
ibm.com/redbooks

Building Enterprise
Web Transactions
using VisualAge Generator JavaBeans and JSPs

Pat McCarthy
Jane Glover
Eric Simone

Tom Sanderson
Alvaro Torres

Develop Web Transaction design and
programming skills

Customize generated JSPs and
perform Web-site integration

For IBM WebSphere, Windows NT,
TX Series, and CICS/ESA

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Building Enterprise Web Transactions
using VisualAge Generator JavaBeans and JSPs

May 2000

SG24-5636-00

International Technical Support Organization

© Copyright International Business Machines Corporation 2000. All rights reserved.
Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (May 2000)

This edition applies to VisualAge Generator V4:

• VisualAge Generator Developer for OS/2 and Windows NT Version 4.0, 5697-G98
• VisualAge Generator Server for OS/2, AIX, Windows NT, HP-UX and Sun Solaris Version 4.0, 5639-G97
• VisualAge Generator Templates for OS/2 and Windows NT, 5639-H09

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. OWR Building 80-E2
650 Harry Road
San Jose, California 95120-6099

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

Before using this information and the product it supports, be sure to read the general information in
Appendix B, “Special notices” on page 369.

Take Note!

Contents

Part 1. VisualAge Generator Web Transaction overview. 1

Chapter 1. Introduction to VisualAge Generator Web Transactions 3
1.1 Rapid Web Transaction application development concepts 4

1.1.1 Problem statement . 4
1.1.2 Architectural analysis . 5
1.1.3 Solution. 7

1.2 Web server-based transaction system implementation options 11
1.2.1 Native Java servlet and JSP programming . 12
1.2.2 VisualAge Generator Web Transaction programming 13
1.2.3 Supported runtime configurations . 14
1.2.4 Summary . 16

Chapter 2. Web Transaction system implementation . 17
2.1 Web Transaction development . 18

2.1.1 UI Record definition . 19
2.1.2 UI Record to HTML mapping . 20
2.1.3 HTML forms in a UI Record. 25
2.1.4 Web Transaction definition . 26
2.1.5 Testing . 27

2.2 Generation of Java components and runtime program 29
2.2.1 Java terminology. 30
2.2.2 Programs . 32
2.2.3 UI Records . 33
2.2.4 UI Record interface bean (UIrecord Bean) . 34
2.2.5 Java Server Page produced by VisualAge Generator 35
2.2.6 User edit tables . 35
2.2.7 User message tables . 36

2.3 Runtime system implementation . 36
2.3.1 Basic processing concepts . 37
2.3.2 Gateway Servlet . 44
2.3.3 Session ID Manager (SIDM) . 46
2.3.4 Web Transaction runtime scenario . 47

Chapter 3. HTML and UI Record definition . 55
3.1 An HTML document . 56
3.2 General HTML tags . 56

3.2.1 TITLE . 56
3.2.2 General displayable text . 57

3.3 FORMs. 57
3.3.1 The HTML FORM tag . 57
© Copyright IBM Corp. 2000 iii

3.3.2 UI Record FORM support . 61
3.3.3 Creating FORM fields in a UI Record . 62
3.3.4 Match valid edit tables . 65
3.3.5 Variable lists . 65
3.3.6 UI type FORM . 65

3.4 LINKs . 68
3.4.1 LINKs in UI Record definition . 68

3.5 HTML layout and look-and-feel . 70
3.6 UI Record specific features . 71

3.6.1 Record properties . 71
3.6.2 Special VisualAge Generator UI types . 71
3.6.3 VisualAge Generator features for UI Record data items 72
3.6.4 Data Item Edits . 73

Chapter 4. Java Server Pages and the UI Record interface bean API 75
4.1 JSP syntax . 75

4.1.1 Scriptlets . 75
4.1.2 Expressions . 76
4.1.3 Bean tag . 77
4.1.4 Directives . 79

4.2 The interface bean API . 79
4.2.1 UI Record Bean Interface . 80
4.2.2 VGDataElement Interface . 81

Part 2. Web Transaction design and development . 83

Chapter 5. Web Transaction design concepts and considerations 85
5.1 Concepts . 85

5.1.1 Main Transaction and Web Transaction program comparison 85
5.1.2 Web Transaction state saving options . 87

5.2 Program structure options . 89
5.2.1 Using CONVERSE UI Record (complete state) . 89
5.2.2 Using XFER Program WSRecord, UI Record (controlled state) 91
5.2.3 Using XFER ’ ’ , UI Record (stateless). 93

5.3 Implementing self-managed state support for XFER ’ ’ programs 94
5.3.1 Introduction . 94
5.3.2 Global state . 95
5.3.3 Conversation state . 95
5.3.4 Implementation . 96

5.4 Design considerations . 98
5.4.1 Data transfer . 98
5.4.2 UI Record edits . 100

5.5 System architecture considerations . 103
iv Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Chapter 6. Web Transaction Web site development . 105
6.1 Development process overview . 105
6.2 Roles and skills in the development process . 106
6.3 Function and presentation . 107
6.4 Level 1: the stranded Web Transaction developer . 109
6.5 Level 2: Web Transaction developer and JSP developer 111
6.6 Level 3: Web Transaction developer, JSP developer, HTML designer 112

Chapter 7. Transforming TUIs into Web Transactions 115
7.1 Considerations . 115
7.2 Phase 1 — analysis . 116
7.3 Phase 2 — basic transformation . 116
7.4 Phase 3 — make it more Web-like . 120
7.5 Phase 4 — modify default JSP . 123

Part 3. Web Transaction programming and front end customization 125

Chapter 8. Developing Web Transaction programming skills 127
8.1 Program structure. 127

8.1.1 Loading code base . 128
8.1.2 Converse model programming . 128
8.1.3 Single segment (XFER PGM) programming . 134
8.1.4 Single segment (XFER ’ ’) programming . 142

8.2 Implementing global state management . 150
8.2.1 UI Record-based state management implementation 150
8.2.2 Working storage record-based state management 163
8.2.3 Self-managed state implementation (XFER ’ ’ model) 168

Chapter 9. VisualAge Generator Templates Web Transactions 173
9.1 Preparing the workspace . 173
9.2 Relational table definition using database import . 174
9.3 Business Object definition . 175
9.4 Interface Unit definition. 176
9.5 Generation Option definition and system generation. 177
9.6 Test the generated system . 179
9.7 Customization . 179

Chapter 10. Demonstration system . 181
10.1 Components . 181
10.2 Processing overview. 182
10.3 Transfer processing and data management . 183
10.4 State management . 184
10.5 Input validation . 185
v

10.6 Testing path . 186

Chapter 11. Front-end customization techniques . 195
11.1 Level 1: What’s a Web Transaction developer to do? 195

11.1.1 Correcting the generated default JSP . 195
11.1.2 Easy elements . 197
11.1.3 Implementing help. 198
11.1.4 Protecting FORM fields . 200
11.1.5 Making the default JSP look better . 201

11.2 Level 2: Enter the JSP developer . 205
11.2.1 Advanced JSP customization . 206
11.2.2 WebSphere Studio . 210
11.2.3 Modification Using WebSphere Studio . 216

11.3 Level 3: Integrating Web Transactions into a Web site 226
11.3.1 Explanation of simultaneous development. 226
11.3.2 Web site planning issues. 227
11.3.3 Development steps . 228
11.3.4 Front end Web site development. 228
11.3.5 Bringing the two sides (front and back) together 234

Part 4. Environment configuration and system implementation 245

Chapter 12. Runtime environment scenario implementation 247
12.1 Windows NT Web Transactions . 247

12.1.1 Software requirements . 247
12.1.2 Implementation tasks . 250

12.2 CICS for NT Web Transactions . 250
12.2.1 Software requirements . 250
12.2.2 Implementation tasks . 253

12.3 CICS/ESA Web Transactions . 254
12.3.1 Software requirements . 254
12.3.2 Implementation tasks . 255

Chapter 13. VisualAge Generator Web Transaction runtime setup 257
13.1 Base software . 257

13.1.1 DB2 Client Application Enabler . 257
13.1.2 VisualAge for C++ . 259
13.1.3 VisualAge Generator Server . 259
13.1.4 Setting up FTP support for program preparation 259

13.2 Web Transaction gateway interface configuration (csogw.properties) 263
13.2.1 Control entries . 264
13.2.2 Application entries. 264
13.2.3 serverLinkage entries . 265
vi Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

13.2.4 Protocol specific entries . 266
13.2.5 Overriding serverLinkage entries. 266

13.3 Windows NT Web Transactions . 268
13.3.1 VisualAge Generator control settings . 268
13.3.2 Configure TCP/IP listener support . 269
13.3.3 Communications configuration . 270

13.4 CICS for NT Web Transactions . 270
13.4.1 Base software for CICS system. 270
13.4.2 Region definition . 271
13.4.3 CICS DB2 attachment . 271
13.4.4 Add CICS system listeners . 275
13.4.5 Define CICS user . 277
13.4.6 Add VisualAge Generator runtime and debug transactions 277
13.4.7 VisualAge Generator control settings . 278
13.4.8 Communications configuration . 279

13.5 CICS/ESA Web Transactions . 279
13.5.1 Install the PCOMM software . 280
13.5.2 CICS connection definition . 296
13.5.3 CICS security . 299
13.5.4 Set up VisualAge Generator Host Services . 299
13.5.5 Communications configuration . 299

Chapter 14. WebSphere Application Server setup . 301
14.1 Installed software base . 301
14.2 IBM WebSphere Application Server for Windows NT 302

14.2.1 Install IBM WebSphere Application Server software 302
14.2.2 Startup WebSphere Application Server . 303
14.2.3 Configure a new Application Server . 304
14.2.4 Define VisualAge Generator Gateway Servlet . 312
14.2.5 Customize JSPs (as required) . 317
14.2.6 Deploy JSPs and GIFs . 317
14.2.7 Configure the vgj.properties file. 318
14.2.8 Set up VisualAge Generator session ID manager 318
14.2.9 Start application server . 318

14.3 Adding CICS support . 319
14.3.1 CICS Transaction Gateway . 319
14.3.2 Customization for TX Series (CICS NT) access. 320
14.3.3 Customization for CICS/ESA access . 321
14.3.4 CICSTERM behavior and signon capable terminals 322

14.4 VisualAge for Java WebSphere test environment . 324
14.4.1 Setup . 324
14.4.2 Configure WebSphere Test Environment . 327
14.4.3 Configure GatewayServlet . 328
vii

14.4.4 Add generated components for Web Transaction 331
14.4.5 Test generated Web Transaction in VisualAge for Java 332

Chapter 15. Web Transaction generation . 335
15.1 Windows NT Web Transactions — base system deployment 336

15.1.1 Generation . 336
15.1.2 Configure Gateway Servlet access . 337

15.2 CICS NT Web Transactions — base system deployment 337
15.2.1 Generation . 337
15.2.2 Define your generated Web Transaction(s) to CICS 338
15.2.3 Configure Gateway Servlet access . 339

15.3 CICS/ESA Web Transactions — base system deployment 339
15.3.1 Generation . 339
15.3.2 Define your generated Web Transaction(s) to CICS 339
15.3.3 Configure Gateway Servlet access . 340

Chapter 16. Running Web Transactions . 341
16.1 Deploy generated code . 341

16.1.1 JSPs, JavaBeans, and tables used in a UI Record 341
16.1.2 Web Transaction program materials . 342
16.1.3 Invoking Web Transaction from default entry point JSP. 342

16.2 Runtime processing . 344
16.2.1 System Startup . 344
16.2.2 Gateway Servlet invocation . 345
16.2.3 Gateway Servlet processing . 347
16.2.4 Windows NT Web Transaction processing . 350
16.2.5 CICS Web Transaction processing . 350
16.2.6 Debugging Web Transactions at runtime with CEDF 351

16.3 Security . 352
16.3.1 Logon technique . 352
16.3.2 Transparent login to CICS. 360
16.3.3 Other options . 361
16.3.4 Secure HTTP . 361

Part 5. Appendices . 363

Appendix A. Sample code and other materials . 365
A.1 VisualAge Generator code. 365
A.2 WebSphere Studio. 366
A.3 Database . 367
A.4 Additional materials . 367
viii Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Appendix B. Special notices . 369

Appendix C. Related publications . 373
C.1 IBM Redbooks publications . 373
C.2 IBM Redbooks collections . 373
C.3 Other resources . 373
ix

x Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Figures

1. VisualAge Generator V4 overview . 3
2. Problem: Implementation and communication (tier-1, tier-2, and tier-3). 4
3. Architectural affinity: 3270 and Web systems . 6
4. Web Transaction definition . 8
5. Web Transaction implementation overview . 9
6. Web Transaction support for automated tier-to-tier communication 11
7. Anatomy of a Web system . 12
8. Web Transaction runtime . 14
9. Web Transaction runtime configurations using WebSphere Application Server. . . 15
10. Implementation process for VisualAge Generator V4 Web transactions 17
11. Process life cycle . 18
12. The UI Record. 19
13. UI Record properties. 20
14. UI Record mapping to HTML . 22
15. HTML Forms . 26
16. Web Transaction processing structures . 27
17. Testing a Web-based system . 28
18. Generation of a Web-based system . 30
19. Web-based system development . 36
20. Servlets . 39
21. Java Server Pages . 41
22. The HttpSession object. 42
23. CONVERSE and XFER program Web Transaction structure options 47
24. CONVERSE and XFER program Web Transaction runtime processing 48
25. XFER ’ ’ , UIRecord Web Transaction structure design option 51
26. Main and Web Transaction program CONVERSE model comparison 86
27. Web Transaction processing for each program type . 88
28. CONVERSE (complete state) program design . 90
29. Data lost after program link during CONVERSE. 91
30. XFER Program WSRecord, UI Record (controlled state) program design 92
31. XFER ’ ’ , UI Record (stateless) program design . 93
32. DB2 table definition for self-managed state . 97
33. Web Transaction development process overview . 105
34. Generated default JSP . 107
35. Default JSP after HTML presentation enhancements. 108
36. Level 1 development process diagram . 109
37. Sample UI Record definition . 110
38. Generated default JSP for sample UI Record. 110
39. Level 2 development process diagram . 111
40. Process Diagram for Level 3 Development . 113
© Copyright IBM Corp. 2000 xi

41. Setting submit values before CONVERSE . 118
42. Conversed UI Record . 119
43. Adding program link . 121
44. UI Record with program link . 122
45. CSTCNV Web Transaction program structure . 129
46. Customer Info Web page . 130
47. CUSTUI UI Record definition . 131
48. CSTCNV-MAIN processing logic . 133
49. CSTXP Web Transaction program structure . 134
50. CUSTUI UI Record definition . 136
51. CSTXP-MAIN processing logic . 137
52. CSTXP1 and CSTXP2 Web Transaction programs structure. 138
53. Input Customer Info Web page . 138
54. Output Customer Info Web page . 139
55. CUSTUI1 UI Record definition . 139
56. CUSTUI2 UI Record definition . 140
57. CSTXP1-MAIN processing logic . 141
58. CSTXP2-MAIN processing logic . 141
59. CSTXB1 Web Transaction program structure . 142
60. Customer Info Web page . 143
61. CUSTUI_IO UI Record definition . 144
62. CSTXB1-MAIN processing logic . 145
63. CSTXB2 Web Transaction program structure . 145
64. Input Customer Info Web page . 146
65. Output Customer Info Web page . 146
66. CUSTUI_I UI Record definition . 147
67. CUSTUI_O UI Record definition . 147
68. CUSTUI_IN UI Record definition . 148
69. CSTXB2-MAIN processing logic . 149
70. CSTCNS Web Transaction program structure . 151
71. User Name inquiry Web page. 151
72. Customer Info Web page without the Update button . 152
73. Customer Info Web page with the Update button . 152
74. CUSTUIS UI Record definition . 153
75. CSTIDUS-MAIN processing logic (1) . 154
76. CSTCNS-MAIN processing logic (1). 155
77. CSTXPS Web Transaction program structure . 156
78. CSTIDUS-MAIN processing logic (2) . 156
79. CSTXPS-MAIN processing logic. 158
80. CSTXBS Web Transaction program structure . 159
81. CSTIDUS-MAIN processing logic (3) . 159
82. CUSTUI_IOS UI Record definition . 160
83. CSTXBS-MAIN processing logic. 162
xii Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

84. CSTIDUS-MAIN processing logic (4) . 163
85. CSTCNS2-MAIN processing logic . 165
86. CSTIDUS-MAIN processing logic (5) . 166
87. CSTXPS2-MAIN processing logic. 167
88. CSTIDUS-MAIN processing logic (6) . 169
89. CUSTUI_IOS2 UI Record definition . 170
90. CSTXBS2-MAIN processing logic. 172
91. Program link settings for BANKID. 180
92. Demonstration system: Web Transactions and UI Records 181
93. Demonstration system: transfer control . 182
94. Demonstration system: transfer processing and data management. 183
95. FRST_FRM_UI_RECORD defined form properties . 187
96. CONV_UI_RECORD defined form properties . 188
97. CONV_UI_RECORD program link definition (1). 190
98. CONV_UI_RECORD program link definition (2). 191
99. Enhancing JSP rendering: Before. 196
100.Enhancing JSP rendering: After . 197
101.Implementing help — JavaScript . 199
102.Implementing help — JSP tags . 199
103.Customized JSP with help button and help window. 199
104.Default Customer Info JSP. 201
105.Default code for HTML table . 202
106.Modified code for HTML table . 203
107.JSP with TABLE modifications . 203
108.Highlighting the FORM element to move . 204
109.JSP source after modification. 204
110.Modified JSP rendered in browser . 205
111.TABLE code with rows and cells . 207
112.TABLE display after rows and cells . 207
113.FONT attributes given to FORM element. 209
114.FORM field with modified FONT properties . 210
115.Color information for FORM error message . 210
116.WebSphere Studio, VisualAge for Java, and WebSphere Application Server . . . 211
117.Default publishing stages and servers after WebSphere Studio installation 212
118.Default properties for target server. 213
119.Development with WebSphere Studio, VisualAge for Java, and

WebSphere Application Server. 214
120.Creating the StyleDemo project in WebSphere Studio . 216
121.Publishing targets properties for project. 217
122.Publishing targets properties for VAGenFiles folder . 218
123.Publishing targets properties for VAGenFiles folder . 219
124.Publishing targets properties for VAGenFiles folder . 220
125.Publishing targets properties for VAGenFiles folder . 221
xiii

126.Base rendering of CSTUI.jsp in Navigator (l) and Internet Explorer (r) 222
127.Rendering with default Master.CSS in Navigator (l) and Internet Explorer (r) . . . 223
128.Master.css font modification. 224
129.Rendering with modified fonts in Navigator (l) and Internet Explorer (r) 224
130.Master.css font modification. 225
131.Rendering with modified fonts in Navigator (l) and Internet Explorer (r) 225
132.Editing CUSTUI.jsp in WebSphere Page Designer . 226
133.Opening WebSphere Studio and creating a new project 229
134.Selecting the Corporate1 template. 229
135.Web site from Corporate1 template in WebSphere Studio 230
136.Entry page for Corporate1 template Web site . 231
137.WebSphere Page Designer WYSIWYG view for top.html 231
138.WebSphere Page Designer HTML view for top.html . 232
139.WebSphere Page Designer Frame HTML source view for index.html. 233
140.Enhanced entry page for Corporate1 template Web site 234
141.Source for HTML navigation to Gateway Servlet . 236
142.Runtime view of HTML naviagtion to Gateway Servlet . 236
143.Gateway Servlet as target of HTML navigation . 237
144.Customer Info Web Transaction running in HTML content frame 238
145.Source for HTML navigation to defined Web Transactions 239
146.Direct invocation of Customer Info Web Transaction in content frame 239
147.Response failure when using index.html as Gateway Servlet entry page 240
148.Recursive failure when using index.jsp as Gateway Servlet entry page 241
149.Correcting the recursive loadking for index.jspl as Gateway Servlet entry page . 242
150.Dynamic Gateway Servlet resolution in Vagen1EntryPage.jsp 243
151.Revised index.jsp for dynamic Gateway Servlet resolution 244
152.Revised top.jsp for dynamic Gateway Servlet resolution 244
153.Native NT and UDB scenario . 247
154.Native NT and UDB implementation . 247
155.NT CICS and UDB scenario. 250
156.NT CICS and UDB implementation . 251
157.CICS/ESA and DB2 scenario . 254
158.CICS/ESA and DB2 implementation . 254
159.Attaching DB2 CAE to a database on a remote database server — part 1 257
160.Attaching DB2 CAE to a database on a remote database server — part 2 258
161.Configuring FTP — part 1 . 260
162.Configuring FTP — part 2 . 260
163.Configuring FTP — part 3 . 261
164.Configuring FTP — part 4 . 262
165.Configuring FTP — part 5 . 263
166.Overriding CSOGW.properties file entries . 267
167.TCP/IP catcher program start command . 269
168.CSOGW.properties file entries: Windows NT system . 270
xiv Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

169.Attaching CICS to DB2 — part1 . 273
170.Attaching CICS to DB2 — part2 . 274
171.Adding a listener to CICS. 276
172.CSOGW.properties file entries: CICS NT system . 279
173.Add a node . 280
174.Basic node details . 281
175.Advanced node details . 282
176.DLU requester details. 283
177.Configure devices. 284
178.Defining a LAN device — basic . 285
179.Defining a LAN device — activation . 286
180.Defining a LAN device — performance . 287
181.Configure new connection . 288
182.Defining a LAN connection — basic. 289
183.Defining a LAN connection — advanced . 290
184.Defining a LAN connection — Adjacent Node . 291
185.Configure partner LU 6.2 . 292
186.Defining a Partner LU — basic . 293
187.Defining a partner LU — advanced . 293
188.Configure mode . 294
189.Defining a mode — basic . 295
190.Defining a mode — advanced . 296
191.Starting the link. 297
192.Start the node. 298
193.Initialize the session . 299
194.CSOGW.properties file entries: Windows NT system . 300
195.WebSphere Administration Console . 303
196.Application Server configuration: starting the task . 304
197.Application Server configuration: defining parameters — part 1 305
198.Application Server configuration: defining parameters — part 2 306
199.Application Server configuration: choosing a node . 307
200.Application Server configuration: virtual host . 307
201.Application Server configuration: servlet engine . 308
202.Application Server configuration: defining Web application 308
203.Application Server configuration: Web application properties 309
204.Application Server configuration: system servlets . 310
205.Application Server configuration: defining error page . 311
206.Application Server configuration: defining Gateway Servlet. 312
207.Gateway Servlet properties — part 1 . 313
208.Gateway Servlet properties — part 2 . 313
209.Gateway Servlet properties — part 3 . 314
210.Gateway Servlet properties — using an external parameter file 316
211.Gateway Servlet properties — external parameter file contents 316
xv

212.Starting WebSphere Application Server . 319
213.CICS client settings for Windows NT-based CICS system 321
214.CICS client settings for MVS-based CICS/ESA system. 321
215.Gateway Servlet problems when CICS support is not loaded 326
216.Gateway Servlet problems when CICS support is loaded 327
217.Gateway Servlet definition and initialization . 329
218.Defining JSP 1.0 support . 330
219.JSP execution monitor . 333
220.Generation command: Windows NT system . 337
221.Generation command: CICS NT system . 337
222.Adding a new program to CICS . 338
223.Generation command: CICS/ESA system . 339
224.Gateway Servlet entry page definition . 343
225.Gateway Servlet Logon page . 345
226.Gateway Servlet Entry page. 346
227.Gateway Servlet runtime system processing . 347
228.Windows NT runtime system processing . 350
229.CICS runtime system processing . 351
230.Default Gateway Servlet logon page . 353
231.Default entry page . 354
232.No userid or password . 355
233.Invalid userid or password . 356
234.Default error page . 358
xvi Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Tables

1. Web Transaction state saving options . 87
2. Comparison of Web Transaction program types. 89
3. Data management by UI Type . 100
4. UI Record editing options . 102
5. Web Transaction architecture issues . 103
6. State management in the demonstration system . 184
7. UI Record data item edits in demonstration system . 185
8. CSOGW property file: application definition . 264
9. CSOGW property file: serverLinkage definition . 265
10. Valid locations and serverids for a given commtype . 266
11. Initialization parameters for the Gateway servlet . 315
© Copyright IBM Corp. 2000 xvii

xviii Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Preface

This redbook explains how VisualAge Generator V4 can be used to
implement Web-based transaction systems that access enterprise server
platforms and resources.

This redbook demonstrates the new Web Transaction capabilities provided in
VisualAge Generator V4 for the implementation of a Web-based enterprise
access system. The techniques used in this demonstration system will help
you design, build, and implement the Web Transaction programs required to
support the real-world business processing necessary for such systems.
Software configuration examples, working VisualAge Generator Web
Transaction systems, and advanced design discussions are included.

After reading the redbook you will fully understand how to use VisualAge
Generator to build and implement an IBM WebSphere Application
Server-based system that accesses enterprise transactions and data.

The team that wrote this redbook

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization San Jose Center.

Pat McCarthy is a Consulting Application Development Specialist at the
International Technical Support Organization, San Jose Center. He writes
extensively and teaches IBM classes worldwide on all areas of application
development, with a specific emphasis on VisualAge Generator and related
technologies. Before joining the ITSO in 1990, Pat worked in an IBM internal
information systems organization in Poughkeepsie, New York, as a
programmer, database administrator, and development center leader. Pat
received a B.S. in Business Administration from Indiana University of
Pennsylvania (Indiana, PA) and an M.S. in Computer Science from Marist
College (Poughkeepsie, NY).

Jane Glover is a software consultant in the UK. She works for Bloomsbury
Software, a company that specializes in training and consultancy in the
VisualAge product family and e-business technologies such as WebSphere
and JavaScript. She has 8 years of experience with VisualAge Generator and
its predecessor CSP, much of it with John Lewis, a well known UK retail
company, where she worked in its Technical Support section. She holds an
M.Eng. degree in Chemical Engineering from Christ’s College, Cambridge.
© Copyright IBM Corp. 2000 xix

Eric Simone is the founder and President of Compete Incorporated, a
VisualAge and WebSphere consulting company. Compete Incorporated was
recently purchased by Perficient, where Eric is now the Senior Managing
Director of Emerging Practices. He has 11 years of development, design, and
sales experience in VisualAge Generator. Before founding Compete, Eric
worked for IBM for 5 years as an Application Development Specialist and a
Systems Engineer. Eric received a B.S. in Computer Science from Purdue
University (West Lafayette, IN).

Tom Sanderson is a Consultant with Perficient (previously known as
Compete Incorporated), a VisualAge Generator and VisualAge for Java
consulting company. He is a recent graduate of Cedarville College
(Cedarville, OH), where he received a B.A. in Multimedia Technologies. Tom
specializes in Web site design and development for Web applications.

Alvaro Torres has been working for IBM in Spain as an IT Specialist since
1996. He has concentrated on System Integration and Application
Development projects for Telco & Media customers. He is an AIX Certified
Specialist, and his areas of expertise include AIX, RS/6000, SP/2, and
client/server development.

Thanks to the following people for their invaluable contributions to this
project:

Phil Wakelin
International Technical Support Organization, San Jose Center

Tim Wilson
IBM Raleigh

Kristine Heaton
IBM Raleigh

Rob Swofford
IBM Raleigh

Guy Slade
IBM Raleigh

Stefano Sergi
IBM Raleigh

Denise Hendriks
Perficient (previously known as Compete Incorporated)
xx Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Jennifer Pearcey
IBM South Africa

Teresa Smit
IBM Raleigh

Chris McCarthy
IBM Santa Teresa

Comments welcome

Your comments are important to us!

We want our redbooks to be as helpful as possible. Please send us your
comments about this or other redbooks in one of the following ways:

• Fax the evaluation form found in “IBM Redbooks review” on page 393 to
the fax number shown on the form.

• Use the online evaluation form found at http://www.redbooks.ibm.com/

• Send your comments in an Internet note to redbook@us.ibm.com
xxi

xxii Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Part 1. VisualAge Generator Web Transaction overview
© Copyright IBM Corp. 2000 1

2 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Chapter 1. Introduction to VisualAge Generator Web Transactions

The Web Transaction support provided in VisualAge Generator V4 is
introduced in this chapter. VisualAge Generator V4 introduces both functional
enhancements and new development and runtime platforms (see Figure 1).

Figure 1. VisualAge Generator V4 overview

With VisualAge Generator V4 you get:

• VisualAge for Java Interoperability — a new development platform
• Functions — true reusable coding capability
• Object Scripting — tight integration between 4GL and object logic
• VisualAge Generator Templates Enhancements — a better RAD engine
• SUN Solaris Runtime Support — a new runtime platform
• Development Support for Web Transactions — Web systems made easy
• Enterprise Java Bean Support — integrated support for advanced

Java-based distributed object systems

In this redbook we explore the new Web Transaction development capability
provided in VisualAge Generator V4 (Java or Smalltalk based development).

Additional details on VisualAge Generator V4 are available in the VisualAge
Generator V4 System Development Guide, SG24-5467. Only the new Web
Transaction programming model will be discussed in this redbook.

Library (manager.dat)

Workstation

Image

VisualAge Smalltalk
VisualAge Generator
Developer on Smalltalk

Workstation

Workspace

VisualAge for Java
VisualAge Generator
Developer on Java

Pfm

Cam

BpmRed

SjgQrs

Repository (ivj.dat)

Team Environment:
Workspace
Repository
Projects
Packages

Red

SjgQrs

Cam

BpmQrs

Team Environment:
Image
Manager
Configuration
Maps
Applications

New Java Development
Platform

Java Interoperability
Java Client Generation

Functional Enhancements:
Function Logic Part
Object Scripting
Web-Transaction / UI Record
New VAGen Templates
Generators
SUN Solaris Runtime
Enterprise Java Bean Support
(Java Platform Only)
© Copyright IBM Corp. 2000 3

1.1 Rapid Web Transaction application development concepts

In this section we discuss how the power of the new 4GL-based Web
Transaction programming model and use of VisualAge Generator generation
technology reduces the complexity and skill requirements, and therefore the
price of entry, for Web-based transactional system development.

1.1.1 Problem statement
Basic (native) development for a Web-based transaction system requires a
mix of skills, all of which are hard to master and typically require the
coordinated effort of multiple individuals (see Figure 2).

Figure 2. Problem: Implementation and communication (tier-1, tier-2, and tier-3)

It is widely recognized that Web systems are now evolving towards a 3-tier
architecture, with server-driven content visualized with dynamic Web pages
driven by technologies such as Microsoft ASPs or those used by the rest of
the industry: JSPs and Servlets.

Web Application Servers, such as IBM WebSphere Application Server, are
key to being able to implement such systems, providing the environment that
supports the execution of these special programs and the connectivity to
other enterprise IT assets; however, the development of tier-2 is the real
challenge!

Web systems are evolving to 3-tier server-driven architecture
(Using Servlets and JSPs or ASP techniques)
Web Application Servers (like WebSphere) provide runtime and middleware connectivity
(tier-2 to tier-3) but the developers (tier-1 and tier-3) are still disconnected.

Web Developer
Organize Web site
Design/implement UI and
graphics

Plenty of available skills

Enterprise Developer
Familiar with multi-user systems
requirements

Design/implement business data,
logic, transactions
Plenty of available skills (traditional
programming)

Tier-1: Tier-3:

Java

State
Management

Host
connection

Data
Mapping

Design

Tier-2:

?

4 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

While the tier-1 developer (the Webmaster) now has a widespread skill in a
job that is fairly well understood, and while tier-3 development is easily
accomplished with traditional business application programmers, tier-2
requires dealing with the most difficult issues, such as:

• Designing small modular servlets that are coordinated by a Java server
driver in charge of managing state (data) between user think time screens,
which of course requires Java skills to implement

• Understanding how to map data between Java objects and flat data
structures

• Understanding API for host connectivity

These skills are rarely found in one person, and this may be the real hurdle in
achieving rapid and successful development in a Web-server environment.

1.1.2 Architectural analysis
Figure 3 shows that if we think carefully about the architecture of a mainframe
attached terminal pseudo-conversational system and a servlet-based Web
system, we can see that they are similar:

• The user view sends a request to the runtime domain.

• The runtime domain recovers any stored information that may be required
to continue the conversation.

• Edit and business logic is used to react to the request and formulate a
response.

• Information required to continue the conversation is stored.

• The response is returned to the user view.
Introduction to VisualAge Generator Web Transactions 5

Figure 3. Architectural affinity: 3270 and Web systems

Web systems work very much the same way: instead of a 3270 data stream
being sent to terminals, an HTML data stream is sent to browsers; instead of
CICS or IMS middleware, a Web server software is in charge of running the
program and interacting with the display device; and instead of mainframe
COBOL programs, we have servlets, which essentially must do similar things.

A Web environment differs from traditional 3270 in that:

• The volume of users logging on to the system is hard to predict (in the
case of the Internet).

• HTML features such as ANCHOR tags give us the option of opening
several browser windows at once; so we are not restricted to a modal
environment.

• It is quite likely that the users will not leave the system cleanly; they will
probably not logoff, but will just close down their browsers or go to another
URL.

• It is also likely, in the case of the Internet, that your system may be
invoked from public shared machines.

These issues must be considered during the implementation and operation of
a Web-based transaction system.

Terminal CICS/IMS COBOL pgm

request

execute

Restore state if required
Business Logic

Validation
Access Data
Data formatting
Call other programs

Navigation
Save transient state
Commit/rollback

3270 d.s.

send

Web Server CGI/Servlet

request
execute

HTML d.s.
send page

Browser

Restore state if required
Business Logic

Validation
Access Data
Data formatting
Call other programs

Navigation
Save transient state
Commit/rollback
6 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Pseudo-conversational execution is predicated on the fact that a program
retrieves data, formats it, and sends it to the user; then goes away, saves the
state of the program at that moment, and releases all resources. Once the
user finishes interacting with the screen information, they submit another
request (pressing a keyboard key) and the program gets control again,
restores state, processes input, and so on, eventually interacting with the
user sending out another screen; and the cycle repeats.

VisualAge Generator already has a lot of core technology and competence in
handling code generation and runtime services to support this type of Web
system. Therefore, we have exploited this know-how to implement what we
call the WebSphere RAD facility: a simple innovative way of developing Web
systems.

1.1.3 Solution
A new model of programming has been introduced with VisualAge Generator
V4. This new programming model includes:

• A new main program type — Web Transaction
• A new record type — User Interface Record (UI Record).

These new programming constructs support 4GL-based development of
business systems that use a Web-browser for the user interface and
generated runtime programs for business logic and database processing.

The Web Transaction programming model is related to the model used for
TUI programming in VisualAge Generator. Similar component roles exist, and
the method of interacting with the end user is based on a similar use of either
the 4GL CONVERSE processing option or XFER single segment transfer
technique (see Figure 4).
Introduction to VisualAge Generator Web Transactions 7

Figure 4. Web Transaction definition

This implementation approach for the Web Transaction programming model
is a derivative of the existing VisualAge Generator approach for support of
CICS pseudo-conversational programing.

This approach is based on recognizing that programs that are driven from the
server (such as a CICS conversation or a Web application) have the same
basic request/response form of communication. The inherent programming
problems are very similar (accept input, remember the conversation state,
process request) no matter what the technology.

This means that the CICS pseudo-conversational programming problems
(state management between screens, transaction control, program flow) are
the same as those experienced by Web application programmers.

Using a Web Transaction program, programmers can define a Web system as
a single-threaded program which interacts with users by sending business
data directly to a browser through the use of the UI Record data definition and
either the CONVERSE or XFER language verb.

A traditionally skilled Enterprise Developer can easily master this technique
and define a Web Transaction program that can have as many User
Interactions and as much back-end processing as desired. This is far easier
to conceptualize and design than conceiving separate servlets and a
dispatcher program in charge of figuring out what to invoke next.

VisualAge Generator V4 provides definition, testing, generation, and runtime
support for the new Web Transaction programming model (see Figure 5).

Development Paradigm Mapping: 3270 to Web
Main Transaction Web Transaction

Map

CONVERSE mapname

XFER maintran mapname

UI Record
Map Items

Formatting Validation

CONVERSE UIrecname

XFER webtran UIrecname

UIrec Items
Formatting Validation

maintran with First Map webtran with First UIrec

Single Segment Single Segment
8 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Figure 5. Web Transaction implementation overview

As shown in Figure 5, the support for this new programming model
implemented in VisualAge Generator V4 permits:

Definition

• The definition of UI Records that control the default formatting of data in
the Browser.

Input validation controls and logic are defined as part of the UI Record.

• The implementation of Web Transaction main programs, using 4GL
programming techniques, that interact with end users in a Web browser.

These 4GL-based programs implement user interface, business logic, and
database processing. This processing can be implemented in either a
series of main programs or a set of main and called batch (server)
programs.

Testing

• Testing of these new programs using the existing VisualAge Generator
test facility and a Web browser.

A default view for the UI Record is used in the browser. This
communicates directly with the main program being tested.

Web Transaction

CONVERSed
or

XFERed
UI Record

Definition
Testing

Test Facility

Web Transaction

CONVERSEd
or XFERed
UI Record

Browser

UI Record
Default HTML

Generation and Runtime

Catcher Program

Browser

Gateway
Servlet

Java Beans

Default JSPs

Generated
Web Transaction
Introduction to VisualAge Generator Web Transactions 9

Generation and runtime

• UI Record generation creates JavaBeans and default Java Server Pages
(JSPs).

These materials can be used by Web-based user interface developers
(who use HTML, JavaScript, and so on) to customized the data access
and how the browser display is rendered. The JavaBeans have methods
that allow attribute access and a single action that puts all the inputs
through the edits defined by the programmer.

• The program is generated using the current VisualAge Generator
pseudo-conversational model for runtime execution.

CICS pseudo-conversational problems of state, transaction control,
program flow, and so on, are similar to Web problems.

• Generation technology is matched with runtime components to automate
the complexities of browser input processing and runtime communication.

The Java Gateway Servlet provided by VisualAge Generator uses the
JavaBeans and JSPs and calls the Web Transaction program when
required.

When required (depends on program structure), the implementation of state
management is automated by the generated transaction program and the
Gateway Servlet provided as part of VisualAge Generator runtime support.
The Gateway Servlet drives the system by processing browser requests
using the generated JavaBeans, formatting calls to tier-3 servers, and
rendering the browser display using the associated JSP (default generated by
VisualAge Generator).

The programmer thinks of the sequence of user interactions and back-end
processing as a single logical unit (very much the way Enterprise Developers
are used to developing programs today!). So, using VisualAge Generator
Web Transaction support, all the tier-2 complexity is simplified, and the
Enterprise Developer will program tier-2 without even being aware that he is
doing so! (see Figure 6).
10 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Figure 6. Web Transaction support for automated tier-to-tier communication

The output of the programming effort of the Enterprise Developer is
translated by VisualAge Generator into JavaBeans and JSPs that are very
familiar to the Web Developer, thus achieving an easy way of bridging the two
development skills and realizing optimal separation of concerns: the
Enterprise Developer does not have to be a Web expert, and the Web
Developer need not be concerned with business function, but can focus on
the design of the user interface as well as the appropriate use of the Gateway
Servlet and user interface components supplied by the Enterprise Developer.

Just as with VisualAge Generator’s support for client/server programming, the
difficult task of connecting the client (Web browser) and the server (generated
version of main program) is automated.

1.2 Web server-based transaction system implementation options

There are a variety of techniques available for the implementation of Web
server-based transaction systems. In this section we will review two as a way
of describing how a VisualAge Generator Web Transaction is implemented.

Benefits
Familiar and easy to learn for traditional programmers
Hides tier-2 programming complexity
Shields ED from Web UI design/development
Shields Web Developer from business function concerns

Solution
Provide a simple 4GL single threaded programming model
Generate Java and provide runtime support on tier-2
Automatically connect to tier-3 as needed

Web Developer Enterprise Developer

Tier-1: Tier-3:

VisualAge
Generator

WebSphere RAD

Tier-2:
Introduction to VisualAge Generator Web Transactions 11

1.2.1 Native Java servlet and JSP programming
Typically a Web application programmer must string a series of servlets or
CGI programs together to render the complete Web-based business
application. The servlet will receive and process the HTTP request and send
back an HTTP response.

The Web programmer is also likely to save conversation state for the user on
the Web server during an ongoing transaction with that user over potentially
many servlets (see Figure 7).

Figure 7. Anatomy of a Web system

The processing steps in Figure 7 include:

1. The browser invokes a servlet from an HTML FORM.

2. The servlet reads the data from the FORM INPUT fields using its
HttpServletRequest object. It may create, or instantiate, new Java objects
which hold this user data.

The servlet may also initiate some enterprise access, for example, look up
information on a database. The results of the enterprise access may
cause the instantiation of other objects.

3. The servlet now needs to create a new session object for the user, or else
reference an existing one. There is a single method, getSession() of the
HttpServletRequest to do this.

Web browser Web server

Java Server
Page

Java Server
Page

Java servletJava servlet
Java servlet

Websphere Application Server

Java Server
Page

1.

Session

2.

3.

5.

4.

Java Virtual Machine

Target
Specific
Comms
Gateway

Data/Tx Server

TX Program

DB

Java
Bean
12 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Once we have reference to a session object we can store references to
objects for that user in it (typically the objects we referred to in step 2).

4. The servlet invokes a JSP, passing the HttpServletRequest object.

5. JSP syntax will allow you to effectively run a getSession() against the
request and also to then query the session object to locate user objects,
so they may be displayed to the user in the final HTML stream sent to the
browser.

1.2.2 VisualAge Generator Web Transaction programming
The new model of programming provided with VisualAge Generator V4
supports 4GL-based development of business systems that use a
Web-browser for the user interface and generated runtime programs for
business logic and database processing.

To better understand how this new facility works, let's walk through the
development steps necessary to define and test the system.

First the programmer defines the data structures that represent business
information to be shown to the user on a browser. We call this a UI Record,
and it contains data items, their validation and formatting rules, default labels,
and a type that indicates whether the item represents output data,
input/output data, or user actions.

Then the programmer defines a program (of type Web Transaction) which
contains 4GL logic that fills UI Record items and sends the UI Record to the
browser (CONVERSE). The same program can also contain logic to process
the user actions and take new business logic steps (maybe gathering more
business data, formatting it and sending out another UI Record), and so on.

When the program is ready to test, the VisualAge Generator Test Facility is
able to animate the 4GL source definitions and simulate the program
execution, including formatting data into HTML and invoking a browser to
display it! All this is done in one seamless interactive facility without the need
to install and deploy any Web server infrastructure, or to compile and deploy
servlets or 3rd-tier server programs!

When generated, the VisualAge Generator Web Transaction program can be
implemented in a Web server runtime domain such as IBM WebSphere
Application Server. The actual runtime processing is similar to that used for a
native Java implementation (see Figure 8), but this complexity is hidden from
the development programmer.
Introduction to VisualAge Generator Web Transactions 13

Figure 8. Web Transaction runtime

Runtime involves several tiers:

• A Web browser
• A Web server with servlet support, perhaps using the IBM WebSphere

Application Server platform
• A VisualAge Generator server runtime environment

The Gateway Servlet is included with the VisualAge Generator runtime
environment installed on the Web server. The Web Transaction programs
could be implemented on the Web server or another remote platform.

1.2.3 Supported runtime configurations
Multiple VisualAge Generator Web Transaction program runtime
configurations are supported when using IBM WebSphere Application Server,
CICS, and DB2 (see Figure 9).

WebSphere Application Server

Java Server
Page Session

Java Virtual Machine

TX Program

Database

Logical Specification

VAGen
Gateway
Servlet

Actual Implementation

UI Record

VAGen
Comms
Gateway

Web Tx
Program

Generation

Java
Beans
14 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Figure 9. Web Transaction runtime configurations using WebSphere Application Server

The use of database products other than DB2 is possible. VisualAge
Generator allows the generation of native Oracle access and access to other
database platforms is available using ODBC.

Notes:

• While the IMS/TM transaction platform option is not illustrated in Figure 9,
VisualAge Generator Web Transactions can be run in IMS/TM.

• The use of WebSphere on an MVS platform requires support for JSDK 2.0
and other product changes. This support, and support for converting the
generated JSPs from the 1.0 to .91 syntax level is expected in a later
release of VisualAge Generator.

• The OS/400 platform is not currently supported as a runtime platform for
Web Transactions (expected in a later release of VisualAge Generator).
You could run the Web Transactions on a Windows NT platform and have
them call server programs that run (and access data) on the AS/400.

Chapter 12, “Runtime environment scenario implementation” on page 247
reviews the implementation of selected runtime configurations.

NT VAGen
environment with DB2
CAE (CICS or native)

CICS for OS/390
VAGen environment

DB2 UDB
for AIX

OS/390
Web server & WebSphere &
CICS Transaction Gateway

AIX VAGen
environment

with DB2 CAE
(CICS or native)

Solaris VAGen
environment

with DB2 CAE
(CICS or native)

DB2 UDB
for Solaris

DB2 UDB
for HP/UX

DB2 UDB
for OS/390

native HP/UX with
DB2 CAE

UDB for NT

Windows NT
W eb server & WebSphere

(& CICS Transaction
Gateway if going to CICS)

requires DB2
connect

APPC

SUN Solaris
W eb server & WebSphere

(& CICS Transaction
Gateway if going to CICS)

AIX
W eb server & W ebSphere

(& CICS Transaction
Gateway if going to CICS)
Introduction to VisualAge Generator Web Transactions 15

1.2.4 Summary
VisualAge Generator's approach to solving this problem is to:

• Use a UI Record, which contains data and control information, to
communicate with the Web browser.

• Allow Web Transactions to invoke many of the field edits, such as input
required, which we expect to have in traditional 3270 programs to speed
program development.

• Use a similar model of programming for Web Transactions as has already
been used for pseudo-conversational programs: a CONVERSE or Single
Segment XFER programming model.

Note: There are significant performance and design implications to
consider between these models. Both the models and implications are
discussed in detail in Chapter 5, “Web Transaction design concepts and
considerations” on page 85).

• Support testing of the Web Transaction program using a Web browser, a
simulation of the runtime environment provided by VisualAge Generator,
and the 4GL Test Facility.

• Generate JavaBeans, Java Server Pages (JSPs), a segmented
implementation of the Web Transaction, and other materials to support
implementation in a Web browser and target runtime system.

• Provide new runtime components, in the form of a Gateway Servlet and
catcher program in the target runtime environment, combined with
additional generation technology to link the Web Transaction, at the
CONVERSE/ XFER point, to the Web browser.

• Allow Web Transactions to be implemented on a variety of platforms
(Windows NT, AS/400, AIX, HP-UX, SUN Solaris, VSE, MVS) with support
for both native operation and the use of transaction processing engines
such as CICS and IMS/DC. (MVS support is expected in a fixpak, AS/400
support in a future version of VisualAge Generator).

The default system look-and-feel, as implemented by the generated
JavaBeans and JSPs, can be enhanced by Web client-side specialists using
tools such as IBM WebSphere Studio. This separates user interface design
from the implementation of business logic and database access while
providing a solid foundation for communication and cooperation between the
two development domains or communities.
16 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Chapter 2. Web Transaction system implementation

This chapter steps through the process of Web Transaction definition, testing,
generation, and runtime implementation (see Figure 10).

Figure 10. Implementation process for VisualAge Generator V4 Web transactions

This guided tour through the development and implementation process will
help you understand these key points:

• Mapping of UI Record definitions to the HTML seen in a browser.

• Source level testing support (runtime emulation) as implemented through
interaction between the browser and Web Transaction code running in the
Test Facility.

• Generation processing that transforms the UI Record and Web
Transaction definitions into the appropriate components (JavaBeans,
JSPs, and executable programs).

• Configuration and interaction of the generated components and VisualAge
Generator supplied components in a IBM WebSphere Application Server
runtime environment.

Web Transaction

CONVERSed
or

XFERed
UI Record

Definition
Testing

Test Facility

Web Transaction

CONVERSEd
or XFERed
UI Record

Browser

UI Record
Default HTML

Generation and Runtime

Catcher Program

Browser

Gateway
Servlet

Java Beans

Default JSPs

Generated
Web Transaction
© Copyright IBM Corp. 2000 17

2.1 Web Transaction development

An overview of the development process for a Web Transaction based
system is shown in Figure 11.

Figure 11. Process life cycle

From a Web Transaction viewpoint, this process includes:

• Define UI Record with data items required for the end user interaction:

• Data item UI type (input, output, submit, and so on)

• Data item edits (validation, input required, and so on)

• Define Program as Web Transaction:

• Write program logic with references to UI Records using CONVERSE
or XFER (single segment) approach.

• Implement required file/database access in Web Transaction or called
server programs (a better approach for reusablity).

• Animate through ITF:

• This provides simulation of business logic execution.

• Test facility dynamically builds HTML for UI Record.

• The browser submits return control to the test facility to handle browser
submit request and link back to 4GL debugger.

Definition
and Testing

Implement
Runtime

Web Transaction HTML Base
Development

JSP Integration
and

Customization

Runtime
Publish

Back End Front End

Interface
Lockdown

Default JSPs

Beans
Generate

BeansGenerate

Identify System
Structure and

Design

Web Transaction
Stucture and State Data

HTML / JSP
Integration
18 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

• Generation of runtime components for initial use in the front end
development process:

• Default JSPs that implement raw user interface function

• JavaBeans that are used by Gateway Servlet to support interaction
with runtime Web Transaction program

The front end development process includes both independent activities
(Web site design and implementation) and the task of integrating the runtime
Web Transactions, either by customizing the generated default JSPs, or by
building customized interfaces that directly interact with the Gateway Servlet
and the JavaBeans generated from the UI Record.

2.1.1 UI Record definition
A UI Record definition looks just about like any other record when viewed in
the record editor. The UI Record includes a set of data items (shared or
nonshared), with support for levels (03, 05, and so on), general
characteristics (type, length), and other properties specific to the record type.
See Figure 12.

Figure 12. The UI Record

The UI Record specific properties for both the record, and the data items in
the record, make the UI Record special. The UI Type and UI Properties

Links user interface and business processing domain
UI Record is an organized set of data items and properties:

Determines what data is sent to, and received from, the browser
Contains user action indicators (what push button was clicked)
Can contain transfer control information (where to go next)
Contains UI functions (e.g. Help, Labels, Edits)
Enables default HTML rendering
Web Transaction system implementation 19

columns in the record definition show options that support the use of a UI
Record as a browser interface definition.

These properties determine the role of each UI Record data item, how it will
be managed in a browser view, and what interaction is possible in both the
browser and the Web Transaction program.

2.1.2 UI Record to HTML mapping
The test facility triggers default HTML generation when a UI Record is
CONVERSEd.

Note: This default HTML generation used during testing emulates the
functionality that will be provided when the UI Record is generated into
JavaBeans and JSPs for use at runtime (see Figure 13).

Figure 13. UI Record properties

Record attributes:

New attributes for a UI Record are:

• Help Text — Default help text for the entire UI Record.

• Title — Default title for the UI Record.

• Submit Value Item — Name of data item in UI Record that will contain the
value of the actual submit button on the form presented to the end user.

UI Record
Help text, UI title
Submit value item (data item containing submit-button value)

UI Record items
Help Text, Label, Edits (validation, formatting)
UI Type:

Input (entry field, validation edits, no formatting on output)
Output (text field, formatting on output)
Input/Output
Hidden
Submit (button, contains value that is returned in the Submit Value
item if user pushes the button, not displayed if value not set)
Program Link (user managed control transfer)
Form (user managed control transfer, with FORM capability)
None (not shown, used as control data e.g. Submit Value item)

Indexitem (item containing the selected index)
Occursitem (item whose value is the occurences of an array item)
20 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Data item attributes:

New attributes for data item defined as part of a UI Record are:

• User Interface Type — The user interface type defines how the data item
is used in the user interface.

The User Interface Type value, along with other data item attributes (such
as occurs, substructuring, and so on), determine the content of:

• The default HTML that will be generated for the UI Record during
testing (displayed in the Web browser)

• The JSPs that will be created for the UI Record during generation

The following User Interface Type values are supported:

Input Defines that input can be entered by the end user and that
edits will be run on the input data.

Output Defines that output edits will be performed on data
received from the server.

Input/Output Specifies that INPUT and OUTPUT attributes are defined.

None Defines that this field is not to show on the user interface
and that no edits are to be defined for it. Items with this
setting are typically used as control data for user-defined
edits or as items such as the one defined as the Submit
Value Item.

Submit Defines an item to contain a value (or set of values if for
an occurring data item) that can be received into the
Submit Value Item when a user submits a form back to
the server.

SubmitBypass Same as Submit; however, when these buttons are
pressed, all input edits are bypassed.

ProgramLink Defines a data item, which implements a hyperlink in the
visual display, that when selected (clicked on) by the user
would implement a link to a defined program.

Hidden Not shown in browser.

Form Program switch with submit buttons.

• OCCURSITEM — Number of occurrences item

For an array item, another item in the record can be referenced as the
Number of occurrences Item. This item must be a numeric item with no
decimals. The values set into this item determine the number of occurs in
the array item that actually get displayed in a list.
Web Transaction system implementation 21

• INDEXITEM — Selected Index Item

For an array item, another item in the record can be referenced as the
Selected Index Item. This item can be occurred. If occurred, the array will
be a multiple select list. If not occurred (occurs=1), the list will be single
select. The values set into this item are the indices of the elements that
were selected by the user.

• HELPTEXT — Item Help Text

Help text defined for the item. This attribute is saved with global data items
to facilitate sharing of help text between all records that use the item.

• LABEL — Item Label

Default Label for the item. If the item is occurred and is of type Submit,
SubmitBypass, or Link; labels can be defined for each occurrence.

The UI type defined in the UI Record data item is used to determine the
associated HTML form mapping (see Figure 14).

Figure 14. UI Record mapping to HTML

Rules are used to determine the appropriate HTML element to use for each
data item in the UI Record.

The following rules determine if the data item should be included at all:

• Data items with a User Interface Type of NONE do not show on the
generated page.

• Data items with a User Interface Type of SubmitBypass or Submit work the
same.

<INPUT TYPE=TEXT NAME="SALARY" VALUE=" ">

 Enter staff ID and push Find

<INPUT TYPE=SUBMIT NAME="BUTTONS" VALUE="Find">

UI Type = Input or Input/Output

UI Type = Output

UI Type = Submit

Items with occurrences HTML tables, HTML Lists
22 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Note: In the text below, the data item attribute User Interface Type (in a UI
Record) will be referred to as UIType.

Single occurrence data item — no substructure:

UIType = Input or Input/Output

Data item length <= 80 Data item LABEL followed by Text input field.
Data item length > 80 Data item LABEL followed by Text Area

(multi-line text) input field.

UIType = Output Data item LABEL followed by plain text of data
item data

UIType = Submit A single submit button with the label of the item as
the button text is used. All Submit buttons display
at the end of the form.

UIType =ProgramLink A single hypertext link with the label of the item as
the link text is used. If there is no label, then the
value of the item is used. The value of the HREF
attribute of the <A> HTML element will contain the
program name and parameter name/value pairs
as defined by Program Link properties.

Boolean

Data Item Edit The data item LABEL and a then a checkbox.

Multiple occurrence item with no substructure:

UIType = Submit Values will be displayed as a set of Submit
Buttons. If a list of Labels is defined for this data
item, the label values will be the text shown on the
button.

UIType = ProgramLink Values will be displayed as a set of HTML
hypertext links. If a list of Labels is defined for this
item, the label values will be the text shown in the
link. If there is no label, then the value of the item
is used. The value of the HREF attribute of the
<A> HTML element will contain the program name
and parameter name/value pairs as defined by the
Program Link properties. Since this is an occurred
item, the index used to retrieve values from the
value items will be the same as the given link item
if those items are occurred or are defined in a
substructure that is occurred.
Web Transaction system implementation 23

UIType = Output Values will be displayed as a select list.

If the Selected Index Item associated with the
array is a single occurrence item, then the list is
single select.

If the Selected Index Item is a multiple occurrence
item, the list is a multiple select list.

If there is NO Selected Index Item defined, the
data will be displayed as a block of text; each line
being the data at each index of the array.

UIType = Input

or Input/Output Values will be displayed as list of text entry fields.

If there is a Selected Index Item defined, then
there will be a Select column of either Radio or
Checkbox fields.

If the Selected Index Item associated with the
array is a single occurrence item, then the Select
column will contain Radio buttons — only one can
be selected.

If the Selected Index Item is a multiple occurrence
item, the column will contain Checkbox fields in
which multiple can be selected.

Multiple occurrence item with substructures:

• Always displayed as an HTML Table where each leaf data item in the
substructure is a column.

• Data items in the substructure defined as UIType = None will not show as
a column.

• Data items in the substructure defined as UIType = Input or Input/Output
will show as a column of text entry fields.

• If there is a Selected Index Item and the item is UIType Input or
Input/Output, then there will be a Select column of either Radio Buttons
(single select) or Checkboxes (multiple select) depending on whether the
Selected Index Item has occurs > 1 or not.

This allows selection of a row from an HTML Table which has no inherent
selection function.
24 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Some level of field layout can be controlled in the default HTML as follows:

• Items of UIType = Input or Input/Output are rendered in the order they
appear in the record.

• Top level items (items that are not substructured) cause paragraph breaks
when they are rendered in HTML.

• To cause fields to be flowed from left to right, a superstructure filler item
(named '*') can be added to the set of items that you want to flow
horizontally.

This implies that if you have a single item at the top level that
substructures all the record data, the fields will all flow horizontally.

2.1.3 HTML forms in a UI Record
The HTML created for the UI Record implements the processing required
based on the UI Record rules for HTML associations.

• Input fields are defined with size information to limit the input string length.

• Literals are defined.

• Submit UI Types are implemented using push buttons.

Forms are used, which direct all responses back to the hptGateway process,
the Gateway Servlet provided by VisualAge Generator which is used by all
Web Transaction systems (Note: hpt is sometimes spoken as Highpoint). See
Figure 15 for an example of forms, input fields, submit buttons, and the .
Web Transaction system implementation 25

Figure 15. HTML Forms

What we are focusing on here is user entry screens which make use of the
HTML FORM tag VisualAge Generator will generate for you to surround any
HTML INPUT fields you specify when you define a UI Record.

It is also possible in VisualAge Generator to create your own HTML FORMs
or HTML ANCHOR tags when defining UI Records. It is also possible to code
an XFER to a program name of ’ ’ when passing a UI Record. This XFER
statement behaves in a special way and we will discuss it separately later.

2.1.4 Web Transaction definition
There are multiple structure approaches for how a UI Record is used to
display data in a browser and transfer of control is supported when defining a
Web Transaction:

• CONVERSE UI Record program design

• First UI Record program design (single segment) with named program
navigation (XFER Program WSRec, UI Record)

• First UI Record program design (single segment) with form directed
program navigation (XFER ’ ’, UI Record)

These structure options (see Figure 16) can be used exclusively or mixed in a
single system.

</HEAD>
<BODY>
<H1>Staff Info</H1>
<table border=4 width=100% cellspacing=0 cellpadding=20>
<tr><td><table border=0 align=left valign=middle>
<FORM METHOD="POST" ACTION="/hptGateway">
<P>
Id <INPUT TYPE=TEXT NAME="ID" SIZE=4 VALUE=" ">
Name <INPUT TYPE=TEXT NAME="NAME" SIZE=9 VALUE="">
Department <INPUT TYPE=TEXT NAME="DEPT" SIZE=4 VALUE=" ">
Job <INPUT TYPE=TEXT NAME="JOB" SIZE=5 VALUE="">
Years <INPUT TYPE=TEXT NAME="YEARS" SIZE=4 VALUE=" ">
Salary <INPUT TYPE=TEXT NAME="SALARY" SIZE=8 VALUE=" ">
Commission <INPUT TYPE=TEXT NAME="COMM" SIZE=8 VALUE=" ">
<INPUT TYPE=SUBMIT NAME="BUTTONS" VALUE="Find">
<INPUT TYPE=SUBMIT NAME="BUTTONS" VALUE="Exit">
<INPUT TYPE=HIDDEN NAME="hptPageId" VALUE="322964">
<INPUT TYPE=HIDDEN NAME="hptAppId" VALUE="WEBTRAN">
<INPUT TYPE=HIDDEN NAME="hptHandlerId" VALUE="24461">
</FORM>
</td></table></tr></table>
</BODY></HTML>
26 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Figure 16. Web Transaction processing structures

The Web Transaction program structure chosen impacts how program logic is
specified and the runtime processing of the generated system (see 5.2,
“Program structure options” on page 89 for details).

2.1.5 Testing
A Web Transaction can be tested in the VisualAge Generator test facility.
When you CONVERSE a UI Record or XFER with UI Record:

• Default HTML is generated.

• A Web browser is launched, if required.

• The Web Transaction pauses on the CONVERSE or on the XFER of the UI
Record and waits for an interaction event to occur in the Web browser.

This is shown in Figure 17.

DXFR PGM1 RECXPGM2

XFER PGM2 RECX,UI-REC2

SUBMIT button
on default

FORM
Clicked

XFER PGM2 RECX,UI-REC2

PGM1

--- CONVERSE UI-REC1 ---

SUBMIT button
on default

FORM
Clicked

PGM2
SUBMIT button

on default
FORM
Clicked

PGM
defined in
PGMLINK
or FORM

UIRec defined
PGMLINK

selected or
FORM SUBMIT

button
ClickedXFER ' ',UI-REC3

PGM3
Web Transaction system implementation 27

Figure 17. Testing a Web-based system

The test facility manages the processing required to support a CONVERSE or
XFER of a UI Record:

• Default HTML is generated that renders a page with all the data in the UI
Record (other than fields of UI type NONE). No Java Server Page is
produced. The layout of the data is fairly rudimentary; you have a little
control, but not to the extent that you will get once you have generated
and produced a JSP. The rules for the generation of default HTML is
discussed in Chapter 3, “HTML and UI Record definition” on page 55.

• The Web Browser that is registered to the operating system is invoked
automatically and this generated page is sent to it.

• The Web Transaction pauses on the CONVERSE or XFER with UI Record
and waits for an interaction event to occur in the Web browser.

• If there is an HTML FORM to submit (HTML INPUT fields and an HTML
SUBMIT button), that data is sent back to the test facility when the button
is pressed. If an HTML ANCHOR tag is used to invoke a Web Transaction,
no changes input by the user are sent back to the test facility.

Testing

Web-Transaction

CONVERSEd
UI Record

Browser

UI Record
Default HTML

Web-Transaction

XFER ,UI
Record

Web-Transaction
with first UI

Record

Test Facility
28 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

• All the edits defined in the UI Record are run.

• If any of the edits fail, the HTML page is resent to the browser with
error messages under each field that failed the defined edits.

• If the edits succeed, all data is returned to ITF and the program
continues on after the CONVERSE or the Web Transaction that was
XFERed to starts.

• When the Web Transaction exits, a default entry point page is displayed
that shows all Web Transactions currently loaded in the development
image that can be run.

This simulates what occurs at runtime when a program terminates; the
Gateway Servlet will serve the defined Entry Point Page.

Note: It is planned that the test facility could be used to test Web
Transactions when the browser is using runtime code (Java Server Pages).
The JSPs will communicate with the Gateway Servlet. There will be a
COMMTYPE of the CSOGW properties file which will allow the Gateway
Servlet to interact with Web Transactions in the test facility. This is similar to
the current linkage table-based support for Callable ITF, except that control is
returned to the Gateway Servlet during a CONVERSE/XFER with UI Record
as well as at program termination. This is not available at present.

This is a good place to build some Web Transaction programming skills.
If you have not already developed and tested a Web Transaction, consider
following the scripted exercise in Chapter 6, “Developing Web Transaction
programming skills” on page 121.

2.2 Generation of Java components and runtime program

New generation technology is used to produce the runtime implementation
components required for a Web Transaction (see Figure 18).
Web Transaction system implementation 29

Figure 18. Generation of a Web-based system

You code a Web Transaction. Generation produces:

• A COBOL or C++ load module to run in the VisualAge Generator server
environment

• A Java bean, which represents the data in the UI Record

• A Java bean to run any edits (other than VAGen server-side edit routines)
for the UI Record, to fill out any titles and labels, handle help, and do any
other UI Record processing

• A Java Resource Bundle, which represents the data in the message table

• A Java Server Page, which will handle formatting and sending the display
of the UI to the Web browser

• Edit table(s); each consists of a binary file and a Java wrapper for it

2.2.1 Java terminology
The description of generation and runtime will make many references to
Java. A few key terms are described here to ensure we do not confuse those
of you who are new to Java.

Java Bean
(UI Record Data)

Generated / Compiled
3GL Program

Web-Transaction

CONVERSed
or

XFERed
UI Record

Java Bean

(UI Record Interface)

Default JSP

UI Record can be generated separately or as part of a
Web Transaction generation request

Java Resource
Bundle

Message Table

Edit Table Java
Wrapper

Edit Table File
30 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Java is an object oriented (OO) language. This means you develop and
compile a series of objects which interact with each other by sending
messages. Objects are things which are meaningful to the users of your
system, and are often real, such as a car, or a book.

Java is made up of supplied code (the Java APIs), and the Java Virtual
Machine (JVM).

The Java code you develop does not run directly on the native operating
system; instead, the JVM for a given operating system interprets your code.
Your Java source (a .java file) needs to be compiled into bytecode for the
JVM to be able to run it. This bytecode is platform independent and is often
stored in either a .class or .jar file.

Classes and instances
Your source code for a particular object will primarily define data and
functionality, just as you would for a typical COBOL program. This object
source is called a class.

A class is a template from which you can create instances. For example, you
might be defining a Book object. Your class defines what messages Book can
understand, and the data, or properties of Book.

Book may have a property called Title. When you build your system, you will
probably create many instances of Book. Each instance could have a
different title.

Classes are grouped together into packages.

Messages and methods
When you specify the messages Book can understand, you write some Java
code to represent the processing that should happen when the message is
sent. This code is called a method.

For example, a message could be to calculate the tax payable on the Book. If
you want to send the message to the Book, you may need to pass data to the
message, perhaps to specify a country. Messages can receive objects
(passed as arguments).

When you send the message to Book, the code in your calculation method
will execute. The method may return an object, in this case, the Tax.
Web Transaction system implementation 31

JavaBeans
JavaBeans are also referred to in this chapter. In simple terms, beans are
Java objects whose properties are referenced and changed only through
messages. The messages have a specific format and wording. Beans also
signal events, which other Java objects can respond to. Java programmers
typically develop beans, which interact with each other and represent
reusable components.

2.2.2 Programs
When a Web Transaction is generated, the appropriate 3GL source code for
implementation in the target runtime environment is generated.

Any referenced UI Records may be generated with the program if you want,
otherwise individual UI Records can be generated independently.

How the generated program is started
Although the Web Transaction is logically behaving like a "main program", it
is physically invoked like a remote "called batch" program; it is synchronously
called through the catcher program with a single parameter (the UI Record)
passed across the network from the Gateway Servlet.

The UI Record output by the program at CONVERSE time, or on an XFER
with UI Record, is passed back over the network to the Gateway Servlet.
Thus a UI Record is limited to a maximum of 32K.

Before it starts executing the actual user-written code, the Web Transaction
will retrieve data from its WORKDB, if it is being invoked after a previous
CONVERSE or XFER webTran VAGenRecord,UI Record. This is the same
behavior as a regular segmented "main program".

If the UI Record on the CONVERSE or the FirstUI associated with the Web
Transaction had any edit functions which you did not ask to run on the Web,
these functions are generated to form part of the program load module.
These functions will be invoked, if the appropriate fields are modified, before
the rest of the user-defined code is executed.

How the generated program ends
If the Web Transaction issues a CONVERSE, all the storage of the program is
saved in the WORKDB by the Web Transaction, and control is returned to the
catcher program passing the UI Record data, so a response may be returned
to the Web browser.

An alternative to CONVERSE is XFER WebTran ,UI Record; which will send
the UI Record to the Gateway Servlet to be displayed in the Web browser.
32 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

When the browser user responds to any buttons defined to this UI Record,
which are inside the default HTML FORM generated by VisualAge Generator,
the identified Web Transaction is invoked and the passed UI Record data is
passed to the program in the defined first UI Record.

Additional details are available in Chapter 5, “Web Transaction design
concepts and considerations” on page 85.

The XFER statement refers to a program name, even in the CICS or IMS
environment. The actual transaction to be invoked is determined from the
linkage table referenced by the Gateway Servlet if you are starting a
"conversation" or else a previous setting of EZESEGTR.

XFER can optionally include another VisualAge Generator record as well as
the UI Record, for example; XFER webprog record,UI Record;. When the
XFER runs, the data of this record is saved in the WORKDB by the Web
Transaction before control is returned back to the catcher program. This
record cannot be bigger than 32K.

Transferring control between programs
A Web transaction is not allowed to issue an XFER statement which does not
include a UI Record. This restriction means that the only way for a Web
Transaction to transfer control to another program, without sending
information to the browser in between, is to use DXFR.

2.2.3 UI Records
The same UI Record generation processing is used for all target runtime
environments. There is one common UI Record generator.

When a UI Record is generated:

• UI Record definitions are generated into a Java data bean
(VGUirUIrecord), a Java interface bean (UIrecordBean) and a Java
Server Page.

• The generated interface bean includes methods for access to the defined
data and submit actions included in the UI Record definition and stored in
the data bean.

Getters are generated that access all the defined items in output edit form.

Setters are generated that set input data in unedited form. The internal
form is set when all input edits (except user edits) are successful. At that
point, the internal data is set into the record to be accessible by the 4GL in
a user-defined edit function.
Web Transaction system implementation 33

• UI Record user edit functions that you ask to run Web-side cannot access
the data of the Web Transaction that uses this record. This is because the
Web Transaction and the edits are running in completely different address
spaces; most likely different machines. Such edit functions are also not
allowed to issue any I/O.

• Table edits are handled using separate VisualAge Generator table
modules, see 2.2.6, “User edit tables” on page 35.

• A default JSP is produced.

UI Records cannot be bigger than 32K.

2.2.4 UI Record interface bean (UIrecord Bean)
Data accessors

• The interface bean contains Java getter and setter methods for attributes
of the data bean (VGUirUIrecord). The attributes are mostly just String
data for lowest level data items.

• However, the getters for super structure and occurred items use more
complex objects that can be queried to get the substructure/index data:

• Getters on occurred items return an Array of data in output form.

• Getters on superstructure items return a object based on the
com.sun.java.swing.table.TableModel class definition. This is true also
if the item is indexable (occurred). The Java code in the default JSP
file uses this object to then access the row and column data for display.

Input editing
• When the user submits back to the gateway from the browser, all input

data is set to the bean in unedited form. The gateway then invokes a Java
method (#processInput) to process all the inputs.

• The gateway invokes any VisualAge Generator edits, such as input
required.

• It then invokes any edit table checks.

• user-defined edit functions which run Web-side are invoked after all the
other edits have been performed and have successfully completed. At
that time the edited input data is set into its internal form and is then
accessible by the user functions.

Error messages for edit functions are set using EZEUIERR.

• The processInput method returns true or false.
34 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

• If false is returned, the gateway will serve the page where the input
edits are running; this is usually, but not always the page that was
previously sent. The Java code in the JSP that accesses the interface
bean at this point will retrieve the error message and put it in an error
field.

• If true is returned, the Gateway Servlet reads the linkage table and
invokes the appropriate catcher program.

Output edits
• Output edits occur when the data is accessed (#getFormattedText*

methods).

The Java API of the interface bean is discussed in Chapter 4, “Java Server
Pages and the UI Record interface bean API” on page 75.

2.2.5 Java Server Page produced by VisualAge Generator
Generation of a UI Record produces a JSP. The JSP provides sample code to
access the interface bean from the HttpServletRequest object and thus the
attributes in the data bean. The JSP code shows how the HTML field names
are mapped to the bean attribute getters and setters.

The display of error messages associated with input edit error handling is
also included in the default JSP code. The getErrorMessage* methods are
referenced and the message is placed into an error message field.

Control information regarding hidden fields that are used by the Gateway
Servlet to differentiate certain browser request actions is included. These
fields are not to be updated by the UI programmer.

2.2.6 User edit tables
If you generate edit tables used by a UI Record individually, do it twice:

1. Choose the Java runtime environment. The output from this generation is
a Java bean wrapper to access the table data (VGTbledtbl).

2. The target environment is where the WebSphere Application Server is
running. Generation creates a binary .tab file with the table data.

Otherwise, generate the edit table with the associated UI Record and Web
Transaction.

The .tab file should be deployed in the root directory used for the generated
JavaBeans (the beans include a directory tree based on package structure).
Web Transaction system implementation 35

2.2.7 User message tables
To make the job of revamping existing 3270 applications easier to perform,
User Message Tables can be generated into Java Resource Bundles that are
then accessible by the generated UI Record; choose the Java target runtime
environment and specify the GENRESOURCEBUNDLE generation option.

When a user message table is generated into a resource bundle, the numeric
keys of the first column is turned into a String.

However, any table that has 2 columns of CHA or MIX items can be used as a
message table in a Web Transaction and generated into a Java Resource
bundle, provided that:

• The last 3 characters of its name is the NLS code.
• The table prefix is associated with the Web Transaction via the program

properties.

Message display is requested using the EZEUIERR function.

2.3 Runtime system implementation

A typical runtime system implementation configuration is shown in Figure 19.

Figure 19. Web-based system development

Web browser Web server VAGen server

WebSphere Application Server

interface
bean

message table
(resource bundle)

Java Server
Page

CSOGW.
properties

data
bean

Session

catcher program
(DFHMIRS in

CICS)

edit
table

VAGen session ID manager

workdb

VAGen Gateway
Servlet

VAGen web
transaction

(will apply any
VAGen

server-side edit
routines)
36 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

• There are three logical tiers in the runtime environment::

1. Web browser

2. Web server with servlet support, perhaps using the IBM WebSphere
Application Server

3. VisualAge Generator runtime environment (there are many supported
runtimes, including, and soon, Enterprise Java Server)

The Web server and VisualAge Generator runtime environment could
potentially be on the same machine (3 logical tiers on 2 physical
platforms).

• VisualAge Generator runtime includes the following:

• Gateway Servlet

• Session ID manager

• Catcher program (when required, only used for some runtime
environments, other runtime environment configurations make use of
existing communications facilities)

• You code a Web Transaction. Generation produces:

• A COBOL or C++ load module to run in the VisualAge Generator server
environment

• A Java bean, which represents the data in the UI Record

• A Java bean to run any edits (other than VAGen server-side edit
routines) for the UI Record, to fill out any titles and labels, handle help
and do any other UI Record processing

• A Java Resource Bundle, which represents the data in the message
table

• A Java Server Page, which will handle formatting and sending the
display of the UI to the Web browser

• Edit table(s); each consists of a binary file and a Java wrapper for it

• You need to create and deploy a CSOGW.properties file, for the Gateway
Servlet to use, to define the parameters used to control communication
with the VisualAge Generator Server tier.

2.3.1 Basic processing concepts
The basic concepts of a Web-based system are discussed below.
Web Transaction system implementation 37

WebSphere Application Server
In simple terms, an application server is a plug-in to a Web server. This
means that you need to install a Web server and then plug the application
server into it. The application server is then started automatically when the
Web server starts. IBM WebSphere Application Server ships with the IBM
HTTP server, but there are a variety of other Web servers you can use for
various operating systems.

IBM WebSphere Application Server provides an environment to run servlets.
This includes a single shared Java Virtual Machine (JVM).

IBM WebSphere Application Server Advanced also includes other features,
such as:

• Enterprise Java Bean server

• Pooling of database connections made from Java objects executing in the
JVM, through provision of an IBM Connection Manager

• Support for clustering and scaling of application servers

• Java classes to store and retrieve information about visitors to your Web
site in a JDBC compliant database

Java servlet
A servlet is a Java class, that typically extends the class HttpServlet in the
javax.servlet.http package. This package, together with javax.servlet, make
up the standard servlet API as defined by Sun, which is available as the Java
Servlet Development Kit (JSDK). HttpServlet implements the Servlet
interface, which provides servlet behavior.

Servlets run server-side, they are not downloaded to a Web browser. They
are typically invoked by initiating a URL link; perhaps from an HTML FORM
tag, an HTML ANCHOR tag, or simply by typing the URL in the browser
location field.

When this URL is fed into the Web server you are communicating with, the
request will be dealt with by the Web server itself, if it has servlet support, or
passed on to a plug-in, such as IBM WebSphere Application Server (see
Figure 20).

Servlet support, as provided by products like IBM WebSphere Application
Server, gives you a servlet runtime environment:
38 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

• This is an implementation of the JSDK. Some of the JSDK code merely
supplies interfaces, and the servlet engine vendors need to provide the full
implementation. These implementations, and thus their available features,
can vary from product to product.

• The runtime provides a single JVM which all the servlets and associated
Java objects are loaded into, and run in.

• Some servlet engines, such as IBM WebSphere Application Server,
provide support to process Java Server Pages.

Figure 20 shows a typical invocation of a servlet.

Figure 20. Servlets

1. The user clicks the SUBMIT button on their HTML FORM. This causes the
Web browser to invoke a URL by sending an HTTP request to the Web
server.The Web server sees that the URL matches an alias defined to IBM
WebSphere Application Server and passes the request to the plug-in.

2. IBM WebSphere Application Server:

• Loads an instance of the servlet into memory (if there is not one
already loaded) and runs its init method.

• Once the instance is loaded, or if there was already an instance
loaded, its service method is invoked.

The servlet can read information that the user typed into the FORM using a
HttpServletRequest object, which the system passes into the service method.
It can also interact with JavaBeans, or even Enterprise JavaBeans, and
connect to CICS, databases, or other platforms or products.

Web browser

WebSphere Application Server

Java Virtual Machine

servlet

.class
or
.jar

1.
2.

3.

Web server
Web Transaction system implementation 39

Typically, there can only be one instance of a servlet loaded into the JVM.

3. Once its processing is complete, the servlet can send an HTTP response
back to the Web browser, in the following ways:

• By setting HTTP headers and printing out an HTML stream, using a
HttpservletResponse object, which the system passes into its service
method, as shown here.

• By invoking a Java Server Page.

Java Server Pages
The source code for a Java Server Page (JSP) is written as an ASCII file,
suffixed .JSP. The file contains HTML tags, plus special JSP tags, which
represent dynamic information in the file. Some of these special tags can
contain actual Java code inside them. See Chapter 4, “Java Server Pages
and the UI Record interface bean API” on page 75 for details of JSP syntax.

The JSP source needs to go through a process called page compilation
before it can run. IBM WebSphere Application Server will perform this
process (if it is necessary) on the fly. The output is a Java source and class
file for a servlet, and these are permanently saved on disk for future use.

The servlet output from page compilation has two main functions:

1. It sets HTTP response headers and prints the straight HTML tags in the
original JSP source to an output stream to go back to the Web browser.

2. It executes any of the Java code corresponding to the various special JSP
tags in the original document.

Figure 21 shows a typical invocation of a Java Server Page.
40 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Figure 21. Java Server Pages

The processing steps identified in Figure 21 are:

1. The Web browser sends an HTTP request which invokes a URL which
actually represents a servlet. The Web server passes this request to IBM
WebSphere Application Server, which processes the servlet.

2. Once the servlet is ready to send an HTTP response back to the browser,
it invokes a JSP. It specifies a URL corresponding to the .JSP file to do
this. The servlet’s HttpServletRequest object is passed through to the
JSP.

3. Because IBM WebSphere Application Server has an alias corresponding
to *.JSP, it processes this request.

4. If there is no current servlet source and class file for the JSP on disk, or if
the .JSP file has changed, IBM WebSphere Application Server runs page
compilation on the .JSP source.

5. Once page compilation has made servlet source code from the .JSP, the
Java complier JAVAC is run to compile it into a Java class file.

6. When the Java has compiled (if page compilation needed to run), an
instance of this new servlet class is loaded into memory and its service
method invoked.

Web browser Web server

WebSphere Application Server

Java Virtual Machine

servlet

JSP

.jsp

.class

1.

2.

3.

4.

5.
6.

7. .java
Web Transaction system implementation 41

7. This new object ultimately sends an HTTP response back to the browser
by printing out a stream of HTML tags, some pulled out of a buffer, some
dynamically created from the code originally held in the special JSP tags.

Implementing state data in a Web server system
Many (if not most) applications will require that data be maintained while a
Web user interacts with a Web system. This data will store things such as the
current state of the conversation, user specific information, and so on.

Sun’s JSDK provides some level of support for the creation of HttpSession
objects. Sessions (HttpSession objects) are a way to temporarily store a
reference to objects which hold data associated with a particular Web user
while they are interacting with your site.

Much of the JSDK support is merely interfaces while the servlet engine
vendors provide the actual back end implementation code. Thus the actual
session features may vary from vendor to vendor.

Figure 22 shows the use of a session object by a servlet and JSP.

Figure 22. The HttpSession object

Web browser Web server

Java servlet

WebSphere application server

Java Server
Page

1.

Session

2.

3.

5.

4.

Java Virtual Machine
42 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

The processing steps identified in Figure 22 include:

1. The browser invokes a servlet from an HTML FORM.

2. The servlet reads the data from the FORM INPUT fields using its
HttpServletRequest object. It may create, or instantiate, new Java objects
which hold this user data. It may also initiate some enterprise access, for
example, look up information on a database. The results of the enterprise
access may cause the instantiation of other objects.

3. The servlet now needs to create a new session object for the user, or else
reference an existing one. There is a single method, getSession() of the
HttpServletRequest to do this.

The actual mechanism of creation and reference in an IBM WebSphere
Application Server environment, under-the-covers, is typically as follows:

• When a session object is created, the application server also creates a
cookie. The cookie is a Java object with properties and behavior. The
cookie created for sessions holds a unique id. This id is stored in a
correlation table which also stores a reference to the session object.

• HTTP responses include the actual HTML body to display, plus
headers, which control aspects such as caching. When the HTTP
response is sent to the browser in step 5, the session cookie is sent to
the browser in the headers.

• The default behavior for the session cookie is for it to live in the
browser memory while the browser remains open.

• The session cookie is passed back to IBM WebSphere Application
Server with the HTTP request headers when a servlet is invoked from
the browser. When you try to reference an existing session object, the
session cookie in the request headers from that browser is used
internally to find the session object. Thus the cookie ties up a browser
with an IBM WebSphere Application Server object.

Once we have reference to a session object, we can store references to
objects for that user in it. Typically the objects we referred to in step 2.

4. The servlet invokes a JSP, passing the HttpServletRequest object.

5. JSP syntax will allow you to effectively run a getSession() against the
request and also to then query the session object to locate user objects,
so they may be displayed to the user in the final HTML stream sent to the
browser.
Web Transaction system implementation 43

IBM WebSphere Application Server provides various facilities for sessions:

• Tuning of the JVM memory allocated to the objects, with the ability to
swap them to disk, is possible.

• Every session object will timeout after a specified period of being unused.

• It is possible to use URL encoding instead of cookies, though it is not
recommended. Users can turn off cookie support in their browsers, so you
need to decide how your Web system will handle this.

• Session objects may be shared between a cluster of IBM WebSphere
Application Servers.

VisualAge Generator’s support of Web Transactions makes use of session
objects.

2.3.2 Gateway Servlet
The Gateway Servlet links the JSP/JavaBeans on the Web server-side with
the Web Transaction on the VisualAge Generator server-side. The
management of data movement from the appropriate Java Bean to/from the
Web Transaction is implemented by the Gateway Servlet.

Basic functionality
The Gateway Servlet has 5 basic jobs:

1. Provides a controlled view to the VisualAge Generator Web Transactions
available on a given back end system (a valid target runtime environment,
such as a CICS/ESA system).

Before running a Web Transaction that exists on a back end system, the
Gateway Servlet will ask for a logon, and then will list the available Web
Transactions. Which Web Transactions show up depends on your
customization.

2. Acts as a gateway for all communication with Web Transactions on back
end systems (hence the term Gateway Servlet).

To accomplish this, the Gateway Servlet works with a communication
protocol and a catcher program that runs on the back end system. The
catcher program will control invocation of the Web Transaction.

3. Associates the data being CONVERSEd or the UI Record passed on
XFER in a Web Transaction with the appropriate Java Bean, and
vice-versa.

The output data on the CONVERSE or XFER with UI Record must be
given to the correct Java Bean; the input from the end user must be
passed into the UI Record the Web Transaction receives.
44 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

This processing is coordinated with the catcher program, which will be
involved with the processing required to communicate with the Web
Transaction and pass it the UI Record data.

4. if the Gateway Servlet was invoked by a SUBMIT button on an HTML
FORM, it applies any standard supplied edits, such as input required, or
any Web server-side edit routines or any edit tables to the data input by
the user. This is done using the interface bean associated with the data
bean for a given UI Record.

5. Invokes the appropriate JSP that accesses the data bean associated with
that user through the interface bean for that UI Record for rendering the
HTML page back to the browser.

Configuration
The Gateway Servlet is configured at the Web server with various properties,
such as:

• Logon Page: HTML/JSP page that takes user LOGIN data

• Entry point: HTML/JSP page that defines all possible programs to be
accessed by the Gateway Servlet. This might also be a menu program
written in VisualAge Generator as a Web Transaction, that is invoked
directly, which would then CONVERSE or XFER a UI Record as a menu.
This allows tailoring of menu based on user.

• Error Page: HTML/JSP page that is the default page for showing runtime
errors

For more information on the properties of the Gateway Servlet, see Table 11
on page 315.

The CSOGW.properties file defines parameters used to access the back end
catcher program. Its properties include:

• Underlying protocol to use to connect to the back end system

• Server name/location

• Data conversion

These will map to the Web Transaction runtime entry point.

Configuration is discussed further in Chapter 12, “Runtime environment
scenario implementation” on page 247.
Web Transaction system implementation 45

2.3.3 Session ID Manager (SIDM)
This is an independent server whose primary purpose is to generate unique
ids. The SIDM is accessed through Java’s RMI facility and remote method
calls are used to obtain and release ids. Web Transactions themselves never
communicate directly with the manager, it happens internally, in the Gateway
Servlet or handler objects associated with a particular conversation with the
user.

A given VisualAge Generator server platform may be accessed by multiple
Web servers running on different operating systems. The SIDM allows unique
ids for a user and each user conversation (the user could have many Web
browser windows open simultaneously, and therefore many simultaneous
conversations) regardless of the number of Web servers in a given complex.

The SIDM can be accessed remotely from a given Gateway Servlet. The
Gateway Servlet has a property where you can specify the location of the
SIDM, so a single SIDM can be shared.

The IDs the SIDM creates are 8 bytes long. They have a prefix followed by a
number. The default prefix is CUIR, but you can start the SIDM with an
argument, and use that argument to change the prefix. That way, the prefix
could be as short as a single byte, if you so desire, leaving more room for the
number.

A new id for the user is requested if:

• This is the first interaction with the user.
• The user’s session object previously timed out, so they are asked to log on

to the Gateway Servlet again.
• The user closed their browser since the last interaction with the Gateway

Servlet; again they will be asked to log on.
• The user previously logged off the Gateway Servlet.

A new conversation id is requested if you:

• Select a Web Transaction from the entry point.
• Click on an HTML ANCHOR tag to invoke a Web Transaction.
• Click on a SUBMIT button inside a FORM you defined explicitly in the UI

Record to invoke a Web Transaction.

All conversation ids and the userid are released if:

• The session object times out due to user inactivity.
• The user explicitly logs out of the Gateway Servlet.
46 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

An individual conversation id is released if:

• An XFER ’ ’ ,UI Record is issued.
• The Web Transaction ends normally without transferring control

anywhere.

The conversation id is accessible in EZELTERM. It is used to key data stored
in the WORKDB when the Web Transaction executes on the VisualAge
Generator server platform and uses the WORKDB.

The SIDM generated id for the user is accessible in EZEUSR. The userid
known to the runtime server system is available in EZEUSRID.

2.3.4 Web Transaction runtime scenario
This scenario is best explained by stepping through the invocation of a Web
Transaction designed in any combination of the ways shown in Figure 23.

CONVERSE and XFER program runtime scenario
What we are focusing on here is user entry screens which make use of the
HTML FORM tag that VisualAge Generator will generate for you to surround
any HTML INPUT fields you specify when you define a UI Record. The
structure of these types of systems is shown in Figure 23.

Figure 23. CONVERSE and XFER program Web Transaction structure options

Figure 24 shows a runtime implementation of PGM1 or PGM2.

XFER pgm2 WSrec, UIrec pgm2

WSrec, First UIrec

DXFR pgm1 WSrec pgm1
Web Transaction system implementation 47

Figure 24. CONVERSE and XFER program Web Transaction runtime processing

The numbered processing steps shown in Figure 24 are described below:

1. At runtime, a user issues a Gateway Servlet request using their browser.

The processing sequence depends on whether it is the first time the user
has invoked the Gateway Servlet, or whether the request is based on
responding to data previously sent to the browser.

If this is the first time through:

• The user has the option of typing in a URL for the Gateway Servlet.
This causes it to serve an HTML page/JSP, called the entry point page,
which lists all the available Web Transactions.

• The session ID manager is invoked to assign a unique ID for the user,
and a session object is created for the user. This ID for the user is
unique over multiple Web servers and VisualAge Generator server
platforms. The ID is stored in the session object and may be obtained
through EZEUSR.

Web browser Web server VAGen server

WebSphere Application Server

interface
bean

message
table

(resource
bundle)

Java Server
Page

CSOGW.
properties

data
bean

Session

catcher program
(DFHMIRS in

CICS)

edit
table

VAGen session ID manager

workdb

VAGen Gateway
Servlet

VAGen web
transaction

(will apply any
VAGen

server-side edit
routines)

1

2
3

4

56

7
8

910

Inbound Request

Outbound Request
48 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

• If the Gateway Servlet is configured to request users to logon, then just
before the entry point is served, the user will be asked to authenticate
themselves. The security information is then stored on the WebSphere
Application Server in a session object for use later.

If this is not the first time through:

• The Gateway Servlet would be invoked from one of the following:

• A SUBMIT button or ANCHOR tag on the entry point page

• A SUBMIT button on an HTML FORM which was output from a
previous CONVERSE or XFER with the UI Record of a Web
Transaction.

• If the entry point page is being used, so a new program is being
invoked, the session ID manager is contacted to assign a unique ID for
that conversation with the browser user. This ID is stored in the session
object and can be obtained through EZELTERM.

2. If this is the first time through, we go straight to step 9. and the entry point
page, and perhaps additionally the logon page, is served.

Otherwise, if the Gateway Servlet was triggered from a SUBMIT button, on
a JSP sent as the result of a previous CONVERSE or XFER with UI
Record, it stores this user data in a data bean.

The bean is associated with a session object for that user, so it can be
referenced on later interactions with the user.

3. If the Gateway Servlet was triggered from a SUBMIT button, on a JSP
sent as the result of a previous CONVERSE or XFER with UI Record, the
interface bean is used to apply to INPUT or INPUT/OUTPUT fields any:

• Standard supplied edits, such as numeric, input required, and so on
• Edit tables
• Web-side edit routines

The message table is used to look up any message keys associated with a
particular supplied edit for a given data item. If an error is found, we go
straight to step 9.

4. We are now ready to invoke the VisualAge Generator Web Transaction.
The Gateway Servlet synchronously invokes the catcher program on the
target runtime environment.
Web Transaction system implementation 49

In a similar way to VisualAge Generator client/server systems, a
CSOGW.properties file is used to determine:

• What underlying protocol should be used to connect to the catcher
program, for example, CICS ECI

• Data conversion

• Remote system identifier

• Transaction id, if using CICS or IMS and there is no current
CONVERSE or XFER with UI Record outstanding

CICS is a commonly used VisualAge Generator server platform. To
connect to a CICS server in order to run a Web Transaction, you would
use the CICS client. The Gateway Servlet connects to CICS client using
the CICS Transaction Gateway. CICS client will connect to a CICS server
and invoke the catcher program, otherwise known as the mirror program,
DFHMIRS, by the external call interface (ECI) or the EXCI for MVS.

5. The catcher program invokes the requested Web Transaction.

If the page on the browser had originally been sent as a result of the
CONVERSE of a Web Transaction, or XFER with UI Record and some
other VisualAge Generator record, this data is retrieved from the
WORKDB.

If the Web Transaction was invoked from an HTML FORM, and there were
any VisualAge Generator server-side edit routines associated with
INTPUT or INPUT/OUTPUT fields in the UI Record, they are run at this
time.

If the VisualAge Generator runtime environment is CICS, the Web
Transaction is invoked through a CICS LINK from DFHMIRS.

6. If server-side edits failed, or the VisualAge Generator Web Transaction
issues a CONVERSE or XFERs with a UI Record:

• The Web Transaction saves program storage, for CONVERSE, or
saves the working storage record specified on the XFER Pgm WSRec,

UIRec statement (if included), in the work database.

• Control and the UI Record data returns to the catcher program.

In a CICS environment WORKDB will be a Temporary Storage Queue, in
IMS, some form of database. The queue name is uniquely keyed on
EZELTERM.

7. The logical unit of work ends, all task resources are released and control
returns to the Gateway Servlet.
50 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

8. The bean name to access and the data of the UI Record to be sent to the
browser is returned to the Gateway Servlet. The Gateway Servlet stores
the UI Record data in the user’s data bean using methods in the interface
bean. The data bean and interface bean are put into the session object for
later use.

9. The Gateway Servlet then uses the interface bean to determine the Java
Server Page name and serves it. The process of serving this JSP will
access attributes in the data bean using the interface bean. Reference to
the interface bean is passed through in the HttpServletRequest object.

10.The JSP sends an HTML page to the browser that is filled out with data
that was in the UI Record passed from the VisualAge Generator server
when it executed its CONVERSE or XFER with UI Record.

UI Record data items with a UI type of NONE will not be visible in the
HTML source (unless they are referenced in the program link paramters
for a form or program link definition).

This runtime process continues until the Web Transaction ends. At this point
the Gateway Servlet knows it has ended and it serves a default entry point
page.

XFER ’ ’ , UI Record
It is possible in VisualAge Generator to create your own HTML FORMs or
HTML ANCHOR tags when defining UI Records. It is also possible to code an
XFER to a program name of ’ ’ when passing a UI Record (moving a blank to
EZEAPP and issuing and XFER EZEAPP, UI Record also works).

The structure of this type of system is shown in Figure 25.

Figure 25. XFER ’ ’ , UIRecord Web Transaction structure design option

When a Web Transaction issues an XFER ’ ’ , UI Record transfer request,
the specified UI Record is sent to the browser. Program data is not saved
anywhere on the Web Transaction runtime platform, and the JavaBeans for
the UI Record are not saved as session data on the Web server (no state). All
you have is the data in the HTML page (visible or hidden).

UI type NONE data items should be used cautiously with UI Records that will
be used in a no-state implementation. This is because UI Type NONE data

pgm3

First UIrec2

XFER ' ' , UIrec
Web Transaction system implementation 51

items are stored in the data bean and not sent to the browser and the data
cannot be retrieved from a data bean that has not been saved on the Web
server.

The UI Record you serve in these circumstances needs to contain
programmer defined data item(s) of UI type FORM and/or data item(s) of UI
type Program Link. You cannot leave VisualAge Generator to just create its
default FORM for you, as that FORM is used for ongoing conversations with
Web Transactions, achieved by using XFER to a named program or
CONVERSE.

Since programmer defined FORMs and Program Links represent spawning a
new thread of conversation, they are best suited to be used on a page served
by XFER ’ ’ ,UI Record, that way no data from previous conversations is left
hanging around on either the Web server or the VisualAge Generator server.

If a Web page which contains a Program Link is served by a CONVERSE,
and the user clicks on that Program Link, all the data of the conversing Web
Transaction will be left saved on the VisualAge Generator server, waiting for
the user to come back and respond to a submit button on the default FORM
generated by VisualAge Generator for that CONVERSEd UI Record.

XFER ’ ’ ,UI Record will give you the most Web-like system design. A
CONVERSE structure or XFER program approach results in a more modal,
conversational style system, like a 3270 TUI system.

The back button
Because data is stored in the IBM WebSphere Application Server session
object, it is possible to use browser back and forward buttons and get pages
originally built by VisualAge Generator Web Transaction rebuilt without
having to rerun these Web Transactions.

• If you use an XFER ’ ’ , UI Record approach, any Web pages served this
way are always reachable using the back and forward browser buttons, as
they are served by the Gateway Servlet with caching switched on, so the
browser can hang on to them and reload the page in response to back and
forward requests.

• If you are trying to use the back button for Web Transactions which
CONVERSE or use the XFER PGM WSRec, UIRec syntax you will only be able
to get to the most recent JSP in the ongoing conversation.

Pages served as a result of CONVERSE or XFER to named program have
their caching turned off by the Gateway Servlet when it serves them.
52 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Resource clean up
All the objects stored in the user ’s session object will be deleted to release
storage when WebSphere Application Server configuration settings cause the
user ’s session object to time-out or the user asks to log out of the entry point
page. The session ID manager is also contacted to release the assigned IDs
for that user, so they may be reused elsewhere. The processing to do this is
handled by the Gateway Servlet.

Work database data for a given Web Transaction on the VisualAge Generator
server platform is only released when:

• The Web Transaction terminates normally without transferring control
anywhere or sending an UI Record.

• The Web Transaction DXFRs to another program.

• The Web Transaction issues an XFER ’ ’ , UI Record.

• An id is reused by the session ID manager.
Web Transaction system implementation 53

54 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Chapter 3. HTML and UI Record definition

Web Transactions use a UI Record as the link between the user interface
(client-side) domain and the business processing (server-side) domain. The
UI Record holds various data which will be converted to HTML to show on a
browser.

This chapter is aimed at VisualAge Generator programmers, who may be
inexperienced with HTML, to explain how the HTML generated from a UI
Record definition works. This knowledge is necessary for VisualAge
Generator programmers so that they can see:

• What is and is not possible through UI Record definition

• What extra functionality may be added in runtime, but will be unavailable
during ITF testing

• What limitations exist in browsers when compared to 3270 development

The HTML representation produced for a UI Record during VisualAge
Generator generation is implemented as a Java Server Page (JSP). JSP
syntax is reviewed in Chapter 4, “Java Server Pages and the UI Record
interface bean API” on page 75.

To customize the runtime environment, the Java Server Page generated by
VisualAge Generator can be customized as follows:

• Valid HTML may be inserted in the JSP to customize the look-and-feel.
This includes additions such as using images (), applets, activeX
controls, HTML tables, frames and framesets.

Note: An explanation of all these tags is beyond the scope of this redbook,
but skills in this area will be a requirement for those who will be tailoring
the generated Java Server Page.

• Client side JavaScript or VBScript can be added to the JSP.

This can do much to enhance the end user view and interaction with the
page and complement the server side Web Transaction, rather than
compete with it.

We will look at the above, to some extent, in Chapter 4, “Java Server Pages
and the UI Record interface bean API” on page 75.
© Copyright IBM Corp. 2000 55

3.1 An HTML document

An HTML document includes two sections, HEAD and BODY, enclosed in
HTML tags. This basic structure is shown below:

<HTML>
<HEAD></HEAD>
<BODY></BODY>
</HTML>

The BODY holds the information visible in the browser.

The interaction that the end user can have with the displayed document is
created using LINK and FORM related tags present in the document BODY.

The HEAD section holds control information:

• <META> tags that can affect caching or redirecting to another URL..

• <SCRIPT> tags; often JavaScript is included in the HEAD so it is all
available and loaded when the BODY starts to load.

• <STYLE> tags, to control document look-and-feel.

• <TITLE> tag; the window title.

3.2 General HTML tags

General purpose HTML tags (other than LINKs or FORM related tags) are
discussed in this section.

3.2.1 TITLE
The document or window title is defined using a TITLE tag set:

<TITLE>a window title</TITLE>

This goes inside the <HEAD> tag.

VisualAge Generator supports this through a property defined for the UI
Record itself. This property is called the UI title.
56 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

3.2.2 General displayable text
The UI Record implements displayable text using a data item with a UI type of
OUTPUT. The presentation of an OUTPUT data item’s processing depends
on the number of occurrences:

• If the number of occurrences = 1, then the OUTPUT data item is presented
as follows:

Label UI property as defined for the data item value of the data
item

• If the number of occurrences > 1 and the data item is not inside a data
item of UI type FORM, then the OUTPUT data item is presented as
follows:

Label UI property as defined for the data item <PRE>Value for
each occurrence of the data item on a separate line</PRE>

Note: The label and value data presented in the HTML is obtained from the
UI Record beans and filled in using Java Server Page syntax.

3.3 FORMs

In this section we examine FORMs and how VisualAge Generator supports
them as part of UI Record implementation.

3.3.1 The HTML FORM tag
The basic structure for a FORM tag set is shown below:

<FORM ACTION="URL" METHOD="POST|GET">
</FORM>

The FORM tag encloses various other HTML tags:

<INPUT>, <TEXTAREA>, <SELECT>, <OPTION>, <OPTGROUP>, <BUTTON>,
<LABEL>, <FIELDSET>, <LEGEND>

These tags are only valid when enclosed by a FORM tag and are used to
represent the data of the FORM.

An HTML FORM works with an <INPUT TYPE="SUBMIT"> tag, whose
definition the FORM tag encloses. This INPUT field displays as a button. If
you do not include at least one such button, the FORM will be useless (unless
you intend to do fancy stuff with JavaScript or VBScript, or the FORM
happens to have only one input field).
HTML and UI Record definition 57

When the user clicks the SUBMIT button, all the data in the form is
transmitted to the URL named in the ACTION attribute of the FORM tag, this
is called submitting the FORM.

Note: READONLY fields are passed on FORM submission, DISABLED fields
are not.

The HTML tags representing the FORM data are discussed in detail below.

<INPUT>
The <INPUT> tag can represent:

• Text or password field the user can type into on the Web page:

<INPUT TYPE="TEXT|PASSWORD" NAME="?" VALUE="initial data"
SIZE="size the field displays as in the browser"
MAXLENGTH="maximum digits the user can type into the field"
[DISABLED] [READONLY]>

VisualAge Generator does not support the generation of the attribute
TYPE="PASSWORD", but you can tailor the Java Server Page
generated from a UI Record to add the use of the password attribute.

• Check box — A yes/no choice for the user:

<INPUT TYPE="CHECKBOX" NAME="?"
VALUE="data sent when the FORM is submitted if the box is checked"
[CHECKED] [DISABLED]>

The CHECKED attribute will preselect the checkbox.

• Radio button — Represents a set of mutually exclusive choices for the
user:

<INPUT TYPE="RADIO" NAME="?"
VALUE="data sent when the FORM is submitted if the button is checked"
[CHECKED] [DISABLED]>

You would never have less than two of these. Radio buttons are
grouped by specifying more than one INPUT field of TYPE="RADIO",
where the NAME is the same.

The CHECKED attribute will preselect the radio button.

• Submit or reset button:

<INPUT TYPE="SUBMIT|RESET" VALUE="text shown on button" [DISABLED]>

Clicking a SUBMIT button will submit the FORM. Clicking RESET does
NOT submit the FORM, it merely resets all the form data at the
client-side to its initial values.
58 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

• A hidden field in the form which is not visible to the user:

<INPUT TYPE="HIDDEN" NAME="?" VALUE="?">

The hidden field data can be seen in the HTML source if you ask the
browser to display the HTML and the hidden field data is sent on
FORM submission.

• Image based button:

<INPUT TYPE="IMAGE" SRC="URL of image"
ALT="textual description of image"
ALIGN="TOP|MIDDLE|BOTTOM|LEFT|RIGHT"
[USEMAP="map for client-side image mapping of the button image"]
[DISABLED]>

An image button will act as a submit button.

• Scripted button:

<INPUT TYPE="BUTTON" VALUE="text shown on button"
onClick="JavaScript or VBScript"
[DISABLED]>

A scripted button has no functionality other than what you add with
JavaScript for the event handlers available for this HTML tag; onClick,
onFocus and onBlur.

• File upload field:

<INPUT TYPE="FILE" NAME="file name to upload"
VALUE="initial data" ACCEPT="mime types" [DISABLED]>

VisualAge Generator does not support the direct generation of image
based, scripted or reset buttons or file upload fields, so we will not discuss
them further here. You could, of course, tailor the Java Server Page
produced at generation time to include some of these tags.

All input fields additionally support the following attributes:

• TABINDEX attribute for you to control the tabbing sequence
• ACCESSKEY short cut via the keyboard to get to that field

<TEXTAREA>
The <TEXTAREA> tag represents a multiline input field:

<TEXTAREA NAME="?" [ROWS="?"] [COLS="?"] [DISABLED] [READONLY]
[ACCESSKEY="a letter"] [TABINDEX="?"]
>initial display data in the entry area</TEXTAREA>

There is a WRAP attribute to allow user input to wrap to the next line
without the user having to hit Enter.
HTML and UI Record definition 59

<SELECT> and <OPTION>
The <SELECT> and <OPTION> tags will implement a single or
multi-select list. The list can be presented as a scrolling list or a
drop-down list.

Here is an example of the <SELECT> tag set:

<SELECT NAME="?" SIZE="?" [MULTIPLE] [DISABLED]
[ACCESSKEY="a letter"] [TABINDEX="?"]>
</SELECT>

If you omit MULTIPLE you get a single select list. If you also set SIZE="1"
you will get a drop-down list.

SELECT encloses OPTION tags which represent what appears in the list:

<OPTION [SELECTED] VALUE="data sent when the FORM is submitted if
this option is selected" [DISABLED]
>text shown in option list in the browser</OPTION>

<OPTION SELECTED> will preselect that option entry.

The remaining tags are not generated for a UI Record by VisualAge
Generator, but they are described here for completeness.

<OPTGROUP>
This tag encloses OPTION tags and therefore groups them together.

<OPTGROUP LABEL="?" [DISABLED]>
</OPTGROUP>

<BUTTON>
This tag has better three-dimensional representation and more
functionality than the INPUT tag technique used to create a button:

<BUTTON TYPE="SUBMIT|RESET|BUTTON" NAME="?" VALUE="data sent when the
FORM is submitted, unlike INPUT button definitions"
[DISABLED] [ACCESSKEY="a letter"] [TABINDEX="?"]
>text to display on button in the browser</BUTTON>

TYPE="BUTTON" would be used if you wanted to implement some
client-side script processing that would be invoked by the button.

<LABEL>
This provides a label to associate with another FORM field in such a way
that speech-based or Braille browsers can use the label to prompt the
user.

<FIELDSET>
Encloses a group of FORM fields to group them together.
60 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

<LEGEND>
Goes inside an enclosing FIELDSET tag to provide a caption:

<LEGEND ALIGN="TOP|BOTTOM|LEFT|RIGHT" ACCESSKEY="a letter"
>caption text</LEGEND>

3.3.2 UI Record FORM support
UI Record supports, among others, UI types of HIDDEN, SUBMIT, SUBMIT
BYPASS, INPUT, or INPUT/OUTPUT.

If you define any fields these types as the highest level data items in your UI
Record definition, VisualAge Generator will helpfully generate a default HTML
<FORM> tag for you. (It can also do this for a UI type of OUTPUT in certain
circumstances.)

If you are using the default FORM, this will typically be because you are
displaying the UI Record with an expected return program, so you coded
either:

• A CONVERSE process option
• An XFER to a named Web Transaction, passing the UI Record

The FORM tag in the Java Server Page produced by generating the UI
Record will look as follows:

<FORM METHOD="POST" ACTION="<% UI record name.getGatewayURL() %>"

In the case of the default FORM, this ACTION is generated for us to invoke
the Gateway Servlet, passing it information of which Web Transaction you
wish to go on to, and our thread of conversation with the active Web
Transaction program continues.

The FORM UI type can also be defined in a UI Record. In a data item with UI
type FORM you can build your own FORM tag with the associated attributes.
In the FORM UI type data item you specify which VisualAge Generator
program to invoke and what data to pass. This option is for beginning a new
thread of conversation with the user. We will discuss this in more detail in “UI
type FORM” on page 65.

The METHOD attribute of FORM indicates how the data from the <INPUT>
fields is passed. Usually you use POST, as this sends the data separately in
the body and includes no length limitations, other than what may apply to the
UI Record itself, for example, in CICS environments. An alternative to POST,
is GET. This sends the data as an extension of the URL string, by adding a
query string to it. Data sent this way is limited to around 400 bytes or so (it
depends on the Web server).
HTML and UI Record definition 61

3.3.3 Creating FORM fields in a UI Record
Various FORM fields can be defined in a UI Record. The types of fields
created for a UI Record depend on the data item attributes and UI type. The
implementation of each UI type is described below:

UI type = INPUT or INPUT/OUTPUT
• If the data item length <=80 you get:

Label UI property as defined for the data item
<INPUT TYPE="TEXT" NAME="VisualAge Generator data item name"
VALUE="Value of the data item"
SIZE="Byte length defined for the data item, plus room for signs,
separators and currency symbols, as required."
MAXLENGTH="Byte length defined for the data item, plus room for
signs, separators and currency symbols, as required.">

• If the data item length >80 you get:

Label UI property as defined for the data item
<TEXTAREA NAME="VisualAge Generator data item name" WRAP="virtual"
>Value of the data item</TEXTAREA>

• If a boolean edit check is added as part of the UI properties of that data
item you get:

<INPUT TYPE="CHECKBOX"
NAME="VisualAge Generator data item name.occurrence number of data
item"
VALUE="Y or 1 depending on whether the data item type is CHA or a
numeric type">
Label UI property as defined for the data item

The data item definition for the field should be CHA length=1 or a
numeric data type with no decimal places.

If the data item is CHA, its value is ’Y’ if the check box is checked,
otherwise it is blank. If the data item is a numeric data type, its value is
1 if it is checked, otherwise it is 0.

Note: The label and value data presented in the HTML is obtained from
the UI Record beans and filled in using Java Server Page syntax.

UI type = HIDDEN
<INPUT TYPE="HIDDEN"
NAME="VisualAge Generator data item name"
VALUE="Value of the data item">
62 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

UI type = SUBMIT or SUBMITBYPASS
<INPUT TYPE="SUBMIT"
NAME="VisualAge Generator data item name"
VALUE="Label UI property as defined for the data item">

You must always give a SUBMIT or SUBMIT bypass button a data item
value. Either a default value as part of the data item’s UI properties, or
else move some data to the data item.

The data item value is not displayed in the browser unless you do not fill in
a label as part of the data item’s UI properties. If there is no label, data
item value = HTML VALUE; this allows you to dynamically control the text
the user sees on the button.

UI type = OUTPUT
• If the number of occurrences > 1 and the data item representing the

selected index item in its UI properties occurs once:

<SELECT NAME="VisualAge Generator data item name" SIZE="1">
<OPTION VALUE="Index position of OPTION tag in OPTION tag list"
>Value of an occurrence of the data item
</SELECT>

If an item is selected from the list, the index of which item is chosen is
set in the selected index item. The index starts at 1.

Note: even if there is NO selected index item but the array of data
items are inside a data item of UI type FORM, the data items are
displayed as a single SELECT list.

• If the number of occurrences (n) > 1 and the data item representing the
selected index item in its UI properties occurs > 1.

<SELECT NAME="VisualAge Generator data item name" SIZE="n" MULTIPLE>
<OPTION VALUE="filled in using Java Server Page syntax, index
position of this OPTION tag in the OPTION tag list">filled in using
Java Server Page syntax, value of an occurrence of the data item
</SELECT>

If items are selected from the list, the indices of the selected items are
added to the selected index items. For example, if you selected the first
and third items in the list, the selected index item[1] = 1, and the
selected index item[2] = 3.
HTML and UI Record definition 63

• If the number of occurrences > 1 and the data item representing the
selected index item in its UI properties occurs once and the data item is
itself substructured:

<TABLE BORDER="1>
<CAPTION ALIGN="top">filled in using Java Server Page syntax,
label defined for the data item in its UI properties</CAPTION>
<TR>
<TH></TH>
<TH>filled in using Java Server Page syntax, label defined for a
sutstructured data item in its UI properties</TH>
</TR>
<TR>
<TD><INPUT TYPE="radio" NAME="name of selected index item"
VALUE="index position of row in table"></TD>
<TD>filled in using Java Server Page syntax, value of a substructured
data item</TD>
</TR>
</TABLE>

If an item is selected from the list, the index of which item is chosen is
set in the selected index item. The index starts at 1.

• If the number of occurrences > 1 and the data item representing the
selected index item in its UI properties occurs > 1 and the data item is
itself substructured:

<TABLE BORDER="1>
<CAPTION ALIGN="top">Label UI property as defined for the data
item</CAPTION>
<TR>
<TH></TH>
<TH>Label UI property as defined for a sutstructured data item </TH>
</TR>
<TR>
<TD><INPUT TYPE="checkbox"
NAME="name of selected index item.occurrence number" VALUE="1"></TD>
<TD>Value of a substructured data item</TD>
</TR>
</TABLE>

If items are selected from the list, the indices of the selected items are
added to the selected index items. For example, if you selected the first
and third items in the list, the selected index item[1] = 1 and selected
index item[2] = 3.
64 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

3.3.4 Match valid edit tables
If you define an INPUT or INPUT/OUTPUT field and apply a match valid table
as its edit routine, this will actually be displayed as a single select list in
HTML. The selected item is stored in the actual UI Record data item.

3.3.5 Variable lists
Any data item which occurs in a UI Record (other than of type NONE) can
have an Occurrences item. You define it as part of the UI properties. It is
numeric and has no decimal places.

You can use this to dynamically control the size of the array displayed on the
browser. Just set the actual occurs of the data item to the maximum possible,
then fill in the value of the occurrences item to control the displayed array
size. If you set the occurrences item to 0, then none of the array shows up.

3.3.6 UI type FORM
This allows you to define your own FORM. This represents starting up a new
conversation with the user. You can specify the Web Transaction you wish to
go to and you can optionally pass data.

The FORM tag you get looks like:

<FORM METHOD="POST" ACTION="http://localhost/webapp/janesserverWebApp/
GatewayServlet?hptAppId=MYPROG&hptExec=Y&hptRecord=UIREC1">

There is a query string on the URL (all the data after ?) but it is short. Any
other data you wish to pass becomes part of the FORM and is submitted in a
separate body, so there are no data limitations other than that of the
environment. For example, if you are using CICS, the data passed cannot
exceed 32K.

When you ask to pass data you may just name the UI Record of the receiver
program. Now any matching data item names between each UI Record are
passed.

Because this is a FORM, data items of UI type INPUT or INPUT/OUTPUT
which are in that SAME FORM and have matching data item names in the
receiving UI Record will have user input into those fields passed across.

It is impossible to pass user input from fields outside this FORM.

Data items of UI type OUTPUT or NONE will NOT have their values passed,
even if their names match with data item names in the receiver UI Record;
you must add these data items as Link Parameters. Specify the receiving
HTML and UI Record definition 65

Name and the data item name on this UI Record as the Value Item. Any
"Name" you specify in this way is included in your FORM using this HTML
tag:

<INPUT TYPE="HIDDEN" VALUE="data item value">

There are some implications of the above:

• Data items of UI type NONE are not usually visible in the HTML in the
browser, even when you ask to view source. But, if wish to pass a data
item of UI type NONE, the data item must be added as a Link Parameter,
which will cause the data item value to be included in the HTML source
(but not on the browser screen).

• End user input into data items in any FORM other than this FORM cannot
be passed on by submitting this FORM, even if you match data item
names between UI Records.

• End user input into data items in this FORM cannot be passed on if you list
that data item in the Link Parameters; you must match up the data item
name. When the data item is included in the Link Parameters then the
value sent in the original HTML is passed, not what the end user entered
in that field.

• Data item validation. Suppose you have edits associated with a data item
of UI type INPUT or INPUT/OUTPUT, such as numeric, and you are
passing this data item when the FORM is submitted, because you have
matched the data item name in the sending and receiving UI Record. The
edit checks are not performed until the RECEIVING UI Record receives
the passed data. So, if the original field was of UI type INPUT or
INPUT/OUTPUT you really ought to either:

• Define the receiving data item as UI type INPUT or INPUT/OUTPUT
(not OUTPUT) with the required edits. In fact, it is not worth defining
the edits on the sending data item at all, unless your sending and
receiving of the UI Record happen to be the same. The receiving UI
Record is doing the validation, and it is this record which is displayed to
the user with error messages if any of the received data does not meet
the edit requirements of the receiving data items.

• Not apply any edits (other than perhaps user-written edit routines) to
the receiving data items. If you apply user-written edit routines they
should not set EZEUIERR if errors are found; set a flag in a data item
defined to the UI Record as HIDDEN instead. In the program code you
should check the flag and then send the appropriate UI Record back to
the browser with error messages for the user to correct. Bear in mind
that if you XFER to a named program, it is not possible to send an error
66 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

message using EZEUIERR in user-written code outside of edit
routines.

• You might wonder how can we pass through information on which push
button was clicked on our defined FORM? Well, clicking a push button is
just the same as user input, so, you must create data items in the
receiving UI Record with the same name as the sending submit data
items. Do NOT specify these data items representing the submit buttons
on the Link Parameters in the UI properties of the FORM data item. The
receiving UI Record must be specified in the UI properties of the FORM
data item. The UI type of the receiving data items could be:

• SUBMIT. If you do this you must specify on each one a label which
matches up with the label of the sending data item. You must also
assign a default value. Then the default value of the receiving data item
which corresponds to the sending data item which was clicked is
looked up and that default value is set as the actual value of that
receiving data item. All the other receiving data items corresponding to
other submit buttons will be blank.

• Anything else, for example NONE or HIDDEN. When control passes to
the receiving Web Transaction the LABEL (not the VALUE) of the
button you clicked is passed into the corresponding receiving data
item. All the other receiving data items which represent the other
submit buttons remain blank.

• If you want to pass selections over, these are input fields, so you need to
have matching data item definitions for the selected index item (if you
have one) or else the actual selected item in the receiving record. If it is a
single selection list and you are defining the selected item in the receiver,
it only needs to occur once. If you are using a selected index item, there is
no way to pass over the actual selection data list as well, so do not define
it in the receiver.

Beware of having several FORMs on the same Web page. If the user clicks a
submit button on one of the FORMs, any data typed into input fields on other
FORMs will be lost. This is because a SUBMIT button only submits the data
on its FORM to the Web Transaction, nothing else gets sent. So if the same
UI Record is served back to the browser again, the data input into the other
FORMs will have gone.

After reading this section on defining your own FORMs you may be thinking
how complicated this is, and you would not be wrong. Much of the above
complication arises when the sending and receiving UI Records are different;
they do not have to be, they could be the same. If they are the same, the data
HTML and UI Record definition 67

validation and transfer problems disappear, unless your user-written
validation is split between edit routines and mainline code.

You do not have to create your own FORM, you can use the FORM VisualAge
Generator creates for you in conjunction with XFER to a named program
passing the same UI Record or else CONVERSE.

3.4 LINKs

VisualAge Generator supports the specification of a UI Record UI type of
Program Link.

A LINK in HTML terms is defined by <A> tags. It represents an area on a
page where you may click and be transferred to another URL or another
location on the same page. The area you click may appear as:

• Text, in which case:

• It is colored differently from the rest of the page, and differently again
once it has been "visited"

• It is underlined

These settings are changeable in the browser itself, and in JavaScript.
The actual text you see on the page is the information between the
<A> tags.

• An image. In this case you put an tag between the <A> tags.

<A> has an HREF attribute, which indicates the location to go to when a
browser user clicks on the text/image.

<A> supports a TARGET attribute which describes which window or frame
you wish the output document to be sent to. If TARGET is set to a name
which does not correspond to an existing browser window or HTML FRAME,
a new window is opened. HTML FRAMES allow a single browser window to
display several documents at the same time. Each document appears in a
FRAME. The TARGET attribute can be used to interact with a particular
FRAME.

<A> also supports ACCESSKEY and TABINDEX attributes which we have
already seen with FORMs.

3.4.1 LINKs in UI Record definition
When defining a data item of UI type Program Link, you must specify which
Web Transaction you wish to invoke when the LINK is clicked. You can ask
68 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

for a new window to be opened to display the output from this specified Web
Transaction.

This will generate: <A HREF="URL of Gateway Servlet, with query string to
indicate which Web Transaction to start">label specified as part of the UI
properties of the LINK definition in the UI Record

The label you specify as part of the UI properties of the LINK definition in the
UI Record is what shows up as the link text you click on. If you do not specify
a label for the Program Link as part of its UI properties, then the value of the
data item is displayed in the browser instead.

When you define the LINK you may ask to pass information. You do this by
specifying Link Parameters as UI properties of the Program Link. You must
name the receiving UI Record. You name a receiving UI Record data item and
a sending UI Record data item. If the link item is an occurred item, the
corresponding items in each occurs will be passed over. There is no point in
specifying a receiving UI Record unless you are also going to add Link
Parameters, this is different from FORMs discussed above.

This data you ask to pass is added as a query string to the end of the HREF
when the Java Server Page runs and so looks "hard coded" into the HREF is
you view the page source in the browser. An example URL viewed in the
source would be:

http://localhost/webapp/janesserverWebApp/GatewayServlet?
hptAppId=MYPROG&hptExec=Y&hptRecord=UIREC1&PASSEDUIRECFIELD=FIELD+DATA

There are several implications of this:

• There is a limit on the amount of data that can be passed in this way, a
URL string cannot exceed around 400 bytes (Web server dependant).

• The <A> is separate from <FORM>, it does not have to be in a <FORM>
and cannot send user input into fields inside any FORMs on the browser
side. The only data passable on the LINK would already have to be
present somewhere in the UI Record data items on the Web server side
when the Java Server Page ran to build the HREF string and send the
page to the browser.

• UI Record fields of type NONE can be passed but they are added to the
HREF string and so can be seen by the browser user if they ask to view
source.
HTML and UI Record definition 69

The LINK represents starting up a new thread of conversation with the user,
unless both of the following conditions exist:

• What you are clicking on is a program which CONVERSEs or XFERs to a
named program.

• The user had previously clicked on that link to start the program and the
program had not ended; that is, it had not XFERd to ’ ’, or EZECLOSd.
In that situation, the user is taken straight to where they were in the
conversation with that program, rather than spawning a new thread.

You can create images to click on rather than just text by altering the label or
by what you move to the data item, if you have not specified a label. Simply
type an HTML IMG tag as the label text, for example:

.

In this case, c:\ibmvjava\ide\program would be the place that this GIF file
would be looked for during testing. When you deploy the code, you could then
put this GIF in the same place that you are instructed to put the GIFs in
14.2.6, “Deploy JSPs and GIFs” on page 317. You do not have to do this
during UI record definition, as you can add whatever HTML you desire to the
JSP produced by generation.

If you use the data item value rather than specifying a label on the UI
properties you may dynamically change what text the user sees for the
hypertext link, or which image you see. If you wish to dynamically change the
HREF you would need to use a scripting language, such as JavaScript in the
generated JSP.

3.5 HTML layout and look-and-feel

This is really an issue for the HTML page designer not the programmer. The
generated JSP can be altered to rearrange fields, add more HTML tags or
client-side scripting, such as JavaScript.

You can affect the page layout programmatically by arranging fields in
substructures.

For example if you have 2 UI data items as top level items in the UI record
they will be display on the browser vertically underneath one another. If you
define a single top level filler data item (name= *) which contains these 2
items, they will display on the browser side-by-side.
70 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

3.6 UI Record specific features

This section documents features unique to the VisualAge Generator
environment.

3.6.1 Record properties
UI Record properties include:

• Help Text — Default help text for the entire UI Record.

• Submit Value Item — Name of data item in UI Record that will contain the
value of the actual submit button that the user clicks.

If you do not specify a submit value item, EZEAID is used to hold the
information.

The EZEAID/submit value item works with submit buttons, and every submit
button must have a value.

You may define this as a default value for the button as part of its UI
properties or else move some data to the UI Record data items of UI type
submit. If you are using EZEAID as the submit value item, you must move
values which are valid for EZEAID; that is ENTER, PF1-PF42, PA1-PA3.
These values are all upper-case. EZEAID will default to ENTER if the Web
Transaction invocation is not responding to a previously sent UI Record or it
cannot cope with the values you have set up in the submit buttons.

Once you have set up the submit button values, then the submit value item
receives the value of the submit button you clicked, and you may check it in
your code. If you are using EZEAID, you may code IF EZEAID IS
<response>, just as you could for 3270 programs.

You only have one submit value item even if the UI Record contains many
forms.

3.6.2 Special VisualAge Generator UI types
There are two special types:

NONE
Defines that this field is not to show on the user interface and that no edits
are to be defined for it. Items with this setting are typically used as
control data for user defined edits or as items such as the one defined as
the Submit Value Item.
HTML and UI Record definition 71

NONE fields are not HTML HIDDEN fields. They are not sent to the
browser. If you CONVERSE a UI Record or XFER to a named program,
these fields are stored on the Web server and their values retrieved when
processing continues.

You may ask to pass a NONE field in a user defined FORM data item or in
a Program Link data item. If you do this the field is transformed into a
HIDDEN field (if its is a FORM) or else appended to the URL string. In this
situation then it is sent to the browser and can be seen by the user if they
ask to view page source.

NONE fields are useful to store data associated with the UI Record that do
not need to be sent to the browser, but this only works when the UI Record
data is saved in a session bean by the Gateway Servlet. This only occurs
for CONVERSEd UI Records or UI Records displayed in a browser as the
result of an XFER Pgm WS, UIRec transfer request.

SubmitBypass
Same as UI type Submit however, when these buttons are pressed, all
input edits are bypassed.

3.6.3 VisualAge Generator features for UI Record data items
This section documents miscellaneous features.

HELPTEXT — Item Help Text
Help text defined for the item. This attribute is saved with global data items
to facilitate sharing of help text between all records that use the item.

Nothing is actually done to make this help text display. You can tailor the
JSP produced at generation time to access this information from the
interface bean and combine this with client-side JavaScript so that the
information can easily be accessed by the client at runtime.

IF UI Record data item IS ... and SET UI Record data item ...
You cannot set UI Record data items in the way that you can for 3270 map
fields, even though DISABLED and/or READONLY are attributes of HTML
FORM fields.

If you wish to achieve the DISABLED or READONLY you should add a flag
data item to your UI Record for any field you want to protect/unprotect and
add JSP syntaxt to the generated JSP to read this flag from the interface
bean and generate the appropriate HTML. Bear in mind DISABLED fields
are not sent back on FORM submission; this will impact UI Records
displayed as a result of XFER ’ ’.
72 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

If you wish to affect the cursor positioning, you are better off using
client-side JavaScript.

Setting colors or other extended attributes should not be done in the Web
Transaction code. You may want a mixture of client-side JavaScript and
style sheets.

Allowing the user to request a SET map EMPTY can very easily be
achieved by editing the JSP produced at generation time and adding an
HTML INPUT field of TYPE="RESET".

It is possible to code the syntax :

IF UI Record data item IS MODIFIED

However, you cannot set the data item modified.

3.6.4 Data Item Edits
The data items in a UI Record can have edits defined:

Input Defines that input can be entered by end user and that edits
will be run on the input data.

Output Defines that output edits will be performed on data received
from the server.

InputOutput Defines that INPUT and OUTPUT attributes are defined.

Edits can be defined for items in similar fashion as they are defined for Text
Map fields. The following edits are designed to implement processing very
similar to that provided for Text Maps:

• Input required
• Minimum input (characters)
• Check SO/SI space
• Date
• Time
• Minimum value
• Maximum value
• Zero edit
• Numeric formatting - separators, decimal point, sign
• Folding
• Fill characters - Null is not a valid fill character
HTML and UI Record definition 73

The following edits work differently in a UI Record (as compared with a text
map edit):

• Currency Symbol — Same as in Map definition; but a 1-3 character
currency symbol is also supported.

• User defined function — this is an edit routine which you may ask to be
run at the Web server or at the VisualAge Generator server. Functions run
on the Web server may not do I/O. The scope of the data accessed by the
function is limited to the items in the UI Record.

• Date and Time — There are no specific edits. A flag is set to tell the UI
Record that the data in the item is in the form of Date or Time.

• Justification is not supported. Since justification is not supported, fill
characters do not work very well.

• Hex edit is not supported.

New edits for a UI Record data item include:

• Boolean — Valid item values are 0 (false) and 1 (true) for numeric items
and Y or " " (blank) for character items.

Substructuring is allowed. However, only the lowest layer in the substructure
can have edits defined.
74 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Chapter 4. Java Server Pages and the UI Record interface bean API

This chapter discusses the Java API of the interface bean and how this API
can be used to enhance the default JSPs generated by VisualAge Generator.

See Chapter 15, “Enhancing the generated JSPs” on page 253 for examples
on how the generated JSPs can be enhanced.

4.1 JSP syntax

JSPs are ASCII files, with a .JSP suffix, which contain a mixture of regular
HTML tags and JSP syntax. A JSP is taken by IBM WebSphere Application
Server and transformed into a Java servlet by a process known as page
compilation (see “Java Server Pages” on page 40).

VisualAge Generator currently supports the JSDK 2.1 and JSP 1.0
specifications. The full details of these specifications and associated syntax
can be downloaded from the Sun Web site for Java. See the URL:

http://www.javasoft.com

All IBM WebSphere Application Server V3 platforms (standard, advanced,
and enterprise) support JSDK 2.1 and either JSP 0.91 or JSP 1.0.

IBM WebSphere Application Server V2 supports only JSDK2.0 and JSP 0.91.

While VisualAge Generator may provide support for JSDK 2.0 in a fixpak, the
JSPs generated by VisualAge Generator will always be at the JSP 1.0 level.
Utilities to help with the convertion of JSP 1.0 code to JSP 0.91 are being
considered.

In the remainder of this chapter we will look at the most commonly used
features of the JSP 1.0 syntax. The text indicates where syntax is invalid in at
the JSP 0.91 level.

4.1.1 Scriptlets
A scriptlet can be inserted in a JSP with the following syntax:

<% --- any legal Java code --- %>

Here Java code is enclosed in <% %> symbols. At runtime the Java executes
dynamically on the server side, nothing of it is seen in the HTML stream sent
to the browser once the JSP completes running, except the results of Java
statements to print to the special "out" PrintWriter object.
© Copyright IBM Corp. 2000 75

The "out" object is created and made available to the scriptlet as part of the
page compilation process of the JSP.

Scriptlets are typically used to code some logic to selectively decide what to
print to "out". An example of a very simple scriplet is shown below:

<% if (x == 1) {out.println(EMPNO.getLabel())}; %>

Scriptlets may be placed anywhere in the JSP source. What they print will be
inserted into the HTML stream at that point.

Valid print operations include: out.print(some string value) and
out.println(some string value). Println puts a carriage control character on the
end which makes the HTML source look tidy when viewed in a browser. If the
user asks to view source, it does not have the effect of HTML
.

What you print should be an object of class String. You can convert all objects
(other than primitives) which are not already Strings to strings via a toString
method. It is up to the object creator to decide whether to provide their own
implementation of the method or inherit a toString from a class above it in the
inheritance hierarchy. (All classes you define in Java extend (or inherit)
characteristics from some object, the Object class is the root.) If the object
inherits a toString method, then what you see when running that method
might not be exactly what you desire.

Primitives can also be converted to Strings by using their class wrappers, for
example, an int can be converted to a string using a static method of the
Integer class: "String myConvertedString = Integer.toString(anInt);"

We can use the interface bean API documented in section 4.2 to obtain
access to the objects which represent data items in a UI Record and to print
them.

Scriptlet code all ends up inside the same Java method of the page compiled
JSP (the "service" method). Thus objects created in one scriptlet can be
referenced by another.

To write scriptlets other than very simple ones requires a basic knowledge of
Java.

4.1.2 Expressions
An expression can be inserted in a JSP with the following syntax:

<%= --- an object reference --- %>
76 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

These expressions are a short-hand way of simply printing the object to the
HTML output stream sent to the browser. The object is automatically
converted to a string for you and then printed, all you need to code is an
object reference. Expressions must not contain ";".

The expression <%= anObject %> is equivalent to the expression:

<% out.print(anObject.toString()); %>.

Expressions can be inserted anywhere in the JSP source and their print
output is interleaved with the HTML surrounding it. They end up inside the
same Java method of the page compiled JSP as scriptlet (the "service"
method).

Most dynamic content equates to the insertion of a few expressions among
regular HTML and client side scripting.

If you have indexed properties (that is properties which occur more than
once) you will need to use scriptlets to code a Java "for" or "while" loop, to
cycle through the occurrences. Remember that Java indices start at 0.

There is an IBM WebSphere Application Server V3 specific JSP tag:

<tsx:repreat
index=anIndexName start=startingIndex end=endingIndex>
....
</tsx:repreat>

This JSP tag can be used to build loops without having to code Java. There is
even an IBM WebSphere Application Server V2 equivalent tag:

<repeat index=ind start=startingIndex end=endingIndex>
.....
</repeat>.

4.1.3 Bean tag
A bean tag can be inserted in a JSP with the following syntax:

<jsp:useBean id="referenceName"
class="fullyQualifiedClassnameOfThisBean" scope="?" />

This syntax is not valid with the 0.91 JSP specification, although there is an
equivalent tag.

The bean tag allows the JSP to reference or even create a Java bean. Once
we have the bean we can reference or change its properties.
Java Server Pages and the UI Record interface bean API 77

The bean tag does not have to be empty, it can have a closing tag.

The id attribute defines the name you use to reference this bean elsewhere in
the JSP inside scriptlets or expressions.

The scope attribute can equal:

• "session"— which means the bean was stored in the HttpSession object.
The generated JSP does not reference the interface bean using session,
although the interface bean and the data bean are stored in the
HttpSession by the Gateway Servlet unless "XFER ’ ’ ,UI Record" was
coded.

• "request"—which means the bean was stored in the
HttpServletRequest. (This is what the Gateway Servlet does.)

• "page"—which means the bean was stored in the JSP page context

• "application"—which means the bean was stored in the servlet context

Refer to the Sun documentation for more details on "page" and "application",
they are included here for completeness.

There is also a "type" attribute, which represents an interface implemented by
the bean and can be used instead of, or in addition to, the "class".

In our case a reference to the interface bean for our UI Record for an
individual browser user is passed to us by the Gateway Servlet by storing it in
the HttpServletRequest object which the Java system provides to the servlet
as part of the JSDK architecture. There is a separate HttpServletRequest
object for each browser user and this object is passed to the JSP when it is
invoked by the Gateway Servlet.

An example bean tag for the JSP generated from the UI Record named
JANEUI1 is shown below:

<jsp:useBean id="JANEUI1" scope="request" class="my.pkg.JANEUI1Bean" />

This tag appears near the beginning of the JSP source.

We could now use JANEUI1 to get reference to UI Record data items, since
they are properties of the data bean in expressions. However, this is done for
us in the generated JSP, straight after the bean tag, for example:

<% VGDataElement TXTFLD = JANEUI1.getTXTFLD(); %>

So all we have to do to refer to the data item TXTFLD is to use the name
TXTFLD. There are several methods of UI Record data items which are listed
78 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

in section 4.2.2, “VGDataElement Interface” on page 81. For example, we
could code: <%= TXTFLD.getLabel() %> to print the label we defined in the text
field’s UI properties to the HTML output stream.

4.1.4 Directives
A directive can be inserted in a JSP with the following syntax:

<%@ page aValidDirective %>

This syntax describes JSP wide controls.

This syntax is not valid with the 0.91 JSP specification, although there are
equivalents to some of the attributes.

Directives used in JSPs generated by VisualAge Generator include:

import
<%@ page import="partial package name" %>

With "import" you can add Java import statements which will apply to any
scriptlets or expressions anywhere inside the JSP. Java import statements
are a shorthand to save you having to type out the fully qualified name of the
package everywhere when referring to elements inside it.

An example, which VisualAge Generator generates into the JSPs for UI
Records is:

<%@ page import = "com.ibm.vgj.uibean.VGDataElement" %>

errorPage
<%@ page errorPage="jspName" %>

This allows you to specify a JSP to show if this JSP throws an unhandled
exception.

4.2 The interface bean API

The String class is used by all getter and setter methods implemented for
data items defined with a User Interface Type of InputOutput in the Java
Bean generated for the UI Record.

Setters and getters implemented for data items defined with a User Interface
Type of None return the appropriate Java class for the item.
Java Server Pages and the UI Record interface bean API 79

4.2.1 UI Record Bean Interface
The getter and setter methods implemented for the Java interface bean
generated for the UI Record are described in this section.

String getTitle();
Returns title property of UI Record

String getHelpText();
Returns help text property of UI Record

String getGatewayURL();
Returns the gateway URL - used as ACTION in HTML form

String getSecureGatewayURL();
Returns the gateway URL but with HTTPS protocol - used as ACTION in
HTML form

String getPageID();
String form of number that uniquely marks the page that is served to the
client

String getAppID();
Returns ID that identifies to the gateway the application that the bean is
associated with.

String getSessionID();
Returns ID the identifies the current gateway session that will process the
submit request.

boolean hasInputError();
Indicates whether or not any item in the record is in error.

VGDataElement elementNamed(String name);
Returns element in bean named name

VGDataElement get<item name>();
Generated get methods for each bean instance

void set<item name>(String value);
Generated set methods for each bean instance
80 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

4.2.2 VGDataElement Interface
Methods available in the VGDataElement interface are described in this
section.

Enumeration getEditTableValues();
Returns the elements in an edit table associated with an input field.

String getErrorMessage();
Returns the error message associated with the element.

String getGatewayURL();
For items that are not UIType = Program Link, this will return the same
value as the UI Record Bean version of this method.

However for elements with UIType of Program Link this method returns a
URL string that contains all the parameters as defined by the link
properties. This string is then usable as an HREF in an <A> HTML
element.

String getSecureGatewayURL();
Same as getGatewayURL() above but with the HTTPS protocol

String getHelpText();
Returns the help text property of the element.

int getIndex();
Returns the current occurrence of an element which occurs.

String getLabel();
Returns the label UI property of an item. If item is an element of an array,
the label defined for the receiver's index will be returned.

String getTextValue();
Returns String value of element with all output formatting on data done.

TableModel getTextValuesTable();
Returns a TableModel of all formatted text values for the receiver
occurrences and sub-elements.

boolean hasInputError();
Returns whether or not the element has an input error.

boolean isDisplayable();
Returns true if the data item associated with a submit button has a
non-blank value.
Java Server Pages and the UI Record interface bean API 81

boolean isEmpty();
Returns true if the associated Number of Occurrences Item value is
zero. If the item is not occurred then this method always returns false. If
this item is occurred but has no Number of Occurrences Item then this
method returns false.

boolean isSelected();
Returns true If the index of the element is a value in the associated
Selected Index Item.

Enumeration occurrences();
Returns Enumeration of VGDataElements for each valid index (index <=
numOccurs item value). If occurs value is 1 then this will be a single
element Enumeration.

Enumeration subElements();
Returns Enumeration of VGDataElement that are valid sub-elements (they
are not UIType None) of the receiver. Only the lowest level sub-elements
will be returned. The index of each sub-element is that of the receiver.
82 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Part 2. Web Transaction design and development
© Copyright IBM Corp. 2000 83

84 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Chapter 5. Web Transaction design concepts and considerations

There are three basic Web Transaction program design options available in
VisualAge Generator:

• CONVERSE UI Record program design

• First UI Record program design (single segment) with named program
navigation (XFER Program WSRec, UI Record)

• First UI Record program design (single segment) with form directed
program navigation (XFER ’ ’, UI Record)

Each of these program design options has different design implications that
should be understood before designing and implementing a Web Transaction
application system.

5.1 Concepts

Basic Web Transaction implementation options are discussed in this section.

To better understand how Web Transactions work, we will compare them with
the typical structure of VisualAge Generator text user interface programs and
study the available Web Transaction implementation structure alternatives.

5.1.1 Main Transaction and Web Transaction program comparison
The design of a Web Transaction program presenting a browser interface is
similar to the design of a Main Transaction program displaying a text user
interface (TUI). Both Main and Web Transaction programs can be
implemented using a CONVERSE or Single Segment design option.

A comparison between the CONVERSE model programming, as
implemented by a traditional TUI Main Transaction program and a Web
Transaction program, is shown in Figure 26.
© Copyright IBM Corp. 2000 85

Figure 26. Main and Web Transaction program CONVERSE model comparison

The basic shape of a Main or Web Transaction is the same, but there are
some key differences with how the end-user interacts with each type of
system:

• In a TUI system, the end-user works with only one screen at a time (modal
display processing). The need to save state during end user interaction
was simplified because the end-user only interacted with one screen at a
time.

When the active screen is displayed, the system resources are released
and state is saved automatically by VisualAge Generator, in cooperation
with the transaction system in use. For example, state is saved in CICS
using temporary storage (a standard CICS pseudo-conversational
programming technique).

• In a Web-based system, the end-user working in a Web browser has the
capability to open multiple browser windows simultaneously (modeless
display processing). Depending on the design of the Web Transaction
application system, state may or may not be saved for every one of those
browser interactions.

TRAN ID
XFER PROG WS
DXFR PROG WS

CONVERSE

Main Transaction

Terminal

XFER PROG WS
DXFR PROG WS

Start
DXFR PROG WS
XFER PROG WS, UIRec
XFER '', UIRec

CONVERSE

Web Transaction

Web
Browser

DXFR PROG WS
XFER PROG WS, UIRec
XFER '', UIRec
86 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

In addition, other processing considerations must be made. If the Web
Transaction application system is deployed externally on the Internet
(as opposed to an intranet application system), system usage will be far less
predictable. For example, the target end-user community for an Internet
Web-based system may not be as predictable as that found when
implementing an internal TUI based system.

This suggests that system design must consider both if, and how, state will be
saved for Web Transaction programs. The processing profile of a Web
Transaction will determine the workload that will be placed on the WebSphere
Application Server and the VisualAge Generator runtime platform during peak
usage and expansion of the end-user community.

5.1.2 Web Transaction state saving options
When designing Web Transaction programs, it is important to understand the
issues surrounding the saving of program state. Program state is saved in a
variety of ways, depending on the design of your VisualAge Generator
program.

The CONVERSE and First UI Record design options provide for three levels
of state saving support in a Web Transaction (see Table 1).

Table 1. Web Transaction state saving options

The choice of how state will be saved on the Web server and VisualAge
Generator runtime server platforms will have an impact on the scalability and
performance for the entire Web Transaction application system.

To save program state, a combination of session data on the Web server and
a work database on the runtime platform is used.

State Saving
Options

Command Syntax Program Design

Complete State CONVERSE UIREC
CONVERSE with named program
transfer navigation

Controlled State XFER PROG WS, UIREC
Single segment with
named program navigation

Stateless XFER ’ ’, UIREC
Single segment with
form directed program navigation
Web Transaction design concepts and considerations 87

An overview of the basic processing for each type of Web Transaction is
shown in Figure 27.

Figure 27. Web Transaction processing for each program type

Note: No data is stored (work database or data beans as session data) for a
stateless Web Transaction (XFER ’ ’, UI Record).

CONVERSE UIrec

XFER Program WSRec, UIRec

XFER ' ' , UIRec

CONVERSE

Web Browser Websphere
App Server

VisualAge
Generator Server

UI Record

Work
DB

Working Storage
Local Records

First
UI

XFER PROG WS, UI
Web Browser

First UI

Pgm Link
Form

VAGen Server

Websphere
App Server

UI Record

Work
DB

Working Storage

VAGen Server

XFER <blank> , UI

HTML sent out on CONVERSE
All storage saved and restored automatically
Logic can be coded before and after CONVERSE
VAGen manages control transfer

HTML for sent out on XFER
Current program ends, Next program takes over
Next program receives WSrec and UIrec as First UI Rec
VAGen manages control transfer

Current program ends, HTML for sent out on XFER
Program Link or Form on UIrec determine what pgm follows
pgm that follows receives UIrec only as First UI Record
User managed dialog sequence using Program Link or Form

Session

Session

Web Transaction

Web Transaction

Web Transaction
88 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

5.2 Program structure options

Web Transaction program structure options are discussed in this section.
Table 2 compares Web Transaction program structure and processing.

Table 2. Comparison of Web Transaction program types

The choice of Web Transaction program structure affects the design and
processing of the complete system. Each option must be understood so that
the appropriate choice for the system to be developed can be made.

5.2.1 Using CONVERSE UI Record (complete state)
Program design when using the CONVERSE model is similar to traditional
Main transaction programs in VisualAge Generator using maps. This design
saves the complete program state during each CONVERSE. The UI Record
data is saved in the session bean on the Web server, while the data for the
working storage and local records used in the Web Transaction program are
stored on the VisualAge Generator runtime server platform. When the end
user clicks on a submit button on the Web page, all state data is restored and
the program continues processing.

A complete state Web Transaction program is initiated by direct invocation or
by transferring control to a CONVERSE program with a working storage
record. The syntax is as follows:

DXFR Program WSRec;

Figure 28 shows how state data is saved automatically during a CONVERSE
by a segmented VisualAge Generator program.

Program Type Program State
Active Session

Data Beans
Back Button

Response

CONVERSE UIREC

Complete State: Program
segmented at point of
CONVERSE and all program
data stored in work database.

Yes

Reloads current page
from active beans.

No ability to back up
to a previous cached
response.XFER PGM WS, UIREC

Controlled State: Program
segmented at initiation point.
Passed working storage record
stored in work database.

XFER ’ ’, UIREC
Stateless: No program active
during browser interaction.

No Loads previous
cached response
Web Transaction design concepts and considerations 89

Figure 28. CONVERSE (complete state) program design

The submit button on the UI Record must be part of the default form for the
program conversing the UI Record to continue. This means that the submit
button must not be a subleveled item under a parent item with the type of
FORM. A submit button defined as a subleveled item under a form item
requires a program link definition. This form will specify another program to
transfer control to when the button is clicked. Therefore, a submit button that
is defined for a form will transfer control to another program. This means that
the current program that issues the converse will not continue.

This is an important issue to understand from a design perspective. If a
program link or submit form is defined in the UI Record, the current program
will transfer control to another program. If a CONVERSE design is being
used, the program’s state data will be saved upon this transfer of control. This
could lead to potential performance and capacity issues for the Web server
and VisualAge Generator server. This design issue is shown in Figure 29.

START
DXFR PROG WS

CONVERSE

Web Transaction

Web Browser

Working Storage
Local Records

XFER PROG WS, UI
XFER ' ' , UI
DXFR PROG WS

Session

WebSphere
Application Server

UI Record

VisualAge
Generator Server

Work DB

Working Storage
90 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Figure 29. Data lost after program link during CONVERSE

The CONVERSE program design is the most convenient programming option
for the programmer because it saves the complete state of the program
during a CONVERSE.

However, because of the state implications shown in Figure 29, this type of
programming should be used with caution. This is true even though session
data will time out, and as session IDs are reused (see 2.3.3, “Session ID
Manager (SIDM)” on page 46), work database entries will eventually be
recycled.

5.2.2 Using XFER Program WSRecord, UI Record (controlled state)
The program design using an XFER Program model allows the developer
some control of the saved state data (content and amount). After the XFER to
the target program, HTML is sent to the Web browser; the UI Record and
passed working storage data are saved; and the transaction ends. Once the
user submits a request back to the Web server, a new transaction is initiated
and the passed UI Record and working storage data are restored.

A controlled state Web Transaction program is initiated by transferring control
to a first UI program with an optional working storage record and a UI Record.
The syntax is as follows:

XFER Program WSRec ,UI Record;

The UI Record referenced on the XFER must match the first UI Record
defined for the target Web Transaction program.

Web Browser

CONVERSE

Web Transaction

Program Link

CONVERSE

Web Browser

Web Transaction
Web Transaction design concepts and considerations 91

Use of the working storage record is optional. By not using a working storage
record during the transfer, you can further reduce the amount of data being
stored during display of the UI Record.

During transfer processing, the target Web Transaction program actually
starts and controls the work database processing and return of the UI Record
data to the Gateway Servlet.

The logic flow of the controlled state program design is shown in Figure 30.

Figure 30. XFER Program WSRecord, UI Record (controlled state) program design

This design option is similar to a CONVERSE in that the program saves state
and waits for a response from the end-user. The difference is that the state is
saved for only the UI Record, and the working storage is passed on the XFER
statement. Therefore, the developer has more control over how state will be
saved during each interaction with the user in the browser.

Because some data is saved during browser interaction, the same
implications found in the CONVERSE design apply (see Figure 30), if the UI
Record has program links defined to start another program directly from the
browser. You could also argue that:

• With a controlled state design, less information is saved on the Web
server and VisualAge Generator server, because only the UI Record and
passed working storage record are being saved.

• The session data used to support the UI Record state will time out and the
work database will be recycled over time.

Therefore, stranded state data might not be a serious concern.

Session

WebSphere
Application Server

UI Record

XFER PROG WS, UI
XFER ' ' , UI
DXFR PROG WS

First
UIRec

Web
Transaction

XFER PROG WS, UIRec

Web Browser

VisualAge
Generator Server

Work DB

Working Storage
92 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

5.2.3 Using XFER ’ ’ , UI Record (stateless)
The program design using XFER ’ ’ UI Record model (stateless) saves no
state data for the program or UI Record. Upon sending HTML to the Web
browser, the transaction ends. Once the user submits a request back to the
Web server, a new transaction is initiated. Other than the data passed to the
First UI Record, no other state data is automatically available to the Web
Transaction program.

During transfer processing, the Web Transaction program is performing a
send page to the Web browser. The syntax is as follows:

XFER ’ ’, UI_RECORD;

Note: To avoid a possible bug in some runtime environments (GA code) and
to remove the question mark (?) from the program structure diagram, this
syntax is recommended:

MOVE ’ ’ TO EZEAPP;
XFER EZEAPP , UI_RECORD;

The logic flow of the First UI Record with blank (stateless) program structure
is shown in Figure 31.

Figure 31. XFER ’ ’ , UI Record (stateless) program design

The program started is identified in the FORM defined for the UI Record.
More than one form can be defined; this would allow a program switch to
occur based on which portion of the UI Record (which FORM) the end user
interacted with in the browser.

There are two ways to save state using the XFER ’ ’, UIRec program design:

• Save state data in hidden fields on the UI Record in the user browser.

• Manually (specific program logic) save state data, in a database or
temporary storage queue, as available on the VisualAge Generator Web
Transaction runtime platform.

XFER PROG WS, UI
XFER ' ' , UI
DXFR PROG WS

First
UIRec

XFER ' ' , UIRec

Web Browser

Web
Transaction
Web Transaction design concepts and considerations 93

Developing programs that are truly stateless places more of a burden on the
application programmer who must develop programs that satisfy the business
requirements. While the programming may become a more difficult task, it will
result in an application design that both performs well and is scalable.

5.3 Implementing self-managed state support for XFER ’ ’ programs

While you can choose to use either stateless (XFER ’ ’) or managed state
(CONVERSE or XFER Pgm) Web Transaction program structures, there are
times when you need the stateless structure with some form of state
management. When this occurs, you must implement state management in
your application logic. This requires that an approach be defined and a data
storage technique be chosen.

5.3.1 Introduction
Two basic forms of self-managed state can be implemented:

• Global state — Saved State information stored using a common format.
Data accessible by any Web Transaction program invoked by a given end
user.

• Conversation state — Saved state information stored and retrieved by
one or more Web Transaction programs is specific, in content and format,
to a given conversation (program interaction) with a given end user.

Multiple keys must be used to ensure that end user manipulation of hidden
key values passed on forms or program link fields (as program link
parameters) is not possible.

There are, of course, variations on these forms of saved state data. We will
only investigate the implementation of a limited set of the available options.

Notes: Self-managed state is similar to the state processing implemented
with other program structure options:

• The XFER Pgm, WSRec design implements controlled state support using
either global or conversation state approach.

Which is used depends on the number and format of the working storage
records used as part of the XFER Pgm, WSRec transfer statement.

• While a similar working storage record convention can be applied to a
CONVERSE model Web Transaction when a common working storage
record is used on the DXFR Pgm, WSRec transfer statement, this is not really
state management, in that the passed working storage record is not stored
(no end user interaction occurs during a DXFR).
94 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

All data in the records associated to the CONVERSE model Web
Transaction program are saved during the CONVERSE of a UI Record.

5.3.2 Global state
To implement support for the global state form of self-managed state data, the
initial Web Transaction program must be able to generate a key to store data
before the Web Transaction completes and identify the key used to store the
data when the target XFER ’ ’ Web Transaction begins.

Our implementation approach for global state management is based on a pair
of keys constructed from both predictable and unique elements:

• EZEUSR — Unique identifier for current user generated by Gateway
Servlet during user logon (explicit or implicit). Available in any active Web
Transaction program being used by one user from one workstation.

• Conversation Start Timestamp — Created at start of original
conversation and used as a blind key.

The blind key can be passed as part of the program link parameters defined
in the UI Record for the defined form that starts the target XFER ’ ’ Web
Transaction program. The target Web Transaction program obtains the
generated current user identifier from the EZEUSR EZEword. These two
values can be used to find any saved state data.

5.3.3 Conversation state
To implement support for the conversation state form of self-managed state
data, the initial Web Transaction program must be able to generate a program
unit specific key to store data before the Web Transaction completes, and
pass the data required to identify the key used to store the data when the
target XFER ’ ’ Web Transaction begins.

A program unit might be one Web Transaction program or a set of tightly
related Web Transaction programs that use state data to pass business
function control information forward, as required.

One implementation approach for conversation state management could be
based on keys constructed from these predictable and unique elements:

• EZEUSR — Unique identifier for current user generated by Gateway
Servlet during user logon (explicit or implicit). Available in any active Web
Transaction program being used by one user from one workstation.

• Conversation Start Timestamp — Created at start of original
conversation and used as a blind key.
Web Transaction design concepts and considerations 95

• Conversation Identifier — Hardcoded value generated by initial Web
Transaction in a program unit to control access to the conversation
specific state data.

Parallel use of a program unit should result in the generation of a complete
key that is still unique for the current user of the Web Transaction set.

5.3.4 Implementation
The implementation of self-managed state processing is discussed in this
section. The design reviewed is used in the state management server
program that is used in the Web Transaction state management programming
skill exercises (see 8.2.3, “Self-managed state implementation (XFER ’ ’
model)” on page 168).

State data storage
For the purposes of this redbook we chose to use DB2 to store our
self-managed state data. This provided us with portability, simple testing
using the VisualAge Generator test facility, and ease of implementation.

In a true production environment, this choice might not be appropriate, given
the implicit overhead associated with a database management system such
as DB2 (when compared with less functional temporary data storage
techniques).

The appropriate choice for your environment will depend on the storage
techniques available on your target runtime platform. For example, if CICS is
your target runtime platform, CICS temporary storage queues, which can be
accessed using VisualAge Generator function I/O options, might be a more
efficient choice.

Database design
We designed a DB2 table that could support the implementation of both
global and conversation self-managed state data. Multiple keys are defined,
and a common data area, which can be refined (substructured) in the Web
Transaction program. The table definition is shown in Figure 32.
96 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Figure 32. DB2 table definition for self-managed state

The WTS_Active_USR column can be used to either record a user identifier
(other than EZEUSR) or to save a conversation identifier value.

Web Transaction program design
A reusable called server program can be implemented to provide save, read,
update, and delete access to the state data in the DB2 table.

When using the server program for global state data access:

• The active EZEUSR value is passed to be part of the key.

• When the state data is being saved for the first time, the current timestamp
is obtained from DB2 to represent the blind key value. This is stored in the
WTS_KEY_TMSTMP column.

• To age the state data (in case it must be purged) the last access is
recorded in the WTS_KEY_TMSTMP column.

• The blind key value is returned to the calling Web Transaction where it is
kept in a NONE or HIDDEN field in the UI Record.

• The blind key value is passed to the target XFER ’ ’ Web Transaction as a
program link parameter in the defined form or program link.

Data to be saved, along with the processing request (save, read, update, or
delete), are passed to the state management server program.

For conversation state management, the calling Web Transaction would have
to provide a conversation identifier to isolate the state data from other
program units in use by the current end user.

The server program provided to support the self-managed state data exercise
only implements global state management functions (see 8.2.3,
“Self-managed state implementation (XFER ’ ’ model)” on page 168).

CREATE TABLE VGDBA.WT_State (\
WTS_EZEUSR CHAR(8) NOT NULL, \
WTS_KEY_TMSTMP TIMESTAMP NOT NULL, \
WTS_Active_USR CHAR(8), \
WTS_CRT_TMSTMP TIMESTAMP, \
WTS_DATA CHAR(100), \

PRIMARY KEY (WTS_EZEUSR,WTS_KEY_TMSTMP) \)
Web Transaction design concepts and considerations 97

5.4 Design considerations

Programming decisions, and their implications on implementation options,
are discussed in this section.

5.4.1 Data transfer
Considerations for how data can be passed between programs, using a UI
Record, are discussed in this section.

Forms
• A default FORM will be created for input fields and submit buttons not

defined as subleveled data items under a defined FORM item.

This type of UI Record is defined for CONVERSE or XFER Program Web
Transactions.

• Each explicitly defined FORM item must include a program link definition
to identify the target Web Transaction.

• Programs that CONVERSE a UI Record will continue execution after the
CONVERSE when a submit button has been clicked on the default FORM.

If a submit button in an explicitly defined FORM item is clicked, a transfer
of control to the target program defined in the FORM program link will
occur.

• A FORM item will pass all items of UI type INPUT, INPUT/OUTPUT, and
HIDDEN defined on the FORM.

These items will be passed to the same named items of the receiving UI
Record for the program receiving control.

If an item does not exist in the receiving UI Record, it will not be passed. In
this case, the UI Record acts as a working storage record.

Notes:

• Be cautious when using defined forms and different records on the
XFER ’ ’ UIRec transfer and First UI Record definition for a Web
Transaction. If the form names are the same, and the structure defined
does not match, subleveled fields may be passed unexpected data
values.

• If you use different UI Records, do not define a form in the First UI
Record specified for the Web Transaction.
98 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

UI Records and program transfer
• A FORM item will not pass items of UI type OUTPUT or NONE defined on

the FORM.

To pass OUTPUT or NONE UI types of items, they must be explicitly
defined on the Link Parameters section of the UI Record properties
window.

• A FORM can also pass items not defined in the FORM by explicitly
defining them on the Link Parameter section of the UI Record program link
properties window.

• FORMS are dynamic and Program links are static.

A form will pass the input and input/output data entered by the end user
while a program link hardcodes the data to be passed as part of the link
when the HTML is sent.

It is not possible to pass data entered in a field as part of a program link
(the program link will pass the data in the field before it has been shown in
the browser).

A FORM will pass the data entered into an input or input/output field with
the same name in the first UI Record defined for the Web Transaction.

• PROGRAM LINK items must specify Link Parameters to pass data.

• In an XFER ’ ’, UI Record Web Transaction program you have the option
of using the same UI Record to both send and receive data, or to use
different UI Records to send and receive data.

Submit buttons
• SUBMIT items defined in a UI Record sent to a browser will show only if

they contain data. This data may be defined statically through the Initial
Value property of the item (Submit tag), or this data may defined
dynamically in the program logic.

• SUBMIT items defined in a FORM must have matching SUBMIT items in
the receiving UI Record.

The receiving UI Record will map the label of the button clicked to the
SUBMIT item in the receiving UI Record. Then the SUBMIT VALUE will be
sent to the defined SUBMIT VALUE ITEM of the receiving UI Record.

The SUBMIT VALUE ITEM can then be interrogated by the receiving
program to determine the action requested.
Web Transaction design concepts and considerations 99

Table 3 shows the techniques and implications for passing data between the
Web Transaction and the browser (and back).

Table 3. Data management by UI Type

5.4.2 UI Record edits
Items defined as INPUT or INPUT/OUTPUT, if modified, will have input edits
defined for the item run upon FORM submission. If the edits fail, the entire
FORM will be redisplayed with the corresponding item error messages. If the
edits pass, the item is submitted to the Gateway Servlet.

Editing rules
Input or input/output fields are edited in the following manner:

• All fields, if modified, must pass one level of edit before any fields are
subjected to the next level of edits.

Web Transaction
Type

User
Interface

Type
In HTML In Session Bean1

In UI Record for
Target Web

Transaction1

Converse UIRec
XFER Pgm WSRec,
UIRec

Hidden Yes

Yes Yes

Input
Input/Output

Yes

None No2

Output Yes

XFER ’ ’, UIRec

Hidden Yes

Not Applicable3

Yes

Input
Input/Output

Yes Yes

None No2 No4

Output Yes Yes

Table Notes:
1. Data can be modified by Web-based or host-based edit functions defined for the UI Record data items.
2. UI Type None data items will be in the HTML if they are referenced as a program link parameter.
3. Session beans are not created for a UI Record after an XFER ’ ’, UIRecord transfer request.
4. A None data item can have a value if it is the target of a program link parameter or the destination of

a move in an edit function.
100 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

• If one field fails, the UI Record is redisplayed with the error shown (if the
JSP in use gets the message and puts it out, this may have been altered
during JSP customization).

Editing processing levels
Several levels of edit processing exist on the WebSphere Application Server
platform:

• Elementary edits — These include data type checks (such as characters
in a numeric field), minimum input, required input, hex, date, and so on. If
one data item edit fails, the UI Record is redisplayed.

• Table edits — If one data item fails a table edit (range edits, match valid
and match invalid), the UI Record is redisplayed.

• Data item edit functions (executed on the bean by the Gateway Servlet)
— If one data item has an error (identified using EZEUIERR), the UI
Record is redisplayed.

Note: There were problems with EZEUIERR processing for XFER ’ ’
programs in the GA and fixpak 1 level code. EZEUIERR identified
problems do not result in a display of the identified error message. We
expect this problem to be corrected in fixpak 2.

If all of the fields pass the above edits, the data is passed to the Web
Transaction which runs the edit functions defined to run on the Web
Transaction runtime platform (as opposed to those edits processed on the
WebSphere Application Server platform by the Gateway Servlet).

In the case of a form or program link (XFER ’ ’, UI Record structure for target
program), the input is put into a new bean (other than the bean for the UI
Record that is being displayed). The input data is checked by the same
process described above. If a field fails any level of editing, the UI Record
re-displayed.

Modification trigger
In a TUI environment, identifying modified fields was simple. The terminal
device would identify which fields had been modified.

In the case of a UI Record, the Gateway Servlet gets all the data for the UI
Record, whether or not it has changed. The Gateway Servlet will identify that
the field is modified if data is received for the field and the data is different
than what was originally in the field.
Web Transaction design concepts and considerations 101

The end user may enter data in the field but if the contents remain the same,
data item edits will not be triggered. Data item editing options for each UI
Type are reviewed in Table 4.

Table 4. UI Record editing options

Using shared data item definitions
The UI Type related specifications for a shared data item will be used when
the shared data item is used in a UI Record.

Data item edit functions
Edit function field modifications occur after the bean has been loaded with the
data passed back from the browser (input and input/output fields by name
and any defined link parameters).

An edit function can alter the input or generate additional data for the UI
Record before the Web Transaction is given control.

Note: The UI Record specification and HTML implementation was discussed
in detail in Chapter 3, “HTML and UI Record definition” on page 55.

Web Transaction
Type

User Interface Type
Support for UI Type

edits
Modification required

to trigger edit

Converse UIRec
XFER Pgm WSRec,
UIRec

Hidden Yes Yes

Input
Input/Output

Yes Yes

None No Not Applicable

Output Yes2 Yes

XFER ’ ’, UIRec

Hidden Yes

Not Applicable3

Input
Input/Output

Yes

None No

Output Yes2

Table Notes:
1. Data can be modified by Web-based or host-based edit functions defined for the UI Record data items.
2. Output edits are only triggered in an XFER ’ ’ , UIRecord program and should probably be avoided.
3. Session beans are not created for a UI Record after an XFER ’ ’, UIRecord transfer request.

Because of this, all data looks modified, so all data edits run.
102 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

5.5 System architecture considerations

Key architectural issues related to Web Transaction program design, system
structure, and runtime system configuration must be identified and
understood so that the appropriate decisions can be made during Web
Transaction system development.

The approach used to design a Web Transaction system must incorporate the
identified requirements for how key architectural issues will be resolved.
These decisions will determine how Web Transaction programs will be
developed and the configuration of the runtime environment.

An overview of the issues and implementation considerations is provided in
Table 5. You should consider the identified issues along with environment
specific considerations that apply in your domain when designing a Web
Transaction-based system.

Table 5. Web Transaction architecture issues

Domain Issue Considerations

Web
Transaction
program design

Program structure:
Complete State
Controlled State
Stateless

Migration of existing TUI system

Session data, work database processing, self-managed state
processing, and scalablity

UI Record edit
definitions
and edit routines

Preexisting edit logic may require host implementation of edit
functions.
Output data is not available for redisplay when a form is
returned during an error situation. This may impact
presentation processing.

Error management

Default JSP implementation or alternative, system specific,
implementation and management technique.

Existing edit logic may require alternative error management
approach.

System
structure

One program type or
mixed structures

UI Record definition management

Recycling abandoned work database entries.

Transfer techniques

Work database performance and capacity

Management of long running transaction
(multiple page dialog)
Web Transaction design concepts and considerations 103

As you can see in Table 5, we do not state that there is one best way to
design and implement a Web Transaction-based system. There are
trade-offs, external considerations, and existing code reuse objectives that
must all be factored into the design process. That said, consider these
statements:

• CONVERSE model programs are best when migrating existing TUIs to
Web Transactions.

• The XFER Program model provides for both controlled state and solid
support for UI Record defined edits and edit functions.

• The best possible scalability scenario is found when using the XFER ’ ’
model (as long as the recreation of internal working data or self-managed
state processing does not take more resources than state management
using the controlled state model).

System
implementation

User identification

VisualAge Generator login page (Vagen1LogonPage.jsp) or
WebSphere Application Server user management.

Availability of user identifier in Web Transaction program logic
(EZEUSR or EZEUSRID).

Application specific logic for identification.

Security
(authentication and
authorization)

WebSphere Application Server user management
authentication and authentication.

CICS-based authentication: Hardcoded, User specific, Trusted
(no password).

Application specific logic.

JSP
implementation
and
customization

Implementation of
common
architectural
changes to default
JSP

Customization gets more difficult if the UI Record definitions
are constantly changing.

Style sheets may be effective for some look and feel
customization requirements.

Integration with
existing HTML page
frameworks

Logon processing must be considered.

Navigation must target the required Web Transaction
programs.

Interaction with
existing
servlet-based
systems

Understanding the Gateway Servlet API (how target Web
Transaction programs are invoked and parameters passed)

Servlets could invoke the Gateway Servlet to use Web
Transaction processing (sharing state data may be difficult).

Domain Issue Considerations
104 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Chapter 6. Web Transaction Web site development

The development of Web Transactions using VisualAge Generator represents
only part of the process required to implement a functional e-business Web
site. The generated default JSPs must be customized and included in a
complete Web site before the system is ready for most end user scenarios.

This chapter discusses front end Web site development considerations for a
system that includes the use of Web Transactions implemented using
VisualAge Generator.

6.1 Development process overview

An overview of the Web Transaction development and implementation
process that will be followed, regardless of how many people participate, is
provided in Figure 33.

Figure 33. Web Transaction development process overview

The basic process requires that basic architecture decisions be made first.
Next, UI Record definitions must be stabilized, followed by generation of
default JSPs, customization of the JSPs to fine-tune the user interface, and
then final generation and implementation of the runtime system.

Definition
and Testing

Implement
Runtime

HTML Base
Development

JSP Integration
and

Customization

Combine with
Customized JSPs

and Publish
Runtime System

Back End Front End

Interface
Lockdown

Default JSPs

Beans
Generate

BeansGenerate

Identify System
Structure and

Design

Web Transaction

Web Transaction
Structure and State Data

HTML / JSP
Integration
Approach
© Copyright IBM Corp. 2000 105

6.2 Roles and skills in the development process

The development process that should be followed for turning the default JSPs
generated by VisualAge Generator into a presentable Web site can vary
widely. The actual process will be based on the skills available in the
development team and the desired level of presentation for the finished Web
site.

In an ideal world, there would be no required communication or dependencies
between the different groups involved in the development process. However,
it is impossible to avoid the unique and almost limitless possibilities of Web
site architecture, and therefore impossible to lay down one set of rules for
attacking the problem of how much each group should know about the others’
responsibilities.

If the browser pages seen by the end user are directly based on the
generated default JSPs, and these pages are being delivered one by one by
a Web server with minor modifications, then there are significantly fewer
issues than if the default JSPs are being included in a multi-nested frameset
(a common HTML design technique) with appropriate navigation control in
the hands of the end user.

The most basic issue involved in marrying VisualAge Generator’s default
JSPs with modern Web site design is that of scope and context:

• In a "single-serve" Web site design, pages containing all of the essential
elements of a user-friendly Web site (clear navigation, predictable content
groupings, and so on) are served up one at a time, giving the impression
of navigating through sets and subsets of pages.

In reality, this is a linear movement, with each hyperlink spawning a single
new page that occupies the whole browser window.

• In a FRAME-based Web site, the initial page (and possibly subsequent
pages within it) are broken up into discrete areas called frames, with each
separate frame acting as an independent browser window, although they
are children to the top-level browser window.

This gives Web site designers the ability to "store" a menu or other
information (in the form of an HTML page) in one frame while changing
content in another, thereby allowing users to visually see the context in
which they are navigating the site.
106 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

There are a few things we need to examine more closely in order to better
understand the way that the design process will flow. Ideally, the process
from start to finish will involve three distinct developer roles (Web Transaction
skills, Web site/HTML skills, and JSP skills). However, all skills may not be
available, so other alternatives will be presented to deal with these scenarios.

We will also take a short look at the issues involved in session/request scope
in JSP programming, and will present some solutions for the problems that
result from multiple HTTP requests in a FRAMESET.

6.3 Function and presentation

The convenience and power inherent in being able to publish Web-enabled
systems from a 4GL environment is readily apparent. However, system
defaults are almost never immediately presentable, and such is the case with
the default JSPs generated for Web Transactions by VisualAge Generator.

With JSP source modifications an HTML programmer would consider
moderate, we can increase the presentation factor immensely. The look and
feel of the generated default JSP is shown in Figure 34.

Figure 34. Generated default JSP

The look and feel of the same basic page after some basic HTML design
enhancements have been applied is shown in Figure 35.
Web Transaction Web site development 107

Figure 35. Default JSP after HTML presentation enhancements

As you can see, the changes made during customization are almost a
necessity to implement effective presentation, but the presentation
enhancements did not change the basic functionality of the JSP (or Web
Transaction). This is the main concept to realize: that function and
presentation are two entirely separate and distinct entities (although each
influences the other in varying degrees).

Functionality refers only to whether or not the system works as it is supposed
to work (data management, edit processing, event processing). Presentation
refers to whether or not people will be able to efficiently use (or even want to
use) the final version of the system.

There are limits to what can be done in the UI Record definition to control the
actual presentation in the generated default JSP (see Chapter 3, “HTML and
UI Record definition” on page 55 for details). To achieve an acceptable level
of effective and efficient presentation, some level of modification of the
generated default JSPs will be required. This presents several challenges for
the development team:

• Who should perform the modification?
• When should the modifications be made?
• How can the process be managed?

Note: This is the first time that modification of parts generated by VisualAge
Generator is not only permitted, but encouraged (if not required). This fact
alone represents a code management and ownership challenge to the
development team.
108 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

6.4 Level 1: the stranded Web Transaction developer

There may be situations in which a Web Transaction development project will
not have at least one person from each of the three recommended skill
groups (Web Transaction, Web site/HTML, and JSP).

One possible scenario is that one or more Web Transaction developers would
be called upon to implement a fully functioning (note the emphasis) system.
While the Web Transaction development team would have no trouble with
creating a functioning system, we should not expect them to have the
knowledge required to then transform the generated default JSPs into a Web
site of professional quality.

In a level 1 approach (one developer skill set) we can expect the Web
Transaction developer to have (or obtain) the knowledge required to perform
basic JSP modifications (but nothing more).

The development process to be followed using this level 1 approach is
depicted in Figure 36.

Figure 36. Level 1 development process diagram

A guided exercise showing how level 1 JSP enhancements can be made to
the generated default JSPs is provided in 11.1, “Level 1: What’s a Web
Transaction developer to do?” on page 195.

The generated default JSPs are created from the UI Record definition,
therefore the format of the pages is influenced by the ordering and structuring
of the UI Record definition. For example, consider the UI Record definition
shown in Figure 37 and the corresponding default JSP shown in Figure 38.

Phase 1 Phase 2

Web Transaction
Developer Creates

Base Web
Transaction System

Web Transaction
Developer Makes

Minimal JSP
Modifications
Web Transaction Web site development 109

Figure 37. Sample UI Record definition

Figure 38. Generated default JSP for sample UI Record

This mapping of UI Record definitions into the HTML created by the default
JSP allows the VisualAge Generator developer some measure of control over
the basic presentation constructs. However, there are numerous small HTML
modifications that a VisualAge Generator developer can make to further
enhance the look, feel, and usability of the final JSPs.
110 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

6.5 Level 2: Web Transaction developer and JSP developer

The second level of Web Transaction Web site development is the addition of
a JSP developer who has an understanding of how a VisualAge Generator
Web Transaction system works, and has moderate skill in HTML.

In a level 2 approach (two sets of developer skills) the JSP developer will be
responsible for making modifications to the generated default JSPs to satisfy
the system "look-and-feel" specification, and possibly the development of a
simple Web site, as well as the integration of the Web site and the
customized JSPs. See Figure 39.

Figure 39. Level 2 development process diagram

These individual methods for development will be reviewed more thoroughly
later on, but it is necessary at this point to say that there are certain
advantages and disadvantages to each method, and these need to be
weighed carefully with the JSP developer’s skill level in the areas of HTML,
HTTP, and JSP programming.

A guided exercise for how level 2 JSP enhancements can be made to the
generated default JSPs is provided in 11.2, “Level 2: Enter the JSP
developer” on page 205.

Web Transaction developer
The Web Transaction developer will have the same basic responsibilities as
with level 1, except that now the presentation design and implementation
phase of the project will be handled by the JSP developer. This allows the
Web Transaction developer more time to concentrate on the definition and
debugging of the system in VisualAge Generator. That said, it is still the UI
Record definition created by the Web Transaction developer that determines
the basic format of the user interface implemented by the generated JSP.

Phase 1 Phase 2

Web Transaction
Developer Creates Base

Web Transaction
System

JSP Developer Takes
Default System from

Web Transaction
Developer and Modifies
It to Create the Finished

Web site
Web Transaction Web site development 111

JSP developer
The JSP developer will be responsible for design and implementation of the
front end system. The user interface and interaction defined for the Web
Transaction system must be fully complete (or nearly so) in order for the JSP
developer to begin to deploy it.

After the Generator developer has completed the system and generated the
Web Transaction JSP pages, the JSP developer will assume control of further
development of the Web site itself.

The types of customization required will determine how much modification the
JSP developer will have to do to. For example, we have already seen the
results of a customized HTML design applied to a default JSP (see Figure 35
on page 108).

There many ways to set up the Web site, including creating a simple "dummy"
system with static data which is then replaced with the JSP data (scriptlets,
expressions, and so on) that is generated as a part of the default system.
Another option would be to create the Web site by simply modifying the
existing pages into what is required; in most cases, this will be the preferred
method for level 2 development. This will require that navigation and process
control be implemented as part of the UI Record definition (program links)
and the Web Transaction program logic.

6.6 Level 3: Web Transaction developer, JSP developer, HTML designer

The most efficient use of time and talent will be accomplished by dividing up
the Web site production between three roles: Generator developer, JSP
developer, and HTML designer. In this scenario, the Generator developer
would be able to develop the Web Transaction system concurrently with the
development of a "dummy" Web site by the HTML designer.

After both are completed and in working order, the JSP developer would take
over both sets of finished code and combine them together to form the
finished product. Ongoing dialog between all three levels will be necessary,
even during the final phase of JSP development. See Figure 40.
112 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Figure 40. Process Diagram for Level 3 Development

A guided exercise for how a level 3 development scenario works is provided
in 11.3, “Level 3: Integrating Web Transactions into a Web site” on page 226.

Web Transaction developer
The Generator developer ’s role in level 3 development will be the same as it
is for level 2 development. The Generator developer’s main responsibility is
the development and testing of the default Web Transaction system.

The advantage of a level 3 development approach is that the Web
Transaction developer will be able to develop the system without worrying too
much about the JSP developer and HTML designer being forced to wait for
the finished product. Web Transaction development can take place
simultaneously with the HTML development (as shown in Figure 40).

HTML designer
It has already been mentioned that the main advantage to this three-role
development process is the ability of the Generator developer and the HTML
designer to develop simultaneously. The HTML designer in this situation will
do what HTML designers do best: develop a great-looking Web site!

The realm of Web development this book is concerned with is text-based
HTML; these concepts do not apply to the more adventurous current methods
of Web development such as vector graphics animation (Macromedia Flash,
Macromedia Shockwave), until such time as these technologies make it
easily possible to incorporate JSP statements and dynamic data.

Phase 1 Phase 2

JSP Developer Takes
Default System from

Web Transaction
Developer and Inserts

Necessary JSP
Commands into

Finished Web Site

Web Transaction
Developer Creates

Base Web
Transaction System

HTML Designer
Creates Mock-Up

Web Site
Web Transaction Web site development 113

With Level 3 development, there is an opportunity to create the best-looking
Web site possible due to the increased focus on presentation and the
inclusion of a third role to address this in its entirety.

The reason the addition of this role is recommended (and the reason that
Level 3 development is the most efficient) is because it allows the developers
filling all three roles to remain precisely within their respective areas of
expertise. In this Level 3 scenario, the Generator developer develops only in
Generator, the HTML designer develops only HTML, and the JSP developer
only has to do JSP tasks (such as the replacement of the static placeholders
in the mock-up Web site with the actual JSP commands from the default
system).

JSP developer
The JSP developer is not actively involved in development for Phase 1 of a
level 3 Web Transaction project. While it may be that the other two roles will
need questions answered and other information discussed, by and large the
JSP developer will have other tasks to be concerned with, such as setup of
the JSP deployment environment (WebSphere Test Environment,
WebSphere Application Server, Web server).

When the HTML designer and the Generator developer are finished, it will be
the responsibility of the JSP developer to take the respective finished
products and combine them.
114 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Chapter 7. Transforming TUIs into Web Transactions

With the introduction of the UI record capabilities of VAGen V4, existing
Cross System Product (CSP) or VisualAge Generator Text User Interface
(TUI) programs can be transformed into Web Transaction programs. This
capability was designed to maximize the reuse of the existing business logic
and therefore retain the investment made in current systems.

In this chapter we review these considerations and provide information on the
processes that should be followed to perform this transformation. This is not a
migration; there will be coding changes required to the logic in the Web
Transaction program.

Note: This information is based on an article previously published in the
VisualAge Generator Newsletter.

7.1 Considerations

To get started, you must first analyze carefully what you intend to accomplish
by making the current TUI system function available from the Web, and
decide whether you intend to add any additional functionality to the Web
Transaction.

For example, suppose you strictly need to quickly get the TUI transactions
on the Web, you do not necessarily care about utilizing the Web UI
functionality, and you would like not to touch the code. In this case, you may
want to consider using a screen scraping implementation such as CICS
Host-On-Demand, CICS Web Interface with 3270 Bridge, or NetCICS. For
more information see:

http://www.ibm.com/software/ts/cics/library/whitepapers/cicsweb

These alternative approaches would allow your CICS TUI transactions to
become immediately available on the Web. You may even consider this as a
preliminary entry into the world of Web-based application systems.

However, if you would like to take advantage of the usability features of the
Web such as radio buttons, drop down lists, forms, and program links, then
you may want to consider using the VAGen V4 UI record feature to transform
your TUI application into an e-business Web Transaction.
© Copyright IBM Corp. 2000 115

7.2 Phase 1 — analysis

This transformation effort should be approached as any other new Web
development. First, you should have an analysis phase to identify the
functionality to be included in the Web application.

The main purpose of this step is to determine what functions in the existing
code are to be retained and to define what is required for screen navigation.
This step can save converting unneeded program functions and serve to
clarify end user interface components.

For example, a screen that displays a selection list of 20 codes or records
and has forward, backward, right, and left scrolling, could be presented a
Web page that just does forward scrolling and handles the selection of a
record. The code that handles the back, left, and right functions would be
eliminated. A small (<100 items) single field selection list can be better
presented as a drop-down list, eliminating even more code. Additional
consideration will need to be given to how many items are shown in the list
and how a selection in the list is made (radio button versus program link).

7.3 Phase 2 — basic transformation

Once you have identified the functions and code that will be used to
implement a Web Transaction, you can begin the transformation.

The following list of tasks outlines the process of transforming a TUI program
into a Web Transaction program with a Web-based interface.

Prepare the code to be transformed
• Import your code into VAGen V4 using the migration tool or the import

function (refer to VAGen V4 Migration Guide, SH23-0267 for more
information). There are additional considerations if you are moving from
CSP 3.3 or earlier to VAGen for the first time, since going from an
interpretive execution to generated COBOL may cause additional changes
to be made to your source code (see Migrating CSP Applications to
VAGen, SH23-0244).

• Test using the TUI base code to ensure that all components are present
and accounted for, as well to establish that the development environment
is functioning properly. You can choose to implement the TUI base code at
this time if this is your first VisualAge Generator implementation.
116 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

• Establish naming conventions and library organization (Projects,
packages...) for your transformed parts and also for the new part types like
the UI record and Web Transactions. Refer to Guide to Migrating MSL’s to
ENVY, SH23-0252 and the VAGen V4 Migration Guide, SH23-0267.

Convert the map to a UI Record and replicate code
• For each user map in the VAGen parts browser, choose the map, then

right mouse click and select Create UI Record from Map. This will create
a new VAGen UI Record with fields for each named map field (variable
field). Note that any label text or constant fields will not be included in the
UI record.

The default label text will be the field name. Pay special attention to follow
your naming standards for the new UI record name. It is recommended not
to exceed the length of the name of the old field. For example, if the
original map was named XY01M02 then a good name for the new UI
record would be XY01U02. The reason for this suggestion is so you can
more easily change the ESF syntax.

• Export the program using VAGen Export with Associates. Using your
favorite text editor, globally change the map name to the UI record name
where it is referenced in the code, change all occurrences of EZEMSG to
EZMSG, and optionally, change other component names such as program
name and function names (change the prefix to avoid conflicts with
existing TUI parts). Good naming standards will simplify this step and
reduce duplicate parts if you have both the old TUI program and the new
Web Transaction in your workspace at the same time. Once the ESF
changes have been made, import your new program from the changed
ESF file.

Note: Once you are more comfortable with the Web Transaction
programming model, you will be able to identify a level in your program
structure where TUI logic may be reusable. For the purposes of an initial
transformation, a complete replication of the existing code is
recommended.

Implement UI Record processing using the Converse model
• Change the program type to Web Transaction.

• Assure that any CONVERSE functions are using the new UI Record.
If you have several maps (header, detail, trailer) that are DISPLAYed
prior to the final CONVERSE, then all the maps need to be merged into
one UI Record. Popup maps will have to be considered separately.
Using a drop-down list or other UI functions may serve to replace their
purpose.
Transforming TUIs into Web Transactions 117

• Add labels to each Input/Output field. UI Record fields can be
customized to add table, function, and other edits, as well as help text.
Table edits will appear as drop-down lists. For function edits that are
not doing I/O or server calls, then you have a choice where they are
executed: on the Web server or on the host server. Help text entered in
for each field is included in the generated Java bean and can be
referenced in the JSP. This is not referenced in the generated default
JSP (see 15.1.3, “Implementing help” on page 255 for a hint on how
this help text can be used).

• Add submit buttons to your UI Record for each function key processed
and the ENTER key as well. You can set the initial value for each
button to the EZEAID equivalent value (ENTER, PF1, PF3...); however,
if your program executes a SET uirecord EMPTY this will clear the initial
values. If submit buttons have no value, they are not displayed. So set
the submit values prior to the CONVERSE (see Figure 41).

Figure 41. Setting submit values before CONVERSE

Transform existing logic
• Statements that SET or TEST the TUI map item's attributes are not

recognized and will cause errors to occur. For example, SET map item
PROTECTED will be in error. These statements will need to be
commented out or removed.

• How fields are displayed or hidden is left to the UI designer. In order to
make this determination, additional data will need to be passed in the
UI Record.

For example, if your map has certain fields that are updatable
depending on user security, then that user security information will
need to be included in the UI record. The UI designer can then change
the JSP to access the security data passed and set the display or hide
fields appropriately.

• Testing a field for MODIFIED is allowed, but setting a field MODIFIED
is not. This may also have an impact on your security or edit
processing.

MOVE 'PF3' TO EXIT-BUTTON;
MOVE 'ENTER' TO SUBMIT-BUTTON;

------------------- CONVERSE UGDETB-MAP1 -------------------

IF EZEAID NOT PF3;
...
118 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

• Add a title to your UI Record by editing the properties for the UI record
itself.

• Change any date fields that are defined as numeric and have a date
mask to be a character field (length 10). Then you must move
EZEDTELC into this field if you want the date to be formatted.

• For map array fields that have been converted to items with
occurrences, you need to add a counter item to the UI record to hold
the number of elements to display in the list when the UI record is
conversed. Then, in the custom settings for the item with occurrences,
you need to specify the counter item as the occurrences item.

Test your program
• When a CONVERSE is reached, the browser is displayed with your UI

record contents (see Figure 42). You may need to further refine the
code and UI Record changes to complete the required baseline
function.

Figure 42. Conversed UI Record
Transforming TUIs into Web Transactions 119

Other things that may need special consideration in this new environment
include:

• Security — Use of EZEUSR or application-specific security for read-only
access versus update authority.

• Attributes — Setting of extended or highlight attributes — how this will be
identified in the UI Record. You could use a separate attribute field for
each field, or a general one if possible.

• Messages — If you are using a Message Table, references to EZEMNO
and EZEMSG will need to be changed to EZEUIERR. One advantage of
this new environment is for multiple fields in error; all field level error
messages are displayed below the field rather than one at a time in
EZEMSG. General or informational messages like “Key selection and
press enter” moved to EZEMSG will need to be moved to a UI record field
like EZMSG instead. Be sure the text of the message still applies to the
Web interface.

• Error checking — If you currently have edit functions specified in your
map, these will be included in the UI record you create from the map.
Additionally, you can specify where the edits are to be performed on the
Web Server or on the VAGen Server. However, if you SET map fields as
MODIFIED to force the edit routine, then you will need to change the
program to always execute the edit routine after the CONVERSE.

• Navigation — Consider uses of menus, “fastpath” fields, or other
navigation. This function may be better implemented by the Web designer.

7.4 Phase 3 — make it more Web-like

At this point your application will still look very text-like, even though it is
displayed using a browser. To better utilize the usability benefits of the Web,
the UI record and Web transaction can be enhanced to make the navigation
and internal functionality more Web-like. Some additions may include:

• Using Program Links as a record selection — In the UI Record, change
a table column to be a type of program link, then customize it to specify
the program and the first UI Record that will be passed. Be sure that only
key information is passed in this manner, because there is a limit to the
amount of data that can be passed (around 400 bytes). The linked
program must be prepared to handle the First UI record information and
use the key information to read the detail record. The creation of a
program link is shown in Figure 43.
120 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Figure 43. Adding program link

Figure 44 shows a typical UI Record with program link.
Transforming TUIs into Web Transactions 121

Figure 44. UI Record with program link

• Use forms to combine multiple Text screens into one UI Record. Because
you are no longer limited to a 24x80 screen, you can possibly improve
user productivity by retrieving more information on each request. Work
with your Web designer to identify what would be best for your users.

• Consider using the XFER stateless model for selection lists and
inquiry-only programs, and stay with the CONVERSE model for
maintenance (Insert, Update, Delete). To implement the XFER model,
divide your single application into two programs. Everything prior to the
CONVERSE is in the first program, and everything after the CONVERSE
is in the second program. Each program would use the same UI Record.
The UI Record would have a parent field with UI Type of Form that links to
the second program. Instead of the first program doing a CONVERSE, it
would XFER ‘ ‘,UIRECORD. Once the user selects a submit button, the
second program is invoked and will evaluate the request and continue.

For additional information on program structure options, see Chapter 5,
“Web Transaction design concepts and considerations” on page 85.
122 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Some code is so intertwined with the map attributes and other settings, or so
heavily modified, that it may be faster to use VisualAge Generator Templates
(see http://www-4.ibm.com/software/ad/visgen/about/v4temp.pdf) to recreate
the functionality of the program. This is especially true for simple (not much
business logic) programs. For example, search for a record based on
selection fields, then display a selection list that has a program link column to
display or maintain the detail record.

7.5 Phase 4 — modify default JSP

Up to this point you have only seen the default Java Server Page (JSP)
displayed in the Browser. To make the user presentation more Web-like, this
JSP will need to be enhanced with graphics and incorporated in existing Web
pages using Web authoring tools such as WebSphere Studio. The UI
designer can use the default JSP generated as a base or guide to create the
customized JSP.

See Chapter 11, “Front-end customization techniques” on page 195for
additional information.
Transforming TUIs into Web Transactions 123

124 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Part 3. Web Transaction programming and front end customization
© Copyright IBM Corp. 2000 125

126 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Chapter 8. Developing Web Transaction programming skills

This chapter contains a set of scripted definitions and test exercises that will
help you understand how the Web Transaction program and the User
Interface Record (UI Record) support the implementation of a Web-based
application system. Two key areas will be studied in the exercise set:

• The different Web Transaction program structure options that are
available.

• How state data can be managed using UI Records and the different
program structure options that exist.

We will create a series of simple Web Transaction programs that provide read
and update access to database information. A set of pre-existing VisualAge
Generator database server programs (called batch) will be used to access the
Customer table found in the ITSOBANK database. You will:

• Define and test multiple Web Transaction programs.

• Understand how UI Records are used to implement a Web page.

• Customize the properties of UI Record items to define the user interface
view and function.

• Use the edit capability implemented for UI Record data items.

• Implement multiple Web Transaction program structures.

• Implement self-managed state data access.

Note: For information on the ITSOBANK database, see A.3, “Database” on
page 367.

For additional information:

• See Chapter 5, “Web Transaction design concepts and considerations” on
page 85 for a discussion of concepts.

• See Chapter 10, “Demonstration system” on page 181 for a detailed study
of the options.

8.1 Program structure

As described in 5.2, “Program structure options” on page 89, there are
multiple structure options available when implementing a Web Transaction.
Several Web Transaction program structure implementation exercises are
provided in this section.
© Copyright IBM Corp. 2000 127

8.1.1 Loading code base
To start this exercise, you need to have the startup version of the Web
Transaction System added to your repository and loaded in your workspace.

The code provided for this exercise was shipped with the redbook. See A.1,
“VisualAge Generator code” on page 365 for details.

To load the code:

1. From the Workbench, choose the Selected -> Import... Workbench menu
option. Select Repository as the import source and click on the Next >
push button.

2. Choose Local repository as the import option and use the Browse push
button to find the file:

<localdrive>:\WebTDisk\VAGen\WebTran.dat

3. Select the Project radio button and use the Details... push button to
import:

VGV4 Redbook WebTran Programs - Start 2.4

Select the Add most recent project edition to workspace toggle to
automatically load the imported project. If you did not do this, use the
Selected -> Add -> Project... Workbench menu option to add the imported
project versions to the workspace.

Notes:

• The completed answers to these exercises are in the WebTran.dat file.
Load version Labs Done 8.2.3.c of the vgv4.web.codebase package.

• This first set of exercises uses a server program (CUSTPGM) that accepts
a UI Record as the passed parameter. We found during later testing that
this architecture does not function at runtime (a bug). We fixed one
program set in our provided solution (CSTCNV->CUSTPGM). To get this
fix, load the version Labs Done 8.2.3.d of the vgv4.web.codebase
package.

8.1.2 Converse model programming
We are going to define a Web Transaction program (CSTCNV) that uses a
CONVERSE to prompt the user with a Customer Info Web page implemented
using a UI Record (CUSTUI).

The structure of this system is shown in Figure 45.
128 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Figure 45. CSTCNV Web Transaction program structure

This Customer Info Web page allows the user to enter a customer ID and
click a FIND button to invoke a server that searches the database to find the
customer record. The record data is returned if found, otherwise an error
message is displayed.

We will use UI Record input edits to verify that input error checking takes
place before invocation of the server.

In the scripted exercise, we will define a UI Record (CUSTUI) that will be
used by a CONVERSE model Web Transaction program (CSTCNV). The UI
Record definition must implement the user interface shown in Figure 46.

CONVERSE CUSTUI

CSTCNV

Web Browser
Developing Web Transaction programming skills 129

Figure 46. Customer Info Web page

Create Customer Info UI Record
1. The first task is the definition of the UI Record CUSTUI. This is the UI

Record that will define the basic properties of the user interface that will
be implemented in a Web browser. To create the CUSTUI record:

• Open the VAGen parts Browser and add a new VAGen part.

• In the New VAGen Part dialog, enter CUSTUI for Part Name, select
Record for Part Type, and select vgv4.web.codebase as the package
for the part.

2. Select User Interface in the record type definition drop down list.
130 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

3. Next define all the data items, with the identified UI Type choices, as
shown in the Record Editor view in Figure 47 (initially the UI Properties
column will say default; we customize these properties later).

Figure 47. CUSTUI UI Record definition

4. Define the Web Page title:

• In the record editor, choose the Define -> Properties menu option.

This will bring up the Record UI Properties window.

• Enter Customer Info for the UI title in the General tab.

This will display Customer Info as the title for the Web page.

• Identify BUTTON-VALUE as the Submit Value item using the record
properties dialog. This identifies the data item that will identify end user
interaction decisions (which button is clicked in the browser).

• Close the properties window.

5. Save the CUSTUI record.

6. Define the label text that will be shown for the CUSTID data item.

• Click the more button for the UI Properties of the CUSTID data item.

This will bring up the UI Properties window.

• Enter Customer Id as the UI Label shown on the General tab page.

7. Repeat the label text definition task to define meaningful label names for
the FNAME, LNAME, and BANKID data items.

8. Define the contents for the UI Record Submit Value Item.

• Click the Default cell for the UI Properties of the BUTTON item. This
will bring up the UI Properties window.
Developing Web Transaction programming skills 131

• Enter Find and Exit on two separate lines in the UI Label multi-line
edit. This will display Find as the label for that submit button.

• Next click the Submit tab and type FIND and EXIT, again on two
separate lines for the Initial value.

This allows buttons to be displayed in the browser and defines the
response value to the Web Transaction program (we will explore this in
more detail in a subsequent exercise).

9. Save the CUSTUI record close the record editor.

Create Customer Info Web Transaction
1. The next task is the definition of the CSTCNV Web Transaction program.

• Open the VAGen Parts Browser and add a new part.

• In the New VAGen Part window, enter CSTCNV for Part Name, select
Program for Part Type, and select vgv4.web.codebase for the
Package. Click on OK. This will open the program editor.

2. Define program main function.

• Select Web Transaction as the program type.

• Use mouse button 2 on the Structure Diagram and select the Insert
Main Functions... menu option. Enter CSTCNV-MAIN as the part name.

• Open the CSTCNV-MAIN part (select vgv4.web.codebase as the target
package for the new part).

• Converse the CUSTUI UI Record (select CONVERSE as the I/O option
and CUSTUI as the I/O object).

3. Define the function logic required to call the server program as part of a
loop around the Converse of the UI Record. The loop should continue until
the Exit submit request is received.

• Exit submit request is defined as when the data item BUTTON-VALUE
equals the text string EXIT.

• The pre-defined server CUSTPGM is called using the CUSTUI UI
Record as a parameter. The server program either returns data, if the
customer ID is found, or returns an error message in the MESSAGE
field.
132 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

The required function logic is shown in Figure 48.

Figure 48. CSTCNV-MAIN processing logic

4. Save the CSTCNV-MAIN function. The Customer Info Web Transaction
program is now complete. Save the CSTCNV program and review the
structure shown in the program editor.

Invoking and testing the Customer Info program
1. Click on the Test icon in the CSTCNV program editor. This will start the

test facility for the CSTCNV program.

Note: You can use the restart function of the test facility if you click on the
Test icon when the CSTCNV program is selected in the VAGen Parts
window.

2. Use the test facility step action to walk through the specified processing
logic (see Figure 48).

When the CONVERSE option is encountered, the test facility will invoke
the Web browser and dynamically build the HTML required for the
CUSTUI UI Record definition (at runtime this is done by a generated JSP).

In the browser we see the Customer Info Web page, with labels (UI type of
output) and input fields (UI type of input or input/output).

3. View the HTML source for the browser display. If options such as
View->Page source do not work, try saving the current page source to a
file and edit the file.

You should be able to see a form with text and input field components
implemented from the CUSTUI UI Record definition.

4. Enter a valid CustID, for example, the value 101, and click Find.
Developing Web Transaction programming skills 133

You should see how the program loops back on the CONVERSE with the
information found in the database.

• Enter additional CustID values or click on the Exit button to end the
Web Transaction program.

• Use the test facility to check the UI Record data item input values when
interacting with the Web Transaction.

5. Complete the library management tasks required after definition of the
Web Transaction program:

• Create an open edition of the vgv4.web.codebase package.
• Create an open edition of the VGV4 Redbook WebTran Programs

project.
• Version the VGV4 WebSphere RAD System project using a version

name such as Labs Done 8.1.1.

8.1.3 Single segment (XFER PGM) programming
A UI Record can be sent to a browser using a CONVERSE or an XFER
statement. In this section, single segment programs, which use an XFER
approach, are studied.

8.1.3.1 Using one UI Record
There are multiple Web Transaction structure options available. As a
demonstration of one of the alternative structures available, we will now
convert the CONVERSE model CSTCNV program (as shown in Figure 45 on
page 129), into a program implemented using a single segment (XFER PGM)
structure (see Figure 49).

Figure 49. CSTXP Web Transaction program structure

The XFER PGM logic shown in Figure 49 does not include the use of a
working storage record (the full syntax is XFER PGM WSRec, UIRec). When a
working storage record is not passed, only the data sent out in the UI Record

CSTXP

XFER CSTXP , CUSTUI
Web Browser

First UI
CUSTUI
134 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

can be returned to the target Web Transaction program; which data is
returned depends on the data item properties in the UI Record.

Edit Customer Info UI Record
Edit CUSTUI UI Record to:

• Require input for CustID before run XFER.
• Allow Exit button to work without checking for CustUI input

Follow these steps:

1. Modify the UI properties to define the input edits required for CUSTID data
item:

• Select the Edit tab page.
• Define 3 as a minimum input value.

This will ensure that at least 3 digits are entered in the CustID text field.

2. Rename BUTTON data item to BUTTON1; change Occurs data item
value to 1 and then:

• Click the Custom cell for the UI Properties of the BUTTON1 item. This
will bring up the UI Properties window.

• Remove the Exit value from the UI Label multi-line edit. Next click the
Submit tab and remove the EXIT value.

3. Use mouse button 2 on the BUTTON1 data item and select Copy, then
select Paste. Name the resulting data item as BUTTON2.

• Select Submit Bypass as UI Type.

• Click the Custom cell for the UI Properties of the BUTTON2 item. This
will bring up the UI Properties window.

• Enter Exit as a value in the UI Label multi-line edit. Next click the
Submit tab and enter EXIT as a value.

The resulting UI Record definition is shown in Figure 50.
Developing Web Transaction programming skills 135

Figure 50. CUSTUI UI Record definition

4. Save the CUSTUI UI Record.

Basic single segment program structure
Using the same CUSTUI UI Record used in the CSTCNV program, create a
new Web Transaction program (CSTXP) to implement the same functionality
using the XFER Program, UIRec model.

1. Create a new Web Transaction program (CSTXP). Open the VAGen Parts
Browser and add a new part.

• In the New VAGen Part window, enter CSTXP for Part Name, select
Program for Part Type, and select vgv4.web.codebase for the
Package. Click on OK. This will open the program editor.

2. In the Program Editor window, select Web Transaction as Program Type.

3. Define CUSTUI as the first UI Record for the new program.

Use mouse button 2 on Specifications and select the Add First UI
Record... menu option. Select CUSTUI as the first UI record.

4. Define the main function for the program:

• Use mouse button 2 on the Structure Diagram and select the Insert
Main Functions... menu option. Enter CSTXP-MAIN as the part name.

• Open the CSTXP-MAIN part (select vgv4.web.codebase as the target
package for the new part).

• Select EXECUTE as the I/O option.

5. Reuse portions of the processing logic shown in Figure 49 on page 134 to
implement the same processing function as provided by the CONVERSE
program structure.
136 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Note that the first time the function is invoked, no button has been pushed,
so the program must loop to itself. The function logic required is shown in
Figure 51.

Figure 51. CSTXP-MAIN processing logic

6. Save the CSTXP-MAIN function and the CSTXP program.

7. Use the test facility to test the CSTXP program.

8. Test the input edits and check the UI Record input fields:

• Enter a CustID value with only 2 digits and click on the Find button.
You should receive an error message in red that is positioned under
the field in error. This is the default error management behavior
associated with predefined edits. Additional customization is
supported.

• Enter invalid input and attempt to use the Find button. Unlike with the
Find button, the Exit button bypass definition allows the button to
trigger the target program even when invalid input has been entered. A
bypass edit button will not pass data values for a field in error back to
the target program, but other field values, where the input is not in
error, are passed back to the program.

9. Version your code, once it is working.
Developing Web Transaction programming skills 137

8.1.3.2 Using two UI Records
Convert the current single segment Web Transaction program into a set of
programs that use two UI Records, one for end user input and one for end
user output (see Figure 52).

Figure 52. CSTXP1 and CSTXP2 Web Transaction programs structure

The UI Record definition for end user input, CUSTUI1, must implement the
user interface shown in Figure 53.

Figure 53. Input Customer Info Web page

CSTXP2CSTXP1

XFER CSTXP2 , CUSTUI2

First UI
CUSTUI2 XFER CSTXP1, CUSTUI1

Web Browser

First UI
CUSTUI1

Web Browser
138 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

The UI Record definition for end user output, CUSTUI2, must implement the
user interface shown in Figure 54.

Figure 54. Output Customer Info Web page

Create input and output Customer Info UI Records
1. Create the UI Records CUSTUI1 and CUSTUI2 as copies of the CUSTUI

UI Record. Open the VAGen Parts Browser and use mouse button 2 on
the CUSTUI UI Record and select the Copy... menu option.

2. Edit the CUSTUI1 UI Record to remove the data items no longer needed
and use Input for CustID Data Type as shown in Figure 55.

Figure 55. CUSTUI1 UI Record definition

3. Edit the CUSTUI2 UI Record to set the UI Type to Output for all
database-only data items, as shown in Figure 56.
Developing Web Transaction programming skills 139

Figure 56. CUSTUI2 UI Record definition

4. Reset the customized edit UI Properties for the CUSTID data item by
changing the minimum input value to 0 (or use the defaults button to reset
the page).

5. Click the Custom cell for the UI Properties of the BUTTON1 item. This will
bring up the UI Properties window. Enter Next as the UI Label multi-line
edit value. Next click the Submit tab and enter NEXT as the edit value.

Single segment programs structure with multiple UI Records
1. Create a new Web Transaction program (CSTXP1). Open the VAGen

Parts Browser and add a new part.

• In the New VAGen Part window, enter CSTXP1 for Part Name, select
Program for Part Type, and select vgv4.web.codebase for the
Package. Click on OK. This will open the program editor.

2. In the Program Editor window, select Web Transaction as Program Type.
Define CUSTUI1 as the first UI Record for the new program; use mouse
button 2 on Specifications and select the Add First UI Record... menu
option. Select CUSTUI1 as the first UI record.

3. Define program main function.

• Use mouse button 2 on the Structure Diagram and select the Insert
Main Functions... menu option. Enter CSTXP1-MAIN as the part name.

• Open the CSTXP1-MAIN part (select vgv4.web.codebase as the target
package for the new part).

• Select EXECUTE as the I/O option.

4. The required function logic is shown in Figure 57.
140 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Figure 57. CSTXP1-MAIN processing logic

Note that short names for the data items do not work any more because there
are two UI Records associated to the Web Transaction. This means that logic
must fully qualify the data item name (CUSTUI1.BUTTON-VALUE).

5. Save the CSTXP1-MAIN function and the CSTXP1 program.

6. Do the same to define the CSTXP2 Web Transaction program (use
CUSTUI2 as the first UI Record).

The required logic for the CSTXP2-MAIN function is shown in Figure 58.

Figure 58. CSTXP2-MAIN processing logic

7. Save the CSTXP2-MAIN function and the CSTXP2 program.
Developing Web Transaction programming skills 141

8. Use the test facility to test the CSTXP1 program (which transfers to the
CSTXP2 program).

Use the test facility to check the UI Record data item input values when
interacting with the Web Transactions.

9. Version your code, once it is working.

When using the XFER PGM statement and two different UI Records (input and
output views), two different Web Transaction programs must be used. Only
the first UI Record defined for the target program can be referenced on the
XFER statement, so one program is required for each UI Record.

8.1.4 Single segment (XFER ’ ’) programming
In this section we implement Web Transaction programs using UI Records
with defined forms. This programming structure can be used with one or more
than one UI Record (different input and output views) per Web Transaction.

8.1.4.1 Using one UI Record
We will now implement the same processing provided in the CONVERSE
model CSTCNV program in a Web Transaction program implemented using a
single segment (XFER ’ ’) structure (see Figure 59).

Figure 59. CSTXB1 Web Transaction program structure

The UI Record definition for input and output, CUSTUI_IO, will implement the
user interface shown in Figure 60.

Web Browser

CSTXB1

XFER ' ' , CUSTUI_IO

First UI
CUSTUI_IO

CSTXB1

XFER ' ' , CUSTUI_IO

First UI
CUSTUI_IO
142 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Figure 60. Customer Info Web page

Create input and output Customer Info UI Record
1. Create the UI Record CUSTUI_IO as a copy of the CUSTUI2 UI Record.

Open the VAGen Parts Browser and use mouse button 2 on the CUSTUI2
UI Record and select the Copy... menu option.

2. Edit the CUSTUI_IO UI Record to change the following data items to
Input/Output type: CUSTID, FNAME, LNAME and BANKID.

Change the general and submit values for the BUTTON1 data item from
Next/NEXT to Find/FIND.

Add minimum input (3 characters) edit for the CUSTID data item.

3. Insert a new data item named FORM_IO in the CUSTUI_IO UI Record.
Set the FORM_IO data item UI Type to Form. In the UI Properties window
select the Program Link tab and then enter CSTXB1 in the Program field
(will not be in the drop down list) and CUSTUI_IO as the First UI Record.

4. Use mouse button 2 on the Form data item and select the Insert... menu
option to insert a substructure. Drag and drop all the other data items so
that they are substructures of the Form data item.

5. Add a substructure above the BUTTON1 and BUTTON2 data items.

Save the CUSTUI_IO UI Record, accept the VisualAge Generator
calculation for the superstructure data item length.

The final structure of CUSTUI_IO UI Record is shown in Figure 61.
Developing Web Transaction programming skills 143

Figure 61. CUSTUI_IO UI Record definition

Single segment program structure
1. Create a new Web Transaction program (CSTXB1):

• Open the VAGen Parts Browser and add a new part.

• In the New VAGen Part window, enter CSTXB1 for Part Name, select
Program for Part Type, and select vgv4.web.codebase for the
Package. Click on OK. This will open the program editor.

2. In the Program Editor window:

• Select Web Transaction as the Program Type.

• Define CUSTUI_IO as the first UI Record for the new program.

• Using mouse button 2 on Specifications and select the Add First UI
Record... menu option. Select CUSTUI_IO as the first UI record.

3. Define program main function:

• Use mouse button 2 on the Structure Diagram and select the Insert
Main Functions... menu option. Enter CSTXB1-MAIN as the part name.

• Open the CSTXB1-MAIN part (select vgv4.web.codebase as the target
package for the new part).

• Select EXECUTE as the I/O option.

4. The required function logic is shown in Figure 62.
144 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Figure 62. CSTXB1-MAIN processing logic

5. Save the CSTXB1-MAIN function and the CSTXB1 program.

6. Use the test facility to test the CSTXB1 program and check data values.

7. Version your code, once it is working.

8.1.4.2 Using two UI Records
Convert this Web Transaction system into one Web Application that uses two
different UI Records, one to collect user input (CUSTUI_I), and one to show
the use of the output (CUSTUI_O), and a new record which will be defined as
the first UI Record for the one Web Transaction program (see Figure 63).

Figure 63. CSTXB2 Web Transaction program structure

Web Browser

CSTXB2

XFER ' ' , CUSTUI_I

First UI
CUSTUI_IN

CSTXB2

XFER ' ' , CUSTUI_O

First UI
CUSTUI_IN

Web Browser
Developing Web Transaction programming skills 145

The UI Record definition for input, CUSTUI_I, must implement the user
interface shown in Figure 64.

Figure 64. Input Customer Info Web page

The UI Record definition for output, CUSTUI_O, must implement the user
interface shown in Figure 65.

Figure 65. Output Customer Info Web page

Create Customer Info UI Records
1. Create the UI Records CUSTUI_IN, CUSTUI_I and CUSTUI_O as copies

of the CUSTUI_IO UI Record.

Open the VAGen Parts Browser and use mouse button 2 on the
CUSTUI_IO UI Record and select the Copy... menu option.
146 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

2. Edit the CUSTUI_I UI Record to match the structure shown in Figure 66.

Figure 66. CUSTUI_I UI Record definition

3. Make these customizations to the CUSTUI_I record:

• Define general and submit values of Find/FIND for BUTTON1 and
Exit/EXIT for BUTTON1.

• Customize BUTTON1 data item to implement the Find button and
BUTTON3 data item will implement the Exit button.

• On the Program Link tab in the FORM_I UI Properties window define
CSTXB2 as the Program and CUSTUI_IN as the First UI Record.

4. Edit the CUSTUI_O UI Record to meet the structure shown in Figure 67.

Figure 67. CUSTUI_O UI Record definition
Developing Web Transaction programming skills 147

5. Make these customizations to the CUSTUI_O record:

• Define general and submit values of Next/NEXT for BUTTON2 and
Exit/EXIT for BUTTON3.

• In the UI Properties window for FORM_O pick the Program Link tab,
then use CSTXB2 for the Program field and CUSTUI_IN for First UI
Record.

6. Edit the CUSTUI_IN UI Record to meet the structure shown in Figure 68.

Figure 68. CUSTUI_IN UI Record definition

7. Make these customizations to the CUSTUI_IN record:

• Define general and submit values of Find/FIND for BUTTON1,
Next/NEXT for BUTTON2, and Exit/EXIT for BUTTON3.

• In the UI Properties window for FORM_IN pick the Program Link tab,
then use CSTXB2 for the Program field and CUSTUI_IN for First UI
Record.

We use three different names for Submit data items because Submit items
defined on a Form that identifies the target Web Transaction must have
matching Submit items on the receiving UI Record (to calculate value to
be stored in the submit value item value.

Single segment program structure with multiple UI Records
1. Create a new Web Transaction program (CSTXB2). Open the VAGen

Parts Browser and add a new part.

• In the New VAGen Part window, enter CSTXB2 for Part Name, select
Program for Part Type, and select vgv4.web.codebase for the
Package. Click on OK. This will open the program editor.
148 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

2. In the Program Editor window, select Web Transaction as Program Type.
Define CUSTUI_IN as the first UI Record for the new program; use mouse
button 2 on Specifications and select the Add First UI Record... menu
option. Select CUSTUI_IN as the first UI record.

3. Define program main function.

• Use mouse button 2 on the Structure Diagram and select the Insert
Main Functions... menu option. Enter CSTXB2-MAIN as the part name.

• Open the CSTXB2-MAIN part (select vgv4.web.codebase as the target
package for the new part).

• Select EXECUTE as the I/O option.

4. The required function logic is shown in Figure 69.

Figure 69. CSTXB2-MAIN processing logic

5. Save the CSTXB2-MAIN function and the CSTXB2 program.

6. Use the test facility to test the CSTXB2 program and check data values.

7. Try entering less than 3 characters in the CUSTID field. Notice that the
error is returned in the CUSTUI_IN record, as all edits are processed in
the first UI Record defined for a single segment program.

8. Version your code, once it is working.
Developing Web Transaction programming skills 149

8.2 Implementing global state management

It is common in application systems to have logic that implements different
functions based on the user (or user type) currently using the application. In
our Bank database example, we can add control logic that allows update
access for some users, so they can use the application to change the actual
value of some fields in the database.

To keep the implementation simple, a pre-defined application will ask for the
user name and then pass data back to the target Web Transaction for use in
determining application level authority. This passed information is the state
data that must be kept active by all subsequent Web Transaction programs.

In traditional systems, this state data would be shared by all active programs,
using techniques such as a passed common working storage record. There
are multiple options available for storing state data in a Web Transaction
system:

• UI Record data kept in either active beans (session data) or hidden fields
in the HTML sent to the browser (and defined to return to the target
program)

• Working storage record(s) whose state is saved by VisualAge Generator
runtime processing during user interaction

• Self-managed state processing

The implementation of this global data access in Web Transactions is studied
in this section.

8.2.1 UI Record-based state management implementation
State data can be kept active in the UI Record used by the Web Transaction.
The approach depends on the Web Transaction program structure.

8.2.1.1 CONVERSE model
In this exercise we will convert the CSTCNV Web Transaction into one that
accepts state information from the CSTIDUS Web Transaction (provided) that
identifies the user type and implements the state management by storing data
in the UI Record. The structure of this system is shown in Figure 70.
150 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Figure 70. CSTCNS Web Transaction program structure

The UI Record provided for input, CUSTUI_ID, implements the user interface
where the user type and next Web Transaction are selected (see Figure 71).

Figure 71. User Name inquiry Web page

The UI Record definition for output, CUSTUIS, must implement the user
interface shown in Figure 72, without update support, or the user interface
shown in Figure 73, with update support.

CONVERSE CUSTUI

CSTCNV

Web Browser
Developing Web Transaction programming skills 151

Figure 72. Customer Info Web page without the Update button

Figure 73. Customer Info Web page with the Update button

Create Input/Output UI Record
1. Create the UI Record CUSTUIS as a copy of the CUSTUI UI Record.

Open the VAGen Parts Browser and use mouse button 2 on the CUSTUI
UI Record and select the Copy... menu option.

2. Edit the CUSTUIS UI Record to match the structure shown in Figure 74.
152 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Figure 74. CUSTUIS UI Record definition

The following submit and submit bypass definitions need to be refined:

• Define general and submit values of Find/FIND and Update/UPDATE
for the BUTTONS array

• Define general and submit values of Exit/EXIT for BUTTON-EXIT.

Note: State data is going to be stored in the CANUPDATE data item, which is
defined with a UI Type of None, so that the information about the state is not
sent to the browser (the UI Type Hidden is sent, just not displayed). The data
will not be seen in the browser or the raw HTML used to compose the
browser view.

3. Save the CUSTUIS record and close the record editor.

CSTIDUS program and CSTIDUS-MAIN logic
The CSTIDUS program is provided in the code base originally loaded to start
these exercises.

The CSTIDUS-MAIN function logic implements a loop around a CONVERSE
statement to solicit user type input and transfer control to the target Web
Transaction program. The CSTIDUS-GET-PROFILE function is called using
the CUSTUI_ID.USER data item as a parameter. This function will store the
user type (update access) profile in the STATEWS.UPDATE data item. This
data is passed, as required, to the target Web Transaction program.

The CSTIDUS-MAIN function logic relevant for this exercise is shown in
Figure 75.
Developing Web Transaction programming skills 153

Figure 75. CSTIDUS-MAIN processing logic (1)

Create Customer Info Web Transaction
1. Define the CSTCNS Web Transaction program which will accept the

passed state data:

• Open the VAGen Parts Browser and add a new part.

• In the New VAGen Part window, enter CSTCNS for Part Name, select
Program for Part Type, and select vgv4.web.codebase for the
Package. Click on OK. This will open the program editor.

• Select Web Transaction as program type.

2. Add STATEWS working storage to Specifications list.

• Use mouse button 2 on the Specifications list and select the Add
Working Storage... menu option. Select STATEWS as the part name.

3. Add CSTPGMS-PARMS to Tables and Additional Records list.

• Use mouse button 2 on the Tables and Additional Records list and
select the Insert Table/Record... menu option. Select Record as Type
and CSTPGMS-PARMS as the part name.

4. Define program main function:

• Use mouse button 2 on the Structure Diagram and select the Insert
Main Functions... menu option. Enter CSTCNS-MAIN as the part
name.

• Open the CSTCNS-MAIN part (select vgv4.web.codebase as the target
package for the new part).

• Converse the CUSTUIS UI Record (select CONVERSE as the I/O
option and CUSTUIS as the I/O object).

5. Define the function logic required to call the server program as part of a
loop around the Converse of the UI Record.

The loop should continue until the Exit submit request is received. The
pre-defined server CUSTPGMS is called using the CUSTPGMS-PARMS
working storage record as a parameter. The server program either returns
data, updates data, or returns an error message in the MESSAGE field

IF CUSTUI_ID.BUTTON-VALUE = 'OK' AND
CUSTUI_ID.TARGET-APP = 'CNVUIREC';

STATEWS.UPDATE = CSTIDUS-GET-PROF(CUSTUI_ID.USER); /* Get user profile
DXFR CSTCNS STATEWS; /* Transfer to target pgm - with profile data

END;
154 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

if a successful Find was performed and the user has update capability
(provided through the CUSTUIS UI Record). The Update button is now
displayed.

The required function logic is shown in Figure 76.

Figure 76. CSTCNS-MAIN processing logic (1)

6. Save the CSTCNS-MAIN function and CSTCNS program.

7. Use the test facility to test the CSTIDUS program. Choosing the
CNVUIREC option will trigger invocation of the CSTCNS program.

Use the test facility to check the UI Record data item input values when
interacting with the Web Transaction. Can you find the CANUPDATE data
item in the browser or HTML? Try both USER and MANAGER values.

8. Version your code, once it is working.

8.2.1.2 XFER PGM model
In this exercise we will convert the CSTXP XFER PGM Web Transaction into
one which accepts state information from the CSTIDUS Web Transaction that
identifies the user type and implements the state management by storing data
in the UI Record. The structure of this system is shown in Figure 77.
Developing Web Transaction programming skills 155

Figure 77. CSTXPS Web Transaction program structure

CSTIDUS-MAIN function logic
To support the CSTXPS program, this function will pass the user type (update
access) profile directly in the CANUPDATE data item in the CUSTUIS UI
Record. This data is then passed along to the CSTXPS Web Transaction
program.

The CSTIDUS-MAIN function logic relevant for this exercise is shown in
Figure 78.

Figure 78. CSTIDUS-MAIN processing logic (2)

The state data will be stored directly in the CUSTUIS UI Record, so that it is
not accessible to the user. The data will not be in the HTML data sent to the
browser, but stored as part of the session data bean kept for an XFER Pgm
Web Transaction.

IF CUSTUI_ID.BUTTON-VALUE = 'OK' AND CUSTUI_ID.TARGET-APP = 'XPUIREC';
CUSTUIS.CANUPDATE = CSTIDUS-GET-PROF(CUSTUI_ID.USER); /* Get profile
CUSTUIS.BUTTONS[2] = ' ';
XFER CSTXPS ,CUSTUIS; /* Transfer to target pgm - with profile data

END;

CONVERSE CUSTUI_ID

CSTIDUS

Web Browser

CSTXPS

XFER CSTXPS , CUSTUIS

Web Browser

First UI
CUSTUIS
156 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Create Customer Info Web Transaction
1. Define the CSTXPS Web Transaction program:

• Open the VAGen Parts Browser and add a new part.

• In the New VAGen Part window, enter CSTXPS for Part Name, select
Program for Part Type, and select vgv4.web.codebase for the
Package. Click on OK. This will open the program editor.

• Select Web Transaction as program type.

2. Define CUSTUIS as the first UI Record for the new program; use mouse
button 2 on Specifications and select the Add First UI Record... menu
option. Select CUSTUIS as the first UI record.

3. Add CSTPGMS-PARMS to Tables and Additional Records list.

Use mouse button 2 on the Tables and Additional Records list and select
the Insert Table/Record... menu option. Select Record as Type and
CSTPGMS-PARMS as the part name.

4. Define program main function:

• Use mouse button 2 on the Structure Diagram and select the Insert
Main Functions... menu option. Enter CSTXPS-MAIN as the part name.

• Open the CSTXPS-MAIN part (select vgv4.web.codebase as the target
package for the new part).

5. Define required main function logic:

• Unless the Exit button is pushed the pre-defined server CUSTPGMS is
called using the CUSTPGMS-PARMS UI Record as a parameter.

• The server program either returns data, updates data, or returns an
error message in the MESSAGE field.

• If a successful "Find" was performed and the user has update
capability (provided through the CUSTUIS UI Record) the Update
button is displayed.

• To create a loop, the program invokes itself using an XFER Pgm
statement.

The required function logic is shown in Figure 79.
Developing Web Transaction programming skills 157

Figure 79. CSTXPS-MAIN processing logic

6. Save the CSTXPS-MAIN function and CSTXPS program.

7. Use the test facility to test the CSTIDUS program. Choosing the XPUIREC
option will trigger invocation of the CSTXPS program.

Use the test facility to check the UI Record data item input values when
interacting with the Web Transaction.

8. Version your code, once it is working.
158 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

8.2.1.3 XFER ’ ’ model
In this exercise we will create an XFER ’ ’ Web Transaction that accepts state
information from the CSTIDUS Web Transaction that identifies the user type
and implements the state management by storing data in the UI Record. The
structure of this system is shown in Figure 80.

Figure 80. CSTXBS Web Transaction program structure

CSTIDUS-MAIN function logic
To support the CSTXBS program, this function will pass the user type (update
access) profile directly in the CANUPDATE data item in the CUSTUIS UI
Record. This data is then passed along to the CSTXPS Web Transaction
program. The CSTIDUS-MAIN function logic relevant for this exercise is
shown in Figure 81.

Figure 81. CSTIDUS-MAIN processing logic (3)

Create input/output Customer Info UI Record
1. Create the CUSTUI_IOS UI Record as a copy of CUSTUI_IO. Open the

VAGen Parts Browser and use mouse button 2 on the CUSTUI_IO UI
Record and select the Copy... menu option.

2. Edit the CUSTUI_IOS UI Record so that it meets the structure shown in
Figure 82.

IF CUSTUI_ID.BUTTON-VALUE = 'OK' AND CUSTUI_ID.TARGET-APP = 'XBUIREC';
CUSTUI_IOS.CANUPDATE = CSTIDUS-GET-PROF(CUSTUI_ID.USER); /* Get user profile
CUSTUI_IOS.BUTTONS[2] = ' ';
XFER ' ' ,CUSTUI_IOS; /* Transfer to target pgm - with profile data

END;

CONVERSE CUSTUI_ID

CSTIDUS

Web Browser

CSTXBS

Web Browser

First UI
CUSTUI_IOS

XFER ' ' , CUSTUI_IOS
Developing Web Transaction programming skills 159

Figure 82. CUSTUI_IOS UI Record definition

The following submit and submit bypass definitions need to be refined:

• Define general and submit values of Find/FIND and Update/UPDATE
for the BUTTONS array.

• Define general and submit values of Exit/EXIT for BUTTON-EXIT.

Save the CUSTUI_IOS UI Record.

Note: By moving the Buttons structure down in the UI Record, we can move
the buttons below the input fields in the defined form. Buttons are always at
the bottom when a default form is created by VisualAge Generator, but with
the defined form used in an XFER ’ ’ model, you control button placement.

3. Make these customizations to the CUSTUI_IOS record:

• On the Program Link tab in the FORM_IO UI Properties window define
CSTXBS as the Program and CUSTUI_IOS as the First UI Record.

• In the Link Parameters list insert a line using CANUPDATE for Name
and Value Item.

This definition will pass the state data forward to the target program.
Without this program link parameter, the None UI Type value will not be
passed to the target program.
160 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Create Customer Info Web Transaction
1. Define the CSTXBS Web Transaction program:

• Open the VAGen Parts Browser and add a new part.

• In the New VAGen Part window, enter CSTXBS for Part Name, select
Program for Part Type, and select vgv4.web.codebase for the
Package. Click on OK. This will open the program editor.

• Select Web Transaction as program type.

2. Define CUSTUI_IOS as the first UI Record for the new program; use
mouse button 2 on Specifications and select the Add First UI Record...
menu option. Select CUSTUI_IOS as the first UI record.

3. Add CSTPGMS-PARMS to Tables and Additional Records list.

Use mouse button 2 on the Tables and Additional Records list and select
the Insert Table/Record... menu option. Select Record as Type and
CSTPGMS-PARMS as the part name.

4. Define program main function:

• Use mouse button 2 on the Structure Diagram and select the Insert
Main Functions... menu option. Enter CSTXBS-MAIN as the part name.

• Open the CSTXBS-MAIN part (select vgv4.web.codebase as the target
package for the new part).

5. Define required main function logic:

• Unless the Exit button is pushed, the pre-defined server CUSTPGMS
is called using the CUSTPGMS-PARMS UI Record as a parameter.
The server program either returns data, updates data, or returns an
error message in the MESSAGE field.

• If a successful "Find" was performed and the user has update
capability (provided through the CUSTUIS UI Record), the Update
button is displayed.

• To create a loop, the program invokes itself using an XFER ’ ’
statement.

The required function logic is shown in Figure 83.
Developing Web Transaction programming skills 161

Figure 83. CSTXBS-MAIN processing logic

6. Save the CSTXBS-MAIN function and the CSTXBS program.

7. Use the test facility to test the CSTIDUS program. Choosing the XBUIREC
option will trigger invocation of the CSTXBS program. Set UI Record
watch points to monitor data.

Review the HTML sent to the browser. You should be able to find the
CANUPDATE value, which, while defined as a None UI Type, becomes
hidden data in the browser to implement the program link parameter
required to pass this state data back to the target program.

If this data is sensitive, or you are concerned that the values might be
manipulated, you might need to consider other options for state
management when using the XFER ’ ’ program structure (see 8.2.3,
“Self-managed state implementation (XFER ’ ’ model)” on page 168).

8. Version your code, once it is working.
162 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

8.2.2 Working storage record-based state management
State data can be passed between Web Transactions using a working storage
record, when the transfer command accepts a working storage record
parameter (depends on the Web Transaction program structure). By using a
working storage record, we avoid sending the data to both the WebSphere
Application Server platform and the browser. This may be a requirement
either when the data is sensitive, or when the volume of data would delay
network transport.

8.2.2.1 CONVERSE model
In this exercise we will convert the CSTCNS Web Transaction into one
(CSTCNS2) that uses a predefined state server program to obtain state data
from an application database.

CSTIDUS-MAIN function logic
To support the CSTCNS2 program, this function will pass the user type
(update access) profile directly in the passed working storage record, where it
will be kept during subsequent program logic.

Figure 84 shows the CSTIDUS-MAIN function logic relevant for this exercise.

Figure 84. CSTIDUS-MAIN processing logic (4)

Create Customer Info Web Transaction
1. Define the CSTCNS2 Web Transaction program.:

• Open the VAGen Parts Browser and add a new part.

• In the New VAGen Part window, enter CSTCNS2 for Part Name, select
Program for Part Type, and select vgv4.web.codebase for the
Package. Click on OK. This will open the program editor.

• Select Web Transaction as program type.

2. Add STATEWS working storage to Specifications list.

Use mouse button 2 on the Specifications list and select the Add Working
Storage... menu option. Select STATEWS as the part name.

IF CUSTUI_ID.BUTTON-VALUE = 'OK' AND CUSTUI_ID.TARGET-APP = 'CNVWKST';
STATEWS.UPDATE = CSTIDUS-GET-PROF(CUSTUI_ID.USER); /* Get user profile
DXFR CSTCNS2 STATEWS;

END;
Developing Web Transaction programming skills 163

3. Add CSTPGMS-PARMS to Tables and Additional Records list.

Use mouse button 2 on the Tables and Additional Records list and select
the Insert Table/Record... menu option. Select Record as Type and
CSTPGMS-PARMS as the part name.

4. Define program main function:

• Add CSTCNS2-MAIN as the main function for the program.

• Open the CSTCNS2-MAIN part (select vgv4.web.codebase as the
target package for the new part).

• Converse the CUSTUIS UI Record (select CONVERSE as the I/O
option and CUSTUIS as the I/O object).

5. Define required main function logic:

• The function logic should call the server program as part of a loop
around the Converse of the UI Record.

• The loop should continue until the Exit submit request is received.

• The pre-defined server CUSTPGMS is called using the
CUSTPGMS-PARMS UI Record as a parameter.

• The server program either returns data, updates data, or returns an
error message in the MESSAGE field.

• If a successful "Find" was performed and the user has update
capability (provided through the STATEWS WS Record) the Update
button is displayed.

The required function logic is shown in Figure 85.
164 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Figure 85. CSTCNS2-MAIN processing logic

6. Save the CSTCNS2-MAIN function and CSTCNS2 program.

7. Use the test facility to test the CSTIDUS program. Choosing the
CNVWKST option will trigger invocation of the CSTCNS2 program.

• Use the test facility to check the UI Record data item input values when
interacting with the Web Transaction.

• Note that the update profile information is no longer shown in the HTML
code. Therefore, this is a very secure solution.

8. Version your code, once it is working.

8.2.2.2 XFER PGM model
In this exercise we will convert the CSTXPS Web Transaction into one
(CSTXPS2) that accepts state information from the CSTIDUS Web
Transaction and stores the state data in a working storage record.

CSTIDUS-MAIN function logic
To support the CSTXP2 program, this function will pass the user type (update
access) profile directly in the passed working storage record, where it will be
kept during subsequent program logic.

Figure 86 shows the CSTIDUS-MAIN function logic relevant for this exercise.
Developing Web Transaction programming skills 165

Figure 86. CSTIDUS-MAIN processing logic (5)

Create Customer Info Web Transaction
1. Define the CSTXPS2 Web Transaction program.:

• Open the VAGen Parts Browser and add a new part.

• In the New VAGen Part window, enter CSTXPS2 for Part Name, select
Program for Part Type, and select vgv4.web.codebase for the
Package. Click on OK. This will open the program editor.

• Select Web Transaction as program type.

2. Define CUSTUIS as the first UI Record for the new program; use mouse
button 2 on Specifications and select the Add First UI Record... menu
option. Select CUSTUIS as the first UI record.

3. Add STATEWS working storage to Specifications list.

Use mouse button 2 on the Specifications list and select the Add Working
Storage... menu option. Select STATEWS as the part name.

4. Add CSTPGMS-PARMS to Tables and Additional Records list.

Use mouse button 2 on the Tables and Additional Records list and select
the Insert Table/Record... menu option. Select Record as Type and
CSTPGMS-PARMS as the part name.

5. Define program main function:

• Use mouse button 2 on the Structure Diagram and select the Insert
Main Functions... menu option. Enter CSTCXP2-MAIN as the part
name.

• Open the CSTXPS2-MAIN part (select vgv4.web.codebase as the
target package for the new part).

6. Define required main function logic:

• Unless the Exit button is pushed, the pre-defined server CUSTPGMS
is called using the CUSTPGMS-PARMS UI Record as a parameter.

• The server program either returns data, updates data, or returns an
error message in the MESSAGE field.

IF CUSTUI_ID.BUTTON-VALUE = 'OK' AND CUSTUI_ID.TARGET-APP = 'XPWKST';
STATEWS.UPDATE = CSTIDUS-GET-PROF(CUSTUI_ID.USER); /* Get profile
CUSTUIS.BUTTONS[2] = ' ';
XFER CSTXPS2 STATEWS,CUSTUIS;

END;
166 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

• If a successful "Find" was performed and the user has update
capability (provided through the STATEWS WS Record), the Update
button is displayed.

• To create a loop, the program invokes itself using an XFER Pgm
statement.

The required function logic is shown in Figure 87.

Figure 87. CSTXPS2-MAIN processing logic

7. Save the CSTXPS2-MAIN function and the CSTXPS2 program.

8. Use the test facility to test the CSTIDUS program. Choosing the XPWKST
option will trigger invocation of the CSTXPS2 program.

• Use the test facility to check the UI Record data item input values when
interacting with the Web Transaction.

• Note that the update profile information is no longer shown in the HTML
code. Therefore, this is a very secure solution.

9. Version your code, once it is working.
Developing Web Transaction programming skills 167

8.2.3 Self-managed state implementation (XFER ’ ’ model)
The XFER ’’ model does not support the use of a working storage record on
the transfer request. This means that with the default behavior of VisualAge
Generator XFER ’ ’ Web Transactions, the only way state data can be passed
is in the UI Record (where it will be visible in the HTML sent to the browser).

This may not satisfy some requirements either when the data is sensitive, or
when the volume of data to be stored (when hidden in the HTML) would delay
network transport.

Secure state data support in an XFER ’ ’ model Web Transaction must be
implemented in the program logic (see 5.3, “Implementing self-managed state
support for XFER ’ ’ programs” on page 94 for theoretical and design
considerations regarding self-managed state programming).

In this exercise we will convert the CSTXBS Web Transaction into one
(CSTXBS2) that obtains state information from an application database,
where it has been stored by the CSTIDUS Web Transaction.

CSTIDUS-MAI‘N function and WTSPGM state management program
To support the CSTXB2 program, this function will use the pre-defined
program WTSPGM to store the state information an application database.

The WT_STATE_WS working storage record is passed to the WTSPGM
program with the ’SAVE STATE’ option stored in its WTS_ACTION data item.
Access to the state data is obtained by passing the public part of the key in
the data item CUSTUI_IOS2.BLIND-KEY. This will allow the target program
(CSTXB2) to call WTSPGM to read the saved state data.

Figure 88 shows the CSTIDUS-MAIN function logic relevant for this exercise.
168 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Figure 88. CSTIDUS-MAIN processing logic (6)

Create input/output Customer Info UI Record
1. Create the UI Record CUSTUI_IOS2 as a copy of the CUSTUI_IOS UI

Record. Open the VAGen Parts Browser and use mouse button 2 on the
CUSTUI_IOS UI Record and select the Copy... menu option.

2. Edit the CUSTUI_IOS2 UI Record so that it meets the structure shown in
Figure 89 (you will have to remove CANUPDATE from the program link
parameters for the FORM_IO data item before you can save the record).

IF CUSTUI_ID.BUTTON-VALUE = 'OK'
AND CUSTUI_ID.TARGET-APP = 'XBDB';

STATEWS.UPDATE = CSTIDUS-GET-PROF(CUSTUI_ID.USER); /* Get user profile
MOVE STATEWS TO WT_STATE_WS; /* Move state to server parm

WT_STATE_WS.WTS_ACTION = 'SAVE';
CALL WTSPGM WT_STATE_WS; /* save state

IF WT_STATE_WS.WTS_KEY_TMSTMP ^= ' ';
MOVE WT_STATE_WS.WTS_KEY_TMSTMP TO CUSTUI_IOS2.BLIND-KEY;
CUSTUI_IOS2.BUTTONS[2] = ' ';
XFER ' ' ,CUSTUI_IOS2;

END;
MOVE "Problem saving state data" TO CUSTUI_ID.MESSAGE;

END;
Developing Web Transaction programming skills 169

Figure 89. CUSTUI_IOS2 UI Record definition

3. Make these customizations to the CUSTUI_IOS2 record:

• On the Program Link tab in the FORM_IO UI Properties window, define
CSTXBS2 as the Program and CUSTUI_IOS2 as the First UI Record.

• In the Link Parameters list, insert a line using BLIND-KEY for Name
and Value Item.

The passed value acts as a session identifier for the saved state data.
This is safe to keep in the HTML, as it is not the actual state data.

Create Customer Info Web Transaction
1. Define the CSTXBS2 Web Transaction program:

• Open the VAGen Parts Browser and add a new part.

• In the New VAGen Part window, enter CSTXBS2 for Part Name, select
Program for Part Type, and select vgv4.web.codebase for the
Package. Click on OK. This will open the program editor.

• Select Web Transaction as program type.

2. Define CUSTUI_IOS2 as the first UI Record for the CSTXBS2 program;
use mouse button 2 on Specifications and select the Add First UI Record...
menu option. Select CUSTUI_IOS2 as the first UI record.

3. Add WT_STATE_WS working storage to Specifications list.

Use mouse button 2 on the Specifications list and select the Add Working
Storage... menu option. Select WT_STATE_WS as the part name.
170 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

4. Add CSTPGMS-PARMS to Tables and Additional Records list.

Use mouse button 2 on the Tables and Additional Records list and select
the Insert Table/Record... menu option. Select Record as Type and
CSTPGMS-PARMS as the part name.

5. Define program main function:

• Use mouse button 2 on the Structure Diagram and select the Insert
Main Functions... menu option. Enter CSTXBS2-MAIN as the part
name.

• Open the CSTXBS2-MAIN part (select vgv4.web.codebase as the
target package for the new part).

6. Define required main function logic:

• Unless the Exit button is pushed the pre-defined server CUSTPGMS is
called using the CUSTPGMS-PARMS UI Record as a parameter.

• The server program either returns data, updates data, or returns an
error message in the MESSAGE field.

• If a successful "Find" was performed and the user has update
capability, the Update button is displayed.

• The update capability is checked through the WTSPGM program, using
the given WT_STATE_WS WS Record as a parameter. The ’READ
STATE’ option is now stored in the WT_STATE_WS.WTS_ACTION
data item; also, the BLIND-KEY data item is used to identify the
session.

• To create a loop, the program invokes itself using an XFER ’ ’
statement.

The required function logic is shown in Figure 90.
Developing Web Transaction programming skills 171

Figure 90. CSTXBS2-MAIN processing logic

7. Save the CSTXBS2-MAIN function and the CSTXBS2 program.

8. Use the test facility to test the CSTIDUS program. Choosing the XBDB
option will trigger invocation of the CSTXBS2 program.

9. Version your code, once it is working.

Note: Really, our exit logic should call the WTSPGM state management
program with a DELETE request, but we will leave this up to you to add.
In the meantime, the data left in the database will help you analyze your test
runs. One option for implementing delete processing is to have the active
Web Transaction delete all expired data, in order to have a self-cleaning
system.
172 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Chapter 9. VisualAge Generator Templates Web Transactions

This chapter contains a scripted exercise that will help you understand how a
Web-based application system can be implemented with VisualAge
Generator Templates.

The VisualAge Generator Templates support in VisualAge Generator V4
includes a new system generator for Web Transaction systems. During this
skill building exercise you will define, generate, test, and then enhance a
VisualAge Generator Templates generated Web Transaction system. The
following specific tasks are included:

• Import relational database definitions into the VisualAge Generator
Templates information model.

• Define VisualAge Generator Templates information model entity
definitions.

• Customize entity definition generation parameters to control the target
package used during generation processing.

• Generate Workspace and entity definitions to create a Java Application
System.

• Use the test facility to run a generated Web Transaction program and see
the user interface implemented by VisualAge Generator Templates in a
Web browser.

9.1 Preparing the workspace

Systems generated by VisualAge Generator Templates use the same
architecture, and many of the same parts, for all system types. We need to
remove some projects and create a new project for this lab exercise:

1. Before performing the VisualAge Generator Templates lab steps, any
projects in the workspace that contain code generated by VisualAge
Generator Templates must be removed.

If projects with VisualAge Generator Templates generated code are in the
workspace, there will be processing errors when the common code parts
are created during generation.

2. Stop, and then start, the VisualAge for Java workbench. We need to reset
database connections to avoid DB2 access conflicts with VisualAge
Generator Templates.
© Copyright IBM Corp. 2000 173

3. Create a new project and package for the VisualAge Generator Templates
definitions:

Project — VGV4 VAGT Defs JGUI System
Package — vgv4.vagt.defs.jgui

9.2 Relational table definition using database import

We begin by acting as the DBA who is responsible for defining the VisualAge
Generator Templates Relational Table entity definitions for the ITSOBANK
database.

Note: For information on the ITSOBANK database, see Appendix A.3,
“Database” on page 367.

1. Open a VisualAge Generator Templates browser and create a workspace:

• Use the Workbench menu option Workspace -> VAG Templates
Browser.

• Select the Create a new workspace radio button.

• Define a workspace name of VGTJGUIWS.

• Select the package vgv4.vagt.defs.jgui.

• Click on OK.

Note: We could use a separate package and even project, but to keep
things simple, we will use the same package for all VisualAge Generator
Templates definitions.

2. Import only the Bank and Customer tables from the ITSOBANK database:

• Use the VAG Templates Browser menu option Tools -> Import from
Database...

• Define Search Criteria — Qualifier: VGDBA.

Note: You may need to use another qualifier if the tables were created
under another ID. Check with the instructor.

• Define vgv4.vagt.defs.jgui as the target package.

• Click on Build List.

• Move the Bank and Customer tables to the Selected tables list.

• Click on Import.

Two relational table entities and eight data element entities have been
defined.
174 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

9.3 Business Object definition

We now act as the programmer responsible for business logic implementation
in the server domain. VisualAge Generator Templates Business Objects
generate both server programs and reusable parts that exist in the client side
domain (non-visual resource beans). These parts provide access to common
business logic and the server programs.

1. Define the Business Object BankBO, using the Bank Relational Table, all
data elements, with no extract criteria, and the data element Bankid as the
sort criteria:

• Use the menu option Instance -> New... to open the new VAGT
Instance dialog.

• Define a Business Object name of BankBO, an Instance type of
Business Object, and a Package of vgv4.vagt.defs.jgui.

• Using the Tables and Fields entry — add the Bank Relational Table and
select all columns as fields for the business object.

• Using the Key and Criteria entry — add Bankid as the sort criteria.

• Close the BankBO business object definition.

2. Define the Business Object CustomerBO, using the Customer Relational
Table, all data elements, with the data element Bankid as the extract
criteria, and the data element Custid as the sort criteria:

• Create a new Business Object instance named CustomerBO in the
package vgv4.vagt.defs.jgui.

• Using the Tables and Fields entry — add the Customer Relational
Table and select all columns as fields for the business object.

• Using the Key and Criteria entry — add Bankid as the extract criteria
(greater than or equal) and Custid as the sort criteria.

• Close the CustomerBO business object definition.
VisualAge Generator Templates Web Transactions 175

9.4 Interface Unit definition

We now act as the programmer responsible for definition of the system
interaction and flow. VisualAge Generator Templates Interface Units define
data content and linkage between Interface Units. When generated, visual
parts are created to implement the desired processing. These parts use the
non-visual components generated from Business Objects.

1. Define the Interface Unit CDCustDtlIU as a simple IU that implements a
detail view on the CustomerBO Business Object:

• Create a new Interface Unit instance named CDCustDtlIU in the
package vgv4.vagt.defs.jgui.

• Using the Business Objects entry — add the CustomerBO Business
Object with a Layout Type of detail.

• Close the CDCustDtlIU Interface Unit definition.

2. Define the Interface Unit CLCustLstIU as a simple IU that implements a list
view on the CustomerBO Business Object and targets the CDCustDtlIU
Interface Unit:

• Create a new Interface Unit instance named CLCustLstIU in the
package vgv4.vagt.defs.jgui.

• Using the Business Objects entry — add the CustomerBO Business
Object with a Layout Type of list.

• Using the Target Interface Units entry — add the CDCustDtlIU Interface
Unit.

• Close the CLCustLstIU Interface Unit definition.

3. Define the Interface Unit BLBankLstIU as a simple IU that implements a
list view on the BankBO Business Object and targets the CLCustLstIU
Interface Unit:

• Create a new Interface Unit instance named BLBankLstIU in the
package vgv4.vagt.defs.jgui.

• Using the General entry — define the type as root.

• Using the Business Objects entry — add the BankBO Business Object
with a Layout Type of list.

• Using the Target Interface Units entry — add the CLCustLstIU Interface
Unit.

• Close the BLBankLstIU Interface Unit definition.
176 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

9.5 Generation Option definition and system generation

We now act as the project leader responsible for definition of the processing
options and target considerations that will control VisualAge Generator
Templates generation. How code is generated to implement the required
interface unit, business object, and relational table entity processing is
defined using workspace and entity level generation parameters.

1. Define workspace generation parameters:

• Use the VAG Templates Browser menu option Workspace -> Definition
to open the workspace definition dialog for the VGTJGUIWS
workspace.

• Using the Target Packages entry — define the Target Project as VGV4
VAGT JGUI System.

• Click on OK to close the workspace definition dialog.

2. Define Data Element Entity Default Generation Parameters:

• Select the Data Element category in the VAG Templates Browser.

• Use the VAG Templates Browser menu option Entity -> Default
Generation Parameters to open the Default Generation Parameters
dialog for the Date Element entity.

• Using the Target Packages entry — define vgv4.vagt.cmndata as the
Target Package for all package types.

If you wish, you can complete the definition of alternate package names at
the workspace and entity level.

Regardless of your target package name choices, all packages will be
created in the target project (defined as a workspace generation parameter).

3. Generate complete system with reusable code components:

• Select the BLBankLstIU Interface Unit definition in the VAG Templates
Browser.

• Use the VAG Templates Browser menu option Instance -> Generate...
to open the Generate Interface Units dialog for the BLBankLstIU
Interface Unit.
VisualAge Generator Templates Web Transactions 177

• Select a generator to use for the BLBankLstIU Interface Unit:

• Interface Unit Java Visitor — to build a Java Application system
• Interface Unit Web Visitor — to build a Web Transaction system
• Interface Unit TUI Visitor — to build a Text map system

You need to select the Web Visitor for the purposes of this redbook
exercise. The text map system is useful for validating a VisualAge
Generator runtime environment (the TUI Visitor should be available in
Fixpak 1).

• Define these settings:

• Store Options — Normal
• Generation Scope — With associates and predefined beans
• Client/Server — Visuals, Client, and Server

Notes:

• The Java Application system can take much more time to generate
(there are many more components). Only choose this option, in
addition to the others, if you can start the generation request and
leave the machine alone (or if you have a very fast processor).

• You can always skip generation and load the generated system
(see below for instructions).

• Click on the Generate push button to start generation.

Note: 180+ builders will run (each generates a small part of the
system). This can take time on slow machines (slow chip/low memory).

Follow these steps to bypass the VisualAge Generator Templates
generation processing delay and directly load the generated system:

a. In the Workbench, choose the Selected -> Import... Workbench menu
option. Select Repository as the import source and click on the Next >
push button.

b. Choose Local repository as the import option and use the Browse push
button to find this file:

<localdrive>:\VAGen\VAGTWeb.dat

c. Select the Projects radio button and use the Details... push button to
import:

VGV4 VAGT JGUI System — Base Gen 1.1

Note: Select the Add most recent project edition to workspace toggle to
automatically load the imported project. If you did not do this, use the
Selected -> Add -> Project... Workbench menu option to add the imported
project version to the workspace.
178 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

9.6 Test the generated system

We can now test the Web Transaction system generated by VisualAge
Generator Templates.

The entry point to the system is the root interface unit BLBankLstIU.

1. Find the Web Transaction programs in the VAGen Parts Browser.

2. Test the BLBANWE program:

• When the Bank List has been displayed, click on the CLCustLstIU
hyperlink.

• When the Customer List has been displayed, click on one of the Cust ID
hyperlinks.

The hyperlink starts the Web Transaction program created for the
CLCustLstIU target interface unit. From this page, you can open up
customer detail views using the hyperlinks available for each key value.

3. If you generated the VisualAge Generator Templates system, complete
the required library management tasks for the VisualAge Generator
Templates entity definitions and generated source code:

• Version the VGV4 VAGT Defs JGUI System project with the version
name Base JDefs 1.0.

• Version the VGV4 VAGT JGUI System project with the version name
Base JDefs 1.0.

9.7 Customization

By design, the Customer List should be restricted to a specific bank. To
implement this processing, we need to enhance the Bank List UI Record:

1. Open the UI Record part BLBANRW-UI-PAGE, the Bank List UI Record.

2. Review the program link attributes for the CLCUSWE-LINK / CLCUSWE
data item.

3. Open the CLCUSWE program definition and identify the first record that is
used.

4. Adjust the BANKBO-INSTANCE / BANKBO-BANKID data item so that it
implements a program link to the same program as the CLCUSWE-LINK /
CLCUSWE data item (CLCUSWE).

5. Add to this program link definition the ability to pass the BankID value to
the first record used by the CLCUSWE program.
VisualAge Generator Templates Web Transactions 179

The customized BANKBO-BANKID data item program link settings are
shown Figure 91.

Figure 91. Program link settings for BANKID

6. Test the BLBANWEprogram.

When the Bank List has been displayed, click on one of the Bank ID
hyperlinks.

7. Adjust the program link definition to open a new window.

8. Test the BLBANWE program again.

Note: The Customer List (CustomerBO) business object extract criteria
are defined as greater than or equal (see 9.3, “Business Object definition”
on page 175). This allows the system to function before the customized
link has been defined. To be sure you can tell if your program link is
functioning, choose a BankID value that is high in the sort order (such as
REDB). When all the listed customers have BankID values equal to or
greater than the selected BankID, then the program link is functioning.
180 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Chapter 10. Demonstration system

The demonstration system discussed in this section was developed to
support ITF and runtime testing of the available Web Transaction program
structures, transfer processing options, and UI Record definition options.

The following Web Transaction programming concepts are covered:

• Transfer processing and data management
• State management
• Input validation

The demonstration system does not access a database or call server
programs. You may find it useful as you evaluate the system processing
implications of different Web Transaction implementation options.

Notes:

• Load version Final 4.25.a, or Final 4.25.b of the z.vgv4.web.tests package
from the DemoSys.dat file (see A.1, “VisualAge Generator code” on page
365) to use the demonstration system code referenced in this section.

• You can add this package to the VGV4 Redbook WebTran Programs
project if you performed the exercises in Chapter 8, “Developing Web
Transaction programming skills” on page 127.

10.1 Components

The major components of the demonstration system are shown in Figure 92.

Figure 92. Demonstration system: Web Transactions and UI Records

There are two versions of the FRSTFRM program: One uses different UI
Records for input and output (Final 4.25.b).
© Copyright IBM Corp. 2000 181

10.2 Processing overview

Each Web Transaction program in the demonstration system implements loop
processing and can transfer control to the other Web Transaction programs
(see Figure 93).

Figure 93. Demonstration system: transfer control

The following transfer processing statements are used:

DXFR CONVMOD WEB-COMM-WRK;
XFER FRSTPGM WEB-COMM-WRK,FRST_PGM_UI_RECORD;
XFER ' ' ,FRST_FRM_UI_RECORD;

These additional techniques, based on definitions in the Converse model UI
Record (CONV_UI_RECORD), are used:

• Program link defined to start FRSTPLK program
• Form defined to start FRSTFRM program
• Program link defined in Form to start FRSTPLK program

A program link to FRSTPLK is also defined in FRST_FRM_UI_RECORD and
FRST_PLK_UI_RECORD.

Note: Version Final 4.25.a of the demonstration system uses a single UI
Record for input and output processing for the XFER ’ ’ sample program.
Version Final 4.25.b uses two different UI Records.

Base Options from All Pgms:
1-Loop, 2-DXFR CONVMOD WSRec 3-XFER FRSTPGM WSRec, UIRec 4-XFER ' ', UIRec

CONVMOD

XFER
FRSTPGM

WSRec, UIRec

Program PLink
to FRSTPLK

FORM PLink to
FRSTFRM

Program PLink
in FORM to
FRSTPLK

----1
----2
----3
----4

----1
----2
----3
----4

----1
----2
----3
----4

----1
----2
----3
----4

1
2

3 4

XFER ' ', UIRec

----1
----2
----3
----4

FRSTFRM
182 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

10.3 Transfer processing and data management

Transfer processing and data management considerations are discussed in
this section.

Transfer processing — Each program in the demonstration system provides
the ability to loop or jump to one of the other sample programs. In addition,
some UI Records are defined with program links that will directly invoke the
FRSTPLK program (sometimes in a new window).

Data management — Each program passes data forward using either a
passed working storage record, moves to a UI Record, or program link
parameters. The technique used depends on the type of transfer or program
invocation. A common data item is passed through to almost all target Web
Transaction programs using different techniques.

Figure 94 shows an overview of the transfer processing and data
management as implemented in the demonstration system. Included in
almost all transfers is access to the same data values (common data) in all
Web Transaction programs.

Figure 94. Demonstration system: transfer processing and data management

FRST-PGM-UIRec

XFER Data
All data

FRST-FRM-RECV
Form Data
Input
Input/Output

XFER Data
in UI Rec

FRST-FRM-UIRec

Form Data

Form PLink

CONV-UIRec

Main Data

PLink

Form Data

Form PLink

Input Accepted
from Main Data

Form Only

WEB-COMM-WRK
Input

41

3

7b
7c

2

7d

7a

5 6

FRST-PLK-UIRec
Plink
Input (Plink data)
Input/Output
Common
Hidden

Form PLink
Common

Frst PLink
Input (Form-Input)
Input/Output (Form-Input-Output)
Common
Hidden (Form-Hidden)

PLink-PLink
Input (Plink data)
Input/Output
Demonstration system 183

Data transfer rules for each processing option shown in Figure 94 are
described below:

1. Internal loop to CONVERSE.

2. DXFR CONVMOD WEB-COMM-WRK;

Data to be passed is stored in the working storage record.

3. XFER FRSTPGM WEB-COMM-WRK, FRST_PGM_UI_RECORD;

Data to be passed is stored in the UI Record and working storage record.

4. XFER ' ' , FRST_FRM_UI_RECORD;

Data to be passed is stored in the UI Record.

5. CONV_UI_RECORD defined form for FRSTFRM program:

Data to be passed is first mapped to the UI Record for the target program
(by name for input and input/output data) and referenced in program link
parameters (COMMON and FORM-NONE data items).

6. Defined form in FRST_FRM_UI_RECORD:

Data to be passed is first mapped to the UI Record for the target program
(by name for input and input/output data) and referenced in program link
parameters (COMMON data item).

7. Program Links for FRSTPLK:

a. In CONV_UI_RECORD — opens new browser
b. In defined form in CONV_UI_RECORD — uses same browser
c. In FRST_FRM_UI_RECORD — opens new browser
d. In FRST_PLK_UI_RECORD — opens new browser

Each program link passes different parameters (shown in Figure 94).

10.4 State management

The state management options explored in the demonstration system are
discussed in Table 6.

Table 6. State management in the demonstration system

Program State management considerations

CONVMOD All data is saved, all UI Record data item types are available after browser interaction.
(All UI Record fields contain data when control returns to the program because of the active
beans).

FRSTPGM Only data passed in the UI Record and working storage record are saved. (All UI Record
fields contain data when control returns to the program because of the active beans).
184 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

10.5 Input validation

Several types of defined and logic edits are implemented in the
demonstration system to show how editing works for the different Web
Transaction types. The UI Record edits defined for data items used in the
demonstration system are identified in Table 7.

Table 7. UI Record data item edits in demonstration system

The edits defined demonstrate how UI Record edit processing is implemented
and how different program structures can impact the triggering of edits and
the resulting re-display of the UI Record in the browser.

FRSTFRM Only input and input/output data passed in the UI Record and sent to the browser is
returned to the program (no bean is saved, so UI Types Output, Hidden, and None do not
return to the program unless specified as program link parameters).

When the FRSTFRM program is invoked by the defined form in the CONV_UI_RECORD
UI Record, the data items COMMON and FORM-NONE are passed as program link
parameters. The defined form in FRST_FRM_UI_RECORD only passes the COMMON
data item as a program link parameter.

FRSTPLK Only data identified in the program link is passed to the first UI Record for the target
program. Data entered by the end user is not passed. When UI Record fields are defined
as part of a program link, the values are hardcoded when the HTML is sent to the browser.

UI Record Data Item Edits

CONV_UI_RECORD INPUT
(Non-shared data item)

CONV-REC-INPT-EDT edit function. Checks
input value, and can then either set up an error
message or modify visible or non-visible data
values in UI Record.

INPUT_OUTPUT
(Non-shared data item)

Minimum input (14 characters).
Data value is preloaded with 13 characters, but
edit will only fire if data content changes value.

FRST_FRM_UI_RECORD
FRST_FRM_RECV_UI

FORM_INPUT
(shared data item)

FRST-FRM-INPT-EDTW edit function.
Runs on Web. Checks input value and can
then either set up an error message or modify
visible/non-visible data values in UI Record.

FORM_INPUT_OUTPUT
(shared data item)

FRST-FRM-INPT-EDTH edit function
Runs on host. Checks input value and can
then either set up an error message or modify
visible or non-visible data values in UI Record.

Program State management considerations
Demonstration system 185

10.6 Testing path

The following scripted testing exercise for the demonstration system will allow
you to experience and further investigate the Web Transaction programming
options that exist.

1. Start testing the CONVMOD program using these transfer request options:

Continue Loop Program loop returns to current UI Record display
Complete State DXFR CONVMOD WEB-COMM-WRK

These transfer options are implemented by program logic. The end user
request is translated into the appropriate transfer command.

Note that the test facility has paused on the CONVERSE for CONVMOD
during each browser interaction.

On the target runtime platform, all program data would be saved during
the CONVERSE and the program would be terminated. End user
interaction restarts the program, with all data, at the point of the active
CONVERSE statement.

2. Enter data in the two input fields (Input and Form Input), then select either
Continue Loop or Complete State and the Process / Enter push button.

Only the data in the input field that is part of the CONV_UI_RECORD
generated form is passed back to the CONVMOD program.

Data entered in the form input field that is part of the defined form
structure does not get passed back to the CONVMOD program.
(This would be a good time to review the CONV_UI_RECORD UI Record
definition.)

3. Return to the CONVMOD (complete state) program and reset the data
values. This is done by selecting the toggle named Boolean Edit Creates
Toggle which will trigger a data reset in the CONVMOD program logic.

4. Starting at the CONVMOD program CONVERSE, select this transfer
request option:

Controlled State XFER FRSTPGM WS FRST_PGM_UI_RECORD

This transfer option is also implemented by program logic. The end user
request is translated into the appropriate transfer command.

Note that once the next UI Record has been sent to the browser, the test
facility has paused on the First UI Record for FRSTPGM with a pending
restart (continuation) of the pre-scheduled program.
186 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

The target program starts after an XFER Pgm transfer and is in a wait
state, similar to the one that occurs during a CONVERSE, when the UI
Record is sent to the browser. On the target runtime platform, only the
passed working storage record (if any) would be saved during the browser
interaction, and the currently active program (FRSTPGM) would be
terminated. End user interaction restarts the FRSTPGM program, with the
passed working storage record data and the input from the First UI
Record.

5. Return to the CONVMOD (complete state) program (Complete State
option) and, if required, reset the data values (select the Boolean Edit
Creates Toggle).

6. Starting at the CONVMOD program CONVERSE select this transfer
request option:

No State XFER ' ' ,FRST_FRM_UI_RECORD

This transfer option is also implemented by program logic. The end user
request is translated into the appropriate transfer command.

Note that once the next UI Record has been sent to the browser, the test
facility is empty (test complete). After an XFER ’ ’ transfer request has
been issued and the UI Record has been sent to the browser, the test
facility (and the current program) are done. There is no prescheduled
program waiting to start. The program that should start next is identified in
defined form in the FRST_FRM_UI_RECORD UI Record (see Figure 95).

Figure 95. FRST_FRM_UI_RECORD defined form properties
Demonstration system 187

The defined form identifies the target program and First UI Record along
with any required program link parameters to pass data in addition to the
input and input/output data items that exist in the defined form structure. In
this example, the only program link parameter is the common data value.

On the target runtime platform, no program data would be saved, and the
program would be terminated. The target program has run to completion,
and the only data available has been sent to the browser in the UI Record.

7. Return to the CONVMOD program (Complete State option) and reset the
data values (select the Boolean Edit Creates Toggle). You will need to
tell the test facility to continue twice to reach the CONVERSE.

8. Enter some data in the CONV_UI_RECORD defined form fields
(FORM-xxx fields in the lower portion of the browser) and then start the
FRSTFRM program using the Go Action push button (tell the test facility
to continue).

This transfer option is implemented by the defined form in the UI Record
CONV_UI_RECORD (see Figure 96).

Figure 96. CONV_UI_RECORD defined form properties

The defined form identifies the target program and First UI Record along
with any required program link parameters to pass data in addition to the
input and input/output data items that exist in the defined form structure. In
this example the defined form includes the option to start the target
program in a new browser.

The new browser includes the data you entered in the defined form fields
and the common data passed as part of the program link parameters.
188 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Note that a new instance of the test facility is started to support the new
program thread (Open as new window setting in Figure 96). Once the
program has run to completion (XFER ’ ’ statement), the test facility
instance is unused.

If you return to the original browser view (active CONVERSE) and review
the page source (you may have to save the page to a file), you can find the
defined form and see the following common data reference in the program
link:

<FORM METHOD="POST"
ACTION="http://localhost:8080/hptGateway?hptAppId=FRSTFRM&execute=1&record=FRST_FRM_
UI_RECORD" TARGET="_blank">
<INPUT TYPE=HIDDEN NAME="COMMON" VALUE="zCommon Data">

<INPUT TYPE=HIDDEN NAME="FORM-NONE" VALUE="zForm-None">
This starts the defined form.
Form Output Field: zForm-Output

<INPUT TYPE=HIDDEN NAME="FORM-HIDDEN" VALUE="zForm-Hidden ">
Form Input : Enter Hello or Hello Dolly to trigger Edits

<INPUT TYPE=TEXT NAME="FORM-INPUT" SIZE=40 MAXLENGTH=40 VALUE="zForm-Input">

Form Input/Output <INPUT TYPE=TEXT NAME="FORM-INPUT-OUTPUT" SIZE=25

MAXLENGTH=25 VALUE="zForm-Input-Output">

<A

HREF="http://localhost:8080/hptGateway?hptAppId=FRSTPLK&execute=1&record=FRST_PLK_UI
_RECORD&COMMON=zCommon+Data">Form Plink- w/Common Data passed as Pgm Link Parm

<INPUT TYPE=SUBMIT NAME="FORM-SUBMIT" VALUE="Go Action"><INPUT TYPE=SUBMIT

NAME="FORM-SUBMIT-BYPASS" VALUE="End/Cancel Action">

</FORM>

On the target runtime platform, no program data would be saved, and the
program would be terminated. The target program has run to completion
and the only data available has been sent to the browser in the UI Record.

9. Return to the CONVMOD (complete state) program in the first browser,
enter some data in the input-output field, and select this hyperlink transfer
request option:

UIRec Pgmink... Starts FRSTPLK, input in FRST_PLK_UI_RECORD

Remember to tell the test facility to start (required on all defined form or
program link based transfers).

This program link starts the program FRSTPLK, with hardcoded values as
input, and with a new browser for the displayed UI Record. The program
link definition is shown in see Figure 97.
Demonstration system 189

Figure 97. CONV_UI_RECORD program link definition (1)

The data you entered in the input-output field is not passed, even though
the program link parameters specific the field. With a program link, only
the values present in the HTML when it is first sent to the browser can be
returned to the target program. If you enter the data and loop through the
CONVMOD program once first, the data values will then be sent forward to
the target program FRSTPLK.

10.Close all browsers except the one with the active CONVERSE.

11.Return to the CONVMOD (complete state) program in the first browser
and select this hyperlink transfer request option:

Form Plink... Starts FRSTPLK, input in FRST_PLK_UI_RECORD

This program link starts the program FRSTPLK, with only the common
data passed forward. The same browser is reused in this program link
example (see Figure 98).
190 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Figure 98. CONV_UI_RECORD program link definition (2)

There should now be only one active browser, but two open test facility
monitors! The program link opened a new test facility, which replicates the
scheduling of a new program, but the settings forced the reuse of the
existing browser. Where do you think that active program waiting on a
CONVERSE is now? Stranded would be one answer (see the discussion
related to data lost after program link during CONVERSE, as shown in
Figure 29 on page 91, for additional details).

Note: You can get back to the active CONVERSE using the back button in
the browser followed by a refresh. This works because a conversed UI
Record has active beans in session data.

The FRSTPLK program presents a UI Record that only uses program link
options to start the next Web Transaction. Some of these program links do
not return the common data to the next Web Transaction. Use the program
data view in the test facility to find out which one loses the common data
value. (You could also just inspect the HTML in the browser; learning to
read this will help you debug your own Web Transaction programs.)

Review the FRST_PLK_UI_RECORD definition to see where the decision
not to pass data forward was made (missing program link parameter).

12.Return to the CONVMOD (complete state) program and reset the data
values (select the Boolean Edit Creates Toggle).
Demonstration system 191

13.Delete the last character in the Input/Output field and replace it with the
same character. Then select either Continue Loop or Complete State
and select the Process / Enter push button.

Nothing happens, right? Nothing should. Even though a minimum input
edit is defined for the INPUT-OUTPUT field, the edit will not trigger as the
data value has not changed.

14.Delete the last character in the Input/Output field and replace it with a
different character. Then select either Continue Loop or Complete State
and select the Process / Enter push button.

The defined minimum input edit will now trigger. as the data value has
changed. Add another character to the field and the edit will pass.

Note: See 5.4.2, “UI Record edits” on page 100 for a complete description
of edit processing.

15.Test the Input field edit function using this process:

• Enter the text Hello in the Input field.

• Click on the stop icon in the test facility so you can see what happens
when the program starts executing again.

• Select either Continue Loop or Complete State and select the
Process / Enter push button.

Because we have modified the input field data, the edit function
CONV-REC-INPT-EDT will run after the CONVERSE, but before the main
line logic. Because the field is marked as in-error as a result of the
EZEUIERR error message, this edit function will be triggered every time
(until an EZEUIERR statement is not processed).

16.Test the use of an edit function that does not trigger an error:

• Enter text Hello Dolly in the input field.

• Click on the stop icon in the test facility so you can see what happens
when the program starts executing again.

• Select either Continue Loop or Complete State and select the
Process / Enter push button.

Because we have modified the input field data, the edit function will run.
The field is not marked in-error, so the post-CONVERSE logic will run after
the edit function. The edit function will not be triggered after the next
browser response (unless the data is modified) because an EZEUIERR
statement was not processed. This is how it works for UI Records that
have active beans (CONVERSE or XFER Pgm Web Transactions).
192 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

17.To see how edit processing works for an XFER ’ ’ Web Transaction, select
the Go Action push button that is part of the defined form in the
CONV_UI_RECORD.

A new test facility instance will start and two edit functions will triggered:

FRST-FRM-INPT-EDTW Defined for FORM-INPUT data item in First UI
Record. Run on Web attribute selected.

FRST-FRM-INPT-EDTH Defined for FORM-INPUT-OUTPUT data item in
First UI Record. Run on Web attribute not
selected.

Edits for an XFER ’ ’ Web Transaction structure are based on the definition
of the First UI Record associated to the target program (not the UI Record
referenced on the XFER ’ ’ statement or the data item definitions for fields
that are in the defined form).

The defined edits and edit functions will always run, regardless of whether
the field has been modified or not. This is because there are no active
beans to use when comparing new and old data values. All edits must run
in this situation.

Note: See Table 4 on page 102 for additional information.

18.Use this process to demonstrate some of the capabilities of edit functions
in an XFER ’ ’ Web Transaction:

• Enter text Hello in the form input field of the new browser display.

• Select the Go Action push button.

The test facility start and edit processing will be triggered. The value Hello
triggers certain logic in the Web-side edit routine. The fact that the
Web-side edit function has run is displayed in an output field in the
browser.

• Enter text Hello Dolly in the form input field and select Go Action

The value Hello Dolly triggers certain logic in both edit routines (see the
results in the output field in the browser).

Additional capabilities exist in the demonstration system. Use your
imagination during test cycles and check both the program data and HTML
source in the browser to see what else you can discover.

Note: While this exercise was written for the VisualAge Generator test facility,
some options are better demonstrated in a runtime system (for instance, the
EZEUSR, EZEUSRID and EZELTERM values are not very meaningful, or do
not exist, when using the test facility). You may wish to follow the exercise
again after you have created a runtime version of the demonstration system.
Demonstration system 193

194 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Chapter 11. Front-end customization techniques

While the generated default JSPs function, they probably do not represent
the final presentation view that you want for your system. Changes to the
generated default JSPs are permitted (if not expected). Any valid HTML tags
or scripting languages, such as client-side JavaScript, may be added to the
JSPs, as well as any valid 1.0 JSP syntax.

Basic changes can be used to improve the visual display. Other common
enhancements include the implementation of help processing or support for
dynamic protection of FORM elements in the JSP logic.

11.1 Level 1: What’s a Web Transaction developer to do?

In the level 1 development approach, the Web Transaction developer(s) must
work alone, having been given the responsibility of developing and
generating a working system as well as tweaking the resulting front end to
create a finished Web-based application system.

We will use the simple Customer Info system implemented in a previous
exercise (see 8.1.2, “Converse model programming” on page 128) to
demonstrate how basic modifications can be made to the generated default
JSP. To follow this exercise, you must:

• Generate and implement a runtime environment for the CSTCNV Web
Transaction and CUSTPGM server program (see Chapter 15, “Web
Transaction generation” on page 335, and Chapter 13, “VisualAge
Generator Web Transaction runtime setup” on page 257).

• Configure the WebSphere Test Environment in VisualAge for Java (see
14.4, “VisualAge for Java WebSphere test environment” on page 329).

• Have access to a simple text editor (the examples will use Notepad for
Windows). Keep in mind that any text editor can be used, as long as it
does not add any unnecessary tabs and spaces, and it maintains the
original text file integrity.

11.1.1 Correcting the generated default JSP
These items may not be required, depending on which fixpak level you are
running. If required, edit the generated JSPs to correct invalid syntax:

• Change any "imports =" directives to "import =" (drop the s).
• Remove any create="false" clauses inside useBean tags.

The create clause was only found in the Vagen1EntryPage.jsp file.
© Copyright IBM Corp. 2000 195

A JSP can be read and rendered by tools such as Netscape (browse for the
JSP using file ://C:/ and open the JSP file) and on the preview page in
WebSphere Studio Page Designer. Sometimes a complex JSP does not
render that well, and the syntax remains as text (see Figure 99).

Figure 99. Enhancing JSP rendering: Before

Edits to the generated JSP can be used to enhance the rending of the JSP in
some development tools. Tools can better interpret the JSPs if the
<HTML><HEAD> is moved above the <jsp:useBean tag:

This change to the order of the syntax results in formatting of the JSP into
pseudo presentation mode (see Figure 100).

<%@ page import = "com.ibm.vgj.uibean.VGDataElement" %>
<HTML><HEAD>
<jsp:useBean id="CONV_UI_RECORD" scope="request"
class="z.vgv4.web.tests.genout.CONV_UI_RECORDBean" />
<!--
This is JAVA code that gets the individual data elements
from the UI Bean that are to be used by this page to
access all dynamic data. -->
<%

VGDataElement OUTPUT = CONV_UI_RECORD.getOUTPUT();
...

VGDataElement FORMx002DSUBMITx002DBYPASS =
CONV_UI_RECORD.getFORMx002DSUBMITx002DBYPASS(); %>

<TITLE><%= CONV_UI_RECORD.getTitle() %></TITLE>
196 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Figure 100. Enhancing JSP rendering: After

Generation processing for default JSPs may be modified in future releases of
Generator to move the <HTML><HEAD> tags to the beginning of the file.

This movement of the <HTML><HEAD> tags also impacts how the JSP is shown
in the WebSphere Page Designer.

11.1.2 Easy elements
The Web Transaction developer should be able to take the default JSPs and
re-order and/or rearrange the elements according to project requirements.
When a .jsp source file is opened in a text editor (such as Notepad) or in an
HTML editor that supports JSP development (such as WebSphere Studio’s
Page Designer), we can make edits to the ordering and arranging of the
elements. For anyone who has worked with HTML before, there are not many
surprises, except for the addition of Java code. For those who are not familiar

As of this writing, Fixpak 1 for VisualAge Generator V4 has included
processing during generation which better positions the <HTML> and
<HEAD> tags in the generated default JSP. You will still have to make a
similar change to the VAGen prefixed JSPs, even with Fixpak 1.

Update Information
Front-end customization techniques 197

with HTML, please refer to Chapter 3, “HTML and UI Record definition” on
page 55. You may also wish to find additional HTML documentation to study.

Once we can discern the basic structure of an HTML document, we can
determine the types of customization that are desirable for our particular
application. The default JSPs (and most well-formed HTML documents in
general) contain the basic markup tags to form a minimal HTML page. These
tags, which are: <HTML>, <HEAD>, <TITLE>, and <BODY>, form the framework of an
HTML page, and are laid out in the following fashion:

<HTML>
<HEAD>
<TITLE>Page title goes here</TITLE>
</HEAD>

<BODY>

... HTML code of the page ...

</BODY>
</HTML>

11.1.3 Implementing help
VisualAge Generator allows you to fill in help information for individual data
items and for the whole UI Record. However, nothing is actually done with
this information, other than to make it available in the data bean and
accessible through the interface bean.

An example of implementing help is shown below. We use client side
JavaScript in combination with JSP tags to open another browser window to
display the help information for the UI Record CUSTUI when the user clicks
on the button labelled Help.

Note: You may have to first add help text for the UI Record and the data
items contained in the record, and then regenerate, before you have
generated beans that contain the associated help text.

Keep in mind that any and all changes made to a generated default JSP
will be LOST if the page is later re-generated! VisualAge Generator has
nothing built into it to maintain any changes made to the generated JSP
source during generation processing. If you are going to re-generate a
UIRecord JSP, keep a backup copy of your existing file until you are sure
you want the new generated page.

Important Note
198 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

To implement this:

• Inside the HTML header tag in the generated JSP, add JavaScript code
similar to that shown in Figure 101.

• Inside the FORM tag in the generated JSP, add JSP tags similar to that
shown in Figure 102.

Figure 101. Implementing help — JavaScript

Figure 102. Implementing help — JSP tags

We are making use of the events available for FORM fields, which are part of
the specification for HTML and JavaScript; they are entirely outside the scope
of Generator development. The INPUT of TYPE "button" has an onClick
event which we can use to trigger a JavaScript function.

The modified UI Record view (the JSP in the browser) and the new window
with the help text defined in the UI Record is shown in Figure 103.

Figure 103. Customized JSP with help button and help window

<SCRIPT LANGUAGE="javascript">
function showHelp()
{ newWindow = window.open("", "Help", "scrollbars=1,resizable=1,height=200,width=200")
newWindow.document.write("<HTML><HEAD><TITLE>Help for
CUSTUI</TITLE></HEAD>")
newWindow.document.write("<BODY><%= CUSTUI.getHelpText()
%></BODY></HTML>")
newWindow.document.close()}
</SCRIPT>

<INPUT TYPE="button" NAME="helpbutton" VALUE="Help" onClick="showHelp()">
Front-end customization techniques 199

Note: To get the text shown in the help window in Figure 103 we entered the
following as a single line of text in the help page properties dialog for the
CUSTUI UI Record:

CustUI Record Help Text
This text on a new line.
This
broken by HTML formatting.

If you use the Enter key to make a new line when adding help text, the
getHelpText() method will fail. The \n added to the string in the generated
Java bean source (CUSTUIBean.java) invalidates the method. We added
some HTML formatting control tags (,, and
) to further customize
the help text view in the help window.

Other HTML INPUT TYPEs such as TEXT have similar events, for example,
you could trigger data item help for a data item named TXTFLD of UI type
INPUT or INPUT/OUTPUT to display in the browser status bar when the user
tabs into, or focuses on a field, and remove the help when they tab out or
focus on another field, by adding:

onFocus="window.status='<%= TXTFLD.getHelpText() %>'; return true"
onBlur="window.status=' '; return true"

to the HTML INPUT tag, so the full tag in the JSP appears as shown below:

<!-- TXTFLD -->
<%= TXTFLD.getLabel() %>
<INPUT TYPE=TEXT NAME="TXTFLD" SIZE=30 MAXLENGTH=30
VALUE="<%= TXTFLD.getTextValue() %>"
onFocus="window.status='<%= TXTFLD.getHelpText() %>'; return true"
onBlur="window.status=' '; return true">
<% if (TXTFLD.hasInputError()) { %>

<%= TXTFLD.getErrorMessage() %>
<% } %>

11.1.4 Protecting FORM fields
You first need to define a 1-byte CHA data item in the UI Record for each data
item you wish to protect. You may define these fields as UI type NONE, since
they do not need to appear in the HTML.

You are only likely to see problems using NONE if you XFER ’ ’ ,UI Record
with the UI Record containing the NONE data items and you have a FORM
data item where the receiving UI Record is the same UI Record. In this case,
you need to ask to pass through the NONE fields as link parameters when
you specify the UI properties of the FORM data item, so the values are not
lost. This of course turns the NONE field into a HIDDEN field so it can be
referenced in the program link, and HIDDEN fields can be seen in the HTML
source sent to the browser.
200 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

You need to set the flags as appropriate inside your Web Transaction code
before the CONVERSE or XFER which displays the UI Record in the browser.

In the generated JSP, add code to look up the flag. For example, for a data
item of type INPUT or INPUT/OUTPUT named TXTFLD, you could add:

<% if (FLAGFORTXTFLD.getTextValue().equals("Y")) {
out.print("READONLY"); } %>

to the INPUT field, so the full tag appears in the JSP as shown below:

<%= TXTFLD.getLabel() %> <INPUT TYPE=TEXT NAME="TXTFLD" SIZE=10
MAXLENGTH=10 VALUE="<%= TXTFLD.getTextValue() %>"
<% if (FLAGFORTXTFLD.getTextValue().equals("Y")) {
out.print("READONLY"); } %>

11.1.5 Making the default JSP look better
The UI Record provides the ability to control data content and basic
presentation (input, output, lists, drop downs). Other presentation decisions
are defined in the default JSP generated from the UI Record definition.

Figure 104 shows an example of the default page as generated by VisualAge
Generator (we have returned to the original default JSP).

Figure 104. Default Customer Info JSP

While the view in Figure 104 is functional, there can be no doubt that it could
look better if we made a few changes. The easiest elements to modify will be
the TABLE and FORM elements.
Front-end customization techniques 201

Modifying the TABLE
The primary element in the default JSP layout is the use of TABLE. A TABLE has
many attributes that can be modified easily, namely HEIGHT, WIDTH, BORDER,
CELLSPACING, and CELLPADDING.

The TABLE is set up like a grid with rows <TR> and cells <TD>. HEIGHT controls
how much of the screen the table takes up vertically, and the value can be
either pixels or percentage. WIDTH controls how much of the screen the table
takes up horizontally, and can also be either pixel or percentage. BORDER
controls the width of the border of the TABLE— this can be any number from 0
to N (N being a reasonable number greater than 0 — this is one of the
recommended changes to make to the Generator defaults).

CELLSPACING controls how much space the browser will put between individual
data cells, and is a pixel value. CELLPADDING represents the amount of padding
the browser will render around content inside the data cells and it is also a
pixel value.

So, if we want to create a TABLE that has a BORDER width of 1, only takes up
90% of the horizontal space of the browser, has no space in between cells,
but has 5 pixels of padding around cell content, we could take the default
code (see Figure 105) and make the desired changes (see Figure 106).

Figure 105. Default code for HTML table
202 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Figure 106. Modified code for HTML table

Figure 107 shows the JSP after modification of the TABLE definition.

Figure 107. JSP with TABLE modifications

Modifying the FORM
It is important to note that it really doesn’t matter how the FORM elements are
ordered as far as HTML is concerned — all INPUT elements of a FORM are
submitted at the same time with their respective name/value pairs.

When we open up the source file in Notepad, we can easily identify the
FORM elements (in this case there are only two types: INPUT and SELECT).
To rearrange the individual elements, all you have to do is cut and paste the
FORM element into its new position.

We have already seen the default source. To put the FORM elements in a
different order, we simply highlight the element in question (see Figure 108).
Front-end customization techniques 203

Figure 108. Highlighting the FORM element to move

And then cut it (either with the Edit menu option or by pressing Ctrl+X), and
paste it into its new position (again, using the Edit menu option or using
Ctrl+V) (see Figure 109).

Figure 109. JSP source after modification

The appearance of the page has now been altered independent of the
UIRecord definition (see Figure 110).
204 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Figure 110. Modified JSP rendered in browser

11.2 Level 2: Enter the JSP developer

The JSP developer is the second role that Level 2 development brings to the
project. This is basically a support role for Phase 2 of a Web Transaction
project. The Web Transaction developer is now able to pass along the Web
site responsibilities to someone more knowledgable. At this level, we can
expect the JSP developer to have a firmer grasp on HTML knowledge and
concepts than our Level 1 Web Transaction developer.

It is important at this point to fully comprehend the concept that these JSPs
are completely and fully modifiable! There are many developers (especially
those who have most of their experience in back-end development) who
have been trained to never modify anything that VisualAge Generator
produces or risk causing the system to fail. From a JSP perspective, this is
untrue! As long as the changes you make to the JSP after it has been
generated are purely cosmetic (HTML layout), are client-side JavaScript
functionality, or are otherwise not involved in changing the program code
that make the JSP work, you can edit completely non-destructively.

Important Note
Front-end customization techniques 205

11.2.1 Advanced JSP customization
The JSP developer skill allows for both rapid and more advanced
modification to the default JSP. A person filling this skill role should be able to
simply go through the finished (generated default JSP) system and make the
desired changes. These changes would be based on the level of HTML
knowledge the JSP developer has, including modification of page layout,
addition of simple menus, modification of tables, modification of forms, and
color decisions.

If the JSP developer has the knowledge, Cascading Style Sheets (CSS),
following the specification outlined by the World Wide Web Consortium at
http://www.w3c.org, can be implemented in the default pages to make the
task of modifying the pages a lot easier (this is demonstrated in 11.2.3,
“Modification Using WebSphere Studio” on page 216).

Rather than spend time outlining how many changes a developer who is very
experienced with HTML could make (since they are infinite and this is not an
HTML instructional manual), a few possibilities and examples will be
presented.

TABLE modification — Rows and Cells
There are additional modifications we can make to our example TABLE to
make it look much better. We can actually take advantage of the row and cell
TABLE structure and make the elements of the FORM line up to provide a
visually pleasing presentation. FIrst, we need to break up the FORM
elements into separate row and cell containers. This is done by inserting a
<TR> wherever we need a new row, and a <TD> wherever we need a new cell.
The number of columns MUST be consistent, so keep track of your numbers.

A TABLE that has a grid of rows and cells has the following layout:

<TABLE>
<TR>
<TD>Cell 1</TD>
<TD>Cell 2</TD>
</TR>
<TR>
<TD>Cell 3</TD>
<TD>Cell 4</TD>
</TR>
</TABLE>

In short, you need to rearrange the content to fit into these cells, either by cut
and paste, or by inserting the <TR> and <TD> tags around your content.
206 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

An example of inserting the necessary tags is shown in Figure 111.

Figure 111. TABLE code with rows and cells

The revised visual view, with label and input field alignment, is shown in
Figure 112.

Figure 112. TABLE display after rows and cells

Note: If the generated default JSP file is modified with the simple insertion of
</TD><TD> and </TD></TR><TR><TD> tags around the data item label and
value (input field or output data), the JSP will function and look like the view
shown in Figure 112.
Front-end customization techniques 207

This simple modification will result in a set of interleaved TABLE and FORM
tags with the following layout:

<TABLE>
<TR> <TD>

<TABLE>
<TR> <TD>
<FORM>

Cell 1</TD>
<TD>Cell 2</TD>
</TR> <TR>
<TD>Cell 3</TD>
<TD>Cell 4</TD>

</FORM>
</TD> </TR>
</TABLE>

</TD> </TR>
</TABLE>

The problem is that the interleaved syntax shown above will not be accepted
by some tools, such as WebSphere Page Designer, whose parsing of the
syntax is very strict.

The WebSphere Page Designer will issue a Corrected the errors message
and modify the syntax by moving the </FORM> tag up in the source file to a
point right after the first data item label. This will result in a nonfunctional form
(all input fields are outside the form). To avoid this problem, reformat the tags
with the following layout:

<TABLE>
<TR> <TD>
<FORM>

<TABLE>
<TR> <TD>

Cell 1</TD>
<TD>Cell 2</TD>
</TR> <TR>
<TD>Cell 3</TD>
<TD>Cell 4</TD>

</TD> </TR>
</TABLE>

</FORM>
</TD> </TR>

</TABLE>
208 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

FORM modification—FONT: SIZE, FACE, and COLOR
There are more advanced changes at this level you can make to the
appearance of the FORM itself. For example, if you’ve worked with HTML,
you know that tags have a SIZE attribute and a FACE attribute
associated with them.

You can actually resize and reformat the text fields by surrounding them with
tags that have these attributes. If you examine the generated default JSP
source, you see that there is no font information defined for both the text field
labels and the text inside the input fields. The presentation will use the default
font defined in the browser.

However, by modifying the JSP source, we can add tags that will change the
visual appearance.

To change the appearance of a text field, simply add a tag before the
INPUT element, including the appropriate SIZE="2" FACE="arial" attributes,
and add the closing tag after the INPUT element. This change is
shown in Figure 113.

Figure 113. FONT attributes given to FORM element

Now, if we take a look at the presentation view of the modified JSP (see
Figure 113), we can see that anything that is displayed in the First Name field
has the FONT properties that were assigned using the font tag set. See
Figure 114.
Front-end customization techniques 209

Figure 114. FORM field with modified FONT properties

It should also be noted that Generator provides us with color information for
our error messages, as shown in Figure 115.

Figure 115. Color information for FORM error message

The color code is a hexadecimal number based on three pairs of numbers
that stand for amounts of red, green, and blue color, respectively. HTML
syntax also allows us to just use the word "red" as well.

11.2.2 WebSphere Studio
Some of the basic concepts that are key to understanding how WebSphere
Studio can be used are introduced in this section.
210 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Setup and configuration
Before we can use WebSphere Studio to enhance the formatting and
presentation of our JSP pages, we must first install and configure WebSphere
Studio (use V3.02).

Note: If you do not have an appropriate version of the Microsoft Internet
Explorer installed, WebSphere Studio will complain during the installation.
The WebSphere Page Designer uses Microsoft Internet Explorer components
to support rendering of the preview page. The preview page will not be
available if you do not have Microsoft Internet Explorer V4 or V5 installed.

Configuration requirements will depend on your planned use of WebSphere
Studio. You can add links between WebSphere Studio and the VisualAge for
Java WebSphere Test Environment as well as the WebSphere Application
Server runtime environment (see Figure 116).

Figure 116. WebSphere Studio, VisualAge for Java, and WebSphere Application Server

WebSphere Application Server

DB2 CICS MQ other

HTTP Server

Serlvets
Beans

JSPs
HTML

WebSp.Test.Env.

Web
Application

Serlvets / Beans JSPs / HTML

Project/Pkg/Class Project

HTML

JSPs

Serlvets/Beans

VisualAge Java WebSph.Studio

Serlvets/Beans

export

import

publish

publishexport

store

retrieve

access
Front-end customization techniques 211

Note: See WebSphere Studio and VisualAge for Java — Servlet and JSP
Programming, SG24-5755 for additional details on the use of WebSphere
Studio and VisualAge for Java in an integrated environment.

Publishing from WebSphere Studio
WebSphere Studio uses a publishing motif. The source in WebSphere Studio
is published to a target server defined for a publishing stage. By default, two
publishing stages (Test and Production) are preconfigured on your
workstation when WebSphere Studio is installed (see Figure 117).

Figure 117. Default publishing stages and servers after WebSphere Studio installation

Depending on the software available on your workstation, one or more of
these publishing stages may be precustomized with named targets for where
the files go when you publish (see Figure 118).
212 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Figure 118. Default properties for target server

We have to define a publishing server so our files will be saved to our target
directory. First, right-click on the server on the right side (should be either
Test or Production, it does not matter) and choose Insert > Server...

Integration into Web Transaction development environment
To effectively use WebSphere Studio we must connect it to the development
environment and define the flow of source and generated code between the
tools.

We will focus on a simplified environment where we use WebSphere Studio to
build HTML and customize the generated default JSPs, with support for
publishing the front end components to the document root for either the
WebSphere Test Environment or the WebSphere Application Server WebApp.
Figure 119 shows development with WebSphere Studio, VisualAge for Java,
and WebSphere Application Server.
Front-end customization techniques 213

Figure 119. Development with WebSphere Studio, VisualAge for Java, and WebSphere
Application Server

The basic process, as shown in Figure 119, is:

VisualAge Generator system build:

• Develop and test Web Transactions and UI Records
• Generate Web Transactions and UI Records

This is the act of developing the Web Transaction programs in VisualAge
Generator and using the test facility to test the 4GL source in the browser.
Once complete, or when the UI Record interface has stabilized, the Web
Transactions and UI Records can be generated to produce the default
generated JSP which can be further customized.

See Chapter 13, “VisualAge Generator Web Transaction runtime setup” on
page 257 and Chapter 15, “Web Transaction generation” on page 335 for
more information on setting up and building a VisualAge Generator Web
Transaction system.

Project

WebSphere Studio

publish to
test docroot

import
beans

add to
webapp

classpath

generate

CICS

IMS/TMTCP/IP

Web
Transactions

export

import

WebSphereTest
Environment

VisualAge for Java / VisualAge Generator

Generated and
Runtime Code

GatewayServlet
UIRec Beans

Web Transactions
UI Records

VAGen Source

UIRec
Beans

JSPs
HTML JSPs

HTML JSPs

WebSphere Application Server

HTTP Server

Web
Application

GatewayServlet
UIRec BeansHTML JSPs

add JSPs
to

Project

publish to
webapp
docroot

VAGen Build

Front End Build

Runtime Build
214 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Front end system build:

• Import JavaBeans generated for UI Records into VisualAge for Java
• Add GatewayServlet to VisualAge for Java and configure in

WebSphere Test Environment
• Add generated default JSPs to WebSphere Studio project
• Enhance generated default JSPs, adding HTML as required
• Publish front end code to docroot defined for WebSphere Test

Environment
• Test front end using Web Transaction runtime system

This is the act of customizing the front end of the system. The task may
require the development of an HTML-based Web site and the
customization of the generated default JSPs.

WebSphere Studio can be used to support this activity. Once complete, or
as part of an iterative development process, the front end system can be
published to the WebSphere Test Environment to support dynamic testing
of front end logic which directly calls the generated Web Transaction
programs in the runtime environment.

See 14.4, “VisualAge for Java WebSphere test environment” on page 329
for more information on setting up the WebSphere Test Environment.

Note: We have not added the Gateway Servlet or the JavaBeans
generated from the UI Record to the WebSphere Studio environment.
There did not seem to be any value in doing so at this time. If the
generated JSPs change, then there might be a time when adding these
additional files to the WebSphere Studio project would make sense.

Runtime system build:

• Configure GatewayServlet in WebSphere Application Server
• Add generated JavaBeans to WebSphere Application Server Web

application
• Publish front end code to docroot defined for WebSphere Application

Server Web application

This is the act of implementing a full runtime system. The front end system
is published to the Web application defined in the WebSphere Application
Server. The generated JavaBeans are also added to the Web application,
either as class files or packaged in a JAR file.

See Chapter 14, “WebSphere Application Server setup” on page 301 and
Chapter 16, “Running Web Transactions” on page 341 for more
information on setting up the Web Transaction runtime system.
Front-end customization techniques 215

11.2.3 Modification Using WebSphere Studio
We can use WebSphere Studio to enhance the formatting and presentation of
our JSP pages. If you have reviewed the Level 1 approach, you are aware of
some of the changes to the HTML code that can be made by customizing the
generated JSPs. WebSphere Studio will support making the same kind of
changes, but with more powerful tooling for extended modification capability.

In this section we will repeat the previous JSP customization exercises using
WebSphere Studio and then extend all the JSPs in the current project using
cascading style sheets (CSS).

Creating a WebSphere Studio project
After installing WebSphere Studio the first thing you need to do is create a
new project using the new project dialog (see Figure 120). You can call the
new project JSPLevel2 or something similar. We will not use a template for
this project.

Figure 120. Creating the StyleDemo project in WebSphere Studio

Adding publishing support for WebSphere Test Environment
We have to define and/or customize a publishing stage so our files will be
sent to the appropriate target directory. We want to publish the JSP files to
the docroot defined when the WebSphere Test Environment was customized.
For this we will customize the test publishing stage to send the files to the
WebSphere Test Environment.

Note: During the WebSphere Studio installation, the test publishing stage
may have already defined a server customized to any existing Web server
and WebSphere Application Server installation on your workstation. If this is
the case, you may wish to add a new publishing stage that you customize
specifically for the WebSphere Test Environment.
216 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

To customize the server we need to set the publishing target to a value that
matches the docroot defined in the WebSphere Test Environment
SERunner.properties file:

##
SERunner.properties
#
VisualAge for Java WebSphere Test Environment Properties
#
docRoot - location the server expects to find html, jsp and
various other resources.
#
httpPort - The port the server listens on for HTTP requests.
#
#
Note: form the path using either single forward slash "/" or
or double backslashes "\\"
##

httpPort=8181
docRoot=e:\\VGenout\\WSTEnv
serverRoot=g:\\j3\\ide\\project_resources\\IBM WebSphere Test Environment

To do this, select the server and customize the properties. Click on the Define
Publishing Targets push button and adjust the HTML and servlet targets to
identify the same docroot using the standard directory name format (no
double backslashes; see Figure 121).

Figure 121. Publishing targets properties for project

Add VisualAge Generator JSPs to project
The JSPs used to support logon processing, the entry page, and error
display, as provided by VisualAge Generator, need to be added to the base
project to provide complete publishing support. You could also manually copy
these files to the active docroot directory and customize them using Notepad.
Front-end customization techniques 217

All the JSPs used in a Web Transaction system must be in the same docroot
directory. This is because the Gateway Servlet is programmed to look in the
root directory (active docroot).

To add the VisualAge Generator JSPs to a folder for the project:

• Select the project icon in the left side of the WebSphere Studio workbench

• Select Insert -> File from the menu bar

• Find and select the following JSPs and GIFs from the directory where
VisualAge Generator Server was installed (you can select them all at
once):

CSOERRORUIR.jsp
Vagen1EntryPage.jsp
Vagen1ErrorPage.jsp
Vagen1LogonPage.jsp
vawcg-wp.gif
visage.gif

You can also add the JSP customized previously (CUSTUI.jsp, see 11.1,
“Level 1: What’s a Web Transaction developer to do?” on page 195) to
provide access to a Web Transaction.

Note: If you had previously copied and customized these files, you may
want to add them to WebSphere Studio from your alternative location.

The files that have been added to the project get mirrored in the publishing
server (see Figure 122).

Figure 122. Publishing targets properties for VAGenFiles folder
218 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

• Select each JSP and modifiy the properties so that the Use Parser option
is not selected.

If used, the parser will place an unexpected / in the ACTION value for the
form definition as shown below:

<FORM METHOD=POST ACTION="/<%= hptGatewayURL %>">

The added / will generate the invalid destination for form interaction shown
below:

Error 400

An error has occured while processing
request:http://127.0.0.1:8181/http://127.0.0.1:8181/GatewayServlet

So be sure you change the properties before you first edit the JSP using
WebSphere Studio. Otherwise you may have to manually correct the source
or add the generated JSP to project again.

This completes the base setup of a Web Transaction front end in WebSphere
Studio. To create a recovery point you may wish to export the current
WebSphere Studio project to an archive file (use menu option File -> Save as
Archive...).

You can now test the publishing process by selecting the JSPLevel2 project
in the left pane of the WebSphere Studio workbench and choosing the menu
option File -> Publish whole Project. The publishing process may ask you to
create directories (if the targets do not exist) or overwrite files (if your target
has old versions of the files in place).

A portion of the report generated after publishing the current project is shown
in Figure 123.

Figure 123. Publishing targets properties for VAGenFiles folder
Front-end customization techniques 219

The directory view for the target docroot directory is shown in Figure 124.

Figure 124. Publishing targets properties for VAGenFiles folder

At this point you can start the WebSphere Test Environment and get the initial
VisualAge Generator JSP sent by the Gateway Servlet. If you have generated
and set up the Web Transaction used by the CUSTUI.jsp, you can also test
this program.

Testing the current setup will validate the WebSphere Studio to WebSphere
Test Environment publishing process (for WebSphere Studio, VisualAge for
Java, and WebSphere Application Server) which was originally outlined in
Figure 116 on page 211.

Using folders in WebSphere Studio
We would like to organize files in folders using WebSphere Studio and then
use customized publishing properties so that no actual directory structure is
used during publishing for the folders defined in WebSphere Studio. However,
this does not function as desired.

If we attempt to use a folder by following these steps:

• Select the project icon in the left side of the WebSphere Studio workbench

• Select Insert -> Folder from the menu bar

• Add a folder named VAGenFiles

• Select the VAGenFiles folder

• Select Insert -> File from the menu bar

• Find and select the required VisualAge Generator Server JSPs and GIFs
220 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

And then customize the publishing process by doing the following:

• Select the VAGenFiles folder in the publishing domain (right side of
WebSphere Studio workbench view when the publishing view is active)
and using mouse button 2, select the properties option.

• To ensure that the WebSphere Studio folder organization does not force a
similar directory structure during publishing, modify the publishing page
for the VAGenFiles folder as shown in Figure 125.

Figure 125. Publishing targets properties for VAGenFiles folder

Note: If you do not select the Make this folder a virtual directory option, the
folder will not be created during publishing; but references, such as those to
the GIF files, will include the VAGenFiles directory name.

The problem is that the mix of the required deselection of the Use Parser
option for JSP file properties and the publishing target customization results
in a JSP that looks like this:

<HEAD>
<TITLE>VisualAge Generator System Entry</TITLE>

</HEAD>
<BODY background="/VAGenFiles/vawcg-wp.gif">

VisualAge Generator System Entry

<FORM METHOD=POST ACTION="<%= hptGatewayURL %>">

If you keep the referenced GIF files in the root directory, the VisualAge
Generator supplied JSPs will resolve the name in the flat publishing directory.

The use of folders may allow for better JSP file management in a team
environment when using WebSphere Studio. Just be sure that the
WebSphere Studio organization results in a published structure where all
references resolve.
Front-end customization techniques 221

Formatting using cascading style sheets
A CSS is simply a central location for style information to which you connect
all the pages in your Web site. This means that if, for example, you want to
change the font size of your pages, you could simply change the font
definition in the style sheet one time rather than make the exact same
changes to every instance of a font definition in every page.

Note: Not all versions of the browsers available support the use of CSS
references in HTML/JSP files. We used both Netscape Navigator 4.5, 4.6,
and 4.7 as well as Microsoft Internet Explorer 4.0 in our testing for this
exercise. Many of the CSS defined options for control of formatting and
presentation was only completely visible when using Microsoft Internet
Explorer.

The base rendering of the default generated JSP for the simple Customer
Info system (CUSTUI.jsp), for both Netscape Navigator and Microsoft Internet
Explorer, is shown in Figure 126.

Figure 126. Base rendering of CSTUI.jsp in Navigator (l) and Internet Explorer (r)

References to the Master.css file that exists in the active WebSphere Studio
project are automatically included when you create JSPs using a WebSphere
Studio Wizard (such as the JavaBean Wizard). An example of this reference
is shown below:

<LINK href="file:///d:/ws/std/Projects/JSPLevel2/theme/Master.css"
rel="stylesheet" type="text/css">

Using WebSphere Studio you can add the generated default JSPs to a project
and apply a style sheet to them for more flexible control of their appearance.
222 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

To add support for the CSS definition in the project, a link relationship must
be defined in the JSP file. This is done by adding this statement just before
the </HEAD> tag in the JSP file:

<LINK REL="stylesheet" TYPE="text/css" HREF="theme/Master.css">

Note: To edit our CUSTUI.jsp, we can simply double-click on it to open it in
Page Designer. If this does not happen automatically, go to the Tools >
Tools Registration... menu and register Page Designer as the default editor
for "html" extensions.

The revised rendering of the default generated JSP, when combined with the
default Master.css file in the WebSphere Studio project, is shown in Figure
127. Slight changes in the fonts used for the title and input field labels are
visible.

Figure 127. Rendering with default Master.CSS in Navigator (l) and Internet Explorer (r)

If we change the Master.css file we can further control the presentation used
for the generated default JSP. To show this, we modify the fonts used in the
Master.css using WebSphere Page Designer. The "before" and "after"
settings are shown in Figure 128.
Front-end customization techniques 223

Figure 128. Master.css font modification

The revised rendering of the default generated JSP, when combined with
initial font modification to the Master.css file in the WebSphere Studio project,
is shown in Figure 129. Additional changes in the fonts used for the title and
input field labels are visible.

Figure 129. Rendering with modified fonts in Navigator (l) and Internet Explorer (r)

If we continue to change the Master.css file we can demonstrate more vivid
control of the presentation used for the generated default JSP. This is shown
by adding additional changes to the Master.css (see Figure 130).
224 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Figure 130. Master.css font modification

These modifications work with the default generated JSP and result in the
presentation shown in Figure 131.

Figure 131. Rendering with modified fonts in Navigator (l) and Internet Explorer (r)

Master.css changes are reflected directly in the WebSphere Page Designer
when editing a JSP that includes the reference (see Figure 132).
Front-end customization techniques 225

Figure 132. Editing CUSTUI.jsp in WebSphere Page Designer

11.3 Level 3: Integrating Web Transactions into a Web site

The third role that is added in the Level 3 development scenario is that of an
HTML designer. As it has been mentioned before, the HTML designer will not
do anything outside of the ordinary as far as what type of Web site
development is being done, but this third role does significantly alter the
project planning parameters and the responsibilities of the JSP developer.

In fact, it is the JSP developer that will be responsible for most of the work
required to integrate Web Transactions into a completed Web Site.

11.3.1 Explanation of simultaneous development
The whole concept of simultaneous development is unique to Level 3
development. In Figure 40 on page 113, we can see that in the two-phase
development process, the first phase contains tasks for both the Web
Transaction developer and the HTML designer. The thing that makes this
simultaneous development model possible is the fact that the development of
presentation and functional components are separate processes, until Phase
2, when the JSP developer takes over.
226 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Since they are two separate processes, it is not necessary (and not
recommended) for the project to move in a linear fashion from Web
Transaction development to JSP development to HTML design. Attempting to
complete a project this way would significantly increase total project hours,
elapsed time, and cause unnecessary overlap between the different roles.

11.3.2 Web site planning issues
There are a few issues that must be given a lot of thought during the planning
stage of a Web Transaction project. This planning will be different than
planning for a regular Web site deployment due to the nature of the default
JSPs and JavaBeans generated by VisualAge Generator, and the behavior of
Web browsers, HTTP, and HTML, and JSP/Servlet runtime environments
such as WebSphere Application Server.

Web site complexity
First in importance is the complexity of the Web site design itself. It is
common practice to create Web sites that are FRAMES-based or have
FRAME elements in them. While not impossible to accommodate, these
types of Web sites have numerous issues associated with them that will make
the actual deployment of the system slightly more difficult.

Scope and context
The scope of a page in a Web site is determined not by its placement, but by
its place within the hierarchy of FRAMES. In a client-side programming
language (such as JavaScript), the top-level browser window is an object of
type window. However, each FRAME inside that window is an entity unto
itself, also of type window. So, you can have an infinite number of windows
within this window, each of which has its own HTTP Request, source HTML,
and name.

Use of session data
As described above, a page contains other pages in the form of FRAMES.
However, the data beans live in the scope of an HTTP request unless you
explicitly program your JSP to place the bean in session data. As you will
see, this is required to support effective integration of a Web Transaction in a
FRAMES-based Web site.

Other client-side technologies
For the most part, client-side technologies such as JavaScript can interact
non-destructively with a Web Transaction system and its JSPs. You are
permitted to add function to the generated default JSP, as required. This may
increase the complexity of the development process when changes to the UI
Record definition have to be matched in the customized JSPs.
Front-end customization techniques 227

11.3.3 Development steps
Web Transaction developer
The Web Transaction developer creates, tests, and generates a fully
functional Web Transaction system.

HTML designer creates mock-up Web site
During Phase 1, while the Web Transaction developer is building and testing
the Web Transaction system, the HTML designer creates the Web site in its
entirety. The use of static text data in place of the dynamic data that might be
provided by the completed JSP can help create a finished look to the
mock-up site.

JSP developer integrates Web Transactions into Web site
Once the front and back end components are complete, the JSP developer
can integrate the Web site with the Gateway Servlet and the runtime
implementation of the Web Transaction programs.

11.3.4 Front end Web site development
Instead of developing a Web site from scratch we choose to use a simple
FRAMES-based site created from a WebSphere Studio template.

WebSphere Studio and the default templates
WebSphere Studio is a part of the WebSphere suite of products. The
WebSphere Studio set of tools allow developers to integrate HTML, JSPs,
servlets, and other Web site elements into one environment called a project.
In this project, pages may be modified, elements moved, and other elements
added to create a final finished project which is then published to local or
remote directories.

Included in WebSphere Studio is the ability to generate a Web site from a
template when creating a new project. While you may decide not to use the
provided templates for your Web site development, we found that the
template gave us a reasonable implementation of a finished Web site that
needed to be integrated with existing Web Transactions.

In WebSphere Studio version 3.02, there are 2 template choices: Corporate1
and Corporate2. Our example will use the Corporate1 template due to its
simpler structure and ease of modification.

To begin, open WebSphere Studio. If you have not used the product before,
or if you do not have an active project, a dialog box will ask you if you want to
create a new project or open an existing project. Select the Create a new
project option (see Figure 133).
228 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Figure 133. Opening WebSphere Studio and creating a new project

If you are taken directly into WebSphere Studio on an active project, use the
File -> New Project... menu option to start the New Project dialog.

In the New Project dialog provide a name for the new project (the directory
structure is filled in automatically for you as you type the project name) and
choose a Project Template of Corporate1 (see Figure 134).

Figure 134. Selecting the Corporate1 template

When you click on OK WebSphere Studio will create a new project from the
template.
Front-end customization techniques 229

Set up publishing support
The next task was to repeat the steps described earlier (see “Adding
publishing support for WebSphere Test Environment” on page 216) to
customize the publishing environment.

Figure 135 shows the WebSphere Studio workbench view after creating the
project from the template and customizing publishing to support the
WebSphere Test Environment. Different parts of the Web site are shown in
each side of the WebSphere Studio workbench view.

Figure 135. Web site from Corporate1 template in WebSphere Studio

You can test the Web site by publishing the project and using the WebSphere
Test Environment to supply the HTML to a browser. The Web site entry page
is shown in Figure 136.
230 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Figure 136. Entry page for Corporate1 template Web site

Modify Web site: Pretty it up
The Web site created from the template does not format well in all browsers,
so the first task is to change a few settings to improve the rendering.

The page we will be modifying most heavily is the page called top.html.
Double-click on this page it to open it up in WebSphere Page Designer. The
initial view is the WYSIWYG view for the WebSphere Page Designer editor
(see Figure 137).

Figure 137. WebSphere Page Designer WYSIWYG view for top.html
Front-end customization techniques 231

Note: If this does not automatically happen, go to Tools > Tools
Registration... to register Page Designer as the default editor for files with
"html" extensions).

If we click on the HTML Source tab, the HTML tags will appear, each
color-coded to identify with its function in the layout (see Figure 138).

Figure 138. WebSphere Page Designer HTML view for top.html

The first thing we want to do is go through and remove all hard-coded WIDTH
attributes in the TABLE that holds the menu, but leave the TD tags with
WIDTH="5" attributes alone; they are needed for the spacing.

Simply highlight all the WIDTH attributes in the TABLE and TD tags and
delete them. DO NOT delete the tags, just the WIDTH attributes.

After you have finished doing this to every instance of the menu TABLE, save
the file and close Page Designer.

If your menu items are not fully visible or are being cut off edit index.html
with WebSphere Page Designer and click on the Frame HTML Source tab to
see the FRAME source code (see Figure 139).
232 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Figure 139. WebSphere Page Designer Frame HTML source view for index.html

Modify the first value in the "rows" attribute of the FRAMESET to a larger
number (such as 120).

We continued to make other cosmetic and content changes as we learned
more about WebSphere Studio.

To help you master WebSphere Studio you may wish to order WebSphere
Studio and VisualAge for Java—Servlet and JSP Programming, SG24-5755.

If we check-in all the modified files and republish the Web site, we will see the
modified HTML site with an improved rendering for the top.html menu (see
Figure 140).
Front-end customization techniques 233

Figure 140. Enhanced entry page for Corporate1 template Web site

11.3.5 Bringing the two sides (front and back) together
The process of integrating Web Transaction programs into an existing
FRAMES-based Web site is reviewed in this section.

There are five basic connection approaches to consider:

• Connecting Web site to Gateway Servlet
• Connecting Web site to specific Web Transactions
• Connecting Gateway Servlet to Web site
• Connecting Gateway Servlet to JSP-based Web site
• Adding dynamic Gateway Servlet name resolution to JSP-based Web site

Each approach allows for different levels of integration and support for
dynamic references to the Gateway Servlet home (URL/WebApp).
234 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Add VisualAge Generator components
We begin by adding the demonstration pages that we want to put in the
context of this pre-designed Web site (remember, we are working with an
HTML designer that provided the raw site while Web Transaction integration
is being done by the JSP developer). This will allow us to publish the
complete site from WebSphere Studio.

The Web Transactions that will be integrated into this Web site include
components from the Customer Info Web Transaction (see Chapter 8,
“Developing Web Transaction programming skills” on page 127) and the Web
Transaction structure demonstration (see Chapter 10, “Demonstration
system” on page 181).

We will also add the VisualAge Generator supplied JSPs and GIFs to support
alternate entry point and logon processing options. The process for the
VisualAge Generator parts was outlined earlier (see “Add VisualAge
Generator JSPs to project” on page 217).

To insert the JSPs for the sample Web Transaction programs, select the
project folder in the file view, choose the Insert > File... menu option and
select the Use Existing notebook page. We can select multiple files in the
Open dialog box by holding the Ctrl key while selecting the files.

To support the sample Web Transaction programs we added these files:

FRST_PLK_UI_RECORD.jsp
FRST_FRM_RECV_UI.jsp
FRST_FRM_UI_RECORD.jsp
FRST_PGM_UI_RECORD.jsp
CONV_UI_RECORD.jsp
CUSTUI.jsp

Remember to adjust the JSP properties (deselect Use Parser option) for each
JSP file provided by or generated by VisualAge Generator.

Connecting Web site to Gateway Servlet
The HTML in the Web site can include a menu option that will start the
Gateway Servlet which will then provide access to the Web Transactions that
need to be available.

The HTML can be connected to the Gateway Servlet by adjusting the HREF
link in a menu option found in the top.html code. The revised menu option
will point directly to the Gateway Servlet using a hardcoded value that
represents the name defined for the Gateway Servlet in the WebSphere Test
Front-end customization techniques 235

Environment or WebSphere Application Server. The HTML source for this
connection is shown in Figure 141.

Figure 141. Source for HTML navigation to Gateway Servlet

This pointer allows the HTML Web site to invoke the Gateway Servlet entry
point. See the status area value (http://127.0.0.1:8181/Gateway Servlet) for
the link named Gateway Servlet in Figure 142.

Figure 142. Runtime view of HTML naviagtion to Gateway Servlet

When selected, this link will invoke the Gateway Servlet which will use the
active parameters to determine what page to show next. Several parameter
settings control the process:

• hptLogonPage
• hptEntryPage
• hptEntryApp.

<TD valign="middle" align="left" width="20"><IMG src="/theme/button.gif" width="20"
height="20" border="0"></TD>
<TD valign="middle" align="left" width="20"><A href="/GatewayServlet"
target="thecontent">Gateway Servlet</TD>
236 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

In reality the process works like this:

if hptLogonPage ^= ’’
display hptLogonPage

end
if hptEntryPage ^= ’’

display hptLogonPage
else

if hptEntryApp ^= ’’
start hptEntryApp Web Transaction

end
end

For now we will ignore the use of the VisualAge Generator Web Transaction
logon (hptLogonPage).

Figure 141 shows what happens with an active Gateway Servlet setting of
hptEntryPage=Vagen1EntryPage.jsp and the navigation pointer shown in
Figure 143 where the response is targeted to the frame thecontent.

Figure 143. Gateway Servlet as target of HTML navigation
Front-end customization techniques 237

Web Transactions selected from the Vagen1EntryPage run in the content
frame (see Figure 144).

Figure 144. Customer Info Web Transaction running in HTML content frame

When you exit the Web Transaction, control returns to the Gateway Servlet
entry point.

The problem with this approach (HTML to Gateway Servlet) is that only one
HTML navigation option can be used to start a Web Transaction. If the UI
Records defined for the Web Transaction system include appropriate
navigation control, this may be sufficient. You should also be cautious of
hardcoding the Gateway Servlet name.

Connecting Web site to specific Web Transactions
Different menu options in the HTML for the Web site can start the Gateway
Servlet with parameters for a specific Web Transaction.

The adjusted HREF links in the top.html code that support distinct Web
Transactions are shown in Figure 145.

Note: hptExec=Y for runtime, in the VisualAge Generator test facility you see
hptExec=1.
238 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Figure 145. Source for HTML navigation to defined Web Transactions

These pointers allow the HTML Web site to use the Gateway Servlet to
invoke specific Web Transactions. See the status area value for the link that
started the Customer Info Web Transaction in Figure 146.

Figure 146. Direct invocation of Customer Info Web Transaction in content frame

When you exit the Web Transaction, control returns to the Gateway Servlet
entry point, which will return the configured entry page.

The problem with this approach (HTML to specific Web Transaction) is that
the termination of a Web Transaction may result in an unacceptable response
(entry page list). You should also be cautious of hardcoding the Gateway
Servlet name.

<A href="/GatewayServlet?hptAppId=CSTCNV&hptExec=Y"
target="thecontent">Customer Info</TD>
<A href="/GatewayServlet?hptAppId=CONVMOD&hptExec=Y"
target="thecontent">Converse
<A href="/GatewayServlet?hptAppId=FRSTPGM&hptExec=Y"
target="thecontent">XFER PGM Model</TD>
<A href="/GatewayServlet?hptAppId=FRSTFRM&hptExec=Y"
target="thecontent">XFER ' ' Model</TD>
Front-end customization techniques 239

Connecting Gateway Servlet to Web site
The previous options had the HTML invoke the Gateway Servlet. With this
approach we use the Gateway Servlet configuration to target the Web site.
Instead of having the Gateway Servlet start the Vagen1EntryPage.jsp, we
configure the Web site as the Gateway Servlet entry point.

To try this approach we will configure the Gateway Servlet to target the Web
site entry point, the index.html file, as the entry page
(hptEntryPage=index.html).

If there is a login page that has been configured for the Gateway Servlet
(hptLogonPage=Vagen1LogonPage.jsp), or when a Web Transaction
terminates, control is passed from the last JSP referenced by the Gateway
Servlet servlet and the configured index.html entry point, which results in a
failed response (see Figure 147).

Note: If a login page is not configured, the Gateway Servlet to Web site
connection will function initially. Failure occurs when the Web Transaction
terminates and control is passed back to the entry page.

Figure 147. Response failure when using index.html as Gateway Servlet entry page

This failure is because the Gateway Servlet is programmed to work with JSPs
and we are attempting to insert HTML files in place of the expected JSPs.
The JSPs act like servlets and therefore can support the POST method.
240 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Connecting Gateway Servlet to JSP-based Web site
The previous options had the Gateway Servlet target the HTML for the Web
site, but this did not function in all situations. Instead of having the Gateway
Servlet start the HTML, we will rework the Web site into a JSP that can be
integrated with the Gateway Servlet.

The simplest approach to this requires the following steps:

• Rename index.html to index.jsp
• Configure Gateway Servlet with hptEntryPage=index.jsp

Yes, that is all that it takes!

This works fine at first, but when you exit a Web Transaction it returns to the
Gateway Servlet entry point, which loads the index.jsp in the content frame.
This results in a recursive Web site (see Figure 148).

Figure 148. Recursive failure when using index.jsp as Gateway Servlet entry page
Front-end customization techniques 241

This can be corrected by teaching the index.jsp file to navigate the frame set.
Adding the JavaScript code shown in Figure 149 to the index.jsp will correct
the recursive loading.

Figure 149. Correcting the recursive loadking for index.jspl as Gateway Servlet entry page

When you exit the Web Transaction, control returns to the index.jsp, which
will then reset the Web site to the top level of the frame set.

The one possible problem with this approach (Gateway Servlet to JSP-based
Web site) is that the Gateway Servlet name is hardcoded in the top.html file.

Adding dynamic Gateway Servlet name resolution
By adding some additional code to the JSP-based Web site, we can support
multiple WebSphere Test Environment and/or WebSphere Application Server
Gateway Servlet configurations without changing the Web site source. The
name of the Gateway Servlet is defined in the WebSphere Test Environment
or WebSphere Application Server configuration. Dynamic resolution allows
for different names to be used without having to update the Web site.

The approach we will use mimics the dynamic Gateway Servlet name
resolution found in the Gateway Servlet JSPs provided by VisualAge
Generator (see Figure 150).

<HEAD>
<META name="GENERATOR" content="IBM WebSphere Page Designer V3.0.2 for
Windows">
<META http-equiv="Content-Style-Type" content="text/css">

<!-- Return from a WebTran will send entry point,
this code makes sure that the site does not go recursive.
That is, a site inside the content frame for the site. -->

<SCRIPT language="javascript">
if (location != top.location)
{ top.location = location; }

</SCRIPT>

<TITLE>ITSO Web Tran Demo System</TITLE>
</HEAD>
242 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Figure 150. Dynamic Gateway Servlet resolution in Vagen1EntryPage.jsp

The jsp:useBean entry references the object sent in the HTTP response
produced by the Gateway Servlet. The action defined for the form uses the
content of the bean to dynamically identify the address for the Gateway
Servlet.

To use this logic in the JSP-based Web site we must make several changes:

• Rename top.html to top.jsp

• Rework index.jsp to:

• Identify the top.jsp as the source for the navigation frame
• Capture the hptGatewayURL object from the HTTP request and store it

in session data

• Rework top.jsp to:

• Obtain hptGatewayURL object from session data
• Use hptGatewayURL object value for dynamic Gateway Servlet name

in Web Transaction navigation

The key areas of the revised index.jsp are shown in Figure 151.

...
<%@ page errorPage="Vagen1ErrorPage.jsp" %>
<jsp:useBean id="hptGatewayURL" class="java.lang.String" scope="request" />
...
<FORM METHOD=POST ACTION="<%= hptGatewayURL %>">
...
Front-end customization techniques 243

Figure 151. Revised index.jsp for dynamic Gateway Servlet resolution

The key areas of the revised top.jsp are shown in Figure 152.

Figure 152. Revised top.jsp for dynamic Gateway Servlet resolution

These changes are required because we need the hptGatewayURL object in
the top.jsp, but because the Gateway Servlet sends it as a request object, the
index.jsp consumes the object and it is not available in the subsequent
request sent to satisfy the navigation frame (top.jsp).

The recursive fix is still required in this implementation option.

The source for the final WebSphere Studio project discussed in this chapter is
available; see Appendix A, “Sample code and other materials” on page 365
for details.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">
<HTML> <HEAD>
<!-- web site entry point grabs URL bean from request -->
<%@ page errorPage="Vagen1ErrorPage.jsp" %>
<jsp:useBean id="hptGatewayURL" class="java.lang.String" scope="request" />
<!-- URL Bean is then saved again, in the active session,

so it can be found by other frame requests -->
<% session = request.getSession(true);

session.putValue("hptGatewayURL", hptGatewayURL); %>

<!-- If you wanted a new session you would do this -->
<!-- HttpSession mySession = request.getSession(true);

MySession.putValue("hptGatewayURL", hptGatewayURL); -->

<SCRIPT language="javascript">
if (location != top.location)
{ top.location = location; }

</SCRIPT>
<TITLE>ITSO Web Tran Demo System</TITLE>
</HEAD>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">
<HTML> <HEAD>
<%@ page errorPage="Vagen1ErrorPage.jsp" %>
<jsp:useBean id="hptGatewayURL" class="java.lang.String" scope="session" />
<TITLE>Corporate Template Home</TITLE>
</HEAD>
244 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Part 4. Environment configuration and system implementation
© Copyright IBM Corp. 2000 245

246 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Chapter 12. Runtime environment scenario implementation

During the residency we implemented IBM WebSphere Application Server on
Windows NT with VisualAge Generator Web Transactions on three different
runtime platforms: Windows NT, CICS on Windows NT, and CICS/ESA.

12.1 Windows NT Web Transactions

Our runtime implementation is shown in Figure 153.

Figure 153. Native NT and UDB scenario

12.1.1 Software requirements
The software components used for the Windows NT-based runtime
configuration are shown in Figure 154.

Figure 154. Native NT and UDB implementation

NT
Web server & WebSphere

Native NT VAGen
environment with DB2

CAE
UDB for NT

Apache

WebSphere
Application Server

DB2 UDB

VisualAge Generator Server
+ Common Services

VAGen catcher

VisualAge
Generator Server +
Common Services

DB2 Client
Application

Enabler

C++
Runtime
Libraries

JDK DB2
UDB

TCP/IP

WebSphere
Application Server

Web Transaction
Runtime Server

Database
Server

TCP/IP
© Copyright IBM Corp. 2000 247

The prerequisite software to run VisualAge Generator Web Transactions is as
follows:

WebSphere Application Server
• Windows NT V4 with fixpack 4.

• TCP/IP.

• A servlet engine which supports JSDK 2.1 and JSP 1.0.

We chose to use IBM WebSphere Application Server, so for Web
Transaction support we must use V3.0. It is intended with a fixpack, to
allow Web Transactions to be used with servlet engines which only
support JSDK 2.0 and JSP 0.91, such as WebSphere Application Server
V2, but this is not available with GA.

We chose to use WebSphere Application Server Advanced V3.

• IBM WebSphere Application Server V3 runs as a plug-in to a Web server.
The Web servers supported for NT include:

• Apache V1.3.6 or later
• IBM HTTP server V1.3.6 or later
• Lotus Domino Go V4.6.2.5 or later
• Domino V5.0 or later
• Netscape Enterprise V3.51 or later
• Microsoft IIS V4.0 or later

We build configurations using both the Apache and IBM HTTP. web
servers.

• IBM WebSphere Application Server Advanced requires:

1. One of the following database products to support the implementation
of the entity flavor of Enterprise JavaBeans and the storage of
configuration data whichis managed via EJB:

• IBM DB2 Universal Database Version 5.2 with fixpack 10 or later.

Note that this is either a full database server on the Web server
machine or a Client Application Enabler provided connection to a
remote DB2.

The fixpack is VERY important; if you do not apply it, the IBM
WebSphere Application Server will not come up and will throw lots
of Java exceptions in EJB and JDBC classes.

• Oracle V8.05 with Driver Manager JDBC-Thin/100% Java for
JDK1.1.x.

We chose to use UDB.
248 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

2. Java Development Kit V1.1.7B_003.

• VisualAge Generator Server and Common Services

They provide access to the Power Server API, which acts as a layer over
the top of other software and communication protocols to allow this
environment to invoke a VisualAge Generator server module. They also
provide the Gateway Servlet and other associated runtime modules.

• According to the VisualAge Generator install documentation, VisualAge
Generator Server and Common Services require one of the following C++
runtime libraries:

• Microsoft Visual C++ V5
• Microsoft Visual C++ V6
• VisualAge for C++ V3.5
• VisualAge for C++ V3.6

We chose to use VisualAge for C++ V3.5.3.

Note: You may not actually need the C++ runtime libraries on a platform
that will only implement Gateway Servlet processing in a WebSphere
Application Server environment.

Web Transaction runtime server
• Windows NT V4 with fixpack 4.

• TCP/IP.

• VisualAge Generator Server and Common Services.

• We chose to use VisualAge for C++ V3.5.3 to satisfy the C++ compiler and
runtime libraries requirement for building Web Transaction programs that
will run in Windows NT with VisualAge Generator Server.

• For our database access we connected to a separate database server
machine, so we installed DB2 Client Application Enabler V5.2 with fixpack
8 on the VisualAge Generator server machine.

Database server
• Windows NT V4 with fixpack 4.

• DB2 Universal Database V5.2 with fixpack 8.
Runtime environment scenario implementation 249

12.1.2 Implementation tasks
To implement a Windows NT-based Web Transaction runtime environment,
you need to:

• Implement a VisualAge Generator runtime environment with a
CSOGW.properties configuration that uses the TCP/IP Web Transaction
listener (see Chapter 13, “VisualAge Generator Web Transaction runtime
setup” on page 257).

• Install and configure a Gateway Servlet in a WebSphere Application
Server environment (see Chapter 14, “WebSphere Application Server
setup” on page 301).

• Generate a Web Transaction program (see Chapter 15, “Web Transaction
generation” on page 335).

• Implement the generated code in the runtime environment (see Chapter
16, “Running Web Transactions” on page 341).

12.2 CICS for NT Web Transactions

Our runtime implementation is shown in Figure 155.

Figure 155. NT CICS and UDB scenario

12.2.1 Software requirements
The software components used for the CICS on Windows NT-based runtime
configuration are shown in Figure 156.

NT
Web server & WebSphere

& CICS Transaction
Gateway

CICS NT VAGen
environment with DB2

CAE
UDB for NT
250 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Figure 156. NT CICS and UDB implementation

The prerequisite software to run VisualAge Generator Web Transactions is as
follows:

WebSphere Application Server
• Windows NT V4 with fixpack 4.

• TCP/IP.

• A servlet engine which supports JSDK 2.1 and JSP 1.0.

We chose to use IBM WebSphere Application Server, so for Web
Transaction support we must use V3.0. It is intended with a fixpack, to
allow Web Transactions to be used with servlet engines which only
support JSDK 2.0 and JSP 0.91, such as WebSphere Application Server
V2, but this is not available at GA.

We chose to use WebSphere Application Server Advanced V3.

• IBM WebSphere Application Server V3 runs as a plug-in to a Web server.
The Web servers supported for NT include:

• Apache V1.3.6 or later
• IBM HTTP server V1.3.6 or later
• Lotus Domino Go V4.6.2.5 or later
• Domino V5.0 or later

Apache

WebSphere
Application Server

CICS
Transaction

Gateway

CICS Universal
Client

DB2 UDB

VisualAge Generator Server
+ Common Services

IBM CICS Server

VisualAge
Generator Server +
Common Services

JDK
DB2
UDB

TCP/IP

TCP/IP

DB2 Client
Application

Enabler

C++
Runtime
Libraries

WebSphere Application Server

Web Transaction
Runtime Server

Database
Server
Runtime environment scenario implementation 251

• Netscape Enterprise V3.51 or later
• Microsoft IIS V4.0 or later

We build configurations using both the Apache and IBM HTTP. web
servers.

• IBM WebSphere Application Server Advanced requires:

1. One of the following database products to support the implementation
of the entity flavor of Enterprise JavaBeans and the storage of
configuration data whichis managed via EJB:

• IBM DB2 Universal Database Version 5.2 with fixpack 10 or later.

Note that this is either a full database server on the Web server
machine or a Client Application Enabler provided connection to a
remote DB2.

• Oracle V8.05 with Driver Manager JDBC-Thin/100% Java for
JDK1.1.x.

We chose to use UDB.

2. Java Development Kit V1.1.7B_003.

• VisualAge Generator Server and Common Services

They provide access to the Power Server API, which acts as a layer over
the top of other software and communication protocols to allow this
environment to invoke a VisualAge Generator server module. They also
provide the Gateway Servlet and other associated runtime modules.

• According to the VisualAge Generator install documentation VisualAge
Generator Server and Common Services require one of the following C++
runtime libraries:

• Microsoft Visual C++ V5
• Microsoft Visual C++ V6
• VisualAge for C++ V3.5
• VisualAge for C++ V3.6

We chose to use VisualAge for C++ V3.5.3.

Note: You may not actually need the C++ runtime libraries on a platform
that will only implement Gateway Servlet processing in a WebSphere
Application Server environment.

• Finally, we chose to use CICS for NT as the environment for our Web
Transactions. The Power Server API requires CICS Transaction Gateway
to be able to communicate with the CICS server. We used V3.0.2.
252 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

The Transaction Gateway includes two major components of use with
VisualAge Generator:

• Transaction Gateway Classes
• CICS Universal Client

Web Transaction runtime server
• Windows NT V4 with fixpack 4.

• TCP/IP

• We chose to use CICS for NT (TXSeries) as the environment for our Web
Transactions. We used both V4.2 plus latest patches and V4.3 (as shipped
with the Enterprise Edition of WebSphere Application Server).

• VisualAge Generator Server and Common Services.

• We chose to use VisualAge for C++ V3.5.3 to satisfy the C++ compiler and
runtime libraries requirement for building Web Transaction programs that
will run in a Windows NT-based CICS environment with VisualAge
Generator Server.

• For our database access we connected to a separate database server
machine, so we installed DB2 Client Application Enabler V5.2 with fixpack
8 on the VisualAge Generator server machine.

Database server
• Windows NT V4 with fixpack 4.

• DB2 Universal Database V5.2 with fixpack 8.

12.2.2 Implementation tasks
To implement a Web Transaction runtime environment in CICS on a Windows
NT system, you need to:

• Implement a VisualAge Generator runtime environment (including the
required CICS software) with a CSOGW.properties configuration that uses
the CICSECI to invoke Web Transaction programs (see Chapter 13,
“VisualAge Generator Web Transaction runtime setup” on page 257).

• Install and configure a Gateway Servlet, with support for the CICS
Transaction Gateway, in a WebSphere Application Server environment
(see Chapter 14, “WebSphere Application Server setup” on page 301).

• Generate a Web Transaction program (see Chapter 15, “Web Transaction
generation” on page 335).
Runtime environment scenario implementation 253

• Implement the generated code in the runtime environment with the
appropriate CICS security configuration (see Chapter 16, “Running Web
Transactions” on page 341).

12.3 CICS/ESA Web Transactions

Our runtime implementation is shown in Figure 157.

Figure 157. CICS/ESA and DB2 scenario

12.3.1 Software requirements
The software components used for the CICS/ESA runtime configuration are
shown in Figure 158.

Figure 158. CICS/ESA and DB2 implementation

NT
Web server & WebSphere

& CICS Transaction
Gateway

CICS/ESA
VisualAge Generator Server

DB2

Apache

WebSphere
Application Server

CICS
Transaction

Gateway

CICS Universal
Client

DB2 UDB

VisualAge Generator Server
+ Common Services

IBM CICS/ESA

VisualAge
Generator Server for

MVS

DB2LE for
MVS

JDK

COBOL for (MVS or
OS/390)

LU62

WebSphere Application Server Web Transaction Runtime Server
254 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

The prerequisite software to run VisualAge Generator Web Transactions is as
follows:

WebSphere Application Server
• The initial software required for the WebSphere Application Server

required for CICS/ESA is the same as that listed in 12.2, “CICS for NT
Web Transactions” on page 250.

• In addition, IBM Personal Communications V4.0 or later for APPC support
to allow CICS client to communicate with CICS/ESA is required. Only the
Web server requires the APPC and CICS client software, not the client
browser machines.

Note: You can also use TCP62 (APPC over TCP/IP) to establish an APPC
connection to the target CICS/ESA runtime platform.

Web Transaction runtime server
• At least MVS/ESA V4.2. There are some restrictions, so please refer to

the installation manual.

• SMP/E V1.8.1 or later.

• IBM High Level Assembler V1.2 or later.

• IBM COBOL for MVS V1.2 or later or IBM COBOL for OS/390 V2.1 or
later. This is required for preparation of the Web Transactions.

• IBM Language Environment for MVS V1.5 or later.

• TCP/IP V3.1 or later or IBM 3270/PC File Transfer Program/MVS Release
1, so that VisualAge Generator Developer machines may transfer COBOL
source code and JCL to the host at generation time to initiate and the
preparation step.

• CICS/ESA V3.3 or later.

• IBM Database 2 V3.1 or later.

12.3.2 Implementation tasks
To implement a Web Transaction runtime environment in a CICS/ESA
system, you need to:

• Implement a VisualAge Generator runtime environment with a
CSOGW.properties configuration that uses the CICSECI (and the required
CICS connection software) to invoke Web Transaction programs (see
Chapter 13, “VisualAge Generator Web Transaction runtime setup” on
page 257).
Runtime environment scenario implementation 255

• Install and configure a Gateway Servlet, with support for the CICS
Transaction Gateway, in a WebSphere Application Server environment
(see Chapter 14, “WebSphere Application Server setup” on page 301).

• Generate a Web Transaction program (see Chapter 15, “Web Transaction
generation” on page 335).

• Implement the generated code in the runtime environment with the
appropriate CICS security configuration (see Chapter 16, “Running Web
Transactions” on page 341).
256 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Chapter 13. VisualAge Generator Web Transaction runtime setup

The goal of this chapter is to set up and configure a runtime environment
where we can deploy VisualAge Generator Web Transaction programs.

13.1 Base software

Support software installed on all workstations is reviewed in this section.

13.1.1 DB2 Client Application Enabler
We used a shared DB2 system installed on a workstation accessible on the
network. To implement access to this shared DB2 system, we did the
following:

• Install the software and apply the fixpack(s).

• Define a connection to the UDB on your designated Database Server. This
is easily done via the Client Configuration Assistant.

• Start the tool and ask to ADD.... Figure 159 shows the window which
opens.

Figure 159. Attaching DB2 CAE to a database on a remote database server — part 1
© Copyright IBM Corp. 2000 257

• The simplest way is to ask to search the network for available database
server machines. This produces the window shown in Figure 160
below.

Figure 160. Attaching DB2 CAE to a database on a remote database server — part 2

• Select the database you desire and click Done. This will establish a
connection to this database using TCP/IP. Once the database
connection is defined, you can edit the connection properties if you
want to change the protocol or port.
258 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

13.1.2 VisualAge for C++
We installed VisualAge for C++ V3.5 with support for development
(compilation) and runtime. The nmake command must be functional to
prepare a VisualAge Generator Web Transaction program for Windows NT or
CICS on a Windows NT system.

After installation, we reviewed the Windows NT system environment variables
and corrected several (such as INCLUDE and LIB) where the installation
definition for the user variable did not include the system variable reference
(for example, %LIB%).

13.1.3 VisualAge Generator Server
We installed VisualAge Generator Common Services and VisualAge
Generator Server software. In the several different installations we used
either the default target directories or target directories of d:/vc and d:/vs.

13.1.4 Setting up FTP support for program preparation
When you generate, you can ask that preparation processing use FTP to
transfer the generated components (Java code, JSPs, and program source to
another machine for preparation.

To set up FTP support, you need to:

• Add x:\IBMVJAVA\IDE\PROGRAM to the PATH environment variable

• Install FTP support using Microsoft Peer Web Services

• Configure the FTP web service:

• Start the Internet Service Manager using the Start->Microsoft Peer
Web Services->internet service manager program start option.

• Select the FTP service as shown in Figure 161.
VisualAge Generator Web Transaction runtime setup 259

Figure 161. Configuring FTP — part 1

• Specify a username and password which will be used to connect to this
machine, as shown in Figure 162.

Figure 162. Configuring FTP — part 2
260 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

• Click to the directories tab and ask to add a directory, as shown in
Figure 163.

Figure 163. Configuring FTP — part 3

• You must name a home directory to share if none exists. In our case we
wish to allow write access, as shown in Figure 164.
VisualAge Generator Web Transaction runtime setup 261

Figure 164. Configuring FTP — part 4

• Finally, we need to specify the directory as shared using Windows NT.
In Windows Explorer, select the directory, click with mouse button 2 for
the context menu, and choose Sharing... This will give you Figure 165.
262 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Figure 165. Configuring FTP — part 5

• Set up the sharing and add permission for the userid previously defined
in the FTP service.

Preparation control generation options can be defined to identify the target
machine name, the FTP service userid and password, and a target directory.
The directory location is relative to the FTP home directory, so if you want the
code placed in the home directory, enter a \ as the directory value (do not
leave it blank).

If you are having problems, there is a trace you can write out to FTP.OUT. You
turn it on by setting the FCETROPT environment variable to 3.

13.2 Web Transaction gateway interface configuration (csogw.properties)

The Gateway Servlet interface to the Web Transaction runtime platform is
defined in the CSOGW.properties file (found in the VisualAge Generator
Server installation directory). Control, application, and server linkage entries
define processing, trace, platform, and Web Transaction control values.
VisualAge Generator Web Transaction runtime setup 263

13.2.1 Control entries
The refresh interval entry controls Gateway Servlet processing and is defined
as hptGateway.propertiesRefreshInterval=n, where n equals number of
minutes.

This refresh setting determines how often the CSOGW.properties file is
re-read from disk into memory. If n is set to 0, the file is never re-read unless
you stop and then start the IBM WebSphere Application Server.

Changes to settings in the CSOGW.properties file will not necessarily be
picked up instantaneously when the file is re-read; connection settings which
are in use for a conversation with an end user will be stored in the active
session object until that conversation ends.

13.2.2 Application entries
CSOGW.properties application entries are shown in Table 8.

Table 8. CSOGW property file: application definition

Note: Some example CSOGW.properties files shipped with VisualAge
Generator include the entries hptRuntimeProperties and hptErrorPackage.
These are not used by the Gateway Servlet. These entries were part of an
early design, but they were not removed from the example.

application.WEBTRAN.xxx The value for webtran is the name of the actual Web Transaction
as defined to the VisualAge Generator server environment
(the CICS definition or DLL name, for example).
The incoming webtran value to match against comes from the
selected item in an HTML SELECT list or HIDDEN field called
hptAppId. Make sure webtran is in upper case or you may get
entry point failures.

application.WEBTRAN=sname You can use generic short name (sname) values terminated with
a wild card (*) character. For example, application.C*=cicsa will
apply to all Web Transaction programs that start with a C, unless
a more specific match is found (best match used regardless of
order of entries in the file). You can have several different
application entries pointing at a set of serverLinkage entries for a
single arbitrary name.

application.WEBTRAN.traceFlag=1 This setting turns on tracing of the Web transaction to help with
debugging.
264 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

13.2.3 serverLinkage entries
CSOGW.properties serverLinkage entries are shown in Table 9.

Table 9. CSOGW property file: serverLinkage definition

serverLinkage.sname This value is used as a prefix for all entries that define the linkage table
attributes that will be used for the named resource.

serverLinkage.sname.
commtype=a

The commtype value identifies the communication services that will be
used to invoke the Web Transaction.
(Compare with remotecommtype linkage table parameter)
Valid commtype values are discussed in Table 10.

serverLinkage.sname.
location=c

The location value configures the communication service.
(Compare with location linkage table parameter)
Valid location values are discussed in Table 10.

serverLinkage.sname.
serverid=d

serverid is equivalent to the SERVERID linkage table option used by the
Power Server API for typical VisualAge Generator client/server systems.
(Compare with serverid linkage table parameter)
Valid serverid values are discussed in Table 10.

serverLinkage.sname.
groupid=f

The groupid value represents a security grouping in the IMSTCPIPOTMA
connection (ITOC). Valid only for IMS target systems.

serverLinkage.sname.
destid=g

The destid value represents the IMS system the request is sent to as
defined in the IMSTCPIPOTMA connection (ITOC).
Valid only for IMS target systems.

serverLinkage.sname.
contable=b

The contable value defines how data should be converted (code page
format) when passed between the web server and the target location for the
VisualAge Generator Web Transaction. Sun Java conversion routines are
actually used to do the conversion. Conversion processing is sensitive to
the defined structure for the UI Record.

Contable value format: CSOzxxxx, where z=binary format and xxxx=code
page of target machine. Valid values for z include: I (Intel) or E (EBCDIC).
(Compare with ConTable linkage table parameter)

serverLinkage.sname.
javaProperty=e

The JavaProperty value identifies the Java package where the data bean
and interface bean for the Web Transaction can be found. This value is
case sensitive (invalid values generate null pointer exceptions at runtime).
VisualAge Generator Web Transaction runtime setup 265

13.2.4 Protocol specific entries
The serverLinkage location and serverid values, by commtype, are shown in
Table 10.

Table 10. Valid locations and serverids for a given commtype

Unlike in a linkage table definition (used to define the client/server interface),
the LUWCONTROL and PARMFORM settings available in the PowerServer
API cannot be specified in a serverLinkage entry. Logical unit of work (LUW)
control is effectively fixed as SERVER unit of work when a Web Transaction
directly accesses a database. A linkage table would be used to define the
processing rules for server calls made by a Web Transaction.

13.2.5 Overriding serverLinkage entries
The control values can be altered for a named Web Transaction by using an
application entry to override a serverLinkage entry.

For example, while most settings define the basic communication technique,
for CICS, the serverid value also defines the runtime transaction ID. You may
need to adjust certain settings for specific target Web Transactions.

Figure 166 shows how the runtime transaction value can be altered for a
named Web Transaction.

COMMTYPE LOCATION SERVERID

CICSECI CICS system identifier.
This corresponds to the server
name as specified in the
CICSCLI.INI file of the CICS client.

CICS transaction name.
CPMI is the default CICS
server mirror transaction.

TCPIP TCP/IP host name where VisualAge
Generator server programs are.

Port number to be used by the
csotcpui catcher program.

TCPIMS TCP/IP host name where VisualAge
Generator server programs are.

Port number to be used by the
IMS catcher program.
266 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Figure 166. Overriding CSOGW.properties file entries

In Figure 166 all Web Transactions with names that start with a C will use the
CICSNT serverLinkage definition set. The Web Transaction named CHRIS
will also use the CICSNT serverLinkage settings, but with the serverid
override defined as part of the application entry, so the SLMI transaction will
be used in the target CICS system for the Web Transaction CHRIS.

If you use application entries to override serverLinkage entries, the Web
Transaction name entered as part of the application entry override
(application.WEBTRAN) must match the name in the application entry where
we got a match against the incoming Web Transaction name.

For example, this set of entries will work (CHRIS will use SLMI):

application.C*=CICSNT
application.CHRIS=CICSNT
application.CHRIS.serverid=SLMI

However, these two do not (null pointer exception):

application.C*=CICSNT
application.CHRIS.serverid=SLMI

Matching incoming Web Transaction names with the appropriate application
entry is done by searching for the most specific entry first, then regressing
back to the most generic entry. That is, the order does not matter in the file;
the most specific entry match is used.

This is different from the way a linkage table is processed, which is the first
valid match found in a top-to-bottom search.

hptGateway.propertiesRefreshInterval=2

application.C*=CICSNT

application.CHRIS=CICSNT
application.CHRIS.serverid=SLMI

serverLinkage.CICSNT.commtype=cicseci
serverLinkage.CICSNT.contable=csoI1252
serverLinkage.CICSNT.location=CICSTCP
serverLinkage.CICSNT.serverid=VGMI
serverLinkage.CICSNT.javaProperty=vgwt.beans
VisualAge Generator Web Transaction runtime setup 267

13.3 Windows NT Web Transactions

This section details the installation and configuration of the various software
products required to support a native Windows NT runtime platform.

13.3.1 VisualAge Generator control settings
• Set the following environment variables, as appropriate for your required

configuration:

FCWDPATH=directory for VisualAge Generator resource association
files and VisualAge Generator tables

FCWTROPT=level of server tracing (0,1,2,4,8,16,31)

FCWTROUT=location of trace file

EZERSQLDATE=3 letter code for the date and time format for DB2, for
example, EZERSQLDATE=EUR.

FCWRSC=resource association file name, default is FCW.RSC

EZERGRGL_xxx=Gregorian date edit mask using 4 digit years, where
xxx is the NLS code.

EZERGRGS_xxx=Gregorian date edit mask using 2 digit years, where
xxx is the NLS code.

EZERJULL_xxx=Julian edit mask using 4 digit years, where xxx is the
NLS code.

EZERJULS_xxx=Julian date edit mask using 2 digit years, where xxx is
the NLS code.

Database configuration environment variables include:

EZERSQLDB=database for VisualAge Generator to attach to

or

DB2DBDFT=database for VisualAge Generator to attach to

Note: EZERSQLDB takes presidence over DB2DBDFT if both are set.

FCWDBUSER=userid to attach to DB2 with

FCWDBPASSWORD=password to go with userid

Note: The userid and password specified must be defined to the
platform where DB2 server is installed as a Windows NT user. The
userid and password are necessary if you have server authentication
set up on the DB2 instance.)
268 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

It is recommended that you use a main transaction (text map) program to
validate the VisualAge Generator runtime environment before attempting to
invoke a Web Transaction program.

13.3.2 Configure TCP/IP listener support
To set up support for the VisualAge Generator Windows NT TCP/IP catcher
program, an appropriate entry in the TCP/IP services file is required.

Edit the x:\winnt\system32\drivers\etc\services file. You need to specify a
services name and port for the catcher program; add a line like:

VAGenWebUI 4200/tcp

The service number should correspond to that used in the csogw.properties
file when configured for TCP/IP protocol support for Web Transactions. See
16.1, “Deploy generated code” on page 341 for additional details.

We used a command file (see Figure 167) to start the csotcpui VisualAge
Generator Windows NT TCP/IP catcher program.

Figure 167. TCP/IP catcher program start command

Note: The TCP/IP catcher program name for Web Transactions is csotcpui;
this is a different program than the one use to support server calls (csotcps).

The generated Web Transaction programs must be in a directory included in
the Windows NT PATH environment variable. See 16.1, “Deploy generated
code” on page 341 for additional details.

The linkage table used by a Web Transaction program controls how server
programs are called.

set fcwtropt=31
set fcwdbname_db2samp=sample
set fcwdbuser=vgdba
set fcwdbpassword=VGDBA
set ezersqldb=ITSOBANK

set csolinktbl=e:\vglink\vgjavatcpip.lkg
set csotrout=csoUI.out
set csotropt=3

start /min csotcpui
VisualAge Generator Web Transaction runtime setup 269

13.3.3 Communications configuration
Edit the CSOGW.properties file and create the application and serverLinkage
entries that are appropriate for calling a Windows NT-based Web Transaction
program.

Figure 168 contains an example of CSOGW entries for TCP/IP-based
communication.

Figure 168. CSOGW.properties file entries: Windows NT system

Additional detail on csogw.properties file entries is available in 13.2, “Web
Transaction gateway interface configuration (csogw.properties)” on page 263.

Note: There were reports of runtime problems when using localhost as the
TCP/IP hostname. We were not able to replicate these problems, but you
may wish to use the host name identified by the hostname command. The
key is being able to ping the identified TCP/IP host.

13.4 CICS for NT Web Transactions

This section details the installation and configuration of Web Transactions in
a TXSeries (CICS) environment on Windows NT.

13.4.1 Base software for CICS system
CICS software is available in many forms; we used TXSeries 4.2 and the
WebSphere Enterprise Edition V3 packaging of CICS software (4.3). To set
up our CICS system on Windows NT we followed the following steps:

• Install the software and apply any patches.

• As our system had no dependencies on Distributed Computing
Environment (DCE) services, we configured CICS as a Remote Procedure
Call (RPC)-only environment. To set up RPC-only, we had to:

hptGateway.propertiesRefreshInterval=2

application.WEBTRAN.traceFlag=1
application.CONVMOD.traceFlag=1
application.CXNVMOD=tcpwinnt
application.*=tcpwinnt

serverLinkage.tcpwinnt.commtype=tcpip
serverLinkage.tcpwinnt.contable=csoI1252
serverLinkage.tcpwinnt.location=ireland
serverLinkage.tcpwinnt.serverid=4200
serverLinkage.tcpwinnt.javaProperty=vgwt.beans
270 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

• Run the following command:

C:\> cicscp -v -l logFile create dce -R

• Set up the following environment variables:

CICS_HOSTS=the IP address or hostname of the machine where our
CICS server was installed

ENCINA_BINDING_FILE=x:\VAR\CICS_SERVERS\SERVER_BINDINGS

• Reboot .

13.4.2 Region definition
We decided to use a local Structured File Server (SFS) rather than DB2, so
the next step was to define the CICS region. This is done by starting the CICS
Administration Utility. Choose the Subsystem menu option, then New, then
CICS region. The file system we used was local.

Note: There were some reports of problems with the TXSeries administration
interface on some systems (unable to enter data in the fields). Changing the
Windows NT display properties and selecting a font size of small fonts
seemed to correct the problem.

Creating the CICS region actually creates both a region definition and an SFS
server definition. You only need to start the CICS region and it will bring up
the SFS server also. You start the CICS region by selecting it and using the
right mouse button to invoke a context menu and then choosing the Start...
menu option.

• We found we had to edit x:\VAR\CICS_SERVERS\SERVER_BINDINGS to
remove the uuid before we could successfully start the CICS region.

Below are the "before" and "after" versions of the SERVER_BINDINGS
entry:

/.:/cics/sfs/IRELAND 866f0650-a77d-11d3-bbda-002035aee2f4@ncadg_ip_udp:[10050]
/.:/cics/sfs/IRELAND ncadg_ip_udp:[10050]

See the online document Getting Started with TXSeries for Windows NT, for
more information on installing and initial configuration for CICS for Windows
NT.

13.4.3 CICS DB2 attachment
There are two way to attach CICS to DB2 when using VisualAge Generator:

• Using VisualAge Generator environment variables — When
environment variables are used, the database settings are easy to
determine and alter.
VisualAge Generator Web Transaction runtime setup 271

• Using an XA product definition — Other COBOL and C++ programs can
make use of an XA product definition when they need to connect to DB2
and, by defining an XA product definition, you allow CICS to control
syncpoint processing instead of each individual VisualAge Generator
program.

Environment variable implementation
To set up DB2 access with environment variables:

• Edit the x:\var\CICS_regions\regionname\environment file, where
regionname is the name you chose to give to your CICS region when you
defined it. Set the following environment variables inside it:

• FCWDBUSER=userid to attach to DB2 with

• FCWDBPASSWORD=password to go with userid

(The userid and password specified must be defined to the DB2 server
machine as an NT user)

• FCWTRDB_<transactionid>=database this transaction should attach to

For example, FCWTRDB_CPMI=SAMPLE

If you do not wish to control database attachment as finely as the
transaction level, you can set:

• EZERSQLDB=database for CICS to attach to

or

• DB2DBDFT=database for CICS to attach to

EZERSQLDB takes presidence over DB2DBDFT if both are set.

XA product definition implementation
Note: During the residency we experienced problems trying to use the
cicsxadb2 switch load file due to exceptions being thrown during
SYNCPOINT processing. Time restrictions prevented us from resolving the
problem. Test your level of code to determine if the problem still exists.

To set up DB2 access with an XA product definition:

• Invoke a DB2 command window and run:

db2 update dbm cfg using tp_mon_name libEncServer.dll

• Grant the following authorities to the userid CICSUSER:

bindadd on the database you are connecting to.

select on the SYSIBM.SYSINDEXES table in the database you are
connecting to.
272 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

• Create the environment variable DB2INSTANCE and set it to the value of
the DB2 instance you are attaching to; the default value UDB uses is DB2.

• Select the CICS region on the CICS Administration Utility, invoke the
context menu, and choose Resources-> Product, as shown in Figure
169.

Figure 169. Attaching CICS to DB2 — part1

• When Product is clicked, the Products window opens. From that window
choose the Products menu option, then New.... This opens a definition
window, as shown in Figure 170 below.
VisualAge Generator Web Transaction runtime setup 273

Figure 170. Attaching CICS to DB2 — part2

• Here you can fill in details for:

• Product name — this is an arbitrary name of your choosing
• Database you wish to attach to
• Userid to connect to the database with
• Password to go with userid

The database, userid, and password are strung together, separated by
commas, as the Resource manager initialization string.

(If your DB2 instance is set up with client authentication, you need not
specify a userid or password, or put in the commas. If you are using server
authentication, the userid and password you specify must be defined to
the DB2 server machine as an NT user.

Switch load file — x:\OPT\CICS\BIN\cicsxadb2.dll (for two-phase commit)
or cics1pcdb2.dll (for single-phase commit).
274 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

• Edit the x:\var\CICS_regions\regionname\environment file, where
regionname is the name you chose to give to your CICS region when you
defined it. Set the following environment variable inside it:

• FCWDBNOOP=yes
• FCWDBUSER=userid to attach to DB2 with
• FCWDBPASSWORD=password to go with userid

(The userid and password specified must be defined to the DB2 server
machine as an NT user. The userid and password are necessary if you
have server authentication set up on the DB2 instance.)

• FCWTRDB_<transactionid>=database this transaction should attach to

For example, FCWTRDB_CPMI=SAMPLE

If you do not wish to control database attachment as finely as transaction
level, you can set:

• EZERSQLDB=database for CICS to attach to

or

• DB2DBDFT=database for CICS to attach to

EZERSQLDB takes presidence over DB2DBDFT if both are set.

The database specified in the XA product definition does not have to be
the same as that used in FCWTRDB_<transactionid> or
EZERSQLDB/DB2DBDFT, or even a database that VisualAge Generator
uses. The crucial thing is that FCWTRDB_<transactionid> or if not set,
EZERSQLDB/DB2DBDFT is the database your VisualAge Generator
transactions will use.

• Cold start the CICS region.

See the appropriate CICSdocumentation for full details on attaching CICS to
database servers using XA definitions.

13.4.4 Add CICS system listeners
First cold start the CICS region and then add two listeners:

• Named pipes listener so you can invoke a local terminal on the machine
where the CICS server software is installed.

• TCP/IP listener, so CICS clients can talk to the server through TCP/IP.

Adding the named pipes listener:

• Select the CICS region on the CICS Administration Utility, invoke the
context menu, and choose Resources-> Listener.
VisualAge Generator Web Transaction runtime setup 275

Choose the Listeners menu option and select New... Figure 171 shows
the window which then opens.

Figure 171. Adding a listener to CICS

The Listener name is arbitrary. Choose the Named Pipe protocol and
specify a Named pipe name which corresponds to a NamedPipeName
definition in the CICSLCLI.INI file.

Adding the TCP/IP listener:

• In a similar way to setting up the named pipes listener, ask to create a new
listener so you get the window shown in Figure 171.

Just specify a listener name and select the TCP/IP protocol. If you leave
the TCP/IP service value empty, the default will be used for the TCP/IP
port (1435).

The listener definition is referenced in 14.3.2, “Customization for TX Series
(CICS NT) access” on page 320.
276 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

13.4.5 Define CICS user
We chose not to use DCE for our security, but to let CICS do it internally, so
we need to set up a USER definition using the CICS Administration Utility:

• Select the region, and then using the context menu (mouse button 2),
choose Resources-> User.

• On the window which opens, choose the Users menu option, then New...

• Specify a user name, then click the Security/DCE tab.

• Uncheck the None check box in the security DCE information, and fill in a
CICS password.

13.4.6 Add VisualAge Generator runtime and debug transactions
The Gateway Servlet uses a CICS mirror transaction when invoking a
VisualAge Generator Web Transaction. The definition for the default mirror
transaction (CPMI) may need to be altered, or a new transaction defined, to
support VisualAge Generator programs in CICS.

To define an alternate runtime transaction:

• Create a new mirror transaction definition (VGMI) based on the
CICS-provided (and protected) CPMI mirror transaction.

• Use the same definition for VGMI as found for CPMI.

This alternate mirror transaction definition is referenced in 13.4.8,
“Communications configuration” on page 279.

A telnet session will allow you to use the CEDF utility to support debugging
when invoking Web Transactions (see 16.2.6, “Debugging Web Transactions
at runtime with CEDF” on page 351 for details on how to use the telnet
session).

To create a telnet session:

• Run the command C:>cicscp -v create telnet_server cicsteld

The output from the command assigns a port; note this down.

• Use IBM Personal Communications->Start or Configure session.
Choose TCP/IP, Configure... and then ask to Configure Link. Use
localhost as the Host Name. Click Advanced....and specify the Port
Number as the port the previous command assigned.
VisualAge Generator Web Transaction runtime setup 277

13.4.7 VisualAge Generator control settings
After the base software has been installed and the system restarted the
following tasks must be performed:

• Define an environment variable named CICSREGION set to the name of
the CICS region you set up in 13.4.2, “Region definition” on page 271.

• Run x:\VGSERVW\FCWINSTALL.BAT to set up the CICS definitions for
VisualAge Generator Server. This file uses the CICSREGION environment
variable from the previous step so you can either reboot the system or
open a fresh command window to get the current CICSREGION setting.

Note: You may have to edit the FCWINSTALL.BAT file to adjust the
program location values for the VisualAge Generator Server programs that
are added to CICS. The program location referenced a \DLL directory that
does not exist. The programs are in the VisualAge Generator Server root
directory now. They \DLL and \EXE directories were removed to reduce
the size of the PATH environment variable.

• Edit the x:\var\CICS_regions\regionname\environment file, where
regionname is the name you chose when defining the CICS region. Add
settings for any environment variables that you want to change from the
system settings. This might include:

• FCWDPATH=directory for VisualAge Generator resource association
files and VisualAge Generator tables

• FCWTROPT=level of server tracing

• FCWTROUT=location of trace file

• EZERSQLDB=name of target database

• EZERSQLDATE=3 letter code for the date and time format for DB2, for
example, EZERSQLDATE=EUR.

• FCWRSC=resource association file name, default is FCW.RSC

• EZERGRGL_xxx=Gregorian date edit mask using 4 digit years, where
xxx is the NLS code.

• EZERGRGS_xxx=Gregorian date edit mask using 2 digit years, where
xxx is the NLS code.

• EZERJULL_xxx=Julian edit mask using 4 digit years, where xxx is the
NLS code.

• EZERJULS_xxx=Julian date edit mask using 2 digit years, where xxx is
the NLS code.
278 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

In our CICS NT system we only added an entry for EZERSQLDB. The others
were either not required or our system settings were acceptable.

13.4.8 Communications configuration
Edit CSOGW.properties file and create appropriate application and
serverLinkage entries. Figure 172 contains an example of csogw.properties
entries for CICS-based communication.

Figure 172. CSOGW.properties file entries: CICS NT system

The serverid value matches the CICS mirror transaction defined in 13.4.6,
“Add VisualAge Generator runtime and debug transactions” on page 277.

The location value references the CICS system identifier used in the CICS
Transaction Gateway configuration (see 14.3.2, “Customization for TX Series
(CICS NT) access” on page 320).

Additional detail on csogw.properties file entries is available in 13.2, “Web
Transaction gateway interface configuration (csogw.properties)” on page 263.

13.5 CICS/ESA Web Transactions

This section details the installation and configuration of the various software
products as required to support the use of Web Transactions in a CICS/ESA
environment.

hptGateway.propertiesRefreshInterval=2

application.WEBTRAN.traceFlag=1
application.CONVMOD.traceFlag=1
application.*=CICSNT

serverLinkage.CICSNT.commtype=cicseci
serverLinkage.CICSNT.contable=csoI1252
serverLinkage.CICSNT.location=CICSTCP
serverLinkage.CICSNT.serverid=VGMI
serverLinkage.CICSNT.javaProperty=vgwt.beans
VisualAge Generator Web Transaction runtime setup 279

13.5.1 Install the PCOMM software
Configure PCOMM as follows:

• Click on Start->Programs->Personal Communications->SNA Node
Configuration. You should get a window like that shown in Figure 173.

Figure 173. Add a node
280 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

• Select Configure Node and click on New.., this should open a window
like Figure 174.

Figure 174. Basic node details

• Specify your CP name and qualify it with the name of the SNA network
you are connecting to. The CP manages the node and its resources and
network communication; CPs talk to other CPs.

• The alias provides an alternative to having to use the fully qualified CP
name, and if local programs use this, it allows the fully qualified name to
be changed without any impact.

• Block represents the product type.

• PU identifies the physical unit. The PU manages the links associated with
the node.

• The Block ID should stay the same although the physical Unit ID may
change depending on how it is defined on the host system.
VisualAge Generator Web Transaction runtime setup 281

• Check what registrations you require on the advanced tab (Figure 175).

Figure 175. Advanced node details
282 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

• The last tab allows you to specify dependent LUs (Figure 176). We do not
have any here.

Figure 176. DLU requester details
VisualAge Generator Web Transaction runtime setup 283

• Click OK and now choose to configure a new device as shown in Figure
177. The device configuration allows you to specify basic details of the
physical communication adapter and port you are using, for example,
Token ring or COM port. We chose to use LAN, as we are using a Token
ring card.

Figure 177. Configure devices
284 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

• Figure 178 allows you to input basic details. The name is generated for
you, based on the adapter number and local service access point. You are
prompted with the possible choices to help you complete this panel.

Figure 178. Defining a LAN device — basic
VisualAge Generator Web Transaction runtime setup 285

• Figure 179 shows the Activation tab. The maximum PIU size represents
the size of the SNA data buffer. The maximum size varies depending on
what the device actually is.

Figure 179. Defining a LAN device — activation
286 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

• Figure 180 allows for some tuning. We used the defaults.

Figure 180. Defining a LAN device — performance
VisualAge Generator Web Transaction runtime setup 287

• We now need to specify our mainframe connection. This is shown in
Figure 181. We are using LAN again, as we want Token ring.

Figure 181. Configure new connection
288 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

• We specify to use the adapter we have set up and use the gateway
destination address supplied when the Node (Control Point) was set up.
These basic details are shown in Figure 182.

Figure 182. Defining a LAN connection — basic
VisualAge Generator Web Transaction runtime setup 289

• Figure 183 shows the advanced panel. A physical unit name is generated
for you. Again we have PIU size, block ID and PU ID.

Figure 183. Defining a LAN connection — advanced
290 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

• Figure 184 shows optional security details you can fill in about the
adjacent node. We left this to default.

Figure 184. Defining a LAN connection — Adjacent Node
VisualAge Generator Web Transaction runtime setup 291

• Now, in Figure 185, we define the actual CP our local CP is going to
communicate with. This is the CICS system.

Figure 185. Configure partner LU 6.2
292 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

• Figure 186 shows where we can specify the fully qualified CP of the CICS
system and its logical LU. The logical LU shown here is the applid of the
CICS system. We again have the option of using an alias.

Figure 186. Defining a Partner LU — basic

• Figure 187 shows the advanced tab. Here we can specify the maximum
size of data we can send in conversations. 32767 is the limit.

Figure 187. Defining a partner LU — advanced
VisualAge Generator Web Transaction runtime setup 293

• Finally in Figure 188 we specify a mode. This mode will have been defined
to VTAM and indicates characteristics of the communications you are
making; for example that it is a CICS address space you are talking to.

Figure 188. Configure mode
294 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

• Figure 189 shows where you can specify the mode name.

Figure 189. Defining a mode — basic
VisualAge Generator Web Transaction runtime setup 295

• Figure 190 shows the advanced tab. Here you need to specify the class of
service; this indicates a set of transport network characteristics that need
to be fulfilled for you to be able to get a session.

Figure 190. Defining a mode — advanced

• Save your configuration.

13.5.2 CICS connection definition
CICS Sessions/Connections must be defined for XID.

• Use CEDA to define a session for with the same name as your local CP;
this session definition gives you your netname. You need to specify a
4-character connection id. This id corresponds to the connection you need
to define through CEDA. You will also need to specify the mode name you
are using for the APPC protocol. Beware of case sensitivity here.

• When you define the connection, this cross references your local CP
name as the netname. You will be using the APPC protocol through
access method VTAM.

• Install the definitions and acquire the connection.
296 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

You are now ready to test your connection.

Select the menu option IBM Personal Communications->Administrative
and PD aids->SNA node operations to start the process (see Figure 191)

Figure 191. Starting the link

Select the menu option Operations->Start Node and choose the file name in
which you previously saved your configuration. Figure 192 shows the node
definition.
VisualAge Generator Web Transaction runtime setup 297

Figure 192. Start the node

Finally you need to select Operations->CNOS Initialize. You need to fill in
the your local CP name (in our examples JANESXID), the fully qualified LU
we used for CICS earlier (not its CP name), (so SNANETWK.CICSAPPL in
our case) and the mode name you specified (LU62APPX), as in Figure 193.
Your APPC session should now be established.
298 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Figure 193. Initialize the session

13.5.3 CICS security
A userid and password valid for the target CICS system must be defined and
available for use when configuring system access (see 16.3, “Security” on
page 352 for a Windows NT-based discussion).

13.5.4 Set up VisualAge Generator Host Services
Follow the installation manuals to install and configure the mainframe
software listed in 12.3, “CICS/ESA Web Transactions” on page 254.

The CPMI transaction must be altered or an alternate transaction definition
created to support the VisualAge Generator requirements for the CICS ECI
transaction (TWASIZE 1024). This was discussed in 13.4.6, “Add VisualAge
Generator runtime and debug transactions” on page 277.

13.5.5 Communications configuration
Figure 168 contains an example of CSOGW.properties entries for
communication to a CICS/ESA server.
VisualAge Generator Web Transaction runtime setup 299

Figure 194. CSOGW.properties file entries: Windows NT system

Additional detail on CSOGW.properties file entries is available in 13.2, “Web
Transaction gateway interface configuration (csogw.properties)” on page 263.

See 14.3.3, “Customization for CICS/ESA access” on page 321 for additional
CICS Client connectivity considerations.

hptGateway.propertiesRefreshInterval=2

application.*=cicsesa

serverLinkage.cicsesa.commtype=cicseci
serverLinkage.cicsesa.contable=csoE037
serverLinkage.cicsesa.location=NRACICS1
serverLinkage.cicsesa.serverid=WEBS
serverLinkage.cicsesa.javaProperty=vgwt.beans
300 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Chapter 14. WebSphere Application Server setup

This section details the installation and configuration of the various software
products required for the implementation of an IBM WebSphere Application
Server environment on Windows NT.

14.1 Installed software base

The following software was installed prior to beginning the IBM WebSphere
Application Server installation and configuration task.

Web server
Install Web server software that is supported by IBM WebSphere Application
Server.

We used both the Apache and IBM HTTP Web servers during the residency.

Java Development Kit
• Install the software.

• Ensure that you are using the correct version of the JDK (or IBM
Development Kit, as the case might be). To verify that you have the right
JDK installed on Windows NT, execute this command in a command
prompt window:

java -fullversion

The output should be:

java full version "JDK 1.1.7 IBM build n117p-19990618 (JIT enabled:
ibmjitc)"

• Make sure the PATH and JAVA_HOME environment variables are set
properly and that they do not point to a JDK other than the required JDK.

Add the Java /bin directory to the PATH environment variable.

Create an environment variable called JAVA_HOME and set it to the JDK
directory name. Note that problems have been encountered when the
JAVA_HOME value contains a space in the directory name for the JDK.

DB2 UDB
• Install database software and apply any required fixpacks.

Note: This is only required on the IBM WebSphere Application Server
platform if you are using the Advanced or Enterprise Edition of the IBM
WebSphere Application Server (or have other Java servlets that directly
access DB2).
© Copyright IBM Corp. 2000 301

VisualAge for C++
• The software is defined as a prerequisite for VisualAge Generator Server

and Common Services (we did not test if C++ was actually required to run
the Gateway Servlet).

VisualAge Generator Server and Common Services
• Install the software.

14.2 IBM WebSphere Application Server for Windows NT

Make sure you have completed the steps discussed in 13.3, “Windows NT
Web Transactions” on page 268 and rebooted before attempting this step.

14.2.1 Install IBM WebSphere Application Server software
We chose to install IBM WebSphere Application Server Advanced Edition for
Windows NT, although the steps below should also be functionally complete
for both the Standard and Enterprise Editions of IBM WebSphere Application
Server.

• If you choose a custom install, ask for a default application server and a
default application.

• Use a demo key ring file if you are just getting started with WebSphere.
Make sure the userid and password you specify with this is a valid one for
Windows NT. If you need to change the defined password or userid later,
you need to change it in two places:

1. In the file x:\websphere\applicationserver\properties\sas.server.props

There are two userid entries in this file.

2. In the NT services entry for IBM WebSphere Application Server

• Specify the location of your JDK and choose to plug in to the installed Web
server.

• There is a panel which asks for the database product configuration you
wish to use for Enterprise Java Bean support.

Note 1: The full DB2 database environment may only be required when
using the Advanced or Enterprise Edition of the IBM WebSphere
Application Server.

We used DB2. We entered the database administrator userid and
password used when DB2 was installed. You can identify the DB2
administrator using the Windows NT User Manager.
302 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Note 2: If you are reinstalling, make sure you have dropped any EJB
tables from the database name you specify here before proceeding.

Note 3: If you upgraded an installed WebSphere Application Server V3.0
system to 3.02, you may have to add the /lib/jsp10.jar and /ibmwebas.jar
files to the classpath defined in the /bin/admin.config file.

• Follow the post installation instructions in the readme file, these should
mention to:

• Create the "was" database (or whichever database name you specified
during installation)

• In the DB2 control center, select the database, right-click for the
context menu and select configure. On the performance tab, scroll to
the application heap size and change it to 256.

• Reboot — You are now ready to bring up IBM WebSphere Application
Server.

14.2.2 Startup WebSphere Application Server
To start the IBM WebSphere Application Server:

1. Start the IBM WS AdminServer using the Windows NT Services dialog.

2. Start the Administrator’s Console using the program start menu.

The console is shown in Figure 195.

Figure 195. WebSphere Administration Console
WebSphere Application Server setup 303

14.2.3 Configure a new Application Server
Once the Administration Console has started, configure a new Application
Server:

• Click to the Tasks tab, expand Configuration, select Configure an
application serve, and click the green button to start.

• Deselect the Enterprise Beans and select the Web Applications, then click
Next, as shown in Figure 196 below.

Figure 196. Application Server configuration: starting the task

Now we need to name our IBM WebSphere Application Server and potentially
specify the VisualAge Generator Web Transaction support files.
304 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

• Enter a name for the application server. (See Figure 197.)

Figure 197. Application Server configuration: defining parameters — part 1

Note: You may need to add .JAR file references to the command line
invocation shown in Figure 197.

• View 1: It is VERY important that you add the .JAR file references to
the command line options shown in Figure 197 and that you do NOT
use the app classpath shown later in Figure 203.

• View 2: Systems that have been set up using the app classpath shown
in Figure 203 work fine when they call Web Transaction programs
generated for Window NT.

There seem to be restrictions associated to calling Web Transaction
programs in CICS that are only satisfied when the .JAR files are
referenced as part of the command line arguments for the application
server.

• View 3: When you use the -classpath technique, you must either
include the directory where the generated JavaBean class files can be
found, or copy these files to a directory already known to WebSphere
Application Server (/classes). The alternate place for class path
definitions is not heard when the -classpath option is used.
WebSphere Application Server setup 305

As required (such as when the GatewayServlet will use the Java Native
Interface (JNI) to invoke the Web Transaction, such as when CICS is the
destination for the Web Transaction program), we added the following
command line arguments:

-classpath x:\vgservw\hptGateway.jar;x:\hptcsow\hpt.jar

Beware of spaces in the directory list; if you have any, the app server will
not start. Try enclosing the string in double quotes.

When the name and optional command line definition are complete, click
Next.

Note: We have heard that, to improve performance, the a value such as
-ms64m should be specified whenever you provide arguments for a Java
Virtual Machine (JVM). One suggested configuration approach has an mx

value of a quarter physical memory and an ms value of half of mx on NT, AIX
and Solaris" (except for Solaris on Sun JDK).

For example, you could modify the command line arguments shown above
to read as follows (note that the complete command line is shown):

-mx128m -ms64m -classpath x:\vgservw\hptGateway.jar;x:\hptcsow\hpt.jar

The -mx128m entry was already on the command line before we started to
add the -classpath addition.

• Choose not to autostart the server after creation, as there are some things
we want to do first, and click Next, as shown in Figure 198.

Figure 198. Application Server configuration: defining parameters — part 2
306 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

• Choose a node; there should only be one option, as shown in Figure 199;
and click Next.

Figure 199. Application Server configuration: choosing a node

• Choose a virtual host; there should only be one choice, as in Figure 200;
and click Next.

Figure 200. Application Server configuration: virtual host
WebSphere Application Server setup 307

• Leave the servlet engine to default, as in Figure 201, and click Next.

Figure 201. Application Server configuration: servlet engine

• Leave the app name and Web path to default, as in Figure 202, and select
the Advanced tab.

Figure 202. Application Server configuration: defining Web application
308 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

• If you wish, you can accept the application document root and classpath
default settings, as in Figure 203, and click on the Next push button.

The document root controls where you put your Java Server Pages. The
document root could be a different value, it all depends on where you want
these files to be stored. You might want to store these files outside the
WebSphere Application Server directory structure.

The classpath represents other directories for servlets and beans. But,
when the -classpath option is defined, as suggested in Figure 197 on page
305, the classpath settings for the Web application are not used.

JavaBeans generated by VisualAge Generator can either be placed in the
WebSphere Application Server \classes directory (see 16.1, “Deploy
generated code” on page 341) or in a directory added to the -classpath
option definition.

Figure 203. Application Server configuration: Web application properties
WebSphere Application Server setup 309

• Leave the enable file servlet checked and the serve servlets by
classname unchecked. Make sure JSP 1.0 is enabled, as in Figure 204.

The file servlet allows GIFs placed with the JSPs to be loaded, which is
what we will be doing with the JSPs supplied with VisualAge Generator.

• Click on Finished to trigger the processing required to add the new
application server definition to the environment.

Figure 204. Application Server configuration: system servlets
310 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

• Go to the Topology tab. Select the application server you have just built
and expand the tree, select the WebApp you have made, and click to the
Advanced tab. Type /ErrorReporter into the Error Page and click Apply,
as shown in Figure 205.

Figure 205. Application Server configuration: defining error page

If you do not complete this step, your application server will not start.
WebSphere Application Server setup 311

14.2.4 Define VisualAge Generator Gateway Servlet
Use the Topology page to define the Gateway Servlet to IBM WebSphere
Application Server.

Select the Web App you just defined, and using mouse button 2, select
Create... > Servlet (see Figure 206).

Figure 206. Application Server configuration: defining Gateway Servlet

When you click to create, Figure 207 shows the window which is launched.
312 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Figure 207. Gateway Servlet properties — part 1

• Name the servlet, for example, GatewayServlet.

• Specify the Java class of the servlet:

com.ibm.hpt.gateway.GatewayServlet

• Click the Add push button under the Servlet Web Path List.

• Put the cursor in the Servlet Path field and fill out the end of the URI
(Universal Resource Indicator) with a / followed by a meaningful name,
such as GatewayServlet (see Figure 208), and then click on OK.

Figure 208. Gateway Servlet properties — part 2
WebSphere Application Server setup 313

This should give a URI of the form
default_host/webapp/yourserverWebApp/GatewayServlet. This URI is
what would be typed on a browser location field to invoke the servlet,
where "default_host" would be replaced by the protocol, actual host
name and optionally port, for example, http://localhost. The complete
URL (protocol+host name+optional port+URI) would be:

http://hostname/webapp/yourserverWebApp/GatewayServlet

• Now we can specify initialization parameters for the servlet; choose the
Advanced tab. This is shown in Figure 209 below.

Figure 209. Gateway Servlet properties — part 3

Valid initialization parameters and their values are listed in Table 11. Beware
of case sensitivity in parameter names and values. Mistakes in these settings
will trigger Gatewayservlet null pointer exceptions.
314 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Table 11. Initialization parameters for the Gateway servlet

Note: An example Gateway Servlet properties file shipped with VisualAge
Generator (GW.properties) includes the entries hptRuntimeProperties and
hptErrorPackage. These are not used by the Gateway Servlet. These entries
were part of an early design, but they were not removed from the example.

InitParameter Name / Value Notes

hptGatewayProperties This parameter allows you to include all the parameters
described in this table in a plain text file and just specify one
initialization parameter in the GatewayServlet itself.
The format inside the text file is param=value.

filename

hptLogonPage Without this parameter no logon will be requested. There is no
point setting this parameter in a native NT, AIX, Solaris or
HP/UX environment, it does not do any validation with the
userid or password that the user enters.

/Vagen1LogonPage.jsp

hptEntryPage
The menu. Either this or hptEntryApp must be specified.

/Vagen1EntryPage.jsp

hptEntryApp The name must correspond exactly to a definition in the
VisualAge Generator server environment, for example a CICS
definition or DLL name. There must also be an entry for it in
the CSOGW.PROPERTIES file.This Web Transaction will be
invoked at startup, after logon (if logon is enabled), and when
any Web Transaction ends by EZECLOS.

VAGen Web transaction name

hptErrorPage
This is displayed when an error occurs.

/Vagen1ErrorPage.jsp

hptErrorLog
Log file for Gateway Servlet.

/Vagen1Gateway.log

hptLinkageProperties The control file for communications between the Gateway
Servlet and the Web Transaction. The file name must use
forward slashes(/) such as x:/VGServw/CSOGW.properties.filename

hptIDManagerHost The host name where the session ID Manager process runs
(the session ID manager is discussed in 2.3.3, “Session ID
Manager (SIDM)” on page 46). Localhost is used by default if
you omit this entry.

<host name>

hptDateMask This mask gives a consistent internal store for date fields
associated with UI records. It is very important that this
matches with your host settings.dd?mm?yyyy
WebSphere Application Server setup 315

We chose to use the hptGatewayProperties initialization parameter to define
a file that would contain all other parameters (see Figure 210).

Figure 210. Gateway Servlet properties — using an external parameter file

• Click on the Create push button to save the Gateway Servlet definition
when you are done defining the parameters.

The contents of the referenced file are shown in Figure 211.

Figure 211. Gateway Servlet properties — external parameter file contents

The only way to reset the Gateway Servlet properties is to stop and start the
WebSphere Application Server.

Some entries are prefixed with an "x" so that they are ignored by the Gateway
Servlet (the altered property name does not mean anything to the Gateway
Servlet). The hptLogonPage property is excluded in the scenario shown in
Figure 211 because we are using a Web Transaction runtime platform of
Windows NT, and there is no security processing during Web Transaction
initiation (so why ask for a userid and password?). See 16.3, “Security” on
page 352 for more details on logon page processing.

xhptLogonPage=/Vagen1LogonPage.jsp
hptEntryPage=/Vagen1EntryPage.jsp
xhptEntryApp=CONVMOD
hptErrorPage=/Vagen1ErrorPage.jsp
hptErrorLog=e:/VgenOut/Vagen_BT_Gateway.log
hptLinkageProperties=e:/vs/CSOGW.PROPERTIES
hptIDManagerHost=cork
hptDateMask=dd/mm/yyyy
316 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

14.2.5 Customize JSPs (as required)
If required, edit the VisualAge Generator JSPs to correct invalid syntax:

• Change any "imports =" directives to "import =" (drop the s).

• Remove any create="false" clauses inside useBean tags.

The create clause was only found in the Vagen1EntryPage.jsp file.

Notes:

We had to change both the JSP files provided by the product and those
later generated by VisualAge Generator for a given Web Transaction.

These changes were required with the VisualAge Generator V4 code we
had installed during the residency. They may not be required if you have
applied fixes to your development system.

The CSOERRORUIR.jsp file provided by VisualAge Generator is used to
display runtime errors. The name of this error JSP file cannot be modified.

The Vagen1EntryPage.jsp file is customized later (see 16.1.3, “Invoking Web
Transaction from default entry point JSP” on page 342) to add definitions for
Web Transactions that will be directly accessible from the default entry page.

14.2.6 Deploy JSPs and GIFs
Deploy the VisualAge Generator JSPs and GIFs. Copy the *.JSP and *.GIF
files from the VisualAge Generator Server installation directory
(x:\VGSERVW) to the path you specified as the Application Server Document
Root earlier (see Figure 203 on page 309).

You may need to define the directory when you do this. We used
x:\WEBSPHERE\APPSERVER\HOSTS\DEFAULT_HOST\janesserverWebAp
p\WEB*.*.

If your Gatewayservlet URL included any extra slashes, for example:
"default_host/webapp/yourserverWebApp/xxx/GatewayServlet" rather than
"default_host/webapp/yourserverWebApp/GatewayServlet", you will need to
make a subdirectory of the
x:\WEBSPHERE\APPSERVER\HOSTS\DEFAULT_HOST\janesserverWebAp
p\WEB directory called xxx and put the GIFs in there instead. This is so the
File Loader servlet can find them.
WebSphere Application Server setup 317

As an alternative, you could add an alias entry to the httpd.cnf file:

Alias to locate the VAGen GIFS
Alias /vgengifs/ "e:/vs/"

And then you would need to adjust the VisualAge Generator provided JSPs to
reference this logical directory:

<BODY background="/vgengifs/vawcg-wp.gif">

VisualAge Generator System Entry

14.2.7 Configure the vgj.properties file
This file is for VisualAge Generator Java generated code, so it applies to the
interface bean and data bean, especially since the former will contain
Web-side edit routine code.

The file contains settings for:

• Default NLS code
• Decimal separator character
• Gregorian and Julian date masks (EZEDTELC and EZEDAYLC format)
• Tracing of VisualAge Generator code

The vgj.properties file (it may be shown in upper case on some installs) is
found in the directory where VisualAge Generator Common Services was
installed.

14.2.8 Set up VisualAge Generator session ID manager
The following line in a bat file will start the session ID manager:

java com.ibm.hpt.gateway.SessionIDManager

See 2.3.3, “Session ID Manager (SIDM)” on page 46 for details on SIDM
processing.

14.2.9 Start application server
You can now start your application server. Still on the Topology tab, select
your application server, and click the green button to start it, as shown in
Figure 212 below. This process may take some time.

Note: You may have to start your Web server first, if it does not autostart.
See 16.2.1, “System Startup” on page 344 for additional details.
318 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Figure 212. Starting WebSphere Application Server

Invoke the GatewayServlet to check whether it is operational. Enter a URL
such as:

http://localhost/webapp/yourserverWebApp/GatewayServlet

Here, your serverWebApp is the value you entered for the Application Server
name (see Figure 197 on page 305).

14.3 Adding CICS support

If the generated Web Transaction programs will be implemented in CICS, you
will need to install and configure the CICS Transaction Gateway software
which allows the Gateway Servlet to communicate with the target CICS
environment.

14.3.1 CICS Transaction Gateway
Install the CICS Transaction Gateway software. Configuration is easier if you
install into an alternate directory (such as x:\ctg), rather than the default
directory (x:\Program Files\IBM\CICS Transaction Gateway). The spaces in
the default directory name cause problems when trying to add the JAR files to
the WebSphere Application Server classpath.
WebSphere Application Server setup 319

Add the CICS Transaction Gateway classes support classes to IBM
WebSphere Application Server, by adding the following to the -classpath
entry for the Application Server:

;x:\CTG\CLASSES\ctgclient.jar;x:\CTG\CLASSES\ctgserver.jar

The initial -classpath entry definition is shown in Figure 197 on page 305.

Beware of spaces in the directory name; if the defined directories have a
blank then the Application Server will not start. If your directory name has
spaces, either uninstall/reinstall or copy the JAR files to another directory and
add the alternate directory to the classpath.

It is very important you add the JAR files to WebSphere as shown above,
because it causes WebSphere to load the classes in a way that permits the
use of the Java Native Interface (JNI) in the code. JNI is used to access the
CICS Transaction Gateway.

Note: All that was required to add CICS support when using WebSphere
Application Server V3.0 is documented above. When we used (or converted
to) WebSphere Application Server V3.02, and tried to use a target runtime
environment of CICS, we had problems. The logs identified a missing DLL
(CTGJNI.DLL). This DLL is in the x:\ctg\bin directory, which is in the PATH
defined for the Windows NT system, but the DLL is not found when using
WebSphere Application Server V3.02. To resolve this we modified the
WebSphere Application Server admin.config file (x:\ws\as\bin) and added
x:\ctg\bin to the Nanny path as shown below:

com.ibm.ejs.sm.util.process.Nanny.path=e:\\ws\\as\\bin;e:\\ws\\as\\bin;
d:\\JDK11~1.7\\bin;e:\\ctg\\bin

14.3.2 Customization for TX Series (CICS NT) access
Customize the initialization file to identify the target CICS system. The
initialization file may be named CICSCLI.INI or CTG.INI, depending on your
code base. We focused on the following settings in the initialization file:

• NetName — the TCP/IP address of the target CICS server machine

• CICS server name — referenced in the csogw.properties file (see 13.3.3,
“Communications configuration” on page 270)

• UpperCaseSecurity=N — Security control setting for password validation

The settings for our CICS NT system are shown in Figure 213.
320 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Figure 213. CICS client settings for Windows NT-based CICS system

The port setting must match the listener definition (see 13.4.4, “Add CICS
system listeners” on page 275). Here a port value of 0 will trigger the use of
the default port value (1435).

If desired, you can edit the properties of the Start CICS client Windows NT
START menu option so the command string reads "CICSCLI /S=x /N /W",
where x is the name you gave the CICS server in the initialization file.

14.3.3 Customization for CICS/ESA access
Customize the initialization file to identify the target CICS system. The
customization for CICS/ESA is similar to the CICS NT customization.

The settings for our CICS/ESA system are shown in Figure 214.

Figure 214. CICS client settings for MVS-based CICS/ESA system

SECTION SERVER = CICSTCP
DESCRIPTION=TCP/IP Server
UPPERCASESECURITY=N
USENPI=N
PROTOCOL=TCPIP
NETNAME=ireland.almaden.ibm.com
PORT=0
CONNECTTIMEOUT=0
TCPKEEPALIVE=N

ENDSECTION

Server = CICSSNA
; The named server must match the name used in the serverLinkage.serverid entry.

Protocol = SNA
; The CICSCLI settings below referenced the PCOMM host session settings
; These settings are explained in the section on configuring PCOMM.

Netname = SNANETWK.CICSAPPL
;fully qualified LU name for CICS

LocalLUName = JANESXID
;local CP name

ModeName = LU62APPX
;mode name defined in VTAM
WebSphere Application Server setup 321

The configuration in Figure 214 tells the CICS client to use the APPC protocol
to communicate with the target CICS/ESA region. In order to configure APPC
we had to install and configure Personal Communications (see 13.5.1, “Install
the PCOMM software” on page 280).

As part of this operation, we had to request a Control Point (CP) name for our
Web server machine on which the CICS client was installed. We also
requested the destination address (MAC) address of the remote controller for
VTAM, along with the partner LU name of the CICS region and the owning
control point in VTAM.

14.3.4 CICSTERM behavior and signon capable terminals
One of the easiest ways to validate connectivity to the target CICS system is
to use a CICS terminal session to test access.

We used a mix of CICS environments, one of the last being TX Series V4.3.
In doing so, we had some problems connecting to the Windows NT based
system until we read the README.TXT available with V3.1 of CICS
Transaction Gateway for Windows NT. A portion of this file is repeated below.

CICSTERM now attempts to install a signon capable terminal by default. Use
the option '-a' to request the default CICSTERM behavior as in releases prior
to v3.1.0.

CICS Servers require APAR fixes to support the terminal signon capability
function available in this release:

CICS/ESA 4.1 PQ30167
CICS TS for OS/390 V1.2 and V1.3 PQ30168
CICS/VSE 2.3 PQ30169
CICS TS for VSE/ESA V1.1 PQ30170
TX Series IY03691

CICS TS for OS/390 v1.3 Servers
If the server does not have the required APAR applied and the '-a' option is
not specified on CICSTERM, the installed terminal will give unpredictable
results.
322 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

TX Series Servers
If the server does not have the required APAR applied and the '-a' option is
not specified on CICSTERM, the client will display the message:

CCL7053E Errors found while communicating with server

and the message:

CCL3105 Inbound CICS datastream error (CTIN, 4, 0)

will be written to CICSCLI.LOG.

On the server, the message:

ERZ042004E/0112: An invalid request was received from client

will be written to CSMT.out and console.msg will include:

ERZ014016E/0036: Transaction CTIN Abend A42B

Security on OS/390 Servers
Security checking done in the server for transactions started at a signon
capable terminal installed by a client application does not depend on what is
specified by the ATTACHSEC option for the connection representing the
client.

Instead, security checking depends on whether the user signs on while using
the terminal.

If the user does not sign on, the client installed terminal is associated with the
default user defined for the server in the SIT. When a transaction is run, the
security checks are carried out against this default user. A check is also done
against the userid associated with the connection to see whether the client
itself has authority to access the resource.

When a user does sign on, the terminal is associated with the userid just
authenticated. For transactions attempting to access resources, security
checking is done against the userid associated with the connection and the
signed-on user's userid.

It is recommended that the Usedfltuser parameter on the server connection
definition be set to Yes if using signon capable terminals, and to No if using
signon incapable terminals.
WebSphere Application Server setup 323

14.4 VisualAge for Java WebSphere test environment

There are two basic ways of testing a VisualAge Generator Web Transaction:

Source Testing—The 4GL program source can be directly tested using the
test facility to emulate VisualAge Generator implementation of runtime
processing.

Web server and UI Record processing is emulated by the test facility and
direct interaction with a Web browser (see 2.1.5, “Testing” on page 27).

Runtime Testing—Runtime testing can be enhanced through the use of the
VisualAge for Java WebSphere test environment.

Customization of the generated JSPs is expected. Testing these changes
typically requires a full runtime environment. (Note: test facility support for
invocation of a Web Transaction from the runtime Gateway Servlet is a
requirement).

To better support testing of the customized JSP, you can configure the
Gateway Servlet in the VisualAge for Java WebSphere test environment.

Version notes:

• You can get this configuration to work with the GA version of VisualAge for
Java. Initial packaging of VisualAge Generator V4 included a supported
beta version of VisualAge for Java, while the GA version is now shipped
with VisualAge Generator (and available to those who received the beta
version package.

• Gateway Servlet session data management issues will be resolved in
VisualAge for Java V3.02.

14.4.1 Setup
1. Install VisualAge Generator Server and VisualAge Generator Common

Services on the VisualAge for Java developer machine. VisualAge
Generator Common Services will have already been installed if the
VisualAge Generator Developer on Java has been installed.

Note: You can run the Gateway Servlet on a workstation where the
Developer on Java feature has not been added to the workspace. The
Gateway Servlet will invoke the generated version of the Web Transaction.
324 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

2. Ensure that the required VisualAge for Java components have been
installed.

If one of the required components has not been installed update the
installation (using the VisualAge for Java installation CD setup command)
to add the component:

a. The EJB/JSP Development Environment and Servlet Builder
components must be installed to provide access to the IBM
WebSphere Test Environment feature.

b. The Transactions Access Builder component must be installed only if
CICS will be used as the runtime platform for Web Transactions. This
will provide access to the IBM Common Connector Framework and
CICS Connector features.

If you do not plan to invoke Web Transactions that run in a CICS system,
this component can be skipped. The Gateway Servlet references to CICS
connector classes will not be resolved, but you can still use TCP/IP to
invoke Web Transactions called by the Gateway Servlet in the WebSphere
Test Environment.

3. Ensure that the required VisualAge for Java features have been added to
the workspace.

If one of the required features has not been added, use the VisualAge for
Java Quick Start (F2 or File->Quick Start) to select the features that must
be added to the workspace.

a. The IBM WebSphere Test Environment 3.0 and IBM JSP Execution
Monitor 1.1 features must be added to the workspace. This will also
trigger the installation of other required features.

b. The IBM Common Connector Framework and CICS Connector
features must be added only if CICS will be used as the runtime
platform for Web Transactions.

Note: The CICS software you use depends on the install order:

• During VisualAge for Java installation, CICS software can be
installed in the \IBM Connectors directory. If you had CICS Client or
CICS Transaction Gateway software installed before installing
VisualAge for Java, you may have blocked this installation.

• To use the pre-existing CICS software, which may be from a
different version (different DLL names) you must import and load the
matching CTGclient.jar and CTGserver.jar files into the VisualAge
for Java workspace.
WebSphere Application Server setup 325

4. If using CICS as the runtime platform for Web Transactions, the CICS
Transaction Gateway support that is installed must be configured for the
target CICS system (see 13.4, “CICS for NT Web Transactions” on page
270).

5. Import the Gateway Servlet runtime classes from the hptGateway.jar file
(found in the VisualAge Generator Server installation directory) into the
VisualAge for Java workspace.

We used a project named z WebSphere Test Support to hold the
Gateway Servlet and other classes that will also be imported.

If the IBM Common Connector Framework and CICS Connector
features have not been loaded (because CICS will not be used as the
runtime platform for Web Transactions), there will be a problem listed for
the Gateway Servlet in the WebSphere Test Environment, as shown in
Figure 215.

Figure 215. Gateway Servlet problems when CICS support is not loaded

If the CICS support required by the Gateway Servlet has been loaded,
there will still be problems indicated in the workbench in the WebSphere
Test Environment, as shown in Figure 216.
326 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Figure 216. Gateway Servlet problems when CICS support is loaded

These references to classes do not impact the testing of the JSPs
generated by VisualAge Generator in the WebSphere Test Environment.
You only need to load the CICS support if your target runtime platform for
the Web Transaction program is CICS.

6. Import the hpt.jar, if required.

You do not have to import the hpt.jar file if the VisualAge Generator
Developer on Java feature has been loaded. The same code is loaded
from the Developer on Java install base as part of the feature.

14.4.2 Configure WebSphere Test Environment
1. Update the SERunner.properties file (found in the

c:\ibmvjava\ide\project_resources\ibm websphere test environment
directory) to adjust the port and document root settings.

httpPort—If you want to use both the WebSphere Test Environment and
the VisualAge Generator test facility, you must change the port used by
the SERunner class to avoid conflicts.

docRoot—By changing the document root you can, if you wish, point to
the same directory used by the runtime implementation of the Gateway
Servlet (see Figure 203 on page 309).
WebSphere Application Server setup 327

The SERunner.properties file we used included these settings:

httpPort-8181
docRoot=v:\\wsas
serverRootd:\\j3\\ide\\project_resources\\IBM WebSphere Test Environment

A similar port change may be required in the default.servlet_engine file
(found in the c:\ibmvjava\ide\project_resources\ibm websphere test
environment directory). The servlet engine transport definition includes a
port argument.

Note: As an alternative, you can change the port used by the VisualAge
Generator test facility. See the Test Web page in the VisualAge Generator
options dialog.

2. Update the com.ibm.servlet.SERunner class properties (part of IBM
WebSphere Test Environment 3.0 project) by adding all the projects in the
VisualAge for Java workspace to the project class path.

14.4.3 Configure GatewayServlet
1. Update the default_app.webapp file to add the Gateway Servlet definition

and its initialization parameters. The file can be found in this directory:

c:\ibmvjava\ide\project_resources\ibm websphere test environment
\hosts\default_host\default_app\servlets

The Gateway Servlet definition in the WebSphere Test Environment is
shown in Figure 217.
328 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Figure 217. Gateway Servlet definition and initialization

Notes:

It appears that if there are two servlet definitions in the XML file with
the same <servlet-path>, then the last one parsed wins.

The FileServlet is the one responsible for serving files, and since my
gateway definition was after it and had the same <servlet-path>, it was
overriding the file serving, and thus a request for an HTML file was
invoking the gateway servlet.

<servlet>
<name>GatewayServlet</name>
<description>VAGen Web Transaction Gateway Servlet</description>
<code>com.ibm.hpt.gateway.GatewayServlet</code>
<servlet-path>/GatewayServlet</servlet-path>
<init-parameter>

<name>hptLogonPage</name>
<value>/Vagen1LogonPage.jsp</value>

</init-parameter>
<init-parameter>

<name>hptEntryPage</name>
<value>/Vagen1EntryPage.jsp</value>

</init-parameter>
<init-parameter>

<name>hptErrorPage</name>
<value>/Vagen1ErrorPage.jsp</value>

</init-parameter>
<init-parameter>

<name>hptErrorLog</name>
<value>e:/vgtrace/Vaj3ErrorLog.log</value>

</init-parameter>
<init-parameter>

<name>hptLinkageProperties</name>
<value>e:/vs/csogw.properties</value>

</init-parameter>
<init-parameter>

<name>hptIDManagerHost</name>
<value>ireland</value>

</init-parameter>
<init-parameter>

<name>hptDateMask</name>
<value>dd/mm/yyyy</value>

</init-parameter>
</servlet>
WebSphere Application Server setup 329

So there are two options (option "a" is recommended):

a. Define an alternate servlet path for the GatewayServlet (something
other than /). In Figure 217 we used:

<servlet-path>/GatewayServlet</servlet-path>

b. Put the HptGateway servlet definition before the FileServlet
definition in the XML and then it works fine, because the FileServlet
gets the servlet path of / and serves files properly, since the
Gateway servlet is a servlet, and the invocation of /servlet (defined
as the servlet path for the Servlet Invoker servlet) causes the
gateway to be picked up as a servlet.

2. Update the default_app.webapp file and change the JSP support servlet
entry (com.ibm.ivj.jsp.debugger.pagecompile.IBMPageCompileServlet) to
switch JSP support to V1.0 (V.91 support is configured in VisualAge for
Java). The file can be found in this directory:

c:\ibmvjava\ide\project_resources\ibm websphere test environment
\hosts\default_host\default_app\servlets

The replacement definition for the JSP servlet that provides support for
JSP V1.0 in the WebSphere Test Environment is shown in Figure 218.

Figure 218. Defining JSP 1.0 support

<servlet>
<name>jsp</name>
<description>JSP support servlet</description>
<code>com.ibm.ivj.jsp.runtime.JspDebugServlet</code>
<init-parameter>

<name>workingDir</name>
<value>$server_root$/temp/default_app</value>

</init-parameter>
<init-parameter>

<name>jspemEnabled</name>
<value>true</value>

</init-parameter>
<init-parameter>

<name>scratchdir</name>
<value>$server_root$/temp/JSP1_0/default_app</value>

</init-parameter>
<init-parameter>

<name>keepgenerated</name>
<value>true</value>

</init-parameter>
<autostart>true</autostart>
<servlet-path>*.jsp</servlet-path>

</servlet>
330 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

3. If required, copy the VisualAge Generator supplied JSP and GIF files to
the document root directory. This might be:

c:\ibmvjava\ide\project_resources\ibm websphere test
environment\hosts\default_host\default_app\web

which is the default, or a directory something like:

v:\wsas

if you defined a customized WebSphere Test Environment as shown in
14.4.2, “Configure WebSphere Test Environment” on page 327.

Note: You may need to correct the supplied JSP files. See 14.2.5,
“Customize JSPs (as required)” on page 317.

4. If required (not done previously), edit the deployed VisualAge Generator
entrypoint JSP file (Vagen1EntryPage.jsp) and add a line to support
invocation of your Web Transaction.

5. Define the appropriate application and serverLinkage entries in the
csogw.properties file to support invocation of the Web Transaction using
the target runtime platform (see 13.3.3, “Communications configuration”
on page 270).

14.4.4 Add generated components for Web Transaction
After the Web Transaction has been generated and implemented in the target
runtime platform (see Chapter 16, “Running Web Transactions” on page 341)
we need to add the JSPs and generated JavaBeans to the configured
WebSphere Test Environment.

See Chapter 15, “Web Transaction generation” on page 335 for details on
generation.

1. Import the class files for the generated beans to a project in the
workbench (we used z WebSphere Test Support, the same project we
used when importing the hptGateway.jar and hpt.jar files).

2. If not already done, update the com.ibm.servlet.SERunner class
properties (part of IBM WebSphere Test Environment 3.0 project) by
adding all the projects in the VisualAge for Java workspace to the project
class path.
WebSphere Application Server setup 331

3. Copy the generated JSP files, and the .tab files for any VisualAge
Generator tables used in the UI Record, to the directory that acts as the
document root for the WebSphere Test Environment. This might be:

c:\ibmvjava\ide\project_resources\ibm websphere test
environment\hosts\default_host\default_app\web

which is the default, or a directory something like:

v:\wsas

if you defined a customized WebSphere Test Environment.

Note: You may need to modify the generated JSP files. See 14.2.5,
“Customize JSPs (as required)” on page 317.

4. If VisualAge Generator tables are used by the generated UI Records, you
need to make sure the .tab files can be found by the generated
components at runtime.

This is done by adjusting the com.ibm.servlet.SERunner class properties
(in the IBM WebSphere Test Environment 3.0 project) to add the directory
where the .tab files are stored to the Extra directories path setting.

14.4.5 Test generated Web Transaction in VisualAge for Java
1. Start the WebSphere Test Environment by running the SERunner class or

choosing the Selected -> Run -> Run main... Workbench menu option.

2. Start the VisualAge Generator sessionID manager. This can be done by
running the com.bim.hpt.gatwway.SessionIDManager class inside
VisualAge for Java or by using this command in a command window to
invoke the class:

start /min java com.ibm.hpt.gateway.SessionIDManager

The hptGateway.jar file must be included in the current class path setting
of the command window for the command to function.

3. Prepare the Web Transaction runtime platform. This might mean starting
the TCP/IP Web Transaction program catcher (csotcpui.exe) or the CICS
Transaction Gateway and target CICS server.

4. If you want to make use of the JSP execution monitor to trace execution of
JSPs, you need to run on the JSP Execution Monitor.

Use the Workspace -> Tools -> JSP Execution Monitor menu option.
Toggle on (select) the Enable monitoring JSP execution toggle.
332 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

If you do not enable JSP execution monitoring, the end result is a system that
will work just like the runtime configuration. The whole goal is to get access to
how the JSPs are being processed, so we recommend that you enable JSP
monitoring.

Details on JSPs used for Web Transactions are provided in Chapter 4, “Java
Server Pages and the UI Record interface bean API” on page 75.

5. Start a browser and invoke the Gateway Servlet using this URL:

http://localhost:8181/GatewayServlet

Here, 8181 is the port defined for the WebSphere Test Environment (see
14.4.2, “Configure WebSphere Test Environment” on page 327).

If enabled, the JSP Execution Monitor will be displayed when JSP files are
processed by the Gateway Servlet. The JSP Execution Monitor view when
processing the Gateway Servlet logon page is shown in Figure 219.

Figure 219. JSP execution monitor
WebSphere Application Server setup 333

Note: Problems sometimes occur that prevent the WebSphere Test
Environment from successfully running the generated system. Often these
problems can be resolved by stopping the WebSphere Test Environment,
deleting the JSP Page Compile Generated Code project, and starting again.
334 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Chapter 15. Web Transaction generation

To support generation, preparation, and subsequent implementation, make
sure that the following preparation and runtime platform requirements are
satisfied:

Web Transaction preparation
• VisualAge Generator Common Services and Server are installed.

• For Windows NT-based runtime systems, C++ must be installed.

• If you are using IBM C++, check that the listed directories are included
in these environment variables:

• INCLUDE —
x:\IBMCPPW\INCLUDE;x:\IBMCPPW\SDK\WINH;x:\IBMCPPW\SD
K\WINH\WINNT and
x:\VGSERVW\INCLUDE;x\:HPTCSOW\INCLUDE

• LIB — x:\IBMCPPW\LIB and x:\VGSERVW\LIB;x:\HPTCSOW\LIB

• If you are using DB2, the machine where you prepare should have the
DB2 Software Developer’s Kit installed.

• For Windows NT-based generation and host (MVS) preparation platforms,
you must install Object REXX V1.0.3.0 when setting up VisualAge
Generator Developer.

This is so the generated COBOL source and JCL may be transferred to
the host. You have the option of using LU2 or TCP/IP for the source
transfer. PCOMM must be installed to support the use of LU2 for a
transfer.

Java bean preparation
• VisualAge Generator Server and common services must be installed.

• Java development kit (JDK) must be installed.

• A value must be supplied for the HPTCLASSDIR environment variable,
which identifies where the .CLASS files created during compilation of the
generated JavaBeans will be copied as part of preparation processing.

This will tie up with an entry in IBM WebSphere Application Server’s
classpath (or the classpath of whichever servlet engine you have chosen
to use).

The installation process for IBM WebSphere Application Server will add
x:\websphere\appserver\classes to the Java classpath (see the
admin.config file in the WebSphere /bin directory).
© Copyright IBM Corp. 2000 335

• A value must be supplied for the HPTJSPDIR environment variable, which
identifies where the generated JSP files will be copied as part of
preparation processing.

The directory identified should be related to the document root you
specified for the WebSphere WebApp (see Figure 203 on page 309).

Notes:

• Depending on your generation and preparation configuration, you may
have to manually invoke the webtranJ.bat file, where webtran is the name
of your Web Transaction program, to compile the JavaBeans generated
for the UI Record. The xxxJ.bat files reference the HPTCLASSDIR and
HPTJSPDIR environment variables.

Note: We found that the xxxJ.bat files did not automatically start for single
machine generation/preparation until we had installed fixpak 1.

• Generation processing can be implemented so that a single shared
machine performs generation for all programmers in a development team
(LAN-based generation or LANGEN). LANGEN setup is described in the
VisualAge Generator Generation guide.

• Preparation processing using FTP is discussed in 13.1.4, “Setting up FTP
support for program preparation” on page 259.

To implement the runtime system, you must generate and prepare the Web
Transaction and UI Record definitions. The Gateway Servlet configuration is
then validated for the chosen target runtime environment.

15.1 Windows NT Web Transactions — base system deployment

The implementation of a Windows NT-based system is discussed in this
section.

Note: The linkage table referenced in the generate command applies to the
calls from a Web Transaction program to server (CALLED BATCH) programs.
The linkage table does not control the generation or runtime interface
between the Gateway Servlet and the Web Transaction program.

15.1.1 Generation
Generate and prepare the Web Transaction programs, associated UI
Records, and VisualAge Generator tables, and any called server programs.
336 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

We used the generation command shown in Figure 220.

Figure 220. Generation command: Windows NT system

Generation started preparation processing.

15.1.2 Configure Gateway Servlet access
Edit the CSOGW.properties file and create the appropriate application and
serverLinkage entries (see 13.3.3, “Communications configuration” on page
270 for details).

15.2 CICS NT Web Transactions — base system deployment

The implementation of a CICS NT-based system is discussed in this section.

15.2.1 Generation
Generate and prepare the Web Transaction programs, associated UI
Records, and VisualAge Generator tables, and any called server programs.

We used the generation command shown in Figure 221.

Figure 221. Generation command: CICS NT system

Generation started preparation processing.

HPTCMD GENERATE CONVMOD
/SYSTEM=WINNT
/LINKAGE=VGJAVATCPIP.LKG
/PACKAGENAME=vgwt.beans
/JAVASYSTEM=WINNT
/PROJECT="zz ISA ITSO Tests","2.8"
/GENOUT=e:\vgenout\%EZEENV%
/DBUSER=vgdba /DBPASSWORD=VGDBA

HPTCMD GENERATE CONVMOD
/SYSTEM=NTCICS
/LINKAGE=VGJAVACICS.LKG
/PACKAGENAME=vgwt.beans
/JAVASYSTEM=WINNT
/PROJECT="zz ISA ITSO Tests","2.8"
/GENOUT=e:\vgenout\%EZEENV%
/DBUSER=vgdba /DBPASSWORD=VGDBA
Web Transaction generation 337

15.2.2 Define your generated Web Transaction(s) to CICS
Select the CICS region on the CICS Administration Utility, invoke the
context menu, and choose Resources-> Program. On the window that
opens, select the Programs menu and choose New.... Figure 222 shows the
window which then opens.

Figure 222. Adding a new program to CICS

Specify the following on the General and Security/DCE pages:

• Program name — We recommend that program name matches the actual
Web Transaction name as defined in VisualAge Generator.

VisualAge Generator map group load modules and server side VisualAge
Generator table DLLs do not need to be defined to CICS.

• Group — Use this to identify relationships between your CICS definitions.

• Program path — Use the Browse... button to find the program .IBMCPP
file.

• Resource level security key — We used a setting of public. See 16.3,
“Security” on page 352 for a more detailed security discussion.
338 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

15.2.3 Configure Gateway Servlet access
Edit the CSOGW.properties file and create the appropriate application and
serverLinkage entries (see 13.4.8, “Communications configuration” on page
279 for details).

15.3 CICS/ESA Web Transactions — base system deployment

The implementation of a CICS/ESA-based system is discussed in this
section.

Note: The linkage table referenced in the generate command applies to the
calls from a Web Transaction program to server (CALLED BATCH) programs.
The linkage table does not control the generation or runtime interface
between the Gateway Servlet and the Web Transaction program.

15.3.1 Generation
Generate and prepare the Web Transaction programs, associated UI
Records, and VisualAge Generator tables, and any called server programs.

We used a generation command similar to that shown in Figure 223.

Figure 223. Generation command: CICS/ESA system

We also requested that generation start preparation processing.

15.3.2 Define your generated Web Transaction(s) to CICS
Define the Web Transaction program to CICS. We recommend that the
program name matches the actual Web Transaction name as defined in
VisualAge Generator. The program will be COBOL.

You will need a transaction definition which executes the mirror program
DFHMIRS. CPMI is the default supplied transaction. If you wish to use this for
your Web Transactions, you will need to change the TWASIZE setting to
1024.

HPTCMD GENERATE WEBTRAN
/SYSTEM=MVSCICS
/LINKAGE=VGJAVACICS.LKG
/PACKAGENAME=vgwt.beans
/JAVASYSTEM=NTCICS
/PROJECT="zz ISA ITSO Tests","2.8"
/GENOUT=e:\vgenout\%EZEENV%
/DBUSER=vgdba /DBPASSWORD=VGDBA
Web Transaction generation 339

If your program uses DB2, you need to ensure a Resource Control Table
entry (RCT) is set up for the transaction you are using to point at a DB2 plan.

If your Web Transaction references any VisualAge Generator tables in the
Web Transaction logic that runs on the VisualAge Generator server side, that
is, tables not used only in either:

• The UI record definition

• The EZEUIERR invocations

Then you will need to create program definitions for these tables.

15.3.3 Configure Gateway Servlet access
Edit the CSOGW.properties file and create the appropriate application and
serverLinkage entries (see 13.5.5, “Communications configuration” on page
299 for details).
340 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Chapter 16. Running Web Transactions

The process required to run a Web Transaction using any of the VisualAge
Generator and WebSphere Application Server runtime platforms we have
configured is discussed in this chapter.

16.1 Deploy generated code

Several tasks must be performed to deploy the different types of code
generated by VisualAge Generator for a Web Transaction.

16.1.1 JSPs, JavaBeans, and tables used in a UI Record
On the Web server, either manually or as part of the preparation processing
started during generation, do the following:

• Copy the JSP(s) produced by generation to the document root directory
(see Figure 203 on page 309 for the document root definition).

Be sure correct the JSP files, if required (to change imports to import).
See 14.2.5, “Customize JSPs (as required)” on page 317.

• Copy all Java class files (produced when the JavaBeans created during
generation are compiled) to the directory x:\websphere\appserver\classes.
This directory is always searched by WebSphere Application Server.

Be sure to preserve any directory structure produced as a result of the
package name used during generation.

An alternative directory, if included in the -classpath parameter, can be
used. See Figure 203 on page 309 for details.

Note: You may have to correct the syntax in the Java files generated for a
UI Record that uses message inserts in edit functions. Fixpak 1 code
creates the string [][] in the Java implementation of an edit function when
the code should only include [].

• VisualAge Generator tables referenced by a UI Record must be in a
directory included in the CLASSPATH used by the Gateway Servlet
configured in the WebSphere Application Server environment.

We chose to copy the TAB files (produced during VisualAge Generator
generation) to the directory x:\websphere\appserver\classes. This
directory is always searched by WebSphere Application Server.

Note: Depending on your generation and preparation configuration, you may
have to first invoke the webtranJ.bat file, where webtran is the name of your
Web Transaction program, to compile the JavaBeans generated for the UI
© Copyright IBM Corp. 2000 341

Record. These generated .bat files reference the environment variables
HPTCLASSDIR and HPTJSPDIR. See Chapter 15, “Web Transaction
generation” on page 335 for details. With Fixpak 1 this xxxxJ.bat file runs
during preparation.

16.1.2 Web Transaction program materials
• Windows NT or CICS NT — Copy any VisualAge Generator tables

referred to in the Web Transaction, other than those only referenced in
either a UI record definition or EZEUIERR invocation, into the directory
referred to by the FCWDPATH environment variable.

• Tables referenced in a UI Record must be in a directory included in the
CLASSPATH used by WebSphere Application Server.

• Windows NT — Copy your Web Transaction executables (DLLs) into a
directory specified in the PATH environment variable.

If you find that your DLL is locked, stop and then restart the VisualAge
Generator TCP/IP catcher program to release the DLL.

• CICS NT — Identify the location of each generated .IBMCPP executable
as part of the CICS program definition for each Web Transaction.

Use CICS to request a CEMT SET program NEWCOPY if the program
was already loaded.

• CICS/ESA — Make sure you generated the Web Transactions and
VisualAge Generator server side tables into a library in the CICS system
RPL.

Use CICS to request a CEMT SET program NEWCOPY if the program(s)
were already loaded.

Make sure you bound the relevant package/plan if your Web Transaction
issues any DB2.

Timestamps are stored and compared to ensure the runtime version of the
Web Transaction matches the corresponding interface bean and data bean
code. The Gateway Servlet will send an error message if a timestamp
mismatch is found. (This something like the DB2 program and plan match.)

16.1.3 Invoking Web Transaction from default entry point JSP
If you wish to be able to invoke your Web Transaction from the default entry
point page, you need to edit the Vagen1EntryPage.jsp, and add an entry for
the target Web Transaction.
342 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

The source for a customized entry point page is shown in Figure 224.

Figure 224. Gateway Servlet entry page definition

The target Web Transaction entry is added inside the SELECT list named
hptAppId, as shown below:

<OPTION VALUE=webtran>description of your webtran

<%@ page errorPage="Vagen1ErrorPage.jsp" %>
<jsp:useBean id="hptGatewayURL" class="java.lang.String" scope="request" />
<HTML>
<HEAD>

<TITLE>VisualAge Generator System Entry</TITLE>
</HEAD>
<BODY background="vawcg-wp.gif">

VisualAge Generator System Entry

<FORM METHOD=POST ACTION="<%= hptGatewayURL %>">

Choose a Program to execute below:

<SELECT NAME="hptAppId" SIZE=10>

<OPTION VALUE=WEBTRAN>Base WebTran Program
<OPTION VALUE=NONE0>---------------------------------------
<OPTION VALUE=CONVMOD>Converse Model Demo
<OPTION VALUE=FRSTFRM>First Form Model Demo
<OPTION VALUE=FRSTREC>First Record Model Demo
<OPTION VALUE=FRSTPLK>Program Link Model Demo
<OPTION VALUE=NONE1>---------------------------------------
<OPTION VALUE=BLBANWE>VAGT Bank List
<OPTION VALUE=CLCUSWE>VAGT Cust List

</SELECT>

<!-- VG Gateway control fields - DO NOT MODIFY -->
<INPUT TYPE="submit" VALUE="Execute" NAME="hptExec">
<INPUT TYPE="submit" VALUE="Logout" NAME="hptLogout">

<A HREF='<%= hptGatewayURL
%>?hptAppId=MINTEST&hptExec=exec&yyy=yyy' target='xyz'>This is a test link

<A HREF='<%= hptGatewayURL
%>?hptAppId=MINTEST&hptExec=exec&yyy%23=xyz+abc%20%c3%a7def'>This is
another test link
<!-- VG Gateway control fields - DO NOT MODIFY -->
<jsp:useBean id="hptErrorData" class="java.lang.String" scope="request" />

<%= hptErrorData %>
</BODY>
</HTML>
Running Web Transactions 343

The webtran value entered must match the name and case (use upper) for
the Web Transaction program, just as in the CSOGW.properties file.

16.2 Runtime processing

Runtime environment startup and the implementation of Gateway Servlet and
Web Transaction processing is discussed in this section.

16.2.1 System Startup
We can now start up the deployed system.

VisualAge Generator runtime platform
Tasks are runtime platform dependent:

• Windows NT or CICS NT — Start the database server.

• Windows NT — Start the VisualAge Generator catcher program,
CSOTCPUI.

• CICS NT — Start the CICS region on the VisualAge Generator server
machine from the IBM CICS Server for windows NT->TXSeries
Administration Utility option.

• CICS/ESA — Make sure the mainframe database system (if you are using
it) and the CICS system are started.

Make sure the CICS system has successfully attached to the database
system.

WebSphere Application Server platform
Some tasks are runtime platform dependent:

• Start the local DB2 system, if required. If you are using IBM WebSphere
Application Server Standard Edition, a local DB2 system is not required.

• Start the Web server, if required. Start Apache from the Apache Web
Server->Start Apache as console app (or start it as a Windows NT
service). Actual Web server invocation depends on the product chosen.

• Start the session ID manager. The following line in a bat file will start the
session ID manager:

java com.ibm.hpt.gateway.SessionIDManager

It is best to start this before the WebSphere Application Server, as you can
get intermittent port conflicts between the two.

The session ID manager was discussed in 14.2.8, “Set up VisualAge
Generator session ID manager” on page 318.
344 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

• Start IBM WebSphere Application Server from the services panel.

• Start the WebSphere administrators console from the start menu. Once
the console has launched, select the Topology tab, expand the tree you
find there, select the application server you created and start it by clicking
the green blob on the toolbar.

• CICS — Start CICS client from the start CICS client START menu option
if you are using a CICS server as a target runtime platform.

• CICS/ESA — Start PCOMM if you are using CICS/ESA as a target runtime
platform.

16.2.2 Gateway Servlet invocation
This will be based on the URI you gave it when you defined it in Figure 202 on
page 308. If you used our suggestion, the URL would be in the following form:

http://hostname/webapp/yourserverWebApp/GatewayServlet

Here, hostname is the TCP/IP hostname or address of the machine which
has IBM WebSphere Application Server on it.

The Gateway Servlet will ask you to logon, if an hptLogonPage is specified as
part of its initialization parameters (see Figure 225).

Figure 225. Gateway Servlet Logon page
Running Web Transactions 345

After the logon, the Gateway Servlet will serve the entry point page or start
the entry point application, again depending on the current initialization
parameters. The entry point page, with a list of configured Web Transactions,
is shown in Figure 226.

Figure 226. Gateway Servlet Entry page

See 14.2.4, “Define VisualAge Generator Gateway Servlet” on page 312 for
more about Gateway Servlet configuration.

See Part 16.3, “Security” on page 352 for more about logon processing and
security.
346 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

16.2.3 Gateway Servlet processing
Figure 227 shows the Gateway Servlet and other components configured and
running in a Windows NT-based WebSphere Application Server runtime
environment.

Figure 227. Gateway Servlet runtime system processing

When you select a Web Transaction entry from the entry point page list and
click to run it, the following processing takes place:

• An HTTP request is sent to the Web server.

• Because of the format of the URL, the Web server passes the request to
the WebSphere Application Server plug-in.

• WebSphere Application Server invokes the Gateway Servlet passing the
HTML FORM input data to the servlet. The input data tells the Gateway
Servlet which Web Transaction to invoke.

• The Gateway Servlet reads the CSOGW.property file to determine which
technique will be used to connect to the target runtime platform to run the
Web Transaction.

• The Gateway Servlet invokes other beans which in turn connect to the
target Web Transaction program.

WebSphere

Gateway
Servlet

web tran
HTTP

CSOGW
properties

workdb

session

session ID manager

Apache

WebSphere Application
Server

Web Transaction
Runtime Server
Running Web Transactions 347

• The Web Transaction runs. When it XFERs with a UI Record or issues a
CONVERSE, control returns back through the communication chain,
passing back the UI Record data.

When required:

• A work database is used to store data for the Web Transaction program
when control returns to the Gateway Servlet.

• Session objects are used to store the data beans populated by the
Gateway Servlet for the user data associated to the UI Record.

This processing is performed for selected Web Transaction UI Record
processing options:

• During a CONVERSE, the work database stores all program data.

• During an XFER when the XFER includes a working storage record
(XFER webtran WS Record, UI Record), the work database only stores the
working storage record included in the XFER.

• During a CONVERSE or when the XFER includes a working storage
record, a session object is used to store the data bean.

See 5.1, “Concepts” on page 85 for details on Web Transaction
implementation of saved state processing.

• As the final response to the initial request, the Gateway Servlet invokes a
JSP which will use the UI Record data to compose the Web page that will
be displayed in the browser.

Subsequent invocations of your Web Transaction go through a similar path,
except:

• Before the CSOGW.property file is read:

• If the Gateway Servlet is invoked from a SUBMIT button on an HTML
FORM (the default FORM generated by VisualAge Generator, not one
you defined yourself in your UI Record), it populates the data bean with
data the user entered into the INPUT fields (if any) on the JSP that was
previously served.

• The Gateway Servlet invokes any edits specified for the data items in
the UI Record (other than VisualAge Generator server side edit
routines). The Gateway Servlet re-serves the original JSP if there is an
error.
348 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

• When the Web Transaction is invoked by the catcher, the data stored in
the work database is retrieved before the Web Transaction continues its
processing, if:

• The Web Transaction was invoked from a SUBMIT button in a JSP on
the default form generated for a UI Record, that is to say, not a FORM
item defined by you, the programmer, and

• The JSP was previously sent as a result of an XFER webtran WS Record,

UI Record transfer request, or a CONVERSE I/O processing option.

You may have noticed by now that when using FORMs you defined yourself
in the UI Record, they behave differently from the default one. This is
because your own FORM represents starting a new thread with a new
invocation of a Web Transaction rather than continuing an ongoing
conversation. With your own FORM you may pass your UI Record data into a
new UI Record when the user clicks the SUBMIT button. No data will be
retrieved from a work database on the runtime platform.

See Chapter 5, “Web Transaction design concepts and considerations” on
page 85 for more information on how Web Transaction structure determines
how runtime processing is implemented.
Running Web Transactions 349

16.2.4 Windows NT Web Transaction processing
Figure 228 shows the components configured and running in a Windows
NT-based runtime environment.

Figure 228. Windows NT runtime system processing

Web Transaction invocation on a Windows NT runtime platform occurs when
the Gateway Servlet uses TCP/IP to connect to the VisualAge Generator
server catcher program (CSOTCPUI). The name of the Web Transaction to
be invoked and input data is passed.

Windows NT-based Web Transactions use a VisualAge Generator managed
work database to store data over a CONVERSE I/O processing request or
XFER webtran WS Record, UI Record transfer request.

16.2.5 CICS Web Transaction processing
Figure 228 shows the components configured and running in a CICS-based
runtime environment.

WebSphere

Gateway
Servlet

CSOTCPUI

TCP/IP

web tran

HTTP

CSOGW
properties

workdb

session

session ID manager

Apache

WebSphere Application
Server

Web Transaction
Runtime Server
350 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Figure 229. CICS runtime system processing

Web Transaction invocation on a CICS runtime platform occurs when the
Gateway Servlet uses CICS Transaction Gateway classes to invoke the Java
Native Interface to communicate with the CICS client. The CICS client uses
the External Call Interface to invoke a transaction on the target CICS server.

Note: We used TCP/IP to connect to CICS NT and SNA with PCOMM to
connect to CICS/ESA.

The transaction ID used will start the program DFHMIRS, passing the name
of the Web Transaction to be invoked.

DFHMIRS LINKs to this program, passing client data (if any) on to the Web
Transaction program.

CICS-based Web Transactions use CICS temporary storage to store data
over a CONVERSE I/O processing request or XFER webtran WS Record, UI

Record transfer request.

16.2.6 Debugging Web Transactions at runtime with CEDF
If you are getting processing errors after invoking a CICS-based Web
Transaction, you may find it helpful to trace your Web Transaction in CICS NT
using CEDF.

Apache

CICS
Transaction

Gateway
classes

WebSphere
Gateway
Servlet

CICS
client

JNI

CICS server

DFHMIRS

web tran

CICS LINK
HTTP CSOGW

properties

Web server VAGen server

TS
queue

session

session ID
manager

ECI
TCP/IP or

SNA
Running Web Transactions 351

This can be done if a telnet session has been defined (see 13.4.6, “Add
VisualAge Generator runtime and debug transactions” on page 277.

To use CEDF:

• Invoke the Web Transaction once, so a sysid is assigned.

• Run the CSTD transaction in your Telnet session and choose option 10
(ISC Summary Statistics). This screen shows you the sysid assigned.

• Exit from CSTD and type CEDF sysid, where sysid corresponds to that
shown in the ISC Summary.

• Hit Pause to clear the screen.

• Now try to invoke your Web Transaction again from the browser. The
CEDF initialization screen should pop up on your Telnet session and you
can step through the code, and examine working storage as you normally
would with CEDF.

• Make sure the security level you have applied to the CEDF transaction in
CICS matches the security level on the actual transaction you are trying to
run it against or you can get security violations when you try to use CEDF.

16.3 Security

We will look at how a user can explicitly logon and enter a userid and
password and associated issues, then go on to look at how we can make the
security transparent to the user.

Note: This discussion references techniques available in CICS for the
Windows NT platform (we used TXSeries 4.3). Similar techniques are
available for other CICS runtime environments. Consult the CICS client
documentation for further configuration information.

16.3.1 Logon technique
When a user invokes the gateway servlet for the first time, as we do in 16.1.3,
“Invoking Web Transaction from default entry point JSP” on page 342, they
are presented with a logon page (unless you did not specify hptLogonPage
as an initialization parameter of the Gateway servlet).

16.3.1.1 Logging on
The default logon page, Vagen1LogonPage.jsp, causes the Gateway Servlet
to store the userid and password in an IBM WebSphere Application Server
session object for the user for later use on any subsequent Web Transactions
352 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

the user attempts to invoke. The userid and password are not validated at all
at this point. The user could even leave them blank.

The JSP source for the default logon page Vagen1LogonPage.jsp is shown in
Figure 230.

Figure 230. Default Gateway Servlet logon page

The user will not be asked to logon again unless:

• They close their browser.

• The session is timed out by the WebSphere Application Server due to user
inactivity.

• The Gateway Servlet gets an internal error.

• They ask to log out of the system.

An example of how to logout is shown in the default entry page
Vagen1EntryPage.jsp (see Figure 231). The Gateway Servlet is invoked
from an HTML FORM, where the SUBMIT button pressed has a VALUE of
Logout.

Once the user has responded to the logon page, the entry page or entry
application (Web Transaction) is served. If you choose to have an entry
application, then authentication of userid and password will now take place;
otherwise the entry point JSP is served.

<%@ page errorPage="Vagen1ErrorPage.jsp" %>
<jsp:useBean id="hptGatewayURL" class="java.lang.String" scope="request"/>
<HTML>
<HEAD>
<TITLE>VisualAge Generator System Login</TITLE>
</HEAD>
<BODY background="vawcg-wp.gif">

VisualAge Generator System Login

<FORM METHOD=POST ACTION="<%= hptGatewayURL %>">

Please enter your userid and password below:

USERID:<INPUT TYPE="text" NAME="hptUserid">

PASSWORD:<INPUT TYPE="password" NAME="hptPassword">

<INPUT TYPE="submit" VALUE="Login" NAME="hptLogin">

</FORM>
</BODY>
</HTML>
Running Web Transactions 353

If you use an entry page, such as the supplied entry page shown in Figure
231, when an option is selected out of the list of Web Transactions and the
submit button is clicked, authentication of the provided userid and password
values will take place.

Figure 231. Default entry page

So authentication of userid and password is delayed until the invocation of a
Web Transaction, and is only performed if the target runtime system both
uses a userid and password and is configured to accept the userid and
password entered by an end user in the logon page.

This means that, for runtime environments such as Windows NT, where
authentication is not performed, there is no reason to configure a
hptLogonEntry page. The first page should be the default entry page with a
list of available Web Transaction systems or an entry application.

<%@ page errorPage="Vagen1ErrorPage.jsp" %>
<jsp:useBean id="hptGatewayURL" class="java.lang.String" scope="request" />
<HTML>
<HEAD>
<TITLE>VisualAge Generator System Entry</TITLE>
</HEAD>
<BODY background="vawcg-wp.gif">

VisualAge Generator System Entry

<FORM METHOD=POST ACTION="<%= hptGatewayURL %>">

Choose a Program to execute below:

<SELECT NAME="hptAppId" SIZE=10>

<OPTION VALUE=MINTEST>MINTEST
<OPTION VALUE=TSTUI>TSTUI

</SELECT>

<!-- VG Gateway control fields - DO NOT MODIFY -->
<INPUT TYPE="submit" VALUE="Execute" NAME="hptExec">
<INPUT TYPE="submit" VALUE="Logout" NAME="hptLogout">

<A HREF='<%= hptGatewayURL
%>?hptAppId=MINTEST&hptExec=exec&yyy=yyy' target='xyz'>This is a test link

<A HREF='<%= hptGatewayURL
%>?hptAppId=MINTEST&hptExec=exec&yyy%23=xyz+abc%20%c3%a7def'>This is
another test link
<!-- VG Gateway control fields - DO NOT MODIFY -->
<jsp:useBean id="hptErrorData" class="java.lang.String" scope="request" />

<%= hptErrorData %>
</BODY>
</HTML>
354 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

16.3.1.2 Delayed authentication issues
The problem with delayed authentication is that if the userid and password
are not valid, a target system such as CICS has no way to ask the Web
browser user to send the logon data again. In our configuration the CICS
client software is installed on the Web server. In many common client/server
configurations, the client machine has the CICS client installed, which allows
for a CICS logon prompt that can be sent for re-entry of the logon data.

If the user fails to enter a valid userid and password in the default logon page,
and the CICS client was started to disable security prompts (/N option), when
they try to invoke a Web Transaction from the entry point page, they will see
an error message similar to that shown in Figure 232.

Note: If the CICS client was not started with the /N option, the logon prompt
will be displayed on the Web server.

Figure 232. No userid or password

If the user does not specify a valid userid and password, CICS will just
assume you are the "default user", but the user would not be told they had
entered invalid logon data.

To ensure that only validated logons can run Web Transactions, resource
level security must be applied to the CICS transactions and programs so that
the default user does not have access.
Running Web Transactions 355

If resource level security was implemented, the default user attempt to
access a protected Web Transaction would result in an error message similar
to that shown in Figure 233.

Figure 233. Invalid userid or password

The userid and password which CICS uses to validate against must be set up
as a user definition in CICS. You could use DCE or CICS itself to deal with the
security. Internet users will not have direct access to CICS or DCE, so this
makes it nearly impossible for them to be in control of their userids or to
change their passwords.

Note: We modified CSOERRORUIR.JSP to adjust the formatting of the error
message so that the text wrapped in the browser. We removed the <pre> and
</pre> tags from this line:

VGDataElement line = (VGDataElement)lines.nextElement(); %><pre><%=
line.getTextValue() %></pre>

The line shown below resulted in the wrapped text shown in Figure 233:

VGDataElement line = (VGDataElement)lines.nextElement(); %><%=
line.getTextValue() %>
356 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

16.3.1.3 Configuring for user login
In order to prevent logon dialogs being sent to the CICS client installed on the
Web server machine when the user and password are left blank in the default
logon page, you need to start up the CICS client with /n as shown:

C:\>CICSCLI /s=cics region name /n

Make sure you specify UpperCaseSecurity=N in the CICSCLI.INI file so that
lower case user ids and passwords may be used.

To protect your Web Transactions, so that only those users defined to CICS
can run them, you need to do the following:

• Edit the user definition you set up previously (see 13.4.5, “Define CICS
user” on page 277). Choose the Security/DCE tab. In the Resource level
security key list, type in a number from 2-24.

• Edit the transaction definition for CPMI. Choose the Security tab, and
make sure the Type of RSL checks is not set to none. In our case, using
CICS internal security, we want it set to internal. It is OK for the Resource
level security key to be set to public.

• Edit the program definitions for your Web Transactions. Choose the
Security/DCE tab. Set the Resource level security key to be a number
which matches the one you specified for your user definition.

16.3.1.4 Implementing immediate authorization
The use of an entry application rather than an entry JSP page will give the
appearance of instant userid and password validation once the logon page
has been served. This is because the identified Web Transaction will have
been run based on the provided userid and password values. Success means
the business application starts; whereas failure (either an authentication or
authorization problem) will result in an error message.

This will mean authentication and authorization failure error messages, like
the ones shown in Figure 232 and Figure 233, will now appear on the error
page defined in the Gateway Servlet’s initialization parameters. The source
for the default error page, CSOERRORUIR.jsp, is shown in Figure 234.

Note: The specification of an entry JSP page or entry application is defined in
the initialization parameters of the Gateway Servlet. See Table 11 on page
315.
Running Web Transactions 357

Figure 234. Default error page

<%@ page errorPage="Vagen1ErrorPage.jsp" %>
<%@ page imports = "com.ibm.vgj.uibean.VGDataElement" %>
<jsp:useBean id="CSOERRORUIR" scope="request"
class="com.ibm.hpt.gateway.CSOERRORUIRBean" />
<!-- This is JAVA code that gets the individual data elements from the UI Bean that are to be used
by this page to access all dynamic data. -->
<%

VGDataElement PGMERROR = CSOERRORUIR.getPGMERROR();
VGDataElement DATEERROR = CSOERRORUIR.getDATEERROR();
VGDataElement TIMEERROR = CSOERRORUIR.getTIMEERROR();
VGDataElement MSGCOUNT = CSOERRORUIR.getMSGCOUNT();
VGDataElement MSGERROR = CSOERRORUIR.getMSGERROR(); %>

<HTML><HEAD>
<TITLE><%= CSOERRORUIR.getTitle() %></TITLE>
</HEAD>
<BODY>
<TABLE BORDER="4" CELLPADDING="20">
<TR>
<TD>
<TABLE ALIGN="left">
<TR>
<TD>
<FORM METHOD="POST" ACTION="<%= CSOERRORUIR.getGatewayURL() %>">

<!-- No comment defined for item PGMERROR -->
<%= PGMERROR.getLabel() %>
<%= PGMERROR.getTextValue() %>

<!-- No comment defined for item DATEERROR -->
<%= DATEERROR.getLabel() %>
<%= DATEERROR.getTextValue() %>

<!-- No comment defined for item TIMEERROR -->
<%= TIMEERROR.getLabel() %>
<%= TIMEERROR.getTextValue() %>

<!-- No comment defined for item MSGERROR -->
<% if (MSGERROR.notEmpty()) { %>
<%= MSGERROR.getLabel() %>
<% { %>
<% java.util.Enumeration lines = MSGERROR.occurrences();
while (lines.hasMoreElements()) {
VGDataElement line = (VGDataElement)lines.nextElement(); %>
<pre>
<%= line.getTextValue() %></pre>
<% } %><% } %><% } %>
<P>

<!-- VG Gateway control fields - DO NOT MODIFY -->

<INPUT TYPE=HIDDEN NAME="hptAppId" VALUE="<%= CSOERRORUIR.getAppID() %>">
<INPUT TYPE=HIDDEN NAME="hptSessionId" VALUE="<%= CSOERRORUIR.getSessionID()
%>">
<INPUT TYPE=HIDDEN NAME="hptPageId" VALUE="<%= CSOERRORUIR.getPageID() %>">

</FORM></TD></TR></TABLE></TD></TR></TABLE>
</BODY></HTML>
358 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

You could tailor the error page so that a more meaningful response (instead
of the message text composed from the CSOERRORUIRBean) is provided to
the end user (see Chapter 4, “Java Server Pages and the UI Record interface
bean API” on page 75 for details of JSP syntax). Your customization could
also provide the end user with an HTML hypertext link tag so they can get
back to the logon page and enter a new userid and password value. You
could even use client side JavaScript in the JSP, or else an HTML META tag
to cause a timed re-route to the logon page.

Now you can simulate everything except user and password maintenance.
This becomes a problem when you are using CICS-based userid and
password validation and the password for a given userid has expired. One
example might be finding a way for the end user to change the password
when they are not directly connected to the target CICS environment (as
when using a TUI system). This has always been a difficult issue to resolve
for client/server environments, and the problems are the same for Web
Transactions.

The CICS External Security Interface (ESI) provides some features that will
allow you to construct a password maintenance approach that does not
require a TUI-based CICS login.

The ESI allows a non-CICS application to invoke services provided by
advanced program-to-program communication (APPC) password expiration
management (PEM).

APPC PEM with CICS provides support for an APPC architected sign-on
transaction that signs on user IDs to a CICS server and processes requests
for a password change by:

• Identifying a user and authenticating that users identification. Notifying
specific users during the authentication that their passwords have expired.

• Letting users change their passwords when (or before) the passwords
expire.

• Telling users how long their current passwords will remain valid.

• Providing information about unauthorized attempts to access the server
with a particular user identifier.

To use APPC PEM:

• The CICS Universal Client must be connected to the CICS server over
APPC.

• An external security manager (ESM), such as resource access control
facility (RACF), must also be available to the CICS server.
Running Web Transactions 359

• ESI calls can be included within your ECI or EPI application.

• Only CICS servers returned by the CICS_EciListSystems and
CICS_EpiListSystems functions are acceptable.

A discussion on the use of the APPC PEM support in CICS can be found in
the CICS RACF Security Guide, SC33-1701-02.

16.3.2 Transparent login to CICS
In this section we will look at configuration, then the pros and cons.

16.3.2.1 Configuration
You need to remove hptLogonPage as an initialization parameter for the
Gateway Servlet, and feed through a userid and password from the CICS
client on the Web server that all users can run with.

You can feed through userid and password by starting the CICS client in two
stages:

c:\>CICSCLI /s=cics region name
c:\>CICSCLI /c=cics region name /u=userid /p=password

The userid and password referenced in the command were defined in the
target Windows NT-based CICS environment (see 13.4.5, “Define CICS user”
on page 277).

We recommend, in this situation, that you make the userid and password
uppercase. You can have problems with both of these being translated into
uppercase, as CICS client attaches to the server depending on the setting for
UpperCaseSecurity in the CICSCLI.INI file.

You may wish to apply resource level security to this user we have just
defined in a similar way to what we did in 16.3.1.3, “Configuring for user
login” on page 357.

16.3.2.2 Considerations
EZEUSRID will have the same value for all your users, so you would need to
put some code in your Web Transactions to get the users to identify
themselves, if you need to know. You could always add something to your UI
Record for userid and password and login. The HTML INPUT
TYPE=PASSWORD is not supported as one of the UI Record data item types,
however, you can always tailor the JSP to change the HTML tag for your
password field to have TYPE=PASSWORD.
360 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

You will also need to add code to your Web Transaction if you want to restrict
access based on userid.

The benefit is that nothing needs to be done to define and maintain individual
users within DCE or CICS, which may not be appropriate if there are large
numbers of target users for the Web Transaction system (limited or unlimited
potential user base).

16.3.3 Other options
If you simply require authentication to protect entry to the system from the
browser end, you can protect the entry point JSP using IBM WebSphere
Application Server facilities.

Since the Web Transaction code is all on the VisualAge Generator server,
you have the choice of putting the authentication at the Web end or at the
VisualAge Generator end; this allows you to determine how security and
authentication will be implemented for your system.

If you choose to implement identification, validation, and authorization using
WebSphere Application Server facilities, you will still need to find a way of
identifying the end user in the Web Transaction program. The EZEUSRID
EZEword will only return the CICS signon value, so you may need to design
an approach that allows the WebSphere Application Server defined userid to
be available to Web Transaction program logic.

For a more detailed review of security and Web browser access to CICS
systems, see Chapter 9, "Security", in Revealed! Architecting Web Access to
CICS, SG24-5466.

16.3.4 Secure HTTP
You can access the Gateway Servlet and hence your Web Transactions over
HTTPS rather than HTTP. You just need to change the references to
hptGatewayURL in the logon page, entry point page, and all your generated
and deployed JSPs to hptSecureGatewayURL.
Running Web Transactions 361

362 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Part 5. Appendices
© Copyright IBM Corp. 2000 363

364 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Appendix A. Sample code and other materials

The code and other materials developed during the residency project that
produced this book are available for your use. The materials include:

• VisualAge Generator code
• DB2 database materials
• WebSphere Studio project archives
• Additional runtime files

The SG245636.EXE file packaged on the diskette is a self-extracting ZIP file with
directories for the different materials included with this document.

The materials included on the diskette may be updated. Please check for
updates in the SG245636 directory at the ITSO redbook materials ftp site at:

ftp://www.redbooks.ibm.com/redbooks/

The materials are provided as-is and with limited informal support. If you have
questions regarding the materials, please place a question on the VisualAge
Generator newsgroup (news://news.software.ibm.com/ibm.software.vagen) or
send a note to the book owner, Pat McCarthy, at patmc@us.ibm.com.

A.1 VisualAge Generator code

We exported external source format (ESF) and .dat files for the Developer on
Java development platform. When specific versions of the code are required,
only the .dat file can be used as the source.

The VisualAge Generator Web Transaction programs implemented in this
redbook are included in the following files in the VAGen directory:

WebTran.dat Projects and/or packages that contain the different Web
Transaction systems discussed in Chapter 8, “Developing
Web Transaction programming skills” on page 127.

WebTran1.ESF Entry point for the different Web Transaction systems
discussed in Chapter 8, “Developing Web Transaction
programming skills” on page 127.

WebTran2.ESF Solution for the different Web Transaction systems
discussed in Chapter 8, “Developing Web Transaction
programming skills” on page 127.
© Copyright IBM Corp. 2000 365

VAGTWeb.dat Project that contains the VisualAge Generator code
generated from the VisualAge Generator Templates model
defined in Chapter 9, “VisualAge Generator Templates Web
Transactions” on page 173.

DemoSys.dat Packages that contain the different Web Transaction
programs discussed in Chapter 10, “Demonstration system”
on page 181.

DemoSys.ESF Source for the Web Transaction programs discussed in
Chapter 10, “Demonstration system” on page 181.

The files listed above are Included in the VAGen directory.

A.2 WebSphere Studio

We exported WebSphere Studio archives (.WAR) files at several points
during the development process outlined in Chapter 11, “Front-end
customization techniques” on page 195. These are in the WStudio directory.

1st-try.war
An initial attempt at using WebSphere Studio.

JSPLevel2_VGBase.war
WebSphere Studio project at the point where the initial Level 2 setup was
complete.

JSPLevel2_Ready4css.war
WebSphere Studio project at the point where the CSS exercise was ready
to be done. Several of the default JSPs generated by VisualAge Generator
have been added to the project.

JSPLevel2_CSSworkDone.war
WebSphere Studio project after the Level 2 exercise was complete.

JSPLevel3htmlint.war
WebSphere Studio project at the point where the Level 3 HTML site was
ready to go (HTML design complete).

JSPLevel3htmljsp.war
WebSphere Studio project partway through Level 3 exercises.

JSPLevel3alljsp.war
WebSphere Studio project after Level 3 exercises.
366 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

A.3 Database

The VisualAge Generator server programs referenced in this book accessed
one or more DB2 tables in the ITSOBank database.

The ITSOBANK database accessed by the ITSO Bank server programs is
discussed in Appendix F., “ITSO Bank System Requirements and Database”
on page 203.

The following files are included in the Database directory:

BankDB.bat Command file to create database and load data into the
tables. Edit file to adjust database create statements and
creator ID value for create table statements.

BankDB.ddl Data definition statements to create database and tables.

loaddata.sql SQL statements to insert data into tables.

itsocat.txt Catalog report of database tables.

itsodb.txt SQL query for data in tables.

Use the following files to implement the state table referenced in Appendix F.,
“ITSO Bank System Requirements and Database” on page 203.

WTState.batCommand file to create table used to support state management
in an XFER ’’, UIRec transfer statement.

WTState.ddl Data definition statements to create database and tables.

A.4 Additional materials

The directory Configs contains some additional files that we used during the
development of this redbook.
Sample code and other materials 367

368 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Appendix B. Special notices

This publication is intended to help programmers and project leaders who will
work with Web Transactions to develop new business application systems.
The information in this publication is not intended as the specification of any
programming interfaces that are provided by VisualAge Generator, VisualAge
for Java, or VisualAge for Smalltalk. See the PUBLICATIONS section of the
IBM Programming Announcement for VisualAge Generator, VisualAge for
Java, and VisualAge for Smalltalk for more information about what
publications are considered to be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only IBM's product, program, or service may be
used. Any functionally equivalent program that does not infringe any of IBM's
intellectual property rights may be used instead of the IBM product, program
or service.

Information in this book was developed in conjunction with use of the
equipment specified, and is limited in application to those specific hardware
and software products and levels.

IBM may have patents or pending patent applications covering subject matter
in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to the IBM
Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY
10504-1785.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact IBM
Corporation, Dept. 600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer's ability to evaluate and integrate them into the
customer's operational environment. While each item may have been
reviewed by IBM for accuracy in a specific situation, there is no guarantee
© Copyright IBM Corp. 2000 369

that the same or similar results will be obtained elsewhere. Customers
attempting to adapt these techniques to their own environments do so at their
own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of
these Web sites.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc. in the United States and/or other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other
countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

PC Direct is a trademark of Ziff Communications Company in the United
States and/or other countries and is used by IBM Corporation under license.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel
Corporation in the United States and/or other countries. (For a complete list of
Intel trademarks see www.intel.com/tradmarx.htm)

UNIX is a registered trademark in the United States and/or other countries
licensed exclusively through The Open Group.

IBM � AIX
AS/400 CICS
CICS/ESA CICS/VSE
DB2 DB2 Universal Database
IMS Language Environment
MQ MQSeries
MVS/ESA Netfinity
OS/2 OS/390
OS/400 RACF
RS/6000 S/390
System/390 Tivoli
TXSeries VisualAge
VTAM WebSphere
370 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

SET and the SET logo are trademarks owned by SET Secure Electronic
Transaction LLC.

Other company, product, and service names may be trademarks or service
marks of others.
Special notices 371

372 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Appendix C. Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

C.1 IBM Redbooks publications
For information on ordering these ITSO publications see “How to get IBM
Redbooks” on page 375.

• WebSphere Studio and VisualAge for Java—Servlet and JSP
Programming, SG24-5755.

• Revealed! Architecting Web Access to CICS, SG24-5466

• The Front of IBM WebSphere Building e-business User Interfaces,
SG24-5488

C.2 IBM Redbooks collections
Redbooks are also available on the following CD-ROMs. Click the CD-ROMs
button at http://www.redbooks.ibm.com/ for information about all the CD-ROMs
offered, updates and formats.

C.3 Other resources

These publications are also relevant as further information sources:

• CICS RACF Security Guide, SC33-1701-02

CD-ROM Title Collection Kit
Number

System/390 Redbooks Collection SK2T-2177

Networking and Systems Management Redbooks Collection SK2T-6022

Transaction Processing and Data Management Redbooks Collection SK2T-8038

Lotus Redbooks Collection SK2T-8039

Tivoli Redbooks Collection SK2T-8044

AS/400 Redbooks Collection SK2T-2849

Netfinity Hardware and Software Redbooks Collection SK2T-8046

RS/6000 Redbooks Collection (BkMgr) SK2T-8040

RS/6000 Redbooks Collection (PDF Format) SK2T-8043

Application Development Redbooks Collection SK2T-8037

IBM Enterprise Storage and Systems Management Solutions SK3T-3694
© Copyright IBM Corp. 2000 373

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

374 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

How to get IBM Redbooks

This section explains how both customers and IBM employees can find out about IBM Redbooks,
redpieces, and CD-ROMs. A form for ordering books and CD-ROMs by fax or e-mail is also provided.

• Redbooks Web Site http://www.redbooks.ibm.com/

Search for, view, download, or order hardcopy/CD-ROM Redbooks from the Redbooks Web site.
Also read redpieces and download additional materials (code samples or diskette/CD-ROM images)
from this Redbooks site.

Redpieces are Redbooks in progress; not all Redbooks become redpieces and sometimes just a few
chapters will be published this way. The intent is to get the information out much quicker than the
formal publishing process allows.

• E-mail Orders

Send orders by e-mail including information from the IBM Redbooks fax order form to:

• Telephone Orders

• Fax Orders

This information was current at the time of publication, but is continually subject to change. The latest
information may be found at the Redbooks Web site.

In United States or Canada
Outside North America

e-mail address
pubscan@us.ibm.com
Contact information is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

United States (toll free)
Canada (toll free)
Outside North America

1-800-879-2755
1-800-IBM-4YOU
Country coordinator phone number is in the “How to Order”
section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

United States (toll free)
Canada
Outside North America

1-800-445-9269
1-403-267-4455
Fax phone number is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM employees may register for information on workshops, residencies, and Redbooks by accessing
the IBM Intranet Web site at http://w3.itso.ibm.com/ and clicking the ITSO Mailing List button.
Look in the Materials repository for workshops, presentations, papers, and Web pages developed
and written by the ITSO technical professionals; click the Additional Materials button. Employees
may access MyNews at http://w3.ibm.com/ for redbook, residency, and workshop announcements.

IBM Intranet for Employees
© Copyright IBM Corp. 2000 375

mailto: pubscan@us.ibm.com
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://w3.itso.ibm.com/
http://w3.ibm.com/
http://www.redbooks.ibm.com
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM Redbooks fax order form

Please send me the following:

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

Title Order Number Quantity

First name Last name

Company

Address

City Postal code

Telephone number Telefax number VAT number

Invoice to customer number

Country

Credit card number

Credit card expiration date SignatureCard issued to
376 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Glossary

CSOGW.properties. The file that contains the
definitions for how a Web Transaction program
will be invoked by the Gateway Servlet. Similar
to, but architecturally different from, a linkage
table.

Gateway Servlet. The VisualAge Generator
provided servlet that interacts with the
generated JSPs, Java Beans, and Web
Transactions. These components are generated
for a UI Record used in a Web Transaction.

Java Server Page. Standardized language for
building dynamic Web pages using Web servers
and their associated application servers. A JSP
can contain a mix of HTML and Java. The JSP
source is compiled into a servlet that runs in the
application server and produces dynamic Web
pages.

linkage table. A VisualAge Generator control
file that defines how a call to another program
will be implemented. The call could be local, or
part of a client/server environment. The linkage
table is not used to control how a Web
Transaction program is invoked, but can be used
to control how a Web Transaction program calls
a server program.

User Interface Type. Definition associated to
a data item in a UI Record that controls how the
data item will be presented in a Web browser.

User Interface Record (UI Record). A type of
VisualAge Generator record that can be used in
a CONVERSE or XFER statement to interact
with a Web browser.

Web Transaction. VisualAge Generator
program that can use a UI Record to interact
with a Web browser.
© Copyright IBM Corp. 2000
 377

378 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Abbreviations and acronyms

APPC advanced
program-to-program
communication

CICS Customer Information
Control System

CTG CICS Transaction
Gateway

ECI external call interface

ESI external security
interface

ESF external source format

ESM external security
manager

IBM International Business
Machines Corporation

IMS Information
Management System

ITSO International Technical
Support Organization

HTML Hypertext Markup
Language

JDK Java development kit

JNI Java Native Interface

JSP Java Server Page

JVM Java Virtual Machine

MVS Multiple Virtual Storage

PEM password expiration
management

RCT resource control table

SIDM session ID manager

UIRec User Interface Record

UI Type User Interface Type

URI Universal Resource
Indicator

URL Universal Resource
Locator
© Copyright IBM Corp. 2000
VAGen VisualAge Generator

WSRec working storage record
379

380 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

Index

A
alias 318
ANCHOR 6
Apache 301
APPC 296
application 78, 264
architecture

considerations 103
Web Transaction 5

ASP 4
ATTACHSEC 323
authentication 354

B
back button 52
bean tag

application 78
class 78
in JSP 77
page 78
request 78
scope 78
session 78
type 78

beans 32
Block ID 281
BODY 56, 198
BORDER 202
business object 175
BUTTON 57, 60

C
cascading style sheet

Master.css 222
use in JSP 222

CCL3105 323
CCL7053E 323
CEDA 296
CEDF 277, 351
CELLPADDING 202
CELLSPACING 202
CHECKBOX 58
CHECKED 58
CICS

listener definition 275, 321
© Copyright IBM Corp. 2000
login 360
program definition 338
security 299
support for WebSphere Application Server 319
Transaction Gateway 319
WebSphere Test Environment 325

CICS for NT
CEDF 277
CPMI 277
csogw.properties 279
mirror transaction 277, 279
runtime 250, 270
software
software requirements 250
TCP/IP listener 275
telnet 277
USER 277
XA definition 275

CICS/ESA
connection 296
csogw.properties 299
implementation tasks 255
runtime 279
software requirements 254

CICSCLI.INI 320
CICSECI 266
CICSTERM 322
classes 31
classpath

CICS Transaction Gateway 320
ctgserver.jar 320
runtime 341
WebSphere Application Server 305
WebSphere Test Environment 328

CNOS Initialize 298
commtype 265
complete state 89
configuration

CICS Client 320
CICS for NT 270
CICS in WebSphere Application Server 319
CICS/ESA 279
code deployment 341
csogw.properties 263
GatewayServlet 45, 312, 314, 328
GIF 317
hpt.jar 306
381

hptDateMask 315
hptEntryApp 315
hptEntryPage 315
hptErrorLog 315
hptErrorPage 315
hptGateway.jar 306
hptGatewayProperties 315
hptIDManagerHost 315
hptLinkageProperties 315
hptLogonPage 315
introduction 247
Nanny path 320
overview

CICS for NT 250
Windows NT 247

security 352
Vagen1EntryPage.jsp 342
vgj.properties 318
VisualAge Generator table 341
Web Transaction runtime 257
WebSphere Studio 211
WebSphere Test Environment 324, 328
Windows NT 268

contable 265
control point 289
controlled state 91
CONV_UI_RECORD.jsp 235
conversation id 46
CONVERSE 117

DXFR 89
runtime 47
state 87, 89, 150, 163
structure 85, 89, 128
TUI comparison 86

CONVMOD 182, 184
Corporate1 228
CP name 281
CPMI 277
CSOERRORUIR.jsp 218, 317
csogw.properties

application 264
CICS for NT 279
CICS server name 320
CICS/ESA 299
CICSECI 266
commtype 265
configuration 263
contable 265
destid 265

GatewayServlet 45
groupid 265
hptErrorPackage 264
hptGateway 264
hptLinkageProperties 315
hptRuntimeProperties 264
javaProperty 265
location 265
overriding 266
propertiesRefreshInterval 264
serverid 265
serverLinkage 265, 266
TCP/IP 270
TCPIMS 266
TCPIP 266
Windows NT 270

CSOTCPUI 344
CSP 115
CSTCNS 151
CSTCNS2 163
CSTCNV 128, 195
CSTXB1 142
CSTXBS 159
CSTXBS2 168
CSTXP 134
CSTXP1 138
CSTXP2 138
CSTXPS 156
CSTXPS2 165
CTG.INI 320
ctgclient.jar 320
CTGJNI.DLL 320
ctgserver.jar 320
CUSTUI 129, 198, 222
CUSTUI.jsp 235
CUSTUI_I 145
CUSTUI_IN 146
CUSTUI_IO 143
CUSTUI_O 145
CUSTUI1 138
CUSTUI2 139

D
data item

help text 72
data transfer

PROGRAMLINK 99
UI Record 98
382 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

user interface type 100
database

ITSOBANK 174
state 96

date masks 318
DB2

CICS attachment 271
WebSphere Application Server 301

DB2DBDFT 268, 272, 275
DB2INSTANCE 273
definition

overview 9
UI Record 19

demonstration system
components 181
CONVMOD 182, 184
data management 183
FRSTFRM 182, 185
FRSTPGM 182, 184
FRSTPLK 182, 185
Input validation 185
introduction 181
processing 182
state management 184
testing 186
transfer processing 183

dependent LU 283
design

considerations 98
data transfer 98, 100
development process 105
FORM 98
PROGRAMLINK 99
SUBMIT 99
user interface type 100
Web Transaction 85

destid 265
development

JSP modification 108
level 1 109
level 2 111
level 3 112
process 105
roles 106
skills 106
Web site 105
Web Transaction 18

directive
errorPage 79

import 79
JSP 79

DISABLED 58, 72
docRoot 217, 327
DXFR 89

E
edit table 35
edits 100

modification 101
processing 101
rules 100
UI Record 73

elementNamed(String name) 80
entry point 45
environment variable

DB2DBDFT 268, 272, 275
DB2INSTANCE 273
EZERGRGL_xxx 268, 278
EZERGRGS_xxx 268, 278
EZERJULL_xxx 268, 278
EZERJULS_xxx 268, 278
EZERSQLDATE 268, 278
EZERSQLDB 268, 272, 275, 278
FCWDBNOOP 275
FCWDBPASSWORD 268, 272, 275
FCWDBPATH 268
FCWDBUSER 268, 272, 275
FCWDPATH 278
FCWRSC 268, 278
FCWTRDB_ 272, 275
FCWTROPT 268, 278
FCWTROUT 268, 278
HPTCLASSDIR 335
HPTJSPDIR 336

Error 400 240
error page

gateway servlet 45
JSP 79

ERZ014016E 323
ERZ042004E 323
exercises

code base 128
CSTCNS 151
CSTCNS2 163
CSTCNV 128
CSTXB1 142
CSTXBS 159
383

CSTXBS2 168
CSTXP 134
CSTXP1 138
CSTXP2 138
CSTXPS 156
CSTXPS2 165
CUSTUI 129
CUSTUI_I 145
CUSTUI_IN 146
CUSTUI_IO 143
CUSTUI_O 145
CUSTUI1 138
CUSTUI2 139
introduction 127
program structure

CONVERSE 128
introduction 127
XFER ’ ’ 142
XFER program 134

state management
CONVERSE 150, 163
introduction 150
XFER ’ ’ 159, 168
XFER program 155, 165

VisualAge Generator Templates 173
WTSPGM 168

expression 76
EZEAID 71
EZEAPP 93
EZEDAYLC 318
EZEDTELC 318
EZELTERM 47, 193
EZERGRGL_xxx 268, 278
EZERGRGS_xxx 268, 278
EZERJULL_xxx 268, 278
EZERJULS_xxx 268, 278
EZERSQLDATE 268, 278
EZERSQLDB 268, 272, 275, 278
EZEUSR 47, 95, 193
EZEUSRID 47, 193, 360

F
FACE 209
FCWDBNOOP 275
FCWDBPASSWORD 268, 272, 275
FCWDBUSER 268, 272, 275
FCWDPATH 268, 278
FCWRSC 268, 278

FCWTRDB_ 272, 275
FCWTROPT 268, 278
FCWTROUT 268, 278
fields, protecting 200
FIELDSET 57, 60
FILE 59
folders 220
FONT 209
FORM

customization 209
default 98
defined 98
design 98
HTML tag 57
JSP customization 203
protecting fields 200
returning data 65
TABLE 208
UI Record definition 62
user interface type 21, 65

FRAME
FRAMESET 233
hptEntryApp 236
hptEntryPage 236
hptLogonPage 236
top.html 235
Web Transaction 234

FRAMESET 233
front-end

customization 195
development 107
level 1 195
presentation 107

FRST_FRM_RECV_UI.jsp 235
FRST_FRM_UI_RECORD.jsp 235
FRST_PGM_UI_RECORD.jsp 235
FRST_PLK_UI_RECORD.jsp 235
FRSTFRM 182, 185
FRSTPGM 182, 184
FRSTPLK 182, 185
FTP 259

G
GatewayServlet

configuration 45, 328
connecting to custom JSPs 241
csogw.properties 45, 263
definition 312
384 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

edits 100
entry point 45
Error 400 240
error page 45
FRAME 235
hptDateMask 315
hptEntryApp 236, 315
hptEntryPage 236, 237, 241, 315
hptErrorLog 315
hptErrorPage 315
hptGatewayProperties 315
hptIDManagerHost 315
hptLinkageProperties 315
hptLogonPage 236, 240, 315
initialization parameters 314
invocation 345
logon page 45
processing 44, 347
PROGRAMLINK 69
runtime 37
top.html 235

generation
FTP 259
HPTCLASSDIR 335
HPTJSPDIR 336
JSP 35
outputs 37
overview 10, 29
UI Record 33
VisualAge Generator Templates 177
Web Transaction 32, 335

get() 80
getAppID() 80
getEditTableValues() 81
getErrorMessage() 81
getGatewayURL() 80, 81
getHelpText() 80, 81
getIndex() 81
getLabel() 81
getPageID() 80
getSecureGatewayURL() 80
getSession() 12
getSessionID() 80
getTextValue() 81
getTextValuesTable() 81
getTitle() 80
GIF 317, 331
groupid 265

H
hasInputError() 80, 81
HEAD 56, 196, 198
HEIGHT 202
help text

data item 72
UI Record 20
using in JSP 198

HIDDEN 21, 59, 93, 200
hpt.jar 306, 327
hptAppId 239
HPTCLASSDIR 335
hptDateMask 315
hptEntryApp 236, 315
hptEntryPage 236, 237, 241, 315
hptErrorLog 315
hptErrorPackage 264
hptErrorPage 315
hptExec 239
hptGateway 25
hptGateway.jar 306, 326
hptGatewayProperties 315
hptGatewayURL 219
hptIDManagerHost 315
HPTJSPDIR 336
hptLinkageProperties 315
hptLogonPage 236, 240, 315, 352
hptLogonPage hptEntryPage hptEntryApp 236
hptRuntimeProperties 264
HTML

ANCHOR 6, 68
basic structure 198
basics 55
BODY 56, 198
BUTTON 57, 60
cascading style sheet 222
CHECKBOX 58
CHECKED 58
customization 206
designer 113
DISABLED 58, 72
FACE 209
FIELDSET 57, 60
FILE 59
FONT 209
FORM 12, 26, 57, 209
FRAME 234
FRAMESET 233
HEAD 56, 196, 198
385

HIDDEN 59, 200
IMAGE 59
index.html 232, 240
INPUT 12, 26, 57, 200
JavaScript 59
JSP customization 196
LABEL 57, 60
layout 70
LEGEND 57, 61
LINK 223
META 56
OPTGROUP 57, 60
OPTION 57, 60
PASSWORD 58, 360
RADIO 58
READONLY 58, 72
RESET 58
SCRIPT 56
scriptlet 75
SELECT 57, 60
SIZE 209
STYLE 56
SUBMIT 58
TABLE

BORDER 202
CELLPADDING 202
CELLSPACING 202
customization 206
HEIGHT 202
WIDTH 202

TARGET 68
TEXTAREA 57, 59
TITLE 56, 198
top.html 231, 238
UI Record mapping 20, 55
VBScript 59
WRAP 59

httpd.cnf 318
httpPort 217, 327
HTTPS 361
HttpServletRequest 12

I
IBM HTTP 301
IMAGE 59
imports 195
index.html 232, 240, 241
index.jsp 241

INPUT 21, 57, 200
edits 100

INPUT/OUTPUT 21
edits 100

instance 31
interface bean

elementNamed(String name) 80
get() 80
getAppID() 80
getEditTableValues() 81
getErrorMessage() 81
getGatewayURL() 80, 81
getHelpText() 80, 81
getIndex() 81
getLabel() 81
getPageID() 80
getSecureGatewayURL() 80, 81
getSessionID() 80
getter and setter methods 80
getTextValue() 81
getTextValuesTable() 81
getTitle() 80
hasInputError() 80, 81
isDisplayable() 81
isEmpty() 82
isSelected() 82
Java API 79
occurrences() 82
set(String value) 80
subElements() 82
VGDataElement 81

interface unit 176
isDisplayable() 81
isEmpty() 82
isSelected() 82
ITSOBANK 174

J
Java

bean tag 77
beans 32
classes 31
data bean 33
expression 76
instance 31
interface bean 33, 34
Java Virtual Machine 31
packages 31
386 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

PrintWriter 75
resource bundle 37
terminology 30

JAVA_HOME 301
javaProperty 265
JavaScript 55, 59

ANCHOR 68
javascript 199

index.jsp 242
location 242

JDK 301
JSP

application 78
bean tag 77
cascading style sheet 222
correcting errors 195
CSOERRORUIR.jsp 317
customization

adding to WebSphere Studio 217
advanced techniques 206
cascading style sheet 222
CSTCNV 195
FONT 209
FORM 203, 209
FRAME 234
GatewayServlet 241
hptApplId 239
hptEntryApp 236
hptEntryPage 236, 237, 241
hptExec 239
hptLogonPage 236, 240
implementing help 198
imports 317
index.html 240, 241
index.jsp 241
interleaved TABLE and FORM 208
introduction 195
javascript 199, 242
level 1 195
level 2 205
level 3 226
presentation 201
protecting form fields 200
rules 205
suggested changes 196
TABLE 202, 206
top.html 235, 238
Vagen1EntryPage.jsp 342
WebSphere Studio 210, 216

deploy 317
developer

level 2 112, 205
level 3 114

directive 79
errorPage 79
errors 317
Execution Monitor 332
expression 76
front-end customization 195
generated for UI Record 35
import 79
imports error 195
interface bean 75
JavaScript 55
javascript 199
modification 107, 108, 123
page 78
Page Compile Generated Code 334
presentation 201
request 78
scriptlet 75
session 78
support for 1.0 330
user interface type 21
VBScript 55
WebSphere Test Environment 195, 331

JSP presentation 107

K
key ring 302

L
LABEL 57, 60
LEGEND 57, 61
level 1

front-end development 195
introduction 109

level 2
front-end development 205
HTML designer 113
introduction 111
JSP developer 112
Web Transaction developer 111

level 3
FRAME 234
front-end development 226
introduction 112
387

JSP developer 114
Web Transaction developer 113

LINK 223
listener definition 321
location 242, 265
logon page 45

M
Master.css 222
META 56
Microsoft Internet Explorer 211
Microsoft Peer Web Services 259
mirror transaction 277, 279

N
Nanny path 320
NetName 320
NONE 21, 71, 200

O
occurrences() 82
OPTGROUP 57, 60
OPTION 57, 60
OUTPUT 21, 57, 63

P
packages 31
page 78
parser 219, 221
PASSWORD 58
password 302, 352, 360
performance 306
Personal Communications 280
physical unit 281
PrintWriter 75
PROGRAMLINK

GatewayServlet 69
images 70
passed data 69
TUI migration 120
user interface type 21, 68

propertiesRefreshInterval 264
pseudo-conversational 5, 8, 86
PU 281
publishing 212, 230

R
RADIO 58
READONLY 58, 72, 201
request 78
RESET 58
RSL 357
runtime

CEDF 351
CICS for NT 250, 270
CICS/ESA 279
code deployment 341
csogw.properties 263
CSOTCPUI 344
edit table 35
GatewayServlet 37, 44, 347
hptLogonPage 352
implementation tasks

CICS for NT 253
CICS/ESA 255
Windows NT 250

overview 10, 29, 247
program 32
resource clean up 53
security 352
session ID manager 37, 46, 344
software requirements

CICS for NT 250
CICS/ESA 254
Windows NT 247

system implementation 36
system start up 344
user message table 36
Vagen1LogonPage.jsp 352
VisualAge Generator table 341
web browser 37
Web Transaction 47

CONVERSE 47
setup 257
tasks 341
XFER ’ ’ 51
XFER program 47

Windows NT 247, 268

S
scope 78
SCRIPT 56
scriptlet 75
security
388 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

authentication 354
CICS 323
considerations 352
EZEUSERID 360
HTTPS 361
RSL 357
transparent CICS login 360

SELECT 57, 60
SERunner.properties 327
serverid 265
serverLinkage 265, 266
session 78
session data 227
session ID manager

conversation id 46
EZELTERM 47
EZEUSR 47
EZEUSRID 47
runtime component 37
runtime role 46
starting 318, 344
user id 46

set(String value) 80
SIZE 209
software

Apache 301
CICS for NT
DB2 301
DB2 client 257
IBM HTTP 301
JDK 301
Microsoft Peer Web Services 259
Personal Communications 280
TXSeries
VisualAge for C++ 259, 302
VisualAge Generator Common Services 259,
302
VisualAge Generator Server 259, 302
Web server 301

state
complete 89
controlled 91
conversation 94
CONVERSE 87, 89
data 42
EZEUSR 95
global 94
HIDDEN 93
implementation 94

management
CONVERSE 150, 163
demonstration system 184
exercises 150, 155, 159, 163, 165, 168
implemenation 168
using UI Record 150
using working storage record 163
WTSPGM 168
XFER ’ ’ 159, 168
XFER program 155

options 87
self-managed

implementation 94
program design 97
XFER ’ ’ 93

stateless 93
timestamp 95
XFER ’ ’ 87, 93, 94
XFER program 87, 91

stateless 93
structure

CONVERSE 85, 89
options 89
Web Transaction 85
XFER ’ ’ 85, 89
XFER program 85, 89

STYLE 56
subElements() 82
SUBMIT 63

button in HTML 58
user interface type 21, 99

SUBMIT VALUE ITEM 99
submit value item 20
SUBMITBYPASS 21, 63

T
TABLE

BORDER 202
CELLPADDING 202
CELLSPACING 202
customization 206
FORM 208
HEIGHT 202
TD 202
TR 202
WIDTH 202

table
VisualAge Generator 341
389

TCP/IP 275
TCPIMS 266
TCPIP 266
TD 202
telnet 277
templates

index.html 232
top.html 231

templatesWebSphere Studio 228
terminology

Java 30
testing

default HTML 21
overview 9, 27
WebSphere Test Environment 195

TEXTAREA 57, 59
timestamp 95
TITLE 56, 198
top.html 231, 235, 238
TR 202
TUI

comparison to Web Transaction 86
converting to Web Transactions 115
creating UI Record from MAP 117

TWASIZE 299
TXSeries

See CICS for NT

U
UI Record

creating from MAP 117
CUSTUI 129, 198, 222
CUSTUI_I 145
CUSTUI_IN 146
CUSTUI_IO 143
CUSTUI_O 145
CUSTUI1 138
CUSTUI2 139
definition 19
edit table 35, 65
edits 73, 100, 101
EZEAID 71
FORM definition 62
forms 25
generated JSP 35, 55
generation 33
help 198
help text 20, 71

introduction 7
Java data bean 33
Java interface bean 33, 34
javascript 199
mapping to HTML 20, 22, 55
PROGRAMLINK 99
properties 71
state management 150
submit value item 20, 71
user interface type 21
VGDataElement 81
WebSphere Test Environment 214

UpperCaseSecurity 320
user interface type 21

data management 100
edits 73, 100
FORM 21, 65, 98
HIDDEN 21, 62, 93, 200
INPUT 21, 62
INPUT/OUTPUT 21, 62
NONE 21, 71, 200
OUTPUT 21, 57, 63
PROGRAMLINK 21, 68
SUBMIT 21, 63, 99
submit bypass 72
SUBMIT VALUE ITEM 99
SUBMITBYPASS 21, 63

user message table 36
userid 302, 352

V
Vagen1EntryPage.jsp 218, 237, 342
Vagen1ErrorPage.jsp 218
Vagen1LogonPage.jsp 218, 352
vawcg-wp.gif 218, 221
VBScript 55, 59
VGDataElement interface 81
vgj.properties 318
visage.gif 218, 221
VisualAge for C++ 259, 302
VisualAge for Java

components 325
features 325

VisualAge Generator
table 341
V4 overview 3

VisualAge Generator Common Services 259
VisualAge Generator Server 259
390 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

VisualAge Generator Templates 173
business object 175
customization 179
generation 177
interface unit 176

VTAM 296

W
web browser

back button 52
Web site

development 105
planning 227
WebSphere Studio 228

web system
options

ASP 4
Java servlet and JSP programming 12
JSP 4
servlet 4
Web Transaction 13

processing
application server 38
Java servlet 38
JSP 40
state data 42
steps 41

Web Transaction
architecture 5, 103
CSTCNS 151
CSTCNS2 163
CSTCNV 128, 195
CSTXB1 142
CSTXBS 159
CSTXBS2 168
CSTXP 134
CSTXP1 138
CSTXP2 138
CSTXPS 156
CSTXPS2 165
definition 9, 18, 26
demonstration system 181
design 85, 98, 103
developer

level 2 111
level 3 113

development
level 1 109

level 2 111
level 3 112
process 105
roles 106
simultaneous 226
Web site 105

edits 101
exercises

code base 128
CONVERSE 128
introduction 127
program structure 127
state management 150
VisualAge Generator Templates 173
XFER ’ ’ 142
XFER program 134

FRAME 234
generation 10, 29, 32
introduction 3
programming model 7
running 341
runtime

CICS for NT 250, 270
CICS/ESA 279
configurations 14
CONVERSE 47
generation for 29
overview 10, 247
scenario 47
setup 257
tiers 14
Windows NT 247, 268
XFER ’ ’ 51
XFER program 47

simultaneous development 226
state 87

complete 89
controlled 91
stateless 93

state management
CONVERSE 150, 163
XFER ’ ’ 159, 168
XFER program 155, 165

structure 89
options 26
state 87

support for
definition 9
generation 9
391

runtime 9
testing 9

testing 9, 27
top.html 238
TUI 115
VisualAge Generator Templates 173

WebSphere
application server 4

WebSphere Application Server
Application Server 304
CICS support 319
classpath 305
GatewayServlet 312
GIF 317
installation 302
password 302
performance 306
startup 303
userid 302
WebSphere Studio 211

WebSphere Page Designer
corrected the errors 208
templates 231

WebSphere Studio
adding JSPs 217
configuration 213
Corporate1 228
CSOERRORUIR.jsp 218
folders 220
hptGatewayURL 219
index.html 232
JSP

customization 210
modification 216
suggested changes 196

Microsoft Internet Explorer 211
parser 221
project 217
project creation 216
publishing 212, 216, 230
setup and configuration 211
templates 228
top.html 231
use parser 219
Vagen1EntryPage.jsp 218
Vagen1ErrorPage.jsp 218
Vagen1LogonPage.jsp 218
vawcg-wp.gif 218, 221
visage.gif 218, 221

Web site development 228
WebSphere Application Server 211
WebSphere Test Environment 211, 214, 216

WebSphere Test Environment
classpath 328
docRoot 217, 327
GatewayServlet 328
generated UI Records 214
GIF 331
hpt.jar 327
hptGateway.jar 326
httpPort 217, 327
introduction 324
JSP 331
JSP 1.0 330
JSP customization 195
publishing support 216
SERunner.properties 327
setup 324
WebSphere Studio 211, 214, 216

WIDTH 202
Windows NT

csogw.properties 270
runtime 247, 268
software requirements 247

working storage record
state management 163

WRAP 59
WTSPGM 168

X
XA definition 275
XFER ’ ’

EZEAPP 93
runtime 51
state 87, 93, 94, 159, 168
structure 85, 89, 142

XFER program
runtime 47
state 87, 91, 155, 165
structure 85, 89, 134

XID 296
392 Building Enterprise Web Transactions using VisualAge Generator JavaBeans and JSPs

© Copyright IBM Corp. 2000 393

IBM Redbooks review

Your feedback is valued by the Redbook authors. In particular we are interested in situations where a
Redbook "made the difference" in a task or problem you encountered. Using one of the following
methods, please review the Redbook, addressing value, subject matter, structure, depth and
quality as appropriate.

• Use the online Contact us review redbook form found at ibm.com/redbooks
• Fax this form to: USA International Access Code + 1 914 432 8264
• Send your comments in an Internet note to redbook@us.ibm.com

Document Number
Redbook Title

SG24-5636-00
Building Enterprise Web Transactions using VisualAge Generator
JavaBeans and JSPs

Review

What other subjects would you
like to see IBM Redbooks
address?

Please rate your overall
satisfaction:

O Very Good O Good O Average O Poor

Please identify yourself as
belonging to one of the
following groups:

O Customer O Business Partner O Solution Developer
O IBM, Lotus or Tivoli Employee
O None of the above

Your email address:
The data you provide here may
be used to provide you with
information from IBM or our
business partners about our
products, services or activities.

O Please do not use the information collected here for future
marketing or promotional contacts or other communications beyond
the scope of this transaction.

Questions about IBM’s privacy
policy?

The following link explains how we protect your personal information.
ibm.com/privacy/yourprivacy/

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html
http://www.redbooks.ibm.com/contacts.html
http://www.ibm.com/privacy/yourprivacy/
http://www.redbooks.ibm.com/
http://www.ibm.com/privacy/yourprivacy/

0.5” spine 250
<-> 459 pages

Building Enterprise W
eb Transactions using VisualAge Generator JavaBeans and JSPs

®

SG24-5636-00 ISBN 0738416495

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
IBM's International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

Building Enterprise
Web Transactions
using VisualAge Generator JavaBeans and JSPs

Develop Web
Transaction design
and programming
skills

Customize generated
JSPs and perform
Web-site integration

For IBM WebSphere,
Windows NT,
TX Series, and
CICS/ESA

This redbook explains how VisualAge Generator V4 can be used to implement
Web-based transaction systems that access enterprise server platforms. The
implementation process includes Web Transaction program development, generation
of JavaBeans, JSPs, and programs for the selected target runtime environment, and
configuration of the runtime system.

In Part 1 we describe how VisualAge Generator uses the Web Transaction
programming model to implement Web-based systems. The inner workings of the
generated JSPs and JavaBeans and the VisualAge Generator GatewayServlet are fully
described and contrasted with hand-crafted JSP and servlet systems.

The exercises in Part 2 allow you to develop an advanced understanding of how Web
Transactions work, supported system structure options, state management
implementation options, and how VisualAge Generator Templates can be used to
rapidly implement fully functional Web Transaction systems.

In Part 3 you learn how to customize the generated JSPs, provide support for
cascading style sheets (CSS) in a Web Transaction system, and integrate HTML-based
Web sites and the generated JSPs for Web Transactions. An integrated approach for
the use of WebSphere Studio and the WebSphere Test Environment provided by
VisualAge for Java is also defined.

Part 4 provides you with a step-by-step guide to the process of installing, configuring,
building, and running a Web Transaction system using the IBM WebSphere Application
Server platform on Windows NT and Web Transactions running on Windows NT, TX
Series (Windows NT) and CICS/ESA.

After reading the redbook you will fully understand how to use VisualAge Generator to
build and implement an IBM WebSphere Application Server-based system that
accesses enterprise transactions and data.

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Contents
	Figures
	Tables
	Preface
	The team that wrote this redbook
	Comments welcome

	Chapter 1. Introduction to VisualAge Generator Web Transactions
	1.1 Rapid Web Transaction application development concepts
	1.1.1 Problem statement
	1.1.2 Architectural analysis
	1.1.3 Solution

	1.2 Web server-based transaction system implementation options
	1.2.1 Native Java servlet and JSP programming
	1.2.2 VisualAge Generator Web Transaction programming
	1.2.3 Supported runtime configurations
	1.2.4 Summary

	Chapter 2. Web Transaction system implementation
	2.1 Web Transaction development
	2.1.1 UI Record definition
	2.1.2 UI Record to HTML mapping
	2.1.3 HTML forms in a UI Record
	2.1.4 Web Transaction definition
	2.1.5 Testing

	2.2 Generation of Java components and runtime program
	2.2.1 Java terminology
	2.2.2 Programs
	2.2.3 UI Records
	2.2.4 UI Record interface bean (UIrecord Bean)
	2.2.5 Java Server Page produced by VisualAge Generator
	2.2.6 User edit tables
	2.2.7 User message tables

	2.3 Runtime system implementation
	2.3.1 Basic processing concepts
	2.3.2 Gateway Servlet
	2.3.3 Session ID Manager (SIDM)
	2.3.4 Web Transaction runtime scenario

	Chapter 3. HTML and UI Record definition
	3.1 An HTML document
	3.2 General HTML tags
	3.2.1 TITLE
	3.2.2 General displayable text

	3.3 FORMs
	3.3.1 The HTML FORM tag
	3.3.2 UI Record FORM support
	3.3.3 Creating FORM fields in a UI Record
	3.3.4 Match valid edit tables
	3.3.5 Variable lists
	3.3.6 UI type FORM

	3.4 LINKs
	3.4.1 LINKs in UI Record definition

	3.5 HTML layout and look-and-feel
	3.6 UI Record specific features
	3.6.1 Record properties
	3.6.2 Special VisualAge Generator UI types
	3.6.3 VisualAge Generator features for UI Record data items
	3.6.4 Data Item Edits

	Chapter 4. Java Server Pages and the UI Record interface bean API
	4.1 JSP syntax
	4.1.1 Scriptlets
	4.1.2 Expressions
	4.1.3 Bean tag
	4.1.4 Directives

	4.2 The interface bean API
	4.2.1 UI Record Bean Interface
	4.2.2 VGDataElement Interface

	Chapter 5. Web Transaction design concepts and considerations
	5.1 Concepts
	5.1.1 Main Transaction and Web Transaction program comparison
	5.1.2 Web Transaction state saving options

	5.2 Program structure options
	5.2.1 Using CONVERSE UI Record (complete state)
	5.2.2 Using XFER Program WSRecord, UI Record (controlled state)
	5.2.3 Using XFER ’ ’ , UI Record (stateless)

	5.3 Implementing self-managed state support for XFER ’ ’ programs
	5.3.1 Introduction
	5.3.2 Global state
	5.3.3 Conversation state
	5.3.4 Implementation

	5.4 Design considerations
	5.4.1 Data transfer
	5.4.2 UI Record edits

	5.5 System architecture considerations

	Chapter 6. Web Transaction Web site development
	6.1 Development process overview
	6.2 Roles and skills in the development process
	6.3 Function and presentation
	6.4 Level 1: the stranded Web Transaction developer
	6.5 Level 2: Web Transaction developer and JSP developer
	6.6 Level 3: Web Transaction developer, JSP developer, HTML designer

	Chapter 7. Transforming TUIs into Web Transactions
	7.1 Considerations
	7.2 Phase 1 — analysis
	7.3 Phase 2 — basic transformation
	7.4 Phase 3 — make it more Web-like
	7.5 Phase 4 — modify default JSP

	Chapter 8. Developing Web Transaction programming skills
	8.1 Program structure
	8.1.1 Loading code base
	8.1.2 Converse model programming
	8.1.3 Single segment (XFER PGM) programming
	8.1.4 Single segment (XFER ’ ’) programming

	8.2 Implementing global state management
	8.2.1 UI Record-based state management implementation
	8.2.2 Working storage record-based state management
	8.2.3 Self-managed state implementation (XFER ’ ’ model)

	Chapter 9. VisualAge Generator Templates Web Transactions
	9.1 Preparing the workspace
	9.2 Relational table definition using database import
	9.3 Business Object definition
	9.4 Interface Unit definition
	9.5 Generation Option definition and system generation
	9.6 Test the generated system
	9.7 Customization

	Chapter 10. Demonstration system
	10.1 Components
	10.2 Processing overview
	10.3 Transfer processing and data management
	10.4 State management
	10.5 Input validation
	10.6 Testing path

	Chapter 11. Front-end customization techniques
	11.1 Level 1: What’s a Web Transaction developer to do?
	11.1.1 Correcting the generated default JSP
	11.1.2 Easy elements
	11.1.3 Implementing help
	11.1.4 Protecting FORM fields
	11.1.5 Making the default JSP look better

	11.2 Level 2: Enter the JSP developer
	11.2.1 Advanced JSP customization
	11.2.2 WebSphere Studio
	11.2.3 Modification Using WebSphere Studio

	11.3 Level 3: Integrating Web Transactions into a Web site
	11.3.1 Explanation of simultaneous development
	11.3.2 Web site planning issues
	11.3.3 Development steps
	11.3.4 Front end Web site development
	11.3.5 Bringing the two sides (front and back) together

	Chapter 12. Runtime environment scenario implementation
	12.1 Windows NT Web Transactions
	12.1.1 Software requirements
	12.1.2 Implementation tasks

	12.2 CICS for NT Web Transactions
	12.2.1 Software requirements
	12.2.2 Implementation tasks

	12.3 CICS/ESA Web Transactions
	12.3.1 Software requirements
	12.3.2 Implementation tasks

	Chapter 13. VisualAge Generator Web Transaction runtime setup
	13.1 Base software
	13.1.1 DB2 Client Application Enabler
	13.1.2 VisualAge for C++
	13.1.3 VisualAge Generator Server
	13.1.4 Setting up FTP support for program preparation

	13.2 Web Transaction gateway interface configuration (csogw.properties)
	13.2.1 Control entries
	13.2.2 Application entries
	13.2.3 serverLinkage entries
	13.2.4 Protocol specific entries
	13.2.5 Overriding serverLinkage entries

	13.3 Windows NT Web Transactions
	13.3.1 VisualAge Generator control settings
	13.3.2 Configure TCP/IP listener support
	13.3.3 Communications configuration

	13.4 CICS for NT Web Transactions
	13.4.1 Base software for CICS system
	13.4.2 Region definition
	13.4.3 CICS DB2 attachment
	13.4.4 Add CICS system listeners
	13.4.5 Define CICS user
	13.4.6 Add VisualAge Generator runtime and debug transactions
	13.4.7 VisualAge Generator control settings
	13.4.8 Communications configuration

	13.5 CICS/ESA Web Transactions
	13.5.1 Install the PCOMM software
	13.5.2 CICS connection definition
	13.5.3 CICS security
	13.5.4 Set up VisualAge Generator Host Services
	13.5.5 Communications configuration

	Chapter 14. WebSphere Application Server setup
	14.1 Installed software base
	14.2 IBM WebSphere Application Server for Windows NT
	14.2.1 Install IBM WebSphere Application Server software
	14.2.2 Startup WebSphere Application Server
	14.2.3 Configure a new Application Server
	14.2.4 Define VisualAge Generator Gateway Servlet
	14.2.5 Customize JSPs (as required)
	14.2.6 Deploy JSPs and GIFs
	14.2.7 Configure the vgj.properties file
	14.2.8 Set up VisualAge Generator session ID manager
	14.2.9 Start application server

	14.3 Adding CICS support
	14.3.1 CICS Transaction Gateway
	14.3.2 Customization for TX Series (CICS NT) access
	14.3.3 Customization for CICS/ESA access
	14.3.4 CICSTERM behavior and signon capable terminals

	14.4 VisualAge for Java WebSphere test environment
	14.4.1 Setup
	14.4.2 Configure WebSphere Test Environment
	14.4.3 Configure GatewayServlet
	14.4.4 Add generated components for Web Transaction
	14.4.5 Test generated Web Transaction in VisualAge for Java

	Chapter 15. Web Transaction generation
	15.1 Windows NT Web Transactions — base system deployment
	15.1.1 Generation
	15.1.2 Configure Gateway Servlet access

	15.2 CICS NT Web Transactions — base system deployment
	15.2.1 Generation
	15.2.2 Define your generated Web Transaction(s) to CICS
	15.2.3 Configure Gateway Servlet access

	15.3 CICS/ESA Web Transactions — base system deployment
	15.3.1 Generation
	15.3.2 Define your generated Web Transaction(s) to CICS
	15.3.3 Configure Gateway Servlet access

	Chapter 16. Running Web Transactions
	16.1 Deploy generated code
	16.1.1 JSPs, JavaBeans, and tables used in a UI Record
	16.1.2 Web Transaction program materials
	16.1.3 Invoking Web Transaction from default entry point JSP

	16.2 Runtime processing
	16.2.1 System Startup
	16.2.2 Gateway Servlet invocation
	16.2.3 Gateway Servlet processing
	16.2.4 Windows NT Web Transaction processing
	16.2.5 CICS Web Transaction processing
	16.2.6 Debugging Web Transactions at runtime with CEDF

	16.3 Security
	16.3.1 Logon technique
	16.3.2 Transparent login to CICS
	16.3.3 Other options
	16.3.4 Secure HTTP

	Appendix A. Sample code and other materials
	A.1 VisualAge Generator code
	A.2 WebSphere Studio
	A.3 Database
	A.4 Additional materials

	Appendix B. Special notices
	Appendix C. Related publications
	C.1 IBM Redbooks publications
	C.2 IBM Redbooks collections
	C.3 Other resources

	How to get IBM Redbooks
	IBM Redbooks fax order form

	Glossary
	Abbreviations and acronyms
	Index
	IBM Redbooks review

