a table, named PRODEXTINFO, that contains extra text
information about products to be included in the displayed pages. Suppose the
table contains a column, named PEPRNBR, that is a foreign key to the product
reference number. It also contains another column, named PETEXT, that contains
the text itself. Because column PETEXT is selected in an SQL query by the
product display macro, a cache file created from information retrieved must be
purged when the PETEXT value for a product changes. When you update the
record in PETEXT for PEPRNBR=10, the custom trigger that you create on this
table logs the following record to the CACHLOG table:

"insert into CACHLOG values ('prrfnbr',10,timestamp)"

Now, when the synchronization daemon accesses the CACHLOG table, it
discovers a new row and deletes all product pages pertaining to the product with
reference number 10. To learn more about the Net.Commerce caching, please
refer to the Net.Commerce online help.
394 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

17.3.2.2 Integration with Net.Commerce Cache
The product pages displayed by Net.Commerce use price retrieval from the
back-end system. In our system, the product price can be changed either by a
price change in the BEPROD table or by a change in the discounts table BEDISC.

We developed a command CLRCACH that allows us to signal Net.Commerce of
price changes. The command source is available on Appendix A, “Source Code
Samples” on page 463. The command is called in the following events:

• The trigger program, on updates in the products table BEPROD, detects
change in the product price.

• The trigger program, on insert, update, and delete in the discounts table
BEDISC, detects changes in the discounts table.

The command simply inserts a row with the product number in the cachelog table
of Net.Commerce. The synchronization daemon of Net.Commerce detects the
new row and purges the product details from the cache. The next time a shopper
asks for the product information, Net.Commerce retrieves the product price from
our back-end system using the GETPRICE overridable function.

Figure 383 on page 396 and Figure 384 on page 397 display the source code for
the discount table trigger file.
Interfacing to Our Back-End Business System 395

Figure 383. Discount Table Trigger Program Source Code (Part 1 of 2)

H**
H* This trigger program will be called after insert/update operation *
H* to the back end system discount table. *
H* *
H* This program will be called on update event only if the update *
H* actually changed anything (ADDPFTRG TRGUPDCND(*CHANGE)) *
H* Author: Shahar mor *
H* Provided AS IS *

H**
D*
D* The General buffer for trigger programs
D*
D Parm1 DS
D Filenm 1 10
D Libnm 11 20
D Mbrnam 21 30
D Trgevn 31 31
D Trgtim 32 32
D Trglvl 33 33
D Trgreserv 34 36
D Trgccsid 37 40B 0
D Trgreserv2 41 48
D Oldofs 49 52B 0
D Oldlen 53 56B 0
D Omapof 57 60B 0
D Omapln 61 64B 0
D Newofs 65 68B 0
D Newlen 69 72B 0
D Nmapof 73 76B 0
D Nmapln 77 80B 0
D Trgreserv3 81 96
D*
D* Pointers for record reference
D Intarr S 1A based(intptr) dim(32767)
D Intptr S *
D*
D Parm2 ds
D Len 9b 0

D Bimage S *
D Aimage S *

D Bfile E DS EXTNAME(BEDISC)
D BASED(Bimage)
D PREFIX(B)
D Afile E DS EXTNAME(BEDISC)
D BASED(Aimage)
D PREFIX(A)
D*
D UpdNetc PR EXTPGM('QCMDEXC')
D Cmd 3000A OPTIONS(*VARSIZE) CONST
D Cmdlen 15P 5 CONST
D*
DCmdStr S 1000 VARYING
396 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 384. Discount Table Trigger Program Source Code (Part 2 of 2)

To activate the process, we must attach the trigger program to the BEDISCT table
using the ADDPFTRG for three events:

• Insert
• Update
• Delete

Figure 385 on page 398 shows an example of attaching the trigger program for
the update event. Since we set the trigger update condition parameter to
*CHANGE, the program will be called only if the row really changed. That means
that an update operation with equal before and after images of the row will not fire
the trigger.

D***
D* *** MAIN *** *
D***
C

001 C EXSR Init
C EXSR ClrCach
C
C RETURN
C**
C ClrCach begsr
C***
C*
C* In case of discounts policy change we must clear
C* Net.Commerce cach
C* Our shop uses only 1 merchant number
C*
C EVAL CmdStr = 'CLRCACH MERCHANT(28)' +
C ' PRODUCT(' +
C %trim(ABDPNBR) + ')'
C CALLP UpdNetc(CmdStr:
C %len (CmdStr))
C*
C ENDSR
C**
C init begsr
C***
C *entry plist
C parm parm1
C parm parm2

C eval intptr = %addr(parm1)
C eval bimage = %addr(intarr(oldofs+1))
C eval aimage = %addr(intarr(newofs+1))

C endsr
Interfacing to Our Back-End Business System 397

Figure 385. Attach the Trigger Program to the Discounts Table

17.4 Requesting Capture upon Order Fulfillment

Our example uses the back-end system to perform the order fulfillment. Shipment
details are not known to Net.Commerce. Therefore, we must request a capture
from our acquirer only when the order is fulfilled. When the Net.Commerce
payment module was configured, we chose to perform automatic approval and
manual capture by the payment server.

Once the order is fulfilled, the back-end system should signal Net.Commerce that
it can now capture the order payment. Figure 386 on page 399 displays the way
our back-end system interacts with the Net.Commerce payment module.

Add Physical File Trigger (ADDPFTRG)

Type choices, press Enter.

Physical file > BEDISCT Name
Library *LIBL Name, *LIBL, *CURLIB

Trigger time > *AFTER *BEFORE, *AFTER
Trigger event > *UPDATE *INSERT, *DELETE, *UPDATE
Program > BEDISCT Name
Library *LIBL Name, *LIBL, *CURLIB

Replace trigger *NO *NO, *YES
Allow Repeated Change *NO *NO, *YES
Trigger update condition *change *ALWAYS, *CHANGE
398 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 386. Order Payment Capture Request Mechanism

The back-end system order fulfillment process fulfills the order. It needs to update
Net.Commerce table SETSTATUS and set the order status from "Capture ready"
to "Capture required". The update can be performed from the Net.Commerce
administration forms or automatically by the back-end system.

To perform the update automatically, the back-end system should issue the
following SQL statement:

UPDATE SETSTATUS
SET SETSSTATCODE = 7
WHERE setsornbr = MyOrderNumber and
setsmenbr = MyMerchantNumber
and setsstatcode = 21
and setsauthamt = Order amount

In this SQL statement, note these points:

• MyOrderNumber is the Net.Commerce order number.

• MyMerchantNumber is the Net.Commerce merchant number.

• setsstatcode= 21 is for an order with "Capture ready status."

• Order amount is the order amount that should be equal in the back-end
system and Net.Commerce table.

This SQL statement can be issued by a back-end batch process or even as the
ending stage in the back-end order fulfillment process. To manually change the
order status from "Capture ready" to "Capture required," refer to the document
The Net.Commerce Payment Module.

Back-end
shipment
process

Back-EndSystem Net.Commerce

Updateset status
SETSTATUS

table

Back ground
server

Capture
request

Payment
server
Interfacing to Our Back-End Business System 399

Appendix A, “Source Code Samples” on page 463, contains a sample RQSCAP
command that can be used by the back-end system to change the order status
and trigger capture request.

Net.Commerce includes a background server that periodically processes
background requests, including requests for capture, capture reversal, credit, and
credit reversal. The server sends the request to the payment server. Then, the
Net.Commerce server receives the responses from the payment server through
user exits and changes the state of the affected transactions accordingly. The
payment module communicates with the payment server using sockets. The
payment module also supports merchant-originated purchased by using the
pay_accept command. The change in the SETSTATUS table is noted by the
Net.Commerce background process. It issues a capture request to the payment
server that will send the request to the acquirer.

17.5 Usage Considerations

The following list points out some issues that we needed to consider for our
example. Please note that this is only a partial list, and you may find many more
issues to consider on your own Net.Commerce-to-back-end integration solution.

• Net.Commerce overridable functions refer to objects that are located in the
back-end production library. We must include the back-end production library
in Net.Commerce jobs library list. The startup program listed takes care of it.

• Some back-end functions refer to Net.Commerce tables. For example, the
CLRCACH utility is called from the back-end product table trigger program. It
reads and writes data to Net.Commerce tables. We must make sure that the
Net.Commerce table will be available to the CLRCACH utility in our example.
We compiled the CLRCACH command and set the current library parameter to
the Net.Commerce schema as shown here:

CRTCMD CMD(CLRCACH) PGM(CLRCACH) CURLIB(WORK)

• To make sure the back-end integration has consistent behavior, we must make
sure that all processes start in the same time. The start-up program shown in
Figure 387 on page 401 does that.

Our example is very simple. You may have to perform a validity check before
doing a direct update of the order status.

Note
400 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 387. Net.Commerce Start Up Program STRNETCBE

• There are several ways to integrate e-mail confirmation. In our example, we
used the SNDEMAIL command that was published in the September 1998
issue of NEWS/400 magazine in the article entitled "RPG Utility Puts
QtmmSEndMail API to Work". You can also use the SNDDST command or
directly call the QtmmSendMail API.

• In our shop, we did not use shopper registration. However, if your back-end
system has existing customers, you may find it convenient to load the data
from your customer back-end table to the Net.Commerce shopper table. One
issue to consider when importing customers data is the fact that
Net.Commerce uses an encrypted password. That is, if your back-end system
has password information in its tables, you cannot directly store the password
information in Net.Commerce tables. Section A.1, “Retrieving Encrypted Text”
on page 463, provides an example of a utility that can be used to encrypt the

/***/
/* This program will start Net.Commerce and take care of back */
/* end integration issues. */
/* */
/***/

PGM PARM(&pr_inst)

DCL VAR(&pr_inst) TYPE(*CHAR) LEN(10)

DCL VAR(&libl) TYPE(*CHAR) LEN(275)
DCL VAR(&cmd) TYPE(*CHAR) LEN(512)

RTVJOBA USRLIBL(&libl)

/* Setting the back end production library to be included */
ADDLIBLE LIB(NETCBE) POSITION(*LAST)
MONMSG MSGID(CPF2103) /* Already in libray list */
STRNETCSVR INSTANCE(&pr_inst)

/* Starting our resdint program to bridge Net.Commerce order */
/* request to the back end system. We will add the instance */
/* library here also. */

ADDLIBLE LIB(&pr_inst) POSITION(*LAST)
MONMSG MSGID(CPF2103) /* Already in libray list */
SBMJOB CMD(CALL PGM(EXTORDERR)) JOB(NETCGW)

/* Start the Net.Commerce cache daemon to make sure outdated */
/* pages are purged from the cache. */

QNETCOMM/STRNETCDMN INSTANCE(&pr_inst)

/* Return the original library list */
CHGVAR VAR(&cmd) VALUE('chglibl libl(' *TCAT &libl +

*TCAT ')')
CALL PGM(QCMDEXC) PARM(&cmd 512)

ENDPGM

Net.Data now supports sending e-mail using the DTW_SENDMAIL function.
This function is included as part of PTF SF57236 for licensed program
product 5769-DG1. For more information about this function, refer to the
Web site at: http://www.as400.ibm.com/netdata

Note
Interfacing to Our Back-End Business System 401

password taken from your back-end customer table before writing it in the
Net.Commerce shopper table.

17.6 Relevant Tables and Programs

For the completeness of our solution description, the following tables are the
relevant database tables and programs that we use to develop Net.Commerce to
back-end system integration.

Table 21. Back-End System Relevant Tables

The back-end table layout is described in A.6, “Back-End Table Definition” on
page 472.

Table 22. Programs and OFs Used to Interact with the Back-End System

Table name Description

BEPROD Products table

BECATEG Product category table

BEDISC Discount table

BEWORK Orders work file (The back-end system uses
this file to process orders)

BEMEASUR Measurement description table

Program name Description Language Source Location

GETPRICER Gets products price from the
back-end system.

RPG Chapter 19,
“Implementing
Overridable Functions”
on page 413

BEDISCT Trigger program for the
discount table.

RPG Figure 384 on page 397

BEPRODT The trigger program for the
products table.

RPG Figure 318 on page 341

CLRCACH Signals the expiration of a
cached Web page.

RPG Appendix A, “Source
Code Samples” on page
463

EXTORDERR Retrieves new order from
Net.Commerce and creates
an order in the back-end
system

RPG Figure 381 on page 391

GETPRICE Overridable function called
by Net.Commerce to retrieve
price.

C++ Figure 413 on page 429

EXTORDER Overridable function called
by Net.Commerce to signal a
new order.

C++ Figure 378 on page 387

ORDERC Sends e-mail confirmation. CL Appendix A, “Source
Code Samples” on page
463
402 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Chapter 18. Generating Net.Commerce Reports

Net.Commerce lets you quickly set up and populate a mall from which shoppers
can browse and order. The site activity is written to the Net.Commerce database.
The Net.Commerce database schema is fully described in the book
Net.Commerce Commands, Tasks, Overridable Functions, and Database Tables.

You can query the data in the Net.Commerce database to gather important
statistics information about orders and sales. To query the database, you must be
familiar with the Net.Commerce database schema. You must also know the
names and contents of relevant tables and columns in the database.

This chapter briefly describes some of the possibilities for producing reports
based on the Net.Commerce database schema.

18.1 Integrating Seagate Crystal Report 6 with IBM Net.Commerce

The Net.Commerce Web site contains a downloadable tool that allows you to
gain access to your data through Seagate Crystal Reports. A set of 17
Net.Commerce-specific sample reports are available to help you start with
Net.Commerce reporting. You can download these reports and change or extend
them to fit your particular reporting and analysis needs. The reports include sales
reports and various summary statistics. To test and run these reports, you should
have a registered version of Seagate Crystal Reports version 6 and a working
ODBC connection to the Net.Commerce AS/400 server.

The reports with their installation and configuration manuals are available on the
Web at: http://www.software.ibm.com/commerce/net.commerce/isv/download.html

You can also use the reports to learn more about the Net.Commerce schema and
database relationship, so that you can create your own SQL request to the
Net.Commerce database. The collection of reports included with this package is
not intended to be an exhaustive list of all reports that your business may need or
all reports that can be generated from the Net.Commerce database.

Currently the following reports are available in this tool:

• Crystal reports Net.Commerce reports
• Interest Item Statistics
• Pending Order Statistics
• Order Status Statistics
• 5 Largest Pending Orders
• 5 Largest Completed Orders
• Sales by Product
• Sales by Product Category
• Sales by Merchant
• Sales by Merchant Category
• Sales by Shopper Group
• Sales by Time of Day
• Sales by Day of Week
• Sales by Geography
© Copyright IBM Corp. 1999 403

18.1.1 ODBC Driver Configuration
Crystal Reports connect directly to the Net.Commerce database using an ODBC
connection. We used the IBM Client Access ODBC driver to run the reports.

To configure an ODBC connection to the AS/400 system from the Windows 95
client using the IBM Client Access ODBC driver, complete these steps:

1. Click the Start button.

2. Follow this path: Setting —> Control Panel —> 32BIT ODBC

3. Click on the System DSN tab.

Figure 388. Configure ODBC — The ODBC Administrator

4. Click on the Add button. The Create Data Source window appears (Figure
389).

Figure 389. Configure ODBC — Create a New Data Source
404 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

5. Click on the Finish button. The client access ODBC setup appears.

Figure 390. Configure ODBC — Client Access Driver Set up

6. Fill in the following parameters:

In the Data source name, write a meaningful name for your data source. You
use this name in the Crystal Report set up.

In the description, write a short description to your data source.

In the System, specify the configured AS/400 system that contains the data
source. Click on the down arrow to select another system.

7. Click on the Server tab.

Figure 391. Configure ODBC — Specify the Net.Commerce Library

8. In the default library, specify the Net.Commerce schema library name. This
will be the name of the user profile who owns the schema.
Generating Net.Commerce Reports 405

9. Click OK

Figure 392. ODBC — End of Driver Setup

Your data source name should now appear on the screen. Any ODBC-compliant
application, including Crystal Reports, can connect to the Net.Commerce schema
using the data source name you chose.

To run the Crystal Reports, follow the instructions described in the manual
Integrating Seagate Crystal Reports v.6 with IBM Net.Commerce. This manual
was downloaded from the Web with the reports set.

18.2 Creating a User-Defined Reports Example

Let us assume, for example, that the mall administrator wants to receive a daily
report that shows them the total sales for that day. To create the report, we must
complete these steps:

1. Identify the relevant tables in the Net.Commerce database.

2. Identify the columns and the selection criteria.

3. Issue the SQL request for the required report. If the request will be sent from
an ODBC compliant application, we can use this application for report
generating.

18.2.1 Identifying the Relevant Net.Commerce Tables and Columns
The document Net.Commerce commands, Tasks, Overridable Function, and
Database Tables is the best source to find information regarding tables and
columns in the Net.Commerce database schema. In the previously mentioned
document, we see the following description for the ORDERS table:

"The ORDERS table contains information about orders that are placed by
shoppers. Each row corresponds to a single order. The products and items in
an order may have different shipping information. That is, the products and
items can be shipped to different locations."
406 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Since we will not use shipping information in this report, it seems that the
ORDERS table will be suited for our report. The ORDERS table also contains a
merchant reference number that is a foreign key to the merchants table.
Therefore, we may use the MERCHANT table to retrieve the merchant name.

The ORDERS table description contains a detailed explanation for each column.
The following columns are important for our example report request:

• ORMENBR — Merchant reference number that will be used to retrieve the
merchant name from the MERCHANT table.

• ORPRTOT — Total product price for the order. We will assume that all sales
are in the same currency.

• ORTXTOT — Total sales tax for this order.

• ORSTAT — Order status. We will exclude pending ("P") and cancelled ("X")
orders from our report.

• ORPSTMP — The date and time that the order was placed. We will use this
column to select only the orders placed today.

18.2.2 Creating the Example Report Using Lotus Approach
We use Lotus Approach to connect to the Net.Commerce database with ODBC
and produce our example report. It is important to understand that the same SQL
request we used in this example can be issued directly on the server (using
SQLUTIL for example). It can also be issued from another PC-ODBC-compliant
application such as a Seagate Crystal Report.

To produce the report, follow these steps:

1. Define an ODBC connection to the AS/400 server where the Net.Commerce
database is located as described in the previous section.

2. Launch Lotus Approach. Click Cancel on the Welcome page.

3. Click File —> Open edit SQL. The SQL Assistant window appears (Figure
393 on page 408).
Generating Net.Commerce Reports 407

Figure 393. Report Definition — Tables Selection

4. Click on the Add button. The Open dialog is displayed (Figure 394).

Figure 394. Report Definition — Select Database Type

5. Select files of the type ODBC Data Sources. You will see a list of available
data sources. Choose the data source name you defined earlier. Then, click
the Open button.

A list of available tables on the Net.Commerce database is displayed (Figure
395 on page 409).
408 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 395. Report Definition — List of Available Tables

6. Select the MERCHANTS table and click the Open button. Click the Add
button. Select the ORDERS table and click Open again.

You should now see the SQL assistant screen with the two table names.

Figure 396. Report Definition — Selected Tables

7. Click on the SQL tab to directly code the SQL statement (Figure 397 on page
410).
Generating Net.Commerce Reports 409

Figure 397. Report Definition — SQL Statement

8. Click on the Done button. You receive the report results as shown on Figure
398.

Figure 398. Define Reports — SQL Statement Results

Now that the SQL results are in the Lotus Approach worksheet, you can use the
Lotus Approach product to generate reports with grouping, summary, different
sort columns, and so on.

Let us consider a second example. The store manager wants to see totals from
orders in the last 30 days that are grouped by the merchant and invoice type. We
will use the MERCHANT and ORDERS tables to produce the report. The SQL
statement that we issue looks like this example:

SELECT MESTNAME, SUM(ORPRTOT) AS TOTAL_SALES,
SUM(ORTXTOT) AS TAX_TOTAL,

case orstat
when 'P' then 'PENDING'
when 'C' then 'COMPLETED'
when 'X' then 'CANCELLED'
else 'APPROVED' END AS STATUS

FROM ORDERS , MERCHANT

WHERE
ORMENBR = MERFNBR
AND DATE(ORUSTMP) > CURRENT_DATE - 30 DAYS
410 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

GROUP BY
MESTNAME, ORSTAT

ORDER BY MESTNAME,STATUS

This SQL statement returns the results shown in Figure 399.

Figure 399. Orders by Merchant and Status Example Report

You can now use Lotus Approach capabilities to manipulate and produce reports
using the result set of the SQL request.

Of course, these examples are very simple. For more complicated reports, you
may need to make a greater effort in finding the correct tables, columns, and SQL
statements that are required for the report.

You may find that the data stored in the Net.Commerce database schema can be
very useful to retrieve important statistics about your site. We recommend that
you take the time to become familiar with the Net.Commerce database schema
so that you can achieve the most from it.
Generating Net.Commerce Reports 411

412 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Chapter 19. Implementing Overridable Functions

Net.Commerce is a front-end application that provides the tools to quickly set up
a mall from which shoppers can browse and order. Net.Commerce uses API
functions to implement the shopping process. The ideal situation is to map the
entire site flow directly to existing Net.Commerce API. However, if Net.Commerce
meets only part of our requirements, we must tailor and extend the system by
using the Net.Commerce commands and overridable functions.

This chapter introduces the basic model of the Net.Commerce API and describes
the steps needed to implement user-written overridable functions.

19.1 The Basic Model

Commands and overridable functions represent the basic building blocks of the
Net.Commerce system. They are the components that allow you to extend the
base system. Typically, you have commands that call up tasks, which will be
mapped to overridable functions. Commands indirectly call overridable functions
through tasks. They can also indirectly call other commands, and overridable
functions can call other tasks. Then, these components access the database.

Figure 400. Net.Commerce Basic Model

At a high level, the idea is that a command represents a static business process
that delegates well-defined pieces of business logic to tasks. Through system
configuration, the administrator can map a given implementation for the business
logic to a task for a merchant. The same command is hard coded to call one or
more tasks. Depending on the merchant involved (a dynamic property based on
various input to the command), possibly different overridable functions will be
called. For example, let us consider a simplified version of the OrderItemProcess
command. This command takes in a list of SKUs mapped to quantities, and adds
them to orders. This command can accept a list of products from different
merchants. As part of adding a product to an order, we need to check the current

Net.Commerce documentation refers to AS/400 service programs as DLLs.

Note
© Copyright IBM Corp. 1999 413

inventory for the product and capture its price. This command’s generic algorithm
can be represented as shown here:

For every {sku=quantity} name/value pair in the HTTP request
{
CheckInventory(Sku, Quantity);
Price = GetPrice(Sku);
Add the product, with its price, and the quantity requested in an order
}

The designer of this command decided that it was not realistic to generically
check the inventory on a product, or compute its price. Therefore, tasks were
created so that a third party could implement these operations as overridable
functions. Also, the command can accept an arbitrary list of products and the
command can be executed in a mall context where several merchants cooperate.
As a result, several implementations can actually be invoked in the loop. The task
mechanism allows the separation of concern between the command writer
(whose job it is to make the command as generic as possible while still defining a
business process) and the overridable function writer (whose job is to implement
a specific piece of business logic for a merchant). Tasks also allow the ability to
transparently invoke different implementations for the same operation based on
merchant parameters.

The OF manager is the code that actually physically invokes an overridable
function. The command only specifies the task to be run, its parameters, and the
merchant for which it should be run. To be closer (but not exact) to the actual
implementation of a command, the algorithm would appear as shown here:

For every {sku=quantity} name/value pair in the HTTP request
{
Determine merchant for sku;
OF_Manager.Call(“CHK_INV”, Merchant, Sku, Quantity);
Price = OF_Manager.Call(“GET_BASE_UNIT_PRC”, Merchant, Sku, Quantity);
Add the product, with its price, and the quantity requested in an order
}

Here, each merchant involved can choose to either implement their own version
for each task or use the default versions that Net.Commerce ships.

Commands and overridable functions are actual pieces of code, but tasks are
not. Tasks are more like specifications. They are contracts that define the
behavior and the input and output parameters that a calling command and a
called overridable function must abide by for the system to function properly.
Tasks are really names for commands and overridable functions to communicate
with one another. Tasks are virtual objects that you would document as shown
here:

Task : CHK_INV
Semantics: Given a SKU S and a Quantity Q, checks whether there is enough
inventory for the user to order Q of S.
Input : SKU reference number “SKU_REF_NUM” (integer value in a String)
Quantity “QUANTITY” (floating point value in a String)
Output : None

In summary, commands and overridable functions are the components that make
up the runtime of a Net.Commerce server. They represent the business process
and logic involved in running an e-commerce site respectively. Commands invoke
414 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

overridable functions indirectly through tasks that define the interfaces.
Overridable functions are implemented separately from commands, and are
“plugged in” by a Net.Commerce administrator. Commands and overridable
functions share the same programming model, and are managed similarly at the
system level, but they fill a different purpose:

• Commands are entry points into the system. They correspond to a URL.
Overridable functions are used internally and are accessed indirectly through
tasks.

• Commands represent a business process (for example, process an order).
Overridable functions represent precise pieces of business logic (for example,
update product inventory).

• Overridable functions exist at the merchant level. Each merchant in a mall can
provide its own overridable functions for a given Task. Commands exist at the
system level. This does not mean that a merchant cannot replace a command.
It means that one URL cannot be mapped to multiple commands with the
system resolving which one to invoke based on the merchant.

• Commands have a complex runtime model. Overridable functions are
lightweight. They are basically function objects.

• Commands have access control.

• Mathematically speaking, commands are complex because they deal with a
larger model of the world (many commerce objects, other commands, and
tasks). Overridable functions are simple, meaning that their task is very well
defined. Paradoxically, commands are simpler to implement because they
work at a higher level. Overridable functions can be daunting to implement
because they deal with issues at a much more detailed level.

For example, we can look at the OrderProcess command described in Figure
401. The command invokes tasks such as UpdateInventory, DoPayment, and so
on. Later on, an actual implementation is provided for each task: an overridable
function.

Figure 401. Flow of the OrderProcess Command
Implementing Overridable Functions 415

In our example, the command contain three tasks. Each task defines an interface
between the command and the overridable function. They will be implemented by
Net.Commerce default overridable functions or by merchant-written overridable
functions. For example, if your shop uses a back-end application and inventory
should be updated on the back-end tables, you can create your own overridable
functions that implement the UpdateInventory task.

Commands are invoked by a URL request from the shopper browser. For
example, the following example shows product number 2 for merchant number
12345:

http://host_name/cgi-bin/ncommerce/ProductDisplay?prmenbr=12345&prrfnbr=2

19.2 Tasks and Overridable Functions

There are two types of tasks. Some tasks are meant to do processing-type work,
while others are meant to render or generate a page to be sent back to the
browser. Of these display tasks, view tasks and error tasks basically correspond
to a success or failure state. Display tasks are generally the last step that occurs
in a command. There are other types of tasks, but we do not expose them.
System tasks are important to know about since they are invoked, and they show
in the logs. However, they are reserved for IBM use and are not customizable by
end-users.

Overridable functions are implementations associated with tasks. An overridable
function implements the semantics and interface of a task so that a command can
call it. There is a direct relationship between an overridable function and the task
for which it was written. For an overridable function to be compatible with a task,
it must obviously implement a behavior that is compatible with that specified by
the task.

Overridable functions associated with display tasks, whether error or view, are
responsible for populating the HTTP request with a browser-viewable document.
The Net.Commerce system has implemented two overridable functions that use
Net.Data to render pages. One of these overridable functions takes in a file to
render, while the other uses its invoking task and information in the database to
get a filename back. Because Net.Data is the runtime renderer that
Net.Commerce uses, these are the only overridable functions that Net.Commerce
provides for all display tasks. However, you can code a view directly in your own
overridable function.

All other overridable functions are associated to process tasks. These functions
are meant to perform some computational work such as checking inventory for a
product, computing a discount price, or invoking a payment sub-system. In case
of an error, most process overridable functions invoke an error task. In general,
overridable functions can invoke tasks the same way commands would invoke
them. Obviously, an overridable function should not invoke the task under which it
itself was invoked. Otherwise, an infinite loop would ensue. Also, although there
is nothing that would prevent an overridable functions from calling a command,
such a situation would render the runtime model quite complex. Therefore, it is
not recommended.
416 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

19.3 General Issues

Now that you understand the basic architecture of Net.Commerce, it is time to
consider some general Net.Commerce issues before you begin the actual coding.

19.3.1 Command-Oriented Programming
When creating applications for the Internet, you are actually programming in a
client/server environment. The server is there to execute the commands that are
invoked by the client. After a command is finished, data is presented to the end
user, who usually sits in front of an Internet browser such as Netscape Navigator
or Microsoft Internet Explorer. This is in contrast to writing a program for a
stand-alone computer. Here, you only have to think about one user, and you can
always make requests to the user about a file name or any other input that you
need at that specific moment.

The programing method used in a client/server environment is more like sending
command requests to a server that performs all the execution logic and then
comes back with a response to the end user. This is much like the old-fashioned
text adventure games where you could type commands such as “go north,” “look,”
and “open door.” After such a command was processed, a new message was
displayed to the end user saying, for example, “the door is already open” or “you
need a key to open the door.”

At this stage, we already see a pattern emerging. We need to have a way of
getting command requests from an end user, executing program logic (the
commands and overridable functions), and displaying data to the end user.

When implementing an e-commerce solution, the processing logic is never
simple. It can involve such processes as performing advanced calculations,
working against the database, working side-by-side with systems like SAP,
handling EDI documents, and managing MQ series queues. Also the internal
logic of the store must be taken care of. We can in fact extend our similarity to
adventure programs and create a store where you issue such commands as “put
three eggs in the shopping cart,” “look at the bread shelf,” or “give the shopping
cart to the cashier.” In fact, these commands have their Net.Commerce
equivalents in the InterestItemAdd, CategoryDisplay, and OrderItemProcess
commands. Instead of just presenting the results as plain text, Net.Commerce
generates HTML pages that can be viewed by the end user.

19.3.2 Programming with C++
C++ is the programming language for Net.Commerce commands and overridable
functions. C++ is an industry-standard programming language that has been
used over and over in a multitude of large-scale projects, including complete
operating systems. It has everything that is required for performing advanced
systems programming. Do not be afraid of using C++ when programming in
Net.Commerce, because you do not have to know every aspect of the language
to use it.

Because the command execution is done on the server side, you never have to
use class libraries for creating menus, windows, and other operating-system
dependent functions. You quickly find that you are using some specific code
patterns over and over again when you are doing command programming. You
can also use C++ templates and call your own RPG programs from the C++
Implementing Overridable Functions 417

template. As mentioned before, you do not need to know everything about C++ to
write Net.Commerce commands and overridable functions. However, if you are
not familiar with such terms as class, object, instance, or method, you are
encouraged to read a bit more about C++.

The AS/400 system supports C++ compiling in these two ways:

• Uses the VisualAge for C++ compiler (5716CX4 for OS2 client, 5716CX5 for
windows 95/NT client)

• Uses the AS/400 native C++ compiler PRPQ 5799-GDW

19.3.3 Net.Commerce Classes
Net.Commerce includes a number of C++ classes used to program commands
and overridable functions. These classes provide the framework for building the
overridable functions and useful tools for performing common operations such as
manipulating environment variables and accessing the database.

An overridable function may need to retrieve values from the HTTP request and
use them during its processing. The Web classes provide methods for performing
these functions. For example, the HttpRequest class is used to get or set HTTP
request information. The HttpResponse class is used to set or get the HTTP
document to be returned to the browser.

When a task is called from a command, parameters may be passed to the
overridable functions using the NC_Environment class. When overridable
functions return, it may be expected to pass a result in the NC_Environment. For
example, the line of code is used to receive a value from the environment
variables:

string * MerchantRefNum = (string *) Env.Seek(_PARAM_NAME_MERCHANT_REF_NUM);

You can access the Net.Commerce database from an overridable function. The
database classes allow you to construct and execute SQL statements and
retrieve the statements results. When you wish to access the database, you
should acquire the current connection using the following statement:

DataBase* DB = (DataBase *) Env.seek(NC_Environment::_VAR_MAIN_DATABASE);

You can construct an SQL statement as a string and use the SQL class to
execute it. You can use the row class to retrieve each row that is retrieved.

For a detailed explanation and description of each class and for coding
guidelines, consult the guide Commands, Tasks, Overridable Functions and the
E-commerce Framework.

19.3.4 Other Resources
Overridable functions allow you to extend and improve the functionality of
Net.Commerce. However, their programming model is not trivial. To better
understand the programming environment and classes, consider these
resources:

• Commands, Tasks, Overridable Functions and the E-commerce Framework

This document is available in softcopy format only from the Net.Commerce
Web site. Refer to E.4, “Other Resources” on page 536, for information about
obtaining this document.
418 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

• Net.Commerce Commands, Tasks, Overridable Functions, and Database
Tables

This document is available in the documents directory of your AS/400 after
you install the Net.Commerce product. The directory path is:
/QIBM/ProdData/NetCommerce/html/MRI2924/ncbooks

• Building an E-commerce Solution, SG24-5417, Chapters 12 through 17.

19.4 Overridable Function by Example

Here are the steps for implementing your own overridable function:

1. Identify the parts of your site where the default behavior of Net.Commerce
does not meet the requirements.

2. Define the new behavior that you need. Design the best solution to implement
your needs.

3. Code and test a new overridable function that will implement the new
behavior.

4. Replace the default overridable function with your own overridable functions
using Net.Commerce administration forms.

19.4.1 Identifying the Need for New Overridable Functions
In the design phase of our site, we created a navigation flow diagram. Next, we
tried to map the flow diagram to the Net.Commerce commands. We found out
that we need to use the OrderDisplay command.

Looking in the documentation, we find that, among other things, the command
OrderDisplay retrieves the product price by using the task
GET_BASE_SPE_PRC. The default overridable function for the
GET_BASE_SPE_PRC task is named GetBaseSpePrc_1.0(IBM,NC).

Here is a brief description of the GetBaseSpePrc_1.0(IBM,NC) overridable
function:

• Retrieves the product and item prices from the PPPRC column in the
PRODPRCS table for the appropriate shopper group and for the current date
and time.

• Orders the result by the precedence level that is specified in the PPPRE
column in the PRODPRCS table, and inversely by product number.

• Selects the first row that is returned, which is the one with the highest
precedence, and returns its price.

This behavior is not suitable for our store since we want to receive realtime prices
from our back-end system. We must replace the default behavior to meet our
needs. We will write our own overridable function to do that.

19.4.2 Defining and Designing the New Behavior
Since our pricing algorithm is located on the back-end system, we want to use the
exact algorithm on the Net.Commerce site. The back-end system uses its own
tables to calculate product’s price. The correct approach, in our case, is to get the
price from the back-end system by using the back-end pricing mechanism.
Implementing Overridable Functions 419

The Net.Commerce solution should look for reuse where possible. This reduces
both the time and the cost to make the site. Many times, the back-end system
does not have an existing API that Net.Commerce can use directly for integrating.
For example, the price calculation can be done in an RPG procedure in an online
transaction program. In this case, you have to invest more effort in integrating the
back-end system and Net.Commerce.

In our example, we discovered that the existing back-end system has an API
called GETPRICER, which we can use for realtime price retrieval. The default
GetBaseSpePrc_1.0(IBM,NC) overridable function will be replaced by our new
overridable function, which is called GETPRICE. GETPRICE will call the
back-end API GETPRICER to return realtime pricing to the Net.Commerce
OrderDisplay command. Figure 402 describes the elements of our solution.

Figure 402. Price Retrieval Mechanism

This approach is only an example of Net.Commerce customizing. Net.Commerce
is a complex product with many possible areas of customizing. The important
point to remember is that if there is a change that you want to make, there is
almost always a way to implement it.

19.4.3 Coding the Overridable Function
We are now ready to set up the programming environment and code our
overridable functions. This process is described in the following sections.

19.4.3.1 Setting Up the Environment
Overridable functions are an extension to the Net.Commerce server. They must
be written in C++ because the server is written in C++ and has a specific
interface to which the overridable functions should conform. As mentioned in
19.3.2, “Programming with C++” on page 417, use the C++ code only as a
wrapper to your favorite language.

In our example, we used the C++ compiler PRPQ 5799GDW. Install 5799GDW
using the RSTLICPGM command as shown in Figure 403 on page 421.

N e t .C o m m e r c e
c o m m a n d

O r d e r D is p la y

N e t . C o m m e r c e T a s k
G E T _ B A S E _ S P E _ P R I C E

G E T P R I C E o v e r r id a b le
f u n c t io n

G E T P R IC E R b a c k - e n d
s y s t e m A P I
420 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 403. Install the C++ PRPQ

To verify your installation issue the command DSPSFWRSC. The command output
should include the C++ PRPQ, as shown in Figure 404.

Figure 404. Verifying the C++ Installation

To compile your code, you need system openness includes, which are an optional
part of the operating system. To verify that you have the includes, issue the
command GO LICPGM and choose option 10 (Display installed licensed programs).

Restore Licensed Program (RSTLICPGM)

Type choices, press Enter.

Product 5799GDW Character value
Device Devname Name, *SAVF

+ for more values
Optional part to be restored . . *BASE *BASE, 1, 2, 3, 4, 5, 6, 7...
Type of object to be restored . *ALL *ALL, *PGM, *LNG
Language for licensed program . 2924 Character value, *PRIMARY...
Output *NONE *NONE, *PRINT
Release *FIRST Character value, *FIRST
Replace release *ONLY Character value, *ONLY, *NO

Display Software Resources
System: AS01

Resource
ID Option Feature Description

5769XZ1 *BASE 2924 OS/2 Warp Server for AS400 (WS400)
5798AF3 *BASE 5050 AFP PrintSuite for AS/400
5798AF3 *BASE 2924 AFP PrintSuite for AS/400
5798AF3 1 5101 Advanced Print Utility for AS/400
5798AF3 1 2924 Advanced Print Utility for AS/400
5798AF3 2 5102 AFP Toolbox for AS/400
5798AF3 3 5103 Page Printer Formatting Aid for AS/400
5798AF3 3 2924 Page Printer Formatting Aid for AS/400
5798NC3 *BASE 5050 IBM Net.Commerce for AS/400
5798NC3 *BASE 2924 IBM Net.Commerce for AS/400
5798TBY *BASE 5050 IBM Facsimile Support for AS/400
5798TBY *BASE 2924 IBM Facsimile Support for AS/400
5799GDW *BASE 5050 ILE C++ FOR AS/400
5799GDW *BASE 2924 ILE C++ FOR AS/400

More..
Press Enter to continue.
Implementing Overridable Functions 421

Figure 405. Verify the Openness Include

The C++ PRPQ is installed into library QCXXN. There are two compile
commands in this library. The Create C++ Module (CRTCPPMOD) command
creates C++ modules. The Create Binding C++ (CRTBNDCPP) command creates
C++ programs. It is possible to duplicate the two commands to the library in your
usual library list so that you will not have to add QCXXN to your library list.
Duplicate the commands as shown in Figure 406.

Figure 406. Duplicating the Compile Commands

The C++ PRPQ primarily supports the AS/400 "root" file system. However, you
can place your source code in the /QSYS.LIB file system. The files that are
needed to create a command or overridable function should always be kept in
one directory. We recommend that you place all directories for your overridable
functions in the same parent directory. Figure 407 on page 423 displays the
directory structure that we used in our example. It is found on the AS/400 IFS.

Display Installed Licensed Programs
System: AS01

Licensed Installed
Program Status Description
5769SS1 *COMPATIBLE OS/400 - Library QGPL
5769SS1 *COMPATIBLE OS/400 - Library QUSRSYS
5769SS1 *COMPATIBLE Operating System/400
5769SS1 *COMPATIBLE OS/400 - Extended Base Support
5769SS1 *COMPATIBLE OS/400 - Online Information
5769SS1 *COMPATIBLE OS/400 - Extended Base Directory Support
5769SS1 *COMPATIBLE OS/400 - Example Tools Library
5769SS1 *COMPATIBLE OS/400 - AFP Compatibility Fonts
5769SS1 *COMPATIBLE OS/400 - *PRV CL Compiler Support
5769SS1 *COMPATIBLE OS/400 - Host Servers
5769SS1 *COMPATIBLE OS/400 - System Openness Includes
5769SS1 *COMPATIBLE OS/400 - GDDM
5769SS1 *COMPATIBLE OS/400 - Common Programming APIs Toolkit
5769SS1 *COMPATIBLE OS/400 - Ultimedia System Facilities

More...
Press Enter to continue.

F3=Exit F11=Display release F12=Cancel F19=Display trademarks

Create Duplicate Object (CRTDUPOBJ)

Type choices, press Enter.

From object crtcppmod Name, generic*, *ALL
From library qcxxn Name, *CURLIB
Object type *cmd *ALL, *ALRTBL, *AUTL...

+ for more values
To library qgpl Name, *SAME, *FROMLIB...
New object *OBJ Name, *SAME, *OBJ
422 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 407. Directory Tree for Overridable Functions

To code the program, we mapped the integrated file system directory as a PC
network drive and used a PC-based editor to edit files in that path. Another
alternative is the use of the EDTF editor described in 7.3, “Stream File Handling
Tools” on page 111.

To properly link your overridable function, we recommend that you create a
binding directory, which contains the Net.Commerce environment as described in
Figure 408.

The first step is to create the binding directory. Type CRTBNDDIR and press F4.

Figure 408. Creating Binding Directory for Net.Commerce

After the binding directory was created, add the relevant Net.Commerce service
programs. Type ADDBNDDIRE and press F4. Type the service program names as
shown on Figure 409 on page 424.

Create Binding Directory (CRTBNDDIR)

Type choices, press Enter.

Binding directory > NETCBND Name
Library > NETCBE Name, *CURLIB

Authority *LIBCRTAUT Name, *LIBCRTAUT, *CHANGE...
Text 'description' > 'Net.Commerce binding directory'
Implementing Overridable Functions 423

Figure 409. Add the Net.Commerce Service Programs

19.4.3.2 Copying the Overridable Functions Skeleton Code
The C++ source shown in Figure 410 on page 425 is a skeleton for the
Net.Commerce overridable function. An overridable function is like a program with
one "sub-routine," which is called the process routine. The directory
/qibm/proddata/netcommerce/adt/samples/tutorial contains some overridable
function examples. The source code in Figure 410 on page 425 describes an
empty overridable function.

Add Binding Directory Entry (ADDBNDDIRE)

Type choices, press Enter.

Binding directory > NETCBND Name
Library > NETCBE Name, *LIBL, *CURLIB...

Object specifications:
Object > QNECONTAIN Name, generic*, *ALL
Library > QNETCOMM Name, *LIBL

Object type > *SRVPGM *SRVPGM, *MODULE

Object > QNEMESSAGE Name, generic*, *ALL
Library > QNETCOMM Name, *LIBL

Object type *SRVPGM *SRVPGM, *MODULE

Object > QNECOMMON Name, generic*, *ALL
Library > QNETCOMM Name, *LIBL

Object type *SRVPGM *SRVPGM, *MODULE

Object > QNEDBC Name, generic*, *ALL
Library > QNETCOMM Name, *LIBL

Object type *SRVPGM *SRVPGM, *MODULE

Object > QNEPAYOBJS Name, generic*, *ALL
Library > QNETCOMM Name, *LIBL

Object type *SRVPGM *SRVPGM, *MODULE

Object > QNEPAYMSG Name, generic*, *ALL
Library *LIBL Name, *LIBL

Object type *SRVPGM *SRVPGM, *MODULE
+ for more values .
424 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 410. Net.Commerc Overridable Functions Skeleton Code

Here are some comments about the skeleton (see the corresponding numbers in
Figure 410):

1. The objects.pch include file has all the definitions for Net.Commerce.

2. This line defines the overridable functions. The overridable function name is
NewOF.

3. The constructor and destructor is usually empty.

4. The process method is called by Net.Commerce. The function should return
"true" for success and "false" for failure so that the correct error handler is
invoked. The function communicates with the calling command by using the
NC_Environment object.

5. This line of code is used by the Net.Commerce server to locate and initialize
the overridable functions and must correspond to an entry in the overridable
functions database table.

Now, try to compile the skeleton to verify the environment. Type CRTCPPMOD and
press F4. The CRTCPPMOD command prompt is shown. Type the command
parameters as shown in Figure 411 on page 426.

#ifdef AS400
#include "coibm.h"
#endif

#include "objects/objects.pch" (1)

#if defined(WIN32)
#define __DLL_EXPORT__ __declspec(dllexport)

#else
#define __DLL_EXPORT__

#endif

//#define __TRACE_NEW_OF__
#ifdef __TRACE_NEW_OF__
typedef TraceYes Trace;
#else
typedef TraceNo Trace;
#endif
static Trace trace ("NEW_OF ("__FILE__")");

class __DLL_EXPORT__ NewOF : public NC_OverridableFunction (2)
{
public:
NewOF() { }
virtual ~NewOF() { }(3)
void operator delete (void *p){ ::delete p; }
virtual void FailedRegistration (NC_RegistrationID &RegID, const ErrorMsg_Reg

*Err)
{ }
virtual bool Process (const HttpRequest &Req, HttpResponse &Res, NC_Environment

&Env); (4)
{
return true;

}
};
const ClassName NewOF::_STR_ThisClass("NewOF");
static bool X1 = NC_ApiManager::GetUniqueInstance().RegisterApi("IBM", "NC",
"NewOF", 1.0, new NewOF); (5)
Implementing Overridable Functions 425

Figure 411. Creating C++ Module Using the C++ PRPQ

The previous example creates the skeleton module, and names it ANYMODULE.
The module is placed in the current library. The source to compile the module is
read from an IFS file named /QIBM/UserData/NetCommerce/instance/prod/
Customoverridable functions/skeleton/skeleton.cpp. The output of the
compilation is written to an IFS file named skeleton.lst.

Table 23 briefly describes the main CRTCPPMOD command parameters.

Table 23. Command CRTCPPMOD Parameters

Parameter Parameter Description

Modul (MODULE) The name and library of the created module.
In the Net.Commerce environment, this
module will be linked to a service program.

Source file Specifies the source physical file name and
library of the file containing the C++ source
code that you want to compile. All library, file,
and member entries are converted to an
Integrated File System filename before
being processed.

Create C++ Module (CRTCPPMOD)

Type choices, press Enter.

Module > ANYMODULE Name
Library *CURLIB Name, *CURLIB

Source file QCPPSRC Name
Library *CURLIB Name, *CURLIB

Source member *MODULE Name, *MODULE
Source stream file > '/QIBM/UserData/NetCommerce/instance/prod/Cu
stomoverridable functions/skeleton/skeleton.cpp'

...
Text 'description' > 'Test Net.Commerce environment'

Additional Parameters

Output Options:
Output file name > '/QIBM/UserData/NetCommerce/instance/prod/Cu

stof/list/skeleton.lst'

Define names AS400
Include directory >
'/QIBM/ProdData/NetCommerce/adt/include'
426 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

19.4.4 Coding Your Overridable Function
In our example, the overridable function GETPRICE is simple. It should perform
these actions:

• Get the product number from the environment

• Cast the environment variable and call the RPG program GETPRICER to
retrieve realtime pricing from the back-end system

• Get the result from the RPG program and return it to the calling command by
using the environment variable

Refer to Chapter 17, “Interfacing to Our Back-End Business System” on page
383, for a description of the back-end system tables involved in the price retrieval
algorithm.

Figure 412 on page 428 and Figure 413 on page 429 show the GETPRICE
overridable function code.

Source stream file (SRCSTMF) Specifies the path name of the stream file
containing the C++ source code that you
want to compile. The path name can be
either absolutely or relatively qualified. An
absolute path name starts with '/'; a relative
path name starts with a character other than
'/'. If absolutely qualified, the path name is
complete. If relatively qualified, the path
name is completed by pre-pending the job's
current working directory to the path name.
The SRCMBR or SRCFILE parameters
cannot be specified with the SRCSTMF
parameter.

Output file name(OUTPUT) *NONE
Does not generate the compiler listing.
When a listing is not required, this default
should be used because compile-time
performance may improve.
file-name — Specify the name of a basic
IFS listing file. In our example, we used the
file name skeleton.lst .

Include directory(INCDIR) Specifies the name of one or more
directories with include files. In the
Net.Commerce environment, you must
include the following directory on your
include
/QIBM/ProdData/NetCommerce/adt/include.
In addition to the specified directory, the
source directory is always searched for user
include files.

Define names (DEFINE) Specifies preprocessor macros that take
affect before the file is processed by the
compiler. When compiling in the
Net.Commerce environment, the defined
AS/400 system must be included in your
define list.

Parameter Parameter Description
Implementing Overridable Functions 427

Figure 412. GETPRICE Overridable Function (Part 1 of 2)

//***/
// This function will call the back end system api in order */
// to calculate an item price. */
// */
// Author: shahar mor */
// Provided AS IS */
//***/

#ifdef AS400 (1)
#include "coibm.h"

#endif

#include <bcd.h> // For working with packed decimal fields (2)
#include "objects/objects.pch" // Net.Commerce include

// The following define is for compatibility with other platform compilers

#if defined(WIN32)
#define __DLL_EXPORT__ __declspec(dllexport)

#else
#define __DLL_EXPORT__

#endif

// Handling the trace option. Un remark the next line to enable trace.
//#define __TRACE_GetPrice__
#ifdef __TRACE_GET_TRACE__
typedef TraceYes Trace;
#else
typedef TraceNo Trace;
#endif

// Prototype the AS400 RPG program. We demonstrate OPM rpg program invocation.

extern "OS nowiden" void CalcPrice(char[],_DecimalT<7,0>,_DecimalT<7,0>,char[]); (3)
#pragma map(CalcPrice ,"GETPRICER")

static Trace trace ("GetPrice ("__FILE__")");

class __DLL_EXPORT__ GetPrice : public NC_OverridableFunction
{
public:
GetPrice() { }

virtual ~GetPrice() { }

void operator delete (void *p){ ::delete p; }

// Handle failed registration */ (4)

virtual void FailedRegistration (NC_RegistrationID &RegID, const ErrorMsg_Reg *Err)
{
error << indent << "Error : GetPrice Registratio failed" << endl;

}

// Main function */

virtual bool Process (const HttpRequest &Req, HttpResponse &Res, NC_Environment &Env)
{

char ReturnPrice[14]={0}; // Return price from the RPG
char InputSku[13] = " "; // Input blank SKU to the RPG

// Defien the environment(We will only use the product number and return price (5)
static const StringWithOwnership

_PARAM_NAME_MERCHANT_REF_NUM("MERCHANT_REF_NUM");
static const StringWithOwnership _PARAM_NAME_PRODUCT_REF_NUM("PRODUCT_REF_NUM");
static const StringWithOwnership _PARAM_NAME_PRODUCT_PRICE("PRODUCT_PRICE");

static const StringWithOwnership _PARAM_NAME_CURRENCY("CURRENCY");
428 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 413. GETPRICE Overridable Function (Part 2 of 2)

Note these remarks for the GetPrice source code:

1. The coibm.h is included because we will compile the code with the #define
AS/400.

2. The bcd.h include is required in our program due to the fact that the RPG
program GETPRICER works with packed decimal parameters.

3. The RPG program GETPRICER is prototyped. The prototype in our example
is suitable for all OPM programs.

4. The failed registration routine is optional. Net.Commerce calls this function in
case of failure to register the overridable function. In our example, we simply
documented the failure.

// Get function parameters from the env. (6)
// 1. The merchant number

String* MerchantRefNum = (String*) Env.Seek(_PARAM_NAME_MERCHANT_REF_NUM);
if (MerchantRefNum == NULL)
{

error << indent << "Error : Cant get merchant number " << endl;
return false;

}
// 2. The product number. This is Net.Commerce number. we will derive the real SKU
// number in the RPG program.

String* ProductRefNum = (String*) Env.Seek(_PARAM_NAME_PRODUCT_REF_NUM);
if (ProductRefNum == NULL)
{

error << indent << "Error : Cant get product number " << endl;
return false;

}

// 3. Get the price. This will contain the returned price from the RPG program

String* ProductPrice = (String*) Env.Seek(_PARAM_NAME_PRODUCT_PRICE);
if (ProductPrice == NULL)
{

error << indent << "Error : Cant get product price point " << endl;
return false;

}

// 4. Get the currency. You can return currency information here(Not used in our example)

String* Currency = (String*) Env.Seek(_PARAM_NAME_CURRENCY);
if (Currency == NULL)
{

error << indent << "Error : Cant get Currency info " << endl;
return false;

}

// The following 2 lines handle packed decimal. it will convert string to packed (7)

_DecimalT<7,0> ProductNumber = __D((char *) ProductRefNum->c_str());
_DecimalT<7,0> CustomerNumber = __D("0");

// Call the RPG program to get real time pricing
CalcPrice(InputSku,ProductNumber,CustomerNumber,ReturnPrice);

*ProductPrice << ReturnPrice; (8)
return true;

}
};
static bool X2 = NC_ApiManager::GetUniqueInstance().RegisterApi("IBM", "NC",

"GetPrice", 1.0, new GetPrice);
Implementing Overridable Functions 429

5. The overridable function interacts with the calling program through
environment variables. Our example uses only part of the available
environment variables.

6. The env.seek operation actually receives the value of the requested
environment variable.

7. The __D constructor converts strings to a packed decimal. Our code assumes
the validity of the input parameters since the calling command performed the
check parameters function.

8. ReturnPrice is calculated in the RPG program, and we set the price
environment variable to the calculated price.

The back-end system calculates the price using the RPG program GETPRICER.
The GETPRICER program receives the product number from the overridable
function, converts the Net.Commerce product number to the back-end system
product number, and looks up the product price in the back-end product and
discount table. Then, it calculates the price for the "Web customer" and returns
the price to the GETPRICE overridable function.

To make our example complete, we list the GETPRICER source code in Figure
414 on page 431 through Figure 416 on page 433.

Keep these points in mind:

• Do not return number strings with a comma. For example, the string
1,235.24 will not be treated as a number by Net.Commerce.

• Our RPG program appended null to the result price. Failure to append null
to the result string causes problems.

• If an update to the Net.Commerce tables is required, do not use native data
base support to perform it. Use the Net.Commerce database class methods
to update Net.Commerce tables.

Important
430 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 414. GETPRICER RPG Program Source Code (Part 1 of 3)

H**
H* This program demonstrates the API in the existing system for price calculation
H*
H* Parms:
H* InSku - Product SKU in the back end system. If coming
H* from Net.Commerce this parameter will be blank.
H* InProd - Product number. This is the product number in
H* the net commerce system.
H* if this program is called from regular back end
H* operation this parameter will be 0.
H* product number.
H* InCust - The customer number to calculate price for.
H*
H* OuPric - The calculated price. The price will be null
H* terminated if the request was originated by
H* Net.Commerce
H*
H* Files:
H* BEPROD - Back end system products file
H* BEDISC - Back end system discounts file
H* PRODUCT - Net.Commerce product file
H*
H*
H* Author: Shahar mor
H* Provided AS IS

H**
H*
HDFTACTGRP(*NO) CTGRP(*CALLER) ALWNULL(*INPUTONLY) (1)
F*
F* Products File
FBEPROD IF E K DISK RENAME(BEPROD:RBEPROD)
F
F* Discounts file
FBEDISC IF E K DISK RENAME(BEDISC:RBEDISC)
F
F* Net.Commerce product file
FPRODUCT IF E K DISK RENAME(PRODUCT:RPRODUCT) (2)
D*
FLOGNETC O E DISK (3)
D* Parameter Structure
D InSku S 12 (4) Product number
D InProd S 7 0 Product number
D InCust S 7 0 Customer Number
D OuPric S 14 Returned Price
D*
D* Keys for discount file
D KySku S 12
D KyCust S 7 0
D*
D* Key for Net.Commerce product file
D DS
D KyNprod 1 4B 0 (5)
D*
D* Stand alone working fields
D CPric S 13 2 Returned Price
D Error S 1 Returned Price
D CurProd S 7 0
D Len S 3 0
D*
D* Constants
D Null C CONST(X'00') 'X'00'
D Regular C CONST(0)
D*
Implementing Overridable Functions 431

Figure 415. GETPRICER RPG Program Source Code (Part 2 of 3)

C**
C* Main logic

C**
C*
C *ENTRY PLIST
C PARM InSku
C PARM InProd
C PARM InCust
C PARM OuPric
C*
C KyDisc KLIST
C KFLD KySku
C KFLD KyCust
C
C* Request from Net.Commerce ?
C EVAL OuPric = *BLANK
C EVAL Error = *OFF
C IF InProd <> Regular
C EXSR GetSku
C ELSE
C EVAL KySku = InSku
C ENDIF
C
C* Check for product existence
C KySku CHAIN(E) RBEPROD
C IF Not %found
C MOVE *ON Error
C ENDIF
C*
C IF Error = *OFF
C*
C IF InProd <> Regular
C Eval KyCust = 0
C ELSE
C Eval KyCust = InCust
C ENDIF
C*
C Eval CPric = BePric
C*
C KyDisc CHAIN(E) RBEDISC
C IF %Found
C EVAL CPric = CPric * (100 - BdPct) / 100
C ENDIF
C
C IF InProd <> Regular
C EVAL Oupric = %trim(%editc(Cpric:'3'))
C ' ' CHECKR OuPric Len
C Eval %subst(Oupric:Len + 1:1) = Null (6)
C ELSE
C EVAL Oupric = %trim(%editc(Cpric:'3'))
C ENDIF
C*
C ELSE
C*
C IF InProd <> Regular
C EVAL Oupric = Null
C ELSE
C EVAL Oupric = *BLANK
C ENDIF
C*
C ENDIF
C*
C EXSR LOGRQS
C RETURN
432 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 416. GETPRICER RPG Program Source Code (Part 3 of 3)

Note these remarks in regard to the GETPRICER program (the numbers
correspond to those shown in Figure 414 on page 431 through Figure 416):

1. The RPG program has to map the product number from the Net.Commerce
product number to the back-end system product number. To perform the map
operation, the RPG program has to read from the PRODUCTS table in
Net.Commerce. The PRODUCT table contains null capable columns so we
ask the RPG program to allow null by specifying ALWNULL(*INPUTONLY).

2. The product table is the Net.Commerce main product table. We use this table
to map the Net.Commerce product number to our back-end system product
number.

3. The log table is optional. We used this table to track requests coming to the
GETPRICER API.

4. The input parameters must match the parameter definition in the calling
overridable function GETPRICE. For example, the customer number is packed
with a length (7,0). It is important to see that you can easily pass parameters
from and to the C++ GETPRICE.

5. To perform a chain operation to the Net.Commerce product table, we must
define the key as binary. Most of the Net.Commerce keys will be of type
integer, which requires bin(4) in the RPG D specifications.

6. The returned price is eventually passed by the overridable function to
Net.Commerce using environment variables. Environment variables are
always null terminated strings. We used the %EDITC built-in function to
convert the numeric price to a character string and then appended null in the
end of the string. We converted to string in the RPG program. The conversion
can also be done on the calling C++ program.

C**
C GetSku BEGSR
C**
C*
C* Get the back end product number from the Net.Commerce number
C*
C*
C Z-ADD InProd KyNprod
C KyNProd CHAIN RPRODUCT
C IF %Found
C EVAL KySku = %subst(PRNBR:1:12)
C ELSE
C EVAL KySKU = *BLANK
C ENDIF
C ENDSR
C**
C LOGRQS BEGSR
C**
C*
C EVAL XnProd = InProd
C EVAL XnCust = XnCust
C EVAL XnSku = InSku
C EVAL XnPric = OuPric
C WRITE RLOG
C ENDSR
Implementing Overridable Functions 433

19.4.5 Compiling the Overridable Function
You must now compile your overridable function and add it to a service program.
Figure 417 shows the CL code segment to do this.

Figure 417. Compile the GETPRICE Service Program

The following compile created the module in the library QTEMP and with no
debug information. You may want to include debug information when you are in
the development stage of your overridable function as described in 19.5.1,
“Compiling the Overridable Function with Debug Information” on page 437. The
service program you created is loaded by the Net.Commerce startup process.

19.4.6 Registering the Overridable Function in the Database
For an overridable function to exist in the system, it has to be registered in the
database. Otherwise, Net.Commerce will not know that the OF exists and will not
load it on the server startup. Currently, this registration is done by manually
inserting a row into the OFS table as shown here:

insert into ofs (refnum,dll_name,vendor,product,name,version, description)
Select max(refnum) + 1, ’serviceprogram’
,'IBM','NC',’overridablefunctionname’, 1.0, ’Some description’ from ofs

In Appendix A, “Source Code Samples” on page 463, we provide an example of
the REGOFS command for overridable function database registration. Refer to
Net.Commerce Commands, Tasks, Overridable Functions, and Database Tables
for a detailed description of the OFS table.

19.4.7 Assigning the Overridable Function
Once the overridable function is in the OFs table, you can assign the overridable
function to a task by using ncadmin forms. To assign the overridable functions,
complete the following steps:

1. Select the Net.Commerce administration URL from your browser, for example
http://myserver/ncadmin/.

/***/
/* Create C++ module and service program for Net.Commerce */
/* */
/* Uses source from stmf */
/***/

PGM PARM(&Stmf &Function)

DCL VAR(&Stmf) TYPE(*CHAR) LEN(64)
DCL VAR(&Function) TYPE(*CHAR) LEN(10)
DCL VAR(&Text) TYPE(*CHAR) LEN(50)

CRTCPPMOD MODULE(QTEMP/&FUNCTION) SRCSTMF(&STMF) +
DEFINE(AS400) +
INCDIR('/Qibm/Proddata/netcommerce/adt/incl+
ude')

CHGVAR VAR(&TEXT) VALUE('Implementation of +
Net.Commerce OF-' *BCAT &function)

CRTSRVPGM SRVPGM(QNETCOMM/&FUNCTION) +
MODULE(QTEMP/&function) EXPORT(*ALL) +
TEXT(&text) BNDDIR(NETCBND)

MONMSG MSGID(CPF0000)

ENDPGM
434 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

2. The Net.Commerce administrator is shown. Type the administrator name and
password. Click on Logon.

The Net.Commerce administrator window appears in your browser as shown
in Figure 418.

Figure 418. Net.Commerce Administrator Window

3. Click on Site Manager. The Net.Commerce site manager window appears as
shown in Figure 419.

Figure 419. Net.Commerce Site Manager Window
Implementing Overridable Functions 435

4. Click on Task Management in the left frame. The Net.Commerce Task
Management window is displayed as shown in Figure 420.

Figure 420. Select Task for Assignment

5. Select the Process as the Task Type. Enter the task name as
get_base_spe_prc. Select Store for the scope of the change we will make.

6. Click on the Task Assignment link on the left side of the display. The
Overridable Function Assignment window appears (Figure 421).

Figure 421. Assign Task to Overridable Function

7. Select the store to which to assign the overridable function. Then, from the
bottom of the window, select the overridable function GETPRICE that we
wrote. Click on the UPDATE button.
436 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

In our example, the store ShopITSO implements the task GET_BASE_SPE_PRC
by using the overridable function GetPrice. Prices are retrieved from the
back-end system.

19.5 Testing and Debugging the Overridable Function

In your site implementation, you will most likely use a test instance for developing
and testing new commands and overridable functions. Once your overridable
function is compiled and registered, restart the Net.Commerce server to let
Net.Commerce load it. After Net.Commerce is restarted, it is time to test and
debug the overridable function. Debugging the overridable function can be tricky
since the function can run on any of the Net.Commerce server jobs.

To test and debug the overridable function, complete these tasks:

1. Compile the function modules with the debug information.

2. Identify the command that activates the task, which invokes the overridable
function. Start the service job for each Net.Commerce job.

3. Start debug.

19.5.1 Compiling the Overridable Function with Debug Information
The compiled source must include debug information to be debugged. The
optimization level must be set to a minimum level for variables to be displayed
and modified while debugging. Figure 422 on page 438 shows the parameters
that you must specify on the CRTCPPMOD screen to enable debug on your
overridable function.
Implementing Overridable Functions 437

Figure 422. Create C++ Module with Debug Information

In our example, we called the RPG program GETPRICER to retrieve pricing. To
enable source debugging on the RPG program, set the DBGVIEW parameter on
the CRTBNDRPG command to *LIST or *SOURCE.

19.5.2 Starting Net.Commerce Service Jobs
Since the overridable function will run under Net.Commerce processes, issue the
STRSRVJOB command to each of the Net.Commerce servers. Complete these
steps:

1. Identify Net.Commerce jobs details. Issue the WRKSBSJOB QNETCOMM command to
display the Net.Commerce job. Figure 423 on page 439 shows the
WRKSBSJOB screen.

Create C++ Module (CRTCPPMOD)

Type choices, press Enter.

Module MODULE mymodul
Library *CURLIB

Source file SRCFILE QCPPSRC
Library *CURLIB

Source member SRCMBR *MODULE
Source stream file SRCSTMF

Text 'description' TEXT *BLANK

Optimization OPTIMIZE 10

Inline options: INLINE
Inliner *OFF
Threshold 0

Module creation options MODCRTOPT *NOKEEPILDTA
Debugging view DBGVIEW *ALL
Define names DEFINE *NONE

+ for more values

Language level LANGLVL *EXTENDED
System interface options SYSIFCOPT *IFSIO
Message flagging level FLAG 3
Message limit MSGLMT *NOMAX
Replace module object REPLACE *YES
Authority AUT *LIBCRTAUT
Target release TGTRLS *CURRENT

Do not forget to set the optimization level to "40" and the debug view to "none"
after finishing your debug.

Note
438 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 423. Display Net.Commerce Jobs

2. Write down the details for each of the QNESERVER jobs with the instance
name that you wish to debug. For each job, issue the STRSRVJOB command.
Each STRSRVJOB command must be issued from a different session so you
must open more than one session on your PC.

Figure 424 displays an example to the STRSRVJOB command prompt.

Figure 424. Star t Servicing Net.Commerce Process

19.5.3 Start Debug
We can now start debug from the sessions that issued the STRSRVJOB
command:

1. Type the STRDBG command.

2. Press the F4 key and fill the parameters as described in Figure 425 on page
440.

Work with Subsystem Jobs AS8
03/30/99 08:31:05

Subsystem : QNETCOMM

Type options, press Enter.
2=Change 3=Hold 4=End 5=Work with 6=Release 7=Display message
8=Work with spooled files 13=Disconnect

Opt Job User Type -----Status----- Function
QNEBACKSVR TEST08 BATCHI ACTIVE
QNEKEYMGR TEST08 BATCHI ACTIVE
QNESERVER TEST08 BATCHI ACTIVE
QNESERVER TEST08 BATCHI ACTIVE
QNETCDMN TEST08 BATCH ACTIVE PGM-QNEMSSYNCH
QNETCOMM TEST08 BATCH ACTIVE PGM-QNESVRCTRL

Start Service Job (STRSRVJOB)

Type choices, press Enter.

Job name > QNESERVER Name
User > TEST08 Name
Number > 024726 000000-999999
Implementing Overridable Functions 439

Figure 425. Star t Debug the Overridable Function

3. The display module source screen appears as shown in Figure 426. Press F10
to leave this screen.

Figure 426. Source Debug Screen

4. Go to your browser and press on the link to display product information. The
product display command calls the GET_BASE_UNIT_PRICE task. The task
calls our overridable function.

Return to your session. The Net.Commerce server job should stop and display
the first statement of your source code as shown in Figure 427 on page 441.

Start Debug (STRDBG)

Type choices, press Enter.

Program *NONE Name, *NONE
Library Name, *LIBL, *CURLIB

+ for more values

Default program *PGM Name, *PGM, *NONE
Maximum trace statements 200 Number
Trace full *STOPTRC *STOPTRC, *WRAP
Update production files > *YES *NO, *YES
OPM source level debug *NO *NO, *YES
Service program > GETPRICE Name, *NONE
Library > QNETCOMM Name, *LIBL, *CURLIB

+ for more values
*LIBL

Display Module Source

Program: GETPRICE Library: QNETCOMM Module: GETPRICE
1 //***/
2 // This function will call the back end system api in order */
3 // to calculate an item price. */
4 // */
5 // */
6 //***/
7
8 #ifdef AS400
9 #include "coibm.h"
10 #endif
11
12 #include <bcd.h> // For working with packed decimal fields
13 #include "objects/objects.pch" // Net.Commerce include
14
15 // The following define is for compatibility with other platfo

More...
Debug . . .

F3=End program F6=Add/Clear breakpoint F10=Step F11=Display variable
440 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 427. Net.Commerce Source Breakpoint

You can now debug the program using standard AS/400 debugging capabilities.

19.6 Working with the Back-End System on a Different Server

In our example, the Net.Commerce site and the back-end system operated on the
same AS/400 server. However, in many cases, your site will be installed on one
server and your back-end system on another server. Luckily, the AS/400 system
allows you to easily connect to and access remote databases. Describing the
details of the different methods is beyond the scope of this book. Basically, we
have two good options to connect with the remote back-end server:

• To perform native database operations, similar to the ones performed in the
GETPRICER program, we can use DDM support.

• To perform SQL requests or embed SQL, we can use DRDA support.

Display Module Source

Program: GETPRICE Library: QNETCOMM Module: GETPRICE
55 // Main function */
56
57 virtual bool Process (const HttpRequest &Req, HttpResponse
58 {
59 char ReturnPrice[14]={0}; // Return price from the R
60 char InputSku[13] = " "; // Input blank SK
61
62 // Defien the environment(We will only use the product number
63 static const StringWithOwnership _PARAM_NAME_MERCHANT
64 static const StringWithOwnership _PARAM_NAME_PRODUCT_
65 static const StringWithOwnership _PARAM_NAME_PRODUCT_
66 static const StringWithOwnership _PARAM_NAME_CURRENCY
67
68 // Get function parameters from the env.
69 // 1. The merchant number

More...
Debug . . .

F3=End program F6=Add/Clear breakpoint F10=Step F11=Display variable
Implementing Overridable Functions 441

442 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Chapter 20. Writing Commands

To implement our site design, we did not need to write any new commands. As
described in Chapter 19, “Implementing Overridable Functions” on page 413,
commands represent a business process. Overridable functions represent
precise pieces of business logic (for example, getting the product price).
However, it is possible that your specific site design may require writing new
commands.

This chapter guides you step-by-step through the process of writing a simple new
command for Net.Commerce. This command does nothing but writes text to the
user browser. The intent of this simple exercise is to help you become acquainted
with the process involved in writing a completely new Net.Commerce command.

20.1 Creating Your Working Directory

Keep all files needed for command creation in one directory. The command we
are about to write is called MyNewCmd. It makes sense to name your directory
with that name. You can place your directory everywhere that you want it.
However, we recommend that you have all of your directories for user-written
commands under the same parent directory and on the root IFS directory. The CL
code shown in Figure 428 creates the directory tree for our example.

Figure 428. Creating the Directory Tree (Member CRTDIR in File QCLSRC)

Figure 429 displays the directory structure created by the CL program.

Figure 429. Directory Tree for the Example

To write commands, you must learn the low-level details of programming
commands as described in the book Commands, Tasks, Overridable
Functions, and the E-commerce Framework. This document is available in
softcopy format only from the Net.Commerce Web site. Refer to E.4, “Other
Resources” on page 536, for information about obtaining this document.

Note

PGM

MD '/UserStuff'
MD '/UserStuff/NetCommerce'
MD '/UserStuff/NetCommerce/Commands'
MD '/UserStuff/NetCommerce/Commands/MyNewCmd'

ENDPGM
© Copyright IBM Corp. 1999 443

20.2 Creating the Binding Directory

Binding directories are used by the AS/400 ILE environment to easily link
modules with their relevant service programs and other modules. In our example,
the binding directory is used to create the command service program. It includes
all of the service programs that are needed to create the Net.Commerce NET
command.

The CL program shown in Figure 430 creates the correct binding directory.

Figure 430. Creating the Binding Directory (Member BNDDIRC in File QCLSRC)

20.3 Preparing the Source File

Our example is located in the QCPPSRC file and is called newcmd. Copy the new
command example to the IFS root file system as shown in Figure 431.

Figure 431. Copy the Source File to the Root File System

The sample new command source is almost empty. It contains all of the function
definitions for the Net.Commerce command, but has no logic in it. The command
must be written in C++. Refer to Chapter 19, “Implementing Overridable

PGM

CRTBNDDIR BNDDIR(QGPL/NETCOMB) TEXT('Binding directory +
for Commands and OF')

ADDBNDDIRE BNDDIR(QGPL/NETCOMB) +
OBJ((QNETCOMM/QNECONTAIN) +
(QNETCOMM/QNEMESSAGE) +
(QNETCOMM/QNECOMMON) (QNETCOMM/QNEDBC) +
(QNETCOMM/QNESVROBJ) +
(QNETCOMM/QNEPAYOBJS) (QNETCOMM/QNEPAYMSG))

ENDPGM

Copy To Stream File (CPYTOSTMF)

Type choices, press Enter.

From database file member . . . > '/qsys.lib/netcbe.lib/qcppsrc.file/newcmd.mb
r'
To stream file > '/userstuff/netcommerce/commands/mynewcmd/My
newCmd.cpp'

...
Stream file option > *REPLACE *NONE, *ADD, *REPLACE
Data conversion options *AUTO *AUTO, *TBL, *NONE
Database file CCSID *FILE 1-65533, *FILE
Stream file code page *STMF 1-32767, *STMF, *PCASCII...
444 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Functions” on page 413, for details on integrating RPG and other ILE and OPM
language programs to C++. Figure 432 shows the sample new command source.

Figure 432. The New Command Source

// This command source file is used to demonstrate writing new commands for Net.Commerc

#include "objects/objects.pch" // include Net.Commerce

#if defined(WIN32)
#define __DLL_EXPORT__ __declspec(dllexport)

#else
#define __DLL_EXPORT__

#endif

class __DLL_EXPORT__ NewCmd : public NC_Command
{
public:

NewCmd(void)
{
}
virtual bool Initialize(void) // Command init
{

return true;
}

virtual ~NewCmd(void)
{
}

void operator delete(void* p) { ::delete p; }

virtual NC_Command* Clone(void) { return NULL; }
public:
virtual void FailedRegistration(NC_RegistrationID& RegID, const ErrorMsg_Reg* Err)
{

error << indent << "Error: Registration failed " << endl;
}

virtual bool CheckParameters (const HttpRequest& Req, HttpResponse& Res,
NC_Environment& Env, NC_Environment& Resources)
{

return true;
}

virtual bool FailedAccesControl(void)
{

error << indent << "Error: Access failed " << endl;
return true;

}

virtual bool Process (const HttpRequest& Req, HttpResponse& Res,
NC_Environment& Env)
{

Res.setDocument("My First command worked !!");
return true;

}
};

static bool X2 = NC_CommandManager::GetUniqueInstance().RegisterCommand("IBM", "NC",
"NewCmd", 1.0, new NewCmd); // Register
Writing Commands 445

A detailed explanation of writing commands is not in the scope of this book. If you
need to write new commands in your site implementation, refer to the document
Commands, Tasks and OFs and the E-commerce Framework. This command
simply writes text specified in the value of the Res.setDocument function to the
user browser.

Use a PC editor or the AS/400 EDTF command to update the command source
as prescribed here:

1. Replace the string NewCmd with the name of your new command
(MyNewCmd).

2. Replace the Res.setDocument text value with some text that you will
recognize as coming from your command, for example, Res.setDocument("This
is my test text").

3. Save the file.

20.4 Building the Command

To build the command, we have to create a service program with the command
module in it. Here, we use the native C++ compiler because we do not have a
need for any visual components. Refer to 2.2.2, “Optional AS/400 Net.Commerce
Software Requirements” on page 11, for a list of software that allows you to
compile C++ on the AS/400 system.

The CL program shown in Figure 433 creates the service program.

Figure 433. Create Command Service Program (Member BLDCMD in File QCLSRC)

If any errors were encountered during compilation, you have to find the errors on
the output file /userstuff/netcommerce/commands/mynewcmd/mynewcmd.lst. Correct
the errors and recompile.

Net.Commerce documentation refers to AS/400 service programs as DLLs.

Note

PGM
CRTCPPMOD MODULE(MYLIB/TEMPMOD) +

SRCSTMF('/userstuff/netcommerce/commands/MyNewCmd/Mynewcmd.cpp') +
OUTPUT('/userstuff/netcommerce/commands/mynewcmd/mynewcmd.lst')

+
DEFINE(AS400) +

INCDIR('/Qibm/proddata/netcommerce/adt/include')

CRTSRVPGM SRVPGM(MYLIB/MYNEWCMD) +
MODULE(MYLIB/TEMPMOD) EXPORT(*ALL) +
TEXT('Sample new Net.Commerce command') +
BNDDIR(QGPL/NETCOMB)

ENDPGM
446 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Note that we created the module in library MYLIB and without any debug
information. You may need to compile more complicated commands with the
debug option turned on as described in 19.5.1, “Compiling the Overridable
Function with Debug Information” on page 437.

Also note that the service program is created in the user library MYLIB, rather
than the QNETCOMM library. You should never add objects to the QNETCOMM
library. If you do, your objects can become lost when you apply maintenance to
Net.Commerce.

20.5 Registering the Command in the Database

There are several tables in the Net.Commerce database that deal with
commands, tasks, and overridable functions. For our command to run, we must
register it in the Net.Commerce database.

The following source member is used to create a SQL stored procedure that
registers the command to the Net.Commerce database using these values:

• The command service program name (DLL) is MYNEWCMD.

• The instance name is work.

• The command name and URL are both MyNewCmd. It is accessible to the public
through a URL.

• The command can run in the ncommerce pool.

• The command cannot run in SSL mode.

For more information about writing stored procedures on the AS/400, refer to
the redbook DB2/400 Advanced Database Functions, SG24-4249.

Note
Writing Commands 447

Figure 434. Registering the Command (Member REGCMD in File QSQLSRC)

After you type the SQL procedure shown in Figure 434, you must compile it. To
compile the source into a stored procedure, type the following information on an
AS/400 command line and press Enter:

RUNSQLSTM SRCFILE(NETCBE/QSQLSRC)
SRCMBR(REGCMD)
NAMING(*SQL)
OUTPUT(*PRINT)

This creates a stored procedure that is called from SQL. To execute the stored
procedure, type the following command on an AS/400 command line:

STRSQL

Press Enter. This starts the interactive SQL. Type the following command on the
SQL command line:

CALL REGCMD

Press Enter. This updates the CMDS, POOL_CMD, and ACC_MODE tables in
the library specified in the stored procedure. In our sample, this was the collection
WORK.

For the new command to take affect, restart the Net.Commerce server after the
command registration completed.

--***/
-- This procedure is used as an example to register a new command */
-- */
-- Author: Shahar mor */
-- Provided AS IS */
--***/
CREATE PROCEDURE NETCBE.REGCMD
LANGUAGE SQL MODIFIES SQL DATA
BEGIN
DECLARE pool_nbr int;
DECLARE cmd_nbr int;
DECLARE acc_mod int;

insert into work.cmds (refnum, dll_name,vendor,product,name,version,
url,export,description)

select max(refnum) + 1, 'MYLIB/MYNEWCMD', 'MyCompany' ,
'MyProduct', 'MyNewCmd',1.0,'MyNewCmd',1,
'My First New Command' from work.cmds;

Select refnum into pool_nbr from work.pools where name= 'ncommerce'
Select refnum into cmd_nbr from work.cmds where vendor= 'MyCompany'
and product = 'MyProduct' and name = 'MyNewCmd' and version = 1.0;
insert into work.pool_cmd (pool_rn, cmd_rn) values(pool_nbr, cmd_nbr);

Select max(refnum) + 1 into acc_mod from work.acc_mode;
insert into work.acc_mode (refnum, cmd_refnum, ssl,protect)
values(acc_mod,cmd_nbr,0,0);

commit;
END
448 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

20.6 Testing the New Command

You can easily test the new command from a browser by directly specifying the
URL: http://<hostname>/cgi-bin/ncommerce3/MyNewCmd.

In this URL, the host name is the complete host name of the server. You should
see an HTML page with your text on it similar to the one shown in Figure 435.

Figure 435. Output of Our First Command

More advanced commands are, of course, more difficult to test. For example, if
you perform updates on the database, you must check manually whether your
command changed the database correctly.

If Net.Commerce does not load or run your command, look in the normal log files
of Net.Commerce described in 21.1, “Net.Commerce Server Logs” on page 453,
for a description of the error. You can also write to the log files from your
command to help catch errors.

20.7 Coding Patterns and Guidelines

When writing new commands and overridable functions, you code the same kinds
of functions again and again. Some of these functions are described here with
short code listings so that you can reuse them on a regular basis. In addition,
some general coding considerations and guidelines are addressed here. Our
examples are all in the C++ language. See Chapter 19, “Implementing
Overridable Functions” on page 413, for an example that calls an RPG program
from C++.

Net.Commerce commands are case sensitive.

Note
Writing Commands 449

20.7.1 Calling a Task
The following code fragment executes a task called taskName:

const ErrorMsg_Cmd* Err;
Err = NC_OverridableFunctionManager::Call(Req, Res, Env, "taskName",
MerchantRefNum);
if (Err == &_ERR_CMD_ERR_HANDLED)
throw Err;
if (Err != NULL) // Otherwise, just return a failure.
return false;

If successful, NULL is returned in the Err variable. Possible error codes are:

• &_ERR_CMD_ERR_HANDLED — The OF generated its own error page
• &_ERR_CMD_BAD_PROCESS_API — Error from the OFs process method
• &_ERR_CMD_API_NOT_FOUND — OF not found

If the returned error is &_ERR_CMD_ERR_HANDLED, you should throw the Err object,
which returns the error page that was generated by the OF. In the other cases,
you should return "false".

For a more detailed approach to error handling, refer to book Commands, Tasks,
Overridable Functions, and the E-commerce Framework. This document is
available in softcopy format only from the Net.Commerce Web site. Refer to E.4,
“Other Resources” on page 536, for information about obtaining this document.

20.7.2 Using Iterators
This code fragment shows how to declare an iterator that is used in a loop to find all
parameters of a command or an OF:

NameValuePairMap::Iterator I(&req.getNVPs());
for (I.Begin(); *I != NULL; ++I)
{
trace<<(*I)->getName()<<endl;
trace<<(*I)->getValue()<<endl;
}

Note the use of I.Begin() to find the first name-value pair and the use of the ++
operator to find the next pair until the value of the iterator becomes NULL.

20.7.3 Selecting Rows from the Database

We highly recommend that you do not use native database support or Net.Data
macros to update the Net.Commerce collection. However, you can update your
back-end system tables using native database support.

Important
450 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

This code fragment shows you how to select rows from the database:

int returnCode;
String Stmt;
Stmt.Resize(STRLEN_1K);
DataBase& DB = (DataBase&)*Misc::CheckEnvironmentVariable(Env,
NC_Environment::_VAR_MainDatabase); // get the data base object
if(DB==NULL)
return false;
Stmt << "select stpcode from shipto " << endl
<< "where stornbr=" << OrderRefNum << " and stsanbr=" << AddressRefNum;
SQL Sql(*DB,Stmt);
for(returnCode=Sql.getNextRow(SqlRow);returnCode ==
ERR_DB_NO_ERROR;returnCode=Sql.getNextRow(SqlRow))
{
SqlRow.getCol(1).getVal(stpcode);
}
if (returnCode != ERR_DB_NO_ERROR && returnCode != ERR_DB_NO_DATA)
{
Sql.ReportError ();
return false;

20.7.4 Updating Rows in the Net.Commerce Database

This code fragment shows you how to update rows in the Net.Commerce
database:

int returnCode;
String Statement;
Statement.Resize(256);
Statement.Clean();
DataBase& DB = (DataBase&)*Misc::CheckEnvironmentVariable(Env,
NC_Environment::_VAR_MainDatabase);
if(DB==NULL)
return false;
Statement << "UPDATE SHOPPINGS SET SBFIELD1 = " << endl
<< quantity << endl
<< " WHERE SBSHNBR = " << shopperRefNum << endl
<< " AND SBMENBR = " << merchantRefNum << endl
<< " AND SBPRNBR = " << productRefNum;
SQL sql(*DB,Statement);
returnCode=sql.getSQLrc();
if(returnCode != ERR_DB_NO_ERROR)
{
sql.ReportError ();
return false;

The Net.Commerce server command controls the commit scope. If you wish to
update tables in the Net.Commerce collection, do it by using the database classes.

We highly recommend that you do not use native database support or Net.Data
macros to update the Net.Commerce collection. However, you can update your
back-end system tables using native database support.

Important
Writing Commands 451

20.7.5 Static Variables
Although Net.Commerce is not yet a multi-threaded environment, it is a good idea
to make your code thread safe now. One precaution is that you should not use
static variables unless they are declared as constant. The only exception to this
rule is when registering the command or OF.

20.7.6 Security Considerations
Keep in mind that end users can see the URL that makes up the HttpRequest
when a command is called. Therefore, they will know such aspects as the name
of the command, the name of the parameters, and the values of the parameters.
Some people can change the parameter values to get your store to behave
differently.

Never assume the correctness of the passed parameters in your command. You
should implement the check parameters function in your command. Your
command should always have proper access control defined for it, and guard
against common attacks.

The data you receive should be checked against each other. For example, your
command could get a product number and a merchant number, and assume that
the product belongs to the merchant. Do not assume. Be sure. When you look up
the product from the database, simply constrain the query with the merchant ID.
Also if the two parameters do not agree, you can simply return "false." Either the
calling page was not coded properly or someone is changing your site, which
means it is OK to return the system error page.

Do not make any assumptions with respect to the threaded nature of the
environment. We intend to make the servers multi-threaded. In this case, your
commands and OFs may, one day, have to run in a multi-threaded
environment. Avoid using non-constant static objects to store state information.

Important
452 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Chapter 21. Site Administration

Administration is divided into technical administration and content administration.
Technical administration refers to all components needed to set up the system
and keep it a live. Content administration is responsible for products, categories,
shoppers management, and log analyses.

21.1 Net.Commerce Server Logs

Net.Commerce provides logging mechanisms to allow users to track various
activities related to their site. In particular, two main types of logging features are
available: system logs and user traffic logs.

21.1.1 System Log
System logs basically track every action taken by the system when the server is
accessed. These logs are especially helpful when debugging code. The directory
path where these logs are located is associated with the MS_LOGPATH variable
in the Net.Commerce configuration file. When this directory is examined, you will
find that there are two types of system log files.

The first type starts with the word "control" followed by the date and some other
numbers. This file traces various routines that must take place when the
Net.Commerce server first starts up. Some of these routines include:

• Opening of database connection
• Preparing the server for the default command pool
• Preparing the default command receptors and OF receptors
• Registering the default commands and OFs
• Initializing the default commands and OFs

This log is useful only if something goes wrong during the server’s initialization. In
these cases, the log file can be scanned for any failures, unexpected conditions,
or missing items.

The second type of system log file starts with the word "ncommerce" followed by
the date and some other numbers. Initially, it traces the exact same routines as
described above except that the ncommerce command pool is used instead of
the default command pool. More importantly, it proceeds to document every event
that occurs on the site. For every transaction that occurs (such as adding an item
to the shopping cart), every command, task, and OF called to perform this
transaction is listed in order of execution. In addition, each transaction has three
types of messages that are possibly output:

• STATUS — Message to output general information such as which command
or OF is currently being executed and whether it was successful.

• DEBUG — Message to output specific lines of code that were specified by the
programmer for debugging purposes.

• ERROR — Message to output any processing errors that may have occurred.

Finally, if applicable, each transaction section ends by displaying various
environment parameters as well as the actual HTML that is returned to the
browser when the transaction completes. You may discover that there are
multiple ncommerce-type log files in the log directory. This may occur for various
© Copyright IBM Corp. 1999 453

reasons. For example, every time the server is stopped and restarted, a new log
file is created. For whatever the reason, you may find that although every
transaction is logged, sometimes you have to search through more than one file
to find just the right one. Your best option is to start with the most current ones.
Another suggestion is to constantly maintain your log directory by deleting old log
files. Because they track every system event that occurs, the log files can grow in
size very quickly and take up valuable hard drive space.

21.1.2 User Traffic Log
The user traffic log is used to track the activity of users accessing your site. It is
useful to determine the browsing and buying patterns of your shoppers, possibly
to address personalization or marketing issues. Unlike the system logs, the user
traffic log is maintained in the USRTRAFFIC database table instead of a text file.
It currently consists of 16 fields, some of which are discussed in the next section.
Some of the user traffic data includes the visitor login time and date, the IP
address of the visitor, and the specific query string used to display visited pages.
Every single process that is executed on the site is saved as a full record in the
table.

By default, the user traffic log is turned off. To turn it on, change the value of the
USERTRAFFIC_LOG variable in the Net.Commerce configuration file from "0" to
"1" (USERTRAFFIC_LOG 1). To turn the logging off again, either change the
value of the variable back to "0," or remove the variable and its value entirely.

21.1.3 Viewing the Log Files
Since the user traffic log is kept in the Net.Commerce database table
USRTRAFFIC, you can view the table’s contents by using a standard AS/400 file
browsing tool such as STRSQL.

However, the server logs are kept as stream files in the IFS root directory and
cannot be displayed by database requests. You can use one of the following
methods to display the contents of these log files:

• Use the EDTF command from an AS/400 emulation screen as described in 7.3,
“Stream File Handling Tools” on page 111. The problem with EDTF is that the
log file name is very long and it is not convenient to type it in the EDTF prompt.

• Map the network drive using Client Access support and use PC editor such as
Wordpad to browse the log file contents. The log files are in EBCDIC so you
must also instruct Client Access to perform the translation from EBCDIC to
ASCII. Complete the following steps to configure Client Access automatic log
file translations:

1. From the Client Access folder, click on Client Access properties.

2. In the Client Access properties window, click on the Network Drives tab.

You see the window that appears in Figure 436 on page 455.
454 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 436. Define Network Drive Attributes

3. In the File extension field, type log, and click on the Add button.

You should see the log extension in the bottom of the window as shown in
Figure 437.

Figure 437. Define Automatic Conversion for Log Extension Complete

Client Access takes care of EBCDIC to ASCII translation for any file with the log
extension.

You can now browse the file contents from a PC editor. Figure 438 on page 456
shows an example log file. The beginning of the file name is
ncommerce19990401and reflects the log date. The log file is located in directory
/Qibm/UserData/NetCommerce/Instance/Instancename/logs
Site Administration 455

Figure 438. Net.Commerce Log File Example

21.2 Database Cleanup Utility

The Net.Commerce Database Cleanup utility allows you to delete a number of
unnecessary records at the same time. You can delete the following record types:

• Guest shoppers

• Temporary shopper addresses

• Old orders

• Products that are marked for deletion

• User-traffic log records

• Records in the STAGLOG table that were propagated to the production
database

• Records in the CACHLOG table that identify invalid cache pages that were
purged

• Stores

When the Database Cleanup utility deletes a record in a table, it also deletes the
corresponding records in other tables that are linked to that table, to preserve the
referential integrity of the database. By default, the Database Cleanup utility
writes to a log file to the file:

/QIBM/UserData/NetCommerce/Instance/<instance_name>/Logs/dbclog.txt

Here, <instance_name> is the name of the Net.Commerce instance.
456 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

The administrator that runs this utility must sign on as the instance name for the
instance whose records are being deleted. Or they must add the instance library
to their session library list before calling the cleanup utility.

To use the clean database utility, type the command DLTNETCDBE, and press F4.
The command prompt appears as shown in Figure 439.

Figure 439. The DLTNETCDBE Command Prompt

The command parameter description is shown in Table 24.

Table 24. DLTNETCDBE Command Prompt

Parameter Parameter Description

Table Name (TBLNAME) The name of the table from which we want to clean
records.

Data base name (DATABASE) The name of the database where the Net.Commerce
tables are located. Use the WRKRDBDIRE command to
find this name.

Data base manager ID (DBUSR) Specifies the logon ID of the administrator who has
been assigned access to the database. If this
parameter is not specified, the ID of the user
invoking the utility is used. In this case, make sure
you have the proper authority to the Net.Commerce
instance tables.

Password (DBPASWD) Specifies the password of the user whose logon ID
was specified in the DBUSR parameter. If the
command is issued on the local Net.Commerce site
and did not specify user name on the DBUSR
parameter, you can omit this parameter.

Database Cleanup Utility (DLTNETCDBE)

Type choices, press Enter.

Table name Name, SHOPPER, SHADDR...
Database name Character value
Database manager ID Name
Password Name
Days old 2 Number
Merchant Store Name

Logging level Character value, 0, 1, 2
Log filename

Additional Parameters

Order Status Character value
Method Name, ONESTEP, STEPBYSTEP
Site Administration 457

Figure 440 on page 459 displays an example to the log file created by the clean
database utility. You can use the EDTF command described in 7.3, “Stream File
Handling Tools” on page 111.

Days Old (DAYSOLD) Specifies the minimum age, in days, of records to be
deleted. The default is two days. If this parameter is
not specified, all records that are more than two
days old are deleted. To determine the age of the
record, the utility compares the current date and
time with the date and time in the timestamp column
of the table.

Merchant store name
(STORENAME)

The name of the store to be deleted. Since the store
name is case sensitive, put the store name in single
quotation marks ('). The utility deletes records
associated with the store from all tables checked by
the Database Cleanup utility.

Logging level (LOGLEVEL) Specifies the level of logging to be performed during
the database clean-up:
0 - Specifies that no logging is to be performed.
1 - Specifies that log records are to be created only

for deletions from the table specified.
2 - Specifies that log records are to be created for

deletions of records from the table specified, and for
any deletions of subordinate records from other
tables.
On normal terms, you can use the log level of 1.

Log File (LOGFILE) Specifies the path and name of the log file. If this
parameter is not specified, the log file dbclog.txt is
created in the instance root directory
(/QIBM/UserData/NetCommerce/Instance/<instance
_name>/Logs/). The issuer of the command must
have write authority to the specified path, and the
path must already exist. Do not direct the log output
to the QSYS.LIB file system.

Order status (ORDSTAT) If the ORDERS table is specified, it indicates the
status of orders to be deleted. This parameter
corresponds to the content of column ORSTAT.
C - Orders are in a complete state.
X - Orders are in a cancelled state.
P - Orders are in a pending state.
U - Orders are in a user-defined state.

Method (METHOD) The commit method for deleting the store's records.
This is an optional parameter. If this parameter is not
specified, the Instep method is used.
Instep — Commits only once after all records are
successfully deleted. If an error occurs during the
deletion, the database rolls back to its original state.
StepByStep — Commits each time a record is
successfully deleted. If an error occurs while a
store's records are deleted, all of the previously
committed deletions cannot be rolled back. Then,
the store is left in a partially deleted state.

Parameter Parameter Description
458 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 440. Sample Cleanup Utility Log File

After the cleanup utility deletes the rows from the tables, you are advised to
perform table reorganization to the tables processed by the utility. For example,
Figure 441 on page 460 displays the command to reorganize the orders table
after it was cleaned by the DLTNETCDBE command.

Mon Apr 5 11:24:46 1999
CMN1501I Database Cleanup Utility started.
19990405112447CMN1521I Row(s) from CACHLOG table deleted successfully.
19990405112447[CACHLOG] xx; 100; 290; 1999-01-01-22.00.00.000000;

[CACHLOG] xx; 100; 290; 1999-01-01-22.00.00.000000;
[CACHLOG] xx; 100; 290; 1999-01-01-22.00.00.000000;
[CACHLOG] xx; 100; 290; 1999-01-01-22.00.00.000000;
[CACHLOG] xx; 100; 290; 1999-01-01-22.00.00.000000;
[CACHLOG] xx; 100; 290; 1999-01-01-22.00.00.000000;
[CACHLOG] xx; 100; 290; 1999-01-01-22.00.00.000000;
[CACHLOG] xx; 100; 290; 1999-01-01-22.00.00.000000;
[CACHLOG] xx; 100; 290; 1999-01-01-22.00.00.000000;
[CACHLOG] xx; 100; 290; 1999-01-01-22.00.00.000000;
[CACHLOG] xx; 100; 290; 1999-01-01-22.00.00.000000;
[CACHLOG] xx; 100; 290; 1999-01-01-22.00.00.000000;

[CACHLOG] xx; 100; 290; 1999-01-01-22.00.00.000000;
[CACHLOG] xx; 100; 290; 1999-01-01-22.00.00.000000;
[CACHLOG] xx; 100; 290; 1999-01-01-22.00.00.000000;
[CACHLOG] xx; 100; 290; 1999-01-01-22.00.00.000000;
[CACHLOG] xx; 100; 290; 1999-01-01-22.00.00.000000;
[CACHLOG] xx; 100; 290; 1999-01-01-22.00.00.000000;
[CACHLOG] xx; 100; 290; 1999-01-01-22.00.00.000000;
[CACHLOG] xx; 100; 290; 1999-01-01-22.00.00.000000;
[CACHLOG] xx; 100; 290; 1999-01-01-22.00.00.000000;
[CACHLOG] xx; 100; 290; 1999-01-01-22.00.00.000000;

STATUS CMN0003S: Database 'AS01' has been commited.

[CACHLOG] xx; 100; 290; 1999-01-01-22.00.00.000000;

STATUS CMN0003S: Database 'AS01' has been committed.

19990405112447

Mon Apr 5 11:24:47 1999 CMN1502I Database Cleanup Utility completed.
19990405112447

==
Site Administration 459

Figure 441. Reorganize the Net.Commerce Table after Cleanup Utility

For more information on using the cleanup utility, refer to the Net.Commerce
online documentation.

21.3 Clearing Log Files

The Cleanup utility only deletes rows from the Net.Commerce database tables.
However, the log files of Net.Commerce are located in the root file directory and
are not cleaned by the database cleanup utility.

The following sample source code from a CL program can be used for saving and
deleting Net.Commerce log files for a specific instance. Note that you cannot
delete a log file that is currently used by the Net.Commerce server. You will have
to perform the log cleanup when the Net.Commerce server is not active.

/***/
/* This program is a simple example to let you clean */
/* net commerce log files from the IFS. */
/* */
/* Arguments: */
/* pr_inst - Instance */
/* */
/* Author: Shahar mor */
/* Provided AS IS */
/***/

PGM PARM(&pr_inst)

DCL VAR(&pr_inst) TYPE(*CHAR) LEN(10)

DCL VAR(&savstring) TYPE(*CHAR) LEN(100)

/* General error variables */
DCL VAR(&msgflib) TYPE(*CHAR) LEN(10)
DCL VAR(&msgf) TYPE(*CHAR) LEN(10)
DCL VAR(&msgid) TYPE(*CHAR) LEN(7)
DCL VAR(&msgdta) TYPE(*CHAR) LEN(128)

MONMSG MSGID(CPF0000) EXEC(GOTO CMDLBL(STDERR))

/* Save the log files. Our example saves the files to a save file */

CHGVAR VAR(&savstring) +
VALUE('/qibm/userdata/netcommerce/instance/+
' *TCAT &pr_inst *TCAT '/logs/*.log')

Reorganize Physical File Mbr (RGZPFM)

Type choices, press Enter.

Data base file > ORDERS Name
Library *LIBL Name, *LIBL, *CURLIB

Member *FIRST Name, *FIRST, *LAST
Source update options *SAME *SAME, *SEQNBR, *DATE

Source sequence numbering:
Starting sequence number . . . 1.00 0.01-9999.99
Increment number 1.00 0.01-9999.99

Key file:
Logical file > *FILE Name, *NONE, *FILE
Library Name, *LIBL, *CURLIB

Member Name
Record format *ONLY Name, *ONLY
460 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

SAV DEV('/qsys.lib/qgpl.lib/netcsavf.file') +
OBJ((&SAVSTRING)) SAVACT(*NO) CLEAR(*ALL)

/* Delete the log files */

DEL +
OBJLNK('/qibm/userdata/netcommerce/instance+
/work/logs/*.log')

RETURN
STDERR:

RCVMSG MSGTYPE(*EXCP) MSGDTA(&msgdta) +
MSGID(&msgid) MSGF(&msgf) +
MSGFLIB(&msgflib)

MONMSG MSGID(CPF0000 MCH0000)
SNDPGMMSG MSGID(&msgid) MSGF(&msgflib/&msgf) +

MSGDTA(&msgdta) MSGTYPE(*ESCAPE)
MONMSG MSGID(CPF0000 MCH0000)

RETURN

ENDPGM

21.4 General Administration Tasks

Net.Commerce uses features in the OS/400 operating system. You must ensure
that the AS/400 environment setup will allow Net.Commerce to function properly.
In addition, the system administrator must perform the following tasks:

• Keep the AS/400 operating system and licensed program PTF levels current.
To check the PTF level on your system, use the DSPPTF command. For more
information, see Basic System Operation, Administration, and Problem
Handling Version 4, SC41-5206.

• Make sure the TCP/IP services and the Net.Commerce HTTP server come up
automatically after the system restarts. This can be done by including the
STRTCP command in your startup program. For more information, see TCP/IP
Configuration and Reference Version 4, SC41-5420.

• In case of a separated Net.Commerce and back-end application server, make
sure that the communication link between the servers is up. You can check
communication. For more information, see Communications Management
Version 4, SC41-5406.

• Ensure that security exit programs connected to the AS400 JDBC server
allows Net.Commerce traffic. The Net.Commerce product advisor uses JDBC
connection to the Net.Commerce database. For more information, see Tips
and Tools for Securing Your AS/400 Version 4, SC41-5300.

21.5 Net.Commerce Jobs on the AS/400 System

Net.Commerce runs on the AS/400 system in a subsystem called QNETCOMM.
The jobs run with the user profile of your Net.Commerce instance. The server
controller job QNETCOMM starts the QNESERVER daemons. The
QNEKEYMGR handles the KEYS table.
Site Administration 461

Figure 442. Net.Commerce Subsystem

21.6 Web Server Jobs on the AS/400 System

The AS/400 HTTP Web Server runs in the subsystem QHTTPSVR.

Figure 443. HTTP Server Jobs

Work with Active Jobs AS01
04/30/99 09:15:15

CPU %: 11.9 Elapsed time: 00:07:48 Active jobs: 301
Opt Subsystem/Job User Type CPU % Function Status

QNETCOMM QSYS SBS .0 DEQW
QNEKEYMGR WORK BCI .0 DEQW
QNESERVER WORK BCI .1 SELW
QNESERVER WORK BCI .1 SELW
QNETCDMN WORK BCH .0 PGM-QNEMSSYNCH TIMW
QNETCOMM WORK BCH .1 PGM-QNESVRCTRL SELW

Bottom
===>
F21=Display instructions/keys

Work with Active Jobs AS01
04/30/99 11:08:27

CPU %: 7.4 Elapsed time: 02:01:00 Active jobs: 300
Opt Subsystem/Job User Type CPU % Function Status

TEST QTMHHTTP BCI .0 TIMW
TEST QTMHHTTP BCI .0 TIMW
TEST QTMHHTTP BCI .0 TIMW
WORK QTMHHTTP BCH .1 PGM-QZHBHTTP TIMW
WORK QTMHHTTP BCI .0 TIMW
WORK QTMHHTTP BCI .0 TIMW
WORK QTMHHTTP BCI .0 TIMW
WORK QTMHHTTP BCI .0 TIMW

Bottom
===>
F21=Display instructions/keys
462 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Appendix A. Source Code Samples

The sample code provided in this book is for the purpose of demonstrating how to
tailor your site by modifying and extending Net.Commerce functionality. This code
has not been fully tested for release into a production environment. These
samples, as well as the samples shown throughout this redbook, are available
from the ITSO Web site at: http//www.redbooks.ibm.com

From this site, select Additional Materials and locate the directory named
SG245198.

A.1 Retrieving Encrypted Text

The following command and CL program returns the encrypted text for a given
string. It can be used to add shoppers with their password from an existing
back-end application to Net.Commerce.

Figure 444. Command RTVENCKEY Source

/**/
/* Retrieve encrypted text command. */
/* */
/* Compile with ALLOW(*IPGM *BPGM) */
/* Author: Shahar Mor */
/* Provided AS IS */
/**/

CMD PROMPT('Retrieve Net.Commerce key')

PARM KWD(KETSTR) TYPE(*CHAR) LEN(10) MIN(1) +
PROMPT('Character to recieve key for')

PARM KWD(RTNKEY) TYPE(*CHAR) LEN(25) RTNVAL(*YES) +
PROMPT('Returned key')

PARM KWD(RTNHEX) TYPE(*CHAR) LEN(50) RTNVAL(*YES) +
PROMPT('Return hexadecimal key')
© Copyright IBM Corp. 1999 463

Figure 445. RTVENCKEY Command CPP (Part 1 of 2)

/***/
/* This program can be used to allow password sync. between*/
/* back end system customers and the Net.Commerce shoppers */
/* table. */
/* */
/* This program should be with public authority *exclude */
/* */
/* Arguments: */
/* pr_string - Original string */
/* io_enc - Return encrypted string */
/* io_enchex - Return hexadecimal encrypted */
/* string. */
/* Author: shahar mor */
/* Provided AS IS */
/***/

PGM PARM(&pr_string +
&io_enc +
&io_enchex)

DCL VAR(&pr_string) TYPE(*CHAR) LEN(10)
DCL VAR(&io_enc) TYPE(*CHAR) LEN(25)
DCL VAR(&io_enchex) TYPE(*CHAR) LEN(50)

DCL VAR(&msgflib) TYPE(*CHAR) LEN(10)
DCL VAR(&msgf) TYPE(*CHAR) LEN(10)
DCL VAR(&msgid) TYPE(*CHAR) LEN(7)
DCL VAR(&msgdta) TYPE(*CHAR) LEN(128)

DCL VAR(&keyrow) TYPE(*CHAR) LEN(23) +
VALUE('Encrypted string (char)')

DCL VAR(&hexrow) TYPE(*CHAR) LEN(23) +
VALUE('Encrypted string (hex):')

DCLF FILE(QTXTSRC)

/* Create file for results */

DLTF FILE(QTEMP/NETCSRC@)
MONMSG MSGID(CPF2105) /* Not found */

CRTSRCPF FILE(QTEMP/NETCSRC@) +
MBR(NETCKEY) TEXT('Retrieve encrypted text')

OVRDBF FILE(STDOUT) TOFILE(QTEMP/NETCSRC@) +
MBR(NETCKEY)

CALL PGM(QNECRYPT) PARM('-e' &pr_string)
DLTOVR FILE(STDOUT)

/* Analyze the result and return results */
OVRDBF FILE(QTXTSRC) TOFILE(QTEMP/NETCSRC@) +

MBR(NETCKEY)

LOOP:
RCVF
MONMSG MSGID(CPF0864) EXEC(GOTO CMDLBL(ENDLOOP))
IF COND(%SST(&srcdta 1 23) = &keyrow) THEN(DO)

CHGVAR VAR(&io_enc) VALUE(%SST(&srcdta 26 25))
MONMSG MSGID(MCH3601) /* Parameter not passed */

ENDDO
IF COND(%SST(&SRCDTA 1 23) = &hexrow) THEN(DO)

CHGVAR VAR(&io_enchex) VALUE(%SST(&srcdta 26 50))
MONMSG MSGID(MCH3601) /* Parameter not passed */

ENDDO
GOTO CMDLBL(LOOP)
464 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 446. RTVENCKEY Command CPP (Part 2 of 2)

A.2 Registering Overridable Functions

The following command, CL program, and QMQRY source can be used to
register overridable functions to the Net.Commerce database.

Figure 447. REGOFS Command Definition

ENDLOOP:
DLTOVR FILE(QTXTSRC)
DLTF FILE(QTEMP/NETCSRC@)
RETURN

STDERR: RCVMSG MSGTYPE(*EXCP) MSGDTA(&msgdta) +
MSGID(&msgid) MSGF(&msgf) +
MSGFLIB(&msgflib)

MONMSG MSGID(CPF0000 MCH0000)
SNDPGMMSG MSGID(&msgid) MSGF(&msgflib/&msgf) +

MSGDTA(&msgdta) MSGTYPE(*ESCAPE)
MONMSG MSGID(CPF0000 MCH0000)
RETURN

ENDPGM

CMD PROMPT('Register OFS')

PARM KWD(INSTANCE) TYPE(*NAME) LEN(10) MIN(1) +
CASE(*MONO) PROMPT('Instance name')

PARM KWD(SRVPGM) TYPE(*NAME) LEN(10) MIN(1) +
PROMPT('Service program name')

PARM KWD(OFS) TYPE(*CHAR) LEN(32) MIN(1) +
CASE(*MIXED) PROMPT('Overridable function +
name')

PARM KWD(TEXT) TYPE(*CHAR) LEN(50) DFT(*BLANK) +
SPCVAL((*BLANK '')) CASE(*MIXED) +
PROMPT(Description)

PARM KWD(VEND) TYPE(*CHAR) LEN(32) DFT(’MyCompany’) +
CASE(*MIXED) PROMPT(’Vendor Name’)

PARM KWD(VERSION) TYPE(*DEC) LEN(3 0) DFT(1) +
PROMPT('OFS version')
Source Code Samples 465

Figure 448. REGOFS Command CPP Source (Part 1 of 2)

/***/
/* This program will register new OFS to Net.Commerce */
/* */
/* Arguments: */
/* pr_inst - Instance name(library) */
/* pr_dll - Dll name(Service program) */
/* pr_ofs - OFS name */
/* pr_text - Description */
/* pr_vend - Vendor Name */
/* pr_version - Dll version */
/* Author: shahar mor */
/* Provided AS IS */
/***/

PGM PARM(&pr_inst +
&pr_dll +
&pr_ofs +
&pr_text +
&pr_vend +
&pr_version +

)

/* Input parameters */
DCL VAR(&Pr_inst) TYPE(*CHAR) LEN(10)
DCL VAR(&pr_dll) TYPE(*CHAR) LEN(10)
DCL VAR(&pr_ofs) TYPE(*CHAR) LEN(32)
DCL VAR(&pr_text) TYPE(*CHAR) LEN(50)
DCL VAR(&pr_vend) TYPE(*CHAR) LEN(32)
DCL VAR(&pr_version) TYPE(*DEC) LEN(3 0)

/* Character parameters for QMQRY REGOFS */
DCL VAR(&name) TYPE(*CHAR) LEN(34)
DCL VAR(&desc) TYPE(*CHAR) LEN(52)
DCL VAR(&dll) TYPE(*CHAR) LEN(12)
DCL VAR(&vend) TYPE(*CHAR) LEN(34)
DCL VAR(&vers) TYPE(*CHAR) LEN(3)

DCL VAR(&curlib) TYPE(*CHAR) LEN(12)

/* General error variables */
DCL VAR(&msgflib) TYPE(*CHAR) LEN(10)
DCL VAR(&msgf) TYPE(*CHAR) LEN(10)
DCL VAR(&msgid) TYPE(*CHAR) LEN(7)
DCL VAR(&msgdta) TYPE(*CHAR) LEN(128)

MONMSG MSGID(CPF0000) EXEC(GOTO CMDLBL(STDERR))

/* Set the correct instance */
RTVJOBA CURLIB(&curlib)
CHGCURLIB CURLIB(&pr_inst)

/* Prepare character fields for REGOFS */
CHGVAR VAR(&dll) VALUE('''' *TCAT &pr_dll *TCAT +

'''')

CHGVAR VAR(&desc) VALUE('''' *TCAT &pr_text *TCAT +
'''')

CHGVAR VAR(&vend) VALUE('''' *TCAT &pr_vend *TCAT +
'''')

CHGVAR VAR(&name) VALUE('''' *TCAT &pr_ofs *TCAT +
'''')

CHGVAR VAR(&vers) VALUE(&pr_version)
466 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 449. REGOFS Command CPP Source (Part 2 of 2)

Figure 450. REGOFS QMQRY Source

A.3 Clear Net.Commerce Cache

The command and the CPP CLRCACH are shown in Figure 451 on page 468.
CLRCACH is used to signal HTML page expiration to the cache synchronize
daemon of Net.Commerce.

/* Register OF to data base */
STRQMQRY QMQRY(REGOFS) SETVAR((DLL &dll) +

(DESC &desc) (VERS &vers) +
(NAME &name) (VEND &vend))

/* Restore current library */
IF COND(&CURLIB *NE '*NONE') THEN(DO)

CHGCURLIB CURLIB(&curlib)
ENDDO
ELSE CMD(DO)

CHGCURLIB CURLIB(*crtdft)
ENDDO

RETURN
STDERR:

IF COND(&curlib *NE '*NONE') THEN(DO)
CHGCURLIB CURLIB(&curlib)
MONMSG MSGID(CPF0000)

ENDDO
ELSE CMD(DO)

CHGCURLIB CURLIB(*crtdft)
MONMSG MSGID(CPF0000)

ENDDO

RCVMSG MSGTYPE(*EXCP) MSGDTA(&msgdta) +
MSGID(&msgid) MSGF(&msgf) +
MSGFLIB(&msgflib)

MONMSG MSGID(CPF0000 MCH0000)
SNDPGMMSG MSGID(&msgid) MSGF(&msgflib/&msgf) +

MSGDTA(&msgdta) MSGTYPE(*ESCAPE)
MONMSG MSGID(CPF0000 MCH0000)
RETURN

ENDPGM

/* Register OFS to data base */
/* Create the QMQRY object by using command CRTQMQRY */
insert into ofs (refnum,dll_name,vendor,product,name,version,
description) Select max(refnum) + 1, &DLL,&VEND,'NC',&NAME,&VERS,&DESC
from ofs
Source Code Samples 467

Figure 451. CLRCACH Command

/**/
/* The clrcache command is used to signal html page */
/* expiration to the Net.Commerce sync daemon */
/* Author: shahar mor */
/* Provided AS IS */
/**/

CMD PROMPT('Clear cache')

PARM KWD(MERCHANT) TYPE(*DEC) LEN(9 0) MIN(1) +
PROMPT('Merchant number')

PARM KWD(PRODUCT) TYPE(*CHAR) LEN(12) DFT(*ALL) +
SPCVAL((*ALL ' ')) PROMPT('Product Number')
468 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 452. CLRCACH CPP (Part 1 of 2)

H**
H* This program is an example of creating file for mass import *

H* *
H* Input: *
H* InMer - Merchant number *
H* InProd - Product number or blank for all products *
H* Author: shahar mor *

H* Provided AS IS *
H**

H ALWNULL(*INPUTONLY)
F*
F* Products File
FBEPROD IF E K DISK RENAME(BEPROD:RBEPROD)
F
F* Products file from Net.Commerce
FUI_PRODUCTIF E K DISK
F*
F
F* Cach log file
FCACHLOG O E DISK RENAME(CACHLOG:RCACHLOG)
D*
D* Parameter Structure
D InMer S 9 0
D InProd S 12
D*
D
D*
D* Key for Net.Commerce product file
D DS
D Kymer 9B 0
D KyPnbr 64
D*
DAllProd C CONST(' ')

C**
C* Main logic

C**
C*
C *ENTRY PLIST
C PARM InMer
C PARM InProd
C*
C KYNETC KLIST
C KFLD KYMER
C KFLD KYPNBR
C
C*
C EVAL Kymer = InMer
C EVAL CACMENBR = InMer
C EVAL CACNAME = 'prrfnbr'
C*
C* Check for product existence in net commerce (Single record approach)
C IF InProd <> AllProd
C EVAL BEPNBR = InProd
C EXSR GetNbr
C IF %found
C EXSR WrtLog
C ENDIF
C ELSE
C EXSR WrtAll
C ENDIF
C*
C EVAL *INLR = *ON

C**
C GetNbr BEGSR

C**
C*
C* Get Net.Commerce product number from back end product number
C*
C EVAL %subst(KyPnbr:1:12) = BEPNBR
C KYNETC CHAIN(E) UI_PRODUCT
C*
C ENDSR
Source Code Samples 469

Figure 453. CLRCACH CPP (Part 2 of 2)

A.4 The STRNETBE Command

The STRNETCBE command shown in Figure 454 on page 471 is used to start
Net.Commerce with all the processes that are used to make back-end integration.

C**
C WrtAll BEGSR

C**
C*
C* Prepare all products to import file
C*
C *LOVAL SETLL RBEPROD
C READ(E) RBEPROD
C*
C DOW Not %EOF(BEPROD)
C EXSR GetNbr
C IF %found
C EXSR WrtLog
C ENDIF
C READ(E) RBEPROD
C ENDDO
C*
C ENDSR

C**
C WrtLog BEGSR

C**
C*
C* Write to cache log. Sync. daemon will do the actual purge
C*
C*
C EVAL CACVALUE = PRRFNBR
C TIME CACSTMP
C WRITE RCACHLOG
C ENDSR
470 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 454. STRNETCBE CPP Source Code

A.5 The ORDERC Program

The ORDERC program, as shown in Figure 455 on page 472, is used to actually
send e-mail confirmation to the customer. It is called from the order process
program.

CMD PROMPT('Start local Net.Commerce')

PARM KWD(INSTANCE) TYPE(*NAME) LEN(10) MIN(1) +
PROMPT('Instance to start')

The STRNETCBE Command source file
/***/
/* This program will start Net.Commerce and take care of back */
/* end integration issues. */
/* */
/* Author: shahar mor */
/* Provided AS IS */
/***/

PGM PARM(&pr_inst)

DCL VAR(&pr_inst) TYPE(*CHAR) LEN(10)

DCL VAR(&libl) TYPE(*CHAR) LEN(275)
DCL VAR(&cmd) TYPE(*CHAR) LEN(512)

RTVJOBA USRLIBL(&libl)

/* Setting the back end production library to be included */

ADDLIBLE LIB(NETCBE) POSITION(*LAST)
MONMSG MSGID(CPF2103) /* Already in libray list */
STRNETCSVR INSTANCE(&pr_inst)

/* Starting our resdint program to bridge Net.Commerce order */
/* request to the back end system. We will add the instance */
/* library here also. */

ADDLIBLE LIB(&pr_inst) POSITION(*LAST)
MONMSG MSGID(CPF2103) /* Already in libray list */
SBMJOB CMD(CALL PGM(EXTORDERR)) JOB(NETCGW)

/* Start the Net.Commerce cache daemon to make sure outdated */
/* pages are purged from the cache. */

QNETCOMM/STRNETCDMN INSTANCE(&pr_inst)

/* Return the original library list */
CHGVAR VAR(&cmd) VALUE('chglibl libl(' *TCAT &libl +

*TCAT ')')
CALL PGM(QCMDEXC) PARM(&cmd 512)

ENDPGM
Source Code Samples 471

Figure 455. ORDERC Source Code

A.6 Back-End Table Definition

The following SQL script describes the layout of the relevant back-end system
tables:

CREATE TABLE NETCBE/BEMEASUR (MSCODE CHARACTER (3) NOT NULL WITH
DEFAULT, MSTEXT CHARACTER (25) NOT NULL WITH DEFAULT, PRIMARY KEY
(MSCODE))

CREATE TABLE NETCBE/BECATEG (BECODE CHARACTER (3) NOT NULL WITH
DEFAULT, BETEXT CHARACTER (25) NOT NULL WITH DEFAULT, PRIMARY KEY
(BECODE))

CREATE TABLE NETCBE/BEPROD (BEPNBR CHARACTER (12) NOT NULL WITH DEFAULT,
BESDSC CHARACTER (25) NOT NULL WITH DEFAULT, BELDSC CHARACTER (50)
NOT NULL WITH DEFAULT, BEPRIC DEC (13, 2) NOT NULL WITH DEFAULT,
BECUR CHARACTER (3) NOT NULL WITH DEFAULT, BEGRPC CHARACTER (3) NOT
NULL WITH DEFAULT, BEINVI DEC (12) NOT NULL WITH DEFAULT, BEINVC
CHARACTER (3) NOT NULL WITH DEFAULT

, PRIMARY KEY (BEPNBR))

LABEL ON COLUMN NETCBE/BEPROD (BEPNBR IS 'Product number', BESDSC
IS 'Short Description', BELDSC IS 'Long Description', BEPRIC IS
'Product price', BECUR IS 'Price Currency', BEGRPC IS
'Product group code', BEINVI IS 'Items in inventory', BEINVC IS
'inventory measurement code'

)
LABEL ON COLUMN NETCBE/BECATEG (BECODE IS 'Category code', BETEXT
IS 'Category Description')

LABEL ON COLUMN NETCBE/BEMEASUR (MSCODE IS 'Measurement unit Code',
MSTEXT IS 'Measurements unit text')

CREATE TABLE NETCBE/BEDISC (BDPNBR CHARACTER (12) NOT NULL WITH
DEFAULT, BDCNBR DECIMAL (7) NOT NULL WITH DEFAULT, BDPCT DECIMAL
(4, 2) NOT NULL WITH DEFAULT, PRIMARY KEY (BDPNBR, BDCNBR))

LABEL ON COLUMN NETCBE/BEDISC (BDPNBR IS 'Product Number', BDCNBR
IS 'Customer Number', BDPCT IS 'Discount Percentage')

CREATE TABLE NETCBE/BEWORK (BODATE DATE NOT NULL WITH DEFAULT,
BOTIME TIME NOT NULL WITH DEFAULT, BOWS CHARACTER (10) NOT NULL
WITH DEFAULT, BOONUM CHARACTER (30) NOT NULL WITH DEFAULT, BOSUM
NUMERIC (13, 2) NOT NULL WITH DEFAULT, BOAFLG CHARACTER (1) NOT
NULL WITH DEFAULT)

LABEL ON COLUMN NETCBE/BEWORK (BODATE IS 'Order date', BOTIME IS
'Order Time', BOWS IS 'Order work station', BOONUM IS
'Order Number', BOSUM IS 'Order total sum', BOAFLG IS
'Order process flag(1=to be processed)')

PGM PARM(&PR_MSG &PR_ADDR)

DCL VAR(&PR_MSG) TYPE(*CHAR) LEN(512)
DCL VAR(&PR_ADDR) TYPE(*CHAR) LEN(246)

SNDEMAIL FILENAME('/shaharm/temp') +
RECIPADDR(&PR_ADDR) +
SENDERADDR(WWW@REDBOOKS.YAHOO.COM) +
SENDERNAME('ShopITSO orders center') +
SUBJECT('Your order from ShopITSO') +
MESSAGE(&PR_MSG)

ENDPGM
472 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

A.7 The RQSCAP Command

The RQSCAP command is used by the back-end system to signal order
fulfillment to the Net.Commerce background server.

Figure 456. RQSCAP Command Source

/**/

/* The RQSCAP is used by the back end system to ask the */
/* Net.Commerce background process to capture order payment */
/* Author: shahar mor */
/* Provided AS IS */
/**/

CMD PROMPT('Request payment capture')

PARM KWD(INSTANCE) TYPE(*NAME) LEN(10) MIN(1) +
PROMPT('Instance name')

PARM KWD(MERCHANT) TYPE(*DEC) LEN(9 0) MIN(1) +
PROMPT('Merchant number')

PARM KWD(ORDER) TYPE(*DEC) LEN(9 0) MIN(1) +
PROMPT('Order number')

PARM KWD(AMOUNT) TYPE(*DEC) LEN(13 2) MIN(1) +
PROMPT('Order amount')
Source Code Samples 473

Figure 457. REQCAP CPP Source (Part 1 of 2)

/***/
/* This program will request Net.Commerce background */
/* server to issue payment capture request */
/* */
/* Arguments: */
/* pr_inst - Instance name */
/* pr_mer - Merchant number */
/* pr_ord - Order Number */
/* pr_amt - Order amount */
/* */
/* Compile with CURLIB = Net.Commerce instance library */
/* Author: shahar mor */
/* Provided AS IS */
/***/

PGM PARM(&pr_inst +
&pr_mer +
&pr_ord +
&pr_amt +

)

/* Input parameters */
DCL VAR(&Pr_inst) TYPE(*CHAR) LEN(10)
DCL VAR(&pr_mer) TYPE(*DEC) LEN(9 0)
DCL VAR(&pr_ord) TYPE(*DEC) LEN(9 0)
DCL VAR(&pr_amt) TYPE(*DEC) LEN(13 2)

/* Character parameters for QMQRY REGOFS */

DCL VAR(&pr_merc) TYPE(*CHAR) LEN(9)
DCL VAR(&pr_ordc) TYPE(*CHAR) LEN(9)
DCL VAR(&pr_amtc) TYPE(*CHAR) LEN(14)

/* General error variables */
DCL VAR(&msgflib) TYPE(*CHAR) LEN(10)
DCL VAR(&msgf) TYPE(*CHAR) LEN(10)
DCL VAR(&msgid) TYPE(*CHAR) LEN(7)
DCL VAR(&msgdta) TYPE(*CHAR) LEN(128)

DCL VAR(&curlib) TYPE(*CHAR) LEN(12)

MONMSG MSGID(CPF0000) EXEC(GOTO CMDLBL(STDERR))

/* Set the correct instance */
RTVJOBA CURLIB(&curlib)
CHGCURLIB CURLIB(&pr_inst)

/* Prepare character fields for REGOFS */

CHGVAR VAR(&pr_merc) VALUE(&pr_mer)
CHGVAR VAR(&pr_ordc) VALUE(&pr_ord)
CHGVAR VAR(&pr_amtc) VALUE(&pr_amt)

/* Request the capture */
STRQMQRY QMQRY(rqscap) SETVAR((MER &pr_merc) +

(ORD &pr_ordc) (AMT &pr_amtc))

/* Restore current library */
IF COND(&CURLIB *NE '*NONE') THEN(DO)

CHGCURLIB CURLIB(&curlib)
ENDDO
ELSE CMD(DO)

CHGCURLIB CURLIB(*crtdft)
ENDDO
RETURN

STDERR:
IF COND(&curlib *NE '*NONE') THEN(DO)

CHGCURLIB CURLIB(&curlib)

MONMSG MSGID(CPF0000)
474 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 458. REQCAP CPP Source (Part 2 of 2)

Figure 459. REQCAP SQL Script — QMQRY Source

A.8 HTML Samples

This section contains all of the HTML source files that we used in this book.

A.8.1 Index HTML

The Index HTML controls the frameset with two frames: the banner frame which
presents the banner1.html and the main frame which presents our home page
(home.html):

<HTML>

<HEAD>
<TITLE>Shop ITSO</TITLE>
</HEAD>

<FRAMESET ROWS="100,*" BORDER="0" FRAMEBORDER="no">
<FRAME NAME="banner" SRC="/shopitso/banner1.html" FRAMEBORDER="no" BORDERCOLOR="white"
SCROLLING="no" RESIZE="no">
<FRAME NAME="main" SRC="/shopitso/home.html" FRAMEBORDER="no">
</FRAMESET>

</HTML>

A.8.2 Banner1 HTML

Banner1 controls the access to our several HTML pages:

<html>
<head>
<meta http-equiv="Expires" content="Mon, 01 Jan 1996 01:01:01 GMT">
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title></title>
</head>
<body bgcolor="#E00000">

ENDDO
ELSE CMD(DO)

CHGCURLIB CURLIB(*crtdft)
MONMSG MSGID(CPF0000)

ENDDO

RCVMSG MSGTYPE(*EXCP) MSGDTA(&msgdta) +
MSGID(&msgid) MSGF(&msgf) +
MSGFLIB(&msgflib)

MONMSG MSGID(CPF0000 MCH0000)
SNDPGMMSG MSGID(&msgid) MSGF(&msgflib/&msgf) +

MSGDTA(&msgdta) MSGTYPE(*ESCAPE)
MONMSG MSGID(CPF0000 MCH0000)
RETURN

ENDPGM

/* Request payment capture */
UPDATE SETSTATUS
SET SETSSTATCODE = 7
WHERE setsornbr = &ORD and
setsmenbr = &MER and
setsstatcode = 21 and
setsauthamt = &AMT
Source Code Samples 475

<table border="0" cellpadding="0" cellspacing="0" width="640">
<tr><td></td></tr>
<tr><td><table border="1" cellspacing="0" width="640">
<tr><td align="center" width="10%" bgcolor="#A1A2C5">

<font size="1"
face="Verdana"> Home</td>

<td align="center" width="15%" bgcolor="#E7E7EF">
<font size="1"
face="Verdana">Online Shop</td>

<td align="center" width="15%" bgcolor="#A1A2C5">
<font size="1"
face="Verdana">News</td>

<td align="center" width="25%" bgcolor="#A1A2C5">
<font size="1"
face="Verdana">Our Company</td>

<td align="center" width="10%" bgcolor="#A1A2C5">
<font size="1"
face="Verdana">Help</td>

<td align="center" width="25%" bgcolor="#A1A2C5">
<font size="1"
face="Verdana">Contact Info</td>

</tr>
</table>
</tr>
</table>
</body>
</html>

A.8.3 Home HTML

Our home page is shown in the main frame after the image:

<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title></title>
</head>
<body>
<h3>This is the Home Page</h3>
<P>Welcome to the Net.Commerce ShopITSO
,your sample shop for all your day-to-day needs. <P>
For your convenience, we are open 24 hours, 7 days a week.

</body>
</html>

A.8.4 News HTML

Our news HTML page has a link to the IBM Net.Commerce Web site, which is on
another server:

<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title></title>
</head>
<body>
<h3>This is the News Page</h3>

<H2> Find here the latest information about Net.Commerce </H2>

 Link to IBM Net.Commerce
Site
</body>
</html>

A.8.5 Catalog HTML

The catalog HTML page starts our Net.Commerce e-business application.

It controls two framesets. The first is the banner2.html, which presents the banner
and the navigation bars. The second is divided into two frames. On the left frame
(named left) is our catalog tree and the frame main that presents our promotions
page (promotions.html).
476 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

<HTML>
<HEAD>
<TITLE>Shop ITSO</TITLE>
</HEAD>
<FRAMESET ROWS="100,*" BORDER="0" FRAMEBORDER="no">
<FRAME NAME="banner" SRC="/shopitso/banner2.html" FRAMEBORDER="no"
BORDERCOLOR="white" SCROLLING="no" RESIZE="no">

<FRAMESET COLS="210,*" BORDER="0" FRAMEBORDER="no">
<FRAME NAME="left" SRC="/cgi-bin/ncommerce3/CategoryDisplay?cgmenbr=28&cgrfnbr=657"
FRAMEBORDER="no">

<FRAME NAME="main" SRC="/shopitso/promotions.html" FRAMEBORDER="no">
</FRAMESET>
</FRAMESET>
</HTML>

A.8.6 Company HTML

Our company HTML page has two links: one to the Shop IBM, a real
Net.Commerce application, and one to the IBM home page. Both are on other
servers in the network.

<html>
<head>
<meta http-equiv="Content-Type"
content="text/html; charset=iso-8859-1">
<title></title>
</head>
<body>
<h3>This is the Company Page</h3>
<H2> Find here the latest information about our Company </H2>

Link to Shop IBM

 Link to
IBM Homepage
</body>
</html>

A.8.7 Help HTML

Our help HTML page has, at the moment, not much text. It will be constructed
later.

<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title></title>
</head>
<body>
<h3>This is the Help Page</h3>
</body>
</html>

A.8.8 Contact HTML

For performance reasons, we did not use the contact.d2w macro, which gets the
information that is shown from the database through several SQL queries.
Because this information seldom changes, we use static HTML to show our shop
address:

<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title></title>
</head>
<body>
<TABLE BORDER=0 CELLPADDING=0 CELLSPACING=0 WIDTH=100%>
<TR><TD ALIGN="left" VALIGN="center"><FONT COLOR="$(TitleTxtCol)"

FACE="helvetica"> <H3>Contact Info</H3></TD></TR>
<TR><TD>For any customer needs, contact us at :

</TD></TR>
<TR><TD><address>

ShopITSO

IBM ITSO Rochester

Rochester, MN

Source Code Samples 477

55555, US

Telephone: 1-800-Call-ShopITSO>/B>

Fax: 1-800-Fax_ShopITSO

Email: webmaster@shopitso.itsoroch.ibm </address></TD></TR>

</TABLE>
</body>
</html>

A.8.9 Banner2 HTML

The banner2 HTML controls navigation bar2. There are links to HTML pages and
calls of Net.Commerce commands for OrderItemDisplay to display the order
details and OrderList to show the status order page.

<html>
<head>
<meta http-equiv="Expires" content="Mon, 01 Jan 1996 01:01:01 GMT">
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title></title>
</head>
<body bgcolor="#E00000">
<table border="0" cellpadding="0" cellspacing="0" width="640">
<tr><td></td></tr>
<tr><td><table border="1" cellspacing="0" width="640">
<tr><td align="center" width="10%" bgcolor="#A1A2C5">

Home</td>
<td align="center" width="15%" bgcolor="#E7E7EF">

Online Shop</td>

<td align="center" width="10%" bgcolor="#E7E7EF">

Search</td>

<td align="center" width="15%" bgcolor="#E7E7EF"><a
href="/cgi-bin/ncommerce3/ExecMacro/shopitso/ordernow.d2w/input"

target="main">
Order Now</td>

<td align="center" width="25%" bgcolor="#E7E7EF"><a
href="/cgi-bin/ncommerce3/OrderItemDisplay?merchant_rn=28"

target="main">
Display Order Details</td>

<td align="center" width="25%" bgcolor="#E7E7EF"><a
href="/cgi-bin/ncommerce3/OrderList?merchant_rn=28&status=C"

target="main">
Check Orders Status</td></tr>

</table></td></tr>
</table>
</body>
</html>

A.8.10 Promotions HTML

The promotion page shows our special promotions for the week. It describes our
special offers for the week and has a button to add a product to the order list. This
is the plan for the next week. Here, we do not have any promotions:

<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title></title>
</head>
<body>
<h3>This is the Promotions Page</h3>
</body>
</html>

A.8.11 Search HTML

In this HTML, the customer can enter a search string to search for a product
name. After they press the Search button, the searchrslt.d2w presents the search
result:
478 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

<HTML>
<HEAD>
<META HTTP-EQUIV=Expires CONTENT="Mon, 01 Jan 1996 01:01:01 GMT">
<TITLE></TITLE>
</HEAD>
<BODY>
<TABLE BORDER=0 CELLPADDING=0 CELLSPACING=0 WIDTH=100%>
<TR><TD ALIGN="left" VALIGN="center">
Enter a keyword to quickly find the item you are looking for.

</TD></TR>
<TR><TD ALIGN="left"><FORM METHOD="POST"
ACTION="/cgi-bin/ncommerce3/ExecMacro/shopitso/searchrslt.d2w/report">
<INPUT TYPE="text" NAME="search" SIZE="30" MAXLENGTH="30">

<INPUT TYPE="submit" value="Search"></FORM></TD></TR>
</TABLE>
</BODY>
</HTML>

A.8.12 20BOG HTML

This HTML page is used for an additional description of the product with the SKU
number 20BoG. The path and name information for this HTML page is assigned
in the field PRULR of the product table. For this product, see 13.11, “Using the
Product PRURL Field” on page 218.

<HR><TABLE width=100% cellspacing=15 border=0><TR valign=top><TD width=33%> </TD>
<TD with=67%><H1>Additional Text</h1></TD>
<TD>This is text from the URL in the database.

We used here some HTML tags.</TD></TR>
return to
product page
</TABLE>

A.8.13 CMDINC HTML

This is the HTML file for one of the system error pages. See 13.19, “Customizing
System Error Pages” on page 272.

<!--
The sample templates, HTML and Macros are furnished by IBM as sample

examples to provide an illustration. These examples have not been
thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, of function of these programs. All
programs contained herein are provided to you "AS IS"

The sample templates, HTML, and Macros may include the names of individuals,
companies, brands and products in order to illustrate them as completely as
possible. All of these names are fictitious and any similarity to the names
and addresses used by an actual business enterprise is entirely coincidental.

(C) Copyright IBM Corp. 1995, 1996
-->

<HTML>

<HEAD>
<TITLE>
Mall/Store Error

</TITLE>
</HEAD>

<BODY bgcolor="#F4F4D9">

<center>

There is a problem in our ShopITSO store.

Please try again later.<P>
Perhaps you can continue to browse in our product catalog, when you see the catalog tree

in the left frame.

Or try to use our Contact Info page, which you can reach through our Hompage (use Home

button).

<HR WIDTH=500>
Source Code Samples 479

<table border=0 width=450>
<tr>
<td width=450 valign=top>
<CENTER>

<H2>Command Structure Failure</H2><P>
(CMN0950E)<P>
Unable to complete command. The command syntax is
not correct, or parameters required by the system
were not passed in.

</CENTER>
</td>

</table>

</center>

</BODY>

</HTML>

A.9 Net.Data Sample Macros

This section contains all of the Net.Data macro source files that we used in this
book.

A.9.1 Macro for Catalog Tree

This is the macro to build our catalog tree, which is shown when the online shop
is started form the navigation bar 1 in the left frame. The name of the macro is
cat0.d2w and is assigned to the Top Category (Home Category) of our store.

%include "ShopITSO/ShopITSO.inc"

%{==

The sample Templates, HTML and Macros are furnished by IBM as simple
examples to provide an illustration. These examples have not been
thoroughly tested under all conditions. IBM, therefore, cannot guarantee reliability,
serviceability or function of these programs. All programs contained herein are provided to
you "AS IS".

The sample Templates, HTML and Macros may include the names of individuals,
companies, brands and products in order to illustrate them as completely as
possible. All of these are names are fictitious and any similarity to the names
and addresses used by actual persons or business enterprises is entirely coincidental.

Licensed Materials - Property of IBM

5697-D245798-NC3

(c) Copyright IBM Corp. 1998. All Rights Reserved

US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM Corp

==%}

%define {
SHOWSQL="NO"

SHIPPING_REF = "0"
rootTable = %table

rowIndexRoot = "1"
parentH1=""
catChild=""

%}

%function(dtw_odbc) GET_ADDRESS_REF_NUM() {
select sarfnbr
from shaddr, shopper
where (shlogid='$(SESSION_ID)' and sanick=shlogid and shrfnbr=sashnbr and saadrflg='P')
%REPORT{
%ROW{

@DTW_assign(ADDRESS_REF, V_sarfnbr)
480 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

%}
%}
%MESSAGE{
default: {%}: continue

%}
%}

%{== all categories under top category ==%}
%function(dtw_SQL) GET_CATEGORY_ROOT1(OUT table) {

SELECT CGRFNBR, CGNAME, CGFIELD1
from category, cgryrel
where CATEGORY.CGRFNBR = CGRYREL.CRCCGNBR and CATEGORY.

CGMENBR = $(MerchantRefNum) and CGRYREL.CRPCGNBR = $(HomeCategory)
and cgpub=1

%REPORT {
%ROW {
%}

%}
%MESSAGE {

default: { %} :continue %}
%}

%{== all categories under root1 category ==%}
%function(dtw_SQL) GET_CATEGORY_CHILD() {

SELECT CGRFNBR, CGNAME
from category, cgryrel
where CATEGORY.CGRFNBR = CGRYREL.CRCCGNBR and

CATEGORY.CGMENBR = $(MerchantRefNum) and
CGRYREL.CRPCGNBR = $(parentH1) and cgpub=1

%REPORT {

%ROW {
@DTW_ASSIGN(catChild, V_cgrfnbr)
<A

HREF="/cgi-bin/ncommerce3/CategoryDisplay?cgmenbr=$(MerchantRefNum)&cgrfnbr=$(V_cgrfnb
r)"

TARGET="left">$(V_cgname)
%}

%}
%MESSAGE {

default: { %} :continue %}
%}

%{== macro for loop ==%}
%macro_function GET_ROOT_INDEX (IN table){
%while (rowIndexRoot <= numRows) {
@DTW_ASSIGN(parentH1, @DTW_TB_RGETV(rootTable, rowIndexRoot, "1"))
@DTW_TB_RGETV(rootTable, rowIndexRoot, "2")
%IF (@DTW_TB_RGETV(rootTable, rowIndexRoot, "3") == "1")
<A
HREF="/servlet/icviewer/ca_html/shopitso_pe.html?cgrfnbr=$(parentH1)&cgmenbr=$(Merchan
tRefNum)" TARGET="main">
<IMG SRC="/shopitso/padvisor.gif" ALT="Product Exploration" BORDER="1"
ALIGN="bottom">

%ENDIF
@GET_CATEGORY_CHILD()
@DTW_ADD(rowIndexRoot, "1", rowIndexRoot)
%}
%}

%function(dtw_odbc) DISPLAY_BACKUP(){
select distinct crpcgnbr, cgname
from cgryrel, category
where crccgnbr=$(cgrfnbr) and crmenbr=$(MerchantRefNum)
and cgrfnbr=crpcgnbr

%REPORT{

<TABLE BORDER=0 CELLPADDING=0 CELLSPACING=0 WIDTH=100%>
%ROW{
<TR><TD ALIGN="left" VALIGN="top">
%IF (V_cgrfnbr != $(HomeCategory))
<A

HREF="/cgi-bin/ncommerce3/CategoryDisplay?cgrfnbr=$(V_crpcgnbr)&cgmenbr=$(MerchantRefN
um)">

RETURN TO $(V_cgname)
%ENDIF
Source Code Samples 481

</TD></TR>
%}

</TABLE>

%}
%MESSAGE{100:{%} :continue %}

%}

%{==%}
%{ HTML Report Section
%{==%}
%HTML_REPORT{
<HTML>
<HEAD>
<META HTTP-EQUIV=Expires CONTENT="Mon, 01 Jan 1996 01:01:01 GMT">
</HEAD>
<BODY BGCOLOR="#E00000" TEXT="$(TextCol)" LINK="$(LinkCol)" VLINK="$(VLinkCol)"
ALINK="$(ALinkCol)">
@GET_ADDRESS_REF_NUM()
<TABLE BGCOLOR="$(BodyColor1)" BORDER=0 CELLPADDING=3 CELLSPACING=0 WIDTH=100%>
<TR><TD ALIGN="left"><FONT FACE="helvetica"
COLOR="$(TitleTxtCol)"><H5>Catalog</H5></TD></TR>
<TR><TD ALIGN="left">
Browse the catalog to view product information and to add items to the order list, or use
Product Advisor Tools (indicated by a
 beside a product category) to select
products by its distinctive attributes.

</TD></TR>
<TR><TD ALIGN="left">
@DISPLAY_BACKUP()</TD></TR>
</TABLE>
@GET_CATEGORY_ROOT1(rootTable)
@DTW_TB_ROWS(rootTable, numRows)
<TABLE BGCOLOR="$(BodyColor1)" WIDTH=100% CELLPADDING=0 CELLSPACING=0 BORDER=0>
<TR><TD>@GET_ROOT_INDEX(rootTable)</TD></TR>
</TABLE>
</BODY>
</HTML>
%}

A.9.2 Category Macro

All of our categories, except the Home Category, have the macro cat1.2dw
assigned:

%include "ShopITSO/ShopITSO.inc"
%{==
The sample Templates, HTML and Macros are furnished by IBM as simple
examples to provide an illustration. These examples have not been
thoroughly tested under all conditions. IBM, therefore, cannot guarantee reliability,
serviceability or function of these programs. All programs contained herein are provided to
you "AS IS".

The sample Templates, HTML and Macros may include the names of individuals,
companies, brands and products in order to illustrate them as completely as
possible. All of these are names are fictitious and any similarity to the names
and addresses used by actual persons or business enterprises is entirely coincidental.

Licensed Materials - Property of IBM

5697-D245798-NC3

(c) Copyright IBM Corp. 1998. All Rights Reserved

US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM Corp
==%}
%define {
SHOWSQL="NO"
SHIPPING_REF = "0"
AATTRIBUTES = "FALSE"
BACKUP = "$(HomeCategory)"
CGRYNUM = ""
CGRYBANNERNAME = ""

%}

%function(dtw_odbc) GET_ADDRESS_REF_NUM() {
482 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

select sarfnbr
from shaddr, shopper
where (shlogid='$(SESSION_ID)' and sanick=shlogid and shrfnbr=sashnbr

and saadrflg='P')
%REPORT{
%ROW{

@DTW_assign(ADDRESS_REF, V_sarfnbr)
%}

%}
%MESSAGE{
default: {%}: continue

%}
%}

%function(dtw_odbc) DISPLAY_BACKUP(){
select distinct crpcgnbr, cgname
from cgryrel, category
where crccgnbr=$(cgrfnbr) and crmenbr=$(MerchantRefNum)

and cgrfnbr=crpcgnbr
%REPORT{

%ROW{
<A
HREF="/cgi-bin/ncommerce3/CategoryDisplay?cgrfnbr=$(V_crpcgnbr)&cgmenbr=$(MerchantRefN
um)">

RETURN TO $(V_cgname)
%}

%}
%MESSAGE{100:{%} :continue %}

%}

%{==== DISPLAY_CATEGORIES Function ====%}
%function(dtw_odbc) DISPLAY_CATEGORIES(){

select CATEGORY.CGRFNBR, CATEGORY.CGMENBR, CATEGORY.CGNAME,
CATEGORY.CGTHMB, CATEGORY.CGFIELD1, CGRYREL.CRSEQNBR,
CATEGORY.CGLDESC, CGRYREL.CRPCGNBR

from CATEGORY, CGRYREL
where CRCCGNBR=CGRFNBR and crpcgnbr=$(cgrfnbr) and crmenbr=$(cgmenbr)

and cgpub=1
order by crseqnbr

%REPORT{

%ROW{
<A

HREF="/cgi-bin/ncommerce3/CategoryDisplay?cgrfnbr=$(V_CGRFNBR)&cgmenbr=$(V_CGMENBR)&CG
RY_NUM=$(CGRYNUM)">

$(V_CGNAME)
%IF (V_CGFIELD1 == "1")

<A
HREF="/servlet/icviewer/ca_html/shopitso_pe.html?cgrfnbr=$(V_CGRFNBR)&cgmenbr=$(Mercha
ntRefNum)" TARGET="main">

<IMG SRC="/shopitso/padvisor.gif" ALT="Product Exploration"
BORDER="1" ALIGN="bottom">

%ENDIF

@DTW_ASSIGN(save_crpcgnbr, V_CRPCGNBR)

%}
@DTW_assign(BACKUP, save_crpcgnbr)

%}
%MESSAGE{100:{%} :continue %}

%}

%function(dtw_odbc) DISPLAY_PRODUCT_LIST() {
select PRODUCT.PRRFNBR, PRODUCT.PRMENBR, PRODUCT.PRTHMB,

PRODUCT.PRNBR, PRSDESC, PRTHMB,
CGPRREL.CPSEQNBR, CGPRREL.CPCGNBR

from PRODUCT, CGPRREL
where CPPRNBR=PRRFNBR and cpcgnbr=$(cgrfnbr) and cpmenbr=$(cgmenbr)

and prpub=1
order by cpseqnbr

%REPORT{

%ROW{
<A

HREF="/cgi-bin/ncommerce3/ProductDisplay?prrfnbr=$(V_PRRFNBR)&prmenbr=$(V_PRMENBR)"
TARGET="main">

<I>$(V_PRSDESC)</I>
Source Code Samples 483

@DTW_ASSIGN(save_crpcgnbr, V_CRPCGNBR)
%}
@DTW_assign(BACKUP, save_crpcgnbr)

%}
%MESSAGE{100:{%} :continue %}

%}

%{==%}
%{ HTML Report Section
%{==%}
%HTML_REPORT{
<HTML>
<HEAD>
<META HTTP-EQUIV=Expires CONTENT="Mon, 01 Jan 1996 01:01:01 GMT">
</HEAD>
<BODY BGCOLOR="#E00000" TEXT="$(TextCol)" LINK="$(LinkCol)"
VLINK="$(VLinkCol)" ALINK="$(ALinkCol)">

<TABLE BGCOLOR="$(BodyColor1)" BORDER=0 CELLPADDING=3 CELLSPACING=0
WIDTH=100%>

<TR><TD ALIGN="left"><FONT FACE="helvetica"
COLOR="$(TitleTxtCol)"><H3>Catalog</H3></TD></TR>
<TR><TD ALIGN="left">

Browse the catalog to view product information and to add items to the order list, or use
Product Advisor Tools (indicated by a beside a product category) to select products by
its distinctive attributes.

</TD></TR>
%IF (V_cgrfnbr != $(HomeCategory))
<TR><TD ALIGN="left">
@DISPLAY_BACKUP()</TD></TR>
%ENDIF
</TABLE>

@GET_ADDRESS_REF_NUM()
<TABLE BGCOLOR="$(BodyColor1)" WIDTH=100% CELLPADDING=0 CELLSPACING=0 BORDER=0>
<TR><TD>@DISPLAY_CATEGORIES()</TD></TR>
<TR><TD>@DISPLAY_PRODUCT_LIST()</TD></TR>
</TABLE>
</BODY>
</HTML>
%}

A.9.3 Product Macro PROD1.D2W

This section contains the product macro named prod1.d2w. This template is
assigned to all of our products, with the exception of the product with the SKU
number 20BOG.

%include "ShopITSO/ShopITSO.inc"
%{==
The sample Templates, HTML and Macros are furnished by IBM as simple
examples to provide an illustration. These examples have not been
thoroughly tested under all conditions. IBM, therefore, cannot guarantee reliability,
serviceability or function of these programs. All programs contained herein are provided to
you "AS IS".

The sample Templates, HTML and Macros may include the names of individuals,
companies, brands and products in order to illustrate them as completely as
possible. All of these are names are fictitious and any similarity to the names
and addresses used by actual persons or business enterprises is entirely coincidental.

Licensed Materials - Property of IBM

5697-D245798-NC3

(c) Copyright IBM Corp. 1998. All Rights Reserved

US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM Corp
==%}
%define {
SHOWSQL="YES"
SHIPPING_REF="0"
ATTRIBUTES = "FALSE"
484 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

ITEM_ATTR_NAME = ""
ADDRESS_REF = ""
DESC1=""
DESC2=""
DESC3=""

%}

%function(dtw_odbc) GET_ADDRESS_REF_NUM() {
select sarfnbr
from shaddr, shopper
where shlogid='$(SESSION_ID)' and sanick=shlogid and shrfnbr=sashnbr and saadrflg='P'
%REPORT{
%ROW{

@DTW_assign(ADDRESS_REF, V_sarfnbr)
%}

%}
%MESSAGE{
default: { %}: continue

%}
%}
%function(dtw_odbc) GET_SHIPPING_REF_NUM() {

select spmmnbr, spchrge
from shipping
where spmenbr=$(MerchantRefNum)
order by spchrge ASC

%REPORT{
%ROW{
%IF (ROW_NUM == "1" && SHIPPING_REF == "0")

@DTW_assign(SHIPPING_REF, V_spmmnbr)
%ELIF (ROW_NUM == "2" && SHIPPING_REF == "0")

@DTW_assign(SHIPPING_REF, V_spmmnbr)
%ELIF (ROW_NUM == "3" && SHIPPING_REF == "0")

@DTW_assign(SHIPPING_REF, V_spmmnbr)
%ENDIF

%}
%}
%MESSAGE{
default: {SHIPPING MODE ERROR %}: continue

%}
%}

%function(dtw_odbc) CHECK_PRODUCT_ATTR() {
selectpdname
from proddstatr
where pdprnbr=$(prrfnbr) and pdmenbr=$(MerchantRefNum)
%REPORT{
%ROW{
@DTW_assign(ATTRIBUTES, "TRUE")
%}

%}
%MESSAGE{
default: { %}: continue

%}
%}

%function(dtw_odbc) DISPLAY_PRODUCT_IMAGE(){
SELECT prthmb, prfull, prsdesc, prldesc1, prldesc2, prldesc3, prnbr
FROM product
WHERE prmenbr=$(MerchantRefNum) and prrfnbr=$(prrfnbr)

%REPORT{
%ROW{

<TR><TD ALIGN="center" BGCOLOR="$(BodyColor2)">

$(V_PRSDESC)</TD>

<TD ALIGN="left" BGCOLOR="$(BodyColor2)">
SKU: $(V_prnbr)</TD></TR>

%IF (V_prfull != "")
<TR><TD COLSPAN=2 ALIGN="left"></TD></TR>

%ELIF (V_prthmb != "")
<TR><TD COLSPAN=2 ALIGN="left"></TD></TR>

%ELSE
<TR><TD COLSPAN=2 ALIGN="left"><I>Sorry, An image of the product is not

available.</I></TD></TR>

%ENDIF

@DTW_assign(DESC1, V_prldesc1)
@DTW_assign(DESC2, V_prldesc2)
Source Code Samples 485

@DTW_assign(DESC3, V_prldesc3)
%}
%IF (ATTRIBUTES == "FALSE")
<TR>
<FORM ACTION="/cgi-bin/ncommerce3/OrderItemUpdate" TARGET="main" METHOD="post">
<TD> Please type quantity you want to order:
<INPUT TYPE=text NAME=quantity VALUE=1 SIZE=5 MAXLENGTH=32> </TD>

<INPUT TYPE=hidden NAME=merchant_rn VALUE=$(MerchantRefNum)>
<INPUT TYPE=hidden NAME=product_rn VALUE=$(prrfnbr)>
<INPUT TYPE=hidden NAME=shipmode_rn VALUE=$(SHIPPING_REF)>
<INPUT TYPE=hidden NAME=url

VALUE="/cgi-bin/ncommerce3/OrderItemDisplay?merchant_rn=$(MerchantRefNum)">
<TD ALIGN="left" COLSPAN=2><input type=image SRC="$(AddButton)"></TD></TR>
</FORM>

<TR><TD>
</TD></TR>
%ENDIF
</TABLE>
%}
%MESSAGE{100:{ %} :continue %}

%}

%function(dtw_odbc) DISPLAY_PRODATTR_VALUES(){
SELECT distinct paname, paval
FROM PRODUCT, PRODATR, PRODDSTATR
WHERE pamenbr=$(MerchantRefNum) and prmenbr=$(MerchantRefNum)

and paprnbr=prrfnbr and prprfnbr=$(prrfnbr) and paname=pdname
%REPORT{
<TR>
<FORM ACTION="/cgi-bin/ncommerce3/OrderItemUpdate" TARGET="main" METHOD="post">
<TD> Please type quantity you want to order:
<TD> <INPUT TYPE=text NAME=quantity VALUE=1 SIZE=5 MAXLENGTH=32> </TD>

<INPUT TYPE=hidden NAME=merchant_rn VALUE=$(MerchantRefNum)>
<INPUT TYPE=hidden NAME=product_rn VALUE=$(prrfnbr)>
<INPUT TYPE=hidden NAME=shipmode_rn VALUE=$(SHIPPING_REF)>
<INPUT TYPE=hidden NAME=url

VALUE="/cgi-bin/ncommerce3/OrderItemDisplay?merchant_rn=$(MerchantRefNum)">

</TD></TR>

%ROW{
%IF (ITEM_ATTR_NAME != V_paname)

</SELECT>
@DTW_assign(ITEM_ATTR_NAME, V_paname)
<TR><TD ALIGN="right">$(V_paname) </TD>
<TD>
<SELECT NAME="$(V_paname)"><OPTION VALUE="$(V_paval)">$(V_paval)</OPTION>
%ELSE
<OPTION VALUE="$(V_paval)">$(V_paval)</OPTION>
%ENDIF

%}
</SELECT>
</TD></TR>
<TR><TD>
</TD></TR>

<TR><TD ALIGN="center" COLSPAN=2><input type=image SRC="$(AddButton)"></TD></TR>
</FORM>
<TR><TD>
</TD></TR>
%}
%MESSAGE{100:{ PROBLEM%} :continue %}

%}

%{==%}
%{ HTML Report Section
%{==%}
%HTML_REPORT{
<HTML>
<HEAD>
<META HTTP-EQUIV=Expires CONTENT="Mon, 01 Jan 1996 01:01:01 GMT">
</HEAD>
<BODY>
<TABLE BORDER=0 CELLPADDING=0 CELLSPACING=2 WIDTH=100%>
@GET_ADDRESS_REF_NUM()
@GET_SHIPPING_REF_NUM()
@CHECK_PRODUCT_ATTR()
@DISPLAY_PRODUCT_IMAGE()
%IF (ATTRIBUTES == "TRUE")
@DISPLAY_PRODATTR_VALUES()
%ENDIF
486 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

<TABLE BORDER=0 CELLPADDING=0 CELLSPACING=0 WIDTH=100%>
<TR BGCOLOR="$(BodyColor2)"><TD ALIGN="center">Price : $(price)
$(currency)
</TD> </TR>
<P>
<TR> <TD COLSPAN=2> $(DESC1)
 $(DESC2)
 $(DESC3)

</TABLE>
</BODY>
</HTML>
%}

A.9.4 Product Macro PROD2.D2W

This section contains the product macro named prod2.d2w for the product with
the SKU number 20BOG. This template is assigned only for this product.

It uses the PRURL field to link to a second page, the 20BOG.HTML. On this
page, the additional product description is shown. See A.8.12, “20BOG HTML” on
page 479.

%include "ShopITSO/ShopITSO.inc"
%{==
The sample Templates, HTML and Macros are furnished by IBM as simple
examples to provide an illustration. These examples have not been
thoroughly tested under all conditions. IBM, therefore, cannot guarantee reliability,
serviceability or function of these programs. All programs contained herein are provided to
you "AS IS".

The sample Templates, HTML and Macros may include the names of individuals,
companies, brands and products in order to illustrate them as completely as
possible. All of these are names are fictitious and any similarity to the names
and addresses used by actual persons or business enterprises is entirely coincidental.

Licensed Materials - Property of IBM

5697-D245798-NC3

(c) Copyright IBM Corp. 1998. All Rights Reserved

US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM Corp
==%}
%define {
SHOWSQL="YES"

SHIPPING_REF="0"
ATTRIBUTES = "FALSE"
ITEM_ATTR_NAME = ""
ADDRESS_REF = ""

DESC1=""
DESC2=""
DESC3=""
URL=""

%}

%function(dtw_odbc) GET_ADDRESS_REF_NUM() {
select sarfnbr
from shaddr, shopper
where shlogid='$(SESSION_ID)' and sanick=shlogid and shrfnbr=sashnbr and saadrflg='P'
%REPORT{
%ROW{

@DTW_assign(ADDRESS_REF, V_sarfnbr)
%}

%}
%MESSAGE{
default: { %}: continue

%}
%}
%function(dtw_odbc) GET_SHIPPING_REF_NUM() {

select spmmnbr, spchrge
from shipping
where spmenbr=$(MerchantRefNum)
order by spchrge ASC

%REPORT{
%ROW{
%IF (ROW_NUM == "1" && SHIPPING_REF == "0")
Source Code Samples 487

@DTW_assign(SHIPPING_REF, V_spmmnbr)
%ELIF (ROW_NUM == "2" && SHIPPING_REF == "0")

@DTW_assign(SHIPPING_REF, V_spmmnbr)
%ELIF (ROW_NUM == "3" && SHIPPING_REF == "0")

@DTW_assign(SHIPPING_REF, V_spmmnbr)
%ENDIF

%}
%}
%MESSAGE{
default: {SHIPPING MODE ERROR %}: continue

%}
%}

%function(dtw_odbc) CHECK_PRODUCT_ATTR() {
selectpdname
from proddstatr
where pdprnbr=$(prrfnbr) and pdmenbr=$(MerchantRefNum)
%REPORT{
%ROW{
@DTW_assign(ATTRIBUTES, "TRUE")
%}

%}
%MESSAGE{
default: { %}: continue

%}
%}

%function(dtw_odbc) DISPLAY_PRODUCT_IMAGE(){
SELECT prthmb, prfull, prsdesc, prldesc1, prldesc2, prldesc3, prnbr, prurl
FROM product
WHERE prmenbr=$(MerchantRefNum) and prrfnbr=$(prrfnbr)

%REPORT{
%ROW{

<TR><TD ALIGN="center" BGCOLOR="$(BodyColor2)">
$(V_PRSDESC)</TD>

<TD ALIGN="left" BGCOLOR="$(BodyColor2)">
SKU: $(V_prnbr)</TD></TR>

%IF (V_prfull != "")
<TR><TD COLSPAN=2 ALIGN="left"></TD></TR>

%ELIF (V_prthmb != "")
<TR><TD COLSPAN=2 ALIGN="left"></TD></TR>

%ELSE
<TR><TD COLSPAN=2 ALIGN="left"><I>Sorry, An image of the product is not

available.</I></TD></TR>

%ENDIF

@DTW_assign(DESC1, V_prldesc1)
@DTW_assign(DESC2, V_prldesc2)
@DTW_assign(DESC3, V_prldesc3)
@DTW_assign(URL, V_prurl)
%}

%IF (ATTRIBUTES == "FALSE")
<TR>
<FORM ACTION="/cgi-bin/ncommerce3/OrderItemUpdate" TARGET="main" METHOD="post">

<TD> Please type quantity you want to order:
<INPUT TYPE=text NAME=quantity VALUE=1 SIZE=5 MAXLENGTH=32> </TD>

<INPUT TYPE=hidden NAME=merchant_rn VALUE=$(MerchantRefNum)>
<INPUT TYPE=hidden NAME=product_rn VALUE=$(prrfnbr)>
<INPUT TYPE=hidden NAME=shipmode_rn VALUE=$(SHIPPING_REF)>
<INPUT TYPE=hidden NAME=url

VALUE="/cgi-bin/ncommerce3/OrderItemDisplay?merchant_rn=$(MerchantRefNum)">
<TD ALIGN="left" COLSPAN=2><input type=image SRC="$(AddButton)"></TD></TR>
</FORM>

<TR><TD>
</TD></TR>
%ENDIF
</TABLE>
%}
%MESSAGE{100:{ %} :continue %}

%}

%function(dtw_odbc) DISPLAY_PRODATTR_VALUES(){
SELECT distinct paname, paval
FROM PRODUCT, PRODATR, PRODDSTATR
WHERE pamenbr=$(MerchantRefNum) and prmenbr=$(MerchantRefNum)

and paprnbr=prrfnbr and prprfnbr=$(prrfnbr)and paname=pdname
%REPORT{
488 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

<TR>
<FORM ACTION="/cgi-bin/ncommerce3/OrderItemUpdate" TARGET="main" METHOD="post">

<TD> Please type quantity you want to order:
<TD> <INPUT TYPE=text NAME=quantity VALUE=1 SIZE=5 MAXLENGTH=32> </TD>

<INPUT TYPE=hidden NAME=merchant_rn VALUE=$(MerchantRefNum)>
<INPUT TYPE=hidden NAME=product_rn VALUE=$(prrfnbr)>
<INPUT TYPE=hidden NAME=shipmode_rn VALUE=$(SHIPPING_REF)>
<INPUT TYPE=hidden NAME=url

VALUE="/cgi-bin/ncommerce3/OrderItemDisplay?merchant_rn=$(MerchantRefNum)">

</TD></TR>

%ROW{
%IF (ITEM_ATTR_NAME != V_paname)

</SELECT>
@DTW_assign(ITEM_ATTR_NAME, V_paname)
<TR><TD ALIGN="right">$(V_paname) </TD>
<TD>
<SELECT NAME="$(V_paname)"><OPTION VALUE="$(V_paval)">$(V_paval)</OPTION>
%ELSE
<OPTION VALUE="$(V_paval)">$(V_paval)</OPTION>
%ENDIF

%}
</SELECT>
</TD></TR>
<TR><TD>
</TD></TR>

<TR><TD ALIGN="center" COLSPAN=2><input type=image SRC="$(AddButton)"></TD></TR>
</FORM>
<TR><TD>
</TD></TR>
%}
%MESSAGE{100:{ PROBLEM%} :continue %}

%}

%{==%}
%{ HTML Report Section
%{==%}
%HTML_REPORT{
<HTML>
<HEAD>
<META HTTP-EQUIV=Expires CONTENT="Mon, 01 Jan 1996 01:01:01 GMT">
</HEAD>
<BODY>
<TABLE BORDER=0 CELLPADDING=0 CELLSPACING=2 WIDTH=100%>
@GET_ADDRESS_REF_NUM()
@GET_SHIPPING_REF_NUM()
@CHECK_PRODUCT_ATTR()
@DISPLAY_PRODUCT_IMAGE()
%IF (ATTRIBUTES == "TRUE")
@DISPLAY_PRODATTR_VALUES()
%ENDIF
<TABLE BORDER=0 CELLPADDING=0 CELLSPACING=0 WIDTH=100%>
<TR BGCOLOR="$(BodyColor2)"><TD ALIGN="center">Price : $(price)
$(currency)
</TD> </TR>
<P>
<TR> <TD COLSPAN=2> $(DESC1)
 $(DESC2)
 $(DESC3)

<TR><TD COLSPAN=2 ALIGN="left">Get more description of this
product</TD></TR>

</TABLE>
</BODY>
</HTML>
%}

A.9.5 Macro for Current Order

This macro with the name shipto.d2w is used to show the current order and to
update or delete an item in the list. The order can also be placed from this page.

%include "ShopITSO/ShopITSO.inc"
%{==
The sample Templates, HTML and Macros are furnished by IBM as simple
examples to provide an illustration. These examples have not been
thoroughly tested under all conditions. IBM, therefore, cannot guarantee reliability,
serviceability or function of these programs. All programs contained herein are provided to
you "AS IS".

The sample Templates, HTML and Macros may include the names of individuals,
companies, brands and products in order to illustrate them as completely as
possible. All of these are names are fictitious and any similarity to the names
Source Code Samples 489

and addresses used by actual persons or business enterprises is entirely coincidental.

Licensed Materials - Property of IBM

5697-D245798-NC3

(c) Copyright IBM Corp. 1998. All Rights Reserved

US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM Corp
==%}
%define {

SHOWSQL="NO"
SHOPPER_REF=""
fgrandtot=""
GRAND_TOT = "0"
SUB_TOT = ""

%}

%{==== Retrieves the Shopper Reference Number ====%}
%function(dtw_odbc) GET_SHOPPER_REF_NUM() {

select shrfnbr from shopper where shlogid = '$(SESSION_ID)'
%REPORT{
%ROW{
@DTW_assign(SHOPPER_REF, V_shrfnbr)

%}
%}
%MESSAGE{
default: { ERROR in GET_SHOPPER_REF_NUM %}

%}
%}

%function(dtw_odbc) GET_TOTAL_DETAILS() {
SELECTstprice, stquant, stcpcur, strfnbr, stsanbr, ststat,

stsmnbr, prsdesc, prrfnbr, prnbr
FROMshipto, product
WHEREstmenbr=$(MerchantRefNum) and stshnbr=$(SHOPPER_REF) and stprnbr=prrfnbr and ststat='P'

%REPORT{
<TABLE WIDTH=530 BORDER=0 CELLPADDING=0 CELLSPACING=0>

<TR><TD ALIGN="left" COLSPAN=3>
The following table displays the
items that you added to the Order List.

For each item, you can change the quantity, or you can remove the item.

Please make your changes for every row separat.

</TD></TR>
</TABLE>
<TABLE WIDTH=530 BORDER=1 CELLPADDING=0 CELLSPACING=0>
<TR><TD> Item </TD>
<TD> Quantity </TD>
<TD> Cost per Item </TD>
<TD> Subtotal </TD>
</TR>
%ROW{
@DTW_MULTIPLY(V_stquant, V_stprice, SUB_TOT)
@DTW_ADD(SUB_TOT, GRAND_TOT, GRAND_TOT)
<TR ALIGN="left">
<FORM ACTION="/cgi-bin/ncommerce3/OrderItemUpdate" METHOD="POST" TARGET="main">
<INPUT TYPE="hidden" NAME="merchant_rn" value="$(MerchantRefNum)">
<INPUT TYPE="hidden" NAME=shipto_rnVALUE="$(V_strfnbr)">
<INPUT TYPE="hidden" NAME=shipmode_rnVALUE="$(V_stsmnbr)">
<INPUT TYPE="hidden" NAME="url"
VALUE="/cgi-bin/ncommerce3/OrderItemDisplay?merchant_rn=$(MerchantRefNum)">
</TD>
<TD>$(V_prsdesc)</TD>
<TD><INPUT TYPE="field" NAME="quantity" VALUE="$(V_stquant)"
SIZE=2></TD>
<TD ALIGN="right"> $(V_stprice) $(V_stcpcur) </TD>
<TD ALIGN="right"> $(SUB_TOT) $(V_stcpcur) </TD>
<TD>
<INPUT TYPE="SUBMIT" VALUE="Update">
</FORM>
</TD>
<TD>
<FORM ACTION="/cgi-bin/ncommerce3/OrderItemDelete" METHOD="POST" TARGET="main">
<INPUT TYPE="hidden" NAME="shipto_rn" VALUE="$(V_strfnbr)">
<INPUT TYPE=hidden name="url"
value="/cgi-bin/ncommerce3/OrderItemDisplay?merchant_rn=$(MerchantRefNum)">
490 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

<INPUT TYPE="submit" VALUE="Remove">
</FORM>
</TD>
</TR>

%}
</TABLE>
<TABLE WIDTH=500 CELLPADDING=0 CELLSPACING=0 BORDER=0>
<TR><TD ALIGN="left" VALIGN="center">
<FORM ACTION="/cgi-bin/ncommerce3/OrderDisplay" TARGET="main">

<INPUT TYPE=hidden name="status" value="P">
<INPUT TYPE=hidden name="merchant_rn" value="$(MerchantRefNum)">
<TD ALIGN="center" WIDTH="100"><INPUT TYPE="submit" VALUE="Place Order"></TD>
</FORM></TD></TR>
</TABLE>

<TABLE WIDTH=530 BORDER=2 CELLPADDING=0 CELLSPACING=0>
<TR ALIGN="center" BGCOLOR="white"><TD COLSPAN=3><SPACER TYPE="vertical"
SIZE=5>
Total : $(GRAND_TOT) $(CURRENCY)<I>(Before Taxes and Shipping)</I>
<SPACER TYPE="vertical" SIZE=5></TD></TR>
</TABLE>
%}
%MESSAGE{

default: {
All items have been removed. Continue shopping to add more items to your
Order List.
%}:continue
%}
%}
%{==%}
%{ HTML Report Section
%{==%}
%HTML_REPORT{
<HTML>
<HEAD>
<META HTTP-EQUIV=Expires CONTENT="Mon, 01 Jan 1996 01:01:01 GMT">
</HEAD>
<BODY BGCOLOR="$(BodyColor1)" TEXT="$(TextCol)" LINK="$(LinkCol)" VLINK="$(VLinkCol)"
ALINK="$(ALinkCol)">
@GET_SHOPPER_REF_NUM()
<TABLE WIDTH=500 CELLPADDING=0 CELLSPACING=0 BORDER=0>
<TR><TD ALIGN="left" VALIGN="center"><H3>Order
Details</H3>
</TD></TR>
</TABLE>
@GET_TOTAL_DETAILS()

</BODY>
</HTML>
%}

A.9.6 Macro for Accepted the Order (Alternative 1)

This macro named order.d2w is shown when the customer submits the order.
Here, we also work with SET protocol.

%include "ShopITSO/ShopITSO.inc"
%{==

The sample Templates, HTML and Macros are furnished by IBM as simple
examples to provide an illustration. These examples have not been
thoroughly tested under all conditions. IBM, therefore, cannot guarantee reliability,
serviceability or function of these programs. All programs contained herein are provided to
you "AS IS".

The sample Templates, HTML and Macros may include the names of individuals,
companies, brands and products in order to illustrate them as completely as
possible. All of these are names are ficticious and any similarity to the names
and addresses used by actual persons or business enterprises is entirely coincidental.

Licensed Materials - Property of IBM

5697-D245798-NC3

(c) Copyright IBM Corp. 1998. All Rights Reserved

US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM Corp
Source Code Samples 491

==%}
%define {
SHOWSQL="NO"
MERCHANT_TAX="TRUE"
SHIPPING_NUM = "0"
SHIPPER1_RNBR = ""
SHIPPER2_RNBR = ""
SHIPPER3_RNBR = ""
SHIPPER1 = ""
SHIPPER2 = ""
SHIPPER3 = ""

%}

%function(dtw_odbc) GET_SHIPPING_ADDRESS_INFO() {
select sarfnbr, safname, salname, saaddr1, saaddr2, sacity, sazipc, sacntry, sastate,
saphone1, saemail1
from shaddr, shipto
where sanick='$(SESSION_ID)' and saadrflg='P' and STSANBR=sarfnbr
%report {
%ROW{

@DTW_assign(SHOPPER_REF, V_sarfnbr)
@DTW_assign(save_sarfnbr, V_sarfnbr)
@DTW_assign(save_safname, V_safname)
@DTW_assign(save_salname, V_salname)
@DTW_assign(save_saaddr1, V_saaddr1)
@DTW_assign(save_saaddr2, V_saaddr2)
@DTW_assign(save_sacity, V_sacity)
@DTW_assign(save_sastate, V_sastate)
@DTW_assign(save_sazipc, V_sazipc)
@DTW_assign(save_sacntry, V_sacntry)
@DTW_assign(save_saphone1, V_saphone1)
@DTW_assign(save_safax, V_safax)
@DTW_assign(save_email1, V_email1)
%}
<INPUT TYPE=hidden NAME="sarfnbr" VALUE="$(save_sarfnbr)">

<TABLE WIDTH=400 CELLPADDING=0 CELLSPACING=0 BORDER=0>
<TR>

<TD ALIGN="left">First Name</TD>
<TD ALIGN="left">Last Name</TD>
</TR>

<TR>
<TD COLSPAN=1><INPUT TYPE="text" NAME="safname" VALUE="$(save_safname)" VALUESIZE="28"
MAXLENGTH="30"></TD>
<TD COLSPAN=1><INPUT TYPE="text" NAME="salname" VALUE="$(save_salname)" SIZE="28"
MAXLENGTH="30"></TD>
</TR>

<TR> <TD ALIGN="left">Address</TD> </TR>
<TR> <TD COLSPAN=3><INPUT TYPE="text" NAME="saaddr1" VALUE="$(save_saaddr1)" SIZE="62"
MAXLENGTH="50"></TD> </TR>
<TR> <TD COLSPAN=3><INPUT TYPE="text" NAME="saaddr2" VALUE="$(save_saaddr2)" SIZE="62"
MAXLENGTH="50"></TD> </TR>

<TR> <TD ALIGN=left>City</TD>
<TD ALIGN=left>State/Province</TD>

</TR>
<TR> <TD COLSPAN=1><INPUT TYPE="text" NAME="sacity" VALUE="$(save_sacity)" SIZE="28"

MAXLENGTH="30"></TD>
<TD COLSPAN=1><INPUT TYPE="text" NAME="sastate" VALUE="$(save_sastate)" SIZE="28"

MAXLENGTH="20"></TD>
</TR>

<TR> <TD ALIGN=left>ZIP/Postal code</TD>
<TD ALIGN=left>Country</TD>

</TR>
<TR> <TD COLSPAN=1><INPUT TYPE="text" NAME="sazipc" VALUE="$(save_sazipc)" SIZE="28"

MAXLENGTH="20"></TD>
<TD COLSPAN=1><INPUT TYPE="text" NAME="sacntry" VALUE="$(save_sacntry)" SIZE="28"

MAXLENGTH="30"></TD>
</TR>

<TR> <TD ALIGN=left>Phone Number</TD>
<TD ALIGN=left>E-mail Address</TD>

</TR>
<TR> <TD COLSPAN=1><INPUT TYPE="text" NAME="saphone1" VALUE="$(save_saphone1)" SIZE="28"

MAXLENGTH="30"></TD>
<TD COLSPAN=3><INPUT TYPE="text" NAME="saemail1" VALUE="$(save_saemail1)" SIZE="28"

MAXLENGTH="254"></TD>
</TR>

</TABLE>
492 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

%}
%MESSAGE{

100: { No Address Found!<p>
%}
default: {

Database Error:

A database error occurred. Please contact the merchant server administrator.

SQL error code = $(SQL_CODE)

%}
%}
%}

%function(dtw_odbc) DETERMINE_SHIPPING_LIST() {
select SPRFNBR, SPCHRGE, SMRFNBR , SMCARRID
fromSHIPPING, SHIPMODE
whereSPMENBR=$(MerchantRefNum) and SPRFNBR =SMRFNBR
order by spchrge
%REPORT{
%ROW{
@DTW_ASSIGN(SHIPPING_NUM, ROW_NUM)

%IF (ROW_NUM == "1")
@DTW_ASSIGN(SHCOST1, V_SPCHRGE)
@DTW_CONCAT(" -- ", V_SPCHRGE, COST1)
@DTW_CONCAT(V_SMCARRID, COST1, SHIPPER1)
@DTW_ASSIGN(SHIPPER1_RNBR, V_SMRFNBR)
%ENDIF
%IF (ROW_NUM == "2")
@DTW_ASSIGN(SHCOST2, V_SPCHRGE)
@DTW_CONCAT(" -- ", V_SPCHRGE, COST2)
@DTW_CONCAT(V_SMCARRID, COST2, SHIPPER2)
@DTW_ASSIGN(SHIPPER2_RNBR, V_SMRFNBR)
%ENDIF
%IF (SHIPPING_NUM == "3")
@DTW_ASSIGN(SHCOST3, V_SPCHRGE)
@DTW_CONCAT(" -- ", V_SPCHRGE, COST3)
@DTW_CONCAT(V_SMCARRID, COST3, SHIPPER3)
@DTW_ASSIGN(SHIPPER3_RNBR, V_SMRFNBR)
%ENDIF
%}
%}
%MESSAGE{
default: {ERROR : Problem with DISPLAY_SHIPPING_LIST function %}
%}
%}

%function(dtw_odbc) SHOW_SUBTOTAL_PRICE_MerchantTax() {
select distinct sanick, salname, safname, oyprtot, oyshtot, oycpcur,
mttaxrate1, mttaxname1, mttaxrate2, mttaxname2, mttaxrate3, mttaxname3,
mttaxrate4, mttaxname4, mttaxrate5, mttaxname5, mttaxrate6, mttaxname6, mtmenbr,
oytax1,oytax2, oytax3, oytax4, oytax5, oytax6,
(mttaxrate1+mttaxrate2+mttaxrate3+mttaxrate4+mttaxrate5+mttaxrate6) as mttax,

(oytax1+oytax2+oytax3+oytax4+oytax5+oytax6) as oytax, oysanbr,
(oyprtot+oyshtot+oytax1+oytax2+oytax3+oytax4+oytax5+oytax6) as subtot1

from orderpay, shaddr, shopper, merchanttax
where shopper.shlogid='$(SESSION_ID)' and orderpay.oyornbr=$(order_rn) and

shaddr.sashnbr=shopper.shrfnbr and shaddr.sarfnbr=orderpay.oysanbr
and mtmenbr=$(MerchantRefNum)

order by sanick

%REPORT{
<FORM ACTION="/cgi-bin/ncommerce3/OrderShippingUpdate">

<INPUT TYPE=hidden NAME=order_rn VALUE= $(order_rn)>
<INPUT TYPE=hidden NAME=url

VALUE="/cgi-bin/ncommerce3/OrderDisplay?status=P&merchant_rn=$(MerchantRefNum)">
<TABLE BORDER=0 CELLSPACING=1 CELLPADDING=1 WIDTH=400 ALIGN="left" COLS=3 >
<TR>

<TD width=200> </TD>
<TD width=180> </TD>
<TD width=120> </TD>
</TR>

%ROW {
@DTW_format(V_oyshtot, "", "2", V_foyshtot)
@DTW_format(V_oytax, "", "2", V_foytax)
@DTW_format(V_mttax, "", "2", V_fmttax)

<TR> <TD ALIGN=right > Sub Total </TD>
<TD ALIGN=right > $(V_oyprtot) $(V_oycpcur)</TD>
</TR>
Source Code Samples 493

%if ($(V_mttaxname1) != "")
<TR> <TD ALIGN=right > $(V_mttaxname1) ($(V_mttaxrate1)%) </TD>

<TD ALIGN=right > $(V_oytax1) $(V_oycpcur)</TD>
</TR>

%endif

%if ($(V_mttaxname2) != "")
<TR> <TD ALIGN=right > $(V_mttaxname2) ($(V_mttaxrate2)%) </TD>
<TD ALIGN=right > $(V_oytax2) $(V_oycpcur)</TD>
</TR>
%endif

%if ($(V_mttaxname3) != "")
<TR> <TD ALIGN=right > $(V_mttaxname3) ($(V_mttaxrate3)%) </TD>

<TD ALIGN=right > $(V_oytax3) $(V_oycpcur)</TD>
</TR>
%endif

%if ($(V_mttaxname4) != "")
<TR> <TD ALIGN=right > $(V_mttaxname4) ($(V_mttaxrate4)%) </TD>
<TD ALIGN=right > $(V_oytax4) $(V_oycpcur)</TD>

</TR>
%endif

%if ($(V_mttaxname5) != "")
<TR> <TD ALIGN=right > $(V_mttaxname5) ($(V_mttaxrate5)%) </TD>
<TD ALIGN=right > $(V_oytax5) $(V_oycpcur)</TD>

</TR>
%endif

%if ($(V_mttaxname6) != "")
<TR> <TD ALIGN=right > $(V_mttaxname6) ($(V_mttaxrate6)%) </TD>
<TD ALIGN=right > $(V_oytax6) $(V_oycpcur)</TD>

</TR>
%endif

<TR>
<TD ALIGN=right > Total Sales Tax ($(V_fmttax)%) </TD>
<TD ALIGN=right > $(V_foytax) $(V_oycpcur)</TD>
</TR>

<TR>
<TD ALIGN=right > Shipping Charges </TD>

<TD ALIGN=right > $(V_foyshtot) $(V_oycpcur)</TD>
<TD>

<select name="shipmode_rn">
%IF (SHIPPER1 != "" && SHIPPING_NUM != "1" && V_oyshtot == SHCOST1)

<option SELECTED value="$(SHIPPER1_RNBR)">$(SHIPPER1) </option>
%ELIF (SHIPPER1 != "" && SHIPPING_NUM != "1")
<option value="$(SHIPPER1_RNBR)">$(SHIPPER1) </option>

%ENDIF
%IF (SHIPPER2 != "" && V_oyshtot == SHCOST2)

<option SELECTED value="$(SHIPPER2_RNBR)">$(SHIPPER2)</option>
%ELIF (SHIPPER2 != "")

<option value="$(SHIPPER2_RNBR)">$(SHIPPER2)</option>
%ENDIF

%IF (SHIPPING_NUM == "3" && V_oyshtot == SHCOST3)
<option SELECTED value="$(SHIPPER3_RNBR)">$(SHIPPER3)</option>

%ELIF (SHIPPING_NUM == "3")
<option value="$(SHIPPER3_RNBR)">$(SHIPPER3)</option>

%ENDIF
</SELECT>
</TD> <TD>
<input type=submit value="Update">
</TD>

</TR>
<TR><TD></TD></TR>

<TR> <TD ALIGN=right > TOTAL </TD>
<TD ALIGN=right > $(V_subtot1) $(V_oycpcur) </TD>

</TR>
%}
</TABLE>
</FORM>

%}
%MESSAGE{
100: {@DTW_ASSIGN(MERCHANT_TAX, "FALSE")%}:CONTINUE
default: {SHOW_SUBTOTAL_PRICE() not working%}
494 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

%}
%}

%function(dtw_odbc) SHOW_SUBTOTAL_PRICE_MallTax() {
select distinct sanick, salname, safname, oyprtot, oyshtot, oycpcur,
mhtaxrate, mhtaxrate2, mhtaxrate3, mhtaxrate4, mhtaxrate5, mhtaxrate6,
oytax1,oytax2, oytax3, oytax4, oytax5, oytax6,
(mhtaxrate+mhtaxrate2+mhtaxrate3+mhtaxrate4+mhtaxrate5+mhtaxrate6) as mttax,

(oytax1+oytax2+oytax3+oytax4+oytax5+oytax6) as oytax, oysanbr,
(oyprtot+oyshtot+oytax1+oytax2+oytax3+oytax4+oytax5+oytax6) as subtot1

from orderpay, shaddr, shopper, mall
where shopper.shlogid='$(SESSION_ID)' and orderpay.oyornbr=$(order_rn) and

shaddr.sashnbr=shopper.shrfnbr and shaddr.sarfnbr=orderpay.oysanbr
order by sanick
b%REPORT{
<FORM ACTION="/cgi-bin/ncommerce3/OrderShippingUpdate">

<INPUT TYPE=hidden NAME=order_rn VALUE=$(order_rn)>
<INPUT TYPE=hidden NAME=url

VALUE="/cgi-bin/ncommerce3/OrderDisplay?status=P&merchant_rn=$(MerchantRefNum)">
<TABLE BORDER=0 CELLSPACING=1 CELLPADDING=1 WIDTH=400 ALIGN="left" COLS=3 >
<TR> <TD width=200> </TD>
<TD width=80> </TD>
<TD width=120> </TD>
</TR>

%ROW {
@DTW_format(V_oyshtot, "", "2", V_foyshtot)
@DTW_format(V_oytax, "", "2", V_foytax)
@DTW_format(V_mttax, "", "2", V_fmttax)
<TR> <TD ALIGN=right > Sub Total </TD>
<TD ALIGN=right > $(V_oyprtot) $(V_oycpcur)</TD>

</TR>
%if ($(V_mhtaxrate) != "0.00")
<TR> <TD ALIGN=right > Tax Rate 1 ($(V_mhtaxrate)%) </TD>
<TD ALIGN=right > $(V_oytax1) $(V_oycpcur)</TD>
</TR>

%endif
%if ($(V_mhtaxrate2) != "0.00")
<TR> <TD ALIGN=right > Tax Rate 2 ($(V_mhtaxrate2)%) </TD>

<TD ALIGN=right > $(V_oytax2) $(V_oycpcur)</TD>
</TR>

%endif
%if ($(V_mhtaxrate3) != "0.00")
<TR> <TD ALIGN=right > Tax Rate 3 ($(V_mhtaxrate3)%)</TD>

<TD ALIGN=right > $(V_oytax3) $(V_oycpcur)</TD>
</TR>
%endif
%if ($(V_mhtaxrate4) != "0.00")
<TR> <TD ALIGN=right > Tax Rate 4 ($(V_mhtaxrate4)%)</TD>
<TD ALIGN=right > $(V_oytax4) $(V_oycpcur)</TD>

</TR>
%endif
%if ($(V_mhtaxrate5) != "0.00")
<TR> <TD ALIGN=right > Tax Rate 5 ($(V_mhtaxrate5)%)</TD>
<TD ALIGN=right > $(V_oytax5) $(V_oycpcur)</TD>
</TR>
%endif
%if ($(V_mhtaxrate6) != "0.00")
<TR> <TD ALIGN=right > Tax Rate 6 ($(V_mhtaxrate6)%)</TD>
<TD ALIGN=right > $(V_oytax6) $(V_oycpcur)</TD>

</TR>
%endif
<TR> <TD ALIGN=right >Total Sales Tax ($(V_fmttax)%)</TD>
<TD ALIGN=right > $(V_foytax) $(V_oycpcur)</TD>

</TR>
<TR><TD ALIGN=right >Shipping Charges</TD>
<TD ALIGN=right >$(V_foyshtot) $(V_oycpcur)</TD>

<TD ALIGN=right >
<select name="shipmode_rn">

%IF (SHIPPER1 != "" && SHIPPING_NUM != "1" && V_oyshtot == SHCOST1)
<option SELECTED value="$(SHIPPER1_RNBR)">$(SHIPPER1) </option>
%ELIF (SHIPPER1 != "" && SHIPPING_NUM != "1")
<option value="$(SHIPPER1_RNBR)">$(SHIPPER1) </option>

%ENDIF
%IF (SHIPPER2 != "" && V_oyshtot == SHCOST2)

<option SELECTED value="$(SHIPPER2_RNBR)">$(SHIPPER2)</option>
%ELIF (SHIPPER2 != "")

<option value="$(SHIPPER2_RNBR)">$(SHIPPER2)</option>
Source Code Samples 495

%ENDIF
%IF (SHIPPING_NUM == "3" && V_oyshtot == SHCOST3)

<option SELECTED value="$(SHIPPER3_RNBR)">$(SHIPPER3)</option>
%ELIF (SHIPPING_NUM == "3")

<option value="$(SHIPPER3_RNBR)">$(SHIPPER3)</option>
%ENDIF

</SELECT> </TD>
<TD><input type=submit value="Update"></TD>
</TR>
<TR><TD></TD></TR>
<TR><TD ALIGN=right >TOTAL</TD>
<TD ALIGN=right >$(V_subtot1) $(V_oycpcur)</TD>
</TR>

%}
</TABLE>
</FORM>

%}
%MESSAGE{
default: {SHOW_SUBTOTAL_PRICE_MallTax() not working%}
%}
%}
%{==%}
%{ HTML Report Section
%{==%}
%HTML_REPORT {
<HEAD>
<META HTTP-EQUIV=Expires CONTENT="Mon, 01 Jan 1996 01:01:01 GMT">
<TITLE>$(LongStoreName) Order Information</TITLE>
</HEAD>
<HTML>
<BODY BGCOLOR="$(BodyColor1)" TEXT="$(TextCol)" LINK="$(LinkCol)" VLINK="$(VLinkCol)"
ALINK="$(ALinkCol)">
<H2>$(LongStoreName) Order Information</H2>
<TABLE WIDTH=600 CELLPADDING=0 CELLSPACING=0 BORDER=0>
<TR><TD>
The total charges for the items in the Order List are specified below.

Once you are satisfied with the charges, enter the :

Shipping address that this order and invoice should be sent to.
Credit card information.

</TD>
</TR>
</TABLE>

@DETERMINE_SHIPPING_LIST()
<TABLE WIDTH=400 CELLPADDING=0 CELLSPACING=0 BORDER=0>
<TR><TD COLSPAN=2><HR WIDTH=550 ALIGN=left></TD> </TR>
<TR><TD><H3>Total Charges:</H3></TD>
</TR>
<TR><TD>
Select the shipping service that you would like your purchase to be shipped
with and then update the charge calculation by clicking the update button. </TD>
</TR>
<TR><TD>
</TD></TR>
<TR><TD>
@SHOW_SUBTOTAL_PRICE_MerchantTax()
%IF (MERCHANT_TAX == "FALSE")
@SHOW_SUBTOTAL_PRICE_MallTax()
%ENDIF
</TD></TR>
<TR><TD COLSPAN=2>
<HR WIDTH=550 ALIGN=left></TD></TR>
<TR><TD><H3>Shipping Address:</H3></TD></TR>
<TR><TD>Enter the shipping address for this purchase. An invoice will also
be sent to this address.</TD></TR>
<TR><TD>
</TD></TR>
<TR><FORM ACTION="/cgi-bin/ncommerce3/AddressUpdate" Method="post"><TD>
b
</TD></TR>
<TR><TD COLSPAN=2>
<HR WIDTH=550 ALIGN=left></TD></TR>
<TR><TD><H3>Payment Information:</H3></TD></TR>
<TR><TD><H4>In our shop you have zwo ways to do the payment.</H4>

You can enter your credit card information in the following feelds, than
your information will be send to us in an encryption way.

For the more secure way you have the possibiltiy to do your payment

with your payment wallet via the SET protocoll.
</TD></TR>
<TR><TD>
</TD></TR>
<TR><TD><TABLE WIDTH=200 CELLPADDING=0 CELLSPACING=0 BORDER=0 COLS=8 >
496 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

<TR>
%if (CC_visa == "YES")
<TD VALIGN="top"><input type=radio name=cctype value=VISA></TD>
<TD VALIGN="top"></TD>
%endif
%if (CC_master == "YES")
<TD VALIGN="top"><input type=radio name=cctype value=MAST></TD>
<TD VALIGN="top"></TD>
%endif
%if(CC_amex == "YES")
<TD VALIGN="top"><input type=radio name=cctype value=AMEX></TD>
<TD VALIGN="top"></TD>
%endif
%if(CC_discover == "YES")
<TD VALIGN="top"><input type=radio name=cctype value=DISC></TD>
<TD VALIGN="top"></TD>
%endif
</TR>
</TABLE>
</TD></TR>
<TR><TD><TABLE WIDTH=400 CELLPADDING=0 CELLSPACING=0 BORDER=0 COLS=4>
<TR><TD>
</TD></TR>
<TR><TD ALIGN="left">Card Number</TD>
<TD ALIGN="left">Expiration Month</TD>
<TD ALIGN="left">Expiration Year</TD>
</TR>
<TR><TD ALIGN="left" VALIGN=middle><INPUT TYPE=text SIZE=15 MAXLENGTH=256 NAME="ccnum"
VALUE="$(ccnum)"></TD>

<TD ALIGN="left" VALIGN=middle>
<select name="ccxmonth" size=1>
<option selected></option>
<option value="1">January</option>
<option value="2">February</option>
<option value="3">March</option>
<option value="4">April</option>
<option value="5">May</option>
<option value="6">June</option>
<option value="7">July</option>
<option value="8">August</option>
<option value="9">September</option>
<option value="10">October</option>
<option value="11">November</option>
<option value="12">December</option>
</select></td>

<TD align="left" valign=middle>
<select name="ccxyear" size=1>
<option selected></option>
<option value="1998">1998 </option>
<option value="1999">1999</option>
<option value="2000">2000</option>
<option value="2001">2001</option>
<option value="2002">2002</option>
<option value="2003">2003</option>
<option value="2003">2004</option>
</SELECT></TD>
</TR></TABLE>
</TD></TR>
<TR><TD COLSPAN=2>
<HR WIDTH=550 ALIGN=left></TD></TR>
<TR><TD ALIGN="center">
<INPUT TYPE=hidden NAME=sanick VALUE=$(SESSION_ID)>
<INPUT TYPE=hidden NAME=order_rn VALUE=$(order_rn)>
<INPUT Type = "hidden" Name="merchant_rn" Value="$(MerchantRefNum)">
<INPUT TYPE=hidden NAME="url"
VALUE="/cgi-bin/ncommerce3/OrderProcess?merchant_rn=$(MerchantRefNum)">
<input type=submit value="Purchase"> </TD></TR>
</FORM>
<TR><TD COLSPAN=2>
<HR WIDTH=550 ALIGN=left></TD></TR>
<TR><TD ALIGN="center">
<FORM action="/cgi-bin/ncommerce3/pay_wakeup">
<INPUT TYPE=hidden NAME="order_rn" value="$(order_rn)">
<INPUT TYPE=hidden NAME="merchant_rn" value="$(MerchantRefNum)">

<input type=submit value="Pay with my Wallet for order number: $(order_rn)">
</FORM></TD></TR>
</TABLE>
</BODY>
</HTML>
%}
Source Code Samples 497

A.9.7 Macro for Accepted the Order (Alternative 2)

This macro, named order.withMerch.Orig.Payment (order.d2w), is nearly the
same as the order.d2w we mentioned earlier, but works with merchant originated
payment. It also works with the SET protocol.

%include "ShopITSO/ShopITSO.inc"
%{==

The sample Templates, HTML and Macros are furnished by IBM as simple
examples to provide an illustration. These examples have not been
thoroughly tested under all conditions. IBM, therefore, cannot guarantee reliability,
serviceability or function of these programs. All programs contained herein are provided to
you "AS IS".

The sample Templates, HTML and Macros may include the names of individuals,
companies, brands and products in order to illustrate them as completely as
possible. All of these are names are fictitious and any similarity to the names
and addresses used by actual persons or business enterprises is entirely coincidental.

Licensed Materials - Property of IBM

5697-D245798-NC3

(c) Copyright IBM Corp. 1998. All Rights Reserved

US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM Corp

==%}
%define {
SHOWSQL="NO"
MERCHANT_TAX="TRUE"
SHIPPING_NUM = "0"
SHIPPER1_RNBR = ""
SHIPPER2_RNBR = ""
SHIPPER3_RNBR = ""
SHIPPER1 = ""
SHIPPER2 = ""
SHIPPER3 = ""

%}

%function(dtw_odbc) GET_SHIPPING_ADDRESS_INFO() {
select sarfnbr, safname, salname, saaddr1, saaddr2, sacity, sazipc, sacntry, sastate,
saphone1, saemail1
from shaddr, shipto
where sanick='$(SESSION_ID)' and saadrflg='P' and STSANBR=sarfnbr
%report {
%ROW{

@DTW_assign(SHOPPER_REF, V_sarfnbr)
@DTW_assign(save_sarfnbr, V_sarfnbr)
@DTW_assign(save_safname, V_safname)
@DTW_assign(save_salname, V_salname)
@DTW_assign(save_saaddr1, V_saaddr1)
@DTW_assign(save_saaddr2, V_saaddr2)
@DTW_assign(save_sacity, V_sacity)
@DTW_assign(save_sastate, V_sastate)
@DTW_assign(save_sazipc, V_sazipc)
@DTW_assign(save_sacntry, V_sacntry)
@DTW_assign(save_saphone1, V_saphone1)
@DTW_assign(save_safax, V_safax)
@DTW_assign(save_email1, V_email1)
%}
<INPUT TYPE=hidden NAME="sarfnbr" VALUE="$(save_sarfnbr)">

<TABLE WIDTH=400 CELLPADDING=0 CELLSPACING=0 BORDER=0>
<TR>

<TD ALIGN="left">First Name</TD>
<TD ALIGN="left">Last Name</TD>
</TR>

<TR>
<TD COLSPAN=1><INPUT TYPE="text" NAME="safname" VALUE="$(save_safname)" VALUESIZE="28"
MAXLENGTH="30"></TD>
<TD COLSPAN=1><INPUT TYPE="text" NAME="salname" VALUE="$(save_salname)" SIZE="28"
MAXLENGTH="30"></TD>
</TR>

<TR> <TD ALIGN="left">Address</TD> </TR>
498 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

<TR> <TD COLSPAN=3><INPUT TYPE="text" NAME="saaddr1" VALUE="$(save_saaddr1)" SIZE="62"
MAXLENGTH="50"></TD> </TR>
<TR> <TD COLSPAN=3><INPUT TYPE="text" NAME="saaddr2" VALUE="$(save_saaddr2)" SIZE="62"
MAXLENGTH="50"></TD> </TR>

<TR> <TD ALIGN=left>City</TD>
<TD ALIGN=left>State/Province</TD>

</TR>
<TR> <TD COLSPAN=1><INPUT TYPE="text" NAME="sacity" VALUE="$(save_sacity)" SIZE="28"

MAXLENGTH="30"></TD>
<TD COLSPAN=1><INPUT TYPE="text" NAME="sastate" VALUE="$(save_sastate)" SIZE="28"

MAXLENGTH="20"></TD>
</TR>

<TR> <TD ALIGN=left>ZIP/Postal code</TD>
<TD ALIGN=left>Country</TD>

</TR>
<TR> <TD COLSPAN=1><INPUT TYPE="text" NAME="sazipc" VALUE="$(save_sazipc)" SIZE="28"

MAXLENGTH="20"></TD>
<TD COLSPAN=1><INPUT TYPE="text" NAME="sacntry" VALUE="$(save_sacntry)" SIZE="28"

MAXLENGTH="30"></TD>
</TR>

<TR> <TD ALIGN=left>Phone Number</TD>
<TD ALIGN=left>E-mail Address</TD>

</TR>
<TR> <TD COLSPAN=1><INPUT TYPE="text" NAME="saphone1" VALUE="$(save_saphone1)" SIZE="28"

MAXLENGTH="30"></TD>
<TD COLSPAN=3><INPUT TYPE="text" NAME="saemail1" VALUE="$(save_saemail1)" SIZE="28"

MAXLENGTH="254"></TD>
</TR>

</TABLE>
%}
%MESSAGE{

100: { No Address Found!<p>
%}
default: {

Database Error:

A database error occurred. Please contact the merchant server administrator.

SQL error code = $(SQL_CODE)

%}
%}
%}

%function(dtw_odbc) DETERMINE_SHIPPING_LIST() {
select SPRFNBR, SPCHRGE, SMRFNBR , SMCARRID
fromSHIPPING, SHIPMODE
whereSPMENBR=$(MerchantRefNum) and SPMMNBR =SMRFNBR
order by spchrge ASC
%REPORT{
%ROW{
@DTW_ASSIGN(SHIPPING_NUM, ROW_NUM)

%IF (ROW_NUM == "1")
@DTW_ASSIGN(SHCOST1, V_SPCHRGE)
@DTW_CONCAT(" -- ", V_SPCHRGE, COST1)
@DTW_CONCAT(V_SMCARRID, COST1, SHIPPER1)
@DTW_ASSIGN(SHIPPER1_RNBR, V_SMRFNBR)
%ENDIF
%IF (ROW_NUM == "2")
@DTW_ASSIGN(SHCOST2, V_SPCHRGE)
@DTW_CONCAT(" -- ", V_SPCHRGE, COST2)
@DTW_CONCAT(V_SMCARRID, COST2, SHIPPER2)
@DTW_ASSIGN(SHIPPER2_RNBR, V_SMRFNBR)
%ENDIF
%IF (SHIPPING_NUM == "3")
@DTW_ASSIGN(SHCOST3, V_SPCHRGE)
@DTW_CONCAT(" -- ", V_SPCHRGE, COST3)
@DTW_CONCAT(V_SMCARRID, COST3, SHIPPER3)
@DTW_ASSIGN(SHIPPER3_RNBR, V_SMRFNBR)
%ENDIF
%}
%}
%MESSAGE{
default: {ERROR : Problem with DISPLAY_SHIPPING_LIST function %}
%}
%}

%function(dtw_odbc) SHOW_SUBTOTAL_PRICE_MerchantTax() {
select distinct sanick, salname, safname, oyprtot, oyshtot, oycpcur,
mttaxrate1, mttaxname1, mttaxrate2, mttaxname2, mttaxrate3, mttaxname3,
Source Code Samples 499

mttaxrate4, mttaxname4, mttaxrate5, mttaxname5, mttaxrate6, mttaxname6, mtmenbr,
oytax1,oytax2, oytax3, oytax4, oytax5, oytax6,
(mttaxrate1+mttaxrate2+mttaxrate3+mttaxrate4+mttaxrate5+mttaxrate6) as mttax,

(oytax1+oytax2+oytax3+oytax4+oytax5+oytax6) as oytax, oysanbr,
(oyprtot+oyshtot+oytax1+oytax2+oytax3+oytax4+oytax5+oytax6) as subtot1

from orderpay, shaddr, shopper, merchanttax
where shopper.shlogid='$(SESSION_ID)' and orderpay.oyornbr=$(order_rn) and

shaddr.sashnbr=shopper.shrfnbr and shaddr.sarfnbr=orderpay.oysanbr
and mtmenbr=$(MerchantRefNum)

order by sanick

%REPORT{
<FORM ACTION="/cgi-bin/ncommerce3/OrderShippingUpdate">

<INPUT TYPE=hidden NAME=order_rn VALUE= $(order_rn)>
<INPUT TYPE=hidden NAME=url

VALUE="/cgi-bin/ncommerce3/OrderDisplay?status=P&merchant_rn=$(MerchantRefNum)">
<TABLE BORDER=0 CELLSPACING=1 CELLPADDING=1 WIDTH=400 ALIGN="left" COLS=3 >
<TR>

<TD width=200> </TD>
<TD width=180> </TD>
<TD width=120> </TD>
</TR>

%ROW {
@DTW_format(V_oyshtot, "", "2", V_foyshtot)
@DTW_format(V_oytax, "", "2", V_foytax)
@DTW_format(V_mttax, "", "2", V_fmttax)

<TR> <TD ALIGN=right > Sub Total </TD>
<TD ALIGN=right > $(V_oyprtot) $(V_oycpcur)</TD>
</TR>

%if ($(V_mttaxname1) != "")
<TR> <TD ALIGN=right > $(V_mttaxname1) ($(V_mttaxrate1)%) </TD>

<TD ALIGN=right > $(V_oytax1) $(V_oycpcur)</TD>
</TR>

%endif

%if ($(V_mttaxname2) != "")
<TR> <TD ALIGN=right > $(V_mttaxname2) ($(V_mttaxrate2)%) </TD>
<TD ALIGN=right > $(V_oytax2) $(V_oycpcur)</TD>
</TR>
%endif

%if ($(V_mttaxname3) != "")
<TR> <TD ALIGN=right > $(V_mttaxname3) ($(V_mttaxrate3)%) </TD>

<TD ALIGN=right > $(V_oytax3) $(V_oycpcur)</TD>
</TR>
%endif

%if ($(V_mttaxname4) != "")
<TR> <TD ALIGN=right > $(V_mttaxname4) ($(V_mttaxrate4)%) </TD>
<TD ALIGN=right > $(V_oytax4) $(V_oycpcur)</TD>

</TR>
%endif

%if ($(V_mttaxname5) != "")
<TR> <TD ALIGN=right > $(V_mttaxname5) ($(V_mttaxrate5)%) </TD>
<TD ALIGN=right > $(V_oytax5) $(V_oycpcur)</TD>

</TR>
%endif

%if ($(V_mttaxname6) != "")
<TR> <TD ALIGN=right > $(V_mttaxname6) ($(V_mttaxrate6)%) </TD>
<TD ALIGN=right > $(V_oytax6) $(V_oycpcur)</TD>

</TR>
%endif

<TR>
<TD ALIGN=right > Total Sales Tax ($(V_fmttax)%) </TD>
<TD ALIGN=right > $(V_foytax) $(V_oycpcur)</TD>
</TR>

<TR>
<TD ALIGN=right > Shipping Charges </TD>

<TD ALIGN=right > $(V_foyshtot) $(V_oycpcur)</TD>
<TD>

<select name="shipmode_rn">
%IF (SHIPPER1 != "" && SHIPPING_NUM != "1" && V_oyshtot == SHCOST1)

<option SELECTED value="$(SHIPPER1_RNBR)">$(SHIPPER1) </option>
500 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

%ELIF (SHIPPER1 != "" && SHIPPING_NUM != "1")
<option value="$(SHIPPER1_RNBR)">$(SHIPPER1) </option>

%ENDIF
%IF (SHIPPER2 != "" && V_oyshtot == SHCOST2)

<option SELECTED value="$(SHIPPER2_RNBR)">$(SHIPPER2)</option>
%ELIF (SHIPPER2 != "")

<option value="$(SHIPPER2_RNBR)">$(SHIPPER2)</option>
%ENDIF

%IF (SHIPPING_NUM == "3" && V_oyshtot == SHCOST3)
<option SELECTED value="$(SHIPPER3_RNBR)">$(SHIPPER3)</option>

%ELIF (SHIPPING_NUM == "3")
<option value="$(SHIPPER3_RNBR)">$(SHIPPER3)</option>

%ENDIF
</SELECT>
</TD> <TD>
<input type=submit value="Update">
</TD>

</TR>
<TR><TD></TD></TR>

<TR> <TD ALIGN=right > TOTAL </TD>
<TD ALIGN=right > $(V_subtot1) $(V_oycpcur) </TD>

</TR>
%}
</TABLE>
</FORM>

%}
%MESSAGE{
100: {@DTW_ASSIGN(MERCHANT_TAX, "FALSE")%}:CONTINUE
default: {SHOW_SUBTOTAL_PRICE() not working%}
%}
%}

%function(dtw_odbc) SHOW_SUBTOTAL_PRICE_MallTax() {
select distinct sanick, salname, safname, oyprtot, oyshtot, oycpcur,
mhtaxrate, mhtaxrate2, mhtaxrate3, mhtaxrate4, mhtaxrate5, mhtaxrate6,
oytax1,oytax2, oytax3, oytax4, oytax5, oytax6,
(mhtaxrate+mhtaxrate2+mhtaxrate3+mhtaxrate4+mhtaxrate5+mhtaxrate6) as mttax,

(oytax1+oytax2+oytax3+oytax4+oytax5+oytax6) as oytax, oysanbr,
(oyprtot+oyshtot+oytax1+oytax2+oytax3+oytax4+oytax5+oytax6) as subtot1

from orderpay, shaddr, shopper, mall
where shopper.shlogid='$(SESSION_ID)' and orderpay.oyornbr=$(order_rn) and

shaddr.sashnbr=shopper.shrfnbr and shaddr.sarfnbr=orderpay.oysanbr
order by sanick
%REPORT{
<FORM ACTION="/cgi-bin/ncommerce3/OrderShippingUpdate">

<INPUT TYPE=hidden NAME=order_rn VALUE=$(order_rn)>
<INPUT TYPE=hidden NAME=url

VALUE="/cgi-bin/ncommerce3/OrderDisplay?status=P&merchant_rn=$(MerchantRefNum)">
<TABLE BORDER=0 CELLSPACING=1 CELLPADDING=1 WIDTH=400 ALIGN="left" COLS=3 >
<TR> <TD width=200> </TD>
<TD width=80> </TD>
<TD width=120> </TD>
</TR>

%ROW {
@DTW_format(V_oyshtot, "", "2", V_foyshtot)
@DTW_format(V_oytax, "", "2", V_foytax)
@DTW_format(V_mttax, "", "2", V_fmttax)
<TR> <TD ALIGN=right > Sub Total </TD>
<TD ALIGN=right > $(V_oyprtot) $(V_oycpcur)</TD>

</TR>
%if ($(V_mhtaxrate) != "0.00")
<TR> <TD ALIGN=right > Tax Rate 1 ($(V_mhtaxrate)%) </TD>
<TD ALIGN=right > $(V_oytax1) $(V_oycpcur)</TD>
</TR>

%endif
%if ($(V_mhtaxrate2) != "0.00")
<TR> <TD ALIGN=right > Tax Rate 2 ($(V_mhtaxrate2)%) </TD>

<TD ALIGN=right > $(V_oytax2) $(V_oycpcur)</TD>
</TR>

%endif
%if ($(V_mhtaxrate3) != "0.00")
<TR> <TD ALIGN=right > Tax Rate 3 ($(V_mhtaxrate3)%)</TD>

<TD ALIGN=right > $(V_oytax3) $(V_oycpcur)</TD>
</TR>
%endif
%if ($(V_mhtaxrate4) != "0.00")
<TR> <TD ALIGN=right > Tax Rate 4 ($(V_mhtaxrate4)%)</TD>
Source Code Samples 501

<TD ALIGN=right > $(V_oytax4) $(V_oycpcur)</TD>
</TR>
%endif
%if ($(V_mhtaxrate5) != "0.00")
<TR> <TD ALIGN=right > Tax Rate 5 ($(V_mhtaxrate5)%)</TD>
<TD ALIGN=right > $(V_oytax5) $(V_oycpcur)</TD>
</TR>
%endif
%if ($(V_mhtaxrate6) != "0.00")
<TR> <TD ALIGN=right > Tax Rate 6 ($(V_mhtaxrate6)%)</TD>
<TD ALIGN=right > $(V_oytax6) $(V_oycpcur)</TD>

</TR>
%endif
<TR> <TD ALIGN=right >Total Sales Tax ($(V_fmttax)%)</TD>
<TD ALIGN=right > $(V_foytax) $(V_oycpcur)</TD>

</TR>
<TR><TD ALIGN=right >Shipping Charges</TD>
<TD ALIGN=right >$(V_foyshtot) $(V_oycpcur)</TD>

<TD ALIGN=right >
<select name="shipmode_rn">

%IF (SHIPPER1 != "" && SHIPPING_NUM != "1" && V_oyshtot == SHCOST1)
<option SELECTED value="$(SHIPPER1_RNBR)">$(SHIPPER1) </option>
%ELIF (SHIPPER1 != "" && SHIPPING_NUM != "1")
<option value="$(SHIPPER1_RNBR)">$(SHIPPER1) </option>

%ENDIF
%IF (SHIPPER2 != "" && V_oyshtot == SHCOST2)

<option SELECTED value="$(SHIPPER2_RNBR)">$(SHIPPER2)</option>
%ELIF (SHIPPER2 != "")

<option value="$(SHIPPER2_RNBR)">$(SHIPPER2)</option>
%ENDIF

%IF (SHIPPING_NUM == "3" && V_oyshtot == SHCOST3)
<option SELECTED value="$(SHIPPER3_RNBR)">$(SHIPPER3)</option>

%ELIF (SHIPPING_NUM == "3")
<option value="$(SHIPPER3_RNBR)">$(SHIPPER3)</option>

%ENDIF
</SELECT> </TD>
<TD><input type=submit value="Update"></TD>
</TR>
<TR><TD></TD></TR>
<TR><TD ALIGN=right >TOTAL</TD>
<TD ALIGN=right >$(V_subtot1) $(V_oycpcur)</TD>
</TR>

%}
</TABLE>
</FORM>

%}
%MESSAGE{
default: {SHOW_SUBTOTAL_PRICE_MallTax() not working%}
%}
%}
%{==%}
%{ HTML Report Section
%{==%}
%HTML_REPORT {
<HEAD>
<META HTTP-EQUIV=Expires CONTENT="Mon, 01 Jan 1996 01:01:01 GMT">
<TITLE>$(LongStoreName) Order Information</TITLE>
</HEAD>
<HTML>
<BODY BGCOLOR="$(BodyColor1)" TEXT="$(TextCol)" LINK="$(LinkCol)" VLINK="$(VLinkCol)"
ALINK="$(ALinkCol)">
<H2>$(LongStoreName) Order Information</H2>
<TABLE WIDTH=600 CELLPADDING=0 CELLSPACING=0 BORDER=0>
<TR><TD>
The total charges for the items in the Order List are specified below.

Once you are satisfied with the charges, enter the :

Shipping address that this order and invoice should be sent to.
Credit card information.

</TD>
</TR>
</TABLE>

@DETERMINE_SHIPPING_LIST()
<TABLE WIDTH=400 CELLPADDING=0 CELLSPACING=0 BORDER=0>
<TR><TD COLSPAN=2><HR WIDTH=550 ALIGN=left></TD> </TR>
<TR><TD><H3>Total Charges:</H3></TD>
502 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

</TR>
<TR><TD>
Select the shipping service that you would like your purchase to be shipped
with and then update the charge calculation by clicking the update button. </TD>
</TR>
<TR><TD>
</TD></TR>
<TR><TD>
@SHOW_SUBTOTAL_PRICE_MerchantTax()
%IF (MERCHANT_TAX == "FALSE")
@SHOW_SUBTOTAL_PRICE_MallTax()
%ENDIF
</TD></TR>
<TR><TD COLSPAN=2>
<HR WIDTH=550 ALIGN=left></TD></TR>
<TR><TD><H3>Shipping Address:</H3></TD></TR>
<TR><TD>Enter the shipping address for this purchase. An invoice will also
be sent to this address.</TD></TR>
<TR><TD>
</TD></TR>
<TR><FORM ACTION="/cgi-bin/ncommerce3/AddressUpdate" Method="post"><TD>
@GET_SHIPPING_ADDRESS_INFO()
</TD></TR>
<TR><TD COLSPAN=2>
<HR WIDTH=550 ALIGN=left></TD></TR>
<TR><TD><H3>Payment Information:</H3></TD></TR>
<TR><TD><H4>In our shop you have two ways to do the payment.</H4>

You can enter your credit card information in the following feelds, than
your information will be send to us in an encryption way.

For the more secure way you have the possibiltiy to do your payment

with your payment wallet via the SET protocoll.
</TD></TR>
<TR><TD>
</TD></TR>
<TR><TD><TABLE WIDTH=200 CELLPADDING=0 CELLSPACING=0 BORDER=0 COLS=8 >
<TR>
%if (CC_visa == "YES")
<TD VALIGN="top"><input type=radio name=cctype value=VISA></TD>
<TD VALIGN="top"></TD>
%endif
%if (CC_master == "YES")
<TD VALIGN="top"><input type=radio name=cctype value=MAST></TD>
<TD VALIGN="top"></TD>
%endif
%if(CC_amex == "YES")
<TD VALIGN="top"><input type=radio name=cctype value=AMEX></TD>
<TD VALIGN="top"></TD>
%endif
%if(CC_discover == "YES")
<TD VALIGN="top"><input type=radio name=cctype value=DISC></TD>
<TD VALIGN="top"></TD>
%endif
</TR>
</TABLE>
</TD></TR>
<TR><TD><TABLE WIDTH=400 CELLPADDING=0 CELLSPACING=0 BORDER=0 COLS=4>
<TR><TD>
</TD></TR>
<TR><TD ALIGN="left">Card Number</TD>
<TD ALIGN="left">Expiration Month</TD>
<TD ALIGN="left">Expiration Year</TD>
</TR>
<TR><TD ALIGN="left" VALIGN=middle><INPUT TYPE=text SIZE=15 MAXLENGTH=256 NAME="ccnum"
VALUE="$(ccnum)"></TD>

<TD ALIGN="left" VALIGN=middle>
<select name="ccxmonth" size=1>
<option selected></option>
<option value="1">January</option>
<option value="2">February</option>
<option value="3">March</option>
<option value="4">April</option>
<option value="5">May</option>
<option value="6">June</option>
<option value="7">July</option>
<option value="8">August</option>
<option value="9">September</option>
<option value="10">October</option>
<option value="11">November</option>
<option value="12">December</option>
</select></td>

<TD align="left" valign=middle>
<select name="ccxyear" size=1>
<option selected></option>
<option value="1998">1998 </option>
<option value="1999">1999</option>
Source Code Samples 503

<option value="2000">2000</option>
<option value="2001">2001</option>
<option value="2002">2002</option>
<option value="2003">2003</option>
<option value="2003">2004</option>
</SELECT></TD>
</TR></TABLE>
</TD></TR>
<TR><TD COLSPAN=2>
<HR WIDTH=550 ALIGN=left></TD></TR>
<TR><TD ALIGN="center">
<INPUT TYPE=hidden NAME=sanick VALUE=$(SESSION_ID)>
<INPUT TYPE=hidden NAME=order_rn VALUE=$(order_rn)>
<INPUT Type = "hidden" Name="merchant_rn" Value="$(MerchantRefNum)">
<INPUT TYPE=hidden NAME="url"
VALUE="/cgi-bin/ncommerce3/pay_accept?merchant_rn=$(MerchantRefNum)&order_rn=$(order_rn)">
<input type=submit value="Purchase"> </TD></TR>
</FORM>
<TR><TD COLSPAN=2>
<HR WIDTH=550 ALIGN=left></TD></TR>
<TR><TD ALIGN="center">
<FORM action="/cgi-bin/ncommerce3/pay_wakeup">
<INPUT TYPE=hidden NAME="order_rn" value="$(order_rn)">
<INPUT TYPE=hidden NAME="merchant_rn" value="$(MerchantRefNum)">

<input type=submit value="Pay with my Wallet for: $(order_rn)">
</FORM></TD></TR>
</TABLE>
</BODY>
</HTML>
%}

A.9.8 Macro for Order Confirmation

The Net.Data macro orderok.d2w builds our confirmation page:

%include "ShopITSO/ShopITSO.inc"
%{==
The sample Templates, HTML and Macros are furnished by IBM as simple
examples to provide an illustration. These examples have not been
thoroughly tested under all conditions. IBM, therefore, cannot guarantee reliability,
serviceability or function of these programs. All programs contained herein are provided to
you "AS IS".

The sample Templates, HTML and Macros may include the names of individuals,
companies, brands and products in order to illustrate them as completely as
possible. All of these are names are fictitious and any similarity to the names
and addresses used by actual persons or business enterprises is entirely coincidental.

Licensed Materials - Property of IBM

5697-D245798-NC3

(c) Copyright IBM Corp. 1998. All Rights Reserved

US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM Corp
==%}
%define {

SHOWSQL="NO"
MERCHANT_TAX="TRUE"
SHOPPER_REF = ""
SHADDR_REF = ""
ADDR1 = ""
ADDR2 = ""
ADDR3 = ""
ADDR4 = ""
ADDR5 = ""
ADDR6 = ""
ADDR7 = ""
ADDR8 = ""
ADDR9 = ""

%}

%{==== GET_SHOPPER_REF_NUM Function ====%}
%function(dtw_odbc) GET_SHOPPER_REF_NUM() {

select shrfnbr from shopper where shlogid = '$(SESSION_ID)'
%REPORT{
%ROW{
@DTW_assign(SHOPPER_REF, V_shrfnbr)
504 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

%}
%}
%MESSAGE{
default: { ERROR in GET_SHOPPER_REF_NUM %}

%}
%}

%function(dtw_odbc) CLEANUP_SHIPTO_ADDRESS() {
UPDATE shipto SET stsanbr=$(SHADDR_REF) WHERE stornbr=$(order_rn)
%REPORT{
%ROW{
%}

%}
%MESSAGE{
default: { Error updating Shipto table%}

%}
%}

%function(dtw_odbc) CLEANUP_ORDERPAY_ADDRESS() {
UPDATE orderpay SET oysanbr=$(SHADDR_REF) WHERE oyornbr=$(order_rn)
%REPORT{
%ROW{
%}

%}
%MESSAGE{
default: { Error updating Orderpay table%}

%}
%}

%function(dtw_odbc) SHOPPER_INFO() {
select sarfnbr, salname, safname, saaddr1, saaddr2, sacity, sastate, sazipc, sacntry,
saemail1
from shaddr
where sanick='$(SESSION_ID)' and saadrflg='P'

%REPORT{
%ROW{

@DTW_assign(SHADDR_REF, V_sarfnbr)
@DTW_assign(ADDR1, V_safname)
@DTW_assign(ADDR2, V_salname)
@DTW_assign(ADDR3, V_saaddr1)
@DTW_assign(ADDR4, V_saaddr2)
@DTW_assign(ADDR5, V_sacity)
@DTW_assign(ADDR6, V_sastate)
@DTW_assign(ADDR7, V_sazipc)
@DTW_assign(ADDR8, V_sacntry)
@DTW_assign(ADDR9, V_saemail1)
%}

%}
%MESSAGE{default: { ERROR in SHOPPER_INFO %}

%}
%}

%function(dtw_odbc) DISPLAY_DETAILS_LIST() {
select strfnbr, stsanbr, stshnbr, stmenbr, stprnbr, stprice, stquant, stcpcur,
prrfnbr, prnbr, prsdesc
from shipto, product
wherestshnbr=$(SHOPPER_REF) and stmenbr=$(MerchantRefNum) and stprnbr=prrfnbr and
stornbr=$(order_rn)
order by stmenbr, stsanbr, strfnbr

%REPORT{

<TABLE WIDTH=400 CELLPADDING=0 CELLSPACING=0 BORDER=0>
<TR> <TD COLSPAN=3>
The following items were purchased: </TD> </TR>
</TABLE>

<TABLE WIDTH=500 CELLPADDING=2 CELLSPACING=0 BORDER=1>
<TR>

<TD bgcolor=$(BodyColor2)>Product Number</TD>
<TD bgcolor=$(BodyColor2)>Product Name</TD>

<TD bgcolor=$(BodyColor2)>QTY you ordered</TD>
<TD bgcolor=$(BodyColor2) width=20>Product Price</TD>
<TD bgcolor=$(BodyColor2)>Total Price</TD>

</TR>
%ROW{
Source Code Samples 505

@DTW_MULTIPLY(V_stquant, V_stprice, SUB_TOT)
<TR>

<TD BGCOLOR="white">$(V_prnbr)</TD>
<TD BGCOLOR="white"> $(V_prsdesc)</TD>

<TD BGCOLOR="white" ALIGN="right"> $(V_stquant)</TD>
<TD ALIGN="right" BGCOLOR="white"> $(V_stprice) $(V_stcpcur)</TD>
<TD align="right" BGCOLOR="white"> $(SUB_TOT) $(V_stcpcur)</TD>

</TR>
<TR><TD HEIGHT=5></TD></TR>
%}
%}
%MESSAGE{
100 : {
Your Order List is empty.%}:continue
default: {ERROR : Problem with DISPLAY_DETAILS_LIST function %}
%}
%}

%function(dtw_odbc) DISPLAY_CHARGES_MallTax() {
select distinct sanick, salname, safname, oyprtot, oyshtot, oycpcur,
mhtaxrate, mhtaxrate2, mhtaxrate3, mhtaxrate4, mhtaxrate5, mhtaxrate6,
oytax1,oytax2, oytax3, oytax4, oytax5, oytax6,
(mhtaxrate+mhtaxrate2+mhtaxrate3+mhtaxrate4+mhtaxrate5+mhtaxrate6) as mttax,

(oytax1+oytax2+oytax3+oytax4+oytax5+oytax6) as oytax, oysanbr,
(oyprtot+oyshtot+oytax1+oytax2+oytax3+oytax4+oytax5+oytax6) as subtot1

from orderpay, shaddr, shopper, mall
where shopper.shlogid='$(SESSION_ID)' and orderpay.oyornbr=$(order_rn) and

shaddr.sashnbr=shopper.shrfnbr and shaddr.sarfnbr=orderpay.oysanbr
order by sanick
%REPORT{
%ROW{
@DTW_format(V_oyshtot, "", "2", V_foyshtot)
@DTW_format(V_oytax, "", "2", V_foytax)
@DTW_format(V_mttax, "", "2", V_fmttax)
<TR>
<TD ALIGN="right" COLSPAN=4>Subtotal</TD>
<TD ALIGN="right" BGCOLOR="white">$(V_oyprtot) $(V_oycpcur)</TD> </TR>
<TR>
<TD ALIGN="right" COLSPAN=4>Total Sales Tax ($(V_fmttax)%)</TD>

<TD ALIGN="right" BGCOLOR="white">$(V_foytax) $(V_oycpcur)</TD>
</TR>
<TR>
<TD ALIGN="right" COLSPAN=4>Shipping Charge</TD>
<TD ALIGN="right" BGCOLOR="white">$(V_foyshtot) $(V_oycpcur)</TD>
</TR>
<TR>
<TD ALIGN="right" COLSPAN=4>TOTAL</TD>

<TD ALIGN="right" BGCOLOR="white">$(V_subtot1)
$(V_oycpcur)</TD>
</TR>
%}
</TABLE>

%}
%MESSAGE{
100 : {
Your Order List is empty.%}:continue
default: { Error %}
%}
%}

%function(dtw_odbc) DISPLAY_CHARGES_MerchantTax() {
select distinct sanick, salname, safname, oyprtot, oyshtot, oycpcur,
mttaxrate1, mttaxname1, mttaxrate2, mttaxname2, mttaxrate3, mttaxname3,
mttaxrate4, mttaxname4, mttaxrate5, mttaxname5, mttaxrate6, mttaxname6, mtmenbr,
oytax1,oytax2, oytax3, oytax4, oytax5, oytax6,
(mttaxrate1+mttaxrate2+mttaxrate3+mttaxrate4+mttaxrate5+mttaxrate6) as mttax,

(oytax1+oytax2+oytax3+oytax4+oytax5+oytax6) as oytax, oysanbr,
(oyprtot+oyshtot+oytax1+oytax2+oytax3+oytax4+oytax5+oytax6) as subtot1

from orderpay, shaddr, shopper, merchanttax
where shopper.shlogid='$(SESSION_ID)' and orderpay.oyornbr=$(order_rn) and

shaddr.sashnbr=shopper.shrfnbr and shaddr.sarfnbr=orderpay.oysanbr
and mtmenbr=$(MerchantRefNum)
order by sanick
%REPORT{
%ROW{
@DTW_format(V_oyshtot, "", "2", V_foyshtot)
506 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

@DTW_format(V_oytax, "", "2", V_foytax)
@DTW_format(V_mttax, "", "2", V_fmttax)
<TR>
<TD ALIGN="right" COLSPAN=4>Subtotal</TD>
<TD ALIGN="right" BGCOLOR="white">$(V_oyprtot) $(V_oycpcur)</TD>
</TR>
<TR>
<TD ALIGN="right" COLSPAN=4>Total Sales Tax ($(V_fmttax)%)</TD>

<TD ALIGN="right" BGCOLOR="white">$(V_foytax) $(V_oycpcur)</TD>
</TR>
<TR>
<TD ALIGN="right" COLSPAN=4>Shipping Charge</TD>

<TD ALIGN="right" BGCOLOR="white">$(V_foyshtot)
$(V_oycpcur)</TD>
</TR>
<TR>
<TD ALIGN="right" COLSPAN=4>TOTAL</TD>

<TD ALIGN="right" BGCOLOR="white">$(V_subtot1)
$(V_oycpcur)</TD>
</TR>
%}
</TABLE>

%}
%MESSAGE{
default: {@DTW_ASSIGN(MERCHANT_TAX, "FALSE") %}:CONTINUE
%}
%}

%function (DTW_ODBC) GET_CONTACT_INFO() {
select mename, mestname, meaddr1, mecity, mestate, mezipc, mecntry, mephone, mecmail1
from merchant
where MERFNBR=$(MerchantRefNum)
%report {
<TABLE BORDER=0 CELLPADDING=0 CELLSPACING=0 WIDTH=400>
<TR><TD>If you have any problems with this order, please contact us at
:

</TD</TR>
%row {
<TR>
<TD ALIGN="left">

<address>
$(V_mestname)

$(V_MEADDR1)

$(V_MECITY), $(V_MESTATE)

$(V_MEZIPC), $(V_MECNTRY)

Telephone: $(V_MEPHONE)

Email: $(V_MECMAIL1)

</address>

</TD>
</TR>
%}
</TABLE>
%}
%MESSAGE{
100: { No Contact Information Available. %} : continue
default: {

Database Error:
<p>
A database error occurred when attempting to
get Address Information. Please contact the
merchant server administrator.

%}
%}

%}

%{==%}
%{ HTML Report Section
%{==%}
%HTML_REPORT{
<HTML>
Source Code Samples 507

<HEAD>
<META HTTP-EQUIV=Expires CONTENT="Mon, 01 Jan 1996 01:01:01 GMT">
<TITLE>$(LongStoreName) Order Confirmation</TITLE>
</HEAD>
<BODY BGCOLOR="$(BodyColor1)" TEXT="$(TextCol)" LINK="$(LinkCol)" VLINK="$(VLinkCol)"
ALINK="$(ALinkCol)">
<TABLE WIDTH=600 CELLSPACING=0 CELLPADDING=0 BORDER=0>
<H2>$(LongStoreName) Order Confirmation</H2>
@GET_SHOPPER_REF_NUM()
@SHOPPER_INFO()
<TR><TD>Thank you $(V_safname) $(V_salname) for shopping at
$(LongStoreName).

 </TD> </TR>
<TR><TD WIDTH=600>Your order has been received and is being processed.

You will be notified when it is confirmed.

</TD></TR>
<TR><TD >Your customer number is: $(sanick)</TD> </TR>
<TR><TD>Your order number is: $(order_rn)</TD> </TR>
<TR><TD COLSPAN=2>

Please retain the above numbers for your records. You can check the status of your order at
any time
by clicking on the <A
HREF="/cgi-bin/ncommerce3/OrderList?merchant_rn=$(MerchantRefNum)&status=C"
TARGET="main">Order Status option and providing your customer & order numbers.

 </TD> </TR>
<TR> <TD COLSPAN=2>
 This order (with the invoice) will be shipped to
:

$(ADDR1) $(ADDR2)

$(ADDR3)

$(ADDR4)

$(ADDR5), $(ADDR6)

$(ADDR7), $(ADDR8)

$(ADDR9)
</TD></TR>
</TABLE>
@CLEANUP_SHIPTO_ADDRESS()
@CLEANUP_ORDERPAY_ADDRESS()
@DISPLAY_DETAILS_LIST()
@DISPLAY_CHARGES_MerchantTax()
%IF(MERCHANT_TAX == "FALSE")
@DISPLAY_CHARGES_MallTax()
%ENDIF
@GET_CONTACT_INFO()
</body>
</html>
%}

A.9.9 Macro for Order Status

This macro named orderlstc.d2w displays the order status:

%include "ShopITSO/ShopITSO.inc"
%{==
The sample Templates, HTML and Macros are furnished by IBM as simple
examples to provide an illustration. These examples have not been
thoroughly tested under all conditions. IBM, therefore, cannot guarantee reliability,
serviceability or function of these programs. All programs contained herein are provided to
you "AS IS".

The sample Templates, HTML and Macros may include the names of individuals,
companies, brands and products in order to illustrate them as completely as
possible. All of these are names are fictitious and any similarity to the names
and addresses used by actual persons or business enterprises is entirely coincidental.

Licensed Materials - Property of IBM

5697-D245798-NC3

(c) Copyright IBM Corp. 1998. All Rights Reserved

US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM Corp
==%}
%include "platform.d2w"
%define {
SHOWSQL="NO"
%}
508 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

%function(dtw_odbc) GET_ORDER_STATUS() {
selectORRFNBR, $(NC_DATE) (orpstmp) as pdate, $(NC_TIME) (orpstmp) as ptime, orstat
from ORDERS, SHOPPER
whereORRFNBR=$(order_rn) and SHLOGID='$(customer_rn)' and ORMENBR=$(MerchantRefNum)
and shrfnbr=orshnbr
%REPORT {

<TABLE BORDER=0 CELLPADDING=0 CELLSPACING=0 WIDTH=100%>
<TR><TD COLSPAN=3>Status information:

</TD></TR>
%ROW {
<TR><TD align=left>Order Status:</td>
%if (V_orstat == "C")
<td align=right COLSPAN=2>"Order accepted and in process"</td></TR>

<TR><TD>
</TD></TR>
<TR><TD align=left>Date accepted:</td>
<TD align=right COLSPAN=2>$(V_pdate)</td></TR>
<TR><TD align=left>Time Completed:</td>

<TD align=right COLSPAN=2> $(V_ptime) </td></TR>
%elif (V_orstat == "9")
<td align=right COLSPAN=2>"Order shipped"</td></TR>
<TR><TD>
</TD></TR>
<TR><TD align=left>Date shipped:</td>
<TD align=right COLSPAN=2>$(V_pdate)</td></TR>
%else

<TR><TD align=right COLSPAN=2>"Pending"</td></TR>
%endif
<TR><TD COLSPAN=3> <HR> </TD></TR>
%}
</table>
</center>
%}
%MESSAGE{

100 : {
<TABLE BORDER=0 CELLPADDING=0 CELLSPACING=0 WIDTH=100%>
<TR><TD COLSPAN=2> Sorry! Order status information is not available for
:

</TD></TR>

<TR><TD>Customer Number</TD>
<TD>$(customer_rn)</TD></TR>

<TR><TD>Order Number</TD>
<TD>$(order_rn)</TD></TR>
</TABLE>

%}
default: {
More information is needed.

Both a <i>customer number</I> and an <i>order number</i>
is needed to check your order status. Please try again.

%}
%}

%}

%function(dtw_odbc) GET_ORDER_DETAILS() {
selectstprnbr, stprice, stcpcur, prsdesc, prnbr
from SHOPPER, SHIPTO, PRODUCT
wherestornbr=$(order_rn) and stmenbr=$(MerchantRefNum)
and prrfnbr=stprnbr and prmenbr=$(MerchantRefNum)
and shlogid='$(customer_rn)' and shrfnbr=stshnbr
%REPORT {

<TABLE BORDER=0 CELLPADDING=0 CELLSPACING=0 WIDTH=100%>
%ROW {

<TR><TD COLSPAN=2>#$(V_prnbr) : $(V_prsdesc)</TD>
<TD align=right>$(V_stprice) $(V_stcpcur)</TD></TR>

%}
</table>
</center>
%}
%MESSAGE{

default: {
Database Error: <I>ORDER/LIST</I>

A database error occurred. Please contact the merchant server administrator.

Error Code = $(SQL_CODE)

%}

%}
%}

%function(dtw_odbc) GET_ORDER_CHARGES() {
selectORRFNBR, ORPRTOT, ORSHTOT, ORTXTOT, ((ORPRTOT+ORSHTOT+ORTXTOT)) as grandtot,
ormenbr, orcpcur
Source Code Samples 509

from ORDERS, SHOPPER
whereORRFNBR=$(order_rn) and SHLOGID='$(customer_rn)' and ORMENBR=$(MerchantRefNum)
and shrfnbr=orshnbr
%REPORT {

<TABLE BORDER=0 CELLPADDING=0 CELLSPACING=0 WIDTH=100%>
%ROW {
<TR><TD COLSPAN=3><HR></TD></TR>
<TR><TD align=right>Sub total</td>

<TD align=right COLSPAN=2>$(V_orprtot) $(V_orcpcur)</td></TR>
<TR><TD align=right>Tax</td>
<TD align=right COLSPAN=2>$(V_ortxtot) $(V_orcpcur)</td></TR>
<TR><TD align=right>Shipping Charge</td>
<TD align=right COLSPAN=2>$(V_orshtot) $(V_orcpcur)</td></TR>
<TR><TD align=right>TOTAL CHARGE</td>
<TD align=right COLSPAN=2>$(V_grandtot) $(V_orcpcur)</td></TR>

%}
</table>
</center>
%}
%MESSAGE{

default: {
Database Error: <I>ORDER/LIST</I>

A database error occurred. Please contact the merchant server administrator.

Error Code = $(SQL_CODE)

%}
%}

%}

%HTML(INPUT) {
<HTML>
<HEAD>
<META HTTP-EQUIV=Expires CONTENT="Mon, 01 Jan 1996 01:01:01 GMT">
</HEAD>
<BODY BGCOLOR="$(BodyColor1)" TEXT="$(TextCol)" LINK="$(LinkCol)" VLINK="$(VLinkCol)"
ALINK="$(ALinkCol)">
<TABLE BORDER=0 CELLPADDING=0 CELLSPACING=0 WIDTH=100%>
<TR><TD ALIGN="left" VALIGN="center" COLSPAN=2>

<H3> Order # $(order_rn) Status: </H3><HR>

<H4> Custmer # $(customer_rn)</h4></TD></TR>

</TABLE>
@GET_ORDER_STATUS()
@GET_ORDER_DETAILS()
@GET_ORDER_CHARGES()
</BODY>
</HTML>
%}

%HTML(REPORT) {
<HTML>
<BODY BGCOLOR="$(BodyColor1)" TEXT="$(TextCol)" LINK="$(LinkCol)" VLINK="$(VLinkCol)"
ALINK="$(ALinkCol)">
<FORM METHOD="POST"
ACTION="/cgi-bin/ncommerce3/ExecMacro/$(STORENAME)/orderlstc.d2w/input">
<TABLE BORDER=0 CELLPADDING=0 CELLSPACING=0 WIDTH=100%>
<TR><TD ALIGN="left" VALIGN="center" COLSPAN=2>

<H3>Order Status</H3></TD></TR>
<TR><TD ALIGN="left" VALIGN="center" COLSPAN=2>
Please enter your customer number and order number that was displayed when your
order was confirmed.

</TD></TR><TR>
<TD ALIGN="left">Customer #</TD>
<TD ALIGN="left">Order #</TD></TR>
<TR><TD ALIGN="left"><INPUT TYPE="text" NAME="customer_rn" SIZE="20" MAXLENGTH="30"></TD>

<TD ALIGN="leftt"><INPUT TYPE="text" NAME="order_rn" SIZE="5" MAXLENGTH="10"></TD></TR>
<TR><TD ALIGN="center" COLSPAN=2>
<INPUT TYPE="submit" value="Retrieve Order
Status"></TD></TR>
</TABLE>
</FORM>
</BODY>
</HTML>
%}
510 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

A.9.10 Macro for Search

The Net.Data macro searchrslt.d2w builds the search result and is invoked by the
search.html file:

%include "ShopITSO/ShopITSO.inc"
%{==
The sample Templates, HTML and Macros are furnished by IBM as simple
examples to provide an illustration. These examples have not been
thoroughly tested under all conditions. IBM, therefore, cannot guarantee reliability,
serviceability or function of these programs. All programs contained herein are provided to
you "AS IS".

The sample Templates, HTML and Macros may include the names of individuals,
companies, brands and products in order to illustrate them as completely as
possible. All of these are names are fictitious and any similarity to the names
and addresses used by actual persons or business enterprises is entirely coincidental.

Licensed Materials - Property of IBM

5697-D245798-NC3

(c) Copyright IBM Corp. 1998. All Rights Reserved

US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM Corp
==%}
%define {
SHOWSQL = "NO"

ADDRESS_REF = ""
%}

%{==== GET_ADDRESS_REF_NUM Function ====%}
%function(dtw_odbc) GET_ADDRESS_REF_NUM() {

select sarfnbr from shaddr where sanick='$(SESSION_ID)' and saadrflg='P'
%REPORT{
%ROW{

@DTW_assign(ADDRESS_REF, V_sarfnbr)
%}

%}
%MESSAGE{
default: { %}: continue

%}
%}

%function(dtw_odbc) SEARCH_PRODUCTS() {
select PRODUCT.PRRFNBR, PRODUCT.PRNBR, PRSDESC from PRODUCT
where prpub=1 and prmenbr=$(MerchantRefNum) and (translate(prsdesc) like

'%@DTW_rTRANSLATE($(search))%')
%REPORT{
<TABLE BORDER=0 CELLPADDING=0 CELLSPACING=0 WIDTH=100%>
<TR><TD ALIGN="left" VALIGN="center">

<H2>Search Results</H2></TD></TR>
<TR><TD ALIGN="left" VALIGN="center" COLSPAN=2>

<H2>You can find the results of your search for <I>$(search)</I> below:
</H2></TD></TR>
<TR><TD><H4>When you select one product, you get more information about it and also you can
order </H4></TD></TR>

%ROW{
<TR><TD VALIGN="top">

<A
HREF="/cgi-bin/ncommerce3/ProductDisplay?prrfnbr=$(V_PRRFNBR)&prmenbr=$(MerchantRefNum
)">$(V_PRSDESC)

</TD>

<TD></TD></TR>
%}

</TABLE>
%}
%MESSAGE{100:{

<TABLE BORDER=0 CELLPADDING=0 CELLSPACING=0 WIDTH=100%>
<TR><TD><h2>No Matches found for <I>$(search)</I></h2></TD></TR>
</TABLE>
%} :continue %}
%}
Source Code Samples 511

%HTML_REPORT {
<HTML>
<HEAD>
</HEAD>
<BODY BGCOLOR="$(BodyColor1)" TEXT="$(TextCol)" LINK="$(LinkCol)" VLINK="$(VLinkCol)"
ALINK="$(ALinkCol)">
@GET_ADDRESS_REF_NUM()
@SEARCH_PRODUCTS()
<TABLE BORDER=0 CELLPADDING=0 CELLSPACING=2 WIDTH=50%>
<TR><TD><H4>Try another Search.<H4></TD></tr>
<TR><TD align ="left"><FORM METHOD="POST"
ACTION="/cgi-bin/ncommerce3/ExecMacro/$(STORENAME)/searchrslt.d2w/report">

<INPUT TYPE="text" NAME="search" SIZE="30" MAXLENGTH="30"></td>
<TD><INPUT TYPE="submit" value="Search"></TD></TR>

</FORM>
</TABLE>
</BODY>
</HTML>
%}

A.9.11 Error Macro Address Update

The Net.Data macro err_adrbk_up.d2w is shown when the shopper enters
address information that is not valid, or the address or credit card information is
missing:

%include "ShopITSO/ShopITSO.inc"

%{==

The sample Templates, HTML and Macros are furnished by IBM as simple
examples to provide an illustration. These examples have not been
thoroughly tested under all conditions. IBM, therefore, cannot guarantee reliability,
serviceability or function of these programs. All programs contained herein are provided to
you "AS IS".

The sample Templates, HTML and Macros may include the names of individuals,
companies, brands and products in order to illustrate them as completely as
possible. All of these are names are fictitious and any similarity to the names
and addresses used by actual persons or business enterprises is entirely coincidental.

Licensed Materials - Property of IBM

5697-D24

(c) Copyright IBM Corp. 1998. All Rights Reserved

US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM Corp

==%}

%define{

sashnbrVal = sashnbr ? "$(sashnbr)" : "null"

l_sanick = "Nick Name (mandatory)"
l_satitle = "Title"
l_salname = "Last Name (mandatory)"
l_safname = "First Name"
l_saaddr1 = "Address (mandatory)"
l_sacity = "City (mandatory)"
l_sastate = "State/Province (mandatory)"
l_sazipc = "Zip/Postal Code (mandatory)"
l_sacntry = "Country (mandatory)"
l_saphone1 = "Daytime Phone Number"
l_saphone2 = "Evening Phone Number"
l_saemail1 = "E-mail Address"

%}

%function(dtw_odbc) CheckRegistered(){
512 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

SELECT satitle, safname, samname, salname, shshtyp
FROM shaddr, shopper
WHERE sashnbr=shrfnbr and sanick='$(SESSION_ID)' and shlogid='$(SESSION_ID)' and
(shshtyp='R' or shshtyp='A') and saadrflg='P'

%REPORT{
%ROW{

$(V_safname) $(V_samname) $(V_salname)
%}

%}

%MESSAGE{
100 : {Guest Shopper

%} : continue
default: {
%} :continue

%}

%}

%HTML_REPORT{

<HTML>

<HEAD>
<META HTTP-EQUIV=Expires CONTENT="Mon, 01 Jan 1996 01:01:01 GMT">
</HEAD>

<BODY BGCOLOR="$(BodyColor1)" TEXT="$(TextCol)" LINK="$(LinkCol)" VLINK="$(VLinkCol)"
ALINK="$(ALinkCol)">

<TABLE WIDTH=500 CELLPADDING=0 CELLSPACING=0 BORDER=0>

<TR>
<TD ALIGN="left" VALIGN="center">
<H2>$(LongStoreName) Order Information</H2>
</TD>
</TR>

</TABLE>

<TABLE WIDTH=500 CELLPADDING=0 CELLSPACING=0 BORDER=0>

<TR>
<TD align=left colspan=3 BGCOLOR="pink">

Your Purchase has not been accepted.
There is a problem with the information you provided.

%if (error_code == "160")
The information in the <i>$(msg)</i> field is invalid.

%elif ((error_code == "190") && (field == "salname"))
The <i>Last Name</i> field must be filled in.

%elif ((error_code == "190") && (field == "saaddr1"))
The <i>Address</i> field must be filled in.

%elif ((error_code == "190") && (field == "sacity"))
The <i>City</i> field must be filled in.

%elif ((error_code == "190") && (field == "sastate"))
The <i>State/Province</i> field must be filled in.

%elif ((error_code == "190") && (field == "sacntry"))
The <i>Country</i> field must be filled in.

%elif ((error_code == "190") && (field == "sazipc"))
The <i>Zip/Postal Code</i> field must be filled in.

%elif ((error_code == "190") && (field == "cctype"))
The <i>Credit Card Type</i> was not selected.
Please re-enter all credit card information.

%elif ((error_code == "190") && (field == "cctype"))
The <i>Credit Card Type</i> was not selected.
Please re-enter all credit card information.

%elif ((error_code == "190") && (field == "ccnum"))
The <i>Credit Card Number</i> was not filled in.
Please re-enter all credit card information.

%elif ((error_code == "1005") && (field == "ccnum"))
The <i>Credit Card Number</i> you entered was not valid.
Please re-enter all credit card information.
Source Code Samples 513

%elif (error_code == "1006")
The <i>Credit Card Expiration Date</i> you entered was not valid.
Please re-enter all credit card information.

%elif (error_code == "190")
The <i>$(field)</i> field must be filled in.

%elif (error_code == "210")
The nickname has already been used.

%else
An undefined error occurred. Please contact the Site Adminstrator. The error code is

$(error_code).
%endif

</TD>
</TR>

</TABLE>

<FORM method=POST action="/cgi-bin/ncommerce3/AddressUpdate">

<INPUT Type = "hidden" Name="merchant_rn" Value="$(MerchantRefNum)">
<INPUT Type = "hidden" Name="sarfnbr" Value="$(sarfnbr)">
<INPUT Type = "hidden" Name="url"
Value="/cgi-bin/ncommerce3/ExecMacro/$(STORENAME)/adrbk.d2w/report">

<TABLE WIDTH=500 CELLPADDING=0 CELLSPACING=0 BORDER=0>

<TR>

<TABLE WIDTH=500 CELLSPACING=0 BORDER=0>

<TR>
<TD COLSPAN=2><H3>Shipping Address:</H3></TD>
</TR>

<TR>
<TD COLSPAN=2>
Enter the shipping address for this purchase. An invoice will also
be sent to this address.
</TD>
</TR>

<TR>
<TD>
</TD>
</TR>

<TR>
<TD>$(l_safname)</TD>
<TD>$(l_salname)</TD>
</TR>

<TR>
<TD><INPUT TYPE="text" NAME="safname" VALUE="$(safname)" SIZE="25" MAXLENGTH="30"></TD>
<TD><INPUT TYPE="text" NAME="salname" VALUE="$(salname)" SIZE="25" MAXLENGTH="30"></TD>
</TR>

<TR>
<TD>$(l_saaddr1)</TD>
</TR>

<TR>
<TD COLSPAN=4>
<INPUT TYPE="text" NAME="saaddr1" VALUE="$(saaddr1)" SIZE="56" MAXLENGTH="50">
</TD>
</TR>

<TR>
<TD COLSPAN=4>
<INPUT TYPE="text" NAME="saaddr2" VALUE="$(saaddr2)" SIZE="56" MAXLENGTH="50">
</TD>
</TR>

<TR>
<TD>$(l_sacity)</TD>
<TD>$(l_sastate)</TD>
</TR>
514 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

<TR>
<TD><INPUT TYPE="text" NAME="sacity" VALUE="$(sacity)" SIZE="25" MAXLENGTH="30"></TD>
<TD><INPUT TYPE="text" NAME="sastate" VALUE="$(sastate)" SIZE="25" MAXLENGTH="20"></TD>
</TR>

<TR>
<TD>$(l_sazipc)</TD>
<TD>$(l_sacntry)</TD>
</TR>

<TR>
<TD><INPUT TYPE="text" NAME="sazipc" VALUE="$(sazipc)" SIZE="25" MAXLENGTH="20"></TD>
<TD><INPUT TYPE="text" NAME="sacntry" VALUE="$(sacntry)" SIZE="25" MAXLENGTH="30"></TD>
</TR>

<TR>
<TD>
</TD>
</TR>

<TR>
<TD>$(l_saphone1)</TD>
<TD>$(l_saphone2)</TD>
</TR>

<TR>
<TD><INPUT TYPE="text" NAME="saphone1" VALUE="$(saphone1)" SIZE="25" MAXLENGTH="30"></TD>
<TD><INPUT TYPE="text" NAME="saphone2" VALUE="$(saphone2)" SIZE="25" MAXLENGTH="30"></TD>
</TR>

<TR>
<TD>$(l_saemail1)</TD>
</TR>

<TR>
<TD COLSPAN=4><INPUT TYPE="text" NAME="saemail1" VALUE="$(saemail1)" SIZE="56"
MAXLENGTH="254"></TD>
</TR>

<TR>
<TD COLSPAN=2>
</TD>
</TR>

<TR>
<TD COLSPAN=2>
<H3>Payment Information:</H3>
</TD>
</TR>

<TR>
<TD COLSPAN=2>
Please enter your credit card information and click on the Purchase
button.
</TD>
</TR>

<TR>
<TD>

</TD>
</TR>

<TR>
<TD COLSPAN=2>

<TABLE WIDTH=200 CELLPADDING=0 CELLSPACING=0 BORDER=0 COLS=8 >

<TR>
%if (CC_visa == "YES")
<TD VALIGN="top"><input type=radio name=cctype value=VISA></TD>
<TD VALIGN="top"></TD>
%endif

%if (CC_master == "YES")
<TD VALIGN="top"><input type=radio name=cctype value=MAST></TD>
<TD VALIGN="top"></TD>
Source Code Samples 515

%endif

%if(CC_amex == "YES")
<TD VALIGN="top"><input type=radio name=cctype value=AMEX></TD>
<TD VALIGN="top"></TD>
%endif

%if(CC_discover == "YES")
<TD VALIGN="top"><input type=radio name=cctype value=DISC></TD>
<TD VALIGN="top"></TD>
%endif

</TR>

</TABLE>

</TD>
</TR>

<TR>
<TD COLSPAN=2>

<TABLE WIDTH=400 CELLPADDING=0 CELLSPACING=0 BORDER=0 COLS=4>

<TR><TD>
</TD></TR>
<TR>
<TD ALIGN="left">Card Number</TD>
<TD ALIGN="left">Expiration Month</TD>
<TD ALIGN="left">Expiration Year</TD>
</TR>
<TR>
<TD ALIGN="left" VALIGN=middle>
<INPUT TYPE=text SIZE=15 MAXLENGTH=256 NAME="ccnum">
</TD>

<TD ALIGN="left" VALIGN=middle>
<select name="ccxmonth" size=1>
<option selected></option>
<option value="1">January</option>
<option value="2">February</option>
<option value="3">March</option>
<option value="4">April</option>
<option value="5">May</option>
<option value="6">June</option>
<option value="7">July</option>
<option value="8">August</option>
<option value="9">September</option>
<option value="10">October</option>
<option value="11">November</option>
<option value="12">December</option>
</select>
</td>

<td align="left" valign=middle>
<select name="ccxyear" size=1>
<option selected></option>
<option value="1998">1998 </option>
<option value="1999">1999</option>
<option value="2000">2000</option>
<option value="2001">2001</option>
<option value="2002">2002</option>
<option value="2003">2003</option>
<option value="2003">2004</option>
</SELECT>
</TD>

</TR>

</TABLE>
</TD>
</TR>

<TR>
516 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

<TD COLSPAN=2>
</TD>
</TR>

</TABLE>

<TABLE WIDTH=500 CELLPADDING=0 border=0>

<TR>
<TD ALIGN="center">
<INPUT TYPE=hidden NAME=sanick VALUE=$(SESSION_ID)>
<INPUT TYPE=hidden NAME=order_rn VALUE=$(order_rn)>
<INPUT TYPE=hidden NAME=billto_rn VALUE=$(SHOPPER_REF)>
<INPUT Type = "hidden" Name="merchant_rn" Value="$(MerchantRefNum)">

<INPUT TYPE=hidden NAME="url"
VALUE="/cgi-bin/ncommerce3/OrderProcess?merchant_rn=$(MerchantRefNum)">

<input type=submit value="Resubmit Purchase">
</TD>
</TR>

</FORM>
<TR><TD COLSPAN=2>
<HR WIDTH=550 ALIGN=left></TD></TR>
<TR><TD ALIGN="center">
<FORM action="/cgi-bin/ncommerce3/pay_wakeup">
<INPUT TYPE=hidden NAME="order_rn" value="$(order_rn)">
<INPUT TYPE=hidden NAME="merchant_rn" value="$(MerchantRefNum)">

<input type=submit value="Pay with my Wallet for: $(order_rn)">
</FORM></TD></TR>

</TABLE>
</BODY>

</HTML>

%}

A.9.12 Error Macro Bad Quantity

The Net.Data macro err_stdata.d2w is shown when the shopper enters a quantity
that is not valid in the product or display current order page:

%include "ShopITSO/ShopITSO.inc"

%{==

The sample Templates, HTML and Macros are furnished by IBM as simple
examples to provide an illustration. These examples have not been
thoroughly tested under all conditions. IBM, therefore, cannot guarantee reliability,
serviceability or function of these programs. All programs contained herein are provided to
you "AS IS".

The sample Templates, HTML and Macros may include the names of individuals,
companies, brands and products in order to illustrate them as completely as
possible. All of these are names are fictitious and any similarity to the names
and addresses used by actual persons or business enterprises is entirely coincidental.

Licensed Materials - Property of IBM

5697-D24

(c) Copyright IBM Corp. 1998. All Rights Reserved

US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM Corp

==%}

%define {
Source Code Samples 517

SHOWSQL="NO"
%}

%{==== Retrieves the Shopper Reference Number ====%}

%function(dtw_odbc) GET_SHOPPER_REF_NUM() {
select shrfnbr from shopper where shlogid = '$(SESSION_ID)'
%REPORT{
%ROW{
@DTW_assign(SHOPPER_REF, V_shrfnbr)

%}
%}
%MESSAGE{
default: { ERROR in GET_SHOPPER_REF_NUM %}

%}
%}

%HTML_REPORT{
<HTML>

<HEAD>
<META HTTP-EQUIV=Expires CONTENT="Mon, 01 Jan 1996 01:01:01 GMT">
</HEAD>

<BODY BGCOLOR="$(BodyColor1)" TEXT="$(TextCol)" LINK="$(LinkCol)" VLINK="$(VLinkCol)"
ALINK="$(ALinkCol)">

<TABLE WIDTH=500 CELLPADDING=0 CELLSPACING=0 BORDER=0>
<TR>

<TD ALIGN="left" VALIGN="center">
<H3>Order Details Error</H3>
</TD>
</TR>

</TABLE>
@GET_SHOPPER_REF_NUM()

<TABLE>
<TR>

<TD align=center width=85>

</TD>
<TD>
There was a problem with your submission.

<P>
%if ("$(error_code)" == "220")

You typed "$(quantity)" in the field $(field). A numeric value above zero is
required.
%endif

</TD>
</TR>
<TR>

<TD align=center width=85>
</TD>
<TD>

<I>Click the go further button to get the order details page.</I>

<I>When you come from a Product Page select the product again and type a valid
quantity.</I>

<I>When you come from the Order Details Page make the change to the quantity again.</I>
</TD>
</TR>

</TABLE>

<TABLE WIDTH=300>
<TR>
<FORM ACTION="/cgi-bin/ncommerce3/OrderItemDisplay">

<INPUT TYPE="hidden" NAME="merchant_rn" VALUE="$(MerchantRefNum)">
<TD WIDTH=100 ALIGN="right"><INPUT TYPE="submit" VALUE="go further">
</TD>
</FORM>
518 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

</TR>
</TABLE>

</BODY>

</HTML>

%}

A.10 ShopITSO Include File

ShopITSO.inc is built by the Store Creator and is used in all Net.Data macros as
the include file. It contains define variables for the store, for example, the
merchant reference number.

%define {
null="null"
title="Corporate (Side)"
CC_amex="NO"
CC_discover="NO"
LongStoreName="ShopITSO"
ButtonHeight="44"
ALinkCol="red"
BannerRightSpc="60"
EOF="EOF"
TextCol="black"
CC_master="YES"
NavLinkCol="#E7E7EF"
ButtonWidth="50"
BannerLeftSpc="90"
LinkCol="blue"
BannerImage="/sggifs/cr_banner_s.gif"
BannerAlign="right"
BodyImage1="/sggifs/cr_tablbkg.gif"
Button1="/sggifs/cr_butt1_s.gif"
navigation="side"
Button2="/sggifs/cr_butt2_s.gif"
Button3="/sggifs/cr_butt3_s.gif"
BannerTxtCol="#E7E7EF"
CC_phone="YES"
STORENAME="ShopITSO"
Button4="/sggifs/cr_butt4_s.gif"
BckImageNavBar="/sggifs/cr_leftbkg_s.gif"
Button5="/sggifs/cr_butt5_s.gif"
NavBarAlign="left"
gif="sggifs/cor_s.jpg"
Button6="/sggifs/cr_butt6_s.gif"
BodyColor1="#E7E7EF"
CC_visa="YES"
Button7="/sggifs/cr_butt7_s.gif"
BodyColor2="#A1A2C5"
HomeCategory="657"
MerchantRefNum="28"
Button8="/sggifs/cr_butt8_s.gif"
VLinkCol="darkblue"
BodyColor3="silver"
TitleTxtCol="black"
AddButton="/sggifs/cr_add.gif"
%}

A.11 AS/400 Web Server Configuration File

Here, you can find our AS/400 Web Server configuration file for our ShopITSO
sample shop. It works with the HTTP instance named work.

Configuration: WORK

#***
#*** Net.Commerce/400 IBM HTTP Server Configuration **
#***
#
#***
Source Code Samples 519

Enable GET
Enable HEAD
Enable POST
#***
######## IBM Net.Commerce ######## (Do not edit this section)
Fail /logs/*
Fail /macro/*
Fail /nc_cache/*
Protect /*.ini work.itso.ibm.com {
Protect /*.ini work.itso.ibm.com {
ServerId Private_Authorization
Authtype Basic
GetMask All@(*)
PostMask All@(*)
Mask All@(*)
}
Pass /te_html/* /Qibm/UserData/NetCommerce/instance/work/teditor/te_html/*
work.itsoroch.ibm.com
Pass /ca_html/* /Qibm/UserData/NetCommerce/instance/work/teditor/ca_html/*
work.itsoroch.ibm.com
Service /cgi-bin/ncommerce/* /QSYS.LIB/QNETCOMM.LIB/QNEICAPI.SRVPGM:nc_cache
Service /cgi-bin/ncommerce3/* /QSYS.LIB/QNETCOMM.LIB/QNEICAPI.SRVPGM:nc_cache
Service /msprotect/ncommerce/* /QSYS.LIB/QNETCOMM.LIB/QNEICAPI.SRVPGM:nc_auth
Service /msprotect/ncommerce3/* /QSYS.LIB/QNETCOMM.LIB/QNEICAPI.SRVPGM:nc_auth
Service /servlet/* /QSYS.LIB/QHTTPSVR.LIB/QZHJSVLT.SRVPGM:AdapterService* %%MIXED%%
ServerInit /QSYS.LIB/QNETCOMM.LIB/QNEICAPI.SRVPGM:nc_init_cache
CACHE=OFF|CACHE_MAX_FILES=100
ServerInit /QSYS.LIB/QHTTPSVR.LIB/QZHJSVLT.SRVPGM:AdapterInit
/Qibm/UserData/NetCommerce/instance/work/jvm.properties
Map /msprotect/ncommerce3/* /msprotect/ncommerce3.pgm/*
Map /msprotect/ncommerce/* /msprotect/ncommerce3.pgm/*
Map /cgi-bin/ncommerce3/* /cgi-bin/ncommerce3.pgm/*
Map /cgi-bin/ncommerce/* /cgi-bin/ncommerce3.pgm/*
Exec /msprotect/* /QSYS.LIB/QNETCOMM.LIB/*
Exec /cgi-bin/* /QSYS.LIB/QNETCOMM.LIB/*
DefaultFsCCSID 37
DefaultNetCCSID 819
Pass /storemgr/* /Qibm/ProdData/NetCommerce/html/MRI2924/ncadmin/storemgr/*
Pass /sitemgr/* /Qibm/ProdData/NetCommerce/html/MRI2924/ncadmin/sitemgr/*
Pass /ncacom/* /Qibm/ProdData/NetCommerce/html/MRI2924/ncadmin/common/*
Pass /ncagif/* /Qibm/ProdData/NetCommerce/html/MRI2924/ncadmin/gif/*
Pass /butnbars/* /Qibm/ProdData/NetCommerce/html/MRI2924/ncadmin/butnbars/*
Pass /ncadmin/ictmgr/*.gif /Qibm/ProdData/NetCommerce/html/MRI2924/ictimages/*.gif
Pass /ncadmin/ictmgr/* /Qibm/proddata/netcommerce/html/ictmgr/*
Pass /ncadmin/StoreCreator/*.class /Qibm/ProdData/NetCommerce/html/StoreCreator/*.class
Pass /ncadmin/StoreCreator/*.jar /Qibm/ProdData/NetCommerce/html/StoreCreator/*.jar
Pass /ncadmin/* /Qibm/ProdData/NetCommerce/html/MRI2924/ncadmin/*
Pass /nchelp/* /Qibm/ProdData/NetCommerce/html/MRI2924/nchelp/*
Pass /ncerror/* /Qibm/ProdData/NetCommerce/html/MRI2924/ncerror/*
Pass /ncbooks/* /Qibm/ProdData/NetCommerce/html/MRI2924/ncbooks/*
Pass /sggifs/* /Qibm/ProdData/NetCommerce/html/MRI2924/ncadmin/StoreCreator/sggifs/*
Pass /bus2bus2/* /Qibm/ProdData/NetCommerce/html/MRI2924/bus2bus2/*
Pass /ca_icons/* /Qibm/ProdData/NetCommerce/html/MRI2924/ca_icons/*
Pass /ca_widgets/* /Qibm/ProdData/NetCommerce/servlet/*
Pass /grocery/* /Qibm/ProdData/NetCommerce/html/MRI2924/grocery/*
Pass /teditor/* /Qibm/ProdData/NetCommerce/html/teditor/*
AddType .js application/x-javascript binary 1.0 #Net.Commerce java
sslmode On
###
End of IBM Net.Commerce Entrys from NC Installation
##
#
######### New Store Section ##
#
###
Pass /shopitso/gifsm/* /Qibm/UserData/NetCommerce/instance/work/html/ShopITSO/thinkpad/sml/*
Pass /ShopITSO/gifsm/* /Qibm/UserData/NetCommerce/instance/work/html/ShopITSO/thinkpad/sml/*
Pass /shopitso/giflg/* /Qibm/UserData/NetCommerce/instance/work/html/ShopITSO/thinkpad/lrg/*
Pass /ShopITSO/giflg/* /Qibm/UserData/NetCommerce/instance/work/html/ShopITSO/thinkpad/lrg/*
Pass /SHOPITSO/* /Qibm/UserData/NetCommerce/instance/work/html/ShopITSO/*
Pass /ShopITSO/* /Qibm/UserData/NetCommerce/instance/work/html/ShopITSO/*
Pass /shopitso/* /Qibm/UserData/NetCommerce/instance/work/html/ShopITSO/*
Pass /workonestopshop/* /Qibm/UserData/NetCommerce/instance/work/html/workOneStopShop/*
Pass /workOneStopShop/* /Qibm/UserData/NetCommerce/instance/work/html/workOneStopShop/*
Pass /workpersonaldelivery/*
/Qibm/UserData/NetCommerce/instance/work/html/workPersonalDelivery/*
Pass /workPersonalDelivery/*
/Qibm/UserData/NetCommerce/instance/work/html/workPersonalDelivery/*
520 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Pass /work1/* /Qibm/UserData/NetCommerce/instance/work/html/work1/*
Pass /work2/* /Qibm/UserData/NetCommerce/instance/work/html/work2/*
######### End of New Store Section #########
######## IBM Net.Commerce (Pass) ######## (Do not edit this section)
Pass /sample/* /QIBM/ProdData/HTTP/Public/HTTPSVR/HTML/*
Pass /* /Qibm/UserData/NetCommerce/instance/work/*
Pass / /QIBM/ProdData/HTTP/Public/HTTPSVR/HTML/Welcome.html
######## End of IBM Net.Commerce (Pass) ########
#
#
############### DO NOT REMOVE ## OR MOVE #########
#
hostname work.itsoroch.ibm.com
BindSpecific On
CGIConvMode %%EBCDIC%%
keyfile /QIBM/userdata/icss/cert/server/server.kyr
ScriptTimeOut 5 minutes
PersistTimeout 30 seconds
ServerTerm /QSYS.LIB/QHTTPSVR.LIB/QZHJSVLT.SRVPGM:AdapterExit
#***
Entries for Local Cache Log
###
CacheLocalMaxBytes 2 M
CacheLocalMaxFiles 200
LiveLocalCache Off
CacheLocalFile /QIBM/userdata/netcommerce/instance/work/html/shopitso/thinkpad/lrg/*.gif
CacheLocalFile /QIBM/userdata/netcommerce/instance/work/html/shopitso/thinkpad/sml/*.gif
CacheLocalFile /QIBM/userdata/netcommerce/instance/work/html/shopitso/*.html
CacheLocalFile /QIBM/userdata/netcommerce/instance/work/html/shopitso/*.gif

A.12 INI Files

This section shows the initialization files that were used with our test set ups. You
should not edit these files on your system unless you are specifically directed to
in some instructions.

A.12.1 NCOMMERCE.INI

NCOMMERCE.INI is the Net.Commerce INI file for our ShopITSO sample. The
PROCESSES parameter controls how many server daemons are started for an
instance. The number of Net.Commerce daemons available to handle shopper
requests can also affect performance when hit rates increase. The default
number of daemons is two. If sufficient memory and CPU capacity is available to
run additional daemons and for the database to accept additional connections,
this number can be increased.

The parameter MS_HTML_MAX describes the HTML output buffer size, which
you can adjust. The parameter MS_LOGLEVEL determines the amount of
information written to the log file. The value of "2" writes status, error, and debug
messages. When your server is ready for production, set this value to the default
of "0" to reduce the overhead of generating the log information and the size of the
log files.

The parameter USERTRAFFIC_LOG specifies if the user traffic log will be
created in USRTRAFFIC database table. By default, the user traffic log is turned
off. To turn it on, change the value from "0" to "1."

SERVICE_NAME_PREFIX ncmwork
EXEC /QSYS.LIB/QNETCOMM.LIB/QNESERVER.PGM
MS_HOSTNAME work.itsoroch.ibm.com
DBNAME AS01
DBINST work
DBOWNER work
DBPASS OByhZp18pJY=
PROCESSES 2
MERCHANT_KEY QunGZnDUqUDK7yW0cEnk38vOvgkAO1Ym
Source Code Samples 521

PDI_ENCRYPT OFF
USERTRAFFIC_LOG 0
MS_TRANS_COUNT 250
MS_HTML_MAX 1000000
MS_LOGPATH /Qibm/UserData/NetCommerce/instance/work/logs
MS_LOGLEVEL 0
DB_RETRY_LIMIT 15
DB_RETRY_INTERVAL 20
NC_DMN_CACHE 1
NC_DMN_SYNCH 1
NC_DMN_SLP_SEC 15
MACRO_PATH /Qibm/UserData/NetCommerce/instance/work/macro
HTML_PATH /Qibm/UserData/NetCommerce/instance/work/html
MS_CGIBIN_PATH /QSYS.LIB/QNETCOMM.LIB
SG_PATH /Qibm/ProdData/NetCommerce/macro/MRI2924/SmartGuide
NC_TEDITOR_PATH
/Qibm/UserData/NetCommerce/instance/work/teditor;/Qibm/UserData/NetCommerce/instance/work/te
ditor/ca_html
NC_LANG en_US
NC_WEBSERVER IBM_HTTP
NC_ENABLE_STAGING 0
CACHE_ENABLED ON
MAX_CACHED_FILES 100
CACHE_FILE_PATH /Qibm/UserData/NetCommerce/instance/work
IC_DBMS DB400
ETILL_HOSTNAME work.itsoroch.ibm.com
PAY_STATE_TIMEOUT 3600
PAYSYS_CONTROLLER 1
SECURE_NVPS password, shlpswd, shlpswdver, ccnum, ccxyear, ccxmonth, name, shlogid, sanick
IC_JDBC_DRIVER com.ibm.db2.jdbc.app.DB2Driver
IC_JDBC_NETDRIVER com.ibm.as400.access.AS400JDBCDriver
IC_JDBC_URL jdbc:db2://AS01/work
IC_JDBC_NETURL jdbc:as400://work.itsoroch.ibm.com/work

A.12.2 DB2WWW.INI

DB2WWW.INI is a member of the file named INI in the AS/400 QSYS library
named like your instance. The member name is DB2WWW. It is the Net.Data
Configuration file and has entries for the macro path to find the Net.Data macros,
the include path to find include files, the EXEC path to find such DB2WWW CGI
program and language environment entries as DTW_SQL and DTW_SYSTEM.

MACRO_PATH /Qibm/UserData/NetCommerce/instance/work/macro;
/Qibm/UserData/NetCommerce/instance/work/teditor;
/Qibm/ProdData/NetCommerce/macro/MRI292

INCLUDE_PATH /Qibm/UserData/NetCommerce/instance/work/html;
/Qibm/UserData/NetCommerce/instance/work/macro;
/Qibm/UserData/NetCommerce/instance/work/teditor;
/Qibm/ProdData/NetCommerce/macro/MRI2924

ENVIRONMENT (DTW_SQL) /QSYS.LIB/QHTTPSVR.LIB/QTMJSQL.SRVPGM
(IN SHOWSQL, DB_CASE, DTW_SET_TOTAL_ROWS, DTW_EDIT_CODES, NULL_RPT_FIELD,
OUT DTWTABLE, SQL_CODE, SQL_STATE, TOTAL_ROWS, NUM_TABLES)

ENVIRONMENT (DTW_ODBC) /QSYS.LIB/QHTTPSVR.LIB/QTMJSQL.SRVPGM
(IN SHOWSQL, DB_CASE, DTW_SET_TOTAL_ROWS, DTW_EDIT_CODES, NULL_RPT_FIELD,
OUT DTWTABLE, SQL_CODE, SQL_STATE, TOTAL_ROWS, NUM_TABLES)

ENVIRONMENT (DTW_SYSTEM) /QSYS.LIB/QTCP.LIB/QTMHSYS.SRVPGM ()

A.12.3 SRVCTRL.INI

The SRVCTRL.INI server controller configuration file is used by the Server
Controller daemon to determine which pools to start, which port to listen on, and
how to perform logging:

This file has been reformatted for inclusion in this book. On the system, it
consists of seven long records in the member DB2WWW.

Note
522 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

MS_HOSTNAME work.itsoroch.ibm.com
CONTROL_DBNAME AS01
CONTROL_DBINST work
CONTROL_DBPASS OByhZp18pJY=
CONTROL_DB_RETRY_LIMIT 15
CONTROL_DB_RETRY_INTERVAL 20
MERCHANT_KEY QunGZnDUqUDK7yW0cEnk38vOvgkAO1Ym
CONTROL_ERR_TOLERANCE 1
CONTROL_SERVICE ncmworkctrl
CONTROL_POOL_CONFIG /Qibm/UserData/NetCommerce/instance/work/ncommerce
MS_LOGPATH /Qibm/UserData/NetCommerce/instance/work/logs

A.12.4 PAY_BACK.INI

The PAY_BACK pool configuration file controls how background payment
requests are processed:

SERVICE_NAME_PREFIX ncmwork_pb
EXEC /QSYS.LIB/QNETCOMM.LIB/QNEBACKSVR.PGM
DBNAME AS01
DBINST work
DBPASS OByhZp18pJY=
PROCESSES 1
MERCHANT_KEY QunGZnDUqUDK7yW0cEnk38vOvgkAO1Ym
MS_HOSTNAME work.itsoroch.ibm.com
DB_RETRY_LIMIT 15
DB_RETRY_INTERVAL 20
ETILL_HOSTNAME work.itsoroch.ibm.com
BACKGROUND_CYCLE_TIME 30
PAY_STATE_TIMEOUT 3600
BACKGROUND_INTER_JOB_TIME 30
MS_LOGPATH /Qibm/UserData/NetCommerce/instance/work/logs
MS_LOGLEVEL 0
PAYSYS_CONTROLLER 0

A.12.5 PAY_ETILL.INI

The PAY_ETILL pool configuration file controls the startup and operation of the
eTill server:

SERVICE_NAME_PREFIX ncmwork_pe
EXEC /QSYS.LIB/QNETCOMM.LIB/QNESERVER.PGM
DBNAME AS01
DBINST work
DBPASS OByhZp18pJY=
PROCESSES 1
MERCHANT_KEY QunGZnDUqUDK7yW0cEnk38vOvgkAO1Ym
MS_HOSTNAME work.itsoroch.ibm.com
DB_RETRY_LIMIT 15
DB_RETRY_INTERVAL 20
USEREXIT_HOSTNAME work.itsoroch.ibm.com
USEREXIT_SERVICE_NAME_PREFIX ncmwork
ETILL_HOSTNAME work.itsoroch.ibm.com
ETILL_EXEC QSYS/STRPYMSVR
MS_LOGPATH /Qibm/UserData/NetCommerce/instance/work/logs
MS_LOGLEVEL 0
PAYSYS_CONTROLLER 0

A.12.6 INSTANCE.INI

Here is the INI file for our instance named work. Do not edit this file:

NC_ENABLE_SEP_WEB_SERV 1
NC_USE_Payment_SVR 0
LANGUAGE 0
CCSID 37
LANGID ENU
LOCALE /QSYS.LIB/EN_US.LOCALE
FSCCSID 37
NETCCSID 819
DBPOPULATE 0
ENABLE_SIMPLIFY_CACHE 0
Source Code Samples 523

524 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Appendix B. Performance

This appendix briefly describes some AS/400-specific tips and techniques that
may help improve your site performance.

B.1 Using the DNSLookup Directive

Use the DNSLookup directive in the HTTP configuration file to specify whether
you want the server to look up the host name of requesting clients. When you
enable Access and Error logging, the log contains either the IP address
(DNSLookup OFF) or the actual host name (DNSLookup ON) of the requesting
clients. Setting DNSLookup to OFF conserves network and AS/400 resources by
eliminating the host name lookup for each log entry. In many cases, the client IP
address is sufficient to track server activity, and an address lookup yields a proxy
name, not the name of the remote system.

To update the HTTP server configuration file, use the Work with HTTP
Configuration (WRKHTTPCFG) command or the ADMIN HTTP server to specify the
following entry in the HTTP instance configuration file:

• To specify that clients be identified in log files by host name, enter:

DNSLookup ON

This can reduce the HTTP server performance.

• To specify that clients be identified in log files by the IP address, enter:

DNSLookup OFF

B.2 Tuning SQL Requests

When writing new macros for your site implementation, use SQL to select rows
from the Net.Commerce database. It is important that you write the SQL
statements as efficiently as possible. The following resources can help you with
SQL performance tuning:

• For a detailed description of the DB2/400 Optimizer, as well as some tips and
techniques to improve query performance, refer to Chapter 22 in DB2 for
AS/400 SQL Programming Version 4, SC41-5611.

• You can find useful advise about query optimization and performance problem
determination on the Web at:
http://www.as400.ibm.com/developer/client/performance/csperdg5.html

• For database technical papers and performance improvements tips, go to the
site at: http://www.as400.ibm.com/db2/db2tch_m.htm

• For specific net.data related performance issues, go to the site at:
http://www.as400.ibm.com/netdata

B.3 Increasing the Max Active Value of the Memory Pool

During our testing, we found that when increasing the Max Active value in the
*BASE pool (where Net.Commerce runs) to a high number (in our case, 1500),
Net.Commerce ran better. This is based on very unscientific measurements. If
you change this setting, monitor the system performance to ensure that the
© Copyright IBM Corp. 1999 525

change does not have an adverse effect on the system. One reason this may help
is that each thread requires an activity level. Some of the functions used by
Net.Commerce use threads to perform their functions. In some cases, the system
counts a thread as "active" even when it is not doing productive work. This can
cause a large number of the activity levels to be taken up without producing real
work.

B.4 Adjusting the QNETCOMM Jobs Priority

If your Net.Commerce server is serving other applications, you may want to
allocate more resources to the Net.Commerce server jobs. You can increase the
Net.Commerce servers priority by using the CHGCLS command. Type CHGCLS and
press F4. Complete the command parameters as described in Figure 460.

Figure 460. Changing the Net.Commerce Server Run Priority

The shipped value of the Net.Commerce server jobs priority is 25. In the
example, we changed it to 20.

B.5 Loading Net.Commerce Tables to Main Memory

The AS/400 system supports moving objects to main memory by using the
SETOBJACC command. In some cases, you may find it beneficial to load a
Net.Commerce product-related table, such as products and prodprcs, to main
memory at the beginning of the day. This command can change the speed of
accessing the product information and improve the site performance.

The CL program shown in Figure 461 on page 527 is an example of loading
Net.Commerce products data into main memory.

Change Class (CHGCLS)

Type choices, press Enter.

Class > QNETCOMM Name
Library > QNETCOMM Name, *LIBL, *CURLIB

Run priority 20 1-99, *SAME
Time slice 2000 Milliseconds, *SAME
Eligible for purge *YES *SAME, *YES, *NO
Default wait time 30 Seconds, *SAME, *NOMAX
Maximum CPU time *NOMAX Milliseconds, *SAME, *NOMAX
Maximum temporary storage . . . *NOMAX Kilobytes, *SAME, *NOMAX
Maximum threads *NOMAX 1-32767, *SAME, *NOMAX
Text 'description' *BLANK

If you increase the Net.Commerce server jobs priority, other jobs on the system
may decrease their performance.

Note
526 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Figure 461. Example to SETOBJACC Usage

For more information about the SETOBJACC command, see Work Management
Version 4, SC41-5306.

/***/
/* This program will load data from Net.Commerce product */
/* related tables to the main memory. */
/* ==*/
/* This is only an example. You must check if this approach*/
/* will improve performance in your specific Net.Commerce */
/* site. */
/* ==*/
/* Author: Shahar mor */
/* Provided AS IS */
/***/

PGM

DCL VAR(&msgid) TYPE(*CHAR) LEN(7)
DCL VAR(&msgdta) TYPE(*CHAR) LEN(80)

/* Create the subsystem if not active yet */
CHKOBJ OBJ(QGPL/NETCMEM) OBJTYPE(*SBSD)
MONMSG MSGID(CPF0000) EXEC(DO)
CRTSBSD SBSD(QGPL/NETCMEM) POOLS((1 3000 1)) +

TEXT('Load Net.Commerce objects to memory')
ENDDO

/* Start the subsystem to allocate main storage */
STRSBS SBSD(QGPL/NETCMEM)
MONMSG MSGID(CPF1010) /* Already active */

/* Load objects. */
CLRPOOL POOL(NETCMEM 1)
SETOBJACC OBJ(WORK/PRODUCT) OBJTYPE(*FILE) +

POOL(NETCMEM 1)
SETOBJACC OBJ(WORK/PRODPRCS) OBJTYPE(*FILE) +

POOL(NETCMEM 1)
SETOBJACC OBJ(WORK/PRODATR) OBJTYPE(*FILE) +

POOL(NETCMEM 1)
SETOBJACC OBJ(WORK/PRODSGP) OBJTYPE(*FILE) +

POOL(NETCMEM 1)
RCVMSG MSGTYPE(*LAST) MSGDTA(&msgdta) MSGID(&msgid)
IF COND(&msgid = 'CPC1140') THEN(DO)

IF COND(%BIN(&msgdta 42 4) < %BIN(&msgdta 38 +
4)) THEN(DO)

SNDUSRMSG MSGID(CPF9897) MSGF(QCPFMSG) MSGDTA('====== +
Note : Net.Commerce product tables were +
not completly loaded !!') MSGTYPE(*INFO) +
TOMSGQ(*SYSOPR)

ENDDO
ENDDO

ENDPGM

Make sure you have enough main memory before implementing the
SETOBJACC command. Also note that using the SETOBJACC command does
not always improve performance.

If you do not have enough memory for loading the Net.Commerce tables data,
you can gain performance by loading only the tables access path.

Note
Performance 527

B.6 Improving the IBM Client Access ODBC Driver Performance

In Chapter 18, “Generating Net.Commerce Reports” on page 403, we describe
the possibility of generating Net.Commerce reports using an ODBC connection to
the AS/400 database. If your Net.Commerce schema has many rows, you may
find the ODBC connection to be slow. In that case, you may consider using the
IBM Client Access Driver compression.

Data compression can improve performance of the IBM Client Access ODBC
driver. This data compression enhancement (delivered through the V4R2 PTF,
SF49349, and the V4R3 PTF, SF51501) reduces the amount of data that has to
be sent when returning ODBC results. When less data is transferred, the
performance is faster.

For compatibility reasons, the data compression is not the default behavior. The
result data must be compressed by requesting data compression at the
connection or statement level. The graphical interface for configuring data
sources does not include support for the data compression option. Therefore, the
entry must be added manually.

For more techniques and tips for improving ODBC performance, see the IBM
Partners in Development Web site at:
http://www.as400.ibm.com/developer/client/odbc.html
528 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Appendix C. Problems and Solutions

This appendix includes a few tips that we found for both Net.Commerce and
Net.Data.

C.1 Net.Commerce

This section offers some additional tips that we found relating to Net.Commerce
during our testing.

C.1.1 Net.Commerce Online Documentation

Net.Commerce product installation places the help and online documentation on
the AS/400 server. To read the product online help, use your browser and map a
PC network drive to your AS/400 server. For example, use the following
procedure to read the online help from Netscape Navigator 4.5:

1. Double click on the Netscape icon to launch Netscape.

2. Choose File —> Open page.

3. Click on the Choose file button.

4. Locate your server and point to the directory:
/QIBM/ProdData/NetCommerce/html/MRI2924/nchelp

5. Double-click on the file index.htm.

The online help now appears on the browser.

The Net.Commerce manuals are located in the directory
/QIBM/ProdData/NetCommerce/html/MRI2924/ncbooks. The manuals are in a
PDF format so you need the Adobe Acrobat Reader to view the manuals. You can
download a free version of Adobe Acrobat Reader from the Web at:
http://www.adobe.com

C.1.2 The ExecMacro Command

Net.Commerce provides the ExecMacro command to freely call any Net.Data
macro. However, exercise caution with this command because it allows totally
unprotected access to the macro. Access control, security checks, or specific
business logic are not executed with this command.

In addition, the ExecMarco command does not use the Net.Commerce cache
when displaying the product and category pages. The ExecMacro command is
best used during prototyping because it offers a quick way to implement
functionality that will later be converted to commands or OFs.

C.2 Net.Data and Net.Commerce

Net.Data is used as the main display engine for the Net.Commerce system. As a
result, Net.Data should not be used to implement business logic.

Implementing business logic is best left to commands and OFs, instead of
Net.Data. Although Net.Data supports SQL statements such as INSERT,
UPDATE, and DELETE, we strongly recommend that these statements never be
used in any macro in a Net.Commerce system. Doing so directly contradicts the
© Copyright IBM Corp. 1999 529

general programming model of Net.Commerce. Commands and OFs are the
recommended engine for database inserts or updates. Net.Data is used as a
display tool only.

The Net.Data product that is used with Net.Commerce is the same Net.Data
version used by the rest of the system. Net.Data has been enhanced to support
Net.Commerce. Due to some of the security functions added in Net.Commerce,
some Net.Data functions may not be used when accessed through
Net.Commerce.

C.2.1 Error Handling

SQL functions contain a message block where the results of non-zero SQL return
codes are processed. The most common use for this message block is to process
the SQL code 100, where no rows were returned from the query. However, the
message block should always have a default section where all error codes that
are not explicitly caught are processed. If default error sections in message
blocks are omitted, instead of handling an error intelligently, the macro ignores
the error.

In all situations, all possible error codes that can occur during normal operation
should be dealt with appropriately (for example, setting a default value if one was
not found in the database). In addition, a default section should be used to
process all other errors in an intelligent manner (such as displaying an error and
stopping the execution of the macro).

C.2.2 Performance Considerations

Under high-volume and stressed environments, performance is key. A good way
to improve performance without affecting functionality is to remove all
unnecessary white space. When you write Net.Data macros, every character or
white space in the file is sent to the browser. White space wastes bandwidth.

Also, function calls and other control syntax, such as %if blocks in Net.Data,
produce a new line character in the HTML output. If these elements are in a
%ROW section, and if numerous rows are returned, this can create excessive
white space.

Optimizing those %ROW sections by improving the SQL and removing all
unnecessary white space and function calls dramatically improves performance.
The side effect of this is that the macro becomes less readable.

This code fragment demonstrates a good use of white space:

%REPORT{
%ROW{
@DTW_assign(TAX_RATES, V_mttaxrate6)
@DTW_concat(";",TAX_RATES,TAX_RATES)
@DTW_concat(V_mttaxrate6,TAX_RATES,TAX_RATES)
@DTW_concat(";",TAX_RATES,TAX_RATES)
@DTW_concat(V_mttaxrate4,TAX_RATES,TAX_RATES)
@DTW_concat(";",TAX_RATES,TAX_RATES)
@DTW_concat(V_mttaxrate3,TAX_RATES,TAX_RATES)
@DTW_concat(";",TAX_RATES,TAX_RATES)
@DTW_concat(V_mttaxrate2,TAX_RATES,TAX_RATES)
@DTW_concat(";",TAX_RATES,TAX_RATES)
@DTW_concat(V_mttaxrate1,TAX_RATES,TAX_RATES)
%}
%}
530 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Although this code fragment produces the same output in the browser, several
characters of white space are transmitted where the extra carriage returns are
inserted, which impacts performance:

%REPORT{

%ROW{

@DTW_assign(TAX_RATES, V_mttaxrate6)
@DTW_concat(";",TAX_RATES,TAX_RATES)
@DTW_concat(V_mttaxrate6,TAX_RATES,TAX_RATES)
@DTW_concat(";",TAX_RATES,TAX_RATES)
@DTW_concat(V_mttaxrate4,TAX_RATES,TAX_RATES)
@DTW_concat(";",TAX_RATES,TAX_RATES)
@DTW_concat(V_mttaxrate3,TAX_RATES,TAX_RATES)
@DTW_concat(";",TAX_RATES,TAX_RATES)
@DTW_concat(V_mttaxrate2,TAX_RATES,TAX_RATES)
@DTW_concat(";",TAX_RATES,TAX_RATES)
@DTW_concat(V_mttaxrate1,TAX_RATES,TAX_RATES)

%}
%}
Problems and Solutions 531

532 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Appendix D. Special Notices

This publication is intended to help people plan and implement Net.Commerce
sites on the AS/400 system. The information in this publication is not intended as
the specification of any programming interfaces that are provided by IBM
Net.Commerce for AS/400 or IBM Payment Server V1.2 for AS/400. See the
PUBLICATIONS section of the IBM Programming Announcement for IBM
Net.Commerce for AS/400 or IBM Payment Server V1.2 for AS/400 for more
information about what publications are considered to be product documentation.

References in this publication to IBM products, programs or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM's product, program, or service may be used. Any functionally
equivalent program that does not infringe any of IBM's intellectual property rights
may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY 10594 USA.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact IBM Corporation, Dept.
600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The information contained in this document has not been submitted to any formal
IBM test and is distributed AS IS. The information about non-IBM ("vendor")
products in this manual has been supplied by the vendor and IBM assumes no
responsibility for its accuracy or completeness. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer's ability to evaluate and integrate them into the
customer's operational environment. While each item may have been reviewed
by IBM for accuracy in a specific situation, there is no guarantee that the same or
similar results will be obtained elsewhere. Customers attempting to adapt these
techniques to their own environments do so at their own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of these
Web sites.

Any performance data contained in this document was determined in a controlled
environment, and therefore, the results that may be obtained in other operating
environments may vary significantly. Users of this document should verify the
applicable data for their specific environment.
© Copyright IBM Corp. 1999 533

Reference to PTF numbers that have not been released through the normal
distribution process does not imply general availability. The purpose of including
these reference numbers is to alert IBM customers to specific information relative
to the implementation of the PTF when it becomes available to each customer
according to the normal IBM PTF distribution process.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc. in the United States and/or other countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

PC Direct is a trademark of Ziff Communications Company in the United States
and/or other countries and is used by IBM Corporation under license.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel
Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and/or other countries
licensed exclusively through X/Open Company Limited.

SET and the SET logo are trademarks owned by SET Secure Electronic
Transaction LLC.

Other company, product, and service names may be trademarks or service marks
of others.

GDDM IBM
IBM Consumer Wallet IBM Payment Gateway
IBM Payment Server MQ
Net.Data Netfinity
Operating System/400 OS/2
OS/400 RS/6000
S/390 SP
System/390 ThinkPad
VisualAge World Registry
XT 400
534 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Appendix E. Related Publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

E.1 International Technical Support Organization Publications

For information on ordering these ITSO publications, see “How to Get ITSO
Redbooks” on page 537.

• AS/400 Internet Security: IBM Firewall for AS/400, SG24-2162

• Secure Electronic Transactions: Credit Card Payment on the Web in Theory
and Practice, SG24-4978

• DB2/400 Advanced Database Functions, SG24-4249

• Lotus Domino for AS/400 - Installation, Customization, and Administration,
SG24-5181

• IBM Firewall for AS/400 V4R3: VPN and NAT Support, SG24-5376

• Building e-Commerce Solutions with Net.Commerce: A Project Guidebook,
SG24-5417

E.2 Redbooks on CD-ROMs

Redbooks are also available on the following CD-ROMs. Click the CD-ROMs
button at http://www.redbooks.ibm.com/ for information about all the CD-ROMs
offered, updates and formats.

E.3 Other Publications

These publications are also relevant as further information sources:

• Basic System Operation, Administration, and Problem Handling Version 4,
SC41-5206

• Work Management Version 4, SC41-5306

• Tips and Tools for Securing Your AS/400 Version 4, SC41-5300

• Communications Management Version 4, SC41-5406

• TCP/IP Configuration and Reference, SC41-5420

• Getting Started with IBM Firewall for AS/400, SC41-5424

CD-ROM Title Collection Kit
Number

System/390 Redbooks Collection SK2T-2177
Networking and Systems Management Redbooks Collection SK2T-6022
Transaction Processing and Data Management Redbooks Collection SK2T-8038
Lotus Redbooks Collection SK2T-8039
Tivoli Redbooks Collection SK2T-8044
AS/400 Redbooks Collection SK2T-2849
Netfinity Hardware and Software Redbooks Collection SK2T-8046
RS/6000 Redbooks Collection (BkMgr Format) SK2T-8040
RS/6000 Redbooks Collection (PDF Format) SK2T-8043
Application Development Redbooks Collection SK2T-8037
© Copyright IBM Corp. 1999 535

• DB2 for AS/400 SQL Programming Version 4, SC41-5611

• TCP/IP tutorial Technical Overview, GG24-3376

• Net.Commerce for AS/400 Installing and Getting Started Guide, GC09-2864

• IBM HTTP Server for AS/400 Webmaster’s Guide, GC41-5434

• Installing and Managing Domino for AS/400, Part No. 12999

• Extending the Domino System, Part No. 12953s

• Leland, David. September 1998. RPG Utility puts QtmmSEndMail API to
Work. NEWS/400 Magazine (http://www.news400.com/code/newscode/).

E.4 Other Resources

These Web sites offer relevant information sources. Here, you will find such
documents as Commands, Tasks, Overridable Functions, and the E-commerce
Framework:

• The Net.Commerce Web site at:
http://www.software.ibm.com/commerce/net.commerce/

Select the product, version, platform, language, and resource type. In addition
to looking at the AS/400 information, look at the information and utilities
provided for other platforms such as AIX or NT. You will find that, in some
cases, these can be used with your AS/400 system.

• The Web site http://www.as400.ibm.com/misc/map.htm contains links to various
AS/400 products and their PTFs

• The Web site http://www.as400.ibm.com/http contains a link to a list of PTFs
available for the IBM HTTP Server for AS/400 and IBM WebSphere
Application Server 1.1

The Net.Commerce documents directory of your AS/400 system is another place
that you may find useful information.

This directory is available on your AS/400 system after you install the
Net.Commerce product. The directory path is:
/QIBM/ProdData/NetCommerce/html/MRI2924/ncbooks

Refer to C.1.1, “Net.Commerce Online Documentation” on page 529, for details
about accessing the documentation.
536 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

How to Get ITSO Redbooks

This section explains how both customers and IBM employees can find out about ITSO redbooks, redpieces, and
CD-ROMs. A form for ordering books and CD-ROMs by fax or e-mail is also provided.

• Redbooks Web Site http://www.redbooks.ibm.com/

Search for, view, download, or order hardcopy/CD-ROM redbooks from the redbooks Web site. Also read
redpieces and download additional materials (code samples or diskette/CD-ROM images) from this redbooks
site.

Redpieces are redbooks in progress; not all redbooks become redpieces and sometimes just a few chapters will
be published this way. The intent is to get the information out much quicker than the formal publishing process
allows.

• E-mail Orders

Send orders by e-mail including information from the redbooks fax order form to:

• Telephone Orders

• Fax Orders

This information was current at the time of publication, but is continually subject to change. The latest information
may be found at the redbooks Web site.

In United States
Outside North America

e-mail address
usib6fpl@ibmmail.com
Contact information is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl/

United States (toll free)
Canada (toll free)
Outside North America

1-800-879-2755
1-800-IBM-4YOU
Country coordinator phone number is in the “How to Order” section at
this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl/

United States (toll free)
Canada
Outside North America

1-800-445-9269
1-403-267-4455
Fax phone number is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl/

IBM employees may register for information on workshops, residencies, and redbooks by accessing the IBM
Intranet Web site at http://w3.itso.ibm.com/ and clicking the ITSO Mailing List button. Look in the Materials
repository for workshops, presentations, papers, and Web pages developed and written by the ITSO technical
professionals; click the Additional Materials button. Employees may access MyNews at http://w3.ibm.com/ for
redbook, residency, and workshop announcements.

IBM Intranet for Employees
© Copyright IBM Corp. 1999 537

IBM Redbook Fax Order Form
Please send me the following:

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

Title Order Number Quantity

First name Last name

Company

Address

City Postal code

Telephone number Telefax number VAT number

Invoice to customer number

Country

Credit card number

Credit card expiration date SignatureCard issued to
538 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Index

Symbols
#CATEGORY command 322
#CATESGP command 322
#CGPRREL command 322
#COLUMNDELIMITER command 322
#PRODATR command 322
#PRODDSTATR command 322
#PRODPRCS command 322
#PRODSGP command 322
#PRODUCT command 322
#ROWDELIMITER command 322
#STORE command 322

Numerics
20BoG HTML 479
5769-AC1 18
5769-DG1 18
5769-SS1 18
6th Avenue 186

A
accepted the order macro (alternative 1) 491
accepted the order macro (alternative 2) 498
access control 14
Access Control form 190
Access Groups form 190
accessing a collection of tables 320
accountability 14, 120, 264
acquirer configuration 353
Add Link (ADDLNK) command 113
Add SOCKS Destination window 161, 162
ADDBNDDIRE command 423
adding default route 168
additional configuration information 165
ADDLNK (Add Link) command 113
addref 55
administration tasks 461
advertising 23
application integration 88
AS/400 hardware sizing 9
AS/400 implementing DCM 122
AS/400 Net.Commerce

hardware requirements 9
installation requirements 9
software requirements 10

AS/400 Web Server configuration file 519
assigning product images 212
assigning templates 206

categories 206
products 207

assigning the overridable function 434
attr 55
attribute 34
authentication 14, 119
authenticity 119, 264
Auto Auth and Auto Capture 100
© Copyright IBM Corp. 1999
Auto Auth and Manual Capture 100

B
back-end business system, interfacing 383
back-end system

integration with 87
on a different server 441

back-end system connection 169
back-end systems (PO) 100
back-end table definition 472
Banner1 HTML 475
Banner2 HTML 478
basic configuration 152
basic model 413
Basics 186
BEPRODT program 393
binding directory 444
BindSpecific HTTP directive 18
brand 96
browser 6, 7
browser requirements 10
building base pages for Product Advisor 300
building the command 446
business data, importing into Net.Commerce 319
business objectives 45
Business to Business 187
business-to-business 22
business-to-consumer 22

C
C++ classes 418
C++ programming 417
CA (certificate authority) 17
cache mechanism 392
caching facilities 40
caching mechanism 393
calling a task 450
canceled orders 29
capture 366
Capture Completed state 367
Capture Ready state 366, 367
Capture Requested state 366
Cardholder Wallet 91
Cardholder Wallet component 343
Catalog Builder 276, 280
catalog HTML 476
catalog tree macro 480
categorization 31
category 32
category database table (CATEGORY) 33
category macro 482
category reference number (CGRFNBR) 394
category relationships database table (CGRYREL) 34
category structure 33
CATEGORY table 321
category tree, customizing 222
539

category tree, Net.Data macro to view 243
category/product relationships table (CGPRREL) 35
CATESGP table 321
CCSID 85
Certificate Authority 91
certificate authority (CA) 17, 119, 121
Certificate Authority component 343
certificate store 129
CGPRREL table 321
CGRFNBR (category reference number) 394
CGRYREL table 321
changes to Net.Data macro for product display 253
check inventory, disabling 268
Check Order Status page, navigation flow 79
Checkbox 283
clear Net.Commerce cache 467
clearing log files 460
client/server 5
CLRCACH 467
CLRCACH command 395
CMDINC HTML 479
coding guidelines 449
coding overridable function 420
coding patterns 449
command

CLRCACH 395
SQLUTIL (SQL Utility) 108
testing 449

command processing program for LOADPRD 333
Command Security form 190
Command Security function 264
command-oriented programming 417
comment 55
company HTML 477
competitor 23
compiling OF with debug information 437
compiling overridable function 434
confidentiality 14, 119, 264
configuration file for AS/400 Web Server 519
configure a digital certificate environment 122
configure default route 164
configure filter rules 16
configure MAP setting 16
configuring a digital certificate environment 122
configuring firewall 150
configuring Net.Commerce 173
configuring Web server 132, 135
connection planning 17
contact HTML 477
content administration 453
Copy to Import File (CPYTOIMPF) command 328
CPYFRMSAVF (Copy From Save File) 111
CPYTOIMPF (Copy to Import File) command 328
CPYTOSAVF (Copy To Save File) 111
Create Binding C++ (CRTBNDCPP) command 422
Create C++ Module (CRTCPPMOD) command 422
creating a working directory 443
creating binding directory 444
creating new Net.Commerce instances 173
Credit Completed state 367

credit reversal 372
CRTBNDCPP (Create Binding C++) command 422
CRTBNDDIR command 423
CRTBNDRPG command 341
CRTCPPMOD (Create C++ Module) command 422
CRTCPPMOD command parameters 426
CRTCPPMOD screen 437
currency 22
Currency Mapping form 190
current order macro 489
custom daemons 89
customer security 28
customer service 29
customizing system error pages 272
customizing the Product Comparison page 307
customizing the Product Exploration page 302
customizing the Sales Assistant page 312

D
data integration 87
data mapping 87
data transfer 30
database activity synchronization 339
database classes 418
Database Cleanup utility 456
database programs 402
database server problem determination 182
database tables 38, 402
DB2WWW.INI file 522
DCM (Digital Certificate Manager 122
DCM (Digital Certificate Manager) 119
DEBUG message 453
debugging the overridable function 437
default file system CCSID 85
default net CCSID 85
defining a discount 26
Delete LIC Program (DLTLICPGM) command 343
deleting Net.Commerce instances 181
deleting Net.Commerce LPP 182
demomall 185
design output 45
design phase 21
digital certificate 17, 119, 121

configuring an environment 122
Digital Certificate Manager (DCM) 17, 119, 121, 122,
126, 129, 139, 140
digital signature 119
direct network, defining 161
disabling check inventory 268
DISCCALC database table 38
DISCCODE database table 38
disclaimers 29
discount considerations 26
discounts 25
Display Current Order page, navigation flow 70
Display Product page, new Net.Data macro 255
display tasks 416
Distributed Relational Database Architecture (DRDA) 15
DLTLICPGM (Delete LIC Program) command 343
DNSLookup directive 525
540 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

Domino server 19
DRDA (Distributed Relational Database Architecture) 15
DSPSTMF (Display Stream File) 111

E
East West Food Mart 185
e-business 3

performance 30
security 29
tools 31

EDI (electronic data interchange) 30
Edit Files (EDTF) command 112
EDTF (Edit File) 111
EDTF (Edit Files) command 112
EDTF command parameters 112
electronic data interchange (EDI) 30
encrypted text 463
encryption 119
err_adrbk_up.d2w error macro address update 512
err_stdata.d2w error macro bad quantity 517
err_stdata.d2w macro 259, 260
error handling 530
error macro address update 512
error macro bad quantity 517
ERROR message 453
error tasks 416
errors 327
Euro mall 185
eWallet 372
exception conditions handling mechanism 258
exception task, assigning a Net.Data macro 261
ExecMacro command 529
existing methodologies 30
explicit batch processing 371
EXTORDER program 387
EXTORDERR 388
EXTORDERR program 391
extranet 3

F
f1 56
f2 56
feature name 280
field size 280
File Transfer Protocol (FTP) 15
filter rules

adding for SET 159
for requesting a certificate 159
for SET communication 163

FINDBNDSP (Find Bound Service Program) 111
FINDMODS (Find Modules) 111
firewall 150

basic configuration 152
configuration 165
installation 152
planning 16

FTP (File Transfer Protocol) 15

G
general I/T security policy statement 149
generating Net.Commerce reports 403
geographic considerations 22
GET_ORD_PROD_SH_TOT 39
GET_ORD_PROD_TAX_TOT 39
GET_ORD_PROD_TOT 39
GET_SUB_ORD_PROD_SH_TOT 39
GET_SUB_ORD_PROD_TAX_TOT 39
GET_SUB_ORD_PROD_TOT 39
GetBaseSpePrc_1.0(IBM,NC) 419
GetPrice OF source code 429
GETPRICER program 433
Globeset 356

H
handshaking 264
help HTML 477
home HTML 476
home page, navigation flow 64
host_name 55
HTML

20BOG 479
Banner1 475
Banner2 478
catalog 476
CMDINC 479
company 477
contact 477
help 477
home 476
index 475
news 476
promotions 478
search 478
source file sample 475

HTML pages, customizing 229
HTTP 123
HTTP (Hyper-text Transfer Protocol Application) 6
HTTP server 19
HTTP server over SSL (HTTPS) 120
HTTP server trace output file 237
HTTP Web server cache 234
HttpRequest class 418
HttpResponse class 418
HTTPS (HTTP server over SSL) 120
Hyper-text Transfer Protocol Application (HTTP) 6

I
IBM Client Access ODBC driver 404, 528
IBM Consumer Wallet 375
IBM Personal Computers 222
IBM Servers 222
IBM ThinkPads 222
images 37
implementing a firewall 16
implementing a NAT environment 151
implicit batch processing 371
IMPNETCDAT (Import Net.Commerce Data) command
541

324
IMPNETCDAT command parameters 325
import file creation 321
Import Net.Commerce Data (IMPNETCDAT) command
324
importing data 330

writing your own program 320
include 280
include file for ShopITSO 519
incorrect deliveries 29
index HTML 475
infrastructure 9
INI file 521

DB2WWW.INI 522
INSTANCE.INI 523
NCOMMERCE.INI 521
PAY_BACK.INI 523
PAY_ETILL.INI 523
SRVCTRL.INI 522

installing firewall 150
installing Net.Commerce 171
INSTANCE.INI 523
integrating

applications 88
data 87
planning with back-end systems 87

integration issues with site design 383
integration with Net.Commerce cache 395
integrity 14, 119, 264
Internet 3, 6

security 12
Internet CA 139
Internet Service Provider (ISP) 17
Internet services policy 149
intranet 3
intranet certificate authority 123
inventory 27
ISP (Internet Service Provider) 17
ISP router configuration 16
item 32, 34
iterators 450

L
language 22
language considerations 85
language feature 85
language ID 85
late deliveries 29
LDAP 142
leaf 31
Load Product Data (LOADPRD) command 331
LOADALL CL program 331
loading data considerations 319
loading data into a Net.Commerce database 320
loading data into Net.Commerce 320
loading tables 526
LOADPRD (Load Product Data) command 331
LOADPRD command parameters 332
LOADPRD command processing program 333
LOADPRD utility 330

LOADPRDR ILE RPG program 331
locale 85
log files

clearing 460
viewing 454

logical database errors 327
Lotus Approach 407

M
main memory 526
mall 23

building 185
East West Food Mart 185
Euro 185
Metropolitan (demomall) 185

Mall Information form 190
managing payment transactions 366
Manual Auth and Manual Capture 101
Manual Auth with Auto Capture 101
mass import 89

checking the results 326
improving performance 329
using 324

mass import utility 319
Max Active Value 525
memory pool 525
merchant certificate 356
Merchant Originated Payment 96
Merchant Server 91
Merchant Server component 343
Metaphor Builder 276
Metaphor Viewers 276
Metropolitan mall 185
MODEXPORTS (List Module Exports) 111
Multi list 283
multimedia files 37
multiple store 185

N
NAT

changing the rules 155
starting 159

NAT (Network Address Translation) 15, 150
National Institute for Standards and Technology (NIST) 14
navigation bar in frames 62
navigation flow 45, 62

mapping to Net.Commerce commands 47, 54
ShopITSO 61

NC_Environment class 418
ncommerce 453
NCOMMERCE.INI file 521
Net.Commerce 3, 529

basic model 413
C++ classes 418
cache mechanism 392, 393
clearing the cache 467
columns 406
command 48

assigning SSL protocol 264
542 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

non-user interface (non-UI) 50
OrderItemUpdate 54
PROCESS 50
ShopITSO 62
user-interface (UI) 50
using 52
VIEW 50

configuring 173
creating new instances 173
data loading options 320
Database Cleanup utility 456
deleting instances 181
deleting licensed program product 182
ExecMacro command 529
importing business data 319
installation 171
integrating Seagate Crystal Report 6 403
jobs on the AS/400 system 461
loading tables to main memory 526
loading the database 319
mapping navigation flow 47, 54
online documentation 529
pre-installation procedures 171
reports 403
sample stores 185
server behind the firewall 15
server logs 453
starting service jobs 438
synchronizing database and back-end data 88
tables 406
tips 529
tools to build the site 11
writing commands 443

Net.Commerce commands 62
Net.Commerce discounts 38
Net.Data 529

accepted the order macro (alternative 1) 491
accepted the order macro (alternative 2) 498
category macro 482
current order macro 489
error macro address update 512
error macro bad quantity 517
order confirmation macro 504
order status macro 508
product macro PROD1.D2W 484
product macro PROD2.D2W 487
sample macros 480
search macro 511

Net.Data Assist tool 107
Net.Data catalog tree macro 480
Net.Data macro 36

assigning to exception task 261
finding or assigning 244
modifying 241
original for product display 247
to show category tree 243

Net.Data Macro for Display Product page 255
Net.Data SQL Assist tool 103
Network Address Translation (NAT) 15, 150
Network Address Translation Settings page 156

network configuration 150
network connection, defining using SOCKS 161
network planning 12
network security 12
network security objectives 14
network server description 165
network, setting up 149
news HTML 476
Next Generation 186
nonrepudiation 14
non-user-interface commands 50

O
ODBC driver configuration 404
OF (overridable functions) 413
OF manager 414
OF skeleton code 425
One Stop Shop 187
one-level categories 222
one-level deep (flat) category tree 222
online documentation 529
online shop, navigation flow 65
Operations Navigator 109

entering SQL statements 107
Order Accepted page, navigation flow 73
order confirmation macro 504
Order Confirmation page 78
order fulfillment, requesting capture upon 371, 398
order notification 28
Order Now page, navigation flow 82
order processing 27
order status 28
order status macro 508
ORDERC program 471
OrderDisplay command 419, 420
OrderItemProcess command 413
OrderItemUpdate Net.Commerce command 54
OrderProcess command 415
orders integration 383
ORDERS table 407
ORMENBR column 407
ORPRTOT column 407
ORPSTMP column 407
ORSTAT column 407
ORTXTOT column 407
OS/400 at V4R1 15
OS/400 TCP/IP configuration 168
out-of-stock policies 29
overridable function 416, 443

assigning 434
coding 420, 427
compiling 434
compiling with debug information 437
debugging 437
identifying the need for new ones 419
registering 465
registering in the database 434
skeleton code 424
testing 437

overridable functions (OF) 413
543

P
parameter values 55
PAY_BACK.INI 523
PAY_ETILL.INI 523
payment collection, planning 91
payment flow 93
Payment Gateway 91
Payment Gateway component 343
payment methods, setting up 343
payment processing 26, 366
Payment Server 92

acquirer configuration 353
basic configuration 347
creating 344
ending 364
functions 367
installing 343
payment processing 366
payment system configuration 350
planning tables 97
SET protocol configuration 348
starting 362
starting and ending 362
transaction 93

payment system configuration 350
payment transaction 366

requesting authorization 368
requesting authorization reversal 368
requesting capture 369
requesting capture reversal 371
requesting credit 371, 372
searching in the database 367

performance 525
performance considerations 530
Personal Delivery 187
personalization 24
planning

caching facilities 40
general considerations 21
infrastructure 9
integration with back-end systems 87
language considerations 85
payment collection 91
product catalog 31
site design considerations 21
skills required for your project 115
tools to build the site 103

planning category 36
PPPRC field 280
preferred shopper groups 24
preparing source file 444
pricing 25
pricing integration 383
PRNBR field 280
PROCESS commands 50
process routine 424
PRODATR table 321
PRODDSTATR table 321
PRODPRCS table 321
prodref 55

PRODSGP table 321
product 34
Product Advisor 275, 277

building base pages 300
Catalog Builder 276
creation tools 276
implementing metaphors 277
loading the applet 277
using Template Designer to customize pages 299

Product Advisor page
publishing 316

product attribute (PRODATR) 35
product catalog 31

creating for ShopITSO 203
product comparison 277
Product Comparison Builder 287
Product Comparison page, customizing 307
product descriptions 35
product display

changes to Net.Data macro 253
original Net.Data macro 247

product distinct attribute (PRODDSTATR) 35
product exploration 276
Product Exploration Builder 283
Product Exploration page

customizing 302
Product Explorer page, navigation flow 68
product information synchronization 393
product line 26
product long description fields 214
product macro PROD1.D2W 484
product macro PROD2.D2W 487
Product page, navigation flow 68
product prices per shopper group (PRODPRCS) 35
product reference number (PRRFNBR) 394
product structure 34
PRODUCT table 321
product table (PRODUCT) 35
product templates 36
products 23, 25, 32
programming with C++ 417
promotions HTML 478
PRRFNBR (product reference number) 394
PRSDESC field 280
PRTHMB field 280
PRURL field 218, 280
publishing the Product Advisor page 316

Q
q 55
QNEKEYMGR 461
QNETCOMM job priority 526
QNETCOMM server controller job 461
QSYS.LIB objects 113
QTMHHTTP 129

R
RATE database table 38
RCLSPACE (Reclaim Space) 111
544 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

recognized Internet certificate authorities 121
registering overridable functions 465
registering the command in the database 447
registering the overridable function 434
relevant database tables 402
relevant programs 402
Request Authorization 367
Request Authorization Reversal 367
Request Capture 367
Request Capture Reversal 367
Request Credit 367
Request Credit Reversal 367
requesting a server certificate 139
requesting authorization 368
requesting authorization reversal 368
requesting capture 369, 371

order fulfillment 398
requesting capture reversal 371
requesting credit 371
requesting credit reversal 372
required skills 115
restart filter 164
Restore LIC Program (RSTLICPGM) command 343
retrieving encrypted text 463
returned products 29
Review Configuration page 153
root 31
root or top category 32
route configuration 168
routines 453
row class 418
RPG program EXTORDERR 388
RQSCAP command 473
RSTFRMSTMF(Restore From Stream File) 111
RSTLICPGM (Restore LIC Program) command 343

S
sales assistance 276
Sales Assistant Builder 290
Sales Assistant page, customizing 312
sample macros 480
sample Net.Commerce stores 185
sample solution 57
SAVTOSTMF (Save To Stream File) 111
SCALE database table 38
Seagate Crystal Report 6 403
Seagate Crystal Reports 403
search HTML 478
search macro 511
Search Results page, navigation flow 80
Secure Electronic Transaction (SET) 91, 343
Secure Electronic Transactions (SET) 18
Secure Sockets Layer (SSL) 119, 126, 129
Secure Sockets Layer protocol (SSL) 17, 119
security 28, 149

customer 28
e-business 29
Internet 12

security considerations 452
security policy 12

general I/T statement 13
Internet services policy 13

security service 14
selecting rows from the database 450
self-signed certificate 122
server behind the firewall 15
server certificate

creating with intranet CA 126, 129
receiving 142, 146
requesting from Internet CA 139

server integration 18
server logs 453
server placement 150
SET

certificate 356
certificate for IBM Consumer Wallet 375
components 91, 343
involved parties 91
merchant certificate 356
protocol configuration 348
without a wallet 96

SET (Secure Electronic Transaction) 91, 343
Cardholder Wallet 91
Certificate Authority 91
Merchant Server 91
Payment Gateway 91

SET certificate 95
SET logo 92
SET planning 18
SET-compliant eWallet 372
setting up SSL 119
setting up the network 149
shipmoderef 55
shipping 23, 27
Shipping Providers form 190
shipref 55
shop_name.inc 190
ShopITSO 8

building with Store Creator 192
business objectives 57
creating the product catalog 203
design 57
implementing 191
include file 519
navigation flow 61
Net.Commerce commands 62
page description 60

Shopper Information form 190
shoppers 24
shopping metaphor builders 276
shopping metaphors 276

product comparison 277
product exploration 276
sales assistance 276

Single list 283
single store 185
site administration 453
Site and Store Management functions

building the store 190
Site and Store Manager functions 186
545

site design considerations 21, 41
site design example 383
Site Manager forms 190
Site Manager functions 190
skeleton code 424
skill planning 115
SKU (stock keeping unit) 34
SOCKS

defining the domain name server 162
defining the network connection 161
setting up for a certificate request 160

SOCKS server 161
soft link to QSYS.LIB objects 113
source code sample 463
source file preparation 444
SQL class 418
SQL request tuning 525
SQL statements 107
SQLUTIL 107
SQLUTIL (SQL utility) 111
SQLUTIL (SQL Utility) command 108
SQLUTIL parameters 109
SRVCTRL.INI 522
SSL 17, 121

assigning to Net.Commerce commands 264
Configure the Web Server to Use 132, 135
handshaking 264
transfer information 264

SSL (Secure Sockets Layer) 17, 119
start debug 439
Start Debug (STRDBG) command 439
start NAT 159
starting NAT 159
starting Net.Commerce service jobs 438
static pages 234
static variables 452
STATUS message 453
stock keeping unit (SKU) 34
store 23

building 185
store creation choices 186
Store Creator 186

building ShopITSO 192
building the store 187
objects 189

store design considerations 83
Store Manager 190
store models

Business to Business 187
One Stop Shop 187
Personal Delivery 187

store policies 29
canceled orders 29
incorrect deliveries 29
late deliveries 29
out-of-stock products 29
returned products 29

Store Records form 190
stores

6th Avenue 186

Basics 186
Next Generation 186

STRDBG (Start Debug) command 439
stream file handling tools 111
STRNETBE command 470
STRSRVJOB command 439
subcategory 32
summary checklist 41
synchronization mechanism 392
synchronization tools 89
synchronizing database activity 339
system error pages 272
system export 328
system log 453

routines 453

T
table synchronization 392
Task Management form 190
taskName 450
tasks 416
taxation 23
taxes 25
TCP/IP (Transmission Control Protocol/Internet Protocol)
6
TCP/IP configuration 165, 168
TCP/IP interface 168
technical administration 453
technical errors 327
Template Designer 191, 276, 299
template view 210
testing new command 449
testing the overridable function 437
Thawte 17, 121, 139
tools 103

Net.Data SQL Assist 103
stream file handling 111

tools for building a Net.Commerce site 11
top or root category 32
transaction security 119
transfer information 264
Transmission Control Protocol/Internet Protocol (TCP/IP)
6
trusted root 120
trusted root key 120
tuning SQL requests 525
type 281

U
unit 281
untrusted network 12
updating rows in the database 451
url 56
usage 281
usage tips for Net.Data Assist 107
user traffic log 453, 454
user-defined reports 406
user-interface commands 50
using product long description fields 214
546 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

using product PRURL field 218
USRTRAFFIC database table 454

V
val 55
verification testing 165
verifying acces to Web server and Internet 165
VeriSign 17, 121, 139, 356
VIEW commands 50
view tasks 416

W
wakeup message 97
Web classes 418
Web evolution 5
Web Server

configuration file 519
Web server

configuring to use SSL server authentication 132, 135
jobs on the AS/400 system 462

Work with HTTP Configuration (WRKHTTPCFG) com-
mand 525
Work with Relational Database Directory Entries
(WRKRDBDIRE) command 324
working directory 443
World Wide Web 7
writing commands 443
writing your own program to import data 320
WRKHTTPCFG (Work with HTTP Configuration) com-
mand 525
WRKRDBDIRE (Work with Relational Database Directory
Entries) command 324
547

548 Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium

© Copyright IBM Corp. 1999 549

ITSO Redbook Evaluation

Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New Millennium
SG24-5198-00

Your feedback is very important to help us maintain the quality of ITSO redbooks. Please complete this
questionnaire and return it using one of the following methods:

• Use the online evaluation form found at http://www.redbooks.ibm.com/
• Fax this form to: USA International Access Code + 1 914 432 8264
• Send your comments in an Internet note to redbook@us.ibm.com

Which of the following best describes you?
_ Customer _ Business Partner _ Solution Developer _ IBM employee
_ None of the above

Please rate your overall satisfaction with this book using the scale:
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction __________

Please answer the following questions:

Was this redbook published in time for your needs? Yes___ No___

If no, please explain:

What other redbooks would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

SG24-5198-00

Printed in the U.S.A.

N
et.C

om
m

erce
V

3.2
for

A
S/400:

A
C

ase
Study

for
D

oing
B

usiness
in

the
N

ew
M

illennium
SG

24-5198-00

	Contents
	Figures xi
	Tables xxi
	Preface xxiii
	The Team That Wrote This Redbook xxiii
	Comments Welcome xxv
	Part 1. Planning the Net.Commerce Site 1
	Chapter 1. Introduction to e-business and Net.Commerce 3
	1.1 An Evolution to the Web 5
	1.1.1 Client/Server Detour 5
	1.1.2 Parallel Web Development 6
	1.2 Maturing Technologies 7
	1.3 Ready for Net.Commerce 8
	1.4 Additional Information 8
	1.5 What ShopITSO Is 8
	Chapter 2. Planning: The Infrastructure 9
	2.1 AS/400 Hardware Sizing 9
	2.1.1 AS/400 Net.Commerce Hardware Requirements 9
	2.1.2 Optional AS/400 Net.Commerce Hardware Requirements 9
	2.2 AS/400 Net.Commerce Installation Requirements 9
	2.2.1 AS/400 Net.Commerce Software Requirements 10
	2.2.2 Optional AS/400 Net.Commerce Software Requirements 11
	2.3 Network Planning 12
	2.3.1 Network Security 12
	2.3.2 Security Policy 12
	2.3.3 Network Security Objectives 14
	2.3.4 Operating System 14
	2.3.5 TCP/IP Configuration 14
	2.3.6 Server Placement 15
	2.3.7 Firewall Planning 16
	2.3.8 Connection Planning 17
	2.3.9 Planning for SET 18
	2.4 Server Integration 18
	2.4.1 HTTP Server 19
	2.4.2 Domino Server 19
	Chapter 3. Planning: Site Design Considerations 21
	3.1 General Considerations 21
	3.1.1 Audience and Scope 21
	3.1.2 Shoppers 24
	3.1.3 Products 25
	3.1.4 Payment Processing 26
	3.1.5 Order Processing 27
	3.1.6 Shipping 27
	3.1.7 Notification 28
	3.1.8 Order Status 28
	3.1.9 Security 28
	3.1.10 Disclaimers and Store Policies 29
	3.1.11 Customer Service 29
	3.1.12 Existing Methodologies 30
	3.1.13 Data Transfer 30
	3.1.14 Performance 30
	3.1.15 Tools 31
	3.2 Planning the Product Catalog 31
	3.2.1 Category Structure 33
	3.2.2 Product Structure 34
	3.2.3 Planning Product Descriptions 35
	3.2.4 Planning Category and Product Templates 36
	3.3 Images and Multimedia Files 37
	3.4 Working with Net.Commerce Discounts 38
	3.5 Planning Caching Facilities 40
	3.6 Summary Checklist — Side Design Considerations 41
	3.7 Output from the Design 45
	3.7.1 Business Objectives 45
	3.7.2 Navigation Flow 45
	3.7.3 Functionality Description of Each Screen 46
	3.8 Mapping Your Navigation Flow to the Net.Commerce Commands 47
	3.8.1 Overview of Net.Commerce Commands 48
	3.8.2 Using Net.Commerce Commands 52
	3.8.3 Mapping the Navigation Flow to Net.Commerce Commands 54
	3.9 Design of the ShopITSO Sample Solution 57
	3.9.1 Business Objectives in the ShopITSO Sample Store 57
	3.9.2 Functional Description of Each Page in the ShopITSO Sample Store 60
	3.9.3 Navigation Flow in the ShopITSO Sample Store 61
	3.9.4 Navigation Flow and Net.Commerce Commands in ShopITSO 62
	3.10 Summary Store Design Considerations 83
	Chapter 4. Planning: Language Considerations 85
	Chapter 5. Planning: Integration with the Back-End Systems 87
	5.1 Data Mapping 87
	5.2 Integrating the Data 87
	5.3 Integrating with Applications 88
	5.4 Synchronizing the Net.Commerce Database with Back-End Data 88
	Chapter 6. Planning: Payment Collection 91
	6.1 Secure Electronic Transaction (SET) 91
	6.1.1 Payment Server 92
	6.1.2 A Payment Server Transaction 93
	6.1.3 SET Certificate 95
	6.2 SET without a Wallet 96
	6.2.1 Merchant Originated Payment 96
	6.3 Payment Server Planning Tables 97
	6.4 Back-End Systems (PO) 100
	Chapter 7. Planning: Tools to Build the Site 103
	7.1 Net.Data SQL Assist Tool 103
	7.1.1 General Description 103
	7.1.2 Using the Tool 103
	7.1.3 Usage Tips 107
	7.2 Entering SQL Statements Using Operations Navigator or SQLUTIL 107
	7.2.1 SQLUTIL Command 108
	7.2.2 Operations Navigator 109
	7.3 Stream File Handling Tools 111
	7.4 Adding a Soft Link to QSYS.LIB Objects 113
	Chapter 8. Planning: Skills Required for Your Project 115
	Part 2. Implementing the Net.Commerce Site 117
	Chapter 9. Setting Up SSL Using DCM 119
	9.1 Transaction Security and Secure Sockets Layer 119
	9.2 HTTP Server over SSL (HTTPS) 120
	9.3 Digital Certificates and Certificate Authority 121
	9.4 AS/400 Implementation of Digital Certificate Management 122
	9.4.1 Configuring a Digital Certificate Environment 122
	9.5 Creating a Self-signed Certificate 122
	9.5.1 Creating an Intranet Certificate Authority 123
	9.5.2 Creating a Server Certificate with Your Intranet CA (V4R3) 126
	9.5.3 Creating a System Certificate with Your Intranet CA (V4R4) 129
	9.5.4 Configuring Web Server to Use SSL Server Authentication (V4R3) 132
	9.5.5 Configuring Web Server to Use SSL Server Authentication (V4R4) 135
	9.6 Requesting a Server Certificate from an Internet CA 139
	9.6.1 Requesting a Server Certificate from an Internet CA (V4R3) 140
	9.6.2 Receiving a Server Certificate for This Server (V4R3) 142
	9.6.3 Requesting a System Certificate from an Internet CA (V4R4) 143
	9.6.4 Receiving a System Certificate (V4R4) 146
	Chapter 10. Setting Up the Network 149
	10.1 Security 149
	10.1.1 General I/T Security Policy Statement 149
	10.1.2 Internet Services Policy 149
	10.2 Server Placement 150
	10.2.1 Scenario Objectives 150
	10.3 Firewall 150
	10.3.1 Task Summary 151
	10.3.2 Installing the AS/400 Firewall 152
	10.3.3 Performing Basic Configuration 152
	10.3.4 Changing NAT Rules 155
	10.3.5 Starting NAT 159
	10.3.6 Adding Filter Rules for SET 159
	10.3.7 Filter Rules for Requesting a Certificate 159
	10.3.8 Setting Up SOCKS for a Certificate Request 160
	10.3.9 Filter Rules for SET Communication 163
	10.3.10 Configuring a Default Route to Route Web Server Responses 164
	10.3.11 Restarting the Filters 164
	10.3.12 Verifying Access to the Web Server and Internet 165
	10.3.13 Additional Configuration Information 165
	10.3.14 OS/400 TCP/IP Configuration 168
	10.4 Backend System Connection 169
	Chapter 11. Installing Net.Commerce 171
	11.1 Pre-Installation Procedures 171
	11.2 Installing Net.Commerce 171
	Chapter 12. Configuring Net.Commerce 173
	12.1 Creating New Net.Commerce Instances 173
	12.2 Deleting Net.Commerce Instances 181
	12.3 Deleting Net.Commerce Licensed Program Product 182
	12.4 Database Server Problem Determination Procedure 182
	Chapter 13. Building the Mall and Store 185
	13.1 Net.Commerce Sample Stores 185
	13.2 Store Creation Choices 186
	13.3 Building the Store with Store Creator 187
	13.3.1 Objects Built by Store Creator 189
	13.4 Building the Store with Site and Store Management Functions 190
	13.5 Implementing the ShopITSO Sample Solution 191
	13.6 Building the ShopITSO Sample Store with Store Creator 192
	13.7 Creating the Product Catalog 203
	13.8 Assigning Templates 206
	13.8.1 Assigning Templates to Categories 206
	13.8.2 Assigning Templates to Products 207
	13.8.3 Quick Test for Template Views 210
	13.9 Assigning Product Images to Products 212
	13.10 Using Product Long Description Fields 214
	13.11 Using the Product PRURL Field 218
	13.12 Customizing the Category Tree 222
	13.13 Customizing the HTML Pages 229
	13.14 Using the HTTP Web Server Cache for Static Pages 234
	13.14.1 HTTP Server Trace Output File 237
	13.15 Modifying Net.Data Macros 241
	13.15.1 Net.Data Macro to Show the Category Tree 243
	13.15.2 Finding or Assigning a Net.Data Macro for a Specific Display 244
	13.15.3 Original Net.Data Macro for the Product Display 247
	13.15.4 Changes to Net.Data Macro for the Product Display 253
	13.15.5 Our New Net.Data Macro for Display Product Page 255
	13.16 Exception Handling Conditions by Example 258
	13.16.1 Changes in the err_stdata.d2w Macro 259
	13.16.2 Assigning a Net.Data Macro to an Exception Task 261
	13.17 Assigning SSL Protocol to Net.Commerce Commands 264
	13.18 Disabling Check Inventory 268
	13.19 Customizing System Error Pages 272
	Chapter 14. Enhancing the Store Using Product Advisor 275
	14.1 What a Product Advisor Is 275
	14.1.1 Catalog Builder 276
	14.2 Enhancing Our Sample Store Using Product Advisor 277
	14.3 Implementing Product Advisor Metaphors 277
	14.3.1 Loading the Product Advisor Applet 277
	14.3.2 Using Catalog Builder 280
	14.3.3 Using Product Exploration Builder 283
	14.3.4 Using Product Comparison Builder 287
	14.3.5 Using Sales Assistant Builder 290
	14.4 Using Template Designer to Customize Product Advisor Pages 299
	14.4.1 Building the Base Pages for Product Advisor 300
	14.4.2 Customizing the Product Exploration Page 302
	14.4.3 Customizing the Product Comparison Page 307
	14.4.4 Customizing the Sales Assistant Pages 312
	14.5 Publishing Product Advisor Pages 316
	Chapter 15. Importing Business Data into Net.Commerce 319
	15.1 General Considerations for Loading Data 319
	15.1.1 Loading the Net.Commerce Database 319
	15.2 Options for Loading Data 320
	15.2.1 Writing Your Own Program to Import Data 320
	15.2.2 Mass Import 321
	15.3 Importing Data by Example 330
	15.3.1 Consideration for the Example Solution 330
	15.3.2 The LOADPRD Utility — Description 330
	15.3.3 Ongoing Synchronization of Database Activity 339
	Chapter 16. Setting Up Payment Methods 343
	16.1 Secure Electronic Transaction 343
	16.1.1 Installing Payment Server 343
	16.1.2 Creating a Payment Server 344
	16.1.3 Basic Configuration of the Payment Server 347
	16.1.4 SET Protocol Configuration of the Payment Server 348
	16.1.5 Payment Systems Configuration of the Payment Server 350
	16.1.6 Acquirer Configuration of the Payment Server 353
	16.1.7 SET Certificate 356
	16.1.8 Requesting a SET Merchant Certificate from a CA 356
	16.1.9 Starting and Ending the Payment Server 362
	16.2 Payment Server Payment Processing 366
	16.2.1 Managing Payment Transactions 366
	16.2.2 Types of Payment Server Functions 367
	16.2.3 Searching the Payment Transactions in the Database 367
	16.2.4 Requesting Authorization on a Payment Transaction 368
	16.2.5 Requesting Authorization Reversal on a Payment Transaction 368
	16.2.6 Requesting Capture on a Payment Transaction 369
	16.2.7 Requesting Capture upon Order Fulfillment 371
	16.2.8 Requesting Capture Reversal on a Payment Transaction 371
	16.2.9 Requesting Credit on a Payment Transaction 371
	16.2.10 Requesting Credit Reversal on a Payment Transaction 372
	16.3 Installing a SET Compliant eWallet 372
	16.4 Getting a SET Certificate for the IBM Consumer Wallet 375
	Chapter 17. Interfacing to Our Back-End Business System 383
	17.1 Description of Our Example 383
	17.2 The Pricing and Orders Process 383
	17.3 Table Synchronization and Cache Mechanism 392
	17.3.1 Product Information Synchronization 393
	17.3.2 Integration with Net.Commerce Cache Mechanism 393
	17.4 Requesting Capture upon Order Fulfillment 398
	17.5 Usage Considerations 400
	17.6 Relevant Tables and Programs 402
	Chapter 18. Generating Net.Commerce Reports 403
	18.1 Integrating Seagate Crystal Report 6 with IBM Net.Commerce 403
	18.1.1 ODBC Driver Configuration 404
	18.2 Creating a User-Defined Reports Example 406
	18.2.1 Identifying the Relevant Net.Commerce Tables and Columns 406
	18.2.2 Creating the Example Report Using Lotus Approach 407
	Chapter 19. Implementing Overridable Functions 413
	19.1 The Basic Model 413
	19.2 Tasks and Overridable Functions 416
	19.3 General Issues 417
	19.3.1 Command-Oriented Programming 417
	19.3.2 Programming with C++ 417
	19.3.3 Net.Commerce Classes 418
	19.3.4 Other Resources 418
	19.4 Overridable Function by Example 419
	19.4.1 Identifying the Need for New Overridable Functions 419
	19.4.2 Defining and Designing the New Behavior 419
	19.4.3 Coding the Overridable Function 420
	19.4.4 Coding Your Overridable Function 427
	19.4.5 Compiling the Overridable Function 434
	19.4.6 Registering the Overridable Function in the Database 434
	19.4.7 Assigning the Overridable Function 434
	19.5 Testing and Debugging the Overridable Function 437
	19.5.1 Compiling the Overridable Function with Debug Information 437
	19.5.2 Starting Net.Commerce Service Jobs 438
	19.5.3 Start Debug 439
	19.6 Working with the Back-End System on a Different Server 441
	Chapter 20. Writing Commands 443
	20.1 Creating Your Working Directory 443
	20.2 Creating the Binding Directory 444
	20.3 Preparing the Source File 444
	20.4 Building the Command 446
	20.5 Registering the Command in the Database 447
	20.6 Testing the New Command 449
	20.7 Coding Patterns and Guidelines 449
	20.7.1 Calling a Task 450
	20.7.2 Using Iterators 450
	20.7.3 Selecting Rows from the Database 450
	20.7.4 Updating Rows in the Net.Commerce Database 451
	20.7.5 Static Variables 452
	20.7.6 Security Considerations 452
	Chapter 21. Site Administration 453
	21.1 Net.Commerce Server Logs 453
	21.1.1 System Log 453
	21.1.2 User Traffic Log 454
	21.1.3 Viewing the Log Files 454
	21.2 Database Cleanup Utility 456
	21.3 Clearing Log Files 460
	21.4 General Administration Tasks 461
	21.5 Net.Commerce Jobs on the AS/400 System 461
	21.6 Web Server Jobs on the AS/400 System 462
	Appendix A. Source Code Samples 463
	A.1 Retrieving Encrypted Text 463
	A.2 Registering Overridable Functions 465
	A.3 Clear Net.Commerce Cache 467
	A.4 The STRNETBE Command 470
	A.5 The ORDERC Program 471
	A.6 Back-End Table Definition 472
	A.7 The RQSCAP Command 473
	A.8 HTML Samples 475
	A.8.1 Index HTML 475
	A.8.2 Banner1 HTML 475
	A.8.3 Home HTML 476
	A.8.4 News HTML 476
	A.8.5 Catalog HTML 476
	A.8.6 Company HTML 477
	A.8.7 Help HTML 477
	A.8.8 Contact HTML 477
	A.8.9 Banner2 HTML 478
	A.8.10 Promotions HTML 478
	A.8.11 Search HTML 478
	A.8.12 20BOG HTML 479
	A.8.13 CMDINC HTML 479
	A.9 Net.Data Sample Macros 480
	A.9.1 Macro for Catalog Tree 480
	A.9.2 Category Macro 482
	A.9.3 Product Macro PROD1.D2W 484
	A.9.4 Product Macro PROD2.D2W 487
	A.9.5 Macro for Current Order 489
	A.9.6 Macro for Accepted the Order (Alternative 1) 491
	A.9.7 Macro for Accepted the Order (Alternative 2) 498
	A.9.8 Macro for Order Confirmation 504
	A.9.9 Macro for Order Status 508
	A.9.10 Macro for Search 511
	A.9.11 Error Macro Address Update 512
	A.9.12 Error Macro Bad Quantity 517
	A.10 ShopITSO Include File 519
	A.11 AS/400 Web Server Configuration File 519
	A.12 INI Files 521
	A.12.1 NCOMMERCE.INI 521
	A.12.2 DB2WWW.INI 522
	A.12.3 SRVCTRL.INI 522
	A.12.4 PAY_BACK.INI 523
	A.12.5 PAY_ETILL.INI 523
	A.12.6 INSTANCE.INI 523
	Appendix B. Performance 525
	B.1 Using the DNSLookup Directive 525
	B.2 Tuning SQL Requests 525
	B.3 Increasing the Max Active Value of the Memory Pool 525
	B.4 Adjusting the QNETCOMM Jobs Priority 526
	B.5 Loading Net.Commerce Tables to Main Memory 526
	B.6 Improving the IBM Client Access ODBC Driver Performance 528
	Appendix C. Problems and Solutions 529
	C.1 Net.Commerce 529
	C.1.1 Net.Commerce Online Documentation 529
	C.1.2 The ExecMacro Command 529
	C.2 Net.Data and Net.Commerce 529
	C.2.1 Error Handling 530
	C.2.2 Performance Considerations 530
	Appendix D. Special Notices 533
	Appendix E. Related Publications 535
	E.1 International Technical Support Organization Publications 535
	E.2 Redbooks on CD-ROMs 535
	E.3 Other Publications 535
	E.4 Other Resources 536
	How to Get ITSO Redbooks 537
	IBM Redbook Fax Order Form 538
	Index 539
	ITSO Redbook Evaluation 549
	Figures
	Tables
	Preface
	The Team That Wrote This Redbook
	Comments Welcome

	Part 1. Planning the Net.Commerce Site
	Chapter 1. Introduction to e-business and Net.Commerce
	1.1 An Evolution to the Web
	1.1.1 Client/Server Detour
	1.1.2 Parallel Web Development

	1.2 Maturing Technologies
	1.3 Ready for Net.Commerce
	1.4 Additional Information
	1.5 What ShopITSO Is

	Chapter 2. Planning: The Infrastructure
	2.1 AS/400 Hardware Sizing
	2.1.1 AS/400 Net.Commerce Hardware Requirements
	2.1.2 Optional AS/400 Net.Commerce Hardware Requirements

	2.2 AS/400 Net.Commerce Installation Requirements
	2.2.1 AS/400 Net.Commerce Software Requirements
	2.2.2 Optional AS/400 Net.Commerce Software Requirements

	2.3 Network Planning
	2.3.1 Network Security
	2.3.2 Security Policy
	2.3.3 Network Security Objectives
	2.3.4 Operating System
	2.3.5 TCP/IP Configuration
	2.3.6 Server Placement
	2.3.7 Firewall Planning
	2.3.8 Connection Planning
	2.3.9 Planning for SET

	2.4 Server Integration
	2.4.1 HTTP Server
	2.4.2 Domino Server

	Chapter 3. Planning: Site Design Considerations
	3.1 General Considerations
	3.1.1 Audience and Scope
	3.1.2 Shoppers
	3.1.3 Products
	3.1.4 Payment Processing
	3.1.5 Order Processing
	3.1.6 Shipping
	3.1.7 Notification
	3.1.8 Order Status
	3.1.9 Security
	3.1.10 Disclaimers and Store Policies
	3.1.11 Customer Service
	3.1.12 Existing Methodologies
	3.1.13 Data Transfer
	3.1.14 Performance
	3.1.15 Tools

	3.2 Planning the Product Catalog
	3.2.1 Category Structure
	3.2.2 Product Structure
	3.2.3 Planning Product Descriptions
	3.2.4 Planning Category and Product Templates

	3.3 Images and Multimedia Files
	3.4 Working with Net.Commerce Discounts
	3.5 Planning Caching Facilities
	3.6 Summary Checklist — Side Design Considerations
	3.7 Output from the Design
	3.7.1 Business Objectives
	3.7.2 Navigation Flow
	3.7.3 Functionality Description of Each Screen

	3.8 Mapping Your Navigation Flow to the Net.Commerce Commands
	3.8.1 Overview of Net.Commerce Commands
	3.8.2 Using Net.Commerce Commands
	3.8.3 Mapping the Navigation Flow to Net.Commerce Commands

	3.9 Design of the ShopITSO Sample Solution
	3.9.1 Business Objectives in the ShopITSO Sample Store
	3.9.2 Functional Description of Each Page in the ShopITSO Sample Store
	3.9.3 Navigation Flow in the ShopITSO Sample Store
	3.9.4 Navigation Flow and Net.Commerce Commands in ShopITSO

	3.10 Summary Store Design Considerations

	Chapter 4. Planning: Language Considerations
	Chapter 5. Planning: Integration with the Back-End Systems
	5.1 Data Mapping
	5.2 Integrating the Data
	5.3 Integrating with Applications
	5.4 Synchronizing the Net.Commerce Database with Back-End Data

	Chapter 6. Planning: Payment Collection
	6.1 Secure Electronic Transaction (SET)
	6.1.1 Payment Server
	6.1.2 A Payment Server Transaction
	6.1.3 SET Certificate

	6.2 SET without a Wallet
	6.2.1 Merchant Originated Payment

	6.3 Payment Server Planning Tables
	6.4 Back-End Systems (PO)

	Chapter 7. Planning: Tools to Build the Site
	7.1 Net.Data SQL Assist Tool
	7.1.1 General Description
	7.1.2 Using the Tool
	7.1.3 Usage Tips

	7.2 Entering SQL Statements Using Operations Navigator or SQLUTIL
	7.2.1 SQLUTIL Command
	7.2.2 Operations Navigator

	7.3 Stream File Handling Tools
	7.4 Adding a Soft Link to QSYS.LIB Objects

	Chapter 8. Planning: Skills Required for Your Project
	Part 2. Implementing the Net.Commerce Site
	Chapter 9. Setting Up SSL Using DCM
	9.1 Transaction Security and Secure Sockets Layer
	9.2 HTTP Server over SSL (HTTPS)
	9.3 Digital Certificates and Certificate Authority
	9.4 AS/400 Implementation of Digital Certificate Management
	9.4.1 Configuring a Digital Certificate Environment

	9.5 Creating a Self-signed Certificate
	9.5.1 Creating an Intranet Certificate Authority
	9.5.2 Creating a Server Certificate with Your Intranet CA (V4R3)
	9.5.3 Creating a System Certificate with Your Intranet CA (V4R4)
	9.5.4 Configuring Web Server to Use SSL Server Authentication (V4R3)
	9.5.5 Configuring Web Server to Use SSL Server Authentication (V4R4)

	9.6 Requesting a Server Certificate from an Internet CA
	9.6.1 Requesting a Server Certificate from an Internet CA (V4R3)
	9.6.2 Receiving a Server Certificate for This Server (V4R3)
	9.6.3 Requesting a System Certificate from an Internet CA (V4R4)
	9.6.4 Receiving a System Certificate (V4R4)

	Chapter 10. Setting Up the Network
	10.1 Security
	10.1.1 General I/T Security Policy Statement
	10.1.2 Internet Services Policy

	10.2 Server Placement
	10.2.1 Scenario Objectives

	10.3 Firewall
	10.3.1 Task Summary
	10.3.2 Installing the AS/400 Firewall
	10.3.3 Performing Basic Configuration
	10.3.4 Changing NAT Rules
	10.3.5 Starting NAT
	10.3.6 Adding Filter Rules for SET
	10.3.7 Filter Rules for Requesting a Certificate
	10.3.8 Setting Up SOCKS for a Certificate Request
	10.3.9 Filter Rules for SET Communication
	10.3.10 Configuring a Default Route to Route Web Server Responses
	10.3.11 Restarting the Filters
	10.3.12 Verifying Access to the Web Server and Internet
	10.3.13 Additional Configuration Information
	10.3.14 OS/400 TCP/IP Configuration

	10.4 Backend System Connection

	Chapter 11. Installing Net.Commerce
	11.1 Pre-Installation Procedures
	11.2 Installing Net.Commerce

	Chapter 12. Configuring Net.Commerce
	12.1 Creating New Net.Commerce Instances
	12.2 Deleting Net.Commerce Instances
	12.3 Deleting Net.Commerce Licensed Program Product
	12.4 Database Server Problem Determination Procedure

	Chapter 13. Building the Mall and Store
	13.1 Net.Commerce Sample Stores
	13.2 Store Creation Choices
	13.3 Building the Store with Store Creator
	13.3.1 Objects Built by Store Creator

	13.4 Building the Store with Site and Store Management Functions
	13.5 Implementing the ShopITSO Sample Solution
	13.6 Building the ShopITSO Sample Store with Store Creator
	13.7 Creating the Product Catalog
	13.8 Assigning Templates
	13.8.1 Assigning Templates to Categories
	13.8.2 Assigning Templates to Products
	13.8.3 Quick Test for Template Views

	13.9 Assigning Product Images to Products
	13.10 Using Product Long Description Fields
	13.11 Using the Product PRURL Field
	13.12 Customizing the Category Tree
	13.13 Customizing the HTML Pages
	13.14 Using the HTTP Web Server Cache for Static Pages
	13.14.1 HTTP Server Trace Output File

	13.15 Modifying Net.Data Macros
	13.15.1 Net.Data Macro to Show the Category Tree
	13.15.2 Finding or Assigning a Net.Data Macro for a Specific Display
	13.15.3 Original Net.Data Macro for the Product Display
	13.15.4 Changes to Net.Data Macro for the Product Display
	13.15.5 Our New Net.Data Macro for Display Product Page

	13.16 Exception Handling Conditions by Example
	13.16.1 Changes in the err_stdata.d2w Macro
	13.16.2 Assigning a Net.Data Macro to an Exception Task

	13.17 Assigning SSL Protocol to Net.Commerce Commands
	13.18 Disabling Check Inventory
	13.19 Customizing System Error Pages

	Chapter 14. Enhancing the Store Using Product Advisor
	14.1 What a Product Advisor Is
	14.1.1 Catalog Builder

	14.2 Enhancing Our Sample Store Using Product Advisor
	14.3 Implementing Product Advisor Metaphors
	14.3.1 Loading the Product Advisor Applet
	14.3.2 Using Catalog Builder
	14.3.3 Using Product Exploration Builder
	14.3.4 Using Product Comparison Builder
	14.3.5 Using Sales Assistant Builder

	14.4 Using Template Designer to Customize Product Advisor Pages
	14.4.1 Building the Base Pages for Product Advisor
	14.4.2 Customizing the Product Exploration Page
	14.4.3 Customizing the Product Comparison Page
	14.4.4 Customizing the Sales Assistant Pages

	14.5 Publishing Product Advisor Pages

	Chapter 15. Importing Business Data into Net.Commerce
	15.1 General Considerations for Loading Data
	15.1.1 Loading the Net.Commerce Database

	15.2 Options for Loading Data
	15.2.1 Writing Your Own Program to Import Data
	15.2.2 Mass Import

	15.3 Importing Data by Example
	15.3.1 Consideration for the Example Solution
	15.3.2 The LOADPRD Utility — Description
	15.3.3 Ongoing Synchronization of Database Activity

	Chapter 16. Setting Up Payment Methods
	16.1 Secure Electronic Transaction
	16.1.1 Installing Payment Server
	16.1.2 Creating a Payment Server
	16.1.3 Basic Configuration of the Payment Server
	16.1.4 SET Protocol Configuration of the Payment Server
	16.1.5 Payment Systems Configuration of the Payment Server
	16.1.6 Acquirer Configuration of the Payment Server
	16.1.7 SET Certificate
	16.1.8 Requesting a SET Merchant Certificate from a CA
	16.1.9 Starting and Ending the Payment Server

	16.2 Payment Server Payment Processing
	16.2.1 Managing Payment Transactions
	16.2.2 Types of Payment Server Functions
	16.2.3 Searching the Payment Transactions in the Database
	16.2.4 Requesting Authorization on a Payment Transaction
	16.2.5 Requesting Authorization Reversal on a Payment Transaction
	16.2.6 Requesting Capture on a Payment Transaction
	16.2.7 Requesting Capture upon Order Fulfillment
	16.2.8 Requesting Capture Reversal on a Payment Transaction
	16.2.9 Requesting Credit on a Payment Transaction
	16.2.10 Requesting Credit Reversal on a Payment Transaction

	16.3 Installing a SET Compliant eWallet
	16.4 Getting a SET Certificate for the IBM Consumer Wallet

	Chapter 17. Interfacing to Our Back-End Business System
	17.1 Description of Our Example
	17.2 The Pricing and Orders Process
	17.3 Table Synchronization and Cache Mechanism
	17.3.1 Product Information Synchronization
	17.3.2 Integration with Net.Commerce Cache Mechanism

	17.4 Requesting Capture upon Order Fulfillment
	17.5 Usage Considerations
	17.6 Relevant Tables and Programs

	Chapter 18. Generating Net.Commerce Reports
	18.1 Integrating Seagate Crystal Report 6 with IBM Net.Commerce
	18.1.1 ODBC Driver Configuration

	18.2 Creating a User-Defined Reports Example
	18.2.1 Identifying the Relevant Net.Commerce Tables and Columns
	18.2.2 Creating the Example Report Using Lotus Approach

	Chapter 19. Implementing Overridable Functions
	19.1 The Basic Model
	19.2 Tasks and Overridable Functions
	19.3 General Issues
	19.3.1 Command-Oriented Programming
	19.3.2 Programming with C++
	19.3.3 Net.Commerce Classes
	19.3.4 Other Resources

	19.4 Overridable Function by Example
	19.4.1 Identifying the Need for New Overridable Functions
	19.4.2 Defining and Designing the New Behavior
	19.4.3 Coding the Overridable Function
	19.4.4 Coding Your Overridable Function
	19.4.5 Compiling the Overridable Function
	19.4.6 Registering the Overridable Function in the Database
	19.4.7 Assigning the Overridable Function

	19.5 Testing and Debugging the Overridable Function
	19.5.1 Compiling the Overridable Function with Debug Information
	19.5.2 Starting Net.Commerce Service Jobs
	19.5.3 Start Debug

	19.6 Working with the Back-End System on a Different Server

	Chapter 20. Writing Commands
	20.1 Creating Your Working Directory
	20.2 Creating the Binding Directory
	20.3 Preparing the Source File
	20.4 Building the Command
	20.5 Registering the Command in the Database
	20.6 Testing the New Command
	20.7 Coding Patterns and Guidelines
	20.7.1 Calling a Task
	20.7.2 Using Iterators
	20.7.3 Selecting Rows from the Database
	20.7.4 Updating Rows in the Net.Commerce Database
	20.7.5 Static Variables
	20.7.6 Security Considerations

	Chapter 21. Site Administration
	21.1 Net.Commerce Server Logs
	21.1.1 System Log
	21.1.2 User Traffic Log
	21.1.3 Viewing the Log Files

	21.2 Database Cleanup Utility
	21.3 Clearing Log Files
	21.4 General Administration Tasks
	21.5 Net.Commerce Jobs on the AS/400 System
	21.6 Web Server Jobs on the AS/400 System

	Appendix A. Source Code Samples
	A.1 Retrieving Encrypted Text
	A.2 Registering Overridable Functions
	A.3 Clear Net.Commerce Cache
	A.4 The STRNETBE Command
	A.5 The ORDERC Program
	A.6 Back-End Table Definition
	A.7 The RQSCAP Command
	A.8 HTML Samples
	A.8.1 Index HTML
	A.8.2 Banner1 HTML
	A.8.3 Home HTML
	A.8.4 News HTML
	A.8.5 Catalog HTML
	A.8.6 Company HTML
	A.8.7 Help HTML
	A.8.8 Contact HTML
	A.8.9 Banner2 HTML
	A.8.10 Promotions HTML
	A.8.11 Search HTML
	A.8.12 20BOG HTML
	A.8.13 CMDINC HTML

	A.9 Net.Data Sample Macros
	A.9.1 Macro for Catalog Tree
	A.9.2 Category Macro
	A.9.3 Product Macro PROD1.D2W
	A.9.4 Product Macro PROD2.D2W
	A.9.5 Macro for Current Order
	A.9.6 Macro for Accepted the Order (Alternative 1)
	A.9.7 Macro for Accepted the Order (Alternative 2)
	A.9.8 Macro for Order Confirmation
	A.9.9 Macro for Order Status
	A.9.10 Macro for Search
	A.9.11 Error Macro Address Update
	A.9.12 Error Macro Bad Quantity

	A.10 ShopITSO Include File
	A.11 AS/400 Web Server Configuration File
	A.12 INI Files
	A.12.1 NCOMMERCE.INI
	A.12.2 DB2WWW.INI
	A.12.3 SRVCTRL.INI
	A.12.4 PAY_BACK.INI
	A.12.5 PAY_ETILL.INI
	A.12.6 INSTANCE.INI

	Appendix B. Performance
	B.1 Using the DNSLookup Directive
	B.2 Tuning SQL Requests
	B.3 Increasing the Max Active Value of the Memory Pool
	B.4 Adjusting the QNETCOMM Jobs Priority
	B.5 Loading Net.Commerce Tables to Main Memory
	B.6 Improving the IBM Client Access ODBC Driver Performance

	Appendix C. Problems and Solutions
	C.1 Net.Commerce
	C.1.1 Net.Commerce Online Documentation
	C.1.2 The ExecMacro Command

	C.2 Net.Data and Net.Commerce
	C.2.1 Error Handling
	C.2.2 Performance Considerations

	Appendix D. Special Notices
	Appendix E. Related Publications
	E.1 International Technical Support Organization Publications
	E.2 Redbooks on CD-ROMs
	E.3 Other Publications
	E.4 Other Resources

	How to Get ITSO Redbooks
	IBM Redbook Fax Order Form

	Index
	ITSO Redbook Evaluation

