

ibm.com/redbooks

WebSphere MQ Solutions
in a Microsoft .NET ET
Environment

Saida Davies
Michael Hamann
Sachin Kulkarni

Tony Shan
Andrew Sheppard

Ope-Oluwa Soyannwo
Jerry Stevens

Dong Kai Yu

Invoking WebSphere MQ from a .NET
application

WebSphere MQ as a SOAP
transport mechanism

.NET and J2EE integration
using WebSphere MQ

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

WebSphere MQ Solutions in a Microsoft .NET
Environment

January 2004

International Technical Support Organization

SG24-7012-00

© Copyright International Business Machines Corporation 2004. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (January 2004)

This edition applies to Version 5, Release 3, Modification 0 of WebSphere MQ; WebSphere MQ
Customer Service Diskette (CSD) 05; Microsoft Visual Studio .NET Professional 2003 with
Microsoft Development Environment 2003 Version 7.1.3088 and Microsoft .NET Framework 1.1
Version 1.1.4322; Internet Information Services (IIS) Version 5; WebSphere MQ Transport for
SOAP, February 2003; and WebSphere MQ classes for .NET (amqmdnet.dll Version Resource
1.0.0.3)

Note: Before using this information and the product it supports, read the information in
“Notices” on page xi.

Contents

Notices . xi
Trademarks . xii

Preface . xiii
The team that wrote this redbook. xiii
Become a published author . xvi
Comments welcome. xvii

Chapter 1. Introduction . 1

Chapter 2. Overview . 3
2.1 The aim . 4
2.2 Technologies . 5

2.2.1 .NET environment and C# programming language. 5
2.2.2 J2EE . 6
2.2.3 WebSphere MQ . 6
2.2.4 WebSphere MQ classes for Microsoft .NET . 6
2.2.5 What is SOAP? . 6
2.2.6 WebSphere MQ Transport for SOAP . 7

2.3 Usage scenarios . 8
2.3.1 Usage scenarios: .NET application to .NET application 8
2.3.2 Usage scenarios: .NET application to J2EE application 8
2.3.3 Usage scenarios: .NET application to a .NET Web Service 9
2.3.4 Usage scenarios: .NET application to a J2EE Web Service 10

Chapter 3. WebSphere MQ Transport for SOAP . 11
3.1 What is WebSphere MQ transport for SOAP? . 12
3.2 WebSphere MQ transport for SOAP Installation . 13

3.2.1 Downloading WebSphere MQ transport for SOAP 13
3.2.2 Prerequisite software . 14
3.2.3 Pre-installation . 15
3.2.4 Installation . 17
3.2.5 Running the demonstration programs. 17
3.2.6 Re-registration to the Global Assembly Cache 19
3.2.7 Checking the WebSphere MQ transport for SOAP release level . . . 20

3.3 SOAP formatting . 20
3.3.1 How to specify RPC or Document style encoding. 22

3.4 WebSphere MQ transport for SOAP application development 23
3.4.1 Client environment . 24
© Copyright IBM Corp. 2004. All rights reserved. iii

3.5 WebSphere MQ transport for SOAP .NET deployment 25
3.5.1 WebSphere MQ URI Syntax . 29
3.5.2 WebSphere MQ client connection options . 30
3.5.3 Calling deployWMQService . 31

3.6 WebSphere MQ transport for SOAP listener for .NET 33
3.6.1 Executing MQSoapHost . 35

3.7 A simple example with a Microsoft .NET Web Service 36
3.7.1 Write the Web Service . 36
3.7.2 Write the .NET ASMX service directive file . 38
3.7.3 Deploying the Microsoft .NET service . 39
3.7.4 Write the client application . 41
3.7.5 Define the WebSphere MQ response queue 43
3.7.6 Start the prepared Microsoft .NET listener . 43
3.7.7 Test the service. 44
3.7.8 Distributed test in WebSphere MQ client mode 45
3.7.9 Distributed test in WebSphere MQ server bindings mode 47
3.7.10 Distributed WebSphere MQ using MQ clustering 48

3.8 WebSphere MQ transport for SOAP with J2EE deployment. 48
3.8.1 Deployment of J2EE Web Services . 48
3.8.2 WebSphere MQ Transport for SOAP SimpleJMSListener 49
3.8.3 Executing SimpleJMSListener . 52

3.9 A simple example with a J2EE Web Service. 52
3.9.1 Write the Web Service . 53
3.9.2 Deploy the service. 54
3.9.3 Write the client application . 55
3.9.4 Additional WebSphere MQ configuration . 56
3.9.5 Start the prepared JMS listener . 56
3.9.6 Test the service. 57
3.9.7 Distributed test in WebSphere MQ server bindings mode 57
3.9.8 Distributed test in WebSphere MQ client mode 59
3.9.9 Distributed WebSphere MQ using MQ clustering 59
3.9.10 Service code use of external classes . 59

3.10 Starting listeners with WebSphere MQ triggering 60
3.10.1 Using a different initiation queue. 62

3.11 WebSphere MQ transport for SOAP and SSL . 64
3.11.1 Simple demonstration with SSL . 65
3.11.2 Use of SSLPeerName. 66

3.12 Asynchronous invocation of Web Services . 67
3.13 Current status and future plans . 69

Chapter 4. Business case scenario . 73
4.1 Business domain . 74
4.2 Business process . 74
iv WebSphere MQ Solutions in a Microsoft .NET Environment

4.2.1 Use case 1: Account opening . 75
4.2.2 Use case 2: Investment advisory . 76

4.3 Non-functional requirements and assumptions . 77

Chapter 5. Solution design . 79
5.1 Message flow . 80

5.1.1 Use case 1: Account opening message flow 80
5.1.2 Use case 2: Investment advisory message flow 81

5.2 Server configuration . 82
5.3 WebSphere MQ configuration . 83

Chapter 6. Environment setup . 89
6.1 Software prerequisites. 90
6.2 Installation . 90

6.2.1 Installing WebSphere MQ . 90
6.2.2 Installing WebSphere MQ classes for Microsoft .NET 90
6.2.3 Installing WebSphere MQ Transport for SOAP. 90
6.2.4 Installing Internet Information Services (IIS) 90
6.2.5 Installing Microsoft Visual Studio .NET . 93

6.3 Environment Setup . 110
6.3.1 Core systems overview . 110

Chapter 7. Messaging solution: .NET application to .NET application . 115
7.1 Process overview . 116

7.1.1 Scenario overview. 117
7.2 System context . 118

7.2.1 Interface definitions . 118
7.3 Development . 119

7.3.1 Adding the WebSphere MQ reference to the project 119
7.3.2 Bank service application (C#) . 121
7.3.3 Credit check application . 124
7.3.4 Credit check application C# snippet . 125
7.3.5 Credit check application VB .NET snippet 129

7.4 Deployment . 133
7.4.1 Deploying BSS . 134
7.4.2 Deploying CCS . 136

7.5 Testing. 136
7.5.1 How to start BSS. 136
7.5.2 How to start CCS . 137
7.5.3 Test 1 pass known data . 137
7.5.4 Test 2 pass unknown user . 138

Chapter 8. Messaging solution: .NET application to J2EE application . 139
8.1 Process overview . 140
 Contents v

8.1.1 Account opening . 140
8.1.2 Investment advisory . 141

8.2 System context . 142
8.2.1 Bank service application . 143
8.2.2 Investment advisory application . 144
8.2.3 Customer profile application . 144
8.2.4 Database. 145
8.2.5 JMS administered objects . 146

8.3 Development . 147
8.3.1 Bank service application . 147
8.3.2 Investment advisory application . 148
8.3.3 Customer profile application . 150

8.4 Deployment . 157
8.4.1 Deploying BSS . 157
8.4.2 Deploying CPS . 157

8.5 Testing. 159
8.6 Alternative solutions . 161

8.6.1 WebSphere MQ classes for Microsoft .NETand WebSphere MQ classes
for Java . 161

8.6.2 Web Services . 162
8.6.3 Bridge between WebSphere MQ and Microsoft Message Queuing

(MSMQ) . 162

Chapter 9. Messaging solution: .NET client to .NET Web Services using
WebSphere MQ SOAP transport . 163

9.1 Process overview . 165
9.2 System context . 166
9.3 Development . 173

9.3.1 .NET Web Service development . 173
9.3.2 IAS Web Service solution . 176
9.3.3 WebSphere MQ transport for SOAP deployment for IAS 185
9.3.4 BSS client . 187
9.3.5 BSS Web Application solution. 192

9.4 Deployment . 194
9.4.1 IAS Web Service deployment . 194
9.4.2 WebSphere MQ queue setup and WebSphere MQ transport for SOAP

deployment . 196
9.4.3 BSS Web Application deployment . 197
9.4.4 Securing the IAS Web Service . 197

9.5 Testing. 199
9.5.1 IAS Web Service testing using Microsoft Visual Studio .NET 199
9.5.2 BSS user interface testing. 203
vi WebSphere MQ Solutions in a Microsoft .NET Environment

Chapter 10. Messaging solution: .NET client to J2EE Web Services using
WebSphere MQ SOAP transport . 207

10.1 Process overview . 208
10.2 System context . 208

10.2.1 Interface definition. 208
10.2.2 Service operation definition. 209
10.2.3 XML data format . 209

10.3 Development . 213
10.3.1 Business logic implementation . 213
10.3.2 Persistent storage . 215
10.3.3 WebSphere MQ definition . 218
10.3.4 Adding external classes to the CLASSPATH 219

10.4 Deployment . 219
10.4.1 Runtime environment . 219
10.4.2 ShareQuote service deployment . 220

10.5 Testing. 222
10.5.1 Calling the service from the IAS client . 222
10.5.2 Test result . 224

10.6 Solution discussion . 225

Chapter 11. System integration and functional test 227
11.1 Scope and objectives . 228
11.2 System integration. 228

11.2.1 Runtime environment . 229
11.2.2 Test data . 229
11.2.3 System build and deployment . 229
11.2.4 System startup . 230

11.3 Functional test . 230
11.3.1 Entrance and exit criteria . 230
11.3.2 Use case 1: Account opening . 231
11.3.3 Use case 2: Investment advisory . 241

11.4 Summary . 248

Chapter 12. Security . 249
12.1 Security concepts . 250

12.1.1 Security services . 250
12.1.2 Security mechanisms . 251

12.2 Planning the security services in use cases . 252
12.2.1 Application layer security services . 252
12.2.2 Transmission layer security services . 253

12.3 Cryptographic concepts. 254
12.3.1 Cryptography. 254
12.3.2 Message digest . 256
 Contents vii

12.3.3 Digital signature . 257
12.3.4 Digital certificate . 258
12.3.5 Public Key Infrastructure (PKI) . 262

12.4 Secure Sockets Layer (SSL) introduction . 262
12.4.1 Secure Sockets Layer(SSL) concepts . 262
12.4.2 CipherSuites and CipherSpecs . 263

12.5 WebSphere MQ SSL support . 263
12.6 WebSphere MQ working with SSL on Windows 264
12.7 Deploy SSL support in use cases . 265

12.7.1 Obtaining certificates. 265
12.7.2 Deploying SSL support in CCS . 271
12.7.3 Deploying SSL support in IAS. 278
12.7.4 Deploying SSL support in BSS . 278

Chapter 13. Transactions . 283
13.1 Local transactions . 284

13.1.1 ACID properties of a transaction . 284
13.1.2 Programming local transactions . 285

13.2 Distributed transactions. 290
13.2.1 Transaction support under Windows 2000 291
13.2.2 Programming distributed transactions: Credit Check Service 294
13.2.3 Microsoft Transaction Server: MTS and WebSphere MQ. 300

13.3 Web Service transactions . 300
13.3.1 .NET Web Services and transactions . 301
13.3.2 Programming Web Services transaction in .NET environment . . . 301
13.3.3 WS Transaction. 303

Chapter 14. Best practices . 305
14.1 Coding standards . 306
14.2 Hints and tips. 306

14.2.1 XML style comments. 306
14.2.2 XML processing in Java . 307
14.2.3 SOAP processing in Java . 307
14.2.4 XML element versus attribute . 307

14.3 Common errors . 307
14.4 Testing. 313

14.4.1 Unit Testing with JUnit . 313
14.4.2 Unit Testing with NUnit . 313
14.4.3 Unit Testing with csUnit. 314

14.5 Version management . 314
14.5.1 ClearCase . 314
14.5.2 Concurrent Versions System . 315
14.5.3 Visual SourceSafe. 315
viii WebSphere MQ Solutions in a Microsoft .NET Environment

Appendix A. Scripts, source code and test data for YuBank 317
WebSphere MQ Setup . 318
Use case 1 . 321
Use case 2 . 322

Appendix B. Additional material . 323
Locating the Web material . 323
Using the Web material . 323

System requirements for downloading the Web material 324
How to use the Web material . 324

Glossary . 329

Abbreviations and acronyms . 331

Related publications . 333
IBM Redbooks . 333
Other publications . 333
Online resources . 334
How to get IBM Redbooks . 335
Help from IBM . 335

Index . 337
 Contents ix

x WebSphere MQ Solutions in a Microsoft .NET Environment

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.
© Copyright IBM Corp. 2004. All rights reserved. xi

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AIX®
ClearCase®
CICS®
DB2®
Everyplace®
IBM®
ibm.com®

Lotus Notes®
Lotus®
MQSeries®
Notes®
Parallel Sysplex®
Rational®
Redbooks™

Redbooks (logo) ™
RS/6000®
SupportPac™
TXSeries®
WebSphere®
z/OS®

The following terms are trademarks of other companies:

Intel, Intel Inside (logos), MMX, and Pentium are trademarks of Intel Corporation in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks owned by SET Secure
Electronic Transaction LLC.

Other company, product, and service names may be trademarks or service marks of others.
xii WebSphere MQ Solutions in a Microsoft .NET Environment

Preface

This IBM® Redbook demonstrates the use of WebSphere MQ in a .NET
environment as a reliable transport mechanism for the invocation of .NET
applications and as a middleware product used in the implementation of Web
Services.

WebSphere® MQ now offers the programmer more choices than ever in which to
write new WebSphere MQ applications. With the advent of the Microsoft® .NET
platform, two new programming interfaces are explored by this redbook team.

First we introduce the two mechanisms for programming WebSphere MQ in a
Microsoft .NET environment. These are WebSphere MQ classes for Microsoft
.NET and WebSphere MQ Transport for SOAP for interfacing to Web Services.
Because J2EE interoperability is of such strategic importance, the team
considers these four scenarios:

� Using WebSphere MQ classes for Microsoft .NET

1. .NET application to .NET application
2. .NET application to J2EE application

� Using WebSphere MQ Transport for SOAP

3. .NET application to .NET Web Service
4. .NET application to J2EE Web Service

Next, we introduce a banking example which is used as a business case
scenario to provide a realistic view of organizations with requirements
exemplified in this book. The business case scenario is specifically contrived to
illustrate the above four scenarios with sample code, but at the same time, an
attempt is made to avoid any fictitious solutions.

We conclude the book with best practices and an appendix detailing source code
and scripts that were used to create our environments.

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Hursley Center.
© Copyright IBM Corp. 2004. All rights reserved. xiii

The authors — Top row from left: Andrew, Jerry, Sachin, Michael
Bottom row from left: Tony, Ope, Saida, Dong Kai

Saida Davies is a Project Leader for ITSO Hursley UK. Saida is a Certified
Senior IT Specialist and has 14 years of experience in IT. She has a degree in
Computer Science and her background includes z/OS® systems programming.
Saida has extensive knowledge of the IBM z/OS operating system and a detailed
working knowledge of both IBM and Independent Software Vendors’ operating
system software. In a customer facing role with IBM Global Services, she was
engaged in the development of services for MQSeries® within the z/OS platform.
This covers the architecture, scope, design, project management and
implementation of the software on stand-alone systems or on systems in a
Parallel Sysplex® environment. One of her major projects was WebSphere MQ
security review and planning for a bank in Portugal in line with the British
Standard code of practice for information security management. Additional
experience includes project management, pre-sales support, training, system
and subsystems migrations.
xiv WebSphere MQ Solutions in a Microsoft .NET Environment

Michael Hamann is an IT Specialist at IBM ITS Education Services in Germany.
He has four years of experience in the field of Information Technology. During this
time with IBM he worked as an Instructor, Course Developer, and Consultant for
WebSphere MQ and WebSphere MQ Everyplace®. Michael is a Certified
WebSphere MQ Solution Developer and a Certified WebSphere MQ Solution
Designer. He holds a degree in Geography from the University of Tübingen,
Germany.

Sachin Kulkarni is a Research Staff Member at Distributed Systems Technology
Centre – DSTC, Australia, where he is responsible for investigating next
generation distributed technologies and e-business architectures. Sachin’s areas
of expertise are XML Web Service design, .NET solutions development, and
business process choreography. He has a strong professional background in
software design, development, and project management. He has published and
presented his research at various Australian and international conferences
including topics, such as electronic contracts framework for e-business
federation, and solution patterns for IBM WebSphere with Microsoft .NET
integration. Also, he authored a comprehensive analysis report on Microsoft
BizTalk Server technologies. Sachin has master’s degree in Information
Technology from Queensland University of Technology, and was one of the early
achievers of Microsoft .NET Certifications in Australia.

Tony Shan is a Lead Systems Architect in Wachovia Bank in the United States.
He has over 18 years experience in Information Technology. Tony has led life
cycle design and development of large scale distributed systems on diverse
platforms using a variety of cutting-edge technologies and object-oriented
methodologies. Tony holds three master’s degrees in Engineering and Science
majors, and is a Sun Certified Java™ 2 Programmer and an IBM Certified
eBusiness Solution Technologist, as well as a Sun Certified Faculty Instructor.

Andrew Sheppard is a Middleware Developer for IBM Global Services Australia.
He has 33 years of experience in software development, including 13 years of
software development in Microsoft Windows®. He holds a degree in Electrical
Engineering with second class Division A honours from the University of
Queensland, St. Lucia Campus, and is a Microsoft Certified Solution Developer.
Prior to joining IBM Global Services in 1997, he spent 26 years working for
Telstra. His areas of expertise include graphical user interfacing and all facets of
embedded systems.

Ope-Oluwa Soyannwo is a Developer and Tester in the WebSphere Platform
System House, IBM Hursley. She chose to intercalate from her degree,
Computer Systems Engineering at the University of Hull, to get some practical
experience. Prior to joining IBM on an internship program, Ope worked on
several projects involving end-to-end solutions design, application development
and testing. She has experience with testing interoperability between Microsoft
 Preface xv

.NET and IBM WebSphere products. Her areas of expertise include .NET and
J2EE Web Services, WebSphere MQ and Lotus® Notes® application
development.

Jerry Stevens graduated from Exeter University with a first class honours
degree in Mathematics and has 24 years of IT experience. He currently works in
the WebSphere MQ Technical Strategy and Planning group at IBM UK Hursley
Labs, where he is helping to develop Web Services facilities for WebSphere MQ.
Prior to joining Hursley Labs, Jerry worked in an RS/6000® and SP consultancy
practice for IBM UK Global Services in a customer facing role as an AIX®
Consultant. He is also one of the authors of the IBM Redbook Sizing and Tuning
GPFS. Prior to joining IBM in 1997, Jerry worked for Shell as a Senior Systems
Engineer, where he undertook a range of technical consultancy and development
roles and worked with a variety of Open Systems platforms and architectures.

Dong Kai Yu is an IT Specialist of IBM China. He has five years experience in
the IT industry and is an IBM Certified Specialist on MQSeries. He has been
working as Technical Sales Support for IBM China on WebSphere MQ,
WebSphere Business Integration, TXSeries®, and Visual Age C/C++ for two
years, and is the skill owner of WebSphere Business Integration Adapter. Prior to
joining IBM, Dong Kai worked as an Application Developer on Microsoft Visual
Studio for more than three years. He obtained his master's degree in Computer
Science from Beijing Institute of Technology, P.R.C.

This redbook team would like to thank the following people for their contributions
to this project:

Stephen Todd, IBM Hursley, for his invaluable support and help with WebSphere
MQ classes for Microsoft .NET and WebSphere MQ Transport for SOAP
technology.

Mike Bailey, IBM Hursley, for his invaluable support and help with MA7P
SupportPac™ and WebSphere MQ classes for Microsoft .NET technology.

Jerry Stevens, IBM Hursley, for his invaluable support and help with MA0R
SupportPac and WebSphere MQ Transport for SOAP technology.

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll team with IBM technical professionals,
Business Partners and/or customers.
xvi WebSphere MQ Solutions in a Microsoft .NET Environment

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks™ to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an Internet note to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HZ8 Building 662
P.O. Box 12195
Research Triangle Park, NC 27709-2195
 Preface xvii

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html

xviii WebSphere MQ Solutions in a Microsoft .NET Environment

Chapter 1. Introduction

IBM WebSphere MQ is market leading business integration software. It connects
business software together by providing an open, scalable, and an industrial
strength messaging backbone. WebSphere MQ provides core capabilities
needed to interconnect client and/ or server applications and serves as critical
middleware technology, linking multiple applications together regardless of the
software platforms on which they reside.

Microsoft .NET is a software platform which allows developers to write, build, and
test .NET applications and Web Services. It contains its own messaging service
called Microsoft Message Queuing (MSMQ) for Windows developers.

Java 2 Platform, Enterprise Edition (J2EE) is an open standard Java platform
which defines the infrastructure for enterprise applications and supports Web
Services to enable development of secure, robust and interoperable business
applications.

WebSphere MQ, IBM messaging service, can be incorporated into the .NET
environment to ensure a reliable request and delivery mechanism between .NET
applications, .NET applications and J2EE applications, .NET Web Services
invoked by .NET or Java applications and also J2EE applications invoked by
.NET applications or Java.

Web Services are becoming the platform for application integration. They can be
referred to as fundamental building blocks in the move to distributed computing
on the Internet. Applications are constructed using multiple Web Services from

1

© Copyright IBM Corp. 2004. All rights reserved. 1

various sources and are allowed to work together regardless of where they
reside or how they are implemented. Interoperability of the Web Services tools
on different platforms are demonstrated by the successful invocation of the Web
Services among the different platforms.

Web Services use Simple Object Access Protocol (SOAP) to send messages to
one another. SOAP is a mechanism for a program running in one kind of
operating system to communicate with a program in the same or alternate
operating system. SOAP is designed as a transport neutral protocol to be used in
combination with a variety of transport protocols such as Hypertext Transfer
Protocol (HTTP), Simple Mail Transfer Protocol (SMTP), File Transfer Protocol
(FTP) and so on to deliver structured and typed information between two
participants. A great amount of work has gone into making Web Services support
SOAP message generation in a way that promotes interoperability within
heterogeneous environments (for example, .NET applications consuming IBM
WebSphere Application Server hosted Web Services).

The default transport mechanism for the delivery of SOAP messages to an
endpoint is over HTTP. However, a known weakness of HTTP is the lack of
guaranteed and reliable (single message only) delivery within the protocol. HTTP
also requires the back end service to be physically on line for any request to be
received.

By substituting HTTP with another message delivery option, a layer of proven
security that HTTP provides is absent, therefore other security issues have been
addressed, for example, security provided within WebSphere MQ.

WebSphere MQ illustrates a store and forward capability for a secure, assured
and reliable request delivery of messages within the .NET environment and from
the .NET environment to other environments.
2 WebSphere MQ Solutions in a Microsoft .NET Environment

Chapter 2. Overview

Prior to the Microsoft .NET environments, the normal method of programming
WebSphere MQ was by using the C, C++, COM or Java API. With the advent of
.NET, which is both a language and platform neutral environment, a different
approach is needed.

2

© Copyright IBM Corp. 2004. All rights reserved. 3

2.1 The aim
The aim of this redbook is to demonstrate the use of WebSphere MQ as a
middleware product for application to application transport in a .NET
environment. It also demonstrates WebSphere MQ as a transport mechanism for
the invocation of a Web Service by modifying the Simple Object Access Protocol
(SOAP) wrapper for the Web Service thereby communicating via WebSphere
MQ instead of Hypertext Transfer Protocol (HTTP). Another aim of this redbook is
to highlight the ability to effectively switch transports underneath a .NET client
between HTTP, Microsoft Message Queuing (MSMQ) and WebSphere MQ. It
demonstrates how trivial it is to alter the “target” of a SOAP Web Service request
from a standard Internet Information Services (IIS) hosted variant, to a listener
waiting on a WebSphere MQ queue. Sample applications in a Microsoft .NET
environment for interfacing to WebSphere MQ are provided.

Finally, security over WebSphere MQ using Secure Sockets Layer (SSL) is
implemented.

The team demonstrates the utilization of WebSphere MQ Application
Programming Interface (API), using standard types like strings, arrays, binary
data and custom serializable types, and also shows how this support can be
achieved in an asynchronous fashion.

The team also recommends that before undertaking any development the latest
Customer Service Diskette (CSD) should be obtained.

The four scenarios considered are illustrated in Figure 2-1.
4 WebSphere MQ Solutions in a Microsoft .NET Environment

Figure 2-1 Scenario overview

2.2 Technologies
A number of technologies are involved in our business case scenario.

2.2.1 .NET environment and C# programming language
The sample codes for the four scenarios are written in C#. For readers familiar
with Visual Basic (VB), there are significant changes when moving from VB to
Visual Basic.NET that many consider changing directly to C#. However, the first
scenario is coded in both C# and VB.NET for completeness. The other reason for

C# Application
S
O
A
P

J2EE Web Service
S
O
A
P

C# Application
S
O
A
P

C# Web Service
S
O
A
P

C# Application J2EE Application

C# Application
VB Application

C# Application

Client
Middleware

WebSphere MQ Server
 Chapter 2. Overview 5

using C# is so that it requires only a minor adjustment for both Java and C++
programmers.

The following URL highlights the C# initiatives.

http://www.ecma-international.org/

Microsoft Visual Studio .NET is the chosen development environment.

2.2.2 J2EE
J2EE technology, and its component based model, simplifies enterprise
development and deployment. The J2EE platform manages the infrastructure
and supports the Web Services to enable development of secure, robust and
interoperable business applications. J2EE interoperability with .NET is
considered an important part of this redbook.

2.2.3 WebSphere MQ
WebSphere MQ is the market-leading business integration software which
connects all your business software together to form one efficient enterprise by
providing an open, scalable, industrial-strength messaging backbone.

WebSphere MQ minimizes time taken to integrate key resources and
applications held in different systems, so your company can respond to the
changing demands of e-business. By connecting business information with
people and other applications, you can extract more value from existing
investment, and quickly integrate new systems to support new market strategies.

2.2.4 WebSphere MQ classes for Microsoft .NET
To program WebSphere MQ from C# or VB .NET and so on, it is essential to
install the .NET classes for Microsoft .NET. These are provided in WebSphere
MQ classes for Microsoft .NET that allows WebSphere MQ to be invoked from
Microsoft .NET applications. These classes were available as a category 2
(freeware) SupportPac, but with effect from WebSphere MQ V5.3 Customer
Service Diskette (CSD05), the WebSphere MQ classes for Microsoft .NET are a
fully incorporated in the WebSphere MQ product.

2.2.5 What is SOAP?
Simple Object Access Protocol (SOAP) is a lightweight format and protocol for
exchange of information in a decentralized, distributed environment. It is an
eXtensible Markup Language (XML) based protocol that consists of three parts:
an envelope that defines a framework for describing what is in a message and
6 WebSphere MQ Solutions in a Microsoft .NET Environment

http://www.ecma-international.org/

how to process it, a set of encoding rules for expressing instances of
application-defined datatypes, and a convention for representing remote
procedure calls and responses

2.2.6 WebSphere MQ Transport for SOAP
Web Services have evolved as an increasingly important method for businesses
to provide electronic services on demand. These are most commonly based on
SOAP format messages and the Hypertext Transfer Protocol (HTTP) transport
protocol. It is not however necessary to rely on HTTP as a transport, the
limitations of which are already well documented. WebSphere MQ can be used
as an alternative transport to HTTP in order to provide enhanced reliability and
enable re-use of an existing WebSphere MQ infrastructure.

WebSphere MQ is supplied with a pluggable, reliable transport for SOAP
messages that may be used in Web Service applications. At the time of writing
this book, the WebSphere MQ Transport for SOAP is provided as a category 2
(freeware) SupportPac. We expect this to change as the intention is to
incorporate this function in the WebSphere MQ product. Refer to 3.2,
“WebSphere MQ transport for SOAP Installation” on page 13 for further detail.

The intention is to enable customers to make ready use of their existing
investment in a WebSphere MQ infrastructure to provide Web Services. These
are typically created using application development environments provided by
IBM and others. In this redbook, we focus particularly on the use of Microsoft
Visual Studio .NET.

WebSphere MQ does not undertake any SOAP formatting or parsing itself but
instead relies on a host Web Services environment. This environment can be
based either on the Apache Axis or the Microsoft .NET Framework. Although the
use of SOAP formatting is not mandatory, it is the most commonly used format
for transporting messages for Web Services. It is important that client
applications and target Web Services understand the same versions and dialects
of SOAP for which several different variants have already emerged. The use of
WebSphere MQ transport for SOAP automatically enforces adherence to new
SOAP standards as they are endorsed without the need for customers to have a
low level understanding of the construction of individual SOAP messages.

For more detailed information about WebSphere MQ transport for SOAP, refer
to:

� Chapter 3, “WebSphere MQ Transport for SOAP” on page 11

� Chapter 8, “Messaging solution: .NET application to J2EE application” on
page 139
 Chapter 2. Overview 7

http://www-3.ibm.com/software/integration/support/supportpacs/individual/ma7p.html

� Chapter 9, “Messaging solution: .NET client to .NET Web Services using
WebSphere MQ SOAP transport” on page 163

2.3 Usage scenarios
There are four scenarios that are illustrated in Figure 2-1. Each one is now
expounded as a separate scenario.

2.3.1 Usage scenarios: .NET application to .NET application
This is the first scenario because without the ability to write a .Net application it is
not possible to proceed.

Figure 2-2 .NET to .NET

To write a C# application to interface to WebSphere MQ, it is necessary to use
WebSphere MQ classes for Microsoft .NET.

2.3.2 Usage scenarios: .NET application to J2EE application
J2EE interoperability is of such strategic importance that this scenario is
considered next.

C# Application C# Application

Client
Middleware

WebSphere MQ Server
8 WebSphere MQ Solutions in a Microsoft .NET Environment

Figure 2-3 .NET to J2EE

J2EE application programming is exemplified here and a sample is provided in
sufficient detail to illustrate the flexibility and interoperability that WebSphere MQ
provides.

2.3.3 Usage scenarios: .NET application to a .NET Web Service
The World Wide Web (WWW) is used more and more for application to
application communication. The programmatic interfaces made available for this
are referred to as Web Services. The goal of this scenario is to highlight the use
of this technology in a .NET environment and illustrate, by way of an example, a
practical use of a Web Service.

Figure 2-4 .NET to .NET Web Service

To write a C# application to interface to WebSphere MQ using the SOAP
transport, it is necessary to use WebSphere MQ Transport for SOAP. This
provides the ability to flow a SOAP message over a WebSphere MQ transport
embedded in the Microsoft .NET Framework.

C# Application J2EE Application

Client
Middleware

WebSphere MQ Server

C# Application
S
O
A
P

C# Web Service
S
O
A
P

Client
Middleware

WebSphere MQ Server
 Chapter 2. Overview 9

2.3.4 Usage scenarios: .NET application to a J2EE Web Service
The goal of this scenario is to highlight the use of WebSphere MQ technology in
a .NET environment and illustrate, by way of an example, a practical use of how it
interfaces to a J2EE Web Service.

Figure 2-5 .NET to J2EE Web Service

Developing a J2EE Web Service is illustrated here and a sample is provided in
sufficient detail to illustrate the flexibility and interoperability that WebSphere MQ
provides.

To write a C# application to interface to WebSphere MQ using the SOAP
transport, it is necessary to use WebSphere MQ Transport for SOAP. This
provides the ability to flow a SOAP message over a WebSphere MQ transport
embedded in the Microsoft .NET Framework.

C# Application
S
O
A
P

J2EE Web Service
S
O
A
P

Client
Middleware

WebSphere MQ Server
10 WebSphere MQ Solutions in a Microsoft .NET Environment

Chapter 3. WebSphere MQ Transport
for SOAP

This chapter gives a detailed overview of WebSphere MQ transport for SOAP.
The topics covered are:

� What is WebSphere MQ transport for SOAP?

� WebSphere MQ transport for SOAP installation

� SOAP formatting

� The WebSphere MQ URI syntax

� WebSphere MQ transport for SOAP development and deployment

� The WebSphere MQ transport for SOAP listener for Microsoft .NET Web
Services

� Example use with a Microsoft .NET client and Web Service

� Use with Microsoft .NET clients and J2EE Web Services

� Example use with a Microsoft .NET client and a J2EE Web Service

� Use of WebSphere MQ triggering to start listeners

� WebSphere MQ transport for SOAP and SSL

� Current status and future plans

3

© Copyright IBM Corp. 2004. All rights reserved. 11

3.1 What is WebSphere MQ transport for SOAP?
WebSphere MQ transport for SOAP provides a transport for SOAP formatted
messages that are used in conjunction with Web Services. It is implemented for
either Apache Axis or Microsoft .NET host environments.

Figure 3-1 illustrates where WebSphere MQ transport for SOAP fits into an
overall Web Service design. This illustrates a process where a client application
calls a target Web Service with specific parameters and then obtains a response
from the service.

First consider the case where HTTP is being used as a transport between the
client application and target Web Service. The client passes the details of the
required call to the SOAP layer, which prepares a request for invocation of the
service as a SOAP formatted request. This request is dispatched to the server
system, where an HTTP server receives the request and passes it through the
particular SOAP layer for decoding and invocation of the service. The response
message may be returned to the client either synchronously or asynchronously.

Figure 3-1 Overview of WebSphere MQ transport for SOAP

WebSphere MQ transport for SOAP provides an alternative transport to HTTP as
shown in the diagram. This transport offers enhanced reliability compared to
HTTP. It also permits solutions to be integrated readily within an existing
WebSphere MQ infrastructure.

To prepare applications for this alternative transport, it is necessary to “plug-in”
the transport to the clients environment via a special transport registration call.
This transport registration will cause the invocation of sender software specific to

WMQ
Listener

JSP
Interface

HTTP
Server

Target
Object

SOAP-
Deployed
Service

SOAP
Layer

Client
Applications

SOAP-
Enabled

Client

WMQ
Sender

WMQ

Transport Layer

Key to Provider:

User SOAP WMQ

HTTP
HTTP

SOAP
Layer
12 WebSphere MQ Solutions in a Microsoft .NET Environment

the WebSphere MQ transport when a Web Service is invoked with a “wmq:”
prefix in the target URI. This sender software will write a SOAP request for
invocation of the service to a WebSphere MQ request queue. A special service
listener will retrieve messages from the request queue, invoke the required
service and then pass any response back to the client via a WebSphere MQ
response queue. Two service listeners are provided with WebSphere MQ
transport for SOAP, one for Microsoft .NET services and one for J2EE services.

Target Web Services need to be processed through a series of deployment
steps. These define the target service to the host infrastructure, generate proxy
methods to simplify the process of invoking the service from the client, prepare a
script file to start one of the service listeners and perform some queue and
process configuration within WebSphere MQ.

As with the HTTP case, messages continue to be sent to and from target
services in SOAP format. The WebSphere MQ transport does not undertake any
of this formatting itself but instead relies on the Microsoft .NET or Apache Axis
host Web Services environment.

The use of SOAP formatting for Web Services message is not mandatory, but it
is the format assumed in WebSphere MQ transport for SOAP. More accurately,
SOAP is the format used by the Microsoft .NET and Apache Axis SOAP engines
that are employed by WebSphere MQ transport for SOAP. SOAP is the most
common message format used in conjunction with Web Services.

3.2 WebSphere MQ transport for SOAP Installation
This section provides general information regarding the installation and use of
WebSphere MQ transport for SOAP and supplements the documentation
provided with the software.

The validity of the information in this section may change once WebSphere MQ
transport for SOAP is supported. Only issues pertaining to the Windows
operating system are identified here in accordance with the focus of this IBM
Redbook.

3.2.1 Downloading WebSphere MQ transport for SOAP
The SupportPac is available for download from Internet from the following URL:

http://www-3.ibm.com/software/integration/support/supportpacs/individual/ma0r.html

The distribution is packaged as a zip file which is approximately 5 Mb in size.
 Chapter 3. WebSphere MQ Transport for SOAP 13

http://www-3.ibm.com/software/integration/support/supportpacs/individual/ma0r.html

3.2.2 Prerequisite software
At the time of writing this redbook, the prerequisites for Windows platforms are as
follows:

� Windows 2000 + Service Pack 2, or Windows XP Professional or above

� WebSphere MQ Version 5.3 CSD05 or above

� Java™ 2 SDK and Runtime environment, Standard Edition (build 1.3.1 or
above)

� Microsoft Internet Information Services (for running .NET services) is required
on Windows 2000 platforms

� Microsoft .NET Framework redistributable V1.1 or above

� Microsoft .NET Framework SDK V1.1 or Microsoft Visual Studio .NET 2003
(for deploying Microsoft .NET services)

� Utility for extracting ZIP format files

The following sections expand more on some of these prerequisite requirements
as well as providing other supplemental information concerning installation.

Microsoft Internet Information Services (IIS)
For Windows 2000 systems it is necessary to have installed IIS to be able to
deploy and run Microsoft .NET services. It is not necessary for it to remain
installed though if target services will be using WebSphere MQ transport only.
But it is necessary that IIS has at least been installed at some stage previously
before making an actual service deployment.

If the Microsoft .NET framework has been installed before IIS, it will be necessary
to use the “aspnet_regiis” utility to register IIS to the framework. Although the
location of the aspnet_regiis.exe utility may vary with different versions of
Microsoft .NET framework, it is typically located in:
%SystemRoot%\Microsoft.NET\Framework\<version number>\aspnet_regiis -i

If multiple versions are installed, use only the executable in the target version’s
directory.

Note: The most up to date details on prerequisite software for WebSphere MQ
transport for SOAP are detailed in the documentation. This should be checked
carefully prior to installation in case of any changes to the list above.

Note: It is not necessary for IIS to have been installed in this way on Windows
XP systems.
14 WebSphere MQ Solutions in a Microsoft .NET Environment

For more information about the system requirements for Microsoft .NET, refer to:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/c
pconnetframeworksystemrequirements.asp

Microsoft .NET Framework and SDK
On systems where it is desired to deploy and run Microsoft .NET services and
clients, it is necessary to have installed either Microsoft Visual Studio .NET or the
Microsoft .NET Framework together with the Framework SDK.

3.2.3 Pre-installation
The following section discusses some pre-installation issues.

Prerequisite software installation order
It is essential that prerequisite software for WebSphere MQ Transport for SOAP
is installed in the following order:

1. Internet Information Server (IIS) (not mandatory on Windows XP)

2. Microsoft .NET Framework

3. Microsoft .NET Framework SDK or Microsoft Visual Studio .NET 2003.

4. WebSphere MQ CSD05 or later (if not already installed). This can be installed
before the above items but if it has not been it should be installed before the
following.

5. WebSphere MQ Transport for SOAP

The “ma0r_netdir” environment variable
WebSphere MQ transport for SOAP uses the Microsoft .NET gacutil utility to
register the MQSOAP.dll and two of its own executable programs. It will also
register the WebSphere MQ classes for Microsoft .NET provided with CSD05
(amqmdnet.dll) if it has not already been registered to the Global Assembly
Cache.

The location of gacutil can vary with different versions of the Microsoft
.NETredistributable framework, so (as at the time of writing this redbook) an
environment variable called ma0r_netdir can be set to change the internal
definition of the utility’s location. This environment variable should be set if it is
required to specify a location for gacutil other than the default location as used in
the Microsoft .NET Framework SDK V1.1. This default location is
%ProgramFiles%\Microsoft.NET\SDK\v1.1\Bin\gacutil. For example, users of
Microsoft Visual Studio .NET 2003 would normally want to set ma0r_netdir as
follows:
 Chapter 3. WebSphere MQ Transport for SOAP 15

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconnetframeworksystemrequirements.asp

Example 3-1 Setting the “ma0r_netdir” environment variable

set ma0r_netdir=%ProgramFiles%\Microsoft Visual Studio .NET 2003\SDK\v1.1\Bin
where %ProgramFiles% is:
C:/Program Files

If the script regenDemos.bat is used to regenerate the supplied demonstration
programs then re-registration of the DLLs will be forced. For this reason it is more
reliable to place the definition of this environment variable permanently into the
Windows environment. On Windows 2000, this can be accomplished by clicking
on “My Computer”, then right-clicking on properties, selecting “environment
variables”, and clicking “New” in the user variables pane and entering the
variable definition.

The MQJAVA_INSTALL_PATH environment variable
WebSphere MQ transport for SOAP uses the environment variable
MQJAVA_INSTALL_PATH to locate the WebSphere MQ JMS libraries. This is
normally set permanently into the environment by the WebSphere MQ
installation process. Before proceeding it should be verified that this variable is
set and points to the correct location. If for some reason the variable is not set,
the default install location for the libraries is assumed:
(%ProgramFiles%\IBM\WebSphere MQ\Java)

Java SDK version
WebSphere MQ transport for SOAP requires the availability of a Java SDK, even
where it is only required to work with Microsoft .NET Web Services and from non
Java clients. This is primarily because both C# and Java proxy code is generated
by the deployment process, even when it is only required to build C# clients. The
Java compiler is also used by the script regenDemo.bat to regenerate Java
sample programs. The location of the SDK’s bin directory must be added to the
path. As a final check, it is worth ensuring you can access both the java and the
javac commands:

Example 3-2 Verifying access to the java and javac commands

C:\>java -version
java version "1.3.1"
Java(TM) 2 Runtime Environment, Standard Edition (build 1.3.1)
Classic VM (build 1.3.1, J2RE 1.3.1 IBM Windows 32 build cn131-20020710 (JIT ena
bled: jitc))

C:\>java
Usage: java [-options] class [args...]
 (to execute a class)
 or java -jar [-options] jarfile [args...]
 (to execute a jar file)
16 WebSphere MQ Solutions in a Microsoft .NET Environment

where options include:
 -cp -classpath <directories and zip/jar files separated by ;>
 set search path for application classes and resources
 -D<name>=<value>
 set a system property
 -verbose[:class|gc|jni]
 enable verbose output
 -version print product version
 -showversion print product version and continue
 -? -help print this help message
 -X print help on non-standard options

C:\>

3.2.4 Installation
The zip file downloaded in 3.2.1, “Downloading WebSphere MQ transport for
SOAP” on page 13 should be unzipped in any required directory.

Having unzipped the distribution it is now necessary to run the demonstration
programs. This will prepare the WebSphere MQ environment needed for the
programs the first time it is used.

Before proceeding to run the standard demonstrations, we recommend that the
the documentation for the distribution is reviewed. This is located in the docs
sub-directory underneath the installation directory.

3.2.5 Running the demonstration programs
An IVT (Independent Verification Test) system is provided with WebSphere MQ
transport for SOAP. This is the easiest way to run through the set of supplied and
pre-prepared set of demonstration programs. It will also ensure the environment
is correctly set up for the demonstrations after installation, including the
necessary registration to the Global Assembly Cache with the gacutil utility. It is
therefore recommended that the IVT utility is used to confirm correct installation
and environment configuration before developing any custom applications.

The IVT is executed by using the runivt.bat script that is located in the demos
directory. To run through the full set of tests, enter the command “runivt” with no
arguments. An example run is given below. Some of the tests have been
removed from the log for brevity:

Example 3-3 Sample execution of the runivt utility

C:\ma0r\demos>runivt
 Chapter 3. WebSphere MQ Transport for SOAP 17

define channel(TESTCHANNEL) CHLTYPE(SVRCONN) TRPTYPE(TCP) REPLACE completed OK.
amqmdain start MQSOAP.DEMO.QM completed OK.

----- [AxisSimple] --------------------------------
WMQ transport test: Axis to Axis, using simple Axis calls
+++ server: helpers\listen_SOAP.javaDemos.server.StockQuoteAxis
--- client: java javaDemos.clients.SoapClient -u
wmq:SOAP.javaDemos.server.StockQuoteAxis?connectQueueManager=MQSOAP.DEMO.QM -n
javaDemos.server.StockQuoteAxis_Wmq

start SoapClient demo to:
 wmq:SOAP.javaDemos.server.StockQuoteAxis?connectQueueManager=MQSOAP.DEMO.QM
This request is synchronous.
Response: 55.25
OK.

----- [AxisSimpleOneWay] --------------------------------
WMQ transport test: Axis to Axis, using simple Axis calls to a one way service method
--- client: java javaDemos.clients.SoapClientOneWay -u
wmq:SOAP.javaDemos.server.StockQuoteAxis?connectQueueManager=MQSOAP.DEMO.QM -n
javaDemos.server.StockQuoteAxis_Wmq

start SoapClient demo to:
 wmq:SOAP.javaDemos.server.StockQuoteAxis?connectQueueManager=MQSOAP.DEMO.QM
Sending one way
Waiting for a results file to be generated...
One way service result is: 55.25
OK.

.

.

. <<< OUTPUT removed for brevity >>>

.

.

.

----- [Axis2DotNetWsdl] --------------------------------
WMQ transport test: Axis to .NET (Asmx), using WSDL Axis calls
--- client: java javaDemos.clients.WsdlClient -D

start WsdlClient demo, wsdl port StockQuoteDotNetSoap resolving uri to ...
 'wmq:SOAP.StockQuoteDotNet@MQSOAP.DEMO.QM?connectQueueManager=MQSOAP.DEMO.QM'
This request is synchronous.
Response: 88.88
OK.

----- [Axis2DotNetProxy] --------------------------------
18 WebSphere MQ Solutions in a Microsoft .NET Environment

WMQ transport test: Axis to .NET (Asmx), using WSDL Axis calls
--- client: java javaDemos.clients.SQAxis2DotNet

This request is synchronous.
Response: 88.88
OK.

Service SimpleJMSListener: kill request accepted.
Service DotNet: kill request accepted.
endMQ.bat not implemented for Windows ... MQ left running.
===
22 tests run, of which 0 failed.

By default, runivt starts the various listeners it requires during the tests and then
closes them down at the end of its execution. If is required to leave the listeners
running after runivt has completed, the “hold” option should be specified on the
runivt command line.

The IVT utility uses a configuration file called ivttests.txt that details the various
tests to be performed. If required, it is possible to create different configuration
files detailing different sets of tests. This can be accomplished by use of the “-c
<filename” option to the runivt script. We recommend that different configuration
files are created for customized tests in preference to editing the default file.

For more details on the IVT, refer to the documentation provided with WebSphere
MQ Transport for SOAP.

3.2.6 Re-registration to the Global Assembly Cache
As already mentioned, it is necessary for certain DLLs and EXEs used by
WebSphere MQ transport for SOAP to be registered to the Global Assembly
Cache (GAC) prior to deployment and execution of Microsoft .NET Web
Services. This registration is performed automatically when the IVT is first run.
The IVT calls the script setcp.bat, which sets up the correct CLASSPATH for the
Java components and that in turn, calls the script registerDotNet.bat located in
the bin directory. It uses the Microsoft .NET utility gacutil to perform the
registration. Once made, this registration survives system reboots and
subsequently re-registration is not necessary. If the IVT is not used, then
setcp.bat makes the registration when it is first invoked.

Occasionally, you may need to force re-registration of these components, for
example, if there are potential version mis-matches or some other suspected
problem. The registerDotNet.bat script is invoked directly to do this. It uses
gacutil to explicitly remove the existing references and then re-register them. For
example:
 Chapter 3. WebSphere MQ Transport for SOAP 19

Example 3-4 Registering required libraries to Microsoft .NET

C:\RandomService>\ma0r\bin\registerDotNet
Registering dotNet classes. This should only need to be done once.

C:\RandomService>

The registerDotNet.bat script also registers the WebSphere MQ classes for
Microsoft .NET library (amqmdnet.dll) if this has not already been registered.
Unlike the WebSphere MQ transport for SOAP components however, it will not
refresh any existing registration. In the event that these classes are being
updated to a later level it may be therefore necessary to use gacutil manually to
remove the existing registration before calling registerDotNet.bat. These classes
are supported and integrated into the WebSphere MQ distribution with effect
from CSD05.

3.2.7 Checking the WebSphere MQ transport for SOAP release level
The release level of an installed copy of WebSphere MQ transport for SOAP
SupportPac can be identified by typing the command “ma0rver” in a command
prompt. For example:

Example 3-5 Checking the release of a WebSphere MQ transport for SOAP SupportPac

c:\ma0r>ma0rver
This is the February 2003 Cat2 (unsupported) SupportPac release of
 WebSphere MQ Transport for SOAP
Press any key to continue . . .

3.3 SOAP formatting
In this section the Simple Object Access Protocol (SOAP) and the various SOAP
encoding options that can be used in WebSphere MQ transport for SOAP
applications are reviewed. The mechanisms to declare these different options in
service code source are also illustrated.

SOAP has become an industry wide specification for describing XML messages
and their attachments for delivery across a network. These XML messages are
used in the context of Web Services to invoke remote methods. There are
options other than SOAP for remote method invocation, but in the Web Services
context, SOAP is far more reliable than alternatives such as HTTP’s post and get
methods. SOAP messages are written in XML as this permits data to be
efficiently structured, unlike alternatives such as plain HTML.
20 WebSphere MQ Solutions in a Microsoft .NET Environment

In itself, SOAP places no constraints on the structure of the XML message.
There are however several different SOAP style and encoding variants. These
include:

� Remote Procedure Call (RPC) encoding
� Remote Procedure Call (RPC) Literal encoding
� Document Style encoding (also known as messaging style)
� Direct Internet Message Exchange (DIME)
� SOAP with attachments

The first three of these encoding options are the ones most commonly used
today. From a developer’s point of view, RPC and Document style encoding differ
in a number of respects. RPC services are usually accessed by local proxy
objects at the client side with invocation data being passed from client to service
via parameters that generally follow the technical implementation of the service.
The RPC message essentially describes the details of a procedure call with its
name and parameters values or procedure returns. Document style services
publish their data to services in a more generic XML form. Services can parse
such messages from any client that follows a set XML schema. This is therefore
a less rigid implementation than RPC.

RPC Literal encoding is a format for use where a single XML object is
pre-prepared at the application level and passed complete to the SOAP stack.
This has the advantage that the SOAP stack can serialize the data faster, but the
disadvantage is that additional XML parsing will usually necessary in the
application. DIME and SOAP with attachments are two different methods for
encoding binary data.

RPC encoding is generally the easiest to implement within a SOAP engine and
Document style encoding generally the hardest. RPC Literal is generally faster
than RPC but slower than Document style. The most appropriate encoding
option depends on the details of the specific application.

In addition to these different styles, there may also be differences in SOAP
formatting from different vendors of Web Service infrastructures according to
their different interpretations of the specification. Standards for the SOAP
specification are still in their infancy. There are also currently several different
versions of the SOAP specification in use, such as versions 1.1 and 1.2.

One of the design aims in WebSphere MQ transport for SOAP was to decouple
its implementation from the specifics of the SOAP version or format options used
in transported messages. The transport level is responsible for posting and
receiving messages from the a services host and should not need to have
knowledge of the details of the actual SOAP formatting.
 Chapter 3. WebSphere MQ Transport for SOAP 21

Although the transport is theoretically independent of the SOAP format, care
must be taken to ensure that the client and server Web Services infrastructure
are compatible so that they are able to understand and respond to each others
SOAP messages.

WebSphere MQ transport for SOAP can process RPC and Document style
messages. However, there are some limitations:

� An Axis client cannot call a .Microsoft .NET service using RPC style
encoding.

� RPC Literal encoding is not currently implemented.

� SOAP complex type support is not currently implemented.

� Neither SOAP with attachments nor DIME encoding are currently
implemented.

3.3.1 How to specify RPC or Document style encoding
Microsoft .NET, by default, creates services using Document style encoding.
Services can however use RPC encoding by including the “SoapRpcMethod”
attribute in the method declaration. Alternatively, the attribute [SoapRpcService]
can be used on the class definition. The following extract, from the WebSphere
MQ transport for SOAP samples, illustrates this in practice with the method
getQuote being declared to use RPC style encoding and the method
getQuoteDOC being declared to use the default Document style method
encoding.

Example 3-6 Setting RPC or Document style encoding in service code

//RPC method
[WebMethod] [SoapRpcMethod]
 public float getQuote(String symbol) {
 if (symbol.ToUpper().Equals("DELAY")) Thread.Sleep(5000);
 return 88.88F;
 }

Note: There is one area where WebSphere MQ transport for SOAP makes
syntactic assumptions about the format of SOAP messages. This is in the
Microsoft .NET listener MQSoapHost, where a request SOAP message is
manually parsed to extract the details of a service that is to be invoked. The
Java equivalent of this listener, SimpleJMSListener does not make these
assumptions as it does not have to manually parse messages to extract the
service details.
22 WebSphere MQ Solutions in a Microsoft .NET Environment

//Document style method
 [WebMethod]
 public float getQuoteDOC(String symbol) {
 return 77.77F;
 }

WebSphere MQ transport for SOAP does not permit target Microsoft .NET
services to specify the SOAPAction HTTP header field. This is because the
MQSoapHost listener itself reconstructs the SOAPAction field based on the
default rules for the namespace and method.

For more details on SOAP formatting, refer to the article “Introduction for Web
Services and the WSDK” which is available at the following URL:

http://www.ibm.com/developerWorks

3.4 WebSphere MQ transport for SOAP application
development

A Web Services client developed to send SOAP messages over HTTP transport
can normally be reused with WebSphere MQ transport for SOAP with only one
mandatory change. This is the addition of a method call that registers
WebSphere MQ as a recognized transport.

A Microsoft .NET service will need some further simple modifications that are
described in this chapter. These are to declare the particular Web Service
methods and SOAP parameter formatting options.

Java clients also need a method call to enable the WebSphere MQ transport, but
after that is added services can generally be re-used with no need for further
modification.

Because of this minimal coding impact, developers are able to continue to use
favored development tools such as WebSphere Application Developer or
Microsoft Visual Studio .NET for both their client and service applications. Use of
the different transport mechanism does not directly affect the basic development
environment. It is however necessary to deploy services outside the development
environment before those services can be successfully invoked from clients.

Developers who are using WebSphere MQ transport for SOAP might, as a
general guideline, adopt the following development sequence:

1. First, implement and test clients and services operating directly together
within a single process/application development environment.
 Chapter 3. WebSphere MQ Transport for SOAP 23

http://www.ibm.com/developerWorks

2. Next, make a test deployment of the service as an HTTP WebService. As well
as deployment of the service, minor changes to the client will also be
required. Then retest and debug the client with the service.

3. Finally, make a test deployment of the service as a WebSphere MQ transport
for SOAP service. As described above, this process should be straightforward
with little need for additional debugging.

This complete procedure is neither mandatory nor always appropriate. The first
two steps would not be necessary, for example, if a target service has already
been successfully implemented with HTTP.

3.4.1 Client environment
When considering the client environment, there are various different scenarios in
which client applications can be prepared and made available. For example:

� By installing a pre-prepared Java or .NET binary application on the client
system

� By developing and compiling an application directly on the client system that
uses pre-prepared proxies

� By developing and compiling an application directly on a client system without
pre-prepared proxies

� By using different systems for both the client and server

The first case is the simplest in terms of setting up the required client
environment. For Microsoft .NET clients, it is necessary to have the Framework
and (at the time of writing) the Framework SDK installed, together with
WebSphere MQ transport for SOAP. It is also necessary to register the required
DLLs, for example with the registerDotNet.bat script located in the bin directory.
Java clients require WebSphere MQ transport for SOAP and access to a Java
JDK. A default WebSphere MQ URI is set within the automatically generated
proxy routines and care needs to be taken to ensure that this is either set
correctly at deployment time for the eventual environment, or that the URL is
over-ridden when executing the client.

In the second case, using Microsoft .NET services or using Java services that
are being accessed by proxies, it is necessary to copy the proxy code from the
server system on which the service is deployed back to the client. This can be
extracted from the helpers directory created during deployment. The client is
then built with the relevant proxy stubs that were generated on and copied from
the deployment system.

The third case assumes the proxies are not available and it is therefore
necessary to take the Java or Microsoft .NET source, together with the ASMX
24 WebSphere MQ Solutions in a Microsoft .NET Environment

file, and redeploy the service on the client system to regenerate the proxies.
Although there is no reason why the deployment utility cannot be re-run on the
client system, the result is an unnecessary overhead as the request queue is
generated on the client and all the other intermediate deployment steps are
executed. This does not cause any malfunction but it is superfluous, causes
confusion and can give rise to security concerns. Some organizations may deem
it unacceptable to publish the complete service code to clients.

In the fourth case, initial versions of a client and server are prepared on one
system and then both transported to different target systems. Here, the complete
contents of the deployment directory must be copied to the server system. The
service must then be redeployed and the client changed as necessary, then
rebuilt and distributed as per one of the methods above.

3.5 WebSphere MQ transport for SOAP .NET
deployment

Deployment is essentially the process of configuring the host Web Services
infrastructure to recognize the prepared Web Service. After deployment, clients
are able to invoke the service with a special proxy class generated by the
deployment process. Java clients can invoke the Web Service directly with low
level calls or by the use of a Web Services Description Language (WSDL)
configuration file. On the server side the infrastructure recognizes the calls to the
service and are able to call it as specified.

The WebSphere MQ transport for SOAP deployment procedure is based around
a provided Java deployment utility called deployWMQService. This is a simple
character based utility and there are currently no graphical implementations.

Although it is not necessary to use the deployment utility, it is normally simpler to
use this than undertake the various deployment steps manually. The utility is
implemented by IBM in the Java language in order to minimize platform
dependency issues. WebSphere MQ transport for SOAP is not only available for
.NET Web Services hosted on Windows platforms, but also for Apache Axis Web
Services hosted on other operating systems such as Linux and AIX.

The deployment utility operates “bottom up” in that it starts with an implemented
class for the service:
 Chapter 3. WebSphere MQ Transport for SOAP 25

Figure 3-2 WebSphere MQ transport for SOAP deployment

The main activities deployment undertakes are:

1. To prepare the WSDL

2. To deploy the service from the WSDL

3. To generate client proxies from the WSDL. (The use of proxies simplifies the
process of invoking the Web Service process).

4. To prepare a script for invoking a .NET listener on the Web Service platform

5. To configure MQ with the required queues and processes necessary to
implement the service.

These separate steps can be run individually through the utility for alternative
deployment scenarios.

The utility is called from the command script deployWMQService.bat. This in turn
invokes the Java program com.ibm.mq.ma0r.util.deployWMQService. To use this
utility the CLASSPATH environment variable must be correctly setup first. The
easiest way to do this is to execute the “setcp.bat” utility provided in the “bin”
sub-directory.

Details of how WebSphere MQ transport for SOAP services deployed in
organizations are highly dependent on the target environment. The deployment
utility provided acts as a useful guide. Developers with a more complex
deployment scenario need to build their own deployment processes in order to
match their requirements more closely. The source code for the Java

Client
(.Axis)

WSDL

Source Service
(.NET)

Deployment
Descriptors

Used by Host
SOAP Runtime

Client Proxies
(.Axis)

Client Proxies
(.NET)

Used by Clients

Queues
Triggers

Listener Scripts

Used by WMQ
Listeners

Client
(.NET)
26 WebSphere MQ Solutions in a Microsoft .NET Environment

deployWMQService utility is therefore included with WebSphere MQ transport for
SOAP (in the docs sub-directory) to help customers with this process.

The WebSphere MQ configuration activities perform only basic customization,
specifically creating the request queue and setting up process definitions to
enable the .NET or Java listeners to be started with trigger monitors. Further
configuration is required in real situations, for example:

� To create channel definitions and enable communication between queue
managers located on different machines. This is needed when the client is
operating with server bindings to a service on a different machine.

� To create a server connection channel where the client application is to invoke
the service with WebSphere MQ client bindings and there is no local queue
manager at the client. It is necessary to create and configure a channel to
enable the client and server to communicate.

� To configure SSL communications where required. Configuration
requirements depend on whether the client is operating with server or client
bindings. In general it is necessary to modify the WebSphere MQ channel
definitions to use SSL and also to prepare a key repository file and import
certificates into the queue manager(s). Refer to chapter “WebSphere MQ
transport for SOAP and SSL” on page 64 for more details on SSL.

The deployment utility deployWMQService is called from the directory in which
the source is located. This is also the directory from which the service is
executed. The deployment procedure creates various directories and files within
and under this directory. Most of the output is placed in the helpers subdirectory
which is created automatically.

Deployment performs the following actions:

� For Java services, it compiles the source into the classes subdirectory. For
example:

helpers\classes\javaDemos\server\StockQuoteAxis.class

� It generates the appropriate WSDL in the file
helpers\<classname>_Wmq.wsdl. For example:

helpers\javaDemos.server.StockQuoteAxis_Wmq.wsdl

� For Java services, it prepares a deployment descriptor file
(<classname>deploy.wsdd and <classname>undeploy.wsdd), and deploys
into the execution directory to create or update server-config.wsdd. For
example:

helpers\javaDemos\server\StockQuoteAxis_deploy.wsdd
helpers\javaDemos\server\StockQuoteAxis_undeploy.wsdd
helpers\server-config.wsdd
 Chapter 3. WebSphere MQ Transport for SOAP 27

� It generates the appropriate proxies for Java, C# and Visual Basic from this
WSDL. On Windows platforms, proxies are generated in Java, Visual Basic
and C# regardless of the language in which the service was written. The
package and file directories for Java proxies reflect the original package. The
C# and VB proxies are placed directly into the helpers directory. For example:

Java proxies might be located in:

helpers\javaDemos\server\StockQuoteAxisServiceLocator.java

A C# proxy might be located in helpers\StockQuoteAxisService.cs

A Visual Basic proxy might be located in StockQuoteAxisService.vb

� It compiles the Java proxies into the appropriate directory beneath:

helpers\classes directory

For example:

helpers\classes\javaDemos\server

� It prepares the WebSphere MQ queue within which messages requesting
invocation of the service are passed. This queue is named
SOAP.<classname>, for example:

SOAP.javaDemos.server.StockQuoteAxis

� It prepares a file to start the listener that monitors this request queue and
begin the process of service invocation. This script file is placed in
helpers\listener_<classname>.bat, for example:

helpers\listen_javaDemos.server.StockQuoteAxis.bat

� It prepares WebSphere MQ definitions that permit a listener process to be
automatically triggered. For example:

WebSphere MQ Process: SOAP.javaDemos.server.StockQuoteAxis

WebSphere MQ Trigger Initiation Queue: SOAP.INITQ

Although these definitions are automatically created, the use of triggered
listeners are optional. Refer to 3.10, “Starting listeners with WebSphere MQ
triggering” on page 60 for more information about triggered listeners.

The WSDL and the proxies generated from it have the appropriate WebSphere
MQ URI set within it for the service, for example:

wmq:SOAP.javaDemos.server.StockQuoteAxis@MQSOAP.DEMO.QM?connectQueueManager=MQS
OAP.DEMO.QM
28 WebSphere MQ Solutions in a Microsoft .NET Environment

3.5.1 WebSphere MQ URI Syntax
WebSphere MQ Transport for SOAP client applications make use of a specially
formed URI that defines various WebSphere MQ attributes specific to the
transport. This is formatted as follows:

wmq:<queueName>[@<queueManagerName>][?<options>], where options are
an optional comma separated list of attribute=value pairs.

The proxy code generated by the deployment process sets a default URI based
on the class name of the service and the target queue manager, but it needs to
be changed to match precise requirements.

WebSphere MQ names within the URI are case sensitive, but the keywords
themselves are case insensitive. The queueName and queueManagerName are
used at the client to open the queue for sending the request message. If the
queueManagerName is not specified, the queueName must be defined at the
queue manager to which the client is connected.

The full list of the URI options is as follows.

� replyToQueue=<replyToQueue>

Specifies the queue at the client side to be used for the response message.

� timeout=<timeout>

Specifies the timeout in milliseconds for the client to wait for a response
message. The default value is set for 10 seconds (10000).

� connectQueueManager=<connetQueueManager>

Specifies the queue manager to which the client connects.

� expiry=<expiry>

Specifies how long WebSphere MQ retains the message before discarding it.
This is expressed in units of tenths of a second. By default the expiry time is
unlimited (-1).

� priority=<priority>

Specifies the message priority as an integer value greater than or equal to
minus one. The default value is -1 which indicates priority as per queue
definitions.

� persistence=<persistence>

Specifies the message persistency:

0 = Not persistent
1 = Persistence
2 = Persistency as per queue definition
 Chapter 3. WebSphere MQ Transport for SOAP 29

The default value is 2, persistency as defined by the queue definition.

3.5.2 WebSphere MQ client connection options
Here are WebSphere MQ client connection options:

� clientChannel =<clientChannel>

Specifies the channel to be used for a SOAP client to make a WebSphere MQ
client connection.

� clientTransport=<clientTransport>

Specifies the transport to be used for a SOAP client to make a WebSphere
MQ client connection (default tcp).

� clientConnection=<clientConnection>

Specifies the connection to be used for a SOAP client to make a WebSphere
MQ client connection. This is the host name of the remote system.

SSL options
The following Secure Sockets Layer (SSL) options have been tested with
Microsoft .NET clients only and will not function with Java clients.

� sslKeyRepository=<sslKeyRepository>

Specifies the location of the SSL repository

� sslCipherSpec=<sslCipherSpec>

Specifies the SSL Cipher specification to use

� sslPeerName=<sspPeerName>

Specifies any required SSL distinguished name authentication. This should
be passed in parentheses as discussed in 3.11.2, “Use of SSLPeerName” on
page 66.

Refer to 3.11, “WebSphere MQ transport for SOAP and SSL” on page 64 for
more details on how these SSL options are used.

This URI needs to be changed to match the target WebSphere MQ topology.
(When it is necessary to change the URI, we recommend that you make the
change within the client code and not in the automatically generated proxy code).

Care must be taken with naming during the deployment process, particularly
where “namespace” directives are used in the actual service source. The
deployment utility creates the request queue using the name of the input ASMX
file. For example, if the ASMX file is called test.asmx, the request queue is
generated as SOAP.test. When using Microsoft Visual Studio .NET care should
be taken to check that the ASMX filename should match that for the compiled
30 WebSphere MQ Solutions in a Microsoft .NET Environment

DLL for the service. Take care to check also that the name of the request queue
that is generated by the deployment utility matches that set within the client URI.

Once a service has been deployed from a given directory client it can only be
accessed from that directory. If the service directory has to be moved, or
renamed, the service must be redeployed.

3.5.3 Calling deployWMQService
In this section the calling options for the deployment utility deployWMQService
are reviewed. The utility is invoked by executing a BAT or shell script called
deployWMQService.bat/sh. This script is located in the bin sub-directory which
will be placed into the path after setcp.bat is executed. The wrapper script
invokes the Java program com.ibm.mq.ma0r.util.deployWMQService. The script
passes in required environment variables as Java system properties which is
why it is best to not invoke the Java program directly.

The script should be invoked as follows:

deployWMQService [options] -f className

� -f <input-file>

This argument is mandatory. For Microsoft .NET services <input-file> is the
name of the assembly directive (ASMX) file that describes the service. For
Java services, <input-file> is the fully qualified package name the source of
the service. This path is be denoted either with fileName or className
notations.

Other optional arguments and parameters are:

� -m <queueManagerName>

Specifies the name of the queue manager on which the service is to be
hosted. The default is the default queue manager ("").

� -q <queueName>

Specifies the name of the request queue to be used to carry messages to this
service. For Java services this defaults to a name derived from the path name
where the source is located. For .Net services it defaults to a name derived
from the name of the ASMX file.

� -echo ON | OFF

Note: .NET services that are not written using code embedded in the .ASMX
file should be compiled prior to executing deployWMQService
 Chapter 3. WebSphere MQ Transport for SOAP 31

Turns echo tracing on or off for execution of deployWMQService. Note this is
currently a very simple tracing mechanism that is totally separate from
WebSphere MQ tracing. The tracing is expected to be integrated into
WebSphere MQ tracing in the future.

� -T num

Number of threads to use in listener. The default is one thread. (See below for
more information about this parameter.)

� -v

Sets verbose output from commands

� -c <operation>

Specifies a specific part of the deployment process to be executed. Operation
is one of these:

– allAxis

Perform all compile and setup steps for an Axis/Java service.

– compileJava

Compile the Java service (.java to .class).

– genAxisWsdl

Generate Wsdl (.class to .wsdl).

– axisDeploy

Deploy the class file (.wsdl to .wsdd, apply .wsdd).

– genProxiestoAxis

Generate proxies (.wsdl to .java, .class, .cs and .vb).

– genAxisWMQBits

Setup WMQ queues, listeners and triggers for an Axis service.

– allAsmx

Perform all setup steps for an Asmx service.

– genAsmxWsdl

Generate Wsdl (.asmx to .wsdl).

– genProxiesToDotNet

Generate proxies (.wsdl to .java, .class, .cs and .vb).

– genAsmxWMQBits

Setup WMQ queues, listeners and triggers.
32 WebSphere MQ Solutions in a Microsoft .NET Environment

– startWMQMonitor

Start the trigger monitor for WMQSOAP services.

It is not necessary to invoke the utility for each deployment step listed above.
Where a filename is given with a .java or .asmx extension, the operation defaults
to allAxis or allAsmx respectively. The name of this file is specified with the utility
using the -f flag. The default operation then actions all the necessary deployment
steps with the exception of the invocation of a trigger monitor.

The -T flag is used when invoking deployWMQService to implement a
multi-threaded listener. The flag is followed with the number of target threads. If
-T is not used, it defaults to a single threaded listener.

WebSphere MQ transport for SOAP includes a set of demonstrations which help
to illustrate the complete deployment process further. In particular, the script
demos\regenDemo.bat rebuilds all of the sample programs provided and
includes calls to deployWMQService in order to illustrate the deployment
procedure for both .NET and Axis Web Services.

3.6 WebSphere MQ transport for SOAP listener for .NET
This section gives more detail on the listener MQSOAPHost provided with
WebSphere MQ transport for SOAP. This listener receives and actions requests
for Microsoft .NET Web Services.

For Microsoft .NET Web Services, WebSphere MQ transport for SOAP requires
a separate queue and listener for each deployed service. This is a key difference
to the SimpleJMSListener where it is possible to use a single listener process to
access services that have been deployed from the same directory.

MQSOAPHost listeners can either be started manually or alternatively
WebSphere MQ triggering can be used to start them automatically on demand.
For customers deploying a large number of services, triggering can prove more
convenient. The use of triggering is discussed in more detail in 3.10, “Starting
listeners with WebSphere MQ triggering” on page 60.

The service deployment process automatically generates the service request
queues and prepares process definitions for the use of triggered listeners. It
generates a script in the helpers directory, called listen_<classname>.bat that
can be used to start a listener for the particular service. The deployment utility
set the request queue name in the listener start up script to SOAP.<className>.
This is changed if required, with the -q command line option of the listener. The
default setting for the queue manager is MQSOAP.DEMO.QM. The queue
 Chapter 3. WebSphere MQ Transport for SOAP 33

manager name can be changed at deployment with the -m option, or by
specifically overriding it in the WebSphere MQ URL.

SOAP messages from a client are encapsulated within a WebSphere MQ
message and dispatched to the listener via the WebSphere MQ request queue.
The MQSoapHost process monitors this queue for incoming messages. The
method ProcessRequests() retrieves incoming messages from the request
queue, extracts the text of the message and then uses the Microsoft .NET
infrastructure to invoke the service. Both the SOAP processing and the actual
invocation of the service itself are performed within the listener thread. The
SOAP response message from is then returned to the client via the WebSphere
MQ response queue.

Messages from clients are read into a byte array and then converted to text
assuming UTF-8 encoding. Response messages are returned back transparently
as a byte array.

MQSoapHost can operate in multi-threaded mode with a configurable number of
worker threads each of which can read and action messages from request queue
in parallel. This is required where service execution is comparatively slow so as
to not compromise performance. The default number of threads is one, but this is
changed with the -T command line option. This option is either given directly to
the deployment utility, in which case it is placed into the listener start up script, or
to the MQSoapHost command line if invoking the listener directly.

The listener sets a correlation id in the reply message which is the same as the
originating message id, as per standard practice. The message is then
dispatched over WebSphere MQ with the same persistence, priority and expiry
options of the request message. These options are specified in the WebSphere
MQ URI used in the client application.

The MQSoapHost listener does not currently handle pure JMS messages that
include an MQRFH2 header. This is primarily because the C# classes for
WebSphere MQ do not currently support JMS style messages. Client
applications to Microsoft .NET services must therefore use native WebSphere
MQ rather then pure JMS. Because of this restriction, it is necessary for the Java
WMQSender code to prevent the generation of MQRHF2 header and ensure
interoperability between Java clients and .NET services.

The listener currently only process request/response message pairs and does
not correctly handle one way messages or report messages. As described in

Note: This same script is used to start the listener whether it is invoked
manually or by triggering.
34 WebSphere MQ Solutions in a Microsoft .NET Environment

“Current status and future plans” on page 69, facilities for one way messaging or
report messages may be included in a future version.

For .NET services it is currently necessary to have a separate listener for each
deployed service, even if they are deployed from the same directory.

3.6.1 Executing MQSoapHost
The Microsoft .NET listener is located in bin\MQSoapHost.exe under the
installation directory. The options for calling this are:

MQSoapHost –m QueueManager –q QueueName –w directory [-v virtual dir] [-s
web-service] [-T numServerThreads]

The mandatory parameters are:

� -m

<Qmgr Name>

� -q

<Queue Name>

� -w

<directory>

The optional parameters are:

� -w

Physical directory containing Web Service

(default is 'c:\\inetpub\\wwwroot\\<Application>\\')

� -v

<virtual directory>

Application (extracted from queue if not specified)

� -s

<Webservice>

WebService name, for example. test.asmx

MQSoapHost is normally executed from the listener script generated at
deployment so it is not necessary to run it directly. However, where the default
options are not appropriate, it is necessary to either modify the generated script
or use an alternative script. An example of how MQSoapHost might be called
directly is provided below:
 Chapter 3. WebSphere MQ Transport for SOAP 35

Example 3-7 Illustrating the use of MQSoapHost

MQSoapHost -m MQSOAP.DEMO.QM -q SOAP.StockQuoteDotNet -w C:\ma0r\demos -v /vdir -s
StockQuoteDotNet.asmx -T 10

3.7 A simple example with a Microsoft .NET Web Service
An example of how to use WebSphere MQ transport for SOAP is shown here. A
Microsoft .NET client is used to access a very simple Web Service.

The following steps are required to develop this example:

� Write the Web Service

� Write the Web Service directive file

� Deploy the service using WebSphere MQ transport for SOAP

� Write the client application using generated Proxy code

� Define the WebSphere MQ response queue

� Define WebSphere MQ communication channels

� Start the prepared Microsoft .NET listener

� Test the application

In this section the service is developed on the same local machine as the client.
The subsequent sections demonstrate how the service is invoked across the
network, first with client bindings and then with server bindings.

3.7.1 Write the Web Service
Our Web Service is a simple method called getRandom that accepts a string as
an input parameter which can be set to either “int” or “double”. The service then
returns a string representation of either an integer or double precision random
number. The service is first developed as a purely local standalone application,
that is, it is not implemented as a Web Service. Once this standalone application
is working properly then it is converted it into a Web Service.

When turning methods into Web Services it is necessary to check that any
arguments to methods of the Web Services are compatible with the host .NET (or
Axis) environment. Refer to 3.4, “WebSphere MQ transport for SOAP application
development” on page 23. In this case, simple data types are used to prevent any
issues.
36 WebSphere MQ Solutions in a Microsoft .NET Environment

When adopting code from a local application, the service method must be
modified to declare it as a Web Service and the method by which each method’s
parameters are to be formatted are also identified. (These steps are not
necessary when implementing Java services). When adopting service code that
has already been prepared as an HTTP WebService, existing definitions do not
further modification for it to be used as a WebSphere MQ WebService. (However,
it must still be deployed through the WebSphere MQ transport for SOAP
deployment mechanism).

The example below shows the Web Service declaration and method formatting
option (RPC) in bold.

Example 3-8 Our getRandom Microsoft .NET Web Service

using System;
using System.Web.Services;
using System.Web.Services.Protocols;
using System.Web.Services.Description;
using System.Threading;

[WebService (Namespace="http://dotnet.server")]
public class RandomNumberNET
{
 public Random r;

 public RandomNumberNET()
 {
 r = new Random();
 }

 [WebMethod] [SoapRpcMethod]
 public String getRandom(String varType)
 {
 if (varType.Equals("int"))
 {
 int anInt = r.Next(1000000);
 return System.Convert.ToString(anInt);
 }

 if (varType.Equals("double"))
 {
 double aDouble = r.NextDouble();
 return System.Convert.ToString(aDouble);
 }

 return("Error");
 }
}

 Chapter 3. WebSphere MQ Transport for SOAP 37

The Web Service is placed into a new sub-directory called RandomServiceNET
and is saved in a file called RandomNumberNET.cs.

The service code must be compiled. In this simple example the command line
tools from the Microsoft .NET framework SDK is used.

Example 3-9 Compiling the Microsoft .NET getRandom service

C:\RandomServiceNET>csc /t:library RandomNumberNET.cs
Microsoft (R) Visual C# .NET Compiler version 7.00.9466
for Microsoft (R) .NET Framework version 1.0.3705
Copyright (C) Microsoft Corporation 2001. All rights reserved.

The service code is compiled into a DLL file, RandomNumberNET.dll. When the
Framework SDK’s command line tools are used, it is important that the DLL is
manually placed into a sub-directory called “bin” under the directory, where the
service code and ASMX file are located. It is important that this is done before
running the deployment utility otherwise the deployment process will fail. (This
does not apply when using the Microsoft Visual Studio .NET IDE, as described in
9.3.3, “WebSphere MQ transport for SOAP deployment for IAS” on page 185

For more details on the process of customizing existing service code, refer to the
Microsoft .NET documentation.

3.7.2 Write the .NET ASMX service directive file
Having prepared the actual service code, it is now necessary to create an ASMX
file which is the addressable entry point for the service used by Microsoft .NET.
This file normally contains a simple one line definition, in this case as follows:

Example 3-10 Our assembly directive file for our getRandom service

<%@ WebService Language="C#" Codebehind="RandomNumberNET.cs" Class="RandomNumberNET" %>

This directive specifies that the source for the service is located in
RandomNumberNET.cs and that its classname is RandomNumberNET. In our
testing it is noted that the actual source name given with the “Codebehind”
parameter is not significant. Deployment is successful even if this name is
incorrect. The nominated classname is significant and needs to be correct.

It is possible to enter the service method directly in the ASMX file as “inline
code”. Refer to the directive file StockQuoteDotNet.asmx in the WebSphere MQ

Note: Pre-compilation is not required if the service source is placed “in-line”
within the assembly directive file.
38 WebSphere MQ Solutions in a Microsoft .NET Environment

transport for SOAP demos directory for an example on how to achieve this. In the
business case scenario, having in-line source was not the most practical route,
especially as it was required to use existing code for a new Web Service. The
ASMX file was therefore separated from the service code.

Instead of creating this ASMX file manually, an alternative is to create a new C#
project in Microsoft Visual Studio .NET. The IDE automatically generates the
ASMX file with the correct references. This is done in Chapter 9., “Messaging
solution: .NET client to .NET Web Services using WebSphere MQ SOAP
transport” on page 163 in our business scenario and the reader is referred there
for the detail.

3.7.3 Deploying the Microsoft .NET service
The next step in the development process is to run the WebSphere MQ transport
for SOAP deployment utility.

It is first necessary to set the CLASSPATH environment variable so this utility can
be found by the JVM. This is achieved with the setcp.bat script:

Example 3-11 Setting up the CLASSPATH environment variable

C:\RandomServiceNET>\ma0r\bin\setcp

C:\RandomServiceNET>

This script sets all required classes for WebSphere MQ transport for SOAP
correctly into the CLASSPATH. This script is located in the bin sub-directory
under the installation directory (note that its location may change in future
releases). The setcp.bat script is safe to be executed from directories external to
the actual installation directory so services can be located in any required
directory on the development system.

Care is needed when executing other Java programs independently of
WebSphere MQ transport for SOAP within the same command window as
setcp.bat completely resets the CLASSPATH.

Before running the deployment utility it is necessary to create and start the target
queue manager. This is done in the usual way with runmqsc or WebSphere MQ
Explorer. In our example the queue manager is named RANDOMQM.

Once these issues are addressed, the deployment utility can now be executed as
follows:
 Chapter 3. WebSphere MQ Transport for SOAP 39

Example 3-12 Deployment of our getRandom service

C:\RandomServiceNET>deployWMQService -m RANDOMQM -f RandomNumberNET.asmx
Package name: DefaultNamespace
Generating WSDL...
mqsoapwsdl wmq:SOAP.RandomNumberNET@RANDOMQM?connectQueueManager=RANDOMQM Random
NumberNET.asmx helpers\RandomNumberNET_Wmq.wsdl
Preparing listener...
Configuring MQ...
Generating and compiling proxy code...
java com.ibm.mq.ma0r.tools.RunWSDL2Java --output helpers -p dotNetService helper
s\RandomNumberNET_Wmq.wsdl

C:\RandomServiceNET>

It is only necessary to provide the deployment utility with two options in this case.
These are to specify the queue manager and the name of the assembly directive
file respectively.

The deployment utility performs the following actions:

� It generates WSDL that defines the implementation of the service.

� It configures the request queue SOAP.RandomNumberNET.

� It configures a trigger monitor for automated listener start-up (use is optional).

� It creates a script to start the MQSoapHost listener when required. The
listener is configured to read messages from the request queue
SOAP.RandomNumberNET, then invoke the getRandom() Web Service
through the .NET Web Services framework and finally return the response,
encapsulated into a SOAP string, back to the client. This response is returned
to the client via the response queue SOAP.RESPONSE.RandomNumberNET.

� Generates the proxy code that can be used by a client application to invoke
the service.

The proxy code is located in the helpers sub-directory. C#, Visual Basic and Java
proxy classes are all generated automatically. These have the same filename
prefix as the ASMX service file and care must be taken when referring to these
files across directories as there are normally two files with the same name. One
is the actual service implementation source in the main deployment directory,
and the other is the proxy source located in the “helpers” sub-directory. This is
illustrated in the following directory listing:

Example 3-13 Take care with service and proxy file name references

C:\RandomServiceNET>dir /s *.cs *.vb
 Volume in drive C is C: Windows 2000
40 WebSphere MQ Solutions in a Microsoft .NET Environment

 Volume Serial Number is 98E7-6D3C

 Directory of C:\RandomServiceNET

15/07/2003 15:51 748 RandomNumberNET.cs
15/07/2003 15:52 1,285 RandomNumberNetClient.cs
 2 File(s) 2,033 bytes

 Directory of C:\RandomServiceNET\helpers

15/07/2003 16:55 2,001 RandomNumberNET.cs

 Directory of C:\RandomServiceNET\helpers

15/07/2003 16:55 2,138 RandomNumberNET.vb
 2 File(s) 4,139 bytes

 Total Files Listed:
 4 File(s) 6,172 bytes
 0 Dir(s) 10,027,823,104 bytes free

C:\RandomServiceNET>

3.7.4 Write the client application
The client machine requires a simple application to invoke the service. In this
case a Microsoft .NET client is written and this application is most easily written
either in C# or Visual Basic because proxy classes are automatically generated
by the deployment utility for both of these languages.

The sample client programs that are supplied with WebSphere MQ transport for
SOAP provide a useful template for writing a client. These are located under the
WebSphere MQ transport for SOAP installation directory in the sub-directory
demos\dotnetDemos\clients. The file SQCS2DotNet.cs and SQVB2DotNet.vb
are the C# and Visual Basic examples respectively. In this case the C# example
is amended to invoke the service as follows:

Example 3-14 Our simple client application

using System;

class RandomNumberNetClient
{

[STAThread]
static void Main(string[] args)
{
String randomType="int";
 Chapter 3. WebSphere MQ Transport for SOAP 41

try
 {
 MQSOAP.MQWebRequest.Register();

 RandomNumberNET rsobj = new RandomNumberNET();

// Any first argument is used as the target Url
if (args.GetLength(0) >= 1) rsobj.Url = args[0];

// Any second argument is the type of the random number required
if (args.GetLength(0) >= 2) randomType = args[1];

String res = rsobj.getRandom(randomType);

Console.WriteLine("Random service returned: " + res);

 }
 catch (System.Exception e)

 {
 Console.WriteLine("\n>>> EXCEPTION WHILE RUNNING RandomNumberOnNet DEMO <<<\n" +

e.ToString());
 }

 }
}

The steps taken in this example are as follows:

� The sample source is taken and saved as RandomNumberNetClient.cs in the
service deployment directory.

� The name of the method is changed to invoke to getRandom as defined in the
service and hence in our proxy.

� The returned object is specified as a string and passed in an argument to the
program representing the amount it was required to invest.

� The optional target URI now becomes the second argument. In this example,
the proxy code sets this by default to:

wmq:SOAP.RandomNumberNET@WSServer?connectQueueManager=WSServer

In this case, the default is overridden in order to define the correct response
queue SOAP.RESPONSE.RandomNumberNET and the appropriate client
connection attributes. By default the response queue is set to a local queue
MQSOAP.DEMO.RESPONSE. This is the queue used by the WebSphere MQ
transport for SOAP sample applications. The deployment process assumes a
local queue manager connection at the client. In this instance a local queue
manager is to be used but with a different name appropriate for the service.
42 WebSphere MQ Solutions in a Microsoft .NET Environment

The correct response queue and client connection attributes need to be
specified by setting the URI as follows:

wmq:SOAP.RandomNumberNET@RANDOMQM?replyToQueue=SOAP.RES
PONSE.RandomNumberNET,connectQueueManager=RANDOMQM

The URI may also be used to set other attributes such as timeout,
persistence, expiry or SSL options. (Refer to 3.4, “WebSphere MQ transport
for SOAP application development” on page 23).

The call MQSOAP.MQWebRequest.Register() registers the URI prefix wmq: as a
pluggable transport as an alternative to http:. This currently has to be specifically
called from every client process. The call has been highlighted in bold in the
above example.

Our client application is compiled as follows:

Example 3-15 Compilation of the client code

C:\RandomServiceNET>csc /lib:c:\ma0r\bin /r:MQSOAP.dll RandomNumberNetClient.cs
helpers\RandomNumberNET.cs
Microsoft (R) Visual C# .NET Compiler version 7.00.9466
for Microsoft (R) .NET Framework version 1.0.3705
Copyright (C) Microsoft Corporation 2001. All rights reserved.

3.7.5 Define the WebSphere MQ response queue
The deployment process does not create a service specific queue for response
messages. By default WebSphere MQ transport for SOAP assumes the use of
MQSOAP.DEMO.RESPONSE which is really only intended for the supplied
demonstrations. A response queue is therefore created directly by executing the
runmqsc or WebSphere MQ Explorer utility. In this test a local queue is created
and called SOAP.RESPONSE.RandomNumberNET.

3.7.6 Start the prepared Microsoft .NET listener
The listener is manually started as follows:

Example 3-16

C:\RandomServiceNET\helpers>listen_RandomNumberNET

C:\RandomServiceNET\helpers>rem - generated by deployWMQService.java at 15-Jul-0

Tip: Care should be taken not to use the WebSphere MQ Explorer graphical
user interface at the same time as the runmqsc command line utility as
problems can be experienced with the operation of the graphical interface.
 Chapter 3. WebSphere MQ Transport for SOAP 43

3 16:55:23

C:\RandomServiceNET\helpers>call C:\ma0r\bin\setcp

C:\RandomServiceNET\helpers>MQSoapHost -m RANDOMQM -q SOAP.RandomNumberNET -w C:
\RandomServiceNET -v /vdir -s RandomNumberNET.asmx -T 1
**
*
* WebSphere MQ ASP.NET Webservices server
*
* Parms used are
*
* Qmgr : RANDOMQM
* Queue : SOAP.RandomNumberNET
* Physical dir : C:\RandomServiceNET
* Application : /vdir
* Webservice : RandomNumberNET.asmx
* Threads : 1

3.7.7 Test the service
The newly deployed service complete with WebSphere MQ transport is run.The
client application is executed passing the target URI and type of floating number
(int or double) as command line options.

Example 3-17 Execution of client

C:\RandomServiceNET>RandomNumberNetClient wmq:SOAP.RandomNumberNET@RANDOMQM?repl
yToQueue=SOAP.RESPONSE.RandomNumberNET,connectQueueManager=RANDOMQM int
Using server bindings.
Random service returned: 734510

C:\RandomServiceNET>RandomNumberNetClient wmq:SOAP.RandomNumberNET@RANDOMQM?repl
yToQueue=SOAP.RESPONSE.RandomNumberNET,connectQueueManager=RANDOMQM double
Using server bindings.
Random service returned: 0.646812647882296

C:\RandomServiceNET>RandomNumberNetClient wmq:SOAP.RandomNumberNET@RANDOMQM?repl
yToQueue=SOAP.RESPONSE.RandomNumberNET,connectQueueManager=RANDOMQM wrong
Using server bindings.
Random service returned: Error

C:\RandomServiceNET>

This is a very simple example. A typical application does not pass the URI into
the application via a command line argument but typically forms it internally.
44 WebSphere MQ Solutions in a Microsoft .NET Environment

3.7.8 Distributed test in WebSphere MQ client mode
Having run the simple demonstration locally, it is next tested across the network.
This section demonstrates how to do this in WebSphere MQ client mode, where
there is no local queue manager on the client. A WebSphere MQ client
connection is used from one machine to invoke the service on another.

Rather than use our initial test queue manager of RANDOMQM, a queue
manager is created on the server machine called WSServer. A runmqsc script
file called WSServer.mqsc is prepared to create required queues and channels.
This script is documented in the Appendix A, “Scripts, source code and test data
for YuBank” on page 317 and can be downloaded as per the instructions in
Appendix B, “Additional material” on page 323.

The next step is to run the WebSphere MQ listener runmqlsr on the service
system. In this case, it was run on port 1415 so as not to interfere with the
operation of the business case application used in the other chapters. The
business application used the default port of 1414. For this client connection test,
it meant running runmqlsr with the port of 1415 explicitly specified with the -p
command line option. The port number was then set in the URI as shown below.

The machine originally used for developing the service is targeted as the client
machine. The contents of the deployment directory are therefore copied to the
server system and then redeployed on that system. (It is only necessary to copy
the service source and the assembly directive file from the deployment directory).

To recreate the test with a different queue manager on the server it is necessary
to re-run the deployment procedure as follows:

Example 3-18 Redeployment for distributed tests

C:\RandomServiceNET>deployWMQService -m WSServer -f RandomNumberNET.asmx
Package name: DefaultNamespace
Generating WSDL...
mqsoapwsdl wmq:SOAP.RandomNumberNET@WSServer?connectQueueManager=WSServer Random
NumberNET.asmx helpers\RandomNumberNET_Wmq.wsdl
Preparing listener...
Configuring MQ...
Generating and compiling proxy code...
java com.ibm.mq.ma0r.tools.RunWSDL2Java --output helpers -p dotNetService helper

Note: If you are using an ASPX application as your client you will need to add
the user ASPNET to the WebSphere MQ group. Otherwise problems will be
encountered with access to WebSphere MQ services. Refer to 7.3.2, “Bank
service application (C#)” on page 121 for further details.
 Chapter 3. WebSphere MQ Transport for SOAP 45

s\RandomNumberNET_Wmq.wsdl

C:\RandomServiceNET>

The proxy code in the helpers directory is already on the client system. In our
specific example, the existing client application can be used without the need for
recompilation. The target URI needs to change, but the client is deliberately
programmed to overwrite this on the command line.

Define WebSphere MQ channel definitions
The channel is created for communication between the WebSphere MQ client
and the service host. This can either be performed within the runmqsc utility or
by use of the WebSphere MQ Explorer Graphical User Interface (GUI). In this
case runmqsc is used to define the channel TO.WSServer as follows:

Example 3-19 Defining the WebSphere MQ server connection channel

DEFINE CHANNEL(TO.WSServer) CHLTYPE(SVRCONN) TRPTYPE(TCP) +
 MCAUSER('stevens') REPLACE

This command is provided in the script WSClient.mqsc.

The listener is started on the server machine using the script file just generated
by the deployment procedure:

Example 3-20 Starting the MQSOAPHost listener on the server machine

C:\RandomServiceNET\helpers>listen_RandomNumberNET

C:\RandomServiceNET\helpers>rem - generated by deployWMQService.java at 15-Jul-0
3 18:25:53

C:\RandomServiceNET\helpers>call C:\ma0r\bin\setcp

C:\RandomServiceNET\helpers>MQSoapHost -m WSServer -q SOAP.RandomNumberNET -w C:
\RandomServiceNET -v /vdir -s RandomNumberNET.asmx -T 1
**
*
* WebSphere MQ ASP.NET Webservices server
*
* Parms used are
*
* Qmgr : WSServer
* Queue : SOAP.RandomNumberNET
* Physical dir : C:\RandomServiceNET
* Application : /vdir
46 WebSphere MQ Solutions in a Microsoft .NET Environment

* Webservice : RandomNumberNET.asmx
* Threads : 1
*
**

As explained above, in our example case there is no need to recompile the client
code. However the proxy code still contained the URI of the original deployment
and is no longer appropriate for the new configuration as the various client
connection attributes need to be set. The target URI is set to runtime with the
client’s command line option as follows:

Example 3-21 Execution of distributed test with client bindings

C:\RandomServiceNET>RandomNumberNetClient wmq:SOAP.RandomNumberNET?clientConnect
ion=ITSOI.hursley.ibm.com(1415),clientChannel=TO.WSSERVER,replyToQueue=SOAP.RESPONSE.R
andomNumberNET int
Using client bindings.
Random service returned: 5810

C:\RandomServiceNET>

Note the non default runmqlsr port number 1415 is now carried in the URI
according to our requirements described above.

3.7.9 Distributed test in WebSphere MQ server bindings mode
To run in bindings mode, the sender and receiver channels are set up on both,
the client and service systems. The mqsc script WSServer.mqsc already created
the required queues and channels on the server system, but it is necessary to
create the additional queues and channels required on the client system. The
script WSClient.mqsc is used to do this. This script is documented in
theAppendix A, “Scripts, source code and test data for YuBank” on page 317 and
can be downloaded as per the instructions in Appendix B, “Additional material”
on page 323.

The runmqlsr listener is executed on the client system. As in the case of client
bindings, the runmqlsr is executed with the -p 1415 option to use port 1415.

The service system listener continued to run as it was already configured.

It is necessary to set the CONNAME attribute for the sender channels to include
the new port number. These were specified as myhost(1415) and
ITSOI.hursley.ibm.com(1415), respectively, and re-execute the client with the
appropriate URI for the bindings connection:
 Chapter 3. WebSphere MQ Transport for SOAP 47

Example 3-22 Execution of our test client with server bindings

C:\RandomServiceNET>RandomNumberNetClient wmq:SOAP.RandomNumberNET@WSServer?repl
yToQueue=SOAP.RESPONSE.RandomNumberNET,connectQueueManager=WSClient int
Using server bindings.
Random service returned: 326397

C:\RandomServiceNET>

3.7.10 Distributed WebSphere MQ using MQ clustering
The simplest way to set up server to server communications in WebSphere MQ
is to use clustering.

� Define all relevant queue managers (in this case SOAP client and SOAP
servers) to be in the same cluster.

� Use an existing cluster, or define a new one, SOAP.CLUSTER for example.

For deployment of a service on a given queue manager, deploy in the standard
way as local deployment, then alter the service queue definition to define the
queue as a cluster queue. The queue is then visible on all queue managers in the
cluster. All the necessary channel definitions will be created automatically by the
WebSphere MQ clustering infrastructure.

3.8 WebSphere MQ transport for SOAP with J2EE
deployment

This section shows how WebSphere MQ transport for SOAP is used to
implement WebSphere MQ transport with J2EE Web Services. The deployment
of J2EE Web Services is discussed and then the JMS listener that is provided for
J2EE Web Services. A simple J2EE Web Service is developed and deployed and
then invoked from a Microsoft .NET client application.

3.8.1 Deployment of J2EE Web Services
The process of invoking deployWMQService for J2EE Web Services is identical
to that for Microsoft .NET Web Services except that the utility takes the source
file for the J2EE service as an argument rather than the .NET assembly directive
file (.asmx file). This file is also specified with the -f command line option. The
utility detects whether it is invoking .NET or J2EE services by inspecting the
filename attribute and checking for the “.java” or “.asmx” file. It prepares a script
for invoking a JMS listener (see 3.8.2, “WebSphere MQ Transport for SOAP
48 WebSphere MQ Solutions in a Microsoft .NET Environment

SimpleJMSListener” on page 49) analogous to the scripts generated for the
Microsoft .NET case.

WebSphere MQ transport for SOAP currently requires that J2EE Web Services
are implemented through the Apache Axis framework. As with Microsoft .NET,
Axis uses SOAP for formatting messages between client and Web Services.
Target Web Services must currently be coded directly in Java. The use of Java
Web Service (JWS) files are not implemented in the current edition of
WebSphere MQ transport for SOAP. The advantage of JWS files are that they do
not need compilation at deployment time. Instead, the services are compiled only
when the service is accessed. This means that deployment is faster which is
useful when initially developing and testing services. There are disadvantages of
using JWS files for production environments. The source of the service must be
available at the server side which is a security issue for some users. Also, options
for configuring access to the service are limited. It is anticipated that the options
to use JWS files are integrated into the WebSphere MQ transport for SOAP
deployment process in future releases.

In the J2EE case, target services must be specified to deployWMQService from
a Java source file. The file is named either in filename only form or in directory
path name convention. A simple filename specification for example is,
“myService.java”. A relative path name, for example, is:
“com\ibm\test\myService.java”. Where a relative path name is used, the utility
transforms the service from directory name into Java classname notation. In this
case the resultant service would be identified as com.ibm.test.myService.

When using Axis clients with J2EE Web Services, it is not mandatory to use the
automatically generated proxy methods generated at deployment. Instead, lower
level Axis calls can be used to prepare and then invoke the Web Service directly.
Examples of such lower level Axis clients are included in the Independent
Verification Test (IVT) utility located in the demos sub-directory under the
SupportPac installation directory. The demonstration programs SoapClient.java
and WsdlClient.java are used to demonstrate ‘raw’ Axis calls and WSDL based
calls respectively. In general it will be easier and simpler to use the proxy method,
but the direct option may be useful if it is required to operate at a lower level than
the proxy interface permits.

In the example given in this chapter, from a .NET client to a J2EE Web Service, it
is necessary to build a client with the automatically generated proxy code in order
to access the service specifically from a Microsoft .NET client application.

3.8.2 WebSphere MQ Transport for SOAP SimpleJMSListener
For J2EE Web Services, WebSphere MQ transport for SOAP provides a JMS
listener called simpleJMSListener which is used instead of the Microsoft .NET
 Chapter 3. WebSphere MQ Transport for SOAP 49

listener MQSOAPHost. It is the job of the listener to receive messages from the
request queue, invoke the target service and then return the result message back
to the client via the response queue. It performs the same function for J2EE
services that the MQSoapHost listener provides for Microsoft .NET services.

The SimpleJMSListener is implemented in the class
com.ibm.axis.transport.wmq.SimpleJMSListener. The deployment process
automatically creates wrapper scripts in the helpers directory that set up and
invoke the listener. As with the Microsoft .NET listener, it is not essential to use
these wrapper scripts, they are just there to make the process of starting the
listener a little easier. The script is named after the input service class in the form
listen_<classname>.bat. If, for example, a service called
javaDemos.server.StockQuoteAxis is deployed, the script is called
listen_javaDemos.server.StockQuoteAxis.bat.

SimpleJMSListener processes can either be started manually, or, like the
MQSOAPHost Microsoft .NET listener, can be started by triggering. Refer to
3.10, “Starting listeners with WebSphere MQ triggering” on page 60 for more
details.

SOAP messages from a client are encapsulated within a WebSphere MQ
message and dispatched to the listener via the WebSphere MQ request queue.
The SimpleJMSListener process monitors this queue for incoming messages.
The listener is derived from the Java class javax.jms.MessageListener and the
method onMessage() from this base class is overridden and is automatically
called by the base class when a message arrives. This method picks up the
incoming JMS message, extracts the text of the message and then feeds it to the
Axis engine for processing. Both the SOAP processing and the actual invocation
of the service itself are performed within the listener thread. The SOAP response
message from Axis is then returned to the client via the WebSphere MQ
response queue.

Messages from clients are constructed in a general WebSphere MQ format that
is equivalent to a JMS TextMessage. The SimpleJMSListener will however
accept either incoming TextMessage or BytesMessage format messages and
return response messages in the same format. BytesMessages are assumed to
be encoded in UTF-8 format and will be returned in UTF-8 format, the ‘encoding’
of the SOAP header itself is ignored. If messages are received in any formats
other than BytesMessage or TextMessage, the onMessage() method will throw
an exception.

SimpleJMSListener can operate in multi-threaded mode with a configurable
number of worker threads each of which can read and action messages from
request queue in parallel. This is required where service execution may be
comparatively slow so as to not compromise performance. The default number of
threads is one, but this may be changed with the -T command line option. This
50 WebSphere MQ Solutions in a Microsoft .NET Environment

option can be given either directly to the deployment utility, in which case it is
placed into the listener start up script, or to the SimpleJMSListener command
line if invoking the listener directly.

The deployment utility defaults the request queue name in the listener start up
script to SOAP.<className>. This can be changed if required with the -q
command line option of SimpleJMSListener. The default settings for the queue
manager is MQSOAP.DEMO.QM. The queue manager name can be changed
with the -m option of the deployment utility. The deployment process also
automatically sets this value up in the BAT file. This behavior is consistent with
the Microsoft .NET listener MQSoapHost.

The listener currently only processes request/response message pairs and does
not correctly handle one way messages or report messages. If the reply
destination in the message is null the onMessage method exits with an error
message.

The listener sets a correlation id in the reply message which is the same as the
originating message id, as per standard practice. The message is then
dispatched over WebSphere MQ with the same persistence and priority options.
The expiry interval from the original request message is converted to a time to
live interval on the response. These options can all be specified in the
WebSphere MQ URI used in the client application.

The JMS listener uses the getJMSDestination() method to determine whether
the request message was sent via JMS or raw MQ. This is so that it can process
both messages from the Java JMS sender WMQSender and from the Microsoft
.NET MQWebRequest sender. The response message is then set to use the
same form. The main difference between the two forms is that messages
returned over JMS include an RFH2 header, while the native form does not. The
client applications will clearly be expecting the right form for their method of
invocation. That fact that the listener has to code this logic explicitly is a limitation
in the current version of the Java classes for WebSphere MQ. A future update of
the Java classes for WebSphere MQ may automatically detect native WebSphere
MQ or JMS type messages and correctly pass the response message back in the
same form without such direct intervention.

One key difference between the Microsoft .NET listener and the
SimpleJMSListener is that with the latter it is possible to use a single listener
process to access services that have been deployed from the same directory.
 Chapter 3. WebSphere MQ Transport for SOAP 51

3.8.3 Executing SimpleJMSListener
The general listener calling syntax is:

java com.ibm.axis.transport.wmq.SimpleJMSListener [-u wmqUri] [-c
configDirectory] [-f configFileName] [-a] [-T numServerThreads]

Where:

� -u specifies that target URI

� -c specifies the Axis configuration directory

The Axis configuration directory defaults to the current working directory

� -f specifies the Axis configuration file name

The Axis configuration file name defaults to server-config.wsdd.

� -s specifies the target service

� -a is used to initiate a thread for an automated stop

� -T specifies the number of listener threads required (defaults to 1)

For example:

Example 3-23 Illustrating the use of SimpleJMSListener

java com.ibm.axis.transport.wmq.SimpleJMSListener -u
"wmq:SOAP.javaDemos.server.StockQuoteAxis@MQSOAP.DEMO.QM?connectQueueManager=MQSOAP.DEMO.QM" -T
10

In this case two options are used. The -u option specifies the target URI of the
service and -T options specifies to activate 10 listener threads.

3.9 A simple example with a J2EE Web Service
This section provides a very simple illustration of how WebSphere MQ transport
for SOAP is used with a J2EE Web Service. To do this a very basic J2EE service
is written and it is then shown how this can be invoked using WebSphere MQ
transport from a client Microsoft .NET application.

The service is built locally, that is, with both client application and server
environment on the same machine. All the files for this service are created in a
new directory, in this case c:\RandomService.

The following steps were required in this process:

� Write the Web Service.
52 WebSphere MQ Solutions in a Microsoft .NET Environment

� Deploy the service using WebSphere MQ transport for SOAP.

� Write the client application using generated Proxy code.

� Define the WebSphere MQ response queue.

� Define WebSphere MQ communication channels.

� Start the prepared JMS listener.

� Test the application.

Having developed and tested the service locally in this section, in the subsequent
sections the service is redeployed and used across the network, first with server
bindings and then with client bindings.

3.9.1 Write the Web Service
The service previously demonstrated in 3.7, “A simple example with a Microsoft
.NET Web Service” on page 36 was converted to the Java programming
language. The basic logic was otherwise unaltered. The service accepts a String
input parameter that can be set to either “int” or “double” and returns a random
integer or double precision number represented as a string.

Example 3-24 A sample J2EE Web Service

import java.io.*;
import java.util.*;
import java.util.Random;

public class RandomNumberAXIS
{
 public Random r;

 public RandomNumberAXIS()
 {
 r = new Random();
 }

 public String getRandom(String varType)
 {
 if (varType.equals("int"))
 {
 Integer anInt = new Integer(r.nextInt(1000000));
 return anInt.toString();
 }

 if (varType.equals("double"))
 {
 Double aDouble = new Double(r.nextDouble());
 Chapter 3. WebSphere MQ Transport for SOAP 53

 return aDouble.toString();
 }

 return("Error");
 }
}

3.9.2 Deploy the service
To use the WebSphere MQ transport for SOAP deployment utility the required
classpath must be setup. This is the same procedure as covered earlier in 3.7.3,
“Deploying the Microsoft .NET service” on page 39.

As with the Microsoft .NET example, it is necessary to ensure that the queue
manager RANDOMQM is available and started before deployment.

The service can now be deployed:

Example 3-25 Deployment of the RandomService Web Service

C:\RandomService>deployWMQService -m RANDOMQM -f RandomNumberAXIS.java
Package name: DefaultNamespace
Compiling service code...
Generating WSDL...
Serviceport: RandomNumberAXIS_Wmq
java org.apache.axis.wsdl.Java2WSDL --input helpers\RandomNumberAXIS_Wmq.wsdl --
output helpers\RandomNumberAXIS_Wmq.wsdl --namespace RandomNumberAXIS_Wmq --loca
tion wmq:SOAP.RandomNumberAXIS@RANDOMQM?connectQueueManager=RANDOMQM --bindingNa
me RandomNumberAXISBindingSoap --servicePortName RandomNumberAXIS_Wmq RandomNumb
erAXIS
Generating and deploying server wsdd file...
Target dir: C:\RandomService\helpers\
Patching deploy.wsdd...
Patching undeploy.wsdd...
Removing temp.server directory...
Preparing listener...
Configuring MQ...
Generate and compile proxy code...
java com.ibm.mq.ma0r.tools.RunWSDL2Java --timeout -1 --output helpers -p Default
Namespace helpers\RandomNumberAXIS_Wmq.wsdl

C:\RandomService>

Note: Unlike the Microsoft .NET case, no directives are needed inside the
Java code in order to configure methods as Web Service methods or to set
SOAP formatting options for parameters.
54 WebSphere MQ Solutions in a Microsoft .NET Environment

3.9.3 Write the client application
The sample application SQCS2Axis.cs from WebSphere MQ transport for SOAP
is used and changed appropriately for our demonstration service. The code ends
up virtually identical to our test client in 3.7, “A simple example with a Microsoft
.NET Web Service” on page 36. Aside from the different classname and proxy
object type the code is identical.

Example 3-26 Our simple client application

using System;

class RandomNumberAxisClient{
[STAThread]
static void Main(string[] args)
{
String randomType="int";
try

 {
 MQSOAP.MQWebRequest.Register();

 RandomNumberAXISService rsobj = new RandomNumberAXISService();

 // Any first argument is used as the target Url
 if (args.GetLength(0) >= 1) rsobj.Url = args[0];

 // Any second argument is the type of the random number required
 if (args.GetLength(0) >= 2) randomType = args[1];

 String res = rsobj.getRandom(randomType);

 Console.WriteLine("Random service returned: " + res);
 }
 catch (System.Exception e)

 {
 Console.WriteLine("\n>>> EXCEPTION WHILE RUNNING RandomNumberOnAxis DEMO <<<\n" +

e.ToString());
 }

 }
}

The client application takes optional arguments for the URI and the type of the
random number object to return. Note again the requirement to register the
WebSphere MQ transport with the call to MQSOAP.MQWebRequest.Register().
This is highlighted in bold.
 Chapter 3. WebSphere MQ Transport for SOAP 55

The client application is compiled. In this case the command line is used:

Example 3-27 Compilation of the client code

\RandomService>csc /lib:c:\ma0r\bin /r:MQSOAP.dll RandomNumberAxisClient.cs
helpers\RandomNumberAXISService.cs
Microsoft (R) Visual C# .NET Compiler version 7.00.9466
for Microsoft (R) .NET Framework version 1.0.3705
Copyright (C) Microsoft Corporation 2001. All rights reserved.

C:\RandomService>

3.9.4 Additional WebSphere MQ configuration
The service is first tested on a local machine. A response queue called
SOAP.RESPONSE.RandomNumberAXIS is manually created as the deployment
process does not create a service specific queue for response messages. This
can be done by using runmqsc or the WebSphere MQ Explorer utility.

3.9.5 Start the prepared JMS listener
The script for the JMS listener is prepared by the deployment utility in the helpers
sub-directory. It is started manually in a new window. The CLASSPATH must be
correctly set up first for WebSphere MQ transport for SOAP in this window.

Example 3-28 Starting the prepared JMS listener

C:\RandomService\helpers>listen_SOAP.RandomNumberAXIS

C:\RandomService\helpers>rem - generated by deployWMQService.java at 15-Jul-03 1
6:29:15

C:\RandomService\helpers>call C:\ma0r\bin\setcp.bat

C:\RandomService\helpers>cd /d C:\RandomService

C:\RandomService>java com.ibm.axis.transport.wmq.SimpleJMSListener -u "wmq:SOAP.
RandomNumberAXIS@RANDOMQM?connectQueueManager=RANDOMQM" -T 1

Starting Axis JMS listener.

listeners initialised.
Parameters: -u wmq:SOAP.RandomNumberAXIS@RANDOMQM?connectQueueManager=RANDOMQM -
c . -f null -s null -a false -T 1
56 WebSphere MQ Solutions in a Microsoft .NET Environment

**
* Hit Enter to stop the listener and close this window *
**

3.9.6 Test the service
The prepared client can now be executed. This is executed passing the target
URI and the type of floating number (int or double) as command line options:

Example 3-29 Execution of our client application

C:\RandomService>RandomNumberAxisClient wmq:SOAP.RandomNumberAXIS@RANDOMQM?reply
ToQueue=SOAP.RESPONSE.RandomNumberAXIS,connectQueueManager=RANDOMQM int
Using server bindings.
Random service returned: 690665

C:\RandomService>RandomNumberAxisClient wmq:SOAP.RandomNumberAXIS@RANDOMQM?reply
ToQueue=SOAP.RESPONSE.RandomNumberAXIS,connectQueueManager=RANDOMQM double
Using server bindings.
Random service returned: 0.4638977929993522

C:\RandomService>RandomNumberAxisClient wmq:SOAP.RandomNumberAXIS@RANDOMQM?reply
ToQueue=SOAP.RESPONSE.RandomNumberAXIS,connectQueueManager=RANDOMQM wrong
Using server bindings.
Random service returned: Error

C:\RandomService

The service is called three times, once to request an integer random number,
once to request a floating point random number and once with an illegal type
option.

3.9.7 Distributed test in WebSphere MQ server bindings mode
The technique to make the service distributed, using WebSphere MQ distributed
communications are exactly the same as for the Microsoft .NET case. This is
covered in “Distributed test in WebSphere MQ server bindings mode” on page 47
and the reader is referred to that section for more detail. The redeployment
process is executed as follows:

Example 3-30 Redeployment for distributed test

C:\RandomService>\ma0r\bin\setcp

C:\RandomService>deployWMQService -m WSServer -f RandomNumberAXIS.java
Package name: DefaultNamespace
 Chapter 3. WebSphere MQ Transport for SOAP 57

Compiling service code...
Generating WSDL...
Serviceport: RandomNumberAXIS_Wmq
java org.apache.axis.wsdl.Java2WSDL --input helpers\RandomNumberAXIS_Wmq.wsdl --
output helpers\RandomNumberAXIS_Wmq.wsdl --namespace RandomNumberAXIS_Wmq --loca
tion wmq:SOAP.RandomNumberAXIS@WSServer?connectQueueManager=WSServer --bindingNa
me RandomNumberAXISBindingSoap --servicePortName RandomNumberAXIS_Wmq RandomNumb
erAXIS
Generating and deploying server wsdd file...
Target dir: C:\RandomService\helpers\
Patching deploy.wsdd...
Patching undeploy.wsdd...
Removing temp.server directory...
Preparing listener...
Configuring MQ...
Generate and compile proxy code...
java com.ibm.mq.ma0r.tools.RunWSDL2Java --timeout -1 --output helpers -p Default
Namespace helpers\RandomNumberAXIS_Wmq.wsdl

C:\RandomService>

The listener is started on the server machine using the script file just generated
by the deployment procedure:

Example 3-31 Starting the JMS Listener on the server machine

C:\RandomService\helpers>listen_SOAP.RandomNumberAXIS

C:\RandomService\helpers>rem - generated by deployWMQService.java at 16-Jul-03 0
9:53:48

C:\RandomService\helpers>call C:\ma0r\bin\setcp.bat

C:\RandomService\helpers>cd /d C:\RandomService

C:\RandomService>java com.ibm.axis.transport.wmq.SimpleJMSListener -u "wmq:SOAP.
RandomNumberAXIS@WSServer?connectQueueManager=WSServer" -T 1

Starting Axis JMS listener.

listeners initialised.
Parameters: -u wmq:SOAP.RandomNumberAXIS@WSServer?connectQueueManager=WSServer -
c . -f null -s null -a false -T 1

**
* Hit Enter to stop the listener and close this window *
**
58 WebSphere MQ Solutions in a Microsoft .NET Environment

On the client machine there is no need to recompile the client code. However the
proxy code still contained the URI of the original deployment. This needs to be
changed to specify the new WebSphere MQ attributes for the server bindings
connection. It is good practice to copy the updated proxy code from the
deployment process back to the client, or edit the existing proxy to change the
default URI setting. For simplicity the URI is specified at runtime with the
command line option as follows:

Example 3-32 Running the demo with server bindings

C:\RandomService>RandomNumberAxisClient wmq:SOAP.RandomNumberAXIS@WSServer?reply
ToQueue=SOAP.RESPONSE.RandomNumberAXIS,connectQueueManager=WSClient int
Using server bindings.
Random service returned: 617338

C:\RandomService>

3.9.8 Distributed test in WebSphere MQ client mode
The technique to configure the simple test to use a client mode connection is
exactly the same as for the Microsoft .NET case. This is covered in “Distributed
test in WebSphere MQ client mode” on page 45 and the reader is referred to that
section for more detail. To run the test in client mode, the URL on the client
machine as follows needs to be modified:

Example 3-33 Running the demo with client bindings

C:\RandomService>RandomNumberAxisClient wmq:SOAP.RandomNumberAXIS?clientConnecti
on=ITSOI.hursley.ibm.com(1415),clientChannel=TO.WSSERVER,replyToQueue=SOAP.RESPO
NSE.RandomNumberAXIS int
Using client bindings.
Random service returned: 826765

C:\RandomService>

3.9.9 Distributed WebSphere MQ using MQ clustering
This technique is the same as described in 3.7.10, “Distributed WebSphere MQ
using MQ clustering” on page 48.

3.9.10 Service code use of external classes
In any non trivial Web Service it is likely that additional classes will be used in
addition to those defined by WebSphere MQ transport for SOAP. In the case of
the ShareQuote service in our business scenario for example, some classes are
 Chapter 3. WebSphere MQ Transport for SOAP 59

needed to help format XML statements. (These are jdom.jar, jaxen-core.jar,
jaxen-jdom.jar and saxpath.jar). For convenience these are installed into a
directory called “lib” within the service directory. It is convenient to contain all the
required classes within the same directory structure.

Because these classes were referenced in the service code, they needed to be in
the CLASSPATH from the process where the JMSListener was invoked. This is
most easily facilitated by creating an additional script containing the extra
definitions and then amending the listener bat file to make a call to it after the
normal WebSphere MQ transport for SOAP setcp.bat call:

Example 3-34 Amending a listener script to define external classes

rem - generated by deployWMQService.java at 04-Jul-03 12:16:17
call C:\ma0r\bin\setcp.bat
call ..\yubank_setcp.bat
cd /d C:\ma0r\tony_040603
java com.ibm.axis.transport.wmq.SimpleJMSListener -u
"wmq:SOAP.ShareQuote@DOTIP?connectQueueManager=DOTIP" -T 1

In this example we named the additional script yubank_setcp.bat. Inserting the
call to our own specific CLASSPATH script in this way is convenient when starting
the JMS listener, but every time the service is redeployed the listener start-up
script has to be reedited to add it in again. Some care may be needed if using
relative pathnames to refer to a directory containing external jar files as the
deployment directory is generally one level higher than the directory from where
the listener is invoked.

3.10 Starting listeners with WebSphere MQ triggering
Whilst writing this redbook, the Microsoft .NET and JMS listeners were started
manually during testing. However it is also possible to use WebSphere MQ
triggering to start these listeners automatically when they are required. The
deployment procedure automatically creates an initiation queue called
SOAP.INITQ and creates process definitions that can start the listeners when
messages first arrive on a request queue. Triggering is more likely to be
appropriate for a production environment where there is a potential scope for
starting many listeners and can be a waste of resource to keep them all running
permanently.

Note: It is also necessary for the additional service classes to be set into the
CLASSPATH at the time of service deployment.
60 WebSphere MQ Solutions in a Microsoft .NET Environment

After creating the process definition, the deployment sets the necessary
triggering attributes when it creates the request queue for a particular service.
These attributes are shown in bold below:

Example 3-35 Illustrating the triggering attributes set on a request queue by the deployment utility

display qlocal('SOAP.RandomNumberNET')
 6 : display qlocal('SOAP.RandomNumberNET')
AMQ8409: Display Queue details.
 DESCR(WebSphere MQ Default Local Queue)
 PROCESS(RandomNumberNET.PROCESS) BOQNAME()
 INITQ(SOAP.INITQ) TRIGDATA()
 CLUSTER() CLUSNL()
 QUEUE(SOAP.RandomNumberNET) CRDATE(2003-07-15)
 CRTIME(18.25.53) ALTDATE(2003-07-15)
 ALTTIME(18.25.53) GET(ENABLED)
 PUT(ENABLED) DEFPRTY(0)
 DEFPSIST(NO) MAXDEPTH(5000)
 MAXMSGL(4194304) BOTHRESH(0)
 SHARE DEFSOPT(SHARED)
 HARDENBO MSGDLVSQ(PRIORITY)
 RETINTVL(999999999) USAGE(NORMAL)
 TRIGGER TRIGTYPE(FIRST)
 TRIGDPTH(1) TRIGMPRI(0)
 QDEPTHHI(80) QDEPTHLO(20)
 QDPMAXEV(ENABLED) QDPHIEV(DISABLED)
 QDPLOEV(DISABLED) QSVCINT(999999999)
 QSVCIEV(NONE) DISTL(NO)
 DEFTYPE(PREDEFINED) TYPE(QLOCAL)
 SCOPE(QMGR) DEFBIND(OPEN)
 IPPROCS(0) OPPROCS(0)
 CURDEPTH(0)

These triggering settings cause a message to be written to the initiation queue
SOAP.INITQ when the message depth on the request queue changes from zero
to one. This message sent to SOAP.INITQ is a message requesting the
runmqtrm utility to start the process named by the PROCESS parameter on the
server system. For the RandomNumberNET service for example, this PROCESS
parameter is defined by the deployment utility as follows:

Example 3-36 Illustrating the WebSphere MQ process definition for a service listener

4 : display process('RandomNumberNET.PROCESS')
AMQ8407: Display Process details.
 DESCR()
 APPLICID(start "WMQAsmxListener - RandomNumberNET" /min C:\RandomServiceNET\h
elpers\listen_RandomNumberNET.bat)
 USERDATA() ENVRDATA()
 PROCESS(RandomNumberNET.PROCESS) ALTDATE(2003-07-15)
 Chapter 3. WebSphere MQ Transport for SOAP 61

 ALTTIME(18.25.54) APPLTYPE(WINDOWSNT)

To activate the triggering function it is necessary to start the trigger monitor on
the server machine. This can either be accomplished by executing the runmqtrm
command directly, or by running deployWMQservice with the “-c
startWMQMonitor” option. This is an example of starting the trigger monitor
command manually:

Example 3-37 Starting a trigger monitor on the service system

C:\Documents and Settings\stevens\Desktop>runmqtrm -m WSServer -q SOAP.INITQ
5724-B41 (C) Copyright IBM Corp. 1994, 2002. ALL RIGHTS RESERVED.
WebSphere MQ trigger monitor started.

Waiting for a trigger message

This is an example of starting the trigger monitor via deployWMQService:

Example 3-38 Starting a trigger monitor via the deployment utility

C:\RandomServiceNET>\ma0r\bin\setcp

C:\RandomServiceNET>deployWMQService -m WSServer -c startWMQMonitor
+++ server: runmqtrm -m WSServer -q SOAP.INITQ

C:\RandomServiceNET>

The deployment utility starts the trigger monitor minimized so as to minimize
screen clutter. The process definitions for the listeners are also set to start the
listeners in minimized windows.

3.10.1 Using a different initiation queue
The trigger monitor queue “SOAP.INITQ” is hard coded into the deployment
process. To use other names for the trigger monitor queue it is necessary to
define the queue first and then modify the process definition set up by the
deployment utility to use the new queue as the initiation queue instead of
SOAP.INITQ. This queue needs to be specified to the runmqtrm command with
the -q parameter. This is illustrated in the following three steps:

Create the new initiation queue
This is done with the runmqsc command or the Explorer Graphical User Interface
(GUI) in the normal way:
62 WebSphere MQ Solutions in a Microsoft .NET Environment

Example 3-39 Creating the new initiation queue

C:\RandomServiceNET> runmqsc WSServer
5724-B41 (C) Copyright IBM Corp. 1994, 2002. ALL RIGHTS RESERVED.
Starting MQSC for queue manager WSServer.

define qlocal('SOAP.RandomNumber.INITQ')
 1 : define qlocal('SOAP.RandomNumber.INITQ')
AMQ8006: WebSphere MQ queue created.
end
 2 : end
One MQSC command read.
No commands have a syntax error.
All valid MQSC commands were processed.

C:\RandomServiceNET>

Change the request queue to use the new initiation queue
This step is also performed with runmqsc or the Explorer GUI:

Example 3-40 Changing the request queue to use the new initiation queue

C:\RandomServiceNET> runmqsc WSServer
5724-B41 (C) Copyright IBM Corp. 1994, 2002. ALL RIGHTS RESERVED.
Starting MQSC for queue manager WSServer.

alter qlocal('SOAP.RandomNumberNET') INITQ('SOAP.RandomNumber.INITQ')
 1 : alter qlocal('SOAP.RandomNumberNET') INITQ('SOAP.RandomNumber.INITQ')
AMQ8008: WebSphere MQ queue changed.
end
 2 : end
One MQSC command read.
No commands have a syntax error.
All valid MQSC commands were processed.

Run the trigger monitor with the new initiation queue
The trigger monitor is started with the runmqtrm command, specifying the new
initiation queue with the -q argument:

Example 3-41 Illustrating how to change to another initiation queue (this is how the output looks)

C:\RandomServiceNET>runmqtrm -m WSServer -q SOAP.RandomNumber.INITQ
5724-B41 (C) Copyright IBM Corp. 1994, 2002. ALL RIGHTS RESERVED.
WebSphere MQ trigger monitor started.
 Chapter 3. WebSphere MQ Transport for SOAP 63

Waiting for a trigger message

start "WMQAsmxListener - RandomNumberNET" /min C:\RandomServiceNET\helpers\liste
n_RandomNumberNET.bat "TMC 2SOAP.RandomNumberNET
RandomNumberNET.PROCESS
start \"WMQAsmxListener - RandomNumberNET\" /
min C:\RandomServiceNET\helpers\listen_RandomNumberNET.bat

 WSServer
 "
End of application trigger.

Waiting for a trigger message

3.11 WebSphere MQ transport for SOAP and SSL
As described in “SSL options” on page 30, WebSphere MQ transport for SOAP
provides three SSL options that may be specified in the WebSphere MQ URI for
use with client connections over a channel configured to run in SSL mode. These
three options are:

1. SSLKeyRepository - specifies the key repository in “stem” format

2. SSLCipherSpec - specifies the SSL cipher scheme used on the channel

3. SSLPeerName - specifies peer name for Distinguished Name filtering.
(optional)

The key repository option is specified in “stem” format, this means that the full
path is given to the key repository but without the extension. Therefore, if the full
path name to the repository is “c:\ssl\key.sto”, the SSLKeyRepository attribute
would be given as “c:\ssl\key”.

These SSL attributes only apply to use from WebSphere MQ clients where no
use is made of a local queue manager. Where local queue managers are used
on both client and host machines, SSL attributes would be set on the channel in
the usual manner.

By default, the SSL option “Always authenticate parties initiating connections to
this channel definition” is set when enabling SSL on the channel. This means that
clients are required to authenticate themselves before SSL communication can
commence. They do this by sending their certificate to the server system. If this
64 WebSphere MQ Solutions in a Microsoft .NET Environment

option is not set, then SSL communications are established without client
authentication. If using client authentication, it is important that the client’s
keystore has assigned the same test certificate as is assigned on the channel.

The SSLPeerName is optional. For additional security, WebSphere MQ channels
can be configured to only accept certificates whose Distinguished Names match
a required set of values. If this requirement has been set on a channel, the
client’s certificate must then match the required Distinguished Name attributes.

Refer to Chapter 12, “Security” on page 249 for more information about SSL.

3.11.1 Simple demonstration with SSL
To demonstrate the use of SSL the simple demonstration program in “A simple
example with a Microsoft .NET Web Service” on page 36 is taken where a
WebSphere MQ client connection to the RandomNumber service is tested and
deployed as a Microsoft .NET Web Service.

To run this client in SSL mode the following configuration steps are taken:

� Import the appropriate certificate store into WebSphere MQ and assign it to
the queue manager.

� Create a key repository for use from the client.

� Set the SSL attributes on the target channel.

� Add the appropriate SSL options to the WebSphere MQ URI. (the client
command line option to do this is used in this case).

On the client machine the keystore is prepared This is located in this particular
instance in the file “c:\$user\Certificates\key\key.sto”, but it is generated wherever
it is required. The certificate is imported into the queue manager on the server
system and assigned it as the queue manager’s certificate. It is then necessary
to set the Cipher specification attribute on the channel “TO.WSSERVER” to the
required SSL cipher. In this case “NULL_MD5” is chosen. Once these steps are
completed, then add the two SSL attributes to the WebSphere MQ URI in order
to run the test in SSL mode:

Example 3-42 Demonstrating the use of SSL WebSphere MQ URI options

C:\RandomServiceNET>RandomNumberNetClient
wmq:SOAP.RandomNumberNET?clientConnection=ITSOI.hursley.ibm.com(1415),clientChannel=TO.WSSERVER
,replyToQueue=SOAP.RESPONSE.RandomNumberNET,sslcipherspec="NULL_MD5",sslkeyrepository="c:\$user
\Certificates\key\key" int

Note: The use of the above SSL options are only available with Microsoft
.NET client applications and services.
 Chapter 3. WebSphere MQ Transport for SOAP 65

Using client bindings.
Random service returned: 825688

C:\RandomServiceNET>RandomNumberNetClient wmq:SOAP.RandomNumberNET?clientConnect
ion=ITSOI.hursley.ibm.com(1415),clientChannel=TO.WSSERVER,replyToQueue=SOAP.RESP
ONSE.RandomNumberNET,sslcipherspec="NULL_MD5",sslkeyrepository="c:\$user\Certifi
cates\key\key" double
Using client bindings.
Random service returned: 0.856901188780042

C:\RandomServiceNET>RandomNumberNetClient wmq:SOAP.RandomNumberNET?clientConnect
ion=ITSOI.hursley.ibm.com(1415),clientChannel=TO.WSSERVER,replyToQueue=SOAP.RESP
ONSE.RandomNumberNET,sslcipherspec="NULL_MD5",sslkeyrepository="c:\$user\Certifi
cates\key\key" wrong
Using client bindings.
Random service returned: Error

C:\RandomServiceNET>

3.11.2 Use of SSLPeerName
The SSLPeerName URL attribute is used to specify any required SSL
distinguished name. This is specified in the usual form with equals (“=”)
characters to separate attribute names from their values and comma (“,”)
characters to separate different name and value pairs. The only difference is that
entire distinguished name string has to be enclosed in parentheses. This is
shown in the following example:

SSLPeerName="(CN=MQ Test 1,O=IBM,S=Hampshire,C=GB)"

The Common Name attribute does not need to be self-contained within
embedded quotes if it contains spaces.

An example in practice with our Microsoft .NET RandomNumber client
application is given below:

Example 3-43 Example use of SSLPeerName

C:\RandomServiceNET>RandomNumberNETClient wmq:SOAP.RandomNumberNET?clientConnect
ion=localhost,clientChannel=ANSSLCHANNEL,replyToQueue=SOAP.RESPONSE.RandomNumber
NET,sslcipherspec="NULL_MD5",sslkeyrepository="c:\$user\Certificates\key\key",SS
LPeerName="(CN=MQ Test 1,O=IBM,S=Hampshire,C=GB)" int
Connecting to queue manager
Connected to QM
Using client bindings.
Random service returned: 605520
66 WebSphere MQ Solutions in a Microsoft .NET Environment

C:\RandomServiceNET>

3.12 Asynchronous invocation of Web Services
The current edition of the WebSphere MQ Transport for SOAP SupportPac
provides prototype facilities for long term asycnchronous invocation of Web
Services. These facilities were not tested or used during the course of writing this
redbook, but some brief notes are provided here for reference.

Long term asynchrony refers to the ability for a client to be able to invoke a
service request from one process and then retrieve the response from the
service in a completely separate process. Such a facility may be required where
it is not practical or efficient to prolong the lifetime of a client until the response is
received. Some services may not be designed to return a response immediately
but may return a set of responses at some future point. Other services may be
able to process the request immediately but might then be unable to return the
response owing to unstable network connections. For both these situations, the
ability to be able to decouple the processing of the client’s request and response
across separate processes would be a valuable option.

To use this long term asynchrony facility, the client becomes somewhat more
complicated. It first registers its intent to invoke services asynchronously by
calling, in the Microsoft .NET case, the method MQSOAP.Async.Request().It is
necessary to pass to this method a reference to an object that has been derived
from the class MQSOAP.Async.CallBack and which overrides the function
CallBackFunction(). For example:

Example 3-44 Long term asynchronous client invocation of a Web Service

 // Create a context object
 testStateClass requestContext = new testStateClass();

 MQSOAP.Async.Request(requestContext);

An example class definition for the callback object might be as follows:

Example 3-45 Example callback class used in long term asynchronous invocation

[Serializable]
 class testStateClass : MQSOAP.Async.CallBack
 {

public override void CallBackFunction()
{

StockQuoteDotNet stockobj = new StockQuoteDotNet();
 Chapter 3. WebSphere MQ Transport for SOAP 67

MQSOAP.Async.Response(this);

System.Single res = stockobj.getQuote("ZZZ");
Console.WriteLine("ASYNC response is: " + res);

MQSOAP.MQResponseListener.stopListener();
}

 }

The function CallBackfunction() is called in the response process if and when a
reply has been received from the service.

The process is more involved than it might first seem. The callback object must
first be serialized and then written to a dedicated WebSphere MQ “side” queue
called MQSOAP.SIDE.QUEUE. The response process then starts a listener
process by creating an MQSOAP.MQStartResponseListener object. For
example:

Example 3-46 Starting the response listener from the client’s response process

// Create a proxy object so we know what URL to point the response listener to
StockQuoteDotNet stockobj = new StockQuoteDotNet();

// Now start the response listener
MQSOAP.MQStartResponseListener sl = new MQSOAP.MQStartResponseListener(stockobj.Url);

This listener monitors the response queue for the service until the reply is
received. It then retrieves the corresponding entry on the side queue,
reconstitutes the callback object and then calls its CallBackFunction() so that this
may then retrieve the response message. Before the CallBackFunction can do
this it must first register that it wishes to receive an asynchronous response by
calling the method MQSOAP.Async.Response(). It then makes a dummy
invocation of the same target service. The transport code detects it is actually
being requested to retrieve a waiting asynchronous response and then proceeds
to retrieve the waiting response message without actually reinvoking the service.

Similar facilities for long term asynchrony have also been provided for the J2EE
environment. However, it is not currently possible to make a long term
asynchronous invocation between the Microsoft .NET and J2EE environments.

Note that the side queue is automatically created by the script setupmq.bat that
is executed when the IVT is first run. The name of the side queue is currently
fixed.

These facilities are intended for long term asynchrony. Where it is required to
provide facilities for short term asynchrony (that is, asycnronous operation within
68 WebSphere MQ Solutions in a Microsoft .NET Environment

the context of a single client process) within the Microsoft .NET environment,
more direct use can be made of the existing Microsoft .NET interfaces. This is
illustrated in the client application WMQSoapGui provided with WebSphere MQ
Transport for SOAP.

Refer to the documentation provided with WebSphere MQ Transport for SOAP
for more details on long term asynchrony.

3.13 Current status and future plans
At the time of writing this redbook, WebSphere MQ transport for SOAP is
available as a SupportPac and may be directly downloaded from the IBM
WebSphere MQ SupportPacs home page. The current released version of this
SupportPac (dated October 2003) is a “Category 2” SupportPac. It is
unsupported by IBM. The October 2003 release offers the following
enhancements over earlier versions:

� Installation options for Windows, Linux and AIX, HP-UX and Solaris.

� Options to use multithreaded Axis and Microsoft .NET listeners for improved
performance.

� Compatibility with a supported release of WebSphere MQ classes for
Microsoft .NET. Earlier versions of WebSphere MQ transport for SOAP used
unsupported versions of these classes that were embedded directly within the
SupportPac. They will be referenced as an externally supported component
of WebSphere MQ.

� Compatibility with Microsoft .NET framework redistributable and SDK version
1.1.

� Embedded libraries for Apache Axis upgraded to V 1.1 and Xerces upgraded
to V2.5.

� Inclusion of persistence, priority, expiry and SSL options in a WebSphere MQ
URL.

� Availability of WebSphere MQ client connections.

� The ability to use a single JMS listener in conjunction with multiple services
deployed from the same directory. This will avoid having to always activate
one listener per service. This option will only be available for J2EE Web
Services and not for Microsoft .NET services. This is because the Apache
Axis infrastructure automatically passes the prerequisite information about
the target service in the SOAP message, while the Microsoft .NET
infrastructure does not.

� Resolution of triggering problems on Linux. Triggering of listeners on Linux
did not work correctly in the earlier February 2003 release.
 Chapter 3. WebSphere MQ Transport for SOAP 69

� Prototype facilities for long term asynchronous invocation of Web Services.
Previously, asynchrony was only possible within a specific Microsoft .NET
client instance and could not extend beyond the life of the process within
which it was invoked. There were no options at all for asynchrony for Java
based services. In the current release asynchronous options have been
provided for both the environments that allow for asynchronous operation
beyond the lifetime of a specific client instance. See 3.12, “Asynchronous
invocation of Web Services” on page 67 for more details.

� Various performance and reliability enhancements

� Improved documentation

IBM is planning to move this technology into a supported state. It is intended to
achieve this by including WebSphere MQ transport for SOAP into a future
Customer Service Diskette (CSD) update for WebSphere MQ. At that point
WebSphere MQ Transport for SOAP will be a fully supported component of
WebSphere MQ.

Before this CSD version is released the October 2003 edition of the SupportPac
may be updated. If so, the refreshed version most likely will also be a Category 2
unsupported SupportPac but will be closer to the first supported CSD release.

The following functional improvements may be included in any further category 2
SupportPac or in the first supported release:

� Provision for one way messages. WebSphere MQ transport for SOAP is
currently fashioned on a request/response model only and there is no
provision for one way. One way messages are invocations of a service where
no SOAP response message is expected at a client.

� Provision for report messages. These might be used to perform activities
such as status switching of a particular service.

� Installation options for an extended range of platforms.

� An option for a Java only Windows installation. The .NET Framework and the
Framework SDK are currently a prerequisite for WebSphere MQ transport for
SOAP, even if Java support only is required. This prerequisite needs to be
removed.

� Options for transacted operations.

� The ability to use binary attachments with WebSphere MQ transport for
SOAP messages.

� The ability to use Java Web Services coded as .jws files.

� Tighter specification of the WebSphere MQ transport for SOAP standard. This
will include tighter definition of parameters permitted in the ‘wmq:’ URI, how
they map onto details of the WebSphere MQ messages, and how the clients
70 WebSphere MQ Solutions in a Microsoft .NET Environment

and listeners use these details, especially in error situations. This will make it
clearer to implement custom applications, and will improve interoperability.

Note: We recommend that the most current version of the SupportPac is
installed before using the techniques described in this redbook. The CSD
release should also be installed as soon as possible once it becomes
available.
 Chapter 3. WebSphere MQ Transport for SOAP 71

72 WebSphere MQ Solutions in a Microsoft .NET Environment

Chapter 4. Business case scenario

This chapter provides an overview of a bank used as a business case scenario to
illustrate the use of the latest technical features in the WebSphere MQ product.
Due to time and resource constraints, this scenario is intentionally simplified and
does not claim completeness or overall soundness. However, it gives an
understanding of how to use WebSphere MQ as a transport mechanism for
messaging and Web Services invocation from .NET applications.

4

© Copyright IBM Corp. 2004. All rights reserved. 73

4.1 Business domain
A bank called YuBank provides a variety of banking services to its customers and
plans to expand its services to include brokerage accounts and investment
advisory services. The new service allows a customer to open an investment
account and create a customer profile. A questionnaire is provided to the
customer to capture various customer’s financial information, such as the
investment amount, risk level, investment period, return expectation, interested
industries, existing assets, current debts, family income and so on. Based on the
investment criteria and intelligent analysis, the advisory system generates a
portfolio recommendation. If the customer accepts the recommendation, the
trade order is dispatched to a securities transaction system. The customer is
notified automatically after the trade order is executed, together with the latest
portfolio snapshot. A customer may also submit a request to the advisory system
for a new portfolio recommendation later on.

4.2 Business process
The banking system contains several independent, but cooperating modular
subsystems, a design that encourages using only those parts in the system that
are needed for a particular business requirement, and facilitates distributing
development to teams each responsible for a separate subsystem. The major
subsystems include the Bank Service System, Credit Check System, Customer
Profile System, Investment Advisory system, and Share Quote System.
Figure 4-1 illustrates the basic flow context in the business process. The solution
implementations in this book only include the primary subsystems described in
the foregoing section. The use cases are defined in details in the following
sections.
74 WebSphere MQ Solutions in a Microsoft .NET Environment

Figure 4-1 Business process diagram

4.2.1 Use case 1: Account opening
To open a new investment account, a customer or a service representative uses
a Web browser to access the Bank Service System (BSS), a Web-based
application, to enter the customer information. Multiple pages or screens are
used to capture all financial data. All significant information is collected in the first
page or screen, and the necessary processing starts in parallel at the back end,
while the customer continues entering data in the subsequent pages or screens.
A customer unique identifier and identifier type are required for credit check. For
example, a social security number is needed for a customer in the United States.
Additional information like date of birth, name and address are also needed for
credit check. The application communicates with the Credit Check System
(CCS), typically an external credit bureau system, to obtain the credit score(s)
and credit history for the applicant. The data submitted to CCS is composed of
the customer name, unique identifier, identifier type, date of birth, and address in
eXtensible Markup Language (XML) format. After the credit result is retrieved, a
set of business rules are applied in the application to analyze whether the
applicant is qualified to open a new investment account with the bank. All
information collected are used for detailed risk analysis. Even though a candidate
may have a low credit score at present, if his or her credit history is satisfactory
and his or her financial status (assets, debts and income) are good, the applicant
may be accepted.

Customer/Rep

Credit Check
System
(CSS)

Customer
Profile System

(CPS)

Investment
Advisory
System
(IAS)

Share Quote
System
(SQS)

Bank Service
System
(BSS)
 Chapter 4. Business case scenario 75

If the qualification of an applicant meets the bank requirements, a new
investment account is created for the customer. And a new customer profile is
generated in the Customer Profile System (CPS). All customer information such
as the name, address, telephone number and so on is stored in his or her profile,
together with the new account number as well as the investment information.

4.2.2 Use case 2: Investment advisory
After the investment account is set up, the customer or the service representative
may submit a request to the Investment Advisory System (IAS) for portfolio
recommendations, using BSS. IAS pulls the customer information from the CPS.
IAS conducts an intelligent analysis, and communicates with the Share Quote
System (SQS) to retrieve stock prices and historical data. Then IAS further
analyzes the stock data to find a best fit to the customer’s expectations. Finally,
when the portfolio recommendation result is available, the outcome is dispatched
to BSS in an asynchronous manner.

The intelligent analysis involves artificial intelligence, fuzzy logic and optimization
search as well as human interactions such as analyst’s recommendations and
overriding. For simplicity in this demonstration system, simplified logic is used
instead. The SQS system provides the stock performance history in periods of 1,
3, 6, 9, and 12 months in the unit of the return percentage. IAS uses a weighted
formula to calculate a yearly average return percentage:

(1Mx12 + 3Mx4 + 6Mx2 + 9Mx4/3 + 12Mx1)/5.

Based on the average value, the biggest variance can be derived among these
five weighted yearly returns. The amount of the biggest variance divided by the
average reflects the fluctuation, and this value should fall into the range that
matches the risk level the customer desires.

For example, a stock’s historical performance is as follows:

1%, 2%, 2%, 6% and 8% for the period of 1, 3, 6, 9 and 12 months, respectively.
The average yearly return is:

(1%x12 +2%x4 + 2%x2 + 6%x4/3 + 8%x1)/5 = 8%.

The biggest variance is:

1%x12 - 8% = 4% (or 8% - 2%x2 = 4%).

Therefore, the fluctuation is:

4%/8% = 50%.
76 WebSphere MQ Solutions in a Microsoft .NET Environment

4.3 Non-functional requirements and assumptions
To simplify the design, facilitate delivery of a demonstration application and focus
on the asynchronous transport feature of WebSphere MQ in .NET environment,
the following requirements and assumptions are defined:

� The BBS is a Web-based application written in C#. A user accesses the BBS
through a standard Web browser, such as Microsoft Internet Explorer or
Netscape Navigator. The application is built for existing customer services.
The new features of investment account opening and advisory are added to
this application.

� The CCS is a .NET server application written in C#, there is also a VB.NET
version.

� The CPS is a J2EE server application written in Java.

� The IAS is a .NET Web Services application written in C#.

� The SQS is a J2EE Web Services application written in Java.

� The trading system design is out of scope.

� All systems for Web Services in this context use the Basic Profile 1.0 defined
in WS-I standard:

– Extensible Markup Language (XML) Schema 1.0
– Simple Object Access Protocol (SOAP) 1.1
– Web Services Description Language (WSDL) 1.1
– Universal Description, Discovery and Integration (UDDI) 2.0

� All communication transport mechanisms are asynchronous using
WebSphere MQ.

� Necessary data protection is implemented in the inter-system
communications. Secure Sockets Layer (SSL) is a viable option at the
transport layer.

� Part of the process is implemented in a transaction as deemed necessary.

� No firewall is included in the cross-network communications.

� Scalability, availability and disaster recovery are not addressed.

� Minimum system management and monitoring is provided.

� Security such as user authentication, authorization, confidentiality, integrity
and nonrepudiation is not included.

� Maintainability and extensibility of functionality are not covered.

� Reliability is not in the scope.

� Minimum exception handling is implemented to deal with errors resulted from
incorrect data formats, insufficient data elements, and invalid data contents.
 Chapter 4. Business case scenario 77

78 WebSphere MQ Solutions in a Microsoft .NET Environment

Chapter 5. Solution design

This chapter provides information about the solution design of our business case
scenario. It begins by describing the message flow for the two use cases. The
design contains WebSphere MQ message types and message persistence. Next
it shows the server configuration of YuBank and the frameworks used. Finally the
chapter illustrates the WebSphere MQ network in detail.

5

© Copyright IBM Corp. 2004. All rights reserved. 79

5.1 Message flow
There are five applications involved in the business process. The process can be
divided into two separated message flows, one for each use case. Some
applications are involved in both flows.

Figure 5-1 shows where data has to be exchanged between applications. The
numbers in the diagrams show the logical order of the data transfer within the two
use cases.

Figure 5-1 Message flows

5.1.1 Use case 1: Account opening message flow
The account opening message flow can be divided into three steps:

1. To open a new investment account, the Banking Service System (BSS) first
has to send a request message to the external Credit Check System (CSS).
The message has to contain information to identify the customer. This
message does not necessarily have to be persistent because, it can be resent
if the service is currently unavailable.

BSS

CPS

Use Case 1: Account Opening

Use Case 2: Investment Advisory

CCS

BSS IAS CPS

SQS

1
2

3

1 2

4

3

5

6

80 WebSphere MQ Solutions in a Microsoft .NET Environment

2. The CCS sends back a reply with the credit information pertaining to the
customer. This reply has to be persistent, because the credit check is a paid
external service.

3. After the BSS has received the reply with the credit score, it sends a
datagram to the Customer Profile System (CPS) to store the customer
information and the credit rating. The message also has to be persistent,
because the data within it is time consuming and expensive to recreate. Since
assured message delivery is provided by WebSphere MQ, no reply or positive
action notification from the CPS is required.

5.1.2 Use case 2: Investment advisory message flow
The investment advisory message flow can be divided into six steps:

1. To receive a portfolio recommendation, the Banking Service System (BSS)
invokes the Investment Advisory System (IAS) Web Service using
WebSphere MQ transport for SOAP. The SOAP request contains account
and investment information. This request message does not necessarily need
to be persistent, but WebSphere MQ transport for SOAP uses the same
persistence for the request and the corresponding response. The response
contains valuable data and has to be persistent, so the request has to be
persistent too.

2. Whenever the IAS is invoked it sends a request message to the Customer
Profile Service (CPS) containing the customers account number. For
performance reasons this request can be non-persistent. If the message gets
lost, the IAS can resend the request.

3. The CPS sends back the stored profile information in a reply message. Like
the request, the response can be non-persistent for performance reasons.

4. When the IAS receives this reply, it invokes the Share Quote System (SQS)
Web Service using WebSphere MQ transport for SOAP to receive all relevant
stock prices. The SOAP request contains all share names.

5. The SQS returns a SOAP response to the IAS with the prices of the
requested shares. Both SOAP request and response can be non-persistent. If
one of the messages get lost, the SQS is invoked again to receive the latest
prices.

6. The IAS analyzes the data and returns a SOAP response to the BSS
containing the investment advice information. WebSphere MQ transport for
SOAP requires that this message has the same persistence as the
corresponding request.
 Chapter 5. Solution design 81

5.2 Server configuration
YuBank uses a three tier architecture. Tier one is located at the bank’s branch
offices, tiers two and three are located at the head office. Our business case also
requires communication with an external credit bureau system.

On tier one the graphical client application Banking Service System (BSS) is
running in a .NET environment. In our implementation in runs on ITSOL.

On tier two the Web Service Investment Advisory System (IAS) is running in a
.NET environment. The IAS runs on the server ITSOI.

Tier three is composed of two servers, ITSOO and ITSOE. The Java application
Customer Profile System (CPS) is running on ITSOO in a J2EE environment.
The Web Service Share Quote System (SQS) also runs in a J2EE environment
on ITSOE. Both services access a data source on their machine.

YuBank has business to business connection with a credit bureau. This bureau
offers a Credit Check System (CCS). This service is a server application running
in a .NET environment on ITSOD.

Figure 5-2 shows our configuration of all servers with the applications and the
environment on which they are running.
82 WebSphere MQ Solutions in a Microsoft .NET Environment

Figure 5-2 Server configuration

In our configuration we use five Intel® machines running Microsoft Windows
2000 with Service Pack 4. All machines are connected over a TCP/IP network.

5.3 WebSphere MQ configuration
The Banking Service System (BSS) currently runs a WebSphere MQ client for
cost and administration reasons. All other systems have their own local queue
manager.

The BSS on tier one is connected to the queue manager DOTIP on tier two using
a WebSphere MQ client connection. The tier two queue manager DOTIP is
connected to the tier three queue manager’s DOTOP and DOTEP using
sender-receiver channel pairs. Since there is no message transfer between the
two, tier three queue managers, there is no need for a connection between them.

The connection between the BSS and the external queue manager DOTDP is a
WebSphere MQ client connection. DOTDP is not connected to any queue
manager within YuBank’s head office.

BSS IAS CCS Data

SQS Data

CPS
Data

Bank Bank External

ITSOL ITSODITSOI

ITSOO

ITSOE

.NET

J2EE

.NET .NET

J2EE

External Network External Network
 Chapter 5. Solution design 83

Figure 5-3 shows all servers with their queue managers and the applications
connected to them. It also illustrates the queue manager connections.

Figure 5-3 WebSphere MQ network

Figure 5-4 shows all WebSphere MQ objects and message channel agents
defined in our queue manager network.

BSS

IAS

CCS Data

SQS Data

CPS
Data

ITSOL
ITSOD

ITSOI

ITSOO

ITSOE

DOTDP

DOTEPDOTIP

DOTOP

Sender-Receiver Channels

MQI Channels
84 WebSphere MQ Solutions in a Microsoft .NET Environment

Figure 5-4 WebSphere MQ objects

The queue manager DOTDP is standalone. The following WebSphere MQ
objects and message channel agents are defined:

� A server connection channel TO.DOTDP for the BSS clients to connect

� A local input queue called CreditCheck for the CCS application

� A model queue called CreditScore. This model queue is used by the BSS
client application to generate permanent dynamic queues for the replies sent
back by the CCS.

DOTIP is the middle tier queue manager. The following WebSphere MQ objects
and message channel agents are defined:

� A server connection channel TO.DOTIP for the BSS clients to connect

� A sender channel DOTIP.TO.DOTOP for the queue manager connection to
DOTOP

ITSOL

CCS

ITSOD
DOTDP

IAS

ITSOI
DOTIP

CPS

ITSOO

DOTOP

SQS

ITSOE
DOTEP

S
V
R
C
O
N
N

R
C
V
R

S
V
R
C
O
N
N

R
C
V
R

S
D
R

S
D
R

R
C
V
R

R
C
V
R

BSS

S
D
R

S
D
R

DOTIP

DOTIP

DOTEP

DOTOP

SOAP.RESPONSE.Portfolio

CreditCheck

CreditScore

CustomerDetails

SOAP.Portfolio
SOAP.ShareQuote

CustomerDetails

CustomerProfile

SOAP.RESPONSE.ShareQuote

Transmission Queue

Model Queue

Local Queue

Remote Queue

Legends:
 Chapter 5. Solution design 85

� A transmission queue DOTOP used by the sender channel DOTIP.TO.DOTOP

� A receiver channel DOTOP.TO.DOTIP

� A sender channel DOTIP.TO.DOTEP for the queue manager connection to
DOTEP

� A transmission queue DOTEP used by the sender channel DOTIP.TO.DOTEP

� A receiver channel DOTEP.TO.DOTIP

� A local queue SOAP.RESPONSE.Portfolio for the SOAP response messages
sent back from the Web Service Investment Advisory System (IAS)

� A remote queue CustomerDetails. It points to the queue CustomerDetails on
DOTOP. This queue is needed, because the BSS client application has no
direct connection to DOTOP.

� A model queue called CustomerProfile. This model queue is used by the BSS
client application to generate temporary dynamic queues for the replies sent
back by the CPS

� A local queue SOAP.RESPONSE.ShareQuote for the SOAP response
messages sent back from the Web Service Share Quote System (SQS)

� The local input queue for the Web Service IAS called SOAP.Portfolio is
generated by the WebSphere MQ transport for SOAP deployment utility

DOTOP is the first tier three queue managers. The following WebSphere MQ
objects and message channel agents are defined:

� A sender channel DOTOP.TO.DOTIP for the queue manager connection to
DOTIP

� A transmission queue DOTIP used by the sender channel DOTOP.TO.DOTIP

� A receiver channel DOTIP.TO.DOTOP

� A local input queue called CustomerDetails for the CPS application

DOTEP is the second tier three queue managers. The following WebSphere MQ
objects and message channel agents are defined:

� A sender channel DOTEP.TO.DOTIP for the queue manager connection to
DOTIP

� A transmission queue DOTIP used by the sender channel DOTEP.TO.DOTIP

� A receiver channel DOTIP.TO.DOTOP

� The local queue for the Web Service SQS called SOAP.ShareQuote is be
generated by the WebSphere MQ transport for SOAP deployment utility

All queue managers use their local queue SYSTEM.DEAD.LETTER.QUEUE as
the dead letter queue.
86 WebSphere MQ Solutions in a Microsoft .NET Environment

The setup of WebSphere MQ is described in detail in 6.3.1, “Core systems
overview” on page 110.
 Chapter 5. Solution design 87

88 WebSphere MQ Solutions in a Microsoft .NET Environment

Chapter 6. Environment setup

This chapter describes the setup of the core systems used to implement the
solution to our business case scenario. It also gives installation instructions and
describes the hardware and software levels required on each platform in the
business case scenario to obtain the configuration in Figure 5-2 on page 83.

6

© Copyright IBM Corp. 2004. All rights reserved. 89

6.1 Software prerequisites
The software required to implement the business case scenario solution
includes:

� Windows 2000 Professional

� IBM WebSphere MQ V5.3

� Latest WebSphere MQ Customer Service Diskette (CSD)

� Microsoft Visual Studio .NET Professional 2003

� Internet Information Services (IIS)

� Microsoft .NET Framework redistributable (Provided with Microsoft Visual
Studio .NET Professional)

� Java™ 2 SDK and Runtime environment, Standard Edition (build 1.3.1 or
above)

6.2 Installation
This section gives installation, configuration and setup instructions.

6.2.1 Installing WebSphere MQ
WebSphere MQ can be installed using the installation guide provided with
WebSphere MQ product.

Refer to WebSphere MQ for Windows Quick Beginnings, GC34-6073.

6.2.2 Installing WebSphere MQ classes for Microsoft .NET
This can be downloaded from the following URL:

http://www-3.ibm.com/software/integration/support/supportpacs/individual/ma7p.html

6.2.3 Installing WebSphere MQ Transport for SOAP
Refer 3.2.4, “Installation” on page 17 for installation instructions.

6.2.4 Installing Internet Information Services (IIS)
Internet Information Services (IIS) is a group of integrated services that is used
to configure Windows 2000 as a Web server. This section gives instructions on
installing IIS on Windows 2000 Professional.
90 WebSphere MQ Solutions in a Microsoft .NET Environment

http://www-3.ibm.com/software/integration/support/supportpacs/individual/ma7p.html

Before Installation of Internet Information Services (IIS):

� Ensure Windows 2000 Server / Professional CD is available.
� Disconnect the machine from the network.
� Disable any firewall running.

For example, to disable Symantec firewall, click Start -> Programs, select
Symantec Desktop Firewall -> Symantec Desktop Firewall and click
Disable.

Figure 6-1 Disabling Symantec Desktop Firewall

After completing the pre-installation steps above:

� Select Start -> Settings -> Control Panel.
� Double-click Add/Remove Programs.

Or:

� Select Start -> Run. Type “appwiz.cpl” in the Run window (dialog box) and
click OK.

� In the Add/Remove Programs window, click Add/Remove Windows
Components.

� In the Windows Components page, select the check box beside Internet
Information Services (IIS).
 Chapter 6. Environment setup 91

� Click Details.
� Clear all the check boxes, and select the following check boxes:

– Common Files
– Documentation
– FrontPage 2000 Server Extensions
– Internet Information Services Snap-In
– Personal Web Manager
– World Wide Web Server

Figure 6-2 Installing Internet Information Services (IIS)

� Click OK.
� On the Windows Components page, click Next.

During installation, windows may prompt you for your Windows 2000
CD-ROM. Insert the disk and then click OK.

After installation of Internet Information Services (IIS), it is advisable to perform
the following steps:

� For each drive allow administrators full access and deny everyone full access.
– You can do this by opening My Computer.
– Right-click your C Drive, select Sharing.
– Select Do not share this folder.
92 WebSphere MQ Solutions in a Microsoft .NET Environment

Figure 6-3 Disable sharing

� Disable the guest account.
� Obtain the latest service pack from systems support (or windows update) and

apply.
� Reconnect to the network and immediately use windows update to apply all

critical windows updates.
� Run the anti-virus installed on your machine.

6.2.5 Installing Microsoft Visual Studio .NET
Microsoft Visual Studio .NET is a tool for developing applications and is used
extensively by the team to develop .NET applications and Web Services for our
business case scenario.

� Insert the Microsoft Visual Studio .NET Professional 2003 Disk 1 CD into the
CD drive.

� In the Microsoft Visual Studio .NET Setup window, select the Visual Studio
.NET Prerequisites link.
 Chapter 6. Environment setup 93

Figure 6-4 Visual Studio .NET Setup

� You are prompted to insert the Microsoft Visual Studio .NET Prerequisites
CD.

� Browse to the CD Drive and click OK.

Figure 6-5 Microsoft Visual Studio .NET Prerequisites CD prompt
94 WebSphere MQ Solutions in a Microsoft .NET Environment

� In the Microsoft Visual Studio .NET Prerequisites window, read the license
agreement and then select I agree.

� Click Continue.

Figure 6-6 License Agreement acceptance
 Chapter 6. Environment setup 95

� The Microsoft Visual Studio .NET Prerequisites window is displayed listing all
the components to be installed.

Figure 6-7 Microsoft Visual Studio .NET Prerequisites installation listing

� Click Continue.
96 WebSphere MQ Solutions in a Microsoft .NET Environment

� In the Microsoft Visual Studio .NET Prerequisites Automatic Log On window,
you may optionally specify authentication to automatically log on as shown
below:

Figure 6-8 Microsoft Visual Studio .NET Prerequisites Automatic Log On
 Chapter 6. Environment setup 97

� Microsoft Visual Studio .NET Prerequisites progress bar is displayed showing
the progress of the installation as shown below:

Figure 6-9 Microsoft Visual Studio .NET prerequisites progress bar showing the progress
of the installation
98 WebSphere MQ Solutions in a Microsoft .NET Environment

� On completion of the installation of prerequisite components, the Microsoft
Visual Studio .NET Setup window is again displayed.

Figure 6-10 Microsoft Visual Studio .NET Setup

� In the Microsoft Visual Studio .NET Setup window, select the Visual
Studio.NET link.
 Chapter 6. Environment setup 99

� You are prompted to insert the Microsoft Visual Studio .NET Disk1 CD.

Browse to the CD Drive and click OK.

Figure 6-11 Microsoft Visual Studio .NET Disk1 CD prompt
100 WebSphere MQ Solutions in a Microsoft .NET Environment

� The installation continues as illustrated below:

Figure 6-12 Installing Microsoft Visual Studio .NET
 Chapter 6. Environment setup 101

� On completion of the installation, the Microsoft Visual Studio .NET Setup
window is again displayed.

� Select the Product Documentation link as shown below:

Figure 6-13 Installing the product documentation for Microsoft Visual Studio .NET
102 WebSphere MQ Solutions in a Microsoft .NET Environment

� In the MSDN Library for Microsoft Visual Studio .NET setup wizard, select
Next.

Figure 6-14 MSDN Library for Microsoft Visual Studio .NET setup wizard
 Chapter 6. Environment setup 103

Read and accept the license agreement.

Figure 6-15 MSDN Library for Microsoft Visual Studio .NET License Agreement
104 WebSphere MQ Solutions in a Microsoft .NET Environment

� In the MSDN Library for Microsoft Visual Studio .NET customer Information
window, enter your username and organization.

Figure 6-16 MSDN Library for Microsoft Visual Studio .NET customer Information
 Chapter 6. Environment setup 105

� In the MSDN Library for Microsoft Visual Studio .NET
Selection/Customization window, select Full.

Figure 6-17 MSDN Library for Microsoft Visual Studio .NET Selection/Customization
106 WebSphere MQ Solutions in a Microsoft .NET Environment

� In the MSDN Library for Microsoft Visual Studio .NET destination folder
window, select Next or change the folder directory if necessary.

Figure 6-18 MSDN Library for Microsoft Visual Studio .NET destination folder
 Chapter 6. Environment setup 107

� In the MSDN Library for Microsoft Visual Studio .NET ready to install window,
select Install.

Figure 6-19 MSDN Library for Microsoft Visual Studio .NET ready to install
108 WebSphere MQ Solutions in a Microsoft .NET Environment

� Installation begins and an MSDN Library for Microsoft Visual Studio .NET
progress bar is shown.

Figure 6-20 MSDN Library for Microsoft Visual Studio .NET in progress
 Chapter 6. Environment setup 109

� On the MSDN Library for Microsoft Visual Studio .NET finish window, select
Finish.

Figure 6-21 MSDN Library for Microsoft Visual Studio .NET finish

� On completion of the installation of product documentation, the Microsoft
Visual Studio .NET Setup window is displayed.

� Select the Service Releases link.

6.3 Environment Setup
This section gives an overview of the setup of the core systems used to
implement the solution to our business case scenario. It contains information
about the software running on each platform in the business case scenario to
obtain the configuration in Figure 5-2 on page 83. It also contains information
about the WebSphere MQ setup.

6.3.1 Core systems overview
The figure below is a combination of Figure 5-2 on page 83 and Figure 5-3 on
page 84 to give an overall description of the environment.
110 WebSphere MQ Solutions in a Microsoft .NET Environment

Figure 6-22 Overall representation of the environment

The following table shows the required software on the different servers.

Table 6-1 Core system setup

Software |TSOL ITSOD ITSOI ITSOO ITSOE

WebSphere MQ x x x x

WebSphere MQ classes for
Microsoft .NET

x x x

WebSphere MQ Transport for
SOAP

x x x

Internet Information Services
(IIS)

x (x)

Microsoft Visual Studio .NET (x) (x) (x)

.NET Framework x x x x

Java Virtual Machine x x x x

BSS

IAS

CCS Data

SQS Data

CPS
Data

ITSOL
ITSOD

ITSOI

ITSOO

ITSOE

DOTDP

DOTEPDOTIP

DOTOP

Sender-Receiver Channels

MQI Channels

.NET

.NET

J2EE

J2EE

.NET
 Chapter 6. Environment setup 111

WebSphere MQ setup
The queue managers and queues for this setup are created using scripts
included in the “WebSphere MQ Setup” on page 318.

� Copy the script from the appendix to a folder on the appropriate machines.
For example: Copy the script called DOTOP.mqsc from the appendix to the
machine intended to host the DOTOP queue manager.

� Edit the scripts to change all CONNAME and MCAUSER entries. The
CONNAME parameter contains the host name of the machine with the
partner queue manager. The MCAUSER parameter contains a local user
name, where the user must be a member of the mqm group.

� Copy initWMQ.bat from appendix to the same folder.

� Run InitWMQ with the name of the intended queue manager as the
parameter in a command prompt.
For example, if you copied DOTOP.mqsc and initWMQ.bat into a folder
C:\MQConfig, open a command prompt, change the current directory to
C:\MQConfig and type the following:

Example 6-1 WebSphere MQ setup

initWMQ DOTOP

Internet Information Services (IIS) needs to be installed on ITSOI but it can be removed
later.
Microsoft Visual Studio .NET is only needed to develop and debug the applications and
is not a prerequisite to run the sample applications.

Software |TSOL ITSOD ITSOI ITSOO ITSOE
112 WebSphere MQ Solutions in a Microsoft .NET Environment

� The command prompt should look like the one below:

Figure 6-23 initWMQ DOTOP

� The queue managers, queues and channels and a listener are created.

For the description of what the scripts do, refer to the scripts in Appendix A,
“Scripts, source code and test data for YuBank” on page 317, and Chapter 4.

� A log file is created for each setup to check if all scripts run successfully.

� Start all sender channels on the queue managers DOTIP, DOTOP, and
DOTEP. This can be done using the runmqsc command START CHANNEL or
using the WebSphere MQ Explorer.
 Chapter 6. Environment setup 113

114 WebSphere MQ Solutions in a Microsoft .NET Environment

Chapter 7. Messaging solution: .NET
application to .NET
application

This chapter contains the .NET application to .NET application example which is
also used in subsequent chapters. The .NET applications use WebSphere MQ
classes for Microsoft .NET.

The contents of this chapter are organized as follows:

� Process overview

– Scenario overview

� System context

– Interface definitions

� Development

– Adding the WebSphere MQ reference to the project
– Bank service application (C#)
– Credit check application

� Deployment

– Deploying BSS

7

© Copyright IBM Corp. 2004. All rights reserved. 115

– Deploying CCS

� Testing

– How to start BSS
– How to start CCS
– Test 1 Pass known data
– Test 2 Pass unknown user

7.1 Process overview
This process involves part of the account opening use case (use case 1). The
business case scenario is a bank performing a credit check for a customer. The
bank, after liaison with the customer, sends a WebSphere MQ message to the
Credit Check application to establish the customer’s credit rating.

The figure below illustrates this part of the account opening use case, with all
WebSphere MQ resources involved.
116 WebSphere MQ Solutions in a Microsoft .NET Environment

Figure 7-1 Credit Check scenario showing queues involved

The Bank Service System (BSS) application BSS puts a datagram message
containing the customer information on the input queue, CreditCheck, of the
Credit Check Service (CCS). The CCS gets the message, reads its data and
performs a credit check on the customer. CCS puts the credit score on a
temporary dynamic queue, CreditScore<unique number> from which BSS
extracts it and displays it.

The BSS is an ASP.NET application written in C# and the CCS is a .NET console
mode application.

7.1.1 Scenario overview
To open a new investment account the Banking Service System (BSS) gathers
information from the customer and then requests a Credit Check using an
external system. The Credit Check System (CCS) receives the information using

ITSOL ITSOD

DOTDP

S
V
R
C
O
N
N

CreditCheck

CreditScore

Model QueueLocal Queue

CCSBSS

CreditScore*

qmgr =
 new MQQueueManager(...)

outQueue =
 qmgr.accessQueue(...)

inQueue =
 qmgr.accessQueue(...)
replyQ = outQueue.name

outQueue.put(requestMsg)

wait

inQueue.get(replyMsg)

qmgr =
 new MQQueueManager(...)

inQueue =
 qmgr.accessQueue(...)

inQueue.get(requestMsg)

replyQ = requestMsg.
 replyToQueueName

READ DATA

outQueue =
 qmgr.accessQueue(...)

outQueue.put(replyMsg)

1

2

3

4

5 5

6
7

 Chapter 7. Messaging solution: .NET application to .NET application 117

WebSphere MQ and returns information about the customer’s credit rating also
using WebSphere MQ but on a dynamic queue extracted from the details
contained in the received message. The reply is on a persistent queue because
the CCS is typically a paid service. The BSS then subsequently rearranges the
information and sends it to the Customer Profile System (CPS). The first
scenario deals with the BSS to CCS interchange which both involve .NET
applications. The BSS is an ASP.NET applications written in C# and the CCS
application is a .NET console mode application. The CCS application is coded in
both C# and VB.NET in order to illustrate the WebSphere MQ classes for
Microsoft .NET approach in both languages.

7.2 System context
The bank application is an internal banking system and the credit check
application is an external bureau that derives an income by providing credit
ratings on demand.

7.2.1 Interface definitions
The bank application provides the following customer details:

Table 7-1 Requested customer details

In addition, the WebSphere MQ message header is modified to include the
additional information:

Table 7-2 WebSphere MQ message header

BankID

UniqueID

Name

Address

Date Of Birth

UniqueIDType

ReplyToQ

ReplyToQMgr

MessageID

MsgType
118 WebSphere MQ Solutions in a Microsoft .NET Environment

The credit check application replies with the information below:

Table 7-3 Credit Check Response

Where: CorrelID is assigned the supplied MessageID, and MsgType is assigned
MQC.MQMT_REPLY

7.3 Development
To develop the business case scenario both the bank application and the credit
check application need to be developed.

7.3.1 Adding the WebSphere MQ reference to the project
Before it is possible to use the WebSphere MQ object's properties, methods, or
events, a reference must be created to the object. The technique to add a
WebSphere MQ reference is by adding amqmdnet.dll as a reference.

This Dynamic Link Library (DLL) is typically located at:

C:\Program Files\IBM\WebSphere MQ\bin\amqmdnet.dll

Techniques for adding a reference are outlined next.

� In Solution Explorer, click the item requiring the reference.

� On the Project menu, click Add Reference.

� The Add Reference window appears.

CorrelID

Credit Score

BureauID

Comments

Credit History

Time Stamp

MsgType
 Chapter 7. Messaging solution: .NET application to .NET application 119

Figure 7-2 Adding a Reference

� In the Add Reference window, click the tab for the category of reference you
are adding. These can be .NET Framework, COM, or Projects, select .NET.

� Click Browse and locate the amqmdnet.dll or MQSOAP.dll libraries.

� Click Select, then click OK.

As an alternative, you can add a reference by right-clicking the item requiring the
reference in Solution Explorer. On the shortcut menu, click Add Reference and
the same Add Reference window as the one above appears.

In C# applications the appropriate classes are included as follows:

Example 7-1 how to include WebSphere MQ classes in C#

using IBM.WMQ;

In VB.NET application the appropriate classes are included as follows:

Example 7-2 how to include WebSphere MQ classes in VB.NET

Imports IBM.WMQ
120 WebSphere MQ Solutions in a Microsoft .NET Environment

using IBM.WMQ.MQC

7.3.2 Bank service application (C#)
The BSS application gathers the customer details shown in Table 7-1 on
page 118 above. Since BSS is a WebSphere MQ client application, it needs
appropriate permission to connect to the remote queue manager. The ASP.NET
applications run under the user ASPNET. The easiest way to give the ASPNET
user permission to connect to the queue manager and use its queues, is to add it
to the mqm user group (WebSphere MQ administration group, with access to all
WebSphere MQ resources).

Without permission the connect will fail with reason code 2035
(MQRC_NOT_AUTHORIZED).

Prior to sending a WebSphere MQ message to the CCS application the
appropriate details are arranged into an eXtensible Markup Language (XML)
before sending. The string is an XML string representing a typical WebSphere
MQ message using the built-in format MQFMT_STRING and is represented
below:

Example 7-3 Sample XML message sent over WebSphere MQ

<?xml version="1.0" encoding="utf-16"?>
<BSS BankID="99" UniqueID="1001" Name="Sheppard" Addr="Brisbane"
DOB="19810417" IDType="27" />

The following code sample prepares the message in XML format.

Example 7-4 How to assemble the XML message

StringWriter sw=new StringWriter();
XmlTextWriter tw = new XmlTextWriter(sw);
// next create the XML stream
tw.WriteStartDocument();
tw.WriteStartElement("BSS");
tw.WriteAttributeString("BankID",textBox1.Text);
tw.WriteAttributeString("UniqueID",textBox2.Text);
tw.WriteAttributeString("Name",textBox3.Text);
tw.WriteAttributeString("Addr",textBox4.Text);
tw.WriteAttributeString("DOB",textBox5.Text);
tw.WriteAttributeString("IDType",textBox8.Text);
tw.WriteEndElement();
tw.WriteEndDocument();
// clean up
tw.Flush();
tw.Close();
 Chapter 7. Messaging solution: .NET application to .NET application 121

sw.Close();
string message=sw.ToString();

The BSS application connects to a remote queue manager DOTDP through a
channel, TO.DOTDP on a host called ITSOD as illustrated in the example below:

Example 7-5 Connecting to remote queue manager

try
{

// connect to QueueManager
queueManager = new MQQueueManager("DOTDP","TO.DOTDP","ITSOD");
System.Console.WriteLine("Connected to QueueManager DOTDP");

}
// catch MQExceptions
catch(MQException ex)
{

System.Console.WriteLine("MQException: compCode: " + ex.CompCode.ToString()
+ " Reason: " + ex.Reason.ToString());

}

An input queue is created during the WebSphere MQ setup for CCS called
CreditCheck. BSS puts datagrams on this queue for CCS to extract. BSS opens
the queue as shown below:

Example 7-6 Queue connection

//Declare WebSphereMQ variable - queue
MQQueue queueOut = null

// Open queue out (local queue on CCS)
queueOut = QM.AccessQueue("CreditCheck", MQC.MQOO_OUTPUT |
MQC.MQOO_FAIL_IF_QUIESCING);

A model queue, CreditScore, also created during the WebSphere MQ setup, is
used to generate a dynamic queue with a unique name. The dynamic queue is
used to specify the replyToQueue for the CCS application. This is done by
creating a new message object, and setting the CorrelationId field of the
message to be received to the value of the MessageId field of the message that
was sent to CCS

The following code snippet shows how this is achieved.

Example 7-7 Code to create dynamic queue and define replyToQueue

// model queue used to create dynamic queue with unique name - CreditScore*
122 WebSphere MQ Solutions in a Microsoft .NET Environment

queueIn = QM.AccessQueue("CreditScore", MQC.MQOO_INPUT_EXCLUSIVE |
MQC.MQOO_FAIL_IF_QUIESCING, "", "CreditScore*", "");

// save dynamic queue name in a variable in order to define replyToQueue
replyToQueue = queueIn.Name;

// create new message
custDetails = new MQMessage();
// define message properties
custDetails.Persistence = 1;
// the messages’ replyToQueue is now unique dynamic queue
custDetails.ReplyToQueueName = replyToQueue;
// set message type to request and format to string
custDetails.MessageType = MQC.MQMT_REQUEST;
custDetails.Format = MQC.MQFMT_STRING;

The message containing the customer details is put into the CreditCheck queue
as shown in the code snippet below:

Example 7-8 Putting a message on a queue

// put message on queueOut
custDetails.WriteString(message);
queueOut.Put(custDetails);

CCS extracts the information, performs a credit check on the customer and
returns a credit check score to the CreditScore queue. The credit check score is
extracted by BSS after a 10 seconds wait. If the reply is not returned within this
time period an MQException is thrown with a reason code of
MQRC_NO_MSG_AVAILABLE (2033). The following code snippet shows how
this is achieved.

Example 7-9 Getting a message from a queue with a 10 seconds wait

// create new message
MQMessage creditScore = new MQMessage();
// assign the correlation ID the value of the messageID of the message that
was sent
creditScore.CorrelationId = custDetails.MessageId;
// set getmessageOptions so that there is a 10 seconds wait but stop if
problems occur
gmo = new MQGetMessageOptions();
gmo.Options = MQC.MQGMO_WAIT + MQC.MQGMO_FAIL_IF_QUIESCING;
gmo.WaitInterval = 10000;
// get message
queueIn.Get(creditScore,gmo);
 Chapter 7. Messaging solution: .NET application to .NET application 123

After receiving the corresponding reply, the BSS reads the XML string.

Example 7-10 Read message content

xmlMessage =
creditScore.ReadString(creditScore.MessageLength);

Finally, the queues are closed, the temporary dynamic queue deleted and the
queue manager disconnected.

Example 7-11 Queues closed, temporary dynamic queue deleted, and queue manager
disconnected

finally
{

// close queueOut
queueOut.Close();
// close & delete queueIn (dynamic queue)
queueIn.CloseOptions = MQC.MQCO_DELETE_PURGE;
queueIn.Close();
// disconnect QueueManager
QM.Disconnect();

}

7.3.3 Credit check application
To ascertain the customer’s credit rating the CCS application must access a
database.

Credit check database
XML is finding its way into applications beyond those that traditionally utilize
markup languages. In particular, XML is becoming popular as a data interchange
notation for database oriented applications. As such we are going to interface to
a simple flat XML file with the understanding that to extrapolate to a full database
is a relatively straightforward exercise.

The following XML file is used by the Credit Check application as its database
and is called CreditDatabase.xml.

Example 7-12 Sample CreditDatabase.xml

<?xml version="1.0"?>
<CreditDatabase>

<Customer UniqueID="98765" DOB="19780321" IDType="1"
score="700" BureauID="1" History="Good rating" Comments="good risk" />
<Customer UniqueID="87654" DOB="19830816" IDType="1"
score="700" BureauID="2" History="Good rating" Comments="good risk" />
124 WebSphere MQ Solutions in a Microsoft .NET Environment

<Customer UniqueID="76543" DOB="19631109" IDType="1"
score="500" BureauID="1" History="average" Comments="medium risk" />
<Customer UniqueID="54321" DOB="19780321" IDType="1"
score="100" BureauID="3" History="bad debts" Comments="bad risk" />

</CreditDatabase>

The Document Object Model (DOM) is a platform and language-neutral interface
that allows programs and scripts to dynamically access and update the content,
structure and style of documents. In particular an XML DOM is used here as a
simple database.

The Credit Check application, after extracting the credit score, sends a
WebSphere MQ message back to the bank with the fields outlined in the 7.2.1,
“Interface definitions” on page 118.

7.3.4 Credit check application C# snippet
The CCS console mode application is coded in both C# and VB .NET. This
section refers to the C# implementation.

How to create the DOM in C#
The following code is taken from the sample.

Example 7-13 Variable declaration

XmlDocument DatabaseDOM;

The code is:

Example 7-14 Code to create an XML DOM

DatabaseDOM = new XmlDocument();
DatabaseDOM.Load(xmlFile);

Where, “xmlFile” is the full or relative path for the above xml File. This is
surrounded with a try catch block in the sample.

How to access the DatabaseDOM in C#
To get to the attributes:

Example 7-15 Credit Check routine snippet

XmlElement root = DatabaseDOM.DocumentElement;
XmlNodeList CustomerList = root.GetElementsByTagName("Customer");
// iterate through all the customers
foreach(XmlNode cust in CustomerList)
 Chapter 7. Messaging solution: .NET application to .NET application 125

{
// get the attribute collection for the specific Customer Element

 XmlAttributeCollection attrColl = cust.Attributes;

Once we have the attribute for a specific customer we enumerate the attributes
again, with attr.Name being the attribute name, and attr.Value being the attribute
value:

foreach(XmlAttribute attr in attrColl)
{

For the first record in the above sample, it yields:

attr.Name => “UniqueID”
attr.Value => “98765”}
}

In this way it is very easy to the check given parameters to see if a match can be
found.

How to read a WebSphere MQ message in C#
To read an MQ message it is necessary to first connect to the queue manager
and then open the queue:

Example 7-16 How to connect and open a queue in C#

//
// Try to connect to the Queue Manager
//
try
{

mqQMgr = new MQQueueManager(queueManager);
}
catch (MQException mqe)
{

// Stop if failed
string Error="MQQueueManager::Connect failed with " + mqe.Message;
Console.WriteLine(Error);
return false;

}
//
// Try to open the queue
//
try
{

mqQueue = mqQMgr.AccessQueue(queueName,
MQC.MQOO_INPUT_AS_Q_DEF // open queue for input
+ MQC.MQOO_FAIL_IF_QUIESCING); // but not if MQM stopping
126 WebSphere MQ Solutions in a Microsoft .NET Environment

}
catch (MQException mqe)
{

//Stop if failed
string Error="MQQueueManager::AccessQueue ended with " + mqe.Message;
Error += mqe.Reason.ToString();
Console.WriteLine(Error);
return false;

}

The code for reading the message is then as follows:

Example 7-17 Code snippet for reading from a queue in C#

MQMessage mqMsg = new MQMessage();
MQGetMessageOptions mqGetMsgOpts = new MQGetMessageOptions();
mqGetMsgOpts.Options = MQC.MQGMO_WAIT + MQC.MQGMO_FAIL_IF_QUIESCING;
mqGetMsgOpts.WaitInterval = 15000; // 15 second limit for waiting
try
{

mqQueue.Get(mqMsg, mqGetMsgOpts);
if (mqMsg.Format.CompareTo(MQC.MQFMT_STRING) == 0)
{

string xmlMessage = mqMsg.ReadString(mqMsg.MessageLength);
MessageIDIncoming = mqMsg.MessageId;
QNameInComing = mqMsg.ReplyToQueueName;
QMgrIncoming = mqMsg.ReplyToQueueManagerName;
Console.WriteLine();
return xmlMessage;

}
else
{

System.Console.WriteLine("Non-text message");
}
catch (MQException mqe)
{

// report reason, if any
if (mqe.Reason == MQC.MQRC_NO_MSG_AVAILABLE)
{

// special report for normal end
if (DotCount++ % 50 == 0)
{

Console.WriteLine();
Console.Write("Idle");

}
else
{

Console.Write(".");
 Chapter 7. Messaging solution: .NET application to .NET application 127

}
}
else
{

// general report for other reasons
Console.WriteLine();
System.Console.WriteLine("MQQueue::Get ended with " + mqe.Message);
// treat truncated messages as a failure for this sample
if (mqe.Reason == MQC.MQRC_TRUNCATED_MSG_FAILED)
{

isContinue = false;
}

}
}

Generating WebSphere MQ reply
Once the UniqueID, Date of Birth (DOB) and IDType have been matched the
information is retrieved from the DatabaseDOM or, if no match is found, default
information is returned.

The information is assembled into an XML message.

Example 7-18 Technique for preparing XML message

StringWriter sw=new StringWriter();
XmlTextWriter tw = new XmlTextWriter(sw);
// next create the XML stream
tw.WriteStartDocument();
tw.WriteStartElement("CCS");
tw.WriteAttributeString("Score",CreditScore);
tw.WriteAttributeString("BureauID",BureauID);
tw.WriteAttributeString("Comments",Comments);
tw.WriteAttributeString("History",History);
DateTime dt = DateTime.Now;
tw.WriteAttributeString("Time",dt.ToString());
tw.WriteEndElement();
tw.WriteEndDocument();
// clean up
tw.Flush();
tw.Close();
sw.Close();

string message=sw.ToString();

// put the XML message into the queue

MQMessage mqMsg = new MQMessage();
mqMsg.CorrelationId = MessageIDIncoming;
128 WebSphere MQ Solutions in a Microsoft .NET Environment

mqMsg.MessageType = MQC.MQMT_REPLY;
mqMsg.WriteString(message);
mqMsg.Format = MQC.MQFMT_STRING;

The CCS Application then returns to the idle state waiting for the next request.

How to Send a WebSphere MQ reply
After creating the XML MQ message the following snippet illustrates how to send
the message.

Example 7-19 Sending an MQ message in C#

try
{

mqQueue.Put(mqMsg, mqPutMsgOpts);
}
catch (MQException mqe)
{

// report the error
System.Console.WriteLine("MQQueue::Put ended with " + mqe.Message);
MessageSent = false;

}
finally
{

mqQueue.Close();
}

7.3.5 Credit check application VB .NET snippet
The CCS console mode application is coded in both C# and VB.NET. This
section refers to the VB .NET implementation.

How to create the DOM in VB .NET
The following code is taken from the sample.

Example 7-20 Variable declaration

Dim DatabaseDOM As XmlDocument

The code is:

Example 7-21 Code to create an in memory XML DOM

Try
DatabaseDOM = New XmlDocument
DatabaseDOM.Load(xmlFile)
 Chapter 7. Messaging solution: .NET application to .NET application 129

' Handle the XML exceptions here.
Catch xmlex As XmlException

Console.WriteLine("{0}", xmlex.Message)
' Handle the generic exceptions here.
Catch ex As Exception

Console.WriteLine("{0}", ex.Message)
Finally

' Add code here to finalize.
End Try

Where, xmlFile is the full or relative path to the above xml File.

How to access the DatabaseDOM in VB .NET
In this snippet of code the xmlMessage is the string returned from WebSphere
MQ.

Example 7-22 How to parse XML in VB

Try
Dim MQMessageDOM As XmlDocument = New XmlDocument
MQMessageDOM.LoadXml(xmlMessage)
Dim root As XmlElement = MQMessageDOM.DocumentElement

Dim attrColl As XmlAttributeCollection = root.Attributes
For Each attr As XmlAttribute In attrColl

Console.WriteLine(" attr={0} content={1}", attr.Name, attr.Value)
Next

Catch e As XmlException
Console.WriteLine(e.Message)

End Try

When using the sample xml database in “Credit check database” on page 124,
this sample results in the output shown below:

Example 7-23 Credit check output

attr=BankID content=99
attr=UniqueID content=87654
attr=Name content=Sheppard
attr=Addr content=Brisbane
attr=DOB content=19830816
attr=IDType content=1

How to read a WebSphere MQ message in VB.NET
To read an MQ message it is necessary to first connect to the queue manager
and then open the queue.
130 WebSphere MQ Solutions in a Microsoft .NET Environment

Example 7-24 How to connect and open a queue in VB.NET

'

' Try to connect to the Queue Manager
'
Try

mqQMgr = New MQQueueManager(queueManager)

Catch mqe As MulticastNotSupportedException

' stop if failed
Dim Err As String = "MQQueueManager::connect failed with " + mqe.Message
Console.WriteLine(Err)
Return False

End Try
' try to open the queuee
Try

' open the queue for input but not if MQM stopping
mqQueue = mqQMgr.AccessQueue(queueName, MQC.MQOO_INPUT_AS_Q_DEF +
MQC.MQOO_FAIL_IF_QUIESCING)

Catch mqe As MQException
' stop if failed
Dim Err As String = "MQQueueManager::AccessQueue ended with " + mqe.Message
Err = Err & mqe.Reason.ToString()
Console.WriteLine(Err)
Return False

End Try
Return True

The code for reading the message is then as follows:

Example 7-25 Code snippet for reading from a queue in VB.NET

' MQMessage instance
Dim mqMsg As MQMessage = New MQMessage
' MQGetMessageOptions instance
Dim mqGetMsgOpts As MQGetMessageOptions = New MQGetMessageOptions
mqGetMsgOpts.Options = MQC.MQGMO_WAIT + MQC.MQGMO_FAIL_IF_QUIESCING
mqGetMsgOpts.WaitInterval = 15000 ' 15 second limit for waiting
Try

mqQueue.Get(mqMsg, mqGetMsgOpts)
If mqMsg.Format.CompareTo(MQC.MQFMT_STRING) = 0 Then

Console.WriteLine()
Dim xmlMessage As String = mqMsg.ReadString(mqMsg.MessageLength)
MessageIDIncoming = mqMsg.MessageId
 Chapter 7. Messaging solution: .NET application to .NET application 131

QNameInComing = mqMsg.ReplyToQueueName
QMgrIncoming = mqMsg.ReplyToQueueManagerName
Return xmlMessage

Else
System.Console.WriteLine("Non-text message")

End If
Catch mqe As MQException

' report reason, if any
If mqe.Reason = MQC.MQRC_NO_MSG_AVAILABLE Then

' Special report for normal end
If DotCount Mod 50 = 0 Then

Console.WriteLine()
Console.Write("Idle")

Else
Console.Write(".")

End If
DotCount = DotCount + 1
isContinue = True ' continue until we get a message

Else
' general report for other reasons
System.Console.WriteLine("MQQueue::Get ended with " + mqe.Message)
isContinue = False
' treat truncated messages as a failure for this example
If mqe.Reason = MQC.MQRC_TRUNCATED_MSG_FAILED Then

isContinue = False
End If
End If

End Try

Generating WebSphere MQ reply
Once the UniqueID, the Date of Birth (DOB) and IDType have been matched the
information is retrieved from the DatabaseDOM or, if no match is found, default
information is returned.

The information is assembled into an XML message.

Example 7-26 Technique for assembling an XML message in VB.NET

'Lets now generate a return XML message
Dim sw As StringWriter = New StringWriter
Dim tw As XmlTextWriter = New XmlTextWriter(sw)
' next create the XML stream
tw.WriteStartDocument()
tw.WriteStartElement("CCS")
tw.WriteAttributeString("Score", CreditScore)
tw.WriteAttributeString("BureauID", BureauID)
tw.WriteAttributeString("Comments", Comments)
132 WebSphere MQ Solutions in a Microsoft .NET Environment

tw.WriteAttributeString("History", History)
Dim dt As DateTime = DateTime.Now
tw.WriteAttributeString("Time", dt.ToString())
tw.WriteEndElement()
tw.WriteEndDocument()
'clean up
tw.Flush()
tw.Close()
sw.Close()

Dim message As String = sw.ToString()
' put the XML message into the queue
Dim mqMsg As MQMessage = New MQMessage
mqMsg.CorrelationId = MessageIDIncoming
mqMsg.MessageType = MQC.MQMT_REPLY
mqMsg.WriteString(message)
mqMsg.Format = MQC.MQFMT_STRING

The code for sending the message is then as follows:

Example 7-27 Code snippet for sending to a queue in VB.NET

Dim mqPutMsgOpts As MQPutMessageOptions = New MQPutMessageOptions
Try

mqQueue.Put(mqMsg, mqPutMsgOpts)
Catch mqe As MQException

' report the error
Console.WriteLine("MQQueue::Put ended with " + mqe.Message)
MessageSent = False

Finally
mqQueue.Close()

End Try

7.4 Deployment
Both the BSS and the CCS applications need to be deployed.

It is assumed that the .NET Framework is installed on the computer using an
appropriate .NET Framework installation.
 Chapter 7. Messaging solution: .NET application to .NET application 133

7.4.1 Deploying BSS
The BSS application, being a .NET application, is exposed within a URL
namespace and backed using a file system directory located on either a local or
remote file share.

By default, an ASP.NET Framework application is automatically configured to use
the \bin subdirectory, located immediately under the application root, as its local
assembly cache. The \bin directory is also configured to deny any browser
access so that a remote client cannot download and steal the code. The following
example shows how to layout the BSS (ASP.NET) application, where the \bin
directory is immediately under the application root. The application root being:

C:\inetpub\wwwroot\BankingServiceSystem

Example 7-28 Directory structure for BSS

AcctOpenFail.aspx
AcctOpenOK.aspx
DisplayError.aspx
RequestAdvice.aspx
DisplayAdvice.aspx
Global.asax
Home.aspx
RequestIDetails.aspx
RequestPDetails.aspx
Web.config
\bin
BankingServiceSystem.dll
MQSOAP.dll
\img
HomePage.gif
OtherPages.gif

Next, configuring Internet Information Services (IIS) is required.

Configuring IIS for BSS Web Application
The ASP.NET Web application require that both IIS and FrontPage Server
Extensions are installed for local development of these project types. The
ASP.NET application must also be installed and registered.

Open the Microsoft Management Console (MMC) to the Default Web Site
invoking MMC using Start->Run and typing MMC.

In the Default Web Site, click the subdirectory BankingSystemService in order to
designate it an application root. Right-click this directory so that it can be made
into the application root, and then click Properties.
134 WebSphere MQ Solutions in a Microsoft .NET Environment

In the Application Settings section on the Directory tab, click Create.

In the Application name text box, enter the name of the application, and then
click OK.

This creates the virtual directory for the BSS Application.

Configuring BSS to use SOAP
To use WebSphere MQ Transport for SOAP in BSS, the condition variable
#define is uncommented as shown below:

Example 7-29 Configuring BSS to use WebSphere MQ Transport for SOAP

#define USE_SOAP

This line of code can be found at the first line of RequestAdvice.aspx.

Likewise, when WebSphere MQ Transport for SOAP is not required for the Web
Services, the condition variable is commented out as shown below:

Example 7-30 Configuring BSS not to use WebSphere MQ Transport for SOAP

///#define USE_SOAP

Configuring BSS to use SSL
The web.config has been altered to define environment variables to cater for the
use of SSL as well as the technique of SSL used in BSS.

If SSL is to be used, edit the web.config such that EnableSSL is set to Yes as
shown below:

Example 7-31 Configuring BSS to use SSL

<appSettings>
.
.
<add key="EnableSSL" value="Yes" />
.
.

</appSettings>

If SSL is used and the MQEnvironment technique is preferred, then
UseMQEnvironment is set to Yes as shown below:

Example 7-32 Configuring BSS to use SSL and apply the MQEnvironment technique

<appSettings>
 Chapter 7. Messaging solution: .NET application to .NET application 135

.

.
<add key="UseMQEnvironment" value="Yes"/>

</appSettings>

If SSL is used and the hashtable technique is preferred, then
UseMQEnvironment is set to No as shown below:

Example 7-33 Configuring BSS to use SSL and apply the hashtable technique

<appSettings>
.
.
<add key="UseMQEnvironment" value="No"/>

</appSettings>

7.4.2 Deploying CCS
The CCS application is extremely simple to deploy. There are only two files
CCS.EXE (or CCSVB.EXE) and the Credit Database CreditDatabase.xml.

The simplest method is to create a directory, say CCS, and copy the two files.
The following example illustrates this.

Example 7-34 C# and VB.NET versions

Directory of C:\CCS*
CCS.exe
CCSVB.exe
CreditDatabase.xml

7.5 Testing
To test the BSS to CCS intercommunication it is necessary to perform two tests.
The first test is when the supplied information is known to exist in the database of
the CCS and the second test is when the supplied information is known not to be
in the database. It is preferable to start CCS running before any testing starts.

7.5.1 How to start BSS
BSS is readily started by launching Internet Explorer and specifying the following
URL:

http://localhost/BankingSystemService/Home.aspx
136 WebSphere MQ Solutions in a Microsoft .NET Environment

7.5.2 How to start CCS
The program, being a console mode program, can be started with the following
command:

CCS CreditDatabase.xml

Or, if using the VB.NET version:

CCSVB CreditDatabase.xml

Where, the credit check database optionally can be a full path to any location.

7.5.3 Test 1 pass known data
Using the sample CreditDatabase.xml supplied we note the record.

Example 7-35 Chosen record to match

<Customer UniqueID="98765" DOB="19780321" IDType="1" core="700"
BureauID="1" History="Good rating" Comments="good risk"
/>

As a first test the BSS passes the following information to CCS.

Example 7-36 Information passed for a match

UniqueID =“98765”
DOB=“19780321”
TypeID=“1”
Name=can be anything
Address=can be anything
BankID=can be anything

Since the result is known, it is a simple matter to compare the output provided by
CCS with the expected reply of:

Example 7-37 returned data reflecting the data contained in the database

Credit Score = 700
BureauID=1
Comments=good risk
Credit History=Good rating
Time Stamp=Time the information was provided.

The test was performed successfully with both the C# and the VB.NET versions.
 Chapter 7. Messaging solution: .NET application to .NET application 137

7.5.4 Test 2 pass unknown user
The result is SUCCESS.

Using the sample CreditDatabase.xml supplied we identify an unknown
customer.

Example 7-38 Information passed expecting a mismatch

UniqueID =“99999”
DOB=“19771118”
TypeID=“1”
Name=can be anything
Address=can be anything
BankID=can be anything

We expect to get back default data in reply.

Example 7-39 returned data reflecting default data

Credit Score = 500
BureauID=1
Comments=Not Known
Credit History=No records
Time Stamp=Time the information was provided.

The test was performed successfully both the C# and the VB.NET versions.
138 WebSphere MQ Solutions in a Microsoft .NET Environment

Chapter 8. Messaging solution: .NET
application to J2EE
application

This chapter contains the .NET application to J2EE application example. The
.NET application uses the WebSphere MQ classes for Microsoft .NET and J2EE
application uses the Java Message Service (JMS) API.

It only describes part of the business scenario use cases, only where .NET
applications send messages to a J2EE application is covered here. Chapter 7,
“Messaging solution: .NET application to .NET application” on page 115 is a
prerequisite for a basic understanding of the WebSphere MQ classes for
Microsoft .NET.

The contents of this chapter are organized as follows:

� Process overview

– Account opening
– Investment advisory

� System context

– Bank service application
– Investment advisory application
– Customer profile application

8

© Copyright IBM Corp. 2004. All rights reserved. 139

– Database
– JMS administered objects

� Development

– Bank service application
– Investment advisory application
– Customer profile application

� Deployment

– Deploying BSS
– Deploying CPS

� Testing

� Alternative solutions

– WebSphere MQ classes for Microsoft .NET and WebSphere MQ classes
for Java

– Bridge between WebSphere MQ and Microsoft Message Queuing
(MSMQ)

8.1 Process overview
The Customer Profile System (CPS) is implemented as a J2EE application. It is
involved in the two use cases described in the business case scenario. In the
account opening use case the Bank Service System (BSS) sends a customer
profile to the CPS to store it in the database. In the investment advisory use case
the Investment Advisory System (IAS) sends a request for a specific customer
profile to the CPS. The CPS reads the data out of the database and sends it back
to the IAS.

8.1.1 Account opening
Figure 8-1 shows part of the account opening use case, with all WebSphere MQ
resources and applications involved.
140 WebSphere MQ Solutions in a Microsoft .NET Environment

Figure 8-1 BSS to CPS communication

To open a new customer account, the Banking Service System (BSS) requests
credit information for the customer from an external credit bureau. This is
described in Chapter 7, “Messaging solution: .NET application to .NET
application” on page 115.

After the credit check, the BSS puts a datagram message containing all
customer information on the input queue of the Customer Profile System (CPS).
The CPS gets the message, reads its data and stores the data in a local
database.

The BSS is an ASP.NET application written in C# and the CPS is a J2EE console
mode application.

8.1.2 Investment advisory
Figure 8-2 shows part of the investment advisory use case, with all WebSphere
MQ resources and applications involved.

ITSOL ITSOI

DOTIP

ITSOO

DOTOP

R
C
V
R

S
V
R
C
O
N
N

S
D
R

R
C
V
R

DOTIP

DOTOP
CustomerDetails

CustomerDetails

Transmission QueueModel QueueLocal Queue Remote Queue

S
D
R

Data

BSS CPS
 Chapter 8. Messaging solution: .NET application to J2EE application 141

Figure 8-2 IAS to CPS communication

To create an investment advice, the Investment Advisory System (IAS) Web
Service requests a customer profile from the Customer Profile System (CPS)
whenever it is invoked.

To receive the latest customer profile the IAS sends a request message to the
input queue of the CPS. The CPS gets this request, reads the relevant data out
of the local database and sends a reply containing this data back to the reply
queue.

The IAS is a .NET Web Service written in C# and the CPS is a J2EE console
mode application.

8.2 System context
The BSS and the IAS use different data structures to communicate with the CPS
system.

ITSOI

DOTIP

ITSOO

DOTOP

R
C
V
R

S
D
R

R
C
V
R

DOTIP

DOTOP
CustomerDetails

Transmission QueueModel QueueLocal Queue Remote Queue

S
D
R

Data

IAS CPS

CustomerProfile

CustomerProfile*

CustomerDetails
142 WebSphere MQ Solutions in a Microsoft .NET Environment

8.2.1 Bank service application
The BSS sends a WebSphere MQ persistent datagram message with the
following fields:

Table 8-1 Account opening datagram

The MsgObjective field is used by the CPS application to check whether this
message should be used to open a new account or to send back existing data.
The BSS uses the value “OpenAccount” to indicate that CPS has to write the
content of the message into the database.

The WebSphere MQ built-in format MQFMT_STRING is used, so that it can be
handled as a TextMessage by the J2EE application. The string is an XML string,
shown by Example 8-1.

Example 8-1 OpenAccount message

<?xml version="1.0" encoding="utf-16"?>

MsgObjective

AccountNum

CustId

CustName

IDType

CreditScore

BureauID

Timestamp

InitInvest

RiskLevel

InvestPeriod

RetExp

FamilyIncome

ExistAsset

CurDebt

DOB

Addr
 Chapter 8. Messaging solution: .NET application to J2EE application 143

<Message MsgObjective="OpenAccount">
<Account AccountNum="317" CustID="98765" CustName="Ope Soyannwo" IDType=""
CreditScore="700" BureauID="1" Timestamp="09/07/2003 15:14:43"
InitInvest="500" RiskLevel="1" InvestPeriod="27" RetExp="2"
FamilyIncome="40000" ExistAsset="120000" CurDebt="9000" DOB="19780321"
Addr="ITSO, IBM Hursley, Hursley, United Kingdom" />

</Message>

8.2.2 Investment advisory application
The IAS sends a non-persistent request message to the CPS containing the
following fields:

Table 8-2 Customer profile request

The MsgObjective field is used by the CPS application to check whether this
message should be used to open a new account or to send back existing data.
The IAS uses the value “QueryCustomerProfile” to indicate that CPS has to
return account information to the IAS.

Just as for BSS the WebSphere MQ’s built-in format MQFMT_STRING is used.
The string is an XML string, shown by Example 8-2.

Example 8-2 QueryCustomerProfile message

<?xml version="1.0" encoding="utf-16"?>
<Message MsgObjective='QueryCustomerProfile'>
 <Account AccountNum='222'/>
</Message>

After sending the request the IAS waits for a reply from CPS synchronously.

8.2.3 Customer profile application
The CPS is a Java application that listens on its input queue for messages. Its
behavior is dependent on the content of the XML message it receives. When it
gets a message with a value of “OpenAccount” in the MsgObjective field, it
stores the data of the message in the local database “CustomerProfile”. If the
messages MsgObjective field contains the value “QueryCustomerProfile” it reads
a customer profile from the database and sends it back to the requesting
application in a reply message.

MsgObjective

AccountNum
144 WebSphere MQ Solutions in a Microsoft .NET Environment

The reply message is non-persistent and contains the following fields:

Table 8-3 Customer profile reply

Correlation between the customer query message and the customer profile reply
use the WebSphere MQ message descriptor fields messageId and correlationId.

8.2.4 Database
Our database is an XML file on the local directory C:\CPS\XML. The file is called
CustomerProfile.xml.

The format of the XML file is shown in the Example 8-19 with two existing
account entries.

Example 8-3 Database file

<?xml version="1.0" encoding="UTF-8"?>
<CustomerProfileDatabase>

<Account AccountNum="127" CustID="98765" CustName="Ope Soyannwo" IDType=""
CreditScore="700" BureauID="1" Timestamp="09/07/2003 17:46:12"
InitInvest="2000" RiskLevel="2" InvestPeriod="36" RetExp="5"
FamilyIncom="45000" ExistAsset="15500" CurDebt="3000" DOB="19780321"
Addr="ITSO, IBM Hursley, Hursley, United Kingdom" />
<Account AccountNum="101" CustID="98945" CustName="Michael Hamann"
IDType="" CreditScore="600" BureauID="1" Timestamp="09/07/2003 17:48:47"
InitInvest="5000" RiskLevel="3" InvestPeriod="36" RetExp="9"
FamilyIncom="60000" ExistAsset="24000" CurDebt="3000" DOB="19780321"
Addr="ITSO, IBM Herrenberg, Herrenberg, Germany" />
.
.
.

</CustomerProfileDatabase>

RiskLevel

InvestPeriod

RetExp

FamilyIncome

ExistAsset

CurDebt
 Chapter 8. Messaging solution: .NET application to J2EE application 145

8.2.5 JMS administered objects
Within Java Message Service (JMS) applications all provider-specific information
is encapsulated within administered objects, so only interfaces in javax.jms are
referenced. These administered objects are stored in a Java Naming and
Directory Interface (JNDI) namespace using a provider-supplied administration
tool.

The CPS application uses a QueueConnectionFactory to create the Connection.
This QueueConnectionFactory is the first administered object used. It is defined
in the following way:

Example 8-4 QueueConnectionFactory definition

DEFINE QCF(ServerQCF) QMANAGER(DOTOP) POLLINGINT(1000)

This QueueConnectionFactory called ServerQCF connects to the local queue
manager DOTOP using the bindings mode. An asynchronous listener is used
within the CPS, so the WebSphere MQ implementation of JMS has to poll for
messages on a specific queue. A polling interval of one second is chosen, the
default is five seconds. A longer polling interval is acceptable for the first use
case, in which the CPS stores the customer profile in the database, but a short
polling interval is needed for the second use case, where the IAS waits for a reply
from the CPS synchronously.

One input queue for the CPS called CustomerDetails is created. This queue is
used by the BSS to put datagrams in, and by the IAS to send the requests. This
WebSphere MQ queue name has to be encapsulated in a queue object, which is
our second administered object. This is defined in the following way:

Example 8-5 Queue definition

DEFINE Q(CustomerDetails) QUEUE(CustomerDetails) QMANAGER(DOTOP) TARGCLIENT(MQ)
PERSISTENCE(APP)

This queue object points to the WebSphere MQ queue CustomerDetails on the
queue manager DOTOP. Our JMS clients exchanges messages with WebSphere
MQ applications over this queue, so the TARGCLIENT property of this queue,
has to be set to MQ.

There is no need to define an output queue as an administered object for the
CPS, because the IAS sends the reply queue name and the reply queue
manager name in the request message. These names in the
ReplyToQueueName and ReplyToQueueManagerName fields of the message
descriptor are mapped to a Destination object in the JMSReplyTo field of the
JMSMessage object.
146 WebSphere MQ Solutions in a Microsoft .NET Environment

8.3 Development
The bank service application and the investment advisory Web Service are
written in C#. The customer profile application is written in Java. In the following
sections only the messaging logic is described. For the complete code refer to
the “Use case 1” on page 321.

8.3.1 Bank service application
The BSS application is written in C#. After communicating with the CCS it
connects to the queue manager DOTIP using the client connection, where
TO.DOTIP is the name of the server connection channel and ITSOI is the host
name.

Example 8-6 Connect to queue manager

MQQueueManager QM;
QM = new MQQueueManager("DOTIP","TO.DOTIP","ITSOI");

Then it opens the queue CustomerDetails on DOTIP for output, which is a
remote queue pointing to the queue CustomerDetails on DOTOP, on which the
CPS application is listening on.

Example 8-7 Open output queue

MQQueue queueOut = null;
queueOut = QM.AccessQueue("CustomerDetails", MQC.MQOO_OUTPUT |

MQC.MQOO_FAIL_IF_QUIESCING);

The MQMessage constructor creates a message object with default values. A
persistent message with a built-in string format is required. The message string
contains the XML data.

Example 8-8 Set up message

MQMessage custDetails = null;
custDetails = new MQMessage();
custDetails.Persistence = MQC.MQPER_PERSISTENT;
custDetails.Format = MQC.MQFMT_STRING;
custDetails.WriteString(message);

After setting up the message object, the BSS puts the message on the output
queue.
 Chapter 8. Messaging solution: .NET application to J2EE application 147

Example 8-9 Put message

queueOut.Put(custDetails);

Finally the BSS closes the output queue and disconnects from the queue
manager.

Example 8-10 Close and disconnect

queueOut.Close();
QM.Disconnect();

For more details on the BSS application refer to Chapter 7, “Messaging solution:
.NET application to .NET application” on page 115, the full code is in the “Use
case 1” on page 321.

8.3.2 Investment advisory application
The IAS Web Service is written in C#. Whenever invoked by the BSS it connects
to its local queue manager DOTIP using a bindings connection.

Example 8-11 Connect to queue manager

private MQQueueManager _QM;
private string _QMConnectionString;
_QMConnectionString="DOTIP";
_QM = new MQQueueManager(_QMConnectionString);

Then it opens the queue CustomerDetails for output, which is a remote queue
pointing to the queue CustomerDetails on DOTOP, on which the CPS application
is listening on.

Example 8-12 Open output queue

private MQQueue _QueueOut;
private string _strOutputQueue;
_strOutputQueue="CustomerDetails";
_QueueOut = _QM.AccessQueue(_strOutputQueue, MQC.MQOO_OUTPUT |

MQC.MQOO_FAIL_IF_QUIESCING);

Next the IAS opens the model queue CustomerProfile, a temporary dynamic
queue is generated with a unique name starting with the string CustomerProfile.
The generated queue name is stored in the variable replyToQueue.

Example 8-13 Open model queue for input

private string _strInputQueue;
_strInputQueue="CustomerProfile";
148 WebSphere MQ Solutions in a Microsoft .NET Environment

MQQueue _QueueIn = _QM.AccessQueue(_strInputQueue, MQC.MQOO_INPUT_EXCLUSIVE |
MQC.MQOO_FAIL_IF_QUIESCING, "", _strInputQueue+"*", "");

string replyToQueue = _QueueIn.Name;

The MQMessage constructor creates a message object with default values. A
non-persistent request message and the built-in string format is required. The
unique name of the dynamic queue is copied to the ReplyToQueueName field of
the message. The InputMessage string contains the XML data.

Example 8-14 Set up output message

MQMessage _OutputMessage = new MQMessage();
_OutputMessage.Persistence = MQC.MQPER_NOT_PERSISTENT;
_OutputMessage.Format = MQC.MQFMT_STRING;
_OutputMessage.MessageType = MQC.MQMT_REQUEST;
_OutputMessage.ReplyToQueueName = replyToQueue;
_OutputMessage.WriteString(InputMessage);

After setting up the message object, the IAS puts the message on the output
queue.

Example 8-15 Put message

_QueueOut.Put(_OutputMessage);

Then it creates a new message object, and sets the CorrelationId field of the
message to receive to the value of the MessageId field of the message it has just
sent to the CPS.

Example 8-16 Set up input message

MQMessage _InputMessage = new MQMessage();
_InputMessage.CorrelationId = _OutputMessage.MessageId;

The IAS uses the message object with a specified CorrelationId in the get
method with the wait option and a wait interval. So it waits for the specific reply
on the dynamic queue for at most ten seconds. If the reply is not returned within
this time period an MQException is thrown with a reason code of
MQRC_NO_MSG_AVAILABLE (2033).

Example 8-17 Wait for input message

private int _wait;
_wait=10000;
MQGetMessageOptions _GetMsgOpt = new MQGetMessageOptions();
_GetMsgOpt.Options = MQC.MQGMO_WAIT + MQC.MQGMO_FAIL_IF_QUIESCING;
_GetMsgOpt.WaitInterval = _wait;
 Chapter 8. Messaging solution: .NET application to J2EE application 149

_QueueIn.Get(_InputMessage,_GetMsgOpt);

After receiving the corresponding reply, the IAS reads the XML string.

Example 8-18 Read message content

_InputMessage.ReadString(_InputMessage.MessageLength);

Finally it closes the dynamic queue. Because it is a temporary dynamic queue, it
is deleted, without setting a close option. Then the IAS disconnects from the
queue manager.

Example 8-19 Close the queue and disconnect

_QueueOut.Close();
_QM.Disconnect();

For more details on the IAS application, refer to:

� Chapter 9, “Messaging solution: .NET client to .NET Web Services using
WebSphere MQ SOAP transport” on page 163

� Chapter 10, “Messaging solution: .NET client to J2EE Web Services using
WebSphere MQ SOAP transport” on page 207

The full code is in “Use case 2” on page 322.

8.3.3 Customer profile application
The CPS application is written in Java. It uses the JMS interface. The CPS is a
long running application that waits for incoming messages. The messaging code
of the CPS can be found in the CustomerProfile class with its main method and
the MsgHandler class, which is the message listener.

When the application gets started, it first looks up the QueueConnectionFactory
and queue objects in the JNDI namespace. The file system is used as the
namespace.

Example 8-20 JNDI configuration and look up

String url = "file:/C:/CPS/JNDI";
String icf = "com.sun.jndi.fscontext.RefFSContextFactory";
InitialContext ctx;

String queueName = "CustomerDetails";
String qcfName = "ServerQCF";

QueueConnectionFactory qcf;
150 WebSphere MQ Solutions in a Microsoft .NET Environment

Queue queue;

//Initial context for JNDI lookup
Hashtable environment = new Hashtable();
environment.put(Context.INITIAL_CONTEXT_FACTORY, icf);
environment.put(Context.PROVIDER_URL, url);
ctx = new InitialContext(environment);

//look up administered object.
qcf = (QueueConnectionFactory)ctx.lookup(qcfName);
queue = (Queue)ctx.lookup(queueName);

Then it uses the QueueConnectionFactory to create a QueueConnection. In
WebSphere MQ terms, the connection holds the parameters that control how to
connect to the queue manager, these informations are provided by the factory.
Connections in JMS are thread safe.

Example 8-21 Create connection

QueueConnection qConnection;
qConnection = qcf.createQueueConnection();

With this connection the CPS creates a non-transacted QueueSession that
automatically acknowledges every incoming messages. In WebSphere MQ
terms the session contains the HCONN and defines the transactional scope.
Sessions in JMS are not thread safe.

Example 8-22 Create session

QueueSession qSession;
qSession = qConnection.createQueueSession(false, Session.AUTO_ACKNOWLEDGE);

The session is used to create a queue receiver for the input queue. In
WebSphere MQ terms the receiver contains the HOBJ that describes the
particular queue for reading. A message listener is created and registered with
the queue receiver. The message listener runs in its own thread and handles all
incoming messages. Our message listener constructor takes the connection as
an argument, to create its own session.

Example 8-23 Create receiver and set listener

QueueReceiver qReceiver;
qReceiver = qSession.createReceiver(queue);
MsgHandler handler = new MsgHandler(qConnection);
qReceiver.setMessageListener(handler);
 Chapter 8. Messaging solution: .NET application to J2EE application 151

After creation the connection is in stopped mode. To receive messages within the
connection it has to be started.

Example 8-24 Start connection

qConnection.start();

The CPS runs until the user ends it. When it stops it closes the session and the
connection.

Example 8-25 Close session and connection

qSession.close();
qConnection.close();

The MsgHandler class is the message listener that handles all incoming
messages on the receiver queue. It has to implement the MessageListener
interface.

Example 8-26 MsgHandler class

public class MsgHandler implements MessageListener

The following objects are defined in this class. The session, sender, and
message objects are only needed when a reply has to be sent.

Example 8-27 Define objects

private final QueueConnection qConnection;
private QueueSession qSession;
private QueueSender qSender;
private TextMessage replyMsg;

The constructor takes the queue connection of the CustomerProfiles main
method as an argument. The connection is thread safe, so it can be shared
between CustomerProfile and MsgHandler. It is needed to create session and
sender to send a reply if required.

Example 8-28 MsgHandler constructor

public MsgHandler(QueueConnection qc) {
this.qConnection = qc;

}

The onMessage method needs to be implemented because it is part of the
MessageListener interface. Whenever a message gets available on the queue
152 WebSphere MQ Solutions in a Microsoft .NET Environment

the listener is listening on, the onMessage method is called and the message is
handed to it as an argument.

Example 8-29 onMessage method

public void onMessage(Message message)
TextMessage requestMsg = null;

In the onMessage method it has to be verified, whether the message is in the
format we expect it. JMS defines five different message types:

� ObjectMessage is an object serialized by the Java Runtime

� TextMessage is an encoded string

� BytesMessage is a sequence of bytes

� MapMessage is a string containing a set of XML name/type/value triplets,
each given an element name

� StreamMessage is a string containing a set of XML name/type/value triplets
without element names

When a WebSphere MQ application send a message with the format of
MQFMT_STRING to a JMS client, it is mapped to a TextMessage. Both the BSS
and the IAS send messages in the MQFMT_STRING format. A TextMessage is
expected to arrive, other message types are not handled within the CPS.

Example 8-30 Test message type

if(message instanceof TextMessage)

The message object is cast to a TextMessage and the containing string can be
received using the getText method.

Example 8-31 Extract message content

requestMsg = (TextMessage)message;
String content = requestMsg.getText();

The CPS offers to services, open new accounts and reply to queries for existing
customer profiles. In our solution all messages are sent to the same input queue
of CPS. So the message listener first has to check, which kind of message it just
received. By first check if the message is to open a new account, a new account
can be added to the customer profile database.

Note: Here md is not the message descriptor, but a messageDetails object.
See MessageDetails.java in the “Use case 1” on page 321 for details.
 Chapter 8. Messaging solution: .NET application to J2EE application 153

Example 8-32 OpenAccount messages

if(md.GetMsgObjective().equals("OpenAccount"))
//This is a message to open a new account in customer profile database

If it is not a message to open a new account, check whether it is a message to
query a customer profile. Other services are currently not offered in our solution,
so messages with other message objectives are not supported.

Example 8-33 QueryCustomerProfile messages

else if(md.GetMsgObjective().equals("QueryCustomerProfile"))
//This is a message to query an existing account in the database

To send back a reply containing the customer profile needs a session. This
session can be created using the connection from CustomerProfile. A
non-transacted session with auto-acknowledge is used.

Example 8-34 Create session

qSession = qConnection.createQueueSession(false, Session.AUTO_ACKNOWLEDGE);

The IAS uses dynamic queues and expects the CPS to send the replies to the
appropriate one. Therefore a destination object is stored in the JMSReplyTo
property of the requesting message. To create a queue sender this destination
object has to be cast to a queue object.

Example 8-35 Get reply queue

Destination replyDest = message.getJMSReplyTo();
Queue replyQueue = (Queue)replyDest;

The IAS is a .NET application that uses the WebSphere MQ classes for Microsoft
.NET. It expects the reply message with the default message header MQMD
followed by the message body in the format MQFMT_STRING.

When JMS applications send messages to a WebSphere MQ queue, the JMS
implementation stores all JMS message information that cannot be mapped to
the message descriptor or the message body in an extra header called “Rules
and formatting header 2” (MQRFH2).

The JMS implementation does not recognize that the message replying on is
sent by a non-JMS application. Therefore the queue object received in the
JMSReplyTo property of the JMS request message acts like an administered
object of type queue with TARGCLIENT(JMS). If this queue object is used, the
reply is stored in the queue in the format shown in Table 8-4:
154 WebSphere MQ Solutions in a Microsoft .NET Environment

Table 8-4 JMS message mapped to WebSphere MQ message

This message format is not expected by the IAS. The reply can be received, but
the ReadString method returns the MQRFH2 and the body (See Example 8-15
on page 149). This string cannot be parsed by the XML parser, because it starts
with the MQRFH2 structure. There are two possible solutions to solve this
problem:

� The IAS handles this message type.

After receiving the reply message, the IAS checks the format field of the
message descriptor. If it contains the value MQFMT_RF_HEADER_2, it has
to check the length of the header structure in the StrucLenght field of the
MQRFH2. Then it can move to the end of the MQRFH2 using the Seek
method of the MQMessage class and read the remaining string using the
ReadString method.

� The CPS sends back messages without the rules and formatting header 2.

The CPS checks if the message is sent by a non-JMS application using the
getJMSDestination method. This method returns a destination object when
the message is sent by a JMS application, it returns zero if it is sent by a
non-JMS application. Then it casts the destination to MQDestination and sets
the target client to the value JMSC.MQJMS_CLIENT_NONJMS_MQ.

We decided to handle this problem in the CPS. First check if the message
contains a non-JMS destination. If it does, set the target client to MQ which will
remove the MQRFH2. Then set the persistence of the queue to non-persistent.
Non-persistent messages are needed, because the reply is sent to a temporary
dynamic queue. This type of queue can only store non-persistent messages.

MQMD Message descriptor

Format field: MQRFH2

MQRFH2 Rules and formatting header 2

Format field: MQSTR

<mcd>Text</mcd>
<jms>JMS header fields not mapped to MQMD</jms>
<usr>Application-specific properties</usr>

Body Message content: XML string
 Chapter 8. Messaging solution: .NET application to J2EE application 155

Example 8-36 Handle non-JMS destinations

if (message.getJMSDestination() == null) {
((MQDestination)replyQueue).setTargetClient(JMSC.MQJMS_CLIENT_NONJMS_MQ);
((MQDestination)replyQueue).setPersistence(JMSC.MQJMS_PER_NON);

}

The CPS creates a queue sender for the queue object received using the queue
session.

Example 8-37 Create sender

qSender = qSession.createSender(replyQueue);

When a JMS client sends a ObjectMessage or BytesMessage to a WebSphere
MQ application, the format field of the message is set to MQFMT_NONE, when it
sends a TextMessage, StreamMessage, or MapMessage, it is set to
MQFMT_STRING. The IAS expects a string format to contain the XML string,
therefor we create a TextMessage object.

Copy the JMSMessageId of the received request to the JMSCorrelationId of the
reply to send. These fields are mapped to the messageId and correlationId field
of the message descriptor. The same persistence for the reply and the request is
used.

Example 8-38 Set up reply message

// create a reply message.
replyMsg = qSession.createTextMessage();
replyMsg.setJMSCorrelationID(message.getJMSMessageID());
replyMsg.setJMSDeliveryMode(message.getJMSDeliveryMode());
replyMsg.setText(xmlmsg);

Note: This solution is not JMS compliant, because we use WebSphere MQ
specific classes here.

At the time of writing, the WebSphere MQ JMS implementation does not
recognize if the requester is a non-JMS client and does not react accordingly.
This may change in the future, so use the latest CSD and test the JMS
compliant code first.

Note: The persistence of the message we send is overwritten by the
persistence setting of the MQDestination object, when the requesting
application is a non-JMS client.
156 WebSphere MQ Solutions in a Microsoft .NET Environment

The CPS puts the message on the reply queue.

Example 8-39 Send the reply

qSender.send(replyMsg);

Then it closes the session.

Example 8-40 Close the session

qSession.close();

When using a message listener, the application code cannot catch exceptions
raised by failures to receive messages. This is because the application does not
explicit calls to the receive method. To catch errors in asynchronous processing,
an exception listener is required. An exception listener is not used, because JMS
programming is not in the scope of this book and the team decided to keep the
code simple. For an example of a exception listener refer to MQSeries
Programming Patterns, SG24-6506.

For more details on the CPS application refer to the code in the “Use case 1” on
page 321.

8.4 Deployment
Both the BSS and the CCS applications need to be deployed.

8.4.1 Deploying BSS
For instructions on how to deploy the BSS application refer to 7.4.1, “Deploying
BSS” on page 134.

8.4.2 Deploying CPS
Before deploying the CPS application, check if all prerequisites are installed:

� WebSphere MQ V5.3 or later

– Check if the following jar files are in the folder
C:\Program Files\IBM\WebSphere MQ\Java\lib

• jms.jar
• jndi.jar
• fscontext.jar
• connector.jar
• providerutil.jar
 Chapter 8. Messaging solution: .NET application to J2EE application 157

• com.ibm.mqjms.jar
• com.ibm.mq.jar

– Check if the JMSAdmin tool is in the folder
C:\Program Files\IBM\WebSphere MQ\Java\bin

• JMSAdmin.bat
• JMSAdmin.config

� JRE 1.3.1 or later

If the jar files are in another directory, the cps.bat file has to be edited.

Create a directory C:\CPS and copy all CPS files from the appendix in this
directory. When copying keep the directory structure. The CPS folder should look
like this:

Example 8-41 CPS directory

CPSAdminObjects.txt
cps.bat
cps\CustomerProfile.java
cps\CustomerProfile.class
cps\MessageDetails.java
cps\MessageDetails.class
cps\MsgHandler.java
cps\MsgHandler.class
cps\OpenAccount.java
cps\OpenAccount.class
cps\QueryAccount.java
cps\QueryAccount.class
jar\jaxen-core.jar
jar\jaxen-jdom.jar
jar\jdom.jar
jar\saxpath.jar
jar\xerces.jar
jar\xml-apis.jar
jndi\
xml\CustomerProfile.xml

Setting up the JMS administered objects
Before running the CPS Java code, the JMS administered objects must be set
up. The file store was used as the JNDI namespace to have less software
dependencies.

1. Edit the file:
C:\Program Files\IBM\WebSphere MQ\Java\bin\JMSAdmin.config

– Activate the RefFSContextFactory:
158 WebSphere MQ Solutions in a Microsoft .NET Environment

Example 8-42 Initial context factory settings

#INITIAL_CONTEXT_FACTORY=com.sun.jndi.ldap.LdapCtxFactory
INITIAL_CONTEXT_FACTORY=com.sun.jndi.fscontext.RefFSContextFactory
#INITIAL_CONTEXT_FACTORY=com.ibm.ejs.ns.jndi.CNInitialContextFactory
#INITIAL_CONTEXT_FACTORY=com.ibm.websphere.naming.WsnInitialContextFactory

– Set the URL to file:/C:/CPS/JNDI:

Example 8-43 URL settings

#PROVIDER_URL=ldap://polaris/o=ibm,c=us
PROVIDER_URL=file:/C:/CPS/JNDI
#PROVIDER_URL=iiop://localhost/

– Save JMSAdmin.config.

2. Run JMSAdmin. Use the provided CPSAdminObjects.txt to create the
administered objects for the CPS.

Example 8-44 Run JMSAdmin

cd C:\Program Files\IBM\WebSphere MQ\Java\bin
JMSAdmin < C:\CPS\CPSAdminObjects.txt

The output should look like this:

Figure 8-3 JMSAdmin output

8.5 Testing
1. Make sure the local queue manager DOTOP is running. Setup description for

this queue manager and connections to other queue managers are provided
in “WebSphere MQ setup” on page 112.

2. Open a command prompt and go to the CPS directory and run cps.bat.
 Chapter 8. Messaging solution: .NET application to J2EE application 159

Example 8-45

cd cps
cps

The command prompt window should look like this:

Figure 8-4 Running CPS application

3. Start BSS. For instructions on how to start the BSS refer to 7.5.1, “How to
start BSS” on page 136.

4. Click the “Open Account” tab.

5. On the “Request Personal Details” page enter some data. Then click the
“Submit Personal Details“ button.

6. On the “Request Investment Details” page enter a initial deposit and click the
“Submit Investment Details” button.

7. The “Account Open Successful” page opens returning a new account
number.

8. Go to the CPS command prompt window. It should look like this:

Figure 8-5 CPS open account

9. Close the BSS window.

10.End the CPS by entering “q” or “Q” in the CPS command prompt.
160 WebSphere MQ Solutions in a Microsoft .NET Environment

8.6 Alternative solutions
There are several possible ways to connect .NET and J2EE applications using
messaging. This chapter shows the use of the WebSphere MQ classes for
Microsoft .NET in the .NET application and the use of the JMS in the J2EE
application. The .NET application uses the WebSphere MQ specific API while the
J2EE application uses an open standard API. The J2EE application could also
include Message Driven Beans to receive messages from the .NET application.

There are some advantages for using an open standard, such as protection of
investment and the ability to plug in other JMS implementations. The JMS also
offers some extra functions, not available in the WebSphere MQ classes for Java.
These functions are:

� Asynchronous message delivery
� Message selectors
� Support for publish/subscribe messaging

Another advantage of using the JMS is the API is more abstract than the
WebSphere MQ API. The implementation details are left to the JMS provider.

There are some limitations in the use of the JMS, when JMS clients
communicate with native WebSphere MQ applications. Some provider-specific
functions can be used in JMS clients, but these clients are not longer
independent on the JMS provider and so only run with WebSphere MQ. These
functions are:

� Reports
� WebSphere MQ message types
� Last message in group
� Format, encoding and character set

8.6.1 WebSphere MQ classes for Microsoft .NETand WebSphere MQ
classes for Java

Whenever the use of an open standard is not required the WebSphere MQ
classes for Java can be used within the J2EE application.

Disadvantages of the use of the WebSphere MQ classes for Java are:

� The WebSphere MQ API is more complex than the JMS API.
� Implementation details have to be considered by the application programmer.
� There is no direct support for publish/subscribe messaging.

But there are also some advantages:

� All WebSphere MQ functions can be used.
 Chapter 8. Messaging solution: .NET application to J2EE application 161

� Better performance.

The use of the WebSphere MQ classes for Java is very similar to the use of the
WebSphere MQ classes for Microsoft .NET, so it is not shown in this redbook.
There are examples of Java applications using the redbook MQSeries
Programming Patterns, SG24-6506.

8.6.2 Web Services
Web Services are implemented in .NET and J2EE, so using Web Services to
invoke services and to exchange data is another option to connect .NET and
J2EE.

The invocation of a J2EE Web Service from a .NET application using
WebSphere MQ Transport for SOAP is described in Chapter 10 on page 207.

The invocation of a .NET Web Service from a J2EE application is not shown in
this redbook, because this is handled by the WebSphere MQ Transport for
SOAP.

8.6.3 Bridge between WebSphere MQ and Microsoft Message
Queuing (MSMQ)

An alternative way to connect .NET and J2EE is to use Microsoft Message
Queuing in .NET and WebSphere MQ in J2EE, and use a bridge between these
two messaging middleware products. This is a good choice, when .NET
applications that already use Microsoft Message Queuing have to communicate
with existing WebSphere MQ applications.

However, it has a disadvantage — that it becomes necessary to administer
WebSphere MQ, Microsoft Message Queuing and the bridge.

Using WebSphere MQ classes for Microsoft .NET requires configuration of
WebSphere MQ only.

There are many bridges between Microsoft Message Queuing and WebSphere
MQ available from different vendors. One example is the MSMQ-Bridge provided
by Microsoft as part of the Host Integration Server 2000.
162 WebSphere MQ Solutions in a Microsoft .NET Environment

Chapter 9. Messaging solution: .NET
client to .NET Web Services
using WebSphere MQ SOAP
transport

The previous chapter discusses the scenario where a .NET client connects to a
J2EE application using WebSphere MQ infrastructure. This chapter introduces a
Web Service called Investment Advisory Web Service (IAS). YuBank provides
this service to its prospective investors. Based on the customer profile, IAS is
intended to provide suitable Share investment advice.

YuBank is planning to upgrade its bank Web application (BSS) to include an
investment advice user interface. YuBank also plans to develop the advisory Web
Service in a .NET environment.

Web Services use Simple Object Access Protocol (SOAP) as a communication
protocol and HTTP as a transport protocol for SOAP. However, YuBank has an
existing investment in IBM WebSphere MQ and prefers WebSphere MQ over
HTTP for its reliability and guaranteed delivery aspects.

This chapter describes how a .NET Web Application communicates with a Web
Service (.NET) using WebSphere MQ as a SOAP transport protocol.

9

© Copyright IBM Corp. 2004. All rights reserved. 163

The contents of this chapter are organized as follows:

� Process overview: explains the high level process

� System Context: describes the interactions between systems and message
definitions

� Development: Solution development is distributed in three sub-sections

– IAS Web Service development

– Proxy for IAS Web Service using WebSphere MQ Transport for SOAP

– Bank Web Application (BSS) and communication with IAS

� Deployment: This section describes deployment of all three component
mentioned above

� Testing: Basic testing of Web Application, IAS Web Service and proxy for
SQS is outlined in this chapter.

Prerequisite: It is important to understand the basic principles of using
WebSphere MQ Transport for SOAP described in Chapter 3 before reading this
chapter.
164 WebSphere MQ Solutions in a Microsoft .NET Environment

9.1 Process overview
The figure below illustrates the use case view of the scenario used in this
chapter.

Figure 9-1 Process view of IAS Web Service

CPS J2EE Application
Development

Chapter 8

WebSphere MQ Queue
Setup and Deployment

MQ Access
Class

WebSphere MQ
Queue Setup

MA0R Deployment

AccessBSS (II) Development
in ASP.NET

Proxy Generation

Access

WebSphere MQ
Queue Setup

MA0R Deployment

SQS Web Service
Development (J2EE)

Chapter 10

Proxy Generation

IAS Web Service
Development in .NET

Access

Chapter 9
 Chapter 9. Messaging solution: .NET client to .NET Web Services using WebSphere MQ SOAP transport 165

The process
Customer accesses the Bank Service System (BSS) for investment application.
The Customer provides the YuBank client identification number and the
proposed investment amount.

Based on the customer’s financial background and investment related
expectations, the Investment Advisory System (IAS) is intended to provide share
investment advice.

The IAS is a Web Service which communicates with the YuBank Customer
Profile System to retrieve financial data of the prospective investor.

The IAS then communicates with the Share Quote System for obtaining share
prices and historic performance data via Web Service. The IAS analyzes the
stock data and determines the suitable shares for the investor. The IAS then
selects the appropriate quantity matching client’s investment capacity and
prepares a formal advice statement.

The BSS coordinates communication between the YuBank client and the IAS
Web Service and delivers the investment advice in single Web session.

9.2 System context
As explained above, this scenario involves federation of services provided by
various internal and external systems. This section outlines the message view
involved in the processes described in previous section.

Figure 9-2 illustrates the message sequence involving various parties and their
environments.
166 WebSphere MQ Solutions in a Microsoft .NET Environment

Figure 9-2 Message flow

The process description and message types of steps denoted on the Figure 9-2
are discussed below:

Step 1: Request from BSS to IAS Web Service using WebSphere MQ
Transport for SOAP

Description - Customer accesses the Bank Service System (BSS) and sends
account information along with proposed investment amount to Investment
Advisory (IAS) Web Service.

Message Format: A SOAP message containing the following fields are passed
from BSS application to IAS Web Service via a WebSphere MQ queue.

A SOAP message that arrives in the associated WebSphere MQ queue is shown
Example 9-1.

BSS

ASP.NET Web Application

Send Account ID
and Investment Amount

Receive Advice

1

Send Account ID3

Send Stock Symbols6

Receive Stock History7

10

Receive Customer Profile4

2 Check Account and
Investment Amount

5 Check Customer
Details

8 Analyze Stock
Data

9
Prepare Advice

.NET Web Service

IAS

SQS

J2EE Web Service

CPS

J2EE Application

Field Type Contraint

CustomerId string required

InvestmentAmt double required and greater than 1000

Note: Type and contraints mentioned above are enforced in the user interface
only. The SOAP message carries string representation of the values of both
parameters with no range validation.
 Chapter 9. Messaging solution: .NET client to .NET Web Services using WebSphere MQ SOAP transport 167

Example 9-1 SOAP request from BSS to IAS Web Service

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:tns="http://tempuri.org/" xmlns:types="http://tempuri.org/encodedTypes"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<soap:Body soap:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<tns:GetAdvice>

<accountId xsi:type="xsd:string">198</accountId>
<investAmt xsi:type="xsd:string">6000</investAmt>

</tns:GetAdvice>
</soap:Body>

</soap:Envelope>

Step 2: Amount and account ID check by IAS Web Service
Description: Account number check is performed and amount verified as per the
criteria (more than 1000) by IAS Web Service.

Step 3: Customer profile request from IAS Web Service to CPS
Description: The account ID provided by the customer is transformed into an
XML message and submitted to Customer Profile Service (J2EE App) via
WebSphere MQ

Here is the message format:

Example 9-2 Input message from IAS Web Service to CPS

<Message MsgObjective="QueryCustomerProfile">
 <Account AccountNum="98765" />
</Message>

Step 4: Customer profile response from CPS J2EE application to IAS
Web Service

Description: CPS application sends the results of the customer query back to IAS
Web Service via a WebSphere MQ queue. MQAcessCPS class provides the
functionality for the following tasks:

Message Formats: The following example shows an output message in XML
format:

Example 9-3 Output message from CPS (via MQAccessCPS) to IAS Web Service

<?xml version="1.0" ?>
<Message>
168 WebSphere MQ Solutions in a Microsoft .NET Environment

 <Account MsgObjective="ReplyToQuery" RiskLevel="3" InvestPeriod="12"
RetExp="10" FamilyIncome="3242143913" ExistAsset="37482155123"
CurDebt="23423552" />

</Message>

Step 5: Customer profile check
Description: The IAS Web Service ensures that the customer details are found
and the customer has completed the profile information.

Step 6: Share quotes request from IAS Web Service to SQS Web
Service using WebSphere MQ Transport for SOAP

Description: YuBank sends a list of preselected stock symbols to the Share
Quote Service (SQS). The SQS has been developed in J2EE environment as a
Web Service. Using WebSphere MQ transport for SOAP, a proxy class is
generated for SQS access. The IAS Web Service uses this proxy class in its
code to receive share quote information from SQS.

Discussion on share quote Web Service (SQS) and proxy generation using
WebSphere MQ Transport for SOAP can be found in 10.3, “Development” on
page 213 and 9.5, “Testing” on page 199.

Message format: Using SQS proxy IAS invokes the GetQuotes service by
passing stock symbols in XML format.

Example 9-4 Share quote request from IAS to SQS Web Service

<ShareQuoteInquiry><Share><name>IBM</name></Share><Share><name>MSFT</name></Sha
re></ShareQuoteInquiry>

This call is then converted into a SOAP request. Example 9-5 shows stock
symbol XML encapsulated in the SOAP request to Share Quote Web Service
(SQS).
 Chapter 9. Messaging solution: .NET client to .NET Web Services using WebSphere MQ SOAP transport 169

Example 9-5 SOAP request transformation of share quote request

<?xml version="1.0" encoding="utf-8" ?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:tns="ShareQuote_Wmq" xmlns:types="ShareQuote_Wmq/encodedTypes"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<soap:Body soap:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<tns:getQuote>
<in0 xsi:type="xsd:string"><?xml version="1.0"
encoding="UTF-8"?><ShareQuoteInquiry><Share><name>IBM</name></Share><Sha
re><name>MSFT</name></Share></ShareQuoteInquiry></in0>

</tns:getQuote>
</soap:Body>
</soap:Envelope>

Step 7: Share quote history response from SQS to IAS
Description: The Share Quote Web Service (SQS) provides historic stock data
and the current price for the requested shares. Overall business logic and
development of Stock Quote Web Service in J2EE environment is discussed in
Chapter 10, “Messaging solution: .NET client to J2EE Web Services using
WebSphere MQ SOAP transport” on page 207.

Message Format: The following example shows the SOAP response received
from Share Quote Service (SQS).

Example 9-6 Share quote response from SQS to IAS Web Service

<?xml version="1.0" encoding="UTF-8" ?>

Note: The developer of the Web Service does not need to understand the
SOAP messages shown below. This part is included to give an understanding
of lower level communication that takes place between a Web Service and its
clients. You can safely ignore the SOAP messages in Example 9-4 and
Example 9-5 and related discussion.

Web Services framework uses Simple Object Access Protocol (SOAP) for
communication with client programs. WebSphere MQ Transport for SOAP
delivers the SOAP messages involved in Web Service communication. It is
important to note that the WebSphere MQ platform does not handle SOAP
encoding or decoding. This part is managed by the SOAP layer running on
client and server platforms.
170 WebSphere MQ Solutions in a Microsoft .NET Environment

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soapenv:Body>

<ns1:getQuoteResponse
soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:ns1="ShareQuote_Wmq">

<getQuoteReturn xsi:type="xsd:string">
<ShareQuoteResult>
<Share>
<name>IBM</name>
<price>85</price>
<history>
<m1>1.5</m1>
<m3>3.3</m3>
<m6>6</m6>
<m9>9.1</m9>
<m12>12</m12>
</history>
</Share>
<Share>
<name>MSFT</name>
<price>25</price>
<history>
<m1>1</m1>
<m3>-3</m3>
<m6>9</m6>
<m9>5</m9>
<m12>8</m12>
</history>
</Share>
</ShareQuoteResult>

</getQuoteReturn>
</ns1:getQuoteResponse>

</soapenv:Body>
</soapenv:Envelope>

Step 8: Share analysis and selection by IAS
Description: After receiving share data from SQS, IAS Web Service analyzes the
data as described in “IAS Business logic” on page 177. Shares matching
customer’s risk level and return expectation are selected.

Step 9: Prepare advice
Description: Based on the investment amount provided by the customer, IAS
selects quantities of selected shares and prepares the advice statement.
 Chapter 9. Messaging solution: .NET client to .NET Web Services using WebSphere MQ SOAP transport 171

Step 10: Advice response from IAS Web Service to Bank application
(BSS)

Description: IAS returns the advice using WebSphere MQ Transport for
SOAPWeb Service

Message Formats: Advice XML contains two elements Advice its child element -
Errors. In normal case the process returns the advice statement as shown in
Example 9-7.

Example 9-7 Advice XML return by IAS Web Service

<Advice>According your profile, you consider investing in following
stocks.{symbol[Quantity]} IBM[71]<Errors></Errors></Advice>

As explained in Chapter 3, WebSphere MQ transport for SOAP carries SOAP
representation of Web Services communication. The following example shows
SOAP encoding for advice message.

Example 9-8 Advice from IAS Web Service in SOAP response format

<?xml version="1.0" encoding="utf-8" ?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:tns="http://tempuri.org/" xmlns:types="http://tempuri.org/encodedTypes"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<soap:Body soap:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<tns:GetAdviceResponse>

<GetAdviceResult xsi:type="xsd:string"><Advice>According your
profile, you consider investing in following
stocks.{symbol[Quantity]}
IBM[71]<Errors></Errors></Advice></GetAdviceResult>

</tns:GetAdviceResponse>
</soap:Body>

</soap:Envelope>

In case of errors, as shown in the following example, the IAS inserts appropriate
error message and its point of origin under Error element of advice statement.

Example 9-9 Error message returned by IAS Web Service

<Advice><Errors><error>Customer profile service error[CompCode: 2, Reason:
2033]</error></Errors></Advice>

Error handling in the IAS Web Service is described in “Error handling in the Web
Service” on page 202 of this chapter.
172 WebSphere MQ Solutions in a Microsoft .NET Environment

9.3 Development
The IAS Web Service is utilized by the Bank application to provide advice to
prospective investors. As explained in 9.2, “System context” on page 166, the
IAS accesses two other services internally. Remember that Investment Advisory
Web Service (IAS) plays dual role in this scenario. Its major role is to provide
advice service to its client - the Bank application (BSS). However, to fulfill this
role, IAS requires services from other sources such as SQS. In this case the
same IAS Web Service acts as a client for the SQS Web Service.

Figure 9-1 on page 165 explains the overall development approach for this use
case scenario.

In this section we describe:

� IAS Web Service solution development
� Proxy generation using WebSphere MQ Transport for SOAP
� BSS Web Application design and integration of IAS

9.3.1 .NET Web Service development
The IAS is a .NET Web Service developed using Microsoft Visual Studio .NET.
The Application wizard provided by Microsoft Visual Studio .NET creates a
template class. This class inherits from System.Web.Services.

The following figure shows the New Project wizard provided by Microsoft Visual
Studio .NET.
 Chapter 9. Messaging solution: .NET client to .NET Web Services using WebSphere MQ SOAP transport 173

Figure 9-3 New .NET Web Service project wizard

In the generated code un-comment the function marked with [WebMethod]
attribute and write a service functionality. Metadata attributes inserted into the
code provide instructions to the .NET Framework for managing tasks such as
identity, transaction, security, version control, deployment, message encoding
and so on.

The [WebMethod] attribute identifies a Web Service within the class. It is possible
to have multiple Web Services in one class. In fact almost all object oriented
functionality can be implemented in the Web Service class. Appropriate tags
might need to be included while doing advanced Web Service programming. For
example, using overloading for Web Methods, the MessageType attribute must
be used.

[WebService] attributes provide general information about the service such as
Name, Description, Namespace and Type.

Other such attributes include [SoapRpc] - for default SOAP encoding. For
complete listing of Web Service related attributes, refer to the following URL:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/ht
ml/cpconextendingmetadatausingattributes.asp
174 WebSphere MQ Solutions in a Microsoft .NET Environment

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconextendingmetadatausingattributes.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconextendingmetadatausingattributes.asp

The following code snippet shows the Portfolio class declaration and the
GetAdvice Web Method.

Example 9-10 Web Service and Web Method declaration and use of attributes

[WebService (Description="Following Web Service is part of scenario described
in IBM Redbook - 'Developing WebSphere
messaging",Namespace="http://redbooks.com/webservices",Name="YuBank - Portfolio
Web Service")]
public class Portfolio : System.Web.Services.WebService
{

private string _accountId;
private int _riskLevel=0;
private double _expectedReturns=0.0;
private double _amtInvest=0.0;

private double[] nodeValues;
private double _maxVariance=0.00;

/// Advice will be returned as an xml string. following are related xml
objects

private XmlDocument _xmlAdvice;
private XmlElement _rootElAdvice;
private XmlElement _errorElAdvice;
private XmlDocument xmlSelectedStocks;
private XmlElement rootElStocks;

private int _HistoryRecords ;

public Portfolio()
{

//CODEGEN: This call is required by the ASP.NET Web Services Designer
InitializeComponent();

}

[WebMethod (TransactionOption=TransactionOption.RequiresNew)]
public string GetAdvice(string accountId, string investAmt)
{

//business logic code
}

ASMX file
An asmx file extension is the entry point for .NET Web Service processing. It
contains the processing directive (WebService) and the reference to the XML
Web Service class.
 Chapter 9. Messaging solution: .NET client to .NET Web Services using WebSphere MQ SOAP transport 175

Example 9-11 Contents of an .asmx file

<%@ WebService Language="c#" Codebehind="Portfolio.asmx.cs"
Class="YuBankIASWS.Portfolio" %>

9.3.2 IAS Web Service solution
YuBank’s Investment Advisory Web Service is developed using Microsoft .NET
Framework and Microsoft Visual Studio .NET. Apart from normal Web Service
related files and classes, it contains access or classes and proxy classes for the
following services:

1. Customer Profile Service (CPS) - A J2EE application that provides customer
data. It connects to this service using WebSphere MQ classes for Microsoft
.NET. A detailed description about WebSphere MQ aspects of this
connectivity can be found in Chapter 8, “Messaging solution: .NET application
to J2EE application” on page 139.

2. Share Quote Service (SQS) - A J2EE Web Service that provides Share Quote
data. IAS Web Service connects this service using WebSphere MQ Transport
for SOAP. Concepts and examples of WebSphere MQ Transport for SOAP
are explained in Chapter 3, “WebSphere MQ Transport for SOAP” on
page 11.

IAS is a simple .NET Web Service class which offers the investment advice Web
Service. Example 9-10 on page 175 shows the Portfolio class declaration
generated using Microsoft Visual Studio .NET. The GetAdvice method of
Portfolio class is marked with [WebMethod] tag and thereby exposed as a Web
Service.

The following figure illustrates the entire class structure of the YuBankIASWS
project.
176 WebSphere MQ Solutions in a Microsoft .NET Environment

Figure 9-4 Class model for IAS Web Service solution

IAS Business logic
In this section the class structure of YuBankIASWS project and the business
logic expressed within its functions is described. Class and method descriptions
are arranged according to the sequence of steps shown in Figure 9-2 on
page 167.

� Class Method: Portfolio.GetAdvice

(Step 2: Amount and account id check by IAS Web Service)

Description: This is the only WebMethod offered by the Portfolio class. This
method calls all other services using the respective functions. These calls are
arranged so that possible errors result in immediate and graceful exits from
the Web Service.
 Chapter 9. Messaging solution: .NET client to .NET Web Services using WebSphere MQ SOAP transport 177

Before moving on to other business logic, this method checks the input
parameters provided by the Web Service caller - BSS Web Application.

Parameters and return values: accountId (string) investmentAmt (string)

Business Logic: The following code fragment performs the check over the
parameters.

Example 9-12 GetAdvice WebMethod and initialization of variables

public string GetAdvice(string accountId, string investAmt)
{

if(accountId.Length>0)
{

_accountId=accountId;
try
{

_amtInvest=Convert.ToDouble(investAmt);
}
catch (Exception ex)
{
//write error message in advice xml

XmlElement er1 = _xmlAdvice.CreateElement("error");
er1.InnerText="Invalid investment amount ["+ex.GetType()+"]";
_errorElAdvice.AppendChild(er1);

}
//Verify that Client through BSS has entered appropriate investment
amount
if(_amtInvest>1000)
{

//Make sure that both CPS(J2EE App) and SQS WS are successful before
preparing the advice
if (GetCustomerProfile()&& GetStockQuotes())
PrepareAdvice();

}
}

Exception handling in the IAS Web Service is covered later in this chapter.

� Class / Method: Portfolio.GetProfile() (Part I)

(Step 3: Customer profile request from IAS Web Service to CPS)

Description: This part of the method calls the WebSphere MQ queue
accessor function

Input parameters and return values: GetCustomer profile returns boolean
value. Value of this boolean return is determined by the outcome of CPS
service invocation.
178 WebSphere MQ Solutions in a Microsoft .NET Environment

Business Logic: The following code shows the XML transformation and the
call to WebSphere MQ queue accessor function which results in CPS
invocation.

Example 9-13 GetCustomerProfile method

private bool GetCustomerProfile()
{

string strProfileXml="";
XmlDocument xmlCps= new XmlDocument();
try
{

MQAccessCPS proxyCPS = new MQAccessCPS();
strProfileXml =
proxyCPS.GetMessageReply("<Message
MsgObjective='QueryCustomerProfile'><Account
AccountNum='"+_accountId+"'/></Message>");
xmlCps.LoadXml(strProfileXml);

}
catch(Exception ex)
{

XmlElement er7 = _xmlAdvice.CreateElement("error");
er7.InnerText="Customer profile service error["+strProfileXml+"]";
_errorElAdvice.AppendChild(er7);
return false;

}

� Class Method: MQAccess.GetMessageReply

(Step 4: Customer profile response from CPS J2EE application to IAS Web
Service)

Description: The CPS application sends the results of customer query back to
a WebSphere MQ queue. A helper (MQAccessCPS) class collects this reply
from the queue and delivers it back to the caller (Portfolio.GetProfile())

MQAcessCPS class provides functionality for the following tasks:

a. submit the Profile request to a WebSphere MQ queue

b. receive reply from CPS J2EE application in return WebSphere MQ queue

c. correlates the response with the original request

d. return message (XML format) to the caller

Business logic: Refer to 8.3.2, “Investment advisory application” on page 148
which describes how MQAccessCPS class handles WebSphere MQ
message submit and reply collection operations.

� Class/Method: Portfolio.GetCustomerProfile (Part II)

(Step 5: Check customer profile)
 Chapter 9. Messaging solution: .NET client to .NET Web Services using WebSphere MQ SOAP transport 179

Description: This part of GetCustomerProfile methods checks the CPS
response for valid customer details.

Business Logic: This part of the method receives reply from MQAccessCPS
and transform it into an XML document. In case of an error on CPS’s part,
MQAccess does not return a valid XML string and thus GetProfile operation
fails to complete. The following code fragment shows this part of the
GetProfile() method:

Example 9-14 Validate customer profile data

private bool GetCustomerProfile()
{

string strProfileXml="";
XmlDocument xmlCps= new XmlDocument();
try
{

MQAccessCPS proxyCPS = new MQAccessCPS();
strProfileXml =
proxyCPS.GetMessageReply("<Message
MsgObjective='QueryCustomerProfile'><Account
AccountNum='"+_accountId+"'/></Message>");
xmlCps.LoadXml(strProfileXml);

}
catch(Exception ex)
{

XmlElement er7 = _xmlAdvice.CreateElement("error");
er7.InnerText="Customer profile service error["+strProfileXml+"]";
_errorElAdvice.AppendChild(er7);
return false;

}

if(xmlCps.DocumentElement.HasChildNodes)
{

//Code for coversion of Risk level and Expected return values
return true;

}
else
{

//if customer is not in the CPS database then write appropriate
message in advice xml
XmlElement er6 = _xmlAdvice.CreateElement("error");
er6.InnerText="No Customer record found [CPS Application]";
_errorElAdvice.AppendChild(er6);
return false;

}
}

� Class/Method: Portfolio.GetStockQuotes
180 WebSphere MQ Solutions in a Microsoft .NET Environment

(Step 6: Stock quotes request from IAS Web Service to SQS Web Service
using WebSphere MQ Transport for SOAP)

Description: This method sends pre-selected stocks symbols (XML string) to
the SQS proxy for stock information. Figure 9-5 depicts the sequence of
method calls involved in sending and receiving responses from SQS.

Figure 9-5 Invoking SQS Web Service (J2EE) from IAS .NET Web Service

� Class/Method: sqs.GetQuotes

(Step 7: Get share quote history response from SQS to IAS)

Parameters and return values: No input parameter, Method returns string
value.

Description: sqs class invokes the SQS Web Service using
ShareQuoteService proxy generated using the WebSphere MQ Transport for
SOAP utility.

Business Logic: Pre-selected shares are stored on a local folder in XML
format. Stock pre-selection is a manual process and depends on external
factors such as recommendations, bank policy and so on. The following code
snippet shows how pre-selected shares are transferred to SQS using
getQuote method of the SQS proxy. Results of this method call are returned
to the caller (Potfolio.GetStockQuotes), and in case of errors accessing SQS
service, this function returns error message to the caller instead.

Example 9-15 Receive share data from SQS service

public string GetQuotes()
{

Portfolio.asmx
Helper Class

Proxy
SOAP Transport

ShareQuoteService.
getQuote()

WebSphere MQ Transport for SOAP (MA 0R) Web Service

Share Quote
Service

(J2EE Web
Service)

WMQ

Infrastructure

Portfolio.
GetStockQuotes() sqs.GetQuotes

 Web Service Client

Note: The helper class (sqs) is used here for a specific test and debugging
purposes. In normal practice we recommend to use proxy generated by
WebSphere MQ transport for SOAP (ShareQuoteService.cs) directly in the
client code.
 Chapter 9. Messaging solution: .NET client to .NET Web Services using WebSphere MQ SOAP transport 181

string strSQSResponse ="";
XmlDocument xmlSQSRequest = new XmlDocument();
xmlSQSRequest.Load(@"C:\Inetpub\wwwroot\YuBankIASWS\requestSQS.xml");

try
{

ShareQuoteService shareobj = new ShareQuoteService();
shareobj.Url =
"wmq:SOAP.ShareQuote@DOTEP?connectQueueManager=DOTIP,replyToQueue=SOA
P.RESPONSE.ShareQuote";
strSQSResponse = shareobj.getQuote(xmlSQSRequest.OuterXml);
return strSQSResponse ;

}
catch (System.Exception e)
{

return e.GetType().ToString();
}

}

wmq Url property of the proxy class and other deployment concepts are
explained in Chapter 3., “WebSphere MQ Transport for SOAP” on page 11.

� Class/Method: Portfolio.FindSuitableStocks Portfolio.AddIfSuitable

(Step 8: Share analysis and selection by IAS)

Input parameters and return values: FindSuitableStocks accepts the
XmlDocument object (containing SQS result)

Description: This method analyzes the share performance and calculates
variance and average.

Business logic: After receiving share data from SQS, the IAS Web Service
analyzes the data as described in 9.2, “System context” on page 166.

Calculate average return of the shares from SQS historic data using the
formula explained in 4.2.2, “Use case 2: Investment advisory” on page 76.

Calculate the fluctuating value of shares using the following formula:

Example 9-16 Fluctuating value formula

MAX[(average return-minimum return),(maximum return-average return)] /
average return

Note: This formula and other calculations in this code are entirely fictitious.
The shares selection process in reality is a very complicated process and
often involves human intervention.
182 WebSphere MQ Solutions in a Microsoft .NET Environment

Example 9-17 Calculate share variance value and average return

private void FindSuitableStocks(XmlDocument xmlSQResult)
{

_HistoryRecords =(12/_HistoryPeriod)+1;
//standard xml iteration logic
XmlNode root,row;
root = xmlSQResult.DocumentElement;
IEnumerator ienum;
ienum=root.GetEnumerator();

while (ienum.MoveNext())
{

row =(XmlNode)ienum.Current;
double aveReturn,variance,nodeValue=0.00;
double totalReturns=0.00;
int rCount = row.SelectSingleNode("history").ChildNodes.Count;
nodeValues = new double[rCount];

for (int i =0;i<rCount;i++)
{
nodeValue=Convert.ToDouble(row.SelectSingleNode("history").ChildNodes
[i].InnerText);
nodeValues[i]=nodeValue;
//specific business logic formula. please refer related chapter in
the redbook
switch(i)
{
case 0:

totalReturns+=nodeValue*12;
nodeValues[i]=nodeValue*12;
break;

case 1:
totalReturns+=nodeValue*4;
nodeValues[i]=nodeValue*4;
break;

case 2:
totalReturns+=nodeValue*2;
nodeValues[i]=nodeValue*2;
break;

case 3:
totalReturns+=nodeValue*1.33;
nodeValues[i]=nodeValue*1.33;
break;

case 4:
totalReturns+=nodeValue*1;
nodeValues[i]=nodeValue*1;
break;

}

 Chapter 9. Messaging solution: .NET client to .NET Web Services using WebSphere MQ SOAP transport 183

}
aveReturn=totalReturns /rCount;
double minVal,maxVal = 0.00;
Array.Sort(nodeValues);
minVal=nodeValues[0];
maxVal=nodeValues[rCount-1];

//specific business logic formula. you could also use standard deviation
logic
variance =(Math.Max((aveReturn-minVal),(maxVal-aveReturn)))/aveReturn;

//creates an xml and adds the suitable stocks as records(elements)
AddIfSuitable(row.SelectSingleNode("name").InnerText,row.SelectSingleNod
e("price").InnerText,aveReturn,variance);

}
}

Portfolio.AddIfSuitable

Description: This method adds the shares provided it matches the customer’s
expectation and maximum variance value.

Input parameters and return values:

Input: stock symbol (string), stock unit price (string), average return (double)
calculated by FindSuitableStock method, variance (double) also calculated by
FindSuitableStock.

Return value: Null. If the share matches the criteria it adds the share in XML
document in the following format:

<selectedstocks><stock symbol=’IBM’ price=’85’/></selectedstocks>

Example 9-18 Add suitable shares to the list

private void AddIfSuitable(string symbol, string price, double aveReturn,
double variance)
{

if (aveReturn>=_expectedReturns && variance<=_maxVariance)
{

XmlElement elStock=xmlSelectedStocks.CreateElement("stock");
elStock.SetAttribute("symbol",symbol);
elStock.SetAttribute("price",price);
rootElStocks.AppendChild(elStock);

}
}

184 WebSphere MQ Solutions in a Microsoft .NET Environment

� Class/Method: Portfolio.PrepareAdvice

(Step 10: Advice response from IAS Web Service to Bank application (BSS))

Description: Advice is passed back to BSS Web application using WebSphere
MQ Transport for SOAP Web Service.

Input parameters and return values: Null. This method uses selectedItems
XML document and prepares investment advice XML.

Business Logic: This demonstration program distributes total investment
amount (provided by the customer in BSS application) equally among the
selected items. Based on the price of shares, PrepareAdvice calculates the
quantity.

9.3.3 WebSphere MQ transport for SOAP deployment for IAS
Here the deployment of the IAS Web Service for use by the BSS client is
illustrated. This Web Service returns a proposed investment portfolio for a given
customer and target investment amount.

The Web Service itself is implemented in the file Portfolio.asmx.cs. The source
for this service can be any convenient directory. It can also remain a normal Web
project folder under inetpub\wwwroot. In our case it was copied in the folder
c:\$user\YuBankIASWS.

Note: Discussion on data manipulation techniques using ADO.NET is outside
of the scope of this book. However, an attempt has been made to demonstrate
a few XML data handling techniques through the sample solution programs.
Code fragments in Example 9-17 and Example 9-18 show how to use
System.Data.XML classes to:

� Iterate through XML document
� Navigate XML document using X-Path statements.
� Create an XML document

Important: As discussed in 9.3.2, “IAS Web Service solution” on page 176,
the services makes use of several C# source files. The classname for the
service itself is called “Portfolio” and this is declared within a namespace
called “YuBankIASWS”. The Assembly Name for the application needs to be
specifically set to the classname that defines the service otherwise the
WebSphere MQ transport for SOAP deployment process fails. In this instance
the Assembly Name is reset to “Portfolio”.
 Chapter 9. Messaging solution: .NET client to .NET Web Services using WebSphere MQ SOAP transport 185

Then the service code is built using the Microsoft Visual Studio .NET IDE. This
creates the DLL file Portfolio.dll in the sub-directory “bin” as shown in the
following figure:

Figure 9-6 Resetting the assembly name in Microsoft Visual Studio .NET

Next an assembly directive (ASMX file) containing the following single line
definition is created:

Example 9-19 The Assembly Directive file for the Portfolio service

<%@ WebService Language="c#" Codebehind="Portfolio.asmx.cs" Class="YuBankIASWS.Portfolio" %>

This directive specifies that the source for the service is located in
Portfolio.asmx.cs and that its classname, with the namespace definition, is
YuBankIASWS.generatePortfolio.

The service can now be deployed. Before doing so ensure that the CLASSPATH
environment variable is set correctly for WebSphere MQ transport for SOAP.
(Refer to 3.7.3, “Deploying the Microsoft .NET service” on page 39 for details.)
The WebSphere MQ transport for SOAPdeployment utility can now be invoked
as follows:

Example 9-20 WebSphere MQ transport for SOAP deployment for the Portfolio Web Service

C:\$user\YuBankIASWS>deployWMQService -m DOTIP -f Port
186 WebSphere MQ Solutions in a Microsoft .NET Environment

folio.asmx
Package name: DefaultNamespace
Generating WSDL...
mqsoapwsdl wmq:SOAP.Portfolio@DOTIP?connectQueueManager=DOTIP Portfolio.asmx hel
pers\Portfolio_Wmq.wsdl
Preparing listener...
Configuring MQ...
Generating and compiling proxy code...
java com.ibm.mq.ma0r.tools.RunWSDL2Java --output helpers -p dotNetService helper
s\Portfolio_Wmq.wsdl

C:\$user\YuBankIASWS>

When running the deployment utility use the -m flag to specify the queue
manager DOTIP and the -f flag to specify the input ASMX file.

The deployment utility creates the queue SOAP.Portfolio. This is the queue into
which our client BSS application writes request messages for a particular
investment portfolio. No response queue is automatically generated by the utility
however. The default response queue that WebSphere MQ transport for SOAP
assumes is MQSOAP.RESPONSE.QUEUE. A different response queue specific
to our service is required, in this case SOAP.RESPONSE.Portfolio. This
response queue name can then be referenced in the URI as described above.

As well as creating the request queue, the deployment process also creates the
proxy code that can be used by the BSS client application to invoke the Portfolio
service. This proxy code is located in the file “helpers\Portfolio.cs”. Refer to
“Adding IAS Web Service proxy” on page 191 for a description of how to built the
client code with this proxy.

Deployment also creates the script “helpers\listen_Portfolio.bat”. This is the script
to start the WebSphere MQ transport for SOAP Microsoft .NET listener. The
script is specifically customized to run the listener for the service.

Before accessing this service from the BSS client the channel for communication
between the BSS client and IAS server needs to be created. Such tasks cannot
be performed by the deployment process as they are specific to the target
WebSphere MQ topology. The channel is configured when running our
WebSphere MQ setup scripts. Refer to “WebSphere MQ setup” on page 112 for
more details.

9.3.4 BSS client
YuBank’s Banking Service System (BSS) is an ASP .NET application containing
eight aspx pages of which two, RequestAdvice.aspx and DisplayAdvice.aspx, act
 Chapter 9. Messaging solution: .NET client to .NET Web Services using WebSphere MQ SOAP transport 187

as clients to the IAS Web Service. One to collect information required by the Web
Service, the other to display the response.

Figure 9-7 Communication between IAS Web Service and BSS Web Application using WebSphere MQ

For more details on the content of the BSS application, refer to 7.4.1, “Deploying
BSS” on page 134.

BSS is developed using Microsoft Visual Studio .NET. Application Wizard
provided by Microsoft Visual Studio .NET. The following figure shows the New
Project wizard provided by Microsoft Visual Studio .NET to create ASP .NET
Web application.

ITSOL ITSOI

DOTIP

S
V
R
C
O
N
N

SOAP.Portfolio

IASBSS

SOAP.RESPONSE.
Portfolio

S
O
A
P

L
A
Y
E
R

S
O
A
P

L
A
Y
E
R

WMQ
Web

Request

WMQ
SOAP
Host

WMQ
Web

Response

CPS

SQS
188 WebSphere MQ Solutions in a Microsoft .NET Environment

Figure 9-8 Microsoft Visual Studio .NET. Application Wizard

To use WebSphere MQ object's properties, methods, or events, WebSphere MQ
Transport for SOAP has to be referenced, imported and registered.

Adding a reference to WebSphere MQ Transport for SOAP
Add Reference to System.Web.dll and MQSOAP.dll by right-clicking References
in the Solution Explorer and selecting Add Reference. An Add Reference window
appears.

In the .NET tab of the Add Reference window, double-click System.Web.dll.

Select Browse and locate the MQSOAP.dll. At the time of writing this redbook,
the DLL was located in the MA0R bin directory. Click on it to add it to the selected
components as shown below. Click OK.
 Chapter 9. Messaging solution: .NET client to .NET Web Services using WebSphere MQ SOAP transport 189

Figure 9-9 Adding reference to WebSphere MQ Transport for SOAP

Importing WebSphere MQ Transport for SOAP
In C# applications the appropriate classes are included as follows

Example 9-21 How to include WebSphere MQ classes in C#

using IBM.WMQ;

in VB.NET applications the appropriate classes are included as follows.

Example 9-22 How to include WebSphere MQ classes in VB.NET

Imports IBM.WMQ

Registering WebSphere MQ Transport for SOAP
To register WebSphere MQ Transport for SOAP, the following line of code has to
be added to the page load function of your .aspx page which is used to access
the Web Service proxy as shown below:
190 WebSphere MQ Solutions in a Microsoft .NET Environment

Example 9-23 Registering WebSphere MQ Transport for SOAP

private void Page_Load(object sender, System.EventArgs e)
{

// register WMQ transport for SOAP
try
{

MQSOAP.MQWebRequest.Register();
}
catch (Exception ex)
{

System.Diagnostics.Debug.WriteLine("exception caught:" + ex.ToString());
}

Adding IAS Web Service proxy
On completing the three steps above, the Web Service proxy provided by the IAS
Web Service should be copied into the solution. Right-click the project, and
select Add -> Add Existing Item as shown below:

Figure 9-10 Adding the Web Service proxy to the solution
 Chapter 9. Messaging solution: .NET client to .NET Web Services using WebSphere MQ SOAP transport 191

In the Add existing item window, select the Web Service proxy you want to add,
in this case, portfolio.cs, and click Open.

9.3.5 BSS Web Application solution
BSS uses two aspx forms to access the IAS Web Service. One to collect
information required by the Web Service, the other to display the response.

Design the forms as desired. One of the forms should have two text boxes and a
button. The text boxes allow input of the investment amount and customer
account number. These parameters are required by the IAS Web Service in
order to return suitable advice to the customer. These parameters are wrapped
up in a SOAP message and transported using WebSphere MQ to the IAS Web
method. The IAS Web Service in turn returns an advice which can be displayed
on the second form.

In this section the structure of the two forms used is described, RequestAdvice
and DisplayAdvice.aspx pages and how they call the IAS Web Service.

RequestAdvice.aspx
In the form load method of the aspx form, RequestAdvice.aspx, designed to
enter investment advice, register the WebSphere MQ Transport for SOAP as
shown in “Registering WebSphere MQ Transport for SOAP” on page 190.

In the button click method, call the Web Service using the Web Service proxy
provided, passing it the customers account number and investment amount as
parameters shown in the snippet below:

Example 9-24 Calling Web Service from RequestAdvice.aspx

private void Button1_Click(object sender, System.EventArgs e)
{

string acctNum = accNum.Text;
string invAmt =invAmount.Text;

try
{

//make new instance of Web Service proxy
sendDetails = new Portfolio();

//call services and assign advice the value of the response
string advice = sendDetails.GetAdvice(acctNum, invAmt);

//Store results in a session variable for display on DisplayAdvice.aspx
Session.Contents["adviceResult"] = advice;
192 WebSphere MQ Solutions in a Microsoft .NET Environment

Response.Redirect(Request.ApplicationPath + "/DisplayAdvice.aspx");
}
catch(MQException ex)
{

System.Console.WriteLine("MQException: compCode: " +
ex.CompCode.ToString() + " Reason: " + ex.Reason.ToString());
//Display error on a different page
Response.Redirect(Request.ApplicationPath + "/DisplayError.aspx?msg=" +
"Error occured while accessing IAS Web Service : MQException: compCode:
" + ex.CompCode.ToString() + " Reason: " + ex.Reason.ToString());

}
catch (Exception sysex)
{

System.Console.WriteLine(sysex.ToString());
//Display error on a different page
Response.Redirect(Request.ApplicationPath + "/DisplayError.aspx?msg=" +
"System error " + sysexe.ToString());

}
}

When the Web Service is called, a SOAP message is put on a queue,
SOAP.Portfolio on ITSOI through channel TO.DOTIP and the response is taken
from a queue called SOAP.RESPONSE.Portfolio. As described in the proxy code
below, where portfolio is the name of the proxy:

Example 9-25 IAS Web Service proxy code

public Portfolio() {
this.Url =
"wmq:SOAP.Portfolio?clientConnection=ITSOI.hursley.ibm.com,clientChannel=TO
.DOTIP,replyToQueue=SOAP.RESPONSE.Portfolio";

}

DisplayAdvice.aspx
The response from the IAS Web Service is stored in a session variable as shown
below:

Example 9-26 Storing results in a session variable for display on another page

//Store results in a session variable for display on DisplayAdvice.aspx
Session.Contents["adviceResult"] = advice;
Response.Redirect(Request.ApplicationPath + "/DisplayAdvice.aspx");

And finally, the result from the Web Service is extracted from the session variable
and displayed on DisplayAdvice.aspx.
 Chapter 9. Messaging solution: .NET client to .NET Web Services using WebSphere MQ SOAP transport 193

Example 9-27 Displaying results from the Web Service

private void Page_Load(object sender, System.EventArgs e)
{

// Put user code to initialize the page here
string advice = Session.Contents["adviceResult"].ToString();
advicelabel.Text = advice;

}

9.4 Deployment
Both the BSS application and the CSS Web Service need to be deployed.

9.4.1 IAS Web Service deployment
There are two possible ways to deploy the IAS Web Service, the folder copy
method and the Web Setup project method.

Folder copy method

Figure 9-11 IAS Web Service Deployment

The following steps explain how to deploy Portfolio Web Service on the target
server:

� Compile YuBankIASWS Web project in Release mode in Microsoft Visual
Studio .NET.

� Copy contents of virtual root (YuBankIASWS sub folder in
‘C:\inetpub\wwwroot’ including ‘bin’ subfolder) to a virtual directory on the
target server. It is not advisable to copy source files (.cs) over to the
deployment server.

IAS Web Service

Design Deployment

asmx

Portfolio.asmx MQAccess.cs

cs

sqs.cs

cs

Portfolio.asmx

asmx

bin/YuBankIASWS.dll

dll

Portfolio.asmx.cs

cs

Portfolio.wsdl

wsdl
194 WebSphere MQ Solutions in a Microsoft .NET Environment

� For the entire process involved in this option, visit the following URL:

http://samples.gotdotnet.com/quickstart/aspplus/doc/deployment.aspx

Web Setup project
.NET Web Services can also be deployed using a setup application. The
following steps explain the process for creating setup application for YuBank IAS
Web Service:

1. Create a Web Setup project template of Microsoft Visual Studio .NET.

The following figure shows the Web Setup project wizard for creating the
YuBankIASWSSetup project in Microsoft Visual Studio .NET.

Figure 9-12 Web Setup project wizard in Microsoft Visual Studio .NET

2. Add this setup project to the solution containing the Web Service project.

3. Add the output of YuBankIASWS Web Service to YuBankIASWSSetup project
using the following steps:

a. Navigate to the solution explorer, right-click the YuBankIASWSSetup
project, point to Add, and click Project Output.

b. In the Add Project Output Group window, ensure that YuBankIASWS is
selected in the Project box. From the list select Primary Output, Debug
Symbols, and Content Files and then click OK.
 Chapter 9. Messaging solution: .NET client to .NET Web Services using WebSphere MQ SOAP transport 195

http://samples.gotdotnet.com/quickstart/aspplus/doc/deployment.aspx

The following figure shows the Add Project Output Group window.

Figure 9-13 Add project output to setup project

4. Build YuBankIASWSSetup project.

5. Execute YuBankIASWSSetup.msi or Setup.exe on the target machine to
install YuBankIASWS.

9.4.2 WebSphere MQ queue setup and WebSphere MQ transport for
SOAP deployment

The following steps are required to implement this functionality:

� Code the Web Service implementation.

� Write the client interface code.

� Generate WSDL defining the implementation of the service.

Note: Remember that before executing YuBankIASWSSetup.msi the
following software is to be installed on the target server:

� Microsoft .NET Framework
� Windows Installer version
� Internet Information Services (IIS)
196 WebSphere MQ Solutions in a Microsoft .NET Environment

� Generate the required proxy code for the client.

� Prepare a .NET listener for the IAS Web Service.

� Configure required MQ request and response queues.

� Configure a trigger monitor for automated listener start-up (optional).

A WebSphere MQ .NET listener is provided with WebSphere MQ transport for
SOAP. This is specially prepared to read messages from the queue
SOAP.Portfolio and then the target Web Service is invoked through the .NET
Web Services framework. The Web Service assesses which companies are
most suitable investment and the investment amount for each. This list of
recommendations is encapsulated into a SOAP response string which is then
dispatched back to the banking client application over the MQ channel. The
response message is placed into the queue SOAP.RESPONSE.Portfolio.

9.4.3 BSS Web Application deployment
For instructions on how to deploy the BSS application refer to 7.4.1, “Deploying
BSS” on page 134.

9.4.4 Securing the IAS Web Service
This section describes security setup for IAS.

Standard Security
Authentication and authorization services provided by IIS and Windows 2000
form the basis for .NET Web Service security. You can secure the Web Service
using authentication and authorization parameters in Web.config file. This file is
located in the virtual root folder of your Web Service. (For example,
C:\Inetpub\wwwroot\YuBankIASWS).

Depending on the requirements the following attribute values for authenticating
Web Service users can be used.

Table 9-1 Attribute values for authenticating Web Service users

Value Description

None No ASP.NET authentication services are active except for
those on IIS authentication services.

Windows Authentication services attach a WindowsPrincipal to the
current request. For more information see
‘System.Security.Principal.WindowsPrincipal’ topic in
Microsoft Visual Studio .NET help).
 Chapter 9. Messaging solution: .NET client to .NET Web Services using WebSphere MQ SOAP transport 197

The following example shows how to use authentication mode and authorization
in the web.config file. This particular setting in the following example allows only
user “BSS” to access the Web Service using the POST method. All other POST
and GET requests coming from other users are rejected.

Example 9-28 Authentication and authorization settings in web.config

<configuration>
<system.web>

<authentication mode="Windows"/>
<authorization>

<allow VERB="POST" users="BSS" />
<deny VERB="POST" users="*" />
<deny VERB="GET" users="*" />

</authorization>
</system.web>

</configuration>

Customizing authentication using SOAPHeaders
SOAP headers are useful for passing extra information with the request to XML
messaging in Web Service. The following steps explain how to use SOAP header
to implement custom Web Service authentication and authorization.

1. Create a class that derives from SOAPHeader with properties such as
username, password. Declare a public field of that type in your Web Service.
This is way it is exposed in the client proxy generated from WSDL.

Example 9-29 Custom SOAP Header class

public class IASHeader : SoapHeader
{
 public string Username;
 public string Password;
}

2. In your Web Service, just before your Web Method declaration, use
[SoapHeader] custom to define a header for your Web Service. During runtime
it sets the value of this input header before the method is invoked.

Forms Developer writes a logon application to collect credentials.
Authentication services manage cookies and redirect
unauthenticated users to a logon page.

Passport Web Service uses Microsoft Passport services as an
independent authentication provider.

Value Description
198 WebSphere MQ Solutions in a Microsoft .NET Environment

Example 9-30 User SOAP header in Web Service

[WebMethod]
[SoapHeader("authHeader")]
public string GetAdvice() {

if(authHeader==null)
XmlElement er0 = _xmlAdvice.CreateElement("error");
er0.InnerText="Please supply valid credentials [Authentication Error]";
_errorElAdvice.AppendChild(er0);

else
{

//business logic
}

}

3. Web Service client sets the header on the proxy class directly before making
a Web Service call.

Example 9-31 Web Service clients uses SOAP header

private void Button1_Click(object sender, System.EventArgs e)
{

Portfolio proxyAdvice = new Portfolio();
proxyAdvice.IASHeader myHeader = new proxyAdvice.IASHeader();
myHeader.Username = txtId.Text;
myHeader.Password = txtPass.Text;
Response.Write(proxyAdvice.GetAdvice());

}

9.5 Testing
This scenario is developed as an experimental application for explaining the
subject technologies of the redbook. The scope therefore did not permit us to
carry out or explain comprehensive testing of this sample application. This
section describes basic application and deployment testing that this team found
useful in troubleshooting and debugging during the development cycle.

Refer to Chapter 11, “System integration and functional test” on page 227 for
basic testing concepts and scenario test cases.

9.5.1 IAS Web Service testing using Microsoft Visual Studio .NET
IAS Web Service contains three major units of operation.

1. Customer profile access and extraction of information from profile data
 Chapter 9. Messaging solution: .NET client to .NET Web Services using WebSphere MQ SOAP transport 199

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnwssecur/html/securitywhitepaper.asp

2. Share Quote System access and share performance analysis

3. Share selection as per customer criterion and advice preparation

For this specific application, the team decided to build the skeleton service first
and add units in reverse order.

Web Service project testing and input check using default
asmx test client in browser

As described in 9.3.1, “.NET Web Service development” on page 173 Microsoft
Visual Studio .NET is used to create the template for this Web Service. After
adding the account Id and amount information supplied it is tested via a default
test application in a browser. The following figure shows the test application
generated by .NET Framework and Internet Information Services (IIS).

Figure 9-14 Default test application for IAS Web Service

Attention: Remember that to perform testing in this manner, you need to
finalize all message flow and types before commencing the development.
200 WebSphere MQ Solutions in a Microsoft .NET Environment

Business logic testing
FindSuitableStocks and PrepareAdvice functions of IAS Web Service contain the
major part of the business logic. After this coding is finalized, the sample data for
customer profile information and share information is used. This sample
information is then replaced by information received from real application (CPS
and SQS). This way separates the business logic part of the service from the rest
of the communication logic. The following examples show the use of sample XML
data that acts as a response from CPS (Example 9-32) and SQS
(Example 9-33).

Example 9-32 Business logic testing by using sample CPS data

private bool GetCustomerProfile()
{

XmlDocument xmlCps= new XmlDocument();
xmlCps.Load(Server.MapPath("MsgQueryResult.xml"));

if(xmlCps.DocumentElement.HasChildNodes)
{

//Coversion of Risk level and Expected return values
}

}

Example 9-33 Business logic testing by using sample SQS data

private bool GetStockQuotes ()
{

//set docs and variables
xmlSelectedStocks = new XmlDocument();
rootElStocks=xmlSelectedStocks.CreateElement("selectedstocks");
xmlSelectedStocks.AppendChild(rootElStocks);

XmlDocument xmlSQ = new XmlDocument();
//Call SQS here

try
{

xmlSQ.Load(Server.MapPath("sqsoutput.xml"));
}

}

CPS and SQS communication logic testing
Similarly CPS is tested by keeping sample SQS data. SQS communication
testing is performed using real CPS data and functional business logic.
 Chapter 9. Messaging solution: .NET client to .NET Web Services using WebSphere MQ SOAP transport 201

Integration
Once all units are tested individually, end-to-end functionality is tested using
default asmx browser application (Figure 9-14 on page 200).

Following this test, the proxy generated by WebSphere MQ Transport for SOAP
utility (described in 9.3.4, “BSS client” on page 187) is then tested using a
console application.

After successful testing of the WebSphere MQ transport and the IAS Web
Service functionality, the IAS proxy was handed over to the BSS application. BSS
testing and end-to-end scenario testing is described in 11.2, “System integration”
on page 228.

Error handling in the Web Service
Unlike standalone desktop applications, handling exceptions in a Web Service
becomes a tricky task. Deployed Web Service do not pass detail information
about the error occurred at the server. It’s up to the Web Service developer to
handle exception gracefully without crashing the service or the process running
the services.

In the Portfolio Web Service the following data format for the Web Service return
message is used.

Whenever an exception is raised by the application, the corresponding Try-Catch
block intercepts it, and writes the error message into the advice XML before
returning failure back to the caller.

Function calls are arranged in such a way that the Web Service returns the
message immediately back to the Web Service caller without processing the
request any further. This pattern avoids causing unnecessary calls (perhaps to
the paid services such as SQS) and running into more erroneous stage. The
figure below is the error the Web Service returns when there is no match found
for the customer.
202 WebSphere MQ Solutions in a Microsoft .NET Environment

Figure 9-15 Exception handling in Web Service

9.5.2 BSS user interface testing
BSS used simple try catch statements to catch errors and determine situations
where the resources, queues, queue manger and so on are unavailable.

BSS sends a request to IAS with the customer account number and investment
amount and waits for a response while catching any exceptions that might occur
in the process. This is illustrated in the code snippet below:

Example 9-34 Testing in BSS

try
{
//make new instance of Web Service proxy
sendDetails = new Portfolio();

//call services and assign advice the value of the response
 Chapter 9. Messaging solution: .NET client to .NET Web Services using WebSphere MQ SOAP transport 203

string advice = sendDetails.GetAdvice(acctNum, invAmt);
}
catch(MQException ex)
{
System.Console.WriteLine("MQException: compCode: " + ex.CompCode.ToString() + "
Reason: " + ex.Reason.ToString());
}
catch (Exception sysex)
{

System.Console.WriteLine(sysex.ToString());
}

Below is the final test of the BSS functionality. The investment and amount to be
invested are sent as parameters to the Web Service.

Figure 9-16 BSS request investment amount and customer account number

The Web Service returns the message below:
204 WebSphere MQ Solutions in a Microsoft .NET Environment

Figure 9-17 Advice from the IAS Web Service
 Chapter 9. Messaging solution: .NET client to .NET Web Services using WebSphere MQ SOAP transport 205

206 WebSphere MQ Solutions in a Microsoft .NET Environment

Chapter 10. Messaging solution: .NET
client to J2EE Web Services
using WebSphere MQ SOAP
transport

The implementation of the Share Quote System (SQS) is presented in this
chapter, which is based on the business model defined in Chapter 4, “Business
case scenario” on page 73. This services a request from the Investment Advisory
System (IAS) for the current purchase price and historical performance for a
given set of shares.

The contents of this chapter are organized as follows:

� Process overview

� System context

– Interface definition
– Service operation definition
– XML data format

� Development

– Business logic implementation

10
© Copyright IBM Corp. 2004. All rights reserved. 207

– Persistent data storage
– WebSphere MQ definition
– Build process

� Deployment

– Runtime environment
– ShareQuote service deployment

� Testing

– Calling the service from the IAS client
– Test result

� Solution discussion

10.1 Process overview
The Share Quote System is implemented as a J2EE Web Service. It is invoked
with an XML string argument, which specifies the stock symbols of the
companies for which purchase prices are requested. The SQS service
determines the current share prices for the stock and also the return percentages
in the past 12 months. These are returned to IAS as a response message from
the Web Service. IAS acts as a C# client and uses the proxy class for the
ShareQuote service to generate a SOAP formatted request for the service. This
SOAP message is transmitted to SQS via WebSphere MQ. A WebSphere MQ
transport for SOAP JMS listener is used to retrieve the SOAP message and
invoke the SQS service. The SOAP formatted response message is dispatched
back via the WebSphere MQ reply queue to the IAS system, which extracts the
RPC style response from the SOAP message.

10.2 System context
This section contains the definitions of the interface between the IAS and SQS,
service operation in SQS, and XML data format.

10.2.1 Interface definition
The data elements in request and response data to the SQS service are defined
in Table 10-1 and Table 10-2, respectively.

Table 10-1 Request data

Data element Description Data type Data sample

name name of the stock symbol String IBM
208 WebSphere MQ Solutions in a Microsoft .NET Environment

Table 10-2 Response data

The historical data section provides the stock performance in the periods of 1, 3,
6, 9, and 12 months. Due to the restriction of the XML tag naming format defined
in the XML Specification 1.0, the tag names in the history section are in the
format of m#. The contents in these elements are return percentages. In case the
share symbol is invalid or the share date could not be found, the contents in the
price and history elements are NA.

10.2.2 Service operation definition
Access to the SQS to query the stock information is via a RPC mechanism. The
signature of the method is defined as follows.

public String getQuote (String shareSymbol)

The input and output strings are both in XML format, which is defined in the next
section.

10.2.3 XML data format
In defining a XML schema, it is necessary to make a decision whether to use an
element or attribute to represent the data under the root element. There are pros
and cons for either way. As a general rule of thumb, attributes are used to
describe the integral characteristics of an element, and typically the values of the
attributes are short texts. One of the drawbacks of attributes is that it is hard to
expand an attribute to include sub-contents, if the data structure has to be

Data element Description Data type Data sample

name name of the stock symbol String IBM

price Price of the stock in the unit of
US Dollar

String 85

m1 Return percentage in the past 1
month

String 1

m3 Return percentage in the past 3
month

String 2

m6 Return percentage in the past 6
month

String 2

m9 Return percentage in the past 9
month

String 6

m12 Return percentage in the past
12 month

String 8
 Chapter 10. Messaging solution: .NET client to J2EE Web Services using WebSphere MQ SOAP transport 209

amplified in the future. Such schema changes potentially require significant more
code modifications than an element-based structure. For consistency, both
request and response data in SQS use only elements in the data structure.

The request data submitted by the IAS as a .NET client to the SQS as a J2EE
Web Service is composed of a list of share symbols in XML format. The data
format is defined in the following XML schema.

Example 10-1

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:element name="Share">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="name" minOccurs="1" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="name" type="xsd:string" />
 <xsd:element name="ShareQuoteInquiry">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element maxOccurs="unbounded" minOccurs="1" ref="Share"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

A sample of the request data is illustrated as follows.

Example 10-2

<?xml version="1.0" encoding="UTF-8"?>
<ShareQuoteInquiry>
<Share>

<name>IBM</name>
</Share>
<Share>

<name>MSFT</name>
</Share>
<Share>

<name>Microsoft</name>
</Share>
</ShareQuoteInquiry>

A sample of the request data is illustrated as follows.
210 WebSphere MQ Solutions in a Microsoft .NET Environment

Example 10-3

<?xml version="1.0" encoding="UTF-8"?>
<ShareQuoteInquiry>
<Share>

<name>IBM</name>
</Share>
<Share>

<name>MSFT</name>
</Share>
<Share>

<name>Microsoft</name>
</Share>
</ShareQuoteInquiry>

The response data replied from the SQS to the IAS is composed of share prices
and historical data in XML format. The data format is defined in the following XML
schema.

Example 10-4

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:element name="Share">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="name" minOccurs="1" maxOccurs="1"/>
 <xsd:element ref="price" minOccurs="1" maxOccurs="1"/>
 <xsd:element ref="history" minOccurs="1" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="ShareQuoteResult">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element maxOccurs="unbounded" minOccurs="1" ref="Share"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="history">
 <xsd:complexType mixed="true">
 <xsd:choice maxOccurs="unbounded" minOccurs="0">
 <xsd:element ref="m1" minOccurs="1" maxOccurs="1"/>
 <xsd:element ref="m3" minOccurs="1" maxOccurs="1"/>
 <xsd:element ref="m6" minOccurs="1" maxOccurs="1"/>
 <xsd:element ref="m9" minOccurs="1" maxOccurs="1"/>
 <xsd:element ref="m12" minOccurs="1" maxOccurs="1"/>
 </xsd:choice>
 </xsd:complexType>
 Chapter 10. Messaging solution: .NET client to J2EE Web Services using WebSphere MQ SOAP transport 211

 </xsd:element>
 <xsd:element name="m1" type="xsd:string"/>
 <xsd:element name="m12" type="xsd:string"/>
 <xsd:element name="m3" type="xsd:string"/>
 <xsd:element name="m6" type="xsd:string"/>
 <xsd:element name="m9" type="xsd:string"/>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="price" type="xsd:string"/>
</xsd:schema>

A sample of the response data is illustrated as follows.

Example 10-5

<?xml version="1.0" encoding="UTF-8"?>
<ShareQuoteResult>
<Share>

<name>IBM</name>
<price>85</price>
<history>

<m1>1.5</m1>
<m3>3.3</m3>
<m6>6</m6>
<m9>9.1</m9>
<m12>11</m12>

</history>
</Share>
<Share>

<name>MSFT</name>
<price>25</price>
<history>

<m1>1</m1>
<m3>-3</m3>
<m6>5.5</m6>
<m9>5</m9>
<m12>8</m12>

</history>
</Share>
<Share>

<name>Microsoft</name>
<price>NA</price>
<history>NA</history>

</Share>
</ShareQuoteResult>
212 WebSphere MQ Solutions in a Microsoft .NET Environment

10.3 Development
This section contains the design and implementation of the business logic in
SQS. The persistence data storage, queue definitions, and build process are
discussed.

10.3.1 Business logic implementation
The getQuote() method in ShareQuote class in SQS parses the input string using
XPath to obtain the contents of all symbolic names, and then retrieves the stock
information from the share data source. XQL may be used for sophisticated
queries. In this demonstration application, a simple loop search via XPath is
implemented. If the symbol is found in the data source, the data element is
included in the response. Otherwise, “NA” is used as the content in both price
and history sections to indicate an exception. For instance, the stock symbol is
invalid, or the financial data for this symbol is unavailable.

There are a variety of ways to construct and parse XML data in a Java program.
Coding in both the Simple API for XML (SAX) and the Document Object Model
(DOM) can be tedious and bug-prone. JDOM provides a robust, light-weight
means of reading and writing XML data without the complex and
memory-consumptive options that the DOM and SAX APIs provide. It is a
completely natural API for Java development, and it provides a low-cost entry
point for manipulating XML in a fairly straightforward manner.

The source code of the ShareQuote class is shown below:

Example 10-6

import java.io.*;
import java.util.*;
import org.jdom.*;
import org.jdom.input.*;
import org.jdom.output.*;
import org.jdom.xpath.*;

/**
 * @version 1.0
 * @author Tony Shan
 */
public class ShareQuote {

protected static final String SHARE_DATA_SOURCE_FILE_NAME = "ShareDataSource.xml";
protected static Document shareDataSource;

static
{

 Chapter 10. Messaging solution: .NET client to J2EE Web Services using WebSphere MQ SOAP transport 213

try
{

shareDataSource = new SAXBuilder().build(new
FileInputStream(SHARE_DATA_SOURCE_FILE_NAME));

}
catch (Exception e)
{

e.printStackTrace(System.out);
System.exit(-1);

}
}

public static String getQuote (String shareSymbol) throws Exception
{

Document doc = new SAXBuilder().build(new StringReader(shareSymbol));

Element root = new Element("ShareQuoteResult");
Document out = new Document(root);

List shareDataList = XPath.newInstance("//Share").selectNodes(shareDataSource);

List symbols = XPath.newInstance("//Share").selectNodes(doc);

Iterator i = symbols.iterator();

TONY:while (i.hasNext())
{

Element symbol = (Element) i.next();

String name = symbol.getChild("name").getTextTrim();

Iterator iter = shareDataList.iterator();
while (iter.hasNext())
{

Element shareData = (Element) iter.next();
if (shareData.getChild("name").getTextTrim().equalsIgnoreCase(name))
{

root.addContent((Element) shareData.clone());
continue TONY;

}
}

Element share = new Element("Share");

share.addContent(new Element("name").addContent(name));
share.addContent(new Element("price").addContent("NA"));
share.addContent(new Element("history").addContent("NA"));
214 WebSphere MQ Solutions in a Microsoft .NET Environment

root.addContent(share);
}

StringWriter strout = new StringWriter();

new XMLOutputter("\t", true).output(out, strout);

return strout.toString();
}

public static void main(String[] args) throws Exception
{

String input =
"<ShareQuoteInquiry><Share><name>IBM</name></Share><Share><name>MSFT</name></Share><Share><name
>Microsoft</name></Share></ShareQuoteInquiry>";

if (args.length >0)
input = args[0];

System.out.println(ShareQuote.getQuote(input));

}

}

10.3.2 Persistent storage
The share data source in SQS stores all stock information. The live data is fed to
the data source from another channel for periodical updates. The share data
source is a native XML database, implemented either by a commercial product
like Tamino XML Server and eXcelonís XIS, or an open source database like
Xindice and eXist. For simplicity in this demonstration application, a XML file is
used in place of the XML database. Sample data is shown as follows.

Example 10-7

<?xml version="1.0" encoding="UTF-8"?>
<ShareDataSource>
<Share>

<name>IBM</name>
<price>85</price>
<history>

<m1>1.5</m1>
<m3>3.3</m3>
<m6>6</m6>
 Chapter 10. Messaging solution: .NET client to J2EE Web Services using WebSphere MQ SOAP transport 215

<m9>9.1</m9>
<m12>12</m12>

</history>
</Share>
<Share>

<name>MSFT</name>
<price>25</price>
<history>

<m1>1</m1>
<m3>-3</m3>
<m6>9</m6>
<m9>5</m9>
<m12>8</m12>

</history>
</Share>
<Share>

<name>CSCO</name>
<price>18</price>
<history>

<m1>3</m1>
<m3>1</m3>
<m6>5</m6>
<m9>10</m9>
<m12>20</m12>

</history>
</Share>
<Share>

<name>DELL</name>
<price>33</price>
<history>

<m1>3</m1>
<m3>5</m3>
<m6>8</m6>
<m9>10</m9>
<m12>15</m12>

</history>
</Share>
<Share>

<name>AMZN</name>
<price>38</price>
<history>

<m1>2</m1>
<m3>1</m3>
<m6>5</m6>
<m9>1</m9>
<m12>3</m12>

</history>
</Share>
<Share>
216 WebSphere MQ Solutions in a Microsoft .NET Environment

<name>SUN</name>
<price>10</price>
<history>

<m1>1</m1>
<m3>2</m3>
<m6>3</m6>
<m9>4</m9>
<m12>5</m12>

</history>
</Share>
<Share>

<name>YHOO</name>
<price>35</price>
<history>

<m1>8</m1>
<m3>7</m3>
<m6>6</m6>
<m9>5</m9>
<m12>4</m12>

</history>
</Share>
<Share>

<name>ORCL</name>
<price>12</price>
<history>

<m1>1</m1>
<m3>3</m3>
<m6>0</m6>
<m9>9</m9>
<m12>6</m12>

</history>
</Share>
<Share>

<name>PEP</name>
<price>44</price>
<history>

<m1>5</m1>
<m3>8</m3>
<m6>9</m6>
<m9>12</m9>
<m12>15</m12>

</history>
</Share>
<Share>

<name>GTW</name>
<price>4</price>
<history>

<m1>3</m1>
<m3>8</m3>
 Chapter 10. Messaging solution: .NET client to J2EE Web Services using WebSphere MQ SOAP transport 217

<m6>1</m6>
<m9>1</m9>
<m12>5</m12>

</history>
</Share>
</ShareDataSource>

10.3.3 WebSphere MQ definition
The IAS System forms a list of target companies for which share values and
histories are required. This list is encapsulated into a request message using
WebSphere MQ transport for SOAP and this message is then placed onto a local
transmission queue. The message is sent over WebSphere MQ to the Share
Quote System where it arrives in the queue SOAP.ShareQuote.The message
queue definitions are illustrated in Figure 10-1.

Figure 10-1 Message queue definitions

A JMS listener is provided with WebSphere MQ transport for SOAP which reads
messages from a request queue and invokes the target service through the .NET

ITSOI ITSOE

DOTEP

SOAP.ShareQuote

SQSIAS

SOAP.RESPONSE.
ShareQuote

S
O
A
P

L
A
Y
E
R

S
O
A
P

L
A
Y
E
R

WMQ
Web

Request

WMQ
SOAP
Host

WMQ
Web

Response

DOTIP

R
C
V
R

S
D
R

R
C
V
R

S
D
R

DOTIP

DOTEP

Read
Data
218 WebSphere MQ Solutions in a Microsoft .NET Environment

Web Services framework. The deployment process generates a DOS BAT file
which calls this listener specifying the correct queue manager, in this case
DOTIP, and the request queue as SOAP.ShareQuote. The Web Service
determines the value of the required shares and constructs a response
message. This is passed to the local transmission queue on the SQS system
from where it is dispatched by WebSphere MQ back to the IAS system. This
response placed in the queue SOAP.RESPONSE.ShareQuote from which the
BSS application subsequently reads. Both the request and response messages
are specifically tagged as non-persistent. This is because in the event if an
interruption to the target SQS queue manager there may well have been a time
lapse which renders the previously determined share prices invalid. Rather than
use WebSphere MQ persistency here it is more accurate if the Banking system
simply reposts the request.

10.3.4 Adding external classes to the CLASSPATH
If a service application uses external classes or libraries, the classpath must be
set to include these dependent packages. In this case, the jar files in JDOM
package have to be part of the classpath variable. Refer to 3.9.10, “Service code
use of external classes” on page 59 for more detail.

10.4 Deployment
This section contains the specification of the runtime environment, and the
deployment of the SQS Web Service.

10.4.1 Runtime environment
The following components and packages are required in the runtime
environment.

� WebSphere MQ

� WebSphere MQ WebSphere MQ Transport for SOAP (SupportPac MA0R)

� Java Virtual Machine (JVM)

� .NET Framework redistributable

� .NET Framework SDK 1.1

� Service application binary (Java classes and libraries)

Since the server system does not contain Microsoft Visual Studio .NET, so it is
necessary to install the Microsoft .NET Framework (V1.1) and the Microsoft .NET
Framework SDK (V1.1). Note that it is necessary to install the framework first to
 Chapter 10. Messaging solution: .NET client to J2EE Web Services using WebSphere MQ SOAP transport 219

prevent obvious failure message when attempting to install the SDK even when it
fails to install completely.

Although in this instance configuring a J2EE Web Service, WebSphere MQ
transport for SOAP requires access to the .NET Framework because it uses the
Global Assembly Cache and gacutil to register the DLLs that it makes use of.

10.4.2 ShareQuote service deployment
The ShareQuote service application is first developed as a simple standalone
program. Once this functions correctly it is then turned it into a Web Service. This
involves the use of the WebSphere MQ transport for SOAP deployment utility.
Deployment is performed on the SQS system, which is the system on which the
service is destined to be invoked.

IAS is itself a Web Service and services requests from the Banking System
clients. As this is a non trivial application it necessitated testing our SQS service
from a simple C# client. This is written from one of the sample programs provided
in WebSphere MQ transport for SOAP (SQCS2Axis.cs). This client is built on the
IAS system ITSOI. Having proved that the service could be invoked correctly
from this simple client, the service is integrated into the main IAS application.

On the SQS system is placed the source code for the service in a new
sub-directory and then the service is deployed with the deployWMQService
utility:

Example 10-8

C:\j2eews\ma0r\tony_040703>\j2eews\Ma0raaaGO\ma0r\bin\setcp

C:\j2eews\ma0r\tony_040703>setcp

C:\j2eews\ma0r\tony_040703>set classpath=classes;C:\j2eews\ma0r\
lib\ma0r.jar;C:\j2eews\ma0r\lib\axis.jar;C:\j2eews\ma0r\
lib\jaxrpc.jar;C:\j2eews\ma0r\lib\saaj.jar;C:\j2eews\ma0r\lib\
commons-logging.jar;C:\j2eews\ma0r\lib\commons-discovery.jar;C:\j2ee
ws\ma0r\lib\wsdl4j.jar;C:\j2eews\ma0r\lib\xerces.jar;C:\j2ee
ws\ma0r\lib\servlet.jar;C:\j2eews\ma0r\lib\com.ibm.mq.jar;C:
\j2eews\ma0r\lib\com.ibm.mqjms.jar;C:\j2eews\ma0r\lib\connec
tor.jar;C:\j2eews\ma0r\lib\jms.jar;C:\j2eews\ma0r\lib\jta.ja
r;C:\j2eews\ma0r\lib\jndi.jar;C:\j2eews\ma0r\lib\ldap.jar;C:
\j2eews\ma0r\lib\providerutil.jar;C:\j2eews\ma0r\lib\com.ibm
.mqbind.jar;lib\jdom.jar;lib\saxpath.jar;lib\jaxen-core.jar;lib\jaxen-jdom.jar;

C:\j2eews\ma0r\tony_040703>deployWMQService
-m DOTEP -f ShareQuote.java
Package name: DefaultNamespace
220 WebSphere MQ Solutions in a Microsoft .NET Environment

Compiling service code...
Generating WSDL...
Serviceport: ShareQuote_Wmq
java org.apache.axis.wsdl.Java2WSDL --input helpers\ShareQuote_Wmq.wsdl --output
 helpers\ShareQuote_Wmq.wsdl --namespace ShareQuote_Wmq --location wmq:SOAP.Shar
eQuote@DOTEP?connectQueueManager=DOTEP --bindingName ShareQuoteBindingSoap --ser
vicePortName ShareQuote_Wmq ShareQuote
Generating and deploying server wsdd file...
Target dir: C:\j2eews\ma0r\tony_040703\helpers\
Patching deploy.wsdd...
Patching undeploy.wsdd...
Removing temp.server directory...
Preparing listener...
Configuring MQ...
Generate and compile proxy code...
java com.ibm.mq.ma0r.tools.RunWSDL2Java --timeout -1 --output helpers -p Default
Namespace helpers\ShareQuote_Wmq.wsdl

C:\j2eews\ma0r\tony_040703>

The JMS listener is then started with the script automatically generated by the
deployment utility in the helpers directory:

Example 10-9

C:\j2eews\ma0r\tony_040703\helpers>listen_SOAP.ShareQuote

C:\j2eews\ma0r\tony_040703\helpers>rem - generated by deployWMQService
.java at 15-Jul-03 10:16:12

C:\j2eews\ma0r\tony_040703\helpers>call C:\j2eews\ma0r\bin\s
etcp.bat

C:\j2eews\ma0r\tony_040703\helpers>call ..\setcp

C:\j2eews\ma0r\tony_040703\helpers>set classpath=classes;C:\j2eews\
ma0r\lib\ma0r.jar;C:\j2eews\ma0r\lib\axis.jar;C:\j2eews\
ma0r\lib\jaxrpc.jar;C:\j2eews\ma0r\lib\saaj.jar;C:\j2eews\
ma0r\lib\commons-logging.jar;C:\j2eews\ma0r\lib\commons-discovery.jar
;C:\j2eews\ma0r\lib\wsdl4j.jar;C:\j2eews\ma0r\lib\xerces.jar
;C:\j2eews\ma0r\lib\servlet.jar;C:\j2eews\ma0r\lib\com.ibm.m
q.jar;C:\j2eews\ma0r\lib\com.ibm.mqjms.jar;C:\j2eews\ma0r\li
b\connector.jar;C:\j2eews\ma0r\lib\jms.jar;C:\j2eews\ma0r\li
b\jta.jar;C:\j2eews\ma0r\lib\jndi.jar;C:\j2eews\ma0r\lib\lda
p.jar;C:\j2eews\ma0r\lib\providerutil.jar;C:\j2eews\ma0r\lib
\com.ibm.mqbind.jar;lib\jdom.jar;lib\saxpath.jar;lib\jaxen-core.jar;lib\jaxen-jd
om.jar;

C:\j2eews\ma0r\tony_040703\helpers>cd /d C:\j2eews\ma0r\tony
 Chapter 10. Messaging solution: .NET client to J2EE Web Services using WebSphere MQ SOAP transport 221

_040703

C:\j2eews\ma0r\tony_040703>java com.ibm.axis.transport.wmq.SimpleJMSLi
stener -u wmq:SOAP.ShareQuote@DOTEP?connectQueueManager=DOTEP -T 1

Starting Axis JMS listener.

listeners initialised.
Parameters: -u wmq:SOAP.ShareQuote@DOTEP?connectQueueManager=DOTEP -c . -f null
-s null -a false -T 1

**
* Hit Enter to stop the listener and close this window *
**

10.5 Testing
This section contains the unit test for the SQS Web Service.

10.5.1 Calling the service from the IAS client
Our IAS client application calls the ShareQuote service from the GetStockQuotes
method. This method is located in the Portfolio class in the file Portfolio.asmx.cs.
The invocation of the service is shown below:

Example 10-10 Invocation of the ShareQuote service from the Investment Advisory System

sqs proxySQS = new sqs();
tRes = proxySQS.GetQuotes();

The proxy object is not instanciated directly at this level but rather a separate
class called sqs is developed to performs this task. This is done to separate the
transport specific code from the logic of the business application. The key points
in this class are the constructor and also the method GetQuotes(). These are
shown below:

Example 10-11

public sqs()
{

MQSOAP.MQWebRequest.Register();
}

public string GetQuotes()
{

222 WebSphere MQ Solutions in a Microsoft .NET Environment

string strSQSResponse ="";
XmlDocument xmlSQSRequest = new XmlDocument();
xmlSQSRequest.Load(@"C:\Inetpub\wwwroot\YuBankIASWS\requestSQS.xml");

try
{

ShareQuoteService shareobj = new ShareQuoteService();

shareobj.Url =
"wmq:SOAP.ShareQuote@DOTEP?connectQueueManager=DOTIP,replyToQueue=SOAP.RESPONSE.ShareQuote";

strSQSResponse = shareobj.getQuote(xmlSQSRequest.OuterXml);
return strSQSResponse ;

}
catch (System.Exception e)
{

return e.GetType().ToString();
}

}

The WebSphere MQ transport must be registered in the client. In this case, the
registration takes place in the sqs constructor. The GetQuotes() method then
sets the required WebSphere MQ URI and then instantiates the proxy class
ShareQuoteService. It then calls the method getQutoe() from the proxy object to
begin the process of invoking the service.

The proxy by default sets the URI to:

wmq:SOAP.Portfolio@DOTIP?connectQueueManager=DOTIP

This needs to be overridden to specify the correct request and response queues
and also the local queue manager through which WebSphere MQ should
communicate with the remote system. Consequently the URI in our sqs
constructor is set to:

wmq:SOAP.ShareQuote@DOTEP?connectQueueManager=DOTIP,replyToQueue=SOAP.RESPONSE.ShareQuote

This URI specifies the target request queue is SOAP.ShareQuote on remote
queue manager DOTEP, that the client should access the queue manager
DOTEP via the local queue manager DOTIP and that the response queue is
SOAP.RESPONSE.ShareQuote. The WebSphere MQ configuration scripts
which sets up our environment (refer to “WebSphere MQ setup” on page 112 and
Appendix A, “Scripts, source code and test data for YuBank” on page 317) have
 Chapter 10. Messaging solution: .NET client to J2EE Web Services using WebSphere MQ SOAP transport 223

already created the transmit and receive channels DOTEP.TO.DOTIP and
DOTIP.TO.DOTEP that is needed on both the IAS and SQS system to establish
communication with WebSphere MQ between the two systems.

The client call to the SQS system is integrated into the IAS system. Because this
contains several classes and is more complicated than the simple demonstration
presented earlier it is decided to build using Microsoft Visual Studio .NET rather
than from the command line. This technique is documented in Chapter 8,
“Messaging solution: .NET application to J2EE application” on page 139.

The proxy code in the helpers directory is generated by the deployment utility. It
is only necessary to copy this code from the machine the service is deployed on
back to the client system. Alternatively the deployment utility may be re-run on
the client system, but this results in the request queue also being generated on
the client which, although not a problem, is superfluous to requirements.

10.5.2 Test result
The demonstration program can now be invoked from the IAS client system:

Example 10-12

C:\$user\mon\ma0r\tony_040603>sqclient IBM wmq:SOAP.ShareQuote@DO
TEP?connectQueueManager=DOTIP,replyToQueue=SOAP.RESPONSE.ShareQuote
XML: <?xml version="1.0" encoding="utf-16"?><ShareQuoteInquiry><Share><name>IBM<
/name></Share></ShareQuoteInquiry>
Using server bindings.
Sharequote reply is:
<?xml version="1.0" encoding="UTF-8"?>
<ShareQuoteResult>
 <Share>

 <name>IBM</name>

 <price>85</price>

 <history>

 <m1>1.5</m1>

 <m3>3.3</m3>

 <m6>6</m6>

 <m9>9.1</m9>

 <m12>12</m12>
224 WebSphere MQ Solutions in a Microsoft .NET Environment

 </history>

 </Share>
</ShareQuoteResult>

C:\$user\mon\ma0r\tony_040603>

The most important thing to note here is the URI. This specifies that the target
request queue is SOAP.ShareQuote on remote queue manager DOTEP, that the
client should access the queue manager DOTEP via the local queue manager
DOTIP and that the response queue is SOAP.RESPONSE.ShareQuote. The MQ
configuration scripts with which we set up our environment (refer to Chapter 5,
“Solution design” on page 79) had already created the transmit and receive
channels DOTEP.TO.DOTIP and DOTIP.TO.DOTEP that we needed on both the
IAS and SQS system to establish communication with WebSphere MQ between
the two systems.

10.6 Solution discussion
This chapter demonstrates the usage scenario of WebSphere MQ as the SOAP
transport layer for the Web Service invocation from a .NET application to a Java
application. The nature of this service invocation is a Remote Procedure Call
(RPC) mechanism. This approach takes advantage of the asynchronous feature
in the message queuing.

The service client in this demonstration is an application written in C#. It is
obvious that applications programmed in other languages may consume the
service, as long as these applications have the API access to the WebSphere
MQ, and handle the SOAP marshalling and unmarshalling with a prebuilt
package or their own codes. For example, a C/C++ program may use the API
package provided by IBM for WebSphere MQ access to consume a Web Service
implemented in SQS.

In contrast to SOAP over HTTP, this usage scenario requires additional queue
setup and configuration. On the other hand, it enables the service invocations to
be non-blocking, providing features like one-way call and notification for
long-lived processes in an asynchronous mode.
 Chapter 10. Messaging solution: .NET client to J2EE Web Services using WebSphere MQ SOAP transport 225

226 WebSphere MQ Solutions in a Microsoft .NET Environment

Chapter 11. System integration and
functional test

This chapter describes the integration of the components and subsystems
developed in the foregoing chapters and the end-to-end functional test.

11
© Copyright IBM Corp. 2004. All rights reserved. 227

11.1 Scope and objectives
At a high level, the system integration and functional test intends to prove that:

� The functionality delivered is as specified in the Business case scenario
requirement.

� The software supports the intended business functions and achieves the
standards required by the bank.

� The software delivered interfaces correctly with major Web browsers,
including Microsoft Internet Explorer, Netscape Navigator, and Mozilla.

� The software implements the minimum exception handling.

Due to time limitation, the test plan described in this chapter is simplified for
demonstration purpose only. The formal Quality Management (QM) process and
Quality of Service (QoS) verification are deliberately streamlined. The following
tests are excluded in this demonstration, but are highly recommended in the
system development for your organization:

� Unit profiling test
� Regression test
� Performance test
� Stress test
� Penetration test
� Usability test
� Multi-user test
� Storage and network negative test
� Disaster recovery test
� Failover test
� Load-balancing test
� Compliance test
� SLA measurement test
� Operation acceptance test

11.2 System integration
The system integration is to ensure that all areas of the system, interface with
each other correctly and that there are no gaps in the data flow. The integration
test proves that the system works as an integrated unit when all the fixes are
complete.
228 WebSphere MQ Solutions in a Microsoft .NET Environment

11.2.1 Runtime environment
The integration runtime environment is composed of all the subsystems
developed in the previous chapters.

� The software installation and setup are documented in Chapter 6,
“Environment setup” on page 89.

� The server configuration and setup for each subsystem are described in the
respective chapters:

– Chapter 7, “Messaging solution: .NET application to .NET application” on
page 115

– Chapter 8, “Messaging solution: .NET application to J2EE application” on
page 139

– Chapter 9, “Messaging solution: .NET client to .NET Web Services using
WebSphere MQ SOAP transport” on page 163

– Chapter 10, “Messaging solution: .NET client to J2EE Web Services using
WebSphere MQ SOAP transport” on page 207

The inter-system communications are all based on WebSphere MQ Version 5.3.
The queue managers, channels, and queues are pre-tested to ensure that the
infrastructure is ready for integration.

11.2.2 Test data
Test data need to be pre-loaded to the subsystems for the integration testing.
The Credit Check System (CCS) and Share Quote System (SQS) have test data
loaded and unit-tested. The details of the test data are enclosed in Appendix A,
“Scripts, source code and test data for YuBank” on page 317.

11.2.3 System build and deployment
The builds of all software components and packages are deployed to the
respective subsystems, including the dependent libraries and packages. The
details of the deployables and deployment are provided in each individual
chapter:

� Chapter 7, “Messaging solution: .NET application to .NET application” on
page 115

� Chapter 8, “Messaging solution: .NET application to J2EE application” on
page 139

� Chapter 9, “Messaging solution: .NET client to .NET Web Services using
WebSphere MQ SOAP transport” on page 163
 Chapter 11. System integration and functional test 229

� Chapter 10, “Messaging solution: .NET client to J2EE Web Services using
WebSphere MQ SOAP transport” on page 207

11.2.4 System startup
The subsystems must be started and verified in a particular sequence, to ensure
proper inter-system communications to be initiated correctly. All WebSphere MQ
queue managers need to be started. All sender channels need to be started and
in running state.

11.3 Functional test
The functional testing is to ensure that each element of the application meets the
functional requirements of the business case scenario as outlined in Chapter 4,
“Business case scenario” on page 73. It includes validation testing, which is
intensive testing of the new front-end fields (HTML pages); layout standards;
valid, invalid and limit data input; screen and field look and appearance, and
overall consistency with the rest of the application. It also includes specific
functional testing; low-level tests which aim to test the individual processes and
data flows.

The tests applied, the data processed, the testing coverage and the expected
results are documented in the following sections.

11.3.1 Entrance and exit criteria
The entrance criteria should be fulfilled before the functional test can commence.

� All developed code must be unit tested. Unit and link testing must be
completed.

� All test hardware and environments must be in place, and free for functional
test use.

� The acceptance tests must be completed, with a pass rate of not less than a
certain percentage, for instance, 90%.

The exit criteria detailed below must be achieved before the final acceptance
hand over.

� All high priority errors must be fixed and tested.

� If any medium or low priority errors are outstanding, the implementation risk
must be acceptable by the business requirement.
230 WebSphere MQ Solutions in a Microsoft .NET Environment

11.3.2 Use case 1: Account opening
This section describes the test plan for the account opening use case.

General data flow
The diagram below shows the general data flow in use case 1 of the business
case scenario.

Figure 11-1 General data flow in use case 1

Test Case 1: Successful account opening - full qualification
Step1: On starting the process, the customer is faced with the bank’s home page.

Number Data

1 Customer details: Customer name, address and
date of birth

2 Credit score and comments

3 Account number

4 Customer details, credit score and investment
details: investment amount, investment period,
return expectation, risk level and so on

BSS:
Collect

Customer
Details

CCS:
Perform
Credit
Check

1

2

3BSS:
Display
Credit

Score and
Collect

Investment
Details CPS: Store

Customer
Information

4

BSS:
Display
Account
Number

1

 Chapter 11. System integration and functional test 231

Figure 11-2 Home page

Step 2: The customer clicks the Open Account tab and is faced with a page
requesting the customer details, the customer unique ID, type of ID, customer
name, address and date of birth. Click the Submit Personal Details button as
shown below:
232 WebSphere MQ Solutions in a Microsoft .NET Environment

Figure 11-3 Open account: collect customer details

Step 3: On clicking the Submit Personal Details button, a credit check is done on
the customer. The customer is faced with a page which displays the credit check
results and requests investment details such as the initial deposit, risk level,
existing assets, return expectation, family income, current debts as well as
investment period. Enter investment details and click the Submit Investment
Details button as shown below:
 Chapter 11. System integration and functional test 233

Figure 11-4 Open account: collect investment details

Step 4: On clicking the Submit Investment Details, the investment details, credit
score and customer details are sent to an application for storing. The customer is
given an account number for future investment application as shown below:
234 WebSphere MQ Solutions in a Microsoft .NET Environment

Figure 11-5 Account opened successfully

This test case verifies the normal path for the processing. A new investment
account is created, along with a new customer profile, after the customer passes
the credit check.

Test Case 2: Unsuccessful account opening - unqualified
credit score

Repeat Step 1 and Step 2 from Test Case 1: Successful account opening above.

Step 3: On clicking the Submit Personal details button, a credit check is done on
the customer. If the customer’s credit score does not meet the bank requirement,
the account opening process is terminated and the customer is faced with a page
which displays the process result.
 Chapter 11. System integration and functional test 235

Figure 11-6 Account opening terminated

This test case verifies an alternative path for the processing. For customers who
do not meet the credit requirement set by the bank, the account opening
requests are declined.

Test Case 3: Negative tests - exception recovery and system
unavailability

Account Opening service unavailable

Repeat Step 1 from Test Case 1: Successful account opening above.

Step 2: The customer clicks the Open Account tab. If the account opening
service is unavailable, as a result of an inaccessible queue manager, the
customer is faced with a page that looks like the one below:
236 WebSphere MQ Solutions in a Microsoft .NET Environment

Figure 11-7 Service unavailable

Credit check service unavailable

Repeat Step 1 and Step 2 from Test Case 1: Successful account opening above.

Step 3: The customer clicks on the Submit Personal details button. If the credit
check application is unavailable, as a result of an inaccessible queues, the
customer gets feedback shown below:
 Chapter 11. System integration and functional test 237

Figure 11-8 Credit Check service unavailable

Customer profile service unavailable

Repeat Step 1 to Step 3 from Test Case 1: Successful account opening above.

Step 4: The customer clicks the submit investment details. If the customer
profile service is unavailable due to inaccessible queues or queue manager, the
customer is still given an account number and faced with a page that looks like
the one below:
238 WebSphere MQ Solutions in a Microsoft .NET Environment

Figure 11-9 Account number created

Step 5: To verify that the customer profile service is unavailable and that the
customer details haven’t been processed:

� Click the invest tab, enter the customer account number created when
customer profile service was unavailable, click submit.

� The investment advice service returns a “No match found” error as shown
below:
 Chapter 11. System integration and functional test 239

Figure 11-10 No match found

Explanation: This is the expected result. Even though the account is created,
the details are not yet been stored, therefore, if investment is attempted, the
customer details cannot be found.

Start the customer profile service and wait until all pending messages in the
queue are processed. Then retry investing for the same customer account,
the investment advice returns an advice as shown below:
240 WebSphere MQ Solutions in a Microsoft .NET Environment

Figure 11-11 Advice results display

This test case demonstrates the asynchronous capability of WebSphere MQ.
In contrast to a blocking call in a synchronous manner like HTTP, BBS uses
the queuing feature in WebSphere MQ, and provides the service continuity to
users even though one subsystem is temporarily out of service.

11.3.3 Use case 2: Investment advisory
This section describes the test plan for investment advisory use case 2.

General data flow
The diagram below shows the general data flow in use case 2 of the business
case scenario.
 Chapter 11. System integration and functional test 241

Figure 11-12 General data flow in use case 2

Test Case 1: Successful investment advisory - portfolio
recommendations

Step1: On starting the process, the customer is faced with the bank’s home
page.

Number Data

1 Customer account number and investment amount

2 Advice

BSS:
Collect

Account
Number

and
Investment

Amount

IAS: Create
Investment
Portfolio

and Advice

1 2 BSS:
Display
Advice
242 WebSphere MQ Solutions in a Microsoft .NET Environment

Figure 11-13 Home page

Step 2: The customer clicks the Invest tab and is faced with a page requesting
the account number and investment amount as shown below:
 Chapter 11. System integration and functional test 243

Figure 11-14 Request investment details

Step 3: The customer enters details and clicks the Submit button, a Web Service
accesses the customer details from a database, based on the customer’s details,
a portfolio recommendation is produced. This recommendation is returned in the
form of an advice to the customer on a page as shown next:
244 WebSphere MQ Solutions in a Microsoft .NET Environment

Figure 11-15 Advice results display

This test case verifies the normal path for the processing. A set of qualified
shares are selected based on the customer criteria and intelligent analysis, and a
portfolio structure is recommended.

Test Case 2: Successful investment advisory - no investment

Repeat Step 1 and Step 2 from Test Case 1: Investment advisory above.

Step 3: The customer enters details and clicks the submit button. If the
investment service is unavailable, as a result of inaccessible queue manager
onPageLoad, the customer is faced with a page shown next:
 Chapter 11. System integration and functional test 245

Figure 11-16 Result when no match is found

This test case verifies an alternative path for the processing. No portfolio is
recommended because no qualified shares can be found to meet the customer’s
return expectations.

Test Case 3: Unsuccessful investment advisory - invalid
customer data

Repeat Step 1 and Step 2 from Test Case 1: Investment advisory above.

Step 3: The customer’s details are entered before applying Submit. A Web
Service accesses the customer’s details from a database in order to generate a
portfolio recommendation. If no match is found for the customer then feedback to
the customer is sent on the page shown next:
246 WebSphere MQ Solutions in a Microsoft .NET Environment

Figure 11-17 Customer record not found

This test case verifies an alternative path for the processing. The system can
gracefully handle an invalid data entry by a customer.

Test Case 4: Negative tests - exception recovery and system
unavailability

Repeat Step 1 and Step 2 from Test Case 1: Investment advisory above.

Step 3: The customer‘s details are entered before applying Submit. If the Web
Service is inaccessible, the customer is faced with the page shown next:
 Chapter 11. System integration and functional test 247

Figure 11-18 Web Service unavailable

This test case verifies an alternative path for the processing. If a subsystem
necessary for the processing is down, a user is notified that the system has an
unavailable service.

11.4 Summary
This chapter describes the system integration and functional test for the
demonstration bank system developed in this book. The runtime environment,
test data, deployment and system startup are discussed. Various test cases are
created for the two use cases implemented in this bank system. The major
functionality of the system are tested and verified, including successful,
unsuccessful, and exception scenarios. One key feature demonstrated is that the
system can provide the account opening service without interruption, even
though one of the subsystems, CCS, is temporarily down.
248 WebSphere MQ Solutions in a Microsoft .NET Environment

Chapter 12. Security

This chapter describes the techniques and implementation for securing the
transportation of messages between applications and Web Services. It focuses
mainly on the security issues related to WebSphere MQ in the business scenario
discussed in the previous chapters.

The following topics are discussed in this chapter:

� Security concepts

� Planning the security services in use cases

� Cryptographic concepts

� Secure Sockets Layer (SSL) introduction

� WebSphere MQ SSL support

� WebSphere MQ working with SSL on Windows

� Deploy SSL support in use cases

12
© Copyright IBM Corp. 2004. All rights reserved. 249

12.1 Security concepts
Before beginning to discuss how to secure the transportation of messages
between applications and Web Services, it is useful to consider some security
problems that systems face. These key security problems include:

� Unauthorized access: occurs when an unknown user or application wants to
read or write some critical information.

� Eavesdropping: occurs when unknown people understand the messages that
are passed between the communicating parties.

� Tampering: involves someone intercepting a message and then changing it.

� Impersonating: occurs when a message is sent by someone other than the
actual specified sender.

Figure 12-1 shows eavesdropping and tampering.

Figure 12-1 Example of eavesdropping and tampering

To avoid these security problems, a good system provides security services. The
following section gives an overview of security services and the mechanisms to
implement these services.

12.1.1 Security services
Security services are services within a computer system that protect its
resources. There are mainly five security services that are identified in a security
architecture.

� Identification and authentication
� Authority

Sender
Pay
$200

Receiver
Pay
$200

Pay
$500

$200 $500

Eavesdropper
250 WebSphere MQ Solutions in a Microsoft .NET Environment

� Confidentiality
� Data integrity
� Non-repudiation

Identification is being able to identify uniquely, a user of a system or an
application that is running in the system. Authentication is being able to prove
that a user or application is genuine and the one being used.

The authority service protects critical resources in a system by limiting access
only to authorized users and their applications. It prevents unauthorized use of a
resource or the use of a resource in an unauthorized manner.

The confidentiality service protects sensitive information from unauthorized
disclosure.

The data integrity service detects whether there has been unauthorized
modification of data. There are two ways in which data might be altered:
accidentally, through hardware and transmission errors, or because of deliberate
attacks. Many hardware products and transmission protocols now have
mechanisms to detect and correct hardware and transmission errors. The
purpose of the data integrity service is to detect a deliberate attack.

The non-repudiation service can be viewed as an extension to the identification
and authentication service. In general, non-repudiation applies when data is
transmitted electronically, for example, an order to a stock broker to buy or sell
stock, or an order to a bank to transfer funds from one account to another. The
overall goal is to be able to prove that a particular message is associated with a
particular individual.

12.1.2 Security mechanisms
Security mechanisms are technical tools and techniques that are used to
implement security services. A mechanism might operate by itself, or in
conjunction with the others, to provide a particular service. Examples of common
security mechanisms are:

� User database
� Authority database
� Cryptography
� Digital signatures

Refer to manual WebSphere MQ Security, SC34-6079 and redbook WebSphere
MQ Security in an Enterprise Environment, SG24-6814 for further detail.
 Chapter 12. Security 251

12.2 Planning the security services in use cases
This section covers the design of the security services in the business scenario
discussed in the previous chapters.

A typical application system usually has several applications running on several
computers and the intercommunication of these applications may cross various
kinds of media, sometimes vulnerable media such as the Internet.

Security services in different scenario are different. For example,
intercommunication between two applications running on the same machine may
not worry about eavesdropping or tampering, and the authentication services on
message transmission is different to the authentication services that protect local
resources. Therefore, different security services are provided in different
scenarios and from the application point of view, there is an identification service,
an authentication service, and an authority service to entitle the requesting user
access to resources. As from the message transmission point of view, there is
identification service, authentication service, and authority service to verify
whether the request is issued by the genuine user.

It is a good idea to separate the security services into several layers, and provide
different security services in different layers. In this book, the security services
are separated into two layers:

� The application layer security services
� The transmission layer security services

The subsequent sections details the two layer of services.

12.2.1 Application layer security services
In the application layer, the security services considers the end-to-end data
security, including:

� Identification service and authentication service
� Authority service

The identification service and authentication service can be implemented by a
user database, such as the system user database or a user database created by
the customer.

The authority service can be implement by the attribute of data objects.

WebSphere MQ provide a good security solution for these security services.
Refer to manual WebSphere MQ Security, SC34-6079 and redbook WebSphere
MQ Security in an Enterprise Environment, SG24-6814 for further detail.
252 WebSphere MQ Solutions in a Microsoft .NET Environment

12.2.2 Transmission layer security services
In the transmission layer, the security services considers the following services:

� Identification and authentication services
� Confidentiality service
� Data integrity service
� Non-repudiation

In the business scenario discussed in the previous chapters, there are five
applications. The five applications intercommunicate through WebSphere MQ
queue manager and the client. Refer to Chapter 5, “Solution design” on page 79
for details.

The Bank Service System (BSS) communicates with the Credit Check System
(CCS) and Investment Advisory System (IAS) through a WebSphere MQ client
across the Internet. The Customer Profile System (CPS), Investment Advisory
System (IAS), and the Share Quote System (SQS) are applications within the
YuBank, and they communicate to each other through WebSphere MQ queue
managers in the intranet.

Among many techniques to implement these security services, Secure Sockets
Layer (SSL) is a good solution. WebSphere MQ provides good SSL support in
version 5.3.

There are other good solutions such as Web Services Security (WS-Security).
The strength of the Web Services framework is its ability to work as an
integration platform which brings heterogeneous systems and applications
together. This also imposes certain security requirements on the Web Services
framework. The communication between Web Services, between a Web Service
and other applications often requires certain level of security. To achieve this,
Web Services framework requires a strong security model that brings together
incompatible security technologies such as Public Key Infrastructure (PKI),
Kerberos, and others.

IBM, Microsoft and VeriSign have proposed Web Services security specification
to cover broader security issues relating to messages in Web Services
communication. WS-Security defines enhancements to Simple Object Access
Protocol (SOAP) for protecting the integrity and confidentiality of a message.
WS-Security also provides a generic mechanisms for integrating security tokens
with the messages and procedures for encoding binary security.

As all inter-communications in the business case scenario discussed in this
redbook are not based on Web Services, the WS-Security is not implemented on
all the message transmission in the use cases. For complete information about
WS-Security, refer to Specification: Web Services Security at:
 Chapter 12. Security 253

http://www-106.ibm.com/developerworks/webservices/library/ws-secure/

This redbook does not implement SSL security services between IAS and CPS,
and between IAS and SQS for the following reasons:

� In the solution of YuBank, the three application, IAS, CPS, and SQS, are all
within the intranet of YuBank.

� The message flows among these applications are conveyed by WebSphere
MQ queue manager. The implementation of SSL security services between
queue managers are well described and demonstrated in manual WebSphere
MQ Security, SC34-6079 and redbook WebSphere MQ Security in an
Enterprise Environment, SG24-6814.

However, two message links below needed to be made secure in the business
case scenario:

� The BSS to the CCS
� The BSS to the IAS

Bank Service System (BSS) communicates with the Credit Check System (CCS)
and Investment Advisory System (IAS) through a WebSphere MQ client across
the Internet.

Security is also implemented on the three applications involved, with security
services discussed above. The following sections indicate how SSL is
implemented on these three applications.

12.3 Cryptographic concepts
� Before implementing SSL in the use cases, it is useful to know some

concepts of cryptography. This section gives an introduction to some
cryptography concepts. Some of the knowledge in this section comes from
X.509 specification. For more information, refer to Internet X.509 Public Key
Infrastructure at:

http://www.ietf.org/internet-drafts/draft-ietf-pkix-logotypes-10.txt

12.3.1 Cryptography
Cryptography is the process of between converting readable text, called
plaintext, and an unreadable form, called ciphertext:

1. The sender converts the plaintext message to ciphertext. This part of the
process is called encryption (sometimes encipherment).

2. The ciphertext is transmitted to the receiver.
254 WebSphere MQ Solutions in a Microsoft .NET Environment

http://www-106.ibm.com/developerworks/webservices/library/ws-secure/
http://www.ietf.org/internet-drafts/draft-ietf-pkix-logotypes-10.txt

3. The receiver converts the ciphertext message back to its plaintext form. This
part of the process is called decryption (sometimes decipherment). As shown
in Figure 12-2.

Figure 12-2 Puzzled eavesdropper

The conversion involves a sequence of mathematical operations that change the
appearance of the message during transmission but does not affect the content.
Cryptographic techniques can ensure confidentiality and protect messages
against unauthorized viewing (eavesdropping), because an encrypted message
is not understandable. Digital signatures, which provide an assurance of
message integrity, use encryption techniques. See 12.3.3, “Digital signature” on
page 257 for more information.

Cryptographic techniques involve a general algorithm, made specific by the use
of keys. There are two classes of algorithm:

� Symmetric key algorithm
� Asymmetric key algorithm

Symmetric key cryptography requires both parties to use the same secret key as
shown in Figure 12-3.

Sender
Pay
$200

Receiver
Pay
$200

Pay
$500

^%$^%#$

Eavesdropper

Encryption
^%$^%#$

Decryption
$200
 Chapter 12. Security 255

Figure 12-3 Symmetric key cryptography

Asymmetric key cryptography uses one key for encryption and a different key for
decryption. One of these must be kept secret but the other can be public.
Figure 12-4 illustrates how asymmetric key cryptography works. Asymmetric key
cryptography is also known as public key cryptography.

Figure 12-4 Asymmetric key cryptography

The encryption and decryption algorithms used can be public but the shared
secret key and the private key must be kept secret.

12.3.2 Message digest
Data integrity and tampering can be addressed by a message digest, which is a
fixed size numeric representation of the contents of a message. The message
digest (also called the message authentication code) is computed using a hash
function. The hash function meets two criteria:

.................

.................
Plain Text
.................
.................

.................

.................
Plain Text
.................
.................

%#^%$&
^%*&)(^(
*(^(%#$^
#@%))&^
#@$%^^

Encrypt Decrypt

Symmetric Key

Cipher Text

.................

.................
Plain Text
.................
.................

.................

.................
Plain Text
.................
.................

%#^%$&
^%*&)(^(
*(^(%#$^
#@%))&^
#@$%^^

Encrypt Decrypt

Asymmetric Key

Cipher Text

Public Key Public Key
256 WebSphere MQ Solutions in a Microsoft .NET Environment

� The hash function is one-way. It is not possible to reverse the function to find
the message corresponding to a given message digest, other than by testing
all possible messages.

� It is computational infeasible to find two messages that hash to the same
digest.

A message digest is also known as a Message Authentication Code (MAC),
because it can provide assurance that the message has not been modified. Once
computed, the digest is transmitted along with the message. The receiver then
invokes the same hash function on the received message and compares the
generated digest to the one received. If the digests are the same, then the
message was not tampered with en route. Any tampering with the message
during transmission almost certainly results in a different message digest. The
sender and receiver must agree on the hash function that to be used before
transmission begins for this process to work.

12.3.3 Digital signature
A digital signature is formed by encrypting a representation of a message. The
encryption uses the private key of the signatory and, for efficiency, usually
operates on a message digest rather than the message itself. See 12.3.2,
“Message digest” on page 256 for more information.

Digital signatures vary with the data being signed, unlike handwritten signatures,
they do not depend on the content of the document being signed. If two different
messages are signed digitally by the same entity and the two signatures differ,
both signatures can be verified with the same public key, that is, the public key of
the entity that signed the messages.

The steps of the digital signature process are as follows:

1. The sender computes a message digest and then encrypts the digest using
the sender's private key, forming the digital signature.

2. The sender transmits the digital signature with the message.

3. The receiver decrypts the digital signature using the sender's public key,
regenerating the sender's message digest.

4. The receiver computes a message digest from the message data received
and verifies that the two digests are the same.

If the digital signature is verified, the receiver knows that:

� The message has not been modified during transmission.
� The message was sent by the entity that claims to have sent it.
 Chapter 12. Security 257

Digital signatures are part of integrity and authentication services. Digital
signatures also provide proof of origin. Only the sender knows the private key,
which provides strong evidence that the sender is the originator of the message.

12.3.4 Digital certificate
Digital signatures are used to verify that the message is sent by the sender; they
combine the use of message digests and public key cryptography. The process
involves the sender generating the message digest, then encrypting the digest
using its private key to create the digital signature. The receiver then decrypts
the message digest using the sender's public key, confirming that the message is
indeed sent by the sender. Comparing the digest with the one the receiver
generates further confirms that the message has not been changed since it was
signed.

However, how does the receiver know that the public key can be trusted? Digital
certificates provide protection against impersonation, because a digital certificate
binds a public key to its owner, whether that owner is an individual, a queue
manager, or some other entity.

The rest of this section introduces digital certificate in detail.

What is a digital certificate?
Digital certificates are also known as public key certificates, because they give
assurances about the ownership of a public key when used as in an asymmetric
key scheme. A digital certificate contains the public key for an entity and is a
statement that the public key belongs to that entity. The digital certificate is
typically issued by a trusted third party called a Certification Authority (CA).
When the certificate is for an individual entity, it is called a personal certificate or
user certificate. When the certificate is for a CA, the certificate is called a CA
certificate or signer certificate. For a fee, the CA generates a digital certificate
that contains:

� The owner's public key
� The owner's Distinguished Name
� The Distinguished Name of the CA that is issuing the certificate
� The date from which the certificate is valid
� The expiry date of the certificate
� A version number
� A serial number

Before issuing a certificate, Certification Authorities run appropriate background
checks on the requestor to verify that the requestor is who it says it is. All
certificates issued by a CA are digitally signed by the CA, and can be verified
using the CA certificate (which contains the CA's public key). The exchange
258 WebSphere MQ Solutions in a Microsoft .NET Environment

between the sender and receiver now takes on an additional verification step.
Instead of simply sending its public key to the receiver, the sender sends its
digital certificate issued by a CA. The receiver uses the CA's certificate to verify
the sender's certificate, ascertaining that the public key contained in the
certificate truly belongs to the owner. During the lifetime of a digital certificate, the
issuing CA might determine that the certificate is no longer trustworthy. Such
certificates are published to a Certificate Revocation List (CRL), against which
both the sender and receiver can choose to check the received certificates.

Certification Authorities
A Certification Authority (CA) is an independent and a trusted third party that
issues digital certificates to provide an assurance that the public key of an entity
truly belongs to that entity. The roles of a CA are:

� On receiving a request for a digital certificate, to verify the identity of the
requestor before building, signing and returning the personal certificate

� To provide the CA's own public key in its CA certificate

� To publish lists of certificates those are no longer trusted in a Certificate
Revocation List (CRL). For more information, refer to Internet X.509 Public
Key Infrastructure at:

http://www.ietf.org/internet-drafts/draft-ietf-pkix-logotypes-10.txt

Distinguished Names
The Distinguished Name (DN) uniquely identifies an entity in an X.509 certificate.
The following attribute types are commonly found in the DN:

� CN: Common Name

� T: Title

� Organization name

� OU: Organizational Unit name

� L: Locality name

� ST (or SP or S): State or Province name

� C: Country (or region)

The X.509 standard defines other attributes that do not usually form part of the
DN but can provide optional extensions to the digital certificate.

The X.509 standard provides for a DN to be specified in a string format.
For example: CN=John Smith, O=IBM, OU=Test, C=GB

The Common Name (CN) can describe an individual user or any other entity, for
example a Web server.
 Chapter 12. Security 259

http://www.ietf.org/internet-drafts/draft-ietf-pkix-logotypes-10.txt

The DN can contain multiple OU attributes, but one instance only for each of the
other attributes is permitted. The order of the OU entries is significant: the order
specifies a hierarchy of Organizational Unit names, with the highest-level unit
first.

How digital certificates work
Obtain a digital certificate by sending information to a CA. The X.509 standard
defines a format for this information, but some CAs have their own format.
Certificate requests are usually generated by the certificate management tool the
operating system uses, for example the iKeyman tool on UNIX® systems. The
information comprises the Distinguished Name and is accompanied by the public
key. When the certificate management tool generates a certificate request, it also
generates a private key, which must be keep secure. Never distribute the private
key.

When the CA receives the request, the authority verifies the requester’s identity
before building the certificate and returning it to the requester as a personal
certificate.

Obtaining personal certificates
A digital certificate can be obtained by either requesting a digital certificate from
a CA, or generate a self-signed certificate with environment-specific tools. With a
self-signed certificate, the user acts as its own CA. Self-signed certificates can
be useful for test environments because users can generate them locally and do
not have to pay fees to a CA. However, many Certification Authorities offer a
demo facility that can generate demo (test) certificates at no charge. Also, in
some environments, users can request a CA to generate a CA certificate for a
self-signed certificate, which validates and resigns the previously generated
certificate. Figure 12-5 illustrates how to obtain a personal certificate.
260 WebSphere MQ Solutions in a Microsoft .NET Environment

Figure 12-5 Obtaining a personal certificate

Certificate chain
When an application receives a certificate for another entity, it needs to use a
certificate chain to obtain the root CA certificate. The certificate chain, also
known as the certification path, is a list of certificates used to authenticate an
entity. The chain or path, begins with the certificate of that entity, and each
certificate in the chain is signed by the entity identified by the next certificate in
the chain. The chain terminates with a root CA certificate. The root CA certificate
is always signed by the CA itself. The signatures of all certificates in the chain
must be verified until the root CA certificate is reached.

When certificates are no longer valid
Digital certificates are issued for a fixed period and are not valid after their expiry
date. Certificates can also become untrustworthy for various reasons, including:

� The owner has moved to a different organization.
� The private key is no longer secret.

Private
Key

Public
Key

User
Identification

Request
 to

Certification
Authority

Verify
User

Identification

Build
Certificate

for
User

Public Key

Certification
Authority

Identification

User
Identification

User

Certification Authority

Digital Certificate

Return to User
 Chapter 12. Security 261

� A Certification Authority can revoke a certificate that is no longer trusted by
publishing it in a Certificate Revocation List (CRL). For more information, refer
to Internet X.509 Public Key Infrastructure at:

http://www.ietf.org/internet-drafts/draft-ietf-pkix-logotypes-10.txt

12.3.5 Public Key Infrastructure (PKI)
A Public Key Infrastructure (PKI) is a system of facilities, policies, and services
that support the use public key cryptography for authenticating the parties
involved in a transaction. There is no single standard that defines the
components of a Public Key Infrastructure, but a PKI typically comprises
Certification Authorities and other Registration Authorities (RAs) that provide the
following services:

� Issuing digital certificates
� Validating digital certificates
� Revoking digital certificates
� Distributing public keys

Refer to 12.3.4, “Digital certificate” on page 258 for more information about digital
certificates and Certification Authorities (CAs). RAs verifies the information
provided when digital certificates are requested. Once the RA verifies that
information, the CA can then issue a digital certificate to the requester.

� A PKI might also provide tools for managing digital certificates and public
keys. A PKI is sometimes described as a trust hierarchy for managing digital
certificates, but most definitions include additional services. Some definitions
include encryption and digital signature services, but these are not essential
to the operation of a PKI. For more information about PKI, refer to Internet
X.509 Public Key Infrastructure at:

http://www.ietf.org/internet-drafts/draft-ietf-pkix-logotypes-10.txt

12.4 Secure Sockets Layer (SSL) introduction
SSL is a very common used security protocol in the intercommunication of
critical data on the internet. This section discusses some concepts of SSL.

12.4.1 Secure Sockets Layer(SSL) concepts
The Secure Sockets Layer (SSL) provides an industry standard protocol for
transmitting data in a secure manner over an insecure network. The SSL protocol
is widely deployed in both Internet and intranet applications. SSL defines
methods for authentication, data encryption, and message integrity for a reliable
transport protocol, usually Transmission Control Protocol/Internet Protocol
262 WebSphere MQ Solutions in a Microsoft .NET Environment

http://www.ietf.org/internet-drafts/draft-ietf-pkix-logotypes-10.txt
http://www.ietf.org/internet-drafts/draft-ietf-pkix-logotypes-10.txt

(TCP/IP). SSL uses both asymmetric and symmetric cryptography techniques.
For complete description of SSL, refer to SSL 3.0 specification at:

http://wp.netscape.com/eng/ssl3/

An SSL connection is initiated by the caller application, which becomes the SSL
client. The responder application becomes the SSL server. Every new SSL
session begins with an SSL handshake, as defined by the SSL protocol.

The following issues should be considered in SSL:

� SSL handshake
� SSL authentication
� SSL confidentiality
� SSL integrity

For detail information about these issues, refer to manual WebSphere MQ
Security, SC34-6079, or SSL 3.0 specification at:

http://wp.netscape.com/eng/ssl3/

12.4.2 CipherSuites and CipherSpecs
A CipherSuite is a suite of cryptographic algorithms used by an SSL connection.
A suite comprises three distinct algorithms:

� The key exchange and authentication algorithm, used during the SSL
handshake

� The encryption algorithm, used to encipher the data

� The MAC (Message Authentication Code) algorithm, used to generate the
message digest

For complete information about CipherSuites and CipherSpecs, refer to manual
WebSphere MQ Security, SC34-6079, or SSL 3.0 specification at:

http://wp.netscape.com/eng/ssl3/

12.5 WebSphere MQ SSL support
Message channels and Message Queue Interface (MQI) channels can use the
SSL protocol to provide link level security. A caller Message Channel Agent
(MCA) is an SSL client and a responder MCA is an SSL server. WebSphere MQ
supports Version 3.0 of the SSL protocol. The cryptographic algorithms that are
used by the SSL protocol are supplied by the CipherSpec part of the channel
definition.
 Chapter 12. Security 263

http://wp.netscape.com/eng/ssl3/
http://wp.netscape.com/eng/ssl3/
http://wp.netscape.com/eng/ssl3/

At the server end of an MQI channel and at each end of a message channel, the
MCA acts as a security service on behalf of the queue manager to which it is
connected. During the SSL handshake, the MCA sends the digital certificate of
the queue manager to its partner MCA at the other end of the channel. The
WebSphere MQ code at the client end of an MQI channel acts on behalf of the
user of the WebSphere MQ client application. During the SSL handshake, the
WebSphere MQ code sends the user's digital certificate to the MCA at the server
end of the MQI channel.

Digital certificates are stored in a key repository. The queue manager attribute
SSLKeyRepository specifies the location of the key repository that holds the
queue manager's digital certificate. On a WebSphere MQ client system, the
MQSSLKEYR environment variable specifies the location of the key repository
and the key (without the .STO suffix) that holds the user's digital certificate.
Alternatively, a WebSphere MQ client application can specify its location in the
KeyRepository field of the SSL configuration options structure, MQSCO, on an
MQCONNX call.

For complete information of WebSphere MQ SSL support, refer to manual
WebSphere MQ Security, SC34-6079.

12.6 WebSphere MQ working with SSL on Windows
This section describes how to set up WebSphere MQ queue manager and
WebSphere MQ client to work with the Secure Sockets Layer (SSL) on Windows
systems.

The following tasks must be performed to implement SSL between a queue
manager and a client:

� Setup a key repository
� Work with a key repository
� Obtain personal certificates
� Add personal certificates to a key repository
� Manage digital certificates
� Map DNs to user IDs

On Windows 2000 and XP, SSL support is integral to the operating system.
Microsoft Internet Explorer provides the SSL support on other Windows
platforms. Windows SSL support is documented in the Microsoft Developer
Network (MSDN) library at:

http://msdn.microsoft.com/library/default.asp
264 WebSphere MQ Solutions in a Microsoft .NET Environment

http://msdn.microsoft.com/library/default.asp

Refer to WebSphere MQ Security, SC34-6079 for information about how to
complete the tasks above.

12.7 Deploy SSL support in use cases
This section discusses how to implement SSL support on the applications used
in the business case scenario.

12.7.1 Obtaining certificates
To deploy SSL support in the use cases, the first job is to obtain certificates for
the applications. Certificates can be requested from a CA or generate by a
system specific tool.

This redbook uses a CA’s demo facilities to generate certificates for the
applications.

Certificates are stored in repositories that vary, based on the operating system
and the tools used to access them. On the Windows platform, certificates are
stored in Microsoft Certificate Stores (MCS) and can be viewed and manipulated
using Internet Explorer.

Obtaining certificate from CA
1. In Internet Explorer browser, launch the URL:

http://www.digsigtrust.com/prod_serv/index.html

2. Click Get a TrustID Demo Certificate. (Refer to Figure 12-6.)
 Chapter 12. Security 265

http://www.digsigtrust.com/prod_serv/index.html

Figure 12-6 Get a TrustID Demo Certificate

3. Fill in the identification form. The certificate is based on the name,
organization, and location details. In Figure 12-7, the name BSS REDBOOK
is used to identify the BSS application certificate. The certificate is sent to the
e-mail address provided. The passphrase provided is used to retrieve the
certificate. Click Continue.
266 WebSphere MQ Solutions in a Microsoft .NET Environment

Figure 12-7 Server Identification

4. Review the information and click Continue.

5. Select Browser as the option for storing the certificate (see Figure 12-8).
Click Continue.
 Chapter 12. Security 267

Figure 12-8 Choose storage mechanism

6. Click Accept on the Certificate Agreement.

7. Accept the defaults: 1024 and Microsoft Enhanced Cryptographic
Provider v1.0. These values are used to generate public/private key pair (see
Figure 12-9). Click Continue.
268 WebSphere MQ Solutions in a Microsoft .NET Environment

Figure 12-9 Generating the key pair

8. If warning messages are prompted from Internet Explorer indicating that a
site is generating a certificate on your behalf, select Yes on the message
dialogs.

9. The next window confirms that the certificate is being generated. It also
prompts for downloading the Digital Signature Trust (DST) Root Certificate.
This step is not required because Windows 2000 comes pre-supplied with
various Root Certificates from different CAs, including the DST Root
Certificate.

10.Check the e-mail for a note from the Digitrust; it contains a URL and activation
code as shown in following Example 12-1.

Example 12-1 Certificate mail

Dear BSS REDBOOK,

Your Demo DST TrustSource Certificate request has
been approved. Please visit the following web address
to retrieve your new certificate. You will be asked to
use the following Activation Code and enter the passphrase
 Chapter 12. Security 269

you selected when you submitted your request.

https://secure.digsigtrust.com/ts/retrieve.html?act=3582187993

Activation Code: 3582187993

TrustSource Certification Service
Digital Signature Trust Co.
Salt Lake City, Utah
trustsource@digsigtrust.com

11.Access the supplied URL using Internet Explorer; supply the passphrase
(refer to step 3 above), and click Retrieve.

12.Internet Explorer now prompts to add a certificate. Click Yes on this message
dialog.

13.The resulting status screen confirms that the certificate has been added. Click
Continue.

14.To view the certificate in Internet Explorer, select Tools => Internet Options.
On the resulting window, click the Contents tab, and then click the
Certificates button. The Certificates window displays all of the certificates
available in the Microsoft Certificate Store. The Personal tab view lists in
alphabetical order the personal certificates, including the ones just generated
(see Figure 12-10).
270 WebSphere MQ Solutions in a Microsoft .NET Environment

Figure 12-10 Microsoft certificate store

Now the certificate for BSS application is ready. Repeat the steps above, and get
certificates for CCS and IAS. The following sections discusses complete
deployment of SSL for the business case scenario.

To configure the certificate for a queue manager on the same machine that the
certificate was requested, just leave the certificate in the system repository. To
use this certificate in another system, click the Export button to export the
certificate to a file with a password, and import it on the other system. For the
convenience of the subsequent sections, the certificate for BSS is exported to a
file named BSS_Cert.pfx with password redbook.

12.7.2 Deploying SSL support in CCS
To deploy SSL support to WebSphere MQ queue manager, requires two steps:

� Assign a certificate to the certificate repository of the queue manager.
� Setup the attribute of the channel to be used in intercommunication.
 Chapter 12. Security 271

Assign a certificate to the certificate repository of a queue
manager

1. Open WebSphere MQ Services, extend WebSphere MQ Services,
right-click queue manager DOTDP and choose Manage SSL Certificates as
shown in Figure 12-11.

Figure 12-11 Manage SSL certificate

2. Click Add at the Manage SSL Certificates - DOTDP window, and the Add
Certificate - DOTDP window appears as shown in Figure 12-12.
272 WebSphere MQ Solutions in a Microsoft .NET Environment

Figure 12-12 Add certificate

3. Select the CCS REDBOOK in the certificate list, and click Add in the Add
Certificate window. Then the certificate is added to the queue manager.
 Chapter 12. Security 273

Figure 12-13 Certificate added

4. Now, select the certificate from the certificate list and click Assign in the
window.

5. Click Assign in the Assign Queue Manager Certificate window.
274 WebSphere MQ Solutions in a Microsoft .NET Environment

Figure 12-14 Assign queue manager certificate

6. The certificate is now successfully assigned to the queue manager. Click OK
to exit.
 Chapter 12. Security 275

Figure 12-15 Certificate assigned

It is possible that the certificate is not in the system repository, but in a file copied
from another machine. Then, in the step 3, choose Import from file, provide the
path name as well as the password of the certificate file, then click Add as shown
in Figure 12-16. The remaining steps are the same as above.
276 WebSphere MQ Solutions in a Microsoft .NET Environment

Figure 12-16 Import certificate from file

Equivalent command line steps are as follows:

1. Use the following command to view the list of the personal certificates in the
system repository, if the certificate is in the system repository.

amqmcert -l -k MY

The output should contain:

14001: * CCS REDBOOK, DEMO CA A6

2. Run the following command to add the certificate to the queue manager:

amqmcert -a 14001 -m DOTDP

3. If the certificate is not in the system repository, but in a certificate file such as
CCS_Cert.pfx with password redbook, run the following command to add it to
the repository of queue manager:

amqmcert -a -m DOTDP -p CCS_Cert.pfx -z redbook

4. Get the handle of the certificate in store of queue manager by the following
command:
 Chapter 12. Security 277

amqmcert -l -m DOTDP

The output should contain:

00017: * CCS REDBOOK, DEMO CA A6

5. Assign the certificate with

amqmcert -d 00017 -m DOTDP

For usage of command amqmcert, refer to manual WebSphere MQ System
Administration Guide, SC34-6068.

Setup the attribute of the channel to be used in
intercommunication

1. Start a command prompt and run

c:\>runmqsc DOTDP

2. Run the following script command in the command prompt:

alter channel(TO.DOTDP) chltype(SVRCONN) +
sslcauth(OPTIONAL) sslciph(NULL_MD5)

It is possible to use WebSphere MQ Explorer to set the attribute of the server
connection channel TO.DOTDP. Refer to WebSphere MQ System Administration
Guide, SC34-6068 for detail on how to set the attribute of channels.

12.7.3 Deploying SSL support in IAS
The deployment of SLL support on IAS is similar to that on CCS, except for the
following differences:

� The name of the certificate
� The name of the queue manager
� The name of the channel

12.7.4 Deploying SSL support in BSS
To deploy SSL support in BSS is a little bit complex. There are three tasks to be
performed:

� Set up the environment
� Access CCS with SSL support
� Access IAS with SSL support

Setup the environment
For a client application to use SSL, it must have its own key repository and for it
to generate a key repository, a certificate is required. A command utility to
278 WebSphere MQ Solutions in a Microsoft .NET Environment

generate a key store is run. The location of the key store is determined by an
environment variable MQSSLKEYR. This environment variable is setup as
follows:

set MQSSLKEYR=C:\SSLCertificates\key

A certificate for BSS had been obtained (refer to Obtaining certificates). To add
the certificate to that key repository, use the following command:

amqmcert -a -p BSS_Cert.pfx -z redbook

If the certificate is in the system certificate repository, run

amqmcert -l -k MY

to get the handle of the certificate. And then run

amqmcert -a handle

to add the certificate to the key store of queue manager.

The environment variable MQSSLKEYR caused the following key store to be
generated:

C:\SSLCertificates\key.sto

Verify the repository by command:

amqmcert -l

And it gives the following output:

Example 12-2

C:\SSLCertificates>amqmcert -l
5724-B41 (C) Copyright IBM Corp. 1994, 2002. ALL RIGHTS RESERVED.
Using CURRENT_USER for default system stores.
AMQ4809: No certificate has been assigned to this WebSphere MQ client.
Enumerating Certificate Stores:

WebSphere MQ Client Store (C:\SSLCertificates\key):

 02001: Secure Server Certification Authority, Secure Server Certification
Authority
 02002: Thawte Personal Basic CA, Thawte Personal Basic CA
 02003: Thawte Personal Freemail CA, Thawte Personal Freemail CA
 02004: Thawte Personal Premium CA, Thawte Personal Premium CA
 02005: Thawte Premium Server CA, Thawte Premium Server CA
 02006: Thawte Server CA, Thawte Server CA
 02007: VeriSign Class 1 CA Individual Subscriber-Persona Not Validated,
Class 1 Public Primary Certification Authority
 Chapter 12. Security 279

 02008: Class 1 Public Primary Certification Authority, Class 1 Public
Primary Certification Authority
 02009: VeriSign Class 2 CA - Individual Subscriber, Class 2 Public Primary
Certification Authority
 02010: Class 2 Public Primary Certification Authority, Class 2 Public
Primary Certification Authority
 02011: www.verisign.com/CPS Incorp.by Ref. LIABILITY LTD.(c)97 VeriSign,
Class 3 Public Primary Certification Authority
 02012: Class 3 Public Primary Certification Authority, Class 3 Public
Primary Certification Authority
 02013: For VeriSign authorized testing only. No assurances (C)VS1997, For
VeriSign authorized testing only. No assurances (C)VS1997
 02014: * BSS REDBOOK, DEMO CA A6

Notice from the last line of the output that the certificate has been imported to the
repository, and its handle is 02014.

After add the certificate to the repository, it is required to assign it to the client
with the following command:

amqmcert -d 02014

The certificate is now successfully assigned to the WebSphere MQ Client. The
BSS can now take advantage of SSL in the code.

Access CCS with SSL support
The BSS communicates with CCS via WebSphere MQ classes for Microsoft
.NET. To connect to the queue manager DOTDP with SSL support, the client
code (in C#) accesses this key store with the following code:

The hash method is:

ConnectOptions.Add(MQC.SSL_CERT_STORE_PROPERTY,@"C:\SSLCertificates\key");

The MQEnvironment method is:

MQEnvironment.SSLKeyRepository = @"C:\SSLCertificates\key"

There are two classes to be added to the C# code to enable SSL support.

Using MQEnvironment
Using Hashtable

The MQEnvironment typically requires the following code prior to creating the
queue manager.

Note: In both cases, the extent name of the file of the certificate store, .sto, is
omitted.
280 WebSphere MQ Solutions in a Microsoft .NET Environment

Example 12-3

//
// Connect using Environment and Constructor
//
MQEnvironment.Hostname = "ITSOD"; // The machine that the CCS reside
MQEnvironment.Port = 1414;
MQEnvironment.Channel = "TO.DOTDP";
MQEnvironment.SSLKeyRepository = @"C:\SSLCertificates\key";
MQEnvironment.SSLCipherSpec = "NULL_MD5";

MQQueueManager qm = new MQQueueManager("DOTDP");

The HashTable typically requires the following code prior to creating the queue
manager.

Example 12-4

//
// Connect using HashTable for connection options
//
Hashtable ConnectOptions = new Hashtable();
ConnectOptions.Add(MQC.CHANNEL_PROPERTY, "TO.DOTDP");
ConnectOptions.Add(MQC.HOST_NAME_PROPERTY, "ITSOD");
ConnectOptions.Add(MQC.PORT_PROPERTY, "1414");
ConnectOptions.Add(MQC.SSL_CERT_STORE_PROPERTY,@"C:\SSLCertificates\key");
ConnectOptions.Add(MQC.SSL_CIPHER_SPEC_PROPERTY, "NULL_MD5");

MQQueueManager qm = new MQQueueManager("DOTDP", ConnectOptions);

Access IAS with SSL support
The BSS communicates with IAS via WebSphere MQ Transport for SOAP. To
take advantage of SSL in communication with IAS via WebSphere MQ Transport
for SOAP, the client application adds the following options into the WebSphere
MQ URL:

SSLKeyRepository=<key-repository>,SSLCipherSpec="NULL_MD5"

For example:

wmq:SOAP.StockQuoteDotNet?clientConnection=ITSOI,clientChannel=TO.DOTIP,SSL
CipherSpec="NULL_MD5",SSLKeyRepository="C:\SSLCertificates\key"
 Chapter 12. Security 281

282 WebSphere MQ Solutions in a Microsoft .NET Environment

Chapter 13. Transactions

This chapter explains the fundamental concepts of transactions and how to
incorporate transaction support in applications and services. This chapter is
structured in three parts.

� Local transactions: This section introduces basic transaction concepts and
programming support for basic transactional activities.

� Distributed transactions: This section describes the nature and complexities
of transactions in distributed environment.

� Web Service transactions: Standards and protocols are being evolved to
support Web Services in more loosely coupled manner. This section gives a
glimpse of the future support for distributed transactions.

Discussions in these sections are focused on .NET and IBM WebSphere MQ
technologies and standards. The YuBank scenario has been extended to explain
practical aspects of transaction management.

Introduction
A business transaction is a set of tasks that either succeed or fail as a unit.
Although tasks associated with a transaction are operationally independent; they
indeed share a common intent as a unit. By performing only a subset of these
operations, the system could compromise the overall intent of the transaction.

To guarantee the “all or nothing” aspect of transactions, the IT systems need to
handle participating operations in transactional context within the overall scope. If

13
© Copyright IBM Corp. 2004. All rights reserved. 283

a single participant of the transaction fails, all changes to data within the scope of
the transaction are rolled back to a previous stage. It is required that all
participating operations must guarantee that any change to data is permanent
and persist despite system crashes or other unanticipated events.

13.1 Local transactions
Transactions are a very commonly used phenomenon in IT supported systems.
For example, in an online order processing system there could be multiple tasks
that are logically bound together as one business transaction. Such a transaction
in the order processing scenario may include tasks such as selection of item,
address validation, payment verification, customer register update, inventory
update and so on. If any one of these tasks fails to commit then the changes
made to the resources (for example, database, message queues, and file store)
must be rolled back to their original state.

The following figure depicts typical order processing transactions involved in an
online purchasing operation.

Figure 13-1 Local transaction

13.1.1 ACID properties of a transaction
Transaction behavior properties are known as ACID properties. The term ACID
stands for atomicity, consistency, isolation, and durability. The table below
portrays a short description of these properties.

Order
Process
Request

Order Processing

Tx1

Pre-Processing TxA

Customer
Details

Verification

Credit
Card

Verification

TxA TxB

both
Succeeded

Shipment
Processing

Y

N

Order Processing TxB

Inventory
Update

Customer
Records
Update
284 WebSphere MQ Solutions in a Microsoft .NET Environment

Table 13-1 ACID properties

A local transaction allows the local transaction manager to manage resources
using their internal resource managers. In other words, if all participating
resources (databases, queues, and so on) are running locally then it is possible
to manage the transactions using the transaction manager which is internal to
the local system. For example, transactions in a COM+ component are managed
by the Windows Component Services running on the same server.

The following section describes how to manage transactions locally using API
provided by application frameworks.

13.1.2 Programming local transactions
Both .NET and J2EE infrastructures provide libraries for supporting transaction
management. Microsoft offers transaction management support in MTS, COM+
and Common language runtime technologies. .NET Framework provides
following APIs for handling transactions in common language runtime
environment.

System.EnterpriseServices
System.Messaging.MessageQueueTransaction
ADO.NET connection objects.

Java Transaction API (JTA) provides libraries to handle transactions in Java
environment. More information about JTA can be found in the following location:

http://java.sun.com/products/jta/

Property Description

Atomicity Atomicity property of a transaction guaranties that the transaction
executes exactly once and all the work required by its participants is
done or none of it is.

Consistency The semantics, integrity and consistent state of data must be
persevered during transformation from pre-transaction to
post-transaction phase. (For example travel estimate transaction
should not arbitrarily move decimal point of prices quoted by other
services).Thanks

Isolation In case of concurrent transaction processing, Isolation guaranties that
the outcome obtained from a set of concurrent transactions are
identical to the outcome obtained by running each transaction serially.

Durability A durable transaction assures that on successful completion, all the
updates to the resources made by its operations persists, even if the
computer crashes immediately after the commit.
 Chapter 13. Transactions 285

http://java.sun.com/products/jta/

In this section we consider programming local transaction in .NET environment.

Transaction Models in .NET Framework
Microsoft .NET Framework supports two transaction models for objects
registered with COM+.

Manual Transaction: In this case transactions are managed explicitly by using
API instructions. The developer is responsible for proper handling of transaction
related tasks such as begin, commit/rollback, end and so on. Manual transaction
model enables total control over the behavior of transaction which is a useful
feature in cases like managing nested transaction and linked transactions.

Automatic Transaction: Automatic transactions offer declarative model for
managing transactions. Class marked with transaction attribute can participate in
an existing transaction, request a new transaction, be the root of a new
transaction or never participate in a transaction. One of the advantages of
automatic transaction is that the transaction associated with the object
automatically flows to the appropriate resource manager (such as ODBC.
However, automatic transaction model is not suitable for handling nested
transactions.

In this section we explain how to manage local transaction using .NET
Framework APIs.

Consider Usage scenarios: .NET application to .NET application explained in
Chapter 2., “Overview” on page 3. YuBank is planning to provide an investment
service to its customers. One of the application processing steps requires
collaboration with credit rating bureau. A credit rating bureau provides credit
score based on the applicant’s record in the credit history data source. This
service is called Credit Check Service (CCS). The CCS involves three major
steps:

1. Receive credit check requests in CreditCheck queue on CCS server.

2. Calculate the score based on information stored in credit history database
also running on the CCS server.

3. Put credit score reply in CreditScore queue on the same server.

YuBank has access to CreditCheck and CreditScore queues on the CCS server.
The credit rating bureau wants to ensure that all these steps occur in a
transactional mode. Developers are told to make sure that if any one of these
steps fails to complete then the credit check request must be made available
back into the queue without causing any change in other systems.
286 WebSphere MQ Solutions in a Microsoft .NET Environment

Code example
The following code examples describe the solution. This example shows the
manual transaction management.

In our business case scenario, the database is currently a XML file. Whenever
the CCS application reads a request message it reads the file and puts a reply to
the reply queue. The file is not changed. So WebSphere MQ can be used as a
transaction manager for its own resource changes.

The first step in the transaction is getting the request from the input queue. When
the get fails, the transaction is rolled back and the request is available on the
queue again.

Example 13-1 Getting the request under sync point

MQMessage mqMsg;
MQGetMessageOptions mqGetMsgOpts;
mqMsg = new MQMessage();
mqGetMsgOpts = new MQGetMessageOptions();
mqGetMsgOpts.Options = MQC.MQGMO_WAIT + MQC.MQGMO_FAIL_IF_QUIESCING +

MQC.MQGMO_SYNCPOINT;
try
{

mqQueue.Get(mqMsg, mqGetMsgOpts);
...}

catch (MQException mqe)
{

...
mqQMgr.Backout();

}

The next step in the transaction is reading the XML file. If the file is not
accessible, the unit of work is rolled back, so the request is available on the
queue and can be processed again.

Example 13-2 Reading the XML file

try
{

DatabaseDOM = new XmlDocument();
DatabaseDOM.Load(xmlFile);

}
catch (Exception ex)
{

...
mqQMgr.Backout();

}

 Chapter 13. Transactions 287

The third and final step in the transaction is putting the reply on the reply queue.
This step has two possible errors. Both the open of the reply queue and the put
can fail. If the put is successful we commit the transaction.

Example 13-3 Putting the reply under sync point

try
{

mqQueue = mqQMgr.AccessQueue(QNameInComing, MQC.MQOO_OUTPUT +
MQC.MQOO_FAIL_IF_QUIESCING ,QMgrIncoming,"","");

}
catch (MQException mqe)
{
...
mqQMgr.Backout();
}
...
MQPutMessageOptions mqPutMsgOpts = new MQPutMessageOptions();
mqPutMsgOpts.Options=MQC.MQPMO_SYNCPOINT;
try
{

mqQueue.Put(mqMsg, mqPutMsgOpts);
mqQMgr.Commit();

}
catch (MQException mqe)
{

...
mqQMgr.Backout();

}

If the database file or the output queue is not available, the transaction is rolled
back and the request is available again. This happens as long as the problem
exists and the CCS application is starting and rolling back the transaction for a
long time. Therefore, the application has to check whether the request already
has been backed out. When the message backout count equals the backout
threshold value of the input queue, it has to put it in the backout requeue queue
specified. After putting this message into the backout requeue, the transaction is
committed.

Example 13-4 Requeue messages

if (mqMsg.BackoutCount >= mqQueue.BackoutThreshold)
{

MQQueue requeueQ;
MQPutMessageOptions pmo = new MQPutMessageOptions();
try
{

requeueQ = mqQMgr.AccessQueue(mqQueue.BackoutRequeueName,
288 WebSphere MQ Solutions in a Microsoft .NET Environment

MQC.MQOO_OUTPUT);
pmo.Options = MQC.MQPMO_SYNCPOINT;
requeueQ.Put(mqMsg, pmo);
mqQMgr.Commit();

}
catch (MQException mqe)
{

...
mqQMgr.Backout();

}
}

The input queue was changed and a requeue queue was created using the
following script to support the requeuing mechanism.

Example 13-5 Alter backout parameters

define qlocal('TxQueue') replace
alter qlocal('CreditCheck') boqname('TxQueue') bothresh(10)

If the business scenario is changed, so that the XML file is updated whenever a
request is processed, this solution cannot be used. When the changing of the file
fails the whole transaction could still be rolled back. But if the last step of the
transaction, the put of the reply, fails the changes to the file could not be rolled
back.

If there is the requirement to update the data within the unit of work, this solution
is no longer sufficient. There are two possible ways to solve this problem:

� Use the data base resource manager within the context of WebSphere MQ
transaction. This allows the WebSphere MQ transaction manager to
coordinate changes to WebSphere MQ and to the database. On Microsoft
Windows the following transaction monitors can be used to handle
transactions that include WebSphere MQ resources: On Microsoft Windows
the following databases can participate in a transaction that is controlled by
WebSphere MQ:

– Oracle
– DB2® UDB
– Sybase

For the latest list of supported transaction monitors and databases on Microsoft
Windows see the following link:

http://www-3.ibm.com/software/integration/mqfamily/platforms/supported/wsmq_for
_winnt2000_5_3.html
 Chapter 13. Transactions 289

http://www-3.ibm.com/software/integration/mqfamily/platforms/supported/wsmq_for_winnt2000_5_3.html
http://www-3.ibm.com/software/integration/mqfamily/platforms/supported/wsmq_for_winnt2000_5_3.html

� Design the solution in such a way that your database transaction becomes
the root transaction. Transaction manager handling the root transaction
coordinates the subsequent transactions invoked in the context.
Interoperability between resource managers is also an important issue in
designing such solutions.

13.2 Distributed transactions
Transactions can also span resources on multiple systems. Distributed
transactions allow you to incorporate several distinct operations occurring on
different systems into a single transaction.

Distributed transaction processing systems are designed to facilitate transactions
that span multiple data sources. Therefore, in a transactional unit you can
possibly combine a number of diverse activities such as retrieving a message
from a WebSphere MQ queue, storing the message in a database, and
forwarding the request to a Web Service.
290 WebSphere MQ Solutions in a Microsoft .NET Environment

13.2.1 Transaction support under Windows 2000
Distributed transactions work across multiple systems and data sources. The job
of enforcing ACID properties therefore requires special infrastructure.

Under Windows 2000, Microsoft Component Services provide such an
infrastructure for transaction management. Component Services are comprised
of two services; COM+ and Microsoft Distributed Transaction Coordinator (DTC).

The DTC is the Transaction Processing (TP) monitor for Microsoft Windows
2000. DTC operates between a transaction-aware (COM+) application and a set
of resources. The role of DTC is to streamline network communications and to
connect multiple clients to multiple applications that potentially access multiple
data resources.

In a distributed transaction, each participating resource (for example SQL
database, WebSphere MQ) has a Transactional Resource Manager (RM)
running to track incoming and outgoing transactions on the resource. When a

Note: In the WebSphere MQ manuals the terms “local units of work” and
“global units of work” are used. The terms “local transaction” and “distributed
transaction” used in DTC context however mean something slightly different.

� WebSphere MQ terms

Local unit of work: A local unit of work only updates resources of the
WebSphere MQ queue manager.

Global unit of work: A global unit of work updates resources of the
WebSphere MQ queue manager and of other resource managers, like
databases. These global units of work can be coordinated by the queue
manager or by an external transaction manager.

� DTC terms

Local transaction: A local transaction updates resources of one or more
resource manager, like WebSphere MQ or DB2 UDB. All resource
managers run on the same machine.

Distributed transaction: A distributed transaction updates resources of
several resource managers. The resources managers run on different
machines.

So a local transaction is also a local unit of work, as long as the WebSphere
MQ queue manager is the only resource manager involved. A local transaction
is a global unit of work, when also other resource managers take part in the
transaction.
 Chapter 13. Transactions 291

resource participates in a transaction the associated resource manager enlists
itself in a transaction with Transaction Manager (TM).

The following figure explains how DTC works with resource managers.

Figure 13-2 Coordination of distributed resource managers using DTC

Microsoft DTC transaction manager coordinates the resource managers. On
receiving a transaction request from an application, the transaction manager
initiates a transaction and enlists the resource managers in a transaction during
the scope of transaction. In distributed applications where resource mangers are
running on different servers, Microsoft DTC coordinates transactions using two
phase commit protocol (described later in this section).

The following figure shows Microsoft Management Console (MMC) snap in for
Component Services Administration which displays details of running local and
distributed transactions.

Server A

Application
MS DTC

Transaction
Manager

Resource
Manager

WebSphere
MQ

Resource Manager

Server B

MS DTC
Transaction

Manager

Resource
Manager

SQL
Database

Resource Manager
292 WebSphere MQ Solutions in a Microsoft .NET Environment

Figure 13-3 Distributed transactions management using component administration MMC in Windows 2000

To work with Microsoft DTC transaction manager various resource vendors are
required to provide a compliant Resource Manager for handling data persistence,
durability and recovery associated with the resource. IBM provides DTC
compatible resource managers for DB2, WebSphere MQ, CICS®, and so on.

WebSphere MQ applications can participate in transactions managed by
Microsoft transaction managers. The application either has to be directly
connected to a queue manager, or it has to use the extended transactional client
function when running on a remote machine.

More information about WebSphere MQ transactional client can be found in the
manual WebSphere MQ Extended Transactional Clients, SC34-6275 and under:

http://www-3.ibm.com/software/integration/wmq/transclient.html

What is two-phase commit?
The intention of this discussion is to give brief understanding of two phase
commit (2PC) protocol, one of key concepts in distributed transaction
management. You can safely ignore this subsection as 2PC is managed
internally by tools described in this redbook, and it is unlikely to affect any code
that you may require to write.
 Chapter 13. Transactions 293

http://www-3.ibm.com/software/integration/wmq/transclient.html

In a local transaction where there is there is only one resource manager involved
in the process, the resource manager (for example a DB2 UDD) handles commit
or roll back processes of a transaction.

Distributed transactions, however involve two or more resource managers (for
example two databases and a WebSphere MQ queue). To ensure atomicity of
the transaction within and across resources, the transaction managers need to
coordinate all resource managers requested by the application.

Transaction Process Managers (TPM) like Microsoft DTC achieve this task by
using two phase commits (2PC) protocol.

In the first phase of this protocol, the transaction manager sends a "Prepare"
message to each resource manager, asking if it is ready and able to commit the
transaction;. At this stage the coordinator enters in the “wait” state. This message
also contains a unique Transaction ID (TID), which is used in all further
messages in this protocol when run. If the coordinator receives an affirmative
reply from all the resource managers, it results into a commit vote in the log.

After the coordinator has received responses from all resource managers, it
decides whether to commit or abort according to the global commit rule, and
writes this decision in the log.

This area of distributed transactions has well matured over the years and all
major transaction managers including Microsoft DTC, IBM CICS adhere to this
de-facto standard. Developers do not need to write any code to implement the
two phase commit protocol in their distributed application.

13.2.2 Programming distributed transactions: Credit Check Service
Consider the same credit check application described in the previous section.
The credit rating bureau has expanded its operations in recent years. It now
serves more than two hundred customers nationwide. A one to one integration
with their WebSphere MQ is therefore no longer a feasible solution. The
company decides to setup a dedicated WebSphere MQ server for receiving
credit check requests from its customers. Also, to meet the new privacy
regulations, the company decides to utilize a third party service for secured
hosting of credit history data source.

The following figure shows the distributed CCS deployment.
294 WebSphere MQ Solutions in a Microsoft .NET Environment

Figure 13-4 Credit check service in distributed environment

The developers of the credit check system are concerned about the transaction
support as their original solution is inapplicable in a proposed loosely coupled
distributed environment. They decide to incorporate distributed transaction to
resolve this issue.

The Credit check service (CCS) exposes its WebSphere MQ server to YuBank as
the receiving system for the credit check applications. YuBank submits the
application in the designated queue on CCS WebSphere MQ server
(CreditCheck on ITSOD). On the application server of the bureau, as shown in
Figure 13-4 credit checks that the application is monitoring the CreditCheck
queue. The credit check application collects the request and starts processing it.

At this stage, the credit check application invokes a distributed transaction. The
scope of this distributed transaction covers the following three operations:

1. Get the credit check request message from the CreditCheck queue located
on Server A.

2. Access and update the credit history data source running on Server C.

YuBank X

OK

YuBank

Client Application

Credit History Database

XML Datasource

Server CServer B

Credit Score Service

Server A

MQ Server

CreditCheck

CreditScore

<XML>

</XML>
<XML>

</XML>
<XML>

</XML>

.NET Assembly

1

3

2

CCS
 Chapter 13. Transactions 295

3. Put the credit score reply back on the CreditScore reply queue on Server A.

There are two possible solutions for this scenario:

� Linked transactions using manual transaction management

� Automatic transactions using .NET declarative transaction management

Linked transactions using manual transaction management
Sub transactions involved in this scenario are shown in Figure 13-4 on page 295.
These transactions are logically linked and the outcome of entire process
depends on the outcome of individual transactions. These transactions are:

1. Get message from WebSphere MQ queue.

2. Update table in SQL server database.

3. Submit message in the WebSphere MQqueue.

Using manual transaction management methodology it is possible to correlate
outcomes of the three transactions and complete them as one unit of work.
Designing such linked transactions is a difficult task. It is very important to devise
a comprehensive test plan before implementing nested transactions. The
following code fragment shows the transaction logic where WebSphere MQ
operations and SQL server updates are rolled back if the submit reply to queue
operation failed.

Example 13-6 Managing linked transactions

...
mqPutMsgOpts.Options=MQC.MQPMO_SYNCPOINT;

try
{

mqQueue.Put(mqMsg, mqPutMsgOpts);
mqQMgr.Commit();
Console.WriteLine("MQ Manager Commited");

sqltrx.Commit();
Console.WriteLine("Sales Entry committed");

}
catch (MQException mqe)
{

// report the error
System.Console.WriteLine("MQQueue::Put ended with " + mqe.Message);
MessageSent = false;
mqQMgr.Backout();
Console.WriteLine("MQ Manager rolled back");

sqltrx.Rollback();
296 WebSphere MQ Solutions in a Microsoft .NET Environment

myCommand.Connection.Close();
Console.WriteLine("Sales Entry rolled back");

}
finally
{

mqQueue.Close();
myConnection.Close();

}
...

Remember that as shown in Figure 13-4 on page 295 mqQueue.Put() operation
is executed on server A where SQL transaction assqltrx takes place on Server C.

Automatic transactions using .NET declarative transaction
management

In this example we redesigned the application as a Windows Serviced
component. Serviced component architecture extends COM component model in
.NET environment. Service component utilize COM+ services such as
transaction management, object pooling, just-in-time (JIT) activation and so on.
To learn more about how to create serviced components using Microsoft Visual
Studio .NET, refer to COM and .NET Component Services, by Juval Löwy.

To take advantage of COM+ transaction services the class is required to be
marked with Transaction attribute. Transaction begins when any method call is
made on the object. The following code example shows the declaration of a
service component and the use of transaction attribute

Example 13-7 Serviced component using transaction attribute

[Transaction(TransactionOption.Required)]
public class accessMQSQL : ServicedComponent
{
...
}

[AutoComplete] attribute
To take advantage of auto completion feature of COM+ methods of the serviced
components need to use AutoComplete attribute. AutoComplete attribute utilizes
auto-deactivation facility of COM+. This attributes instructs COM+ to deactivate
the object when a method carrying AutoComplete attribute returns. Methods that
use the AutoComplete attribute do not need to vote explicitly on their transaction
outcome. The operations of the method are committed on successful completion.
 Chapter 13. Transactions 297

If the method throws an exception all the operation within the scope of the
method are rolled back.

For more information about serviced components and using transaction related
attributes, refer to Microsoft Developer Network (MSDN) library at:

http://msdn.microsoft.com/library/default.asp

Unlike previous implementation, in declarative model of transaction management
we do not use any explicit transaction instructions in the our code. The following
code example shows series of operation executed in a transactional context.

Example 13-8 Automatic transaction management in serviced component

...
[AutoComplete]
public bool Process()
{
if(Connect())
{
GetMQMsg();

Put();
Clear();
return true;
}
return false;
}

private bool GetMQMsg()
{
...
mqQueue.Get(mqMsg, mqGetMsgOpts);
string xmlMessage = mqMsg.ReadString(mqMsg.MessageLength);
MessageIDIncoming = mqMsg.MessageId;
QNameInComing = mqMsg.ReplyToQueueName;
QMgrIncoming = mqMsg.ReplyToQueueManagerName;
InsertDBEntry();

}

private bool InsertDBEntry()
{
//connect to db
SqlConnection myConnection = new SqlConnection(@"workstation id=ITSOD;packet
size=4096;integrated security=false;data source='ITSOE';User
ID='xx';Pwd='xxxx';persist security info=False;initial catalog=CCS");
myConnection.Open();
298 WebSphere MQ Solutions in a Microsoft .NET Environment

http://msdn.microsoft.com/library/default.asp

string myInsertQuery = "INSERT INTO account (BankID, Date, CustomerID)
Values('YuBank', '11/11/03', 'Sachin')";
SqlCommand myCommand = new SqlCommand(myInsertQuery);
myCommand.Connection = myConnection;
myCommand.ExecuteNonQuery();
...
}

As illustrated in Figure 13-4 on page 295 the resources involved in this scenario
are distributed over three servers. In this example code, the Put operation only
takes place if the GetMsg operation on Server A AND InsertDBEntry operation
on Server C succeeded. However the changes made on CreditCheck queue on
Server A and Credit History database on Server C are not committed unless the
Put operation on the CreditScore queue is successfully completed. This
coordination and transaction outcome handling is achieved by automatic
transaction facility of serviced component and COM+.

Using Component Services Manager
During runtime, distributed transactions can be controlled using Component
Services Manager, a Microsoft Management Console (MMC) on Windows 2000.
For example because of some unhanded error, if Server C running the customer
history database does not respond it is possible to resolve the transaction using
component services manager. The following figure shows the transactions in
MQSQLTrx process.

Figure 13-5 Resolving distributed transactions using component services MMC
 Chapter 13. Transactions 299

13.2.3 Microsoft Transaction Server: MTS and WebSphere MQ
Microsoft Transaction Server (MTS) is designed to support transactions and
distributed processing in heterogeneous environments. MTS works in
conjunction with Microsoft DTC under Windows NT®, Windows 95 and Windows
98 environments. This technology has been superseded by COM+ services in
the next generation Microsoft systems such as Windows 2000, Windows XP, and
Windows Server 2003.

WebSphere MQ provides support for MTS. When you use WebSphere MQ with
MTS, WebSphere MQ resources (queue managers) are coordinated by DTC
along with the resources of other resource managers involved in a transaction
(such as SQL Server and DB2 UDB).

A detailed discussion about WebSphere MQ support for MTS is outside the
scope of this redbook. For further information about this topic, refer to the topic
“Programming\MTS” in the WebSphere MQ Help Center (installed with the
product), the WebSphere MQ System Administration Guide, SC34-6068, and the
WebSphere MQ Application Programming Guide, SC34-6064.

WebSphere MQ V5.3 for Windows also supports other transaction managers,
like TXSeries and WebSphere Application Server. A full list of the supported
transaction managers can be found under:

http://www-3.ibm.com/software/integration/mqfamily/platforms/supported/wsmq_for
_winnt2000_5_3.html

13.3 Web Service transactions
In the previous section we learnt about transactions in local environment and
how to handle distributed transactions. Web Services bring a new dimension to
distributed application development patterns. Web Services are more loosely
coupled than traditional distributed applications. Support systems that were
designed to manage traditional object-oriented architectures now need rethinking
in service-oriented world of Web Services. Transaction support is one such
service that requires reinvestigation. This section describes the current

Note: We recommend that you to examine the known issues with DTC before
developing transactional components involving resource managers from
different vendors.Knowledge base articles about MS DTC on Windows 2000
can be found at the following location:

http://support.microsoft.com/search/default.aspx?Query=DTC+windows+2000
300 WebSphere MQ Solutions in a Microsoft .NET Environment

http://www-3.ibm.com/software/integration/mqfamily/platforms/supported/wsmq_for_winnt2000_5_3.html
http://support.microsoft.com/search/default.aspx?Query=DTC+windows+2000

approaches and emerging specification for supporting Web Services
transactions.

13.3.1 .NET Web Services and transactions
In Microsoft .NET environment, XML Web Services defined using ASP.NET
support automatic transactions on Microsoft Windows 2000 or later. Microsoft
uses declarative style for marking transactional Web objects. Transaction
directives can be inserted into any .NET Web application, Web Service or a
class. Similar to the serviced components described previously in this chapter, in
ASP.NET Web Service, transaction directives instruct the Web Service to
participate in an existing transaction, begin a new transaction, or never
participate in a transaction.

Transaction metadata described in form of directives represent the logic of a unit
of work. A physical transaction occurs when a transactional object accesses a
data resource, such as a database or message queue. Transaction metadata is
then translated into lower level driver instructions.

It is important to note that the scope of automatic transaction support (in .NET as
well as in other frameworks) is limited to the operational boundaries of the
current Web Service. The Web Service can directly utilize distributed data
resources via resource managers with automatic transaction support. However,
the transaction context is lost if the Web Service uses another Web Service to
utilize distributed resources. At the time of writing this redbook there is no
support (implementation) available for sharing transaction context between Web
Services. Refer to 13.3.3, “WS Transaction” on page 303 for more details.

The next section describes an example of .NET transactional Web Service.

13.3.2 Programming Web Services transaction in .NET environment
The following code snippet shows how to declare an automatic transaction by
using the “TransactionOption property” of the” WebMethodAttribute” attribute
class. Setting the “TransactionOption property” to
“TransactionOption.RequiresNew” begins a new transaction each time an XML
Web Service client invokes the XML Web Service method.

Example 13-9 TransactionOption property

[WebMethod (TransactionOption=TransactionOption.RequiresNew)]
public string GetAdvice(string accountId, string investAmt)
{

...
}

 Chapter 13. Transactions 301

It is possible to control an object's transactional behavior by setting a transaction
attribute value on a page, in an XML Web Service method, or in a class as
follows.

Example 13-10 Page transaction attribute

<%@ Page Transaction="Required" %>

As described in “Automatic transactions using .NET declarative transaction
management” on page 297 .NET Framework provides AutoComplete attributes
for handling automatic transactions using COM+ services. Same AutoComplete
attributes can be applied to methods in a Web Service class.

Class marked with transactional attributes can invoke operations on various data
sources, message queues running in distributed environment. The process
involved in programming such distributed transactions in a Web Service is similar
to transactions in serviced component. Refer to13.2.2, “Programming distributed
transactions: Credit Check Service” on page 294 for more details.

Windows 2000 uses COM+ services to manage transaction management in
ASP.NET Web Service. The following figure shows Component Services console
for controlling running ASP.NET Web Service transactions.

Note: The syntax to declare the transaction attribute varies slightly in a .NET
Framework class, an ASP.NET page, and an XML Web Service method.
302 WebSphere MQ Solutions in a Microsoft .NET Environment

Figure 13-6 Microsoft .NET Web Service participating in a distributed transaction

13.3.3 WS Transaction
As per the method described in the previous section, a Web Service transaction
guaranties atomicity of operation within the scope of the Web Services, pretty
much same as local transactions. However, the Web Service being called
requires invoking other Web Services as part of its operation therefore, the
existing distributed transaction coordinator (for example DTC) technology does
not provide an adequate solution. For example in .NET, a Web Service
transaction begins only when the invoking Web Service method, the method
called from the client, has transaction metadata. If the caller Web Service
method does not carry the appropriate transaction directives, subsequent Web
Services (methods) can neither participate in an existing transaction nor begin a
new transaction.

Web Services Description Language (WSDL) and Simple Object Access
Protocol (SOAP) defined protocols enable basic Web Service inter operability.
This presents an opportunity for developers to build federated service-oriented
solutions by combining a large number of participating Web Services. A typical
example of such federated service is a travel portal combining services from
airline companies, travel agents, accommodation portal, car rental companies,
 Chapter 13. Transactions 303

calendar solution, weather service, travel goods and book shop service and so
on. As you can imagine, the resulting activities can be complex in structure,
transactional in nature and multifaceted in terms of relationships between their
participants.

At the time of writing this redbook, SOAP or WSDL specification lacks constructs
for defining the coordination between the Web Services, transaction context,
service level agreement between services, and so on.

The WS Transaction (see link below) specification proposed by IBM, Microsoft
and BEA defines an extensible framework for coordinating different roles that
Web Services play in the federated activity. WS Transaction defines two models
for transactions over Web Services: Atomic Transactions (AT) where duration is
short and level of protection required is high; and Business Activity (BA)
transactions for long lived and scalable operation. WS Transaction also defines
how Web Services register their intent to use two phase commit and how they
communicate transaction status votes (for example readiness, vetoing) with other
Web Services.

It is envisaged that existing transaction processing systems (for example COM+,
DTC) extends their proprietary protocols to incorporate WS Transaction and inter
operate across different vendors and their Web Services infrastructure.

To establish the necessary relationships between participants, the messages
exchanged between Web Services carry a “CoordinationContext”. It also has a
reference to a coordination service. Participants then register for supported
coordination protocols and subsequently ensure transactional processing of the
message as required.

WS Transaction and WS Coordination specifications are supplementary
protocols for the proposed Web Services workflow standard called Business
Process Execution Language (WS-BPEL). WS-BPEL is currently going through
the standardization process within Organization for the Advancement of
Structured Information Standards (OASIS) and will soon be incorporated in
related product suit from Microsoft (BizTalk Server Technologies) and IBM
(WebSphere Application Server).

You can find more information about the current status of these specifications
from this Web site:

http://www.oasis-open.org/committees/wsbpel
304 WebSphere MQ Solutions in a Microsoft .NET Environment

http://www.oasis-open.org/committees/wsbpel

Chapter 14. Best practices

This chapter highlights techniques that help implement effective programs,
eliminate common errors, ease long term maintenance and increase the chances
for solution extensibility. It also contains solutions for integration issues, common
errors, hints and tips as well as the new coding standards for the .NET
technology.

14
© Copyright IBM Corp. 2004. All rights reserved. 305

14.1 Coding standards
It is advisable to adhere to the coding standards when writing code in different
languages. It is worth noting that with the introduction of .NET and the language
C# in particular a new set of coding standards have been defined. For more
information see:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpgenref/html/
cpconclassmemberusageguidlines.asp

14.2 Hints and tips
The following section provides coding guidance.

14.2.1 XML style comments
For ease of documentation, you can place three slashes above a C# function.
This results in an XML comment fragment generation which can later be
extracted to document the code.

Example 14-1 XML comment auto generation

/// <summary>
///
/// </summary>
/// <param name="camelArgument"></param>
/// <returns></returns>
public bool SomeFunction(string camelArgument)
{

return true;
}

These are typically filled out as follows:

Example 14-2 How to enter XML comments

/// <summary>
/// This routine is a sample routine to demonstrate the
/// use of XML style of comments
/// </summary>
/// <param name="camelArgument">This argument is an incoming parameter</param>
/// <returns>The function always returns true</returns>
public bool SomeFunction(string camelArgument)
{

return true;
}

306 WebSphere MQ Solutions in a Microsoft .NET Environment

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpgenref/html/cpconclassmemberusageguidlines.asp

14.2.2 XML processing in Java
There are a variety of ways to construct and parse XML data in a Java program.
Coding in both the Simple API for XML (SAX) and the Document Object Model
(DOM) can be tedious. JDOM provides a robust, light-weight means of reading
and writing XML data without the complex and memory consumptive options that
current API offerings provide. It is completely natural API for Java developers,
and it provides a low-cost entry point for manipulating XML.

14.2.3 SOAP processing in Java
There are several toolkits available for SOAP processing in a Java program.
Apache Axis is an open-source SOAP engine, a framework for constructing
SOAP processors. It passed Sun's JAX-RPC and SAAJ compliance tests. Axis
can be integrated into existing applications for SOAP processing, and expose the
existing methods into Web Services. The SupportPac, WebSphere MQ Transport
for SOAP (MA0R), uses Axis for SOAP processing.

14.2.4 XML element versus attribute
In defining an XML schema, there is the decision to use an elements or attributes
to represent the data under the root node. There are pros and cons in either way.
As a general rule of thumb, attributes are good to describe the integral
characteristics of an element, and typically the contents (values) are short. But it
is hard to expand an attribute to include sub-contents, if the data structure has to
be expanded in the future. Such changes require more code modifications than
an element-based structure.

14.3 Common errors
While using WebSphere MQ Transport for SOAP and WebSphere MQ classes
for Microsoft .NET in coding .NET applications which send messages via
WebSphere MQ, encounter some of the following problems:

� Runtime errors such as: c:\inetpub\wwwroot\BSS\CreditCheckRequest.cs(2):
The type or namespace name 'IBM' could not be found (are you missing a
using directive or an assembly reference?) as shown below:
 Chapter 14. Best practices 307

Figure 14-1 Missing assembly reference

In this case, the reference to the WebSphere MQ classes for Microsoft .NET
needs to be added to your project. This is achieved by selecting Project ->
Add Reference.

On the COM tab, browse to the location of amqmdnet.dll or WebSphere MQ
Transport for SOAP — typically located in C:\Program Files\IBM\WebSphere
MQ\bin and C:\.<ma0r installation directory path>\ma0r\bin.
308 WebSphere MQ Solutions in a Microsoft .NET Environment

Figure 14-2 Adding missing assembly reference

Select OK to add amqmdnet.dll or MQSOAP.dll if you have added
MQSOAP.dll, as reference to your project.

Rebuild the project.

� MQExceptions, such as:

– MQException: compCode: 2 Reason: 2059

This happens when the queue manager being accessed is unavailable.
For a description of the error, type MQRC <Reason code> into a
command prompt as shown below:
 Chapter 14. Best practices 309

Figure 14-3 WebSphere MQ reason code description

To rectify this problem:

If the queue manager to be accessed is on another machine, ensure the
other machine is accessible by testing a network connection to the
machine. This is achieved using ping <machine name> in a command
prompt as shown below:

Figure 14-4 Testing network connection

If there is a reply then the connection exists otherwise check the network
connections.

• Ensure the queue manager name referred to in the code is spelled
correctly and that if the queue manager is on another machine, ensure
the channel name and host name referred to is specified as shown
below:

MQQueueManager QM = new MQQueueManager(<QueueManager name>,<channel
name>,<hostname>);
queueManager = new MQQueueManager("DOTDP","TO.DOTDP","ITSOD");

• Ensure the queue manager is started.
310 WebSphere MQ Solutions in a Microsoft .NET Environment

– MQException: compCode: 2 Reason: 2035. This happens when you are
not authorized to connect to the queue manager being accessed. To
obtain a description of the error, type MQRC <Reason code> into a
command prompt as shown in Figure 14-3 on page 310

To rectify this problem:

• Add ASPNET user to the mqm user group by right-clicking on My
Computer.

Click Manage -> Local Users and Groups.

Right-click ASPNET, select Properties -> the Member Of tab as
shown below:

Figure 14-5 Adding ASPNET user to mqm group

• Click Add and in the Select Groups window, and select mqm from the
list as shown below:
 Chapter 14. Best practices 311

Figure 14-6 Adding ASPNET user to mqm group

• Click OK, then click Apply.

Note that close may take time for the changes to take effect, so it is
advisable to select Apply before Close.

� Java run time errors such as:

Exception in thread "main" java.lang.NoClassDefFoundError: CustomerProfile
(wrong name: cps/CustomerProfile) or

Or errors such as:

Exception in thread "main" java.lang.NoClassDefFoundError:
javax/jms/MessageConsumer

This indicates there are jar files and locations missing from the class path.
Re-deploy the solution as instructed in the deployment section of the usage
scenario solutions in Chapters 7, 8, 9, and 10.
312 WebSphere MQ Solutions in a Microsoft .NET Environment

14.4 Testing
As a developer, testing is essential and should be done formally during the
software development process. Formal testing, both unit and system, needs to
be an integral part of the development process.

Unit tests not only provide a set of coded use cases for documentation of
classes, they also represent the most practical design possible. There are
various unit testing techniques described briefly below:

� JUnit
� NUnit
� csUnit

14.4.1 Unit Testing with JUnit
JUnit is a regression testing framework written by Erich Gamma and Kent Beck.
It is used by developers who implement unit tests in Java. JUnit is Open Source
Software, released under the IBM Common Public License Version 1.0 and
hosted on SourceForge.

You can find JUnit at:

http://sourceforge.net/projects/junit/

It is specifically targeted at Java developers.

14.4.2 Unit Testing with NUnit
NUnit is a .NET testing framework written by Jim Newkirk, Michael Two, Alexei
Vorontsov, and Charlie Poole, based on the original NUnit by Philip Craig. NUnit
is much the same as all the Extreme Programming test frameworks (xUnits), with
two important differences:

NUnit uses the "attribute" feature of .NET to identify tests. Test fixtures are
identified by the attribute [TestFixture] and individual tests by [Test]. This means
that you can write tests that don't inherit from a fixed TestCase superclass, and
NUnit can still find them.

NUnit allows you to write tests in any .NET language. So even though NUnit itself
is written in C#, you can write your tests in Visual Basic or C++, or even in ML or
Eiffel. Language inter operation is a key characteristic of .NET, and one that the
team consider to be quite important.

When writing tests using NUnit, you can run the NUnit application, and it runs
and report on your tests. There are two versions of the application, one that runs
 Chapter 14. Best practices 313

http://sourceforge.net/projects/junit/

at the command prompt, and a GUI version. When referring to NUnit, it is usually
the GUI version that is implied.

You can find it at NUnit at:

http://sourceforge.net/projects/nunit

14.4.3 Unit Testing with csUnit
Lately there is another contender to NUnit V2.0 (at the time of writing V2.1 is still
in beta form) known as csUnit (1.8.8) available from:

http://www.csunit.org

Both are available from SourceForge.net if desired.

Comparison with NUnit can be read here:

http://www.csunit.org/index.php?page=http://www.csunit.org/documentation/index.
html

Essentially csUnit fits into the .Net/VS.NET much better. Their assemblies have
now been defined inside the .Net System pane when you go to add reference. It
is much easier to use and avoids hunting around for your installed location. It
also adds menus into VS2003's menu system. The uninstall of csUnit is
problematic but can be improved in later releases.

14.5 Version management
In a project such as the business case scenario discussed in this book, where
multiple developers work on one application and series of tests are done. We
recommend that version control be used to avoid conflicting code and ensure
regular backup. The following are some version control tools:

14.5.1 ClearCase
ClearCase® is a Software Configuration Management System from Rational®
Software, Inc. It keeps track of file versions used to build releases of a software
product and to assist with the organization and address the increasingly complex
problem of development and build management in a team environment.

More information about clearcase can be found at:

http://www.rational.com/products/clearcase/index.jsp?SMSESSION=NO
314 WebSphere MQ Solutions in a Microsoft .NET Environment

http://sourceforge.net/projects/nunit
http://www.csunit.org
http://www.csunit.org/index.php?page=http://www.csunit.org/documentation/index.html
http://www.rational.com/products/clearcase/index.jsp?SMSESSION=NO

14.5.2 Concurrent Versions System
Client/server Concurrent Versions System (CVS) enables developers in different
places to function as a single team. The version history is stored on a single
central server and the client machines have a copy of all the files that the
developers are working on. CVS maintains a history of all changes made to each
directory tree it manages thus giving project managers fine control over the
development process.

More information about CVS can be found at:

http://ccvs.cvshome.org

CVS can be used within WebSphere Studio Application Developer for source
version control.

14.5.3 Visual SourceSafe
When beginning a .NET team development project, it is essential to understand
how to establish development processes that work in a team environment. How
to set up and work with the team development features supported by the
Microsoft® Visual Studio® .NET integrated development environment (IDE), and
to be aware of the development techniques (such as, how to set assembly
references in the correct way) that must be followed by the development team
members to ensure a successful working team.

The following Web site is a good starting point:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/tdl
g_rm.asp
 Chapter 14. Best practices 315

http://ccvs.cvshome.org
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/tdlg_rm.asp

316 WebSphere MQ Solutions in a Microsoft .NET Environment

Appendix A. Scripts, source code and
test data for YuBank

This appendix provides the technical solution to the YuBank business case
scenario. It is divided into three sections.

The first section, WebSphere MQ Setup, contains the WebSphere MQ scripts
required to setup the environment required to implement the business case
scenario solution

The second section, use case 1, contains the source code solution to the .NET
application to .NET application as well as the .NET application to J2EE
application example.

The third section, use case 2, contains the source code solution to the .NET
application to .NET Web Service and .NET application to J2EE Web Service.

All source code associated with YuBank can be downloaded from “Using the
Web material” on page 323, ALL.zip.

Alternatively the individual programs of interest can be downloaded individually
as indicated below:

A

© Copyright IBM Corp. 2004. All rights reserved. 317

WebSphere MQ Setup
There are 7 scripts required to setup WebSphere MQ as required for the
business case scenario solution.

DOTDP.MQSC is a command file to setup WebSphere MQ objects for queue
manager DOTDP. It creates a local queue called CreditCheck for CreditCheck C#
application, a model queue called CreditScore for permanent dynamic queues
for the replies and a deadletter queue called SYSTEM.DEAD.LETTER.QUEUE.
It also creates a server connection channel called TO.DOTDP using an
MCAUSER called kulkarni which would have to be changed before running the
scripts.

DOTDP.MQSC can be downloaded from “Using the Web material” on page 323,
WMQ Setup.zip.

DOTIP.MQSC is a command file to setup WebSphere MQ objects for queue
manager DOTIP which:

� Created two local queues called SOAP.RESPONSE.YuBankIASWS and
SOAP.RESPONSE.ShareQuote which act as the response queue for .NET
Web Service (Investment Advices Service, IAS) and response queue for
J2EE Web Service (StockQuote) respectively.

� Creates a model queue called CustomerProfile.
� Creates a remote queue called CustomerDetails
� Creates two transmission queues called DOTOP and DOTEP
� Creates two sender channels. One called DOTIP.TO.DOTOP to queue

manager DOTOP and another called DOTIP.TO.DOTEP to queue manager
DOTEP. The CONNNAME parameters have to be changed before running
the scripts

� Created two receiver channels. One called DOTOP.TO.DOTIP from queue
manager DOTOP and another called DOTEP.TO.DOTIP from queue
manager DOTEP

� Creates a server connection channel called TO.DOTIP using an MCAUSER
called stevens which would have to be changed before running the scripts

� Registers the queue SYSTEM.DEAD.LETTER.QUEUE as the queue
managers dead letter queue

DOTIP.MQSC can be downloaded from “Using the Web material” on page 323,
WMQ Setup.zip.

DOTEP.MQSC is a command file to setup WebSphere MQ objects for queue
manager DOTEP. It creates a transmission queue called DOTIP. It also creates a
sender channel called DOTEP.TO.DOTIP to queue manager DOTIP, a receiver
channel called DOTIP.TO.DOTEP from queue manager DOTIP and registers
SYSTEM.DEAD.LETTER.QUEUE as the queue managers dead letter queue.
318 WebSphere MQ Solutions in a Microsoft .NET Environment

DOTEP.MQSC can be downloaded from “Using the Web material” on page 323,
WMQ Setup.zip.

DOTOP.MQSC is a command file to setup WebSphere MQ objects for queue
manager DOTOP. It creates a local queue called CustomerDetails for the
CustomerProfile J2EE application. It also creates a transmission queue called
DOTIP, sender channel called DOTOP.TO.DOTIP to queue manager DOTIP, a
receiver channel called DOTIP.TO.DOTOP from queue manager DOTIP and
registers SYSTEM.DEAD.LETTER.QUEUE as the queue managers dead letter
queue.

DOTOP.MQSC can be downloaded from “Using the Web material” on page 323,
WMQ Setup.zip.

WSClient.MQSC is a command file to setup WebSphere MQ Objects for queue
manager WSClient. It creates two local queues one called
SOAP.RESPONSE.RandomNumberNET which acts as response queue for
.NET Web Service "RandomNumber" and the other called
SOAP.RESPONSE.RandomNumberAXIS as a response queue for J2EE Web
Service "RandomNumber" It also creates a transmission queue called
WSServer, sender channel called WSClient.TO.WSServer to queue manager
WSServer, a receiver channel called WSServer.TO.WSClient and registers the
queue SYSTEM.DEAD.LETTER.QUEUE as the queue managers dead letter
queue.

WSClient.MQSC can be downloaded from “Using the Web material” on
page 323, WMQ Setup.zip.

WSServer.MQSC is a command file to setup WebSphere MQ Objects for queue
manager WSServer. It creates two local queues one called
SOAP.RESPONSE.RandomNumberNET which acts as response queue for
.NET Web Service "RandomNumber" and the other called
SOAP.RESPONSE.RandomNumberAXIS as a response queue for J2EE Web
Service "RandomNumber" It also creates a transmission queue called WSClient,
sender channel called WSServer.TO.WSClient to queue manager WSClient, a
receiver channel called WSClient.TO.WSServer, a server connection channel
called TO.WSServer and registers the queue SYSTEM.DEAD.LETTER.QUEUE
as the queue managers dead letter queue.

WSServer.MQSC can be downloaded from “Using the Web material” on
page 323, WMQ Setup.zip.

Note: This script only used for the WebSphere MQ Transport for SOAP
examples. It is not needed to run the business case application.
 Appendix A. Scripts, source code and test data for YuBank 319

initWMQ.bat is a batch file which creates the queue manager, starts it and sets it
to automatic re-start, runs the MQSC files for the each queue manager specified
as a parameter and starts a listener on port 1414.

Example 14-3 Run initWMQ for queue manager DOTOP

initWMQ DOTOP

initWMQ.bat can be downloaded from “Using the Web material” on page 323,
WMQ Setup.zip.

initWMQ_Simple.bat is another batch file which creates the queue manager,
starts it and sets it to automatic re-start, runs the MQSC files for the each queue
manager specified as a parameter and starts a listener, but this time on port
1415.

initWMQ_Simple.bat can be downloaded from “Using the Web material” on
page 323, WMQ Setup.zip.

Note: This script is only used for the WebSphere MQ Transport for SOAP
examples. It is not needed to run the business case application.

Note: This batch file is only used for the WebSphere MQ Transport for SOAP
examples. It is not needed to run the business case application.
320 WebSphere MQ Solutions in a Microsoft .NET Environment

Use case 1
This is where the new investment account is opened. The Bank Service System
(BSS) is an ASP.NET application that presents several forms on the screen to
collect information from the customer. The source can be downloaded from
“Using the Web material” on page 323, BSS.zip.

Once this information is entered, the ASP.NET application passes the customer’s
detail using WebSphere MQ to the Credit Check System (CCS), which is a
console mode .NET application. Two solutions exist for CCS as it is coded in both
C# and VB.NET in order to highlight the WebSphere MQ coding techniques in
the different languages.

The C# version can be downloaded from “Using the Web material” on page 323,
CCS.zip.

The VB.Net version can be downloaded from “Using the Web material” on
page 323, CCS.zip.

Once the CCS application receives information via WebSphere MQ it prepares a
reply message highlighting the customers credit score. The BSS application
determines if the customer is a suitable candidate for investment advice and, if
so, forwards the customer details to the Credit Profile System (CPS) which is a
J2EE application. The CPS application writes this information to a local
database.

The CPS application can be downloaded from “Using the Web material” on
page 323, CPS.zip.
 Appendix A. Scripts, source code and test data for YuBank 321

Use case 2
This is where the BSS application requests investment advice for the customer. It
invokes the Investment Advisory System (IAS), which is a .NET Web Service. It
is the job of IAS to recommend an investment by sending a SOAP response to
BSS using WebSphere MQ.

IAS can be downloaded from “Using the Web material” on page 323, IAS.zip.

To determine the investment advice the IAS, acting now as a .NET application,
first requests information from the CPS application in order to acquire additional
customer information before invoking the Share Quote System (SQS) which is a
J2EE Web Service. SQS then looks up share information and provides the
results over WebSphere MQ.

The SQS application can be downloaded from “Using the Web material” on
page 323, SQS.zip.
322 WebSphere MQ Solutions in a Microsoft .NET Environment

Appendix B. Additional material

This redbook refers to additional material that can be downloaded from the
Internet as described below:

Locating the Web material
The Web material associated with this redbook is available in softcopy on the
Internet from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG247012

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with
the redbook form number, SG247012.

Using the Web material
The additional Web material that accompanies this redbook includes the
following files:

File name Description
ALL.zip This gives you everything

B

© Copyright IBM Corp. 2004. All rights reserved. 323

ftp://www.redbooks.ibm.com/redbooks/
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/

BSS.zip This is only the Banking System Server code
CCS.zip This is only the Credit Check System code
CPS.zip This is only the Credit Profile Service code
Chapter 3 Demos.zip This is the sample codes pertaining to chapter 3
IAS.zip This is the Internet Advisory Service code
SQS.zip This is the Share Quote System code
WMQ Setup.zip This is the scripts to setup WebSphere MQ

System requirements for downloading the Web material
The following system configuration is recommended:

Hard disk space: ALL.ZIP is 2.31MBs and expands to 3.79MB (unbuilt)
Operating System: Windows 2000 or Windows XP (Professional or Server)
Processor: Pentium® III 500MHz or better
Memory: 256MB or higher is recommended

How to use the Web material
Create a subdirectory (folder) on your workstation, and unzip the contents of the
Web material zip file into this folder.

Example 14-4 Content of All.ZIP

bss\BankingServiceSystem
bss\BankingServiceSystem\BankingServiceSystem.sln
bss\IIS\BankingServiceSystem
bss\IIS\BankingServiceSystem\bin
bss\IIS\BankingServiceSystem\img
bss\IIS\BankingServiceSystem\AcctOpenFail.aspx
bss\IIS\BankingServiceSystem\AcctOpenFail.aspx.cs
bss\IIS\BankingServiceSystem\AcctOpenFail.aspx.resx
bss\IIS\BankingServiceSystem\AcctOpenOK.aspx
bss\IIS\BankingServiceSystem\AcctOpenOK.aspx.cs
bss\IIS\BankingServiceSystem\AcctOpenOK.aspx.resx
bss\IIS\BankingServiceSystem\AssemblyInfo.cs
bss\IIS\BankingServiceSystem\BankingServiceSystem.csproj
bss\IIS\BankingServiceSystem\BankingServiceSystem.csproj.webinfo
bss\IIS\BankingServiceSystem\BSS Application Description.txt
bss\IIS\BankingServiceSystem\CreditCheckRequest.cs
bss\IIS\BankingServiceSystem\DisplayAdvice.aspx
bss\IIS\BankingServiceSystem\DisplayAdvice.aspx.cs
bss\IIS\BankingServiceSystem\DisplayAdvice.aspx.resx
bss\IIS\BankingServiceSystem\DisplayError.aspx
bss\IIS\BankingServiceSystem\DisplayError.aspx.cs
bss\IIS\BankingServiceSystem\DisplayError.aspx.resx
bss\IIS\BankingServiceSystem\Global.asax
bss\IIS\BankingServiceSystem\Global.asax.cs
324 WebSphere MQ Solutions in a Microsoft .NET Environment

bss\IIS\BankingServiceSystem\Global.asax.resx
bss\IIS\BankingServiceSystem\Home.aspx
bss\IIS\BankingServiceSystem\Home.aspx.cs
bss\IIS\BankingServiceSystem\Home.aspx.resx
bss\IIS\BankingServiceSystem\HomePage.gif
bss\IIS\BankingServiceSystem\OtherPages.gif
bss\IIS\BankingServiceSystem\Portfolio.asmx.cs
bss\IIS\BankingServiceSystem\Portfolio.asmx.resx
bss\IIS\BankingServiceSystem\Portfolio.cs
bss\IIS\BankingServiceSystem\RequestAdvice.aspx
bss\IIS\BankingServiceSystem\RequestAdvice.aspx.cs
bss\IIS\BankingServiceSystem\RequestAdvice.aspx.resx
bss\IIS\BankingServiceSystem\RequestIDetails.aspx
bss\IIS\BankingServiceSystem\RequestIDetails.aspx.cs
bss\IIS\BankingServiceSystem\RequestIDetails.aspx.resx
bss\IIS\BankingServiceSystem\RequestPDetails.aspx
bss\IIS\BankingServiceSystem\RequestPDetails.aspx.cs
bss\IIS\BankingServiceSystem\RequestPDetails.aspx.resx
bss\IIS\BankingServiceSystem\Web.config
bss\IIS\BankingServiceSystem\bin\amqmdnet.dll
bss\IIS\BankingServiceSystem\bin\BankingServiceSystem.dll
bss\IIS\BankingServiceSystem\bin\BankingServiceSystem.pdb
bss\IIS\BankingServiceSystem\img\HomePage.gif
bss\IIS\BankingServiceSystem\img\OtherPages.gif
ccs\CreditDatabase.xml
ccs\C# Version\CCS
ccs\C# Version\ccs.sln
ccs\C# Version\CCS\App.ico
ccs\C# Version\CCS\AssemblyInfo.cs
ccs\C# Version\CCS\CCS.csproj
ccs\C# Version\CCS\CCS.csproj.user
ccs\C# Version\CCS\Database.cs
ccs\VB.NET Version\CCSVB
ccs\VB.NET Version\CCSVB.sln
ccs\VB.NET Version\CCSVB\AssemblyInfo.vb
ccs\VB.NET Version\CCSVB\CCSVB.vbproj
ccs\VB.NET Version\CCSVB\Database.vb
chapter 3 demos\RandomServiceAxis
chapter 3 demos\RandomServiceNET
chapter 3 demos\RandomServiceAxis\RandomNumberAXIS.java
chapter 3 demos\RandomServiceAxis\RandomNumberAxisClient.cs
chapter 3 demos\RandomServiceNET\RandomNumberNET.asmx
chapter 3 demos\RandomServiceNET\RandomNumberNET.cs
chapter 3 demos\RandomServiceNET\RandomNumberNetClient.cs
cps\cps.bat
cps\CPSAdminObjects.txt
cps\cps\CustomerProfile.class
cps\cps\CustomerProfile.java
cps\cps\MessageDetail.class
 Appendix B. Additional material 325

cps\cps\MessageDetail.java
cps\cps\MsgHandler.class
cps\cps\MsgHandler.java
cps\cps\OpenAccount.class
cps\cps\OpenAccount.java
cps\cps\QueryCustomerProfile.class
cps\cps\QueryCustomerProfile.java
cps\JAR\jaxen-core.jar
cps\JAR\jaxen-jdom.jar
cps\JAR\jdom.jar
cps\JAR\saxpath.jar
cps\JAR\xerces.jar
cps\JAR\xml-apis.jar
cps\XML\CustomerProfile.xml
ias\YuBankIASWS
ias\IASWebServiceSetup.msi
ias\readme.txt
ias\Setup.Exe
ias\Setup.Ini
ias\YuBankIASWS\bin
ias\YuBankIASWS\AssemblyInfo.cs
ias\YuBankIASWS\Global.asax
ias\YuBankIASWS\Global.asax.cs
ias\YuBankIASWS\Global.asax.resx
ias\YuBankIASWS\iasclient.cs
ias\YuBankIASWS\iasclient.exe
ias\YuBankIASWS\MQAccessCPS.cs
ias\YuBankIASWS\MQSOAP.dll
ias\YuBankIASWS\MsgQueryResult.xml
ias\YuBankIASWS\Portfolio.asmx
ias\YuBankIASWS\Portfolio.asmx.cs
ias\YuBankIASWS\Portfolio.asmx.resx
ias\YuBankIASWS\requestSQS.xml
ias\YuBankIASWS\ShareQuoteService.cs
ias\YuBankIASWS\sqs.cs
ias\YuBankIASWS\sqsoutput.xml
ias\YuBankIASWS\sqsoutput2.xml
ias\YuBankIASWS\Web.config
ias\YuBankIASWS\YuBankIASWS.csproj
ias\YuBankIASWS\YuBankIASWS.csproj.webinfo
ias\YuBankIASWS\YuBankIASWS.sln
ias\YuBankIASWS\bin\amqmdnet.dll
ias\YuBankIASWS\bin\MQSOAP.dll
ias\YuBankIASWS\bin\Portfolio.dll
ias\YuBankIASWS\bin\Portfolio.pdb
ias\YuBankIASWS\bin\YuBankIASWS.dll
ias\YuBankIASWS\bin\YuBankIASWS.pdb
sqs\ShareDataSource.xml
sqs\ShareQuote.java
326 WebSphere MQ Solutions in a Microsoft .NET Environment

sqs\lib\jaxen-core.jar
sqs\lib\jaxen-jdom.jar
sqs\lib\jdom.jar
sqs\lib\saxpath.jar
wmq setup\DOTDP.mqsc
wmq setup\DOTEP.mqsc
wmq setup\DOTIP.mqsc
wmq setup\DOTOP.mqsc
wmq setup\initWMQ.bat
wmq setup\initWMQ_Simple.bat
wmq setup\WSClient.mqsc
wmq setup\WSServer.mqsc
 Appendix B. Additional material 327

328 WebSphere MQ Solutions in a Microsoft .NET Environment

Glossary

Atomicity. Atomicity property of a transaction
guaranties that the transaction executes exactly
once and all the work required by its participants is
done or none of it is.

Consistency. The semantics, integrity and
consistent state of data must be persevered during
transformation from pre-transaction to
post-transaction phase. (For example travel
estimate transaction should not arbitrarily move
decimal point of prices quoted by other services).

Distributed transaction. A distributed transaction
updates resources of several resource managers.
The resources managers run on different machines.

Durability. A durable transaction assures that on
successful completion, all the updates to the
resources made by its operations persists, even if
the computer crashes immediately after the commit.

Global unit of work. A global unit of work updates
resources of the WebSphere MQ queue manager
and of other resource managers, like databases.
These global units of work can be coordinated by the
queue manager or by an external transaction
manager.

Isolation. In case of concurrent transaction
processing, Isolation guaranties that the outcome
obtained from a set of concurrent transactions are
identical to the outcome obtained by running each
transaction serially.

Local transaction. A local transaction updates
resources of one or more resource manager, like
WebSphere MQ or DB2 UDB. All resource
managers run on the same machine.

Local unit of work. A local unit of work only
updates resources of the WebSphere MQ queue
manager.
© Copyright IBM Corp. 2004. All rights reserved.
 329

330 WebSphere MQ Solutions in a Microsoft .NET Environment

acronyms
2PC Two-phase commit

ACID atomicity, consistency,
isolation, and durability

ADO ActiveX Data Objects

API Application Programming
Interface

AT Atomic transactions

BA Business activity

BSS Bank Service System

CA Certification Authority

CCS Credit Check System

CN Common Name

CPS Customer Profile System

CRL Certificate Revocation List

CSD Customer Service Diskette

CVS Concurrent Versions System

DB Database

DIME Direct Internet Message
Exchange

DLL Dynamic Link Library

DN Distinguished Names

DOB Date of birth

DOM Document Object Model

DST Digital Signature Trust

DTC Distributed Transaction
Coordinator

ECMA Standardizing Information and
Communication Systems

FTP File Transfer Protocol

GAC Global Assembly Cache

HTTP Hypertext Transfer Protocol

IAS Investment Advisory System

Abbreviations and
© Copyright IBM Corp. 2004. All rights reserved.
IBM International Business
Machines Corporation

ISO International Standards
Organization

ITSO International Technical
Support Organization

IVT Independent Verification Test

J2EE Java 2 Platform, Enterprise
Edition

JMS Java Message Service

JNDI Java Naming and Directory
Interface

JTA Java Transaction API

JVM Java Virtual Machine

JWS Java Web Service

MAC Message Authentication Code

MCA Message Channel Agent

MCS Microsoft Certificate Store

MMC Microsoft Management
Console

MQI Message Queue Interface

MSDN Microsoft Developer Network

MSMQ Microsoft Message Queuing
(MSMQ)

MTS Microsoft Transaction Server

OASIS Organization for the
Advancement of Structured
Information Standards

ODBC Open Database Connectivity

OLE Object Linking and
Embedding

PKI Public Key Infrastructure

QM Quality Management

QoS Quality of Service
 331

RA Regional Authorities

RM Resource Manager

RPC Remote Procedure Call

SAX Simple API for XML

SMTP Simple Mail Transfer Protocol

SOAP Simple Object Access
Protocol

SQS Share Quote System

SSL Secure Sockets Layer

TCP/IP Transmission Control
Protocol/Internet Protocol

TID Transaction ID

TM Transaction Manager

TP Transaction Processing

TPM Transaction Process
Managers

VB Visual Basic

VB .NET Visual Basic .NET

WS Web Service

WS-BPEL Business Process Execution
Language

WSDL Web Services Description
Language

WS-I Web Services Interoperability

WS-S Web Service Security

WWW World Wide Web

XML Extensible Markup Language
332 WebSphere MQ Solutions in a Microsoft .NET Environment

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information about ordering these publications, see “How to get IBM
Redbooks” on page 335. Note that some of the documents referenced here may
be available in softcopy only.

� MQSeries Programming Patterns, SG24-6506

� WebSphere MQ Security in an Enterprise Environment, SG24-6814

Other publications
These publications are also relevant as further information sources:

� WebSphere MQ for Windows Quick Beginnings, GC34-6073

� WebSphere MQ Script (MQSC) Command Reference, SC34-6055

� WebSphere MQ Using Java, SC34-6066

� WebSphere MQ Extended Transactional Clients, SC34-6275

� WebSphere MQ System Administration Guide, SC34-6068

� WebSphere MQ Application Programming Guide, SC34-6064

� WebSphere MQ Application Programming Reference, SC34-6062

� WebSphere MQ Security, SC34-6079

� Principles of Distributed Database Systems (2nd Edition), by M. Tamer Ozsu,
Patrick Valduriez. Prentice Hall, January 1999, ISBN 0136597076.

� Transaction Processing: Concepts and Techniques, by Jim Gray and Andreas
Reuter. Morgan Kaufmann, 1st edition 1993, ISBN 1558601902

� COM and .NET Component Services, by Juval Löwy. O’Reilly and Associates,
September 2001, ISBN 0596001037.

� Discover SOAP Encoding’s Impact on Web Service Performance, by Frank
Cohen; see article at:

http://www-106.ibm.com/developerworks/webservices/library/ws-soapenc/
© Copyright IBM Corp. 2004. All rights reserved. 333

http://www-106.ibm.com/developerworks/webservices/library/ws-soapenc/

These three tutorials are also relevant as further information sources. Note that a
free registration is currently necessary to receive these tutorials:

� “Creating a Web Service from a Java class”

https://www6.software.ibm.com/reg/devworks/dw-ws-cwsjc-i?S_TACT=103AMW18&S_
CMP=DEVXWS

� “Introduction to Web Services and the WSDK”

https://www6.software.ibm.com/reg/devworks/dw-ws-intwsdk-i?S_TACT=103AMW18&
S_CMP=DEVXWS

� “Web services - The Web’s next revolution”, by Doug Tidwell

http://www-106.ibm.com/developerworks/edu/ws-dw-wsbasics-i.html

Online resources
These Web sites and URLs are also relevant as further information sources:

� C# standards

http://www.ecma-international.org/

� Location for SupportPac MA0R

http://www-3.ibm.com/software/integration/support/supportpacs/individual/ma
0r.html

� Microsoft Developer Network (MSDN) library

http://msdn.microsoft.com/library/default.asp

� developerWorks: IBM resource for developers

http://www.ibm.com/developerWorks

� Discover SOAP encoding's impact on Web Service performance

http://www-106.ibm.com/developerworks/webservices/library/ws-soapenc/

� Specification: Web Services Transaction

http://www-106.ibm.com/developerworks/webservices/library/ws-transpec/

� Transactional client

http://www-3.ibm.com/software/integration/wmq/transclient.html

� Specification: Web Services Security

http://www-106.ibm.com/developerworks/webservices/library/ws-secure/

� SSL 3.0 specification

http://wp.netscape.com/eng/ssl3/

� Internet X.509 Public Key Infrastructure
334 WebSphere MQ Solutions in a Microsoft .NET Environment

http://www.ecma-international.org/
https://www6.software.ibm.com/reg/devworks/dw-ws-cwsjc-i?S_TACT=103AMW18&S_CMP=DEVXWS
http://www-3.ibm.com/software/integration/support/supportpacs/individual/ma0r.html
http://www-106.ibm.com/developerworks/edu/ws-dw-wsbasics-i.html
https://www6.software.ibm.com/reg/devworks/dw-ws-intwsdk-i?S_TACT=103AMW18&S_CMP=DEVXWS
http://msdn.microsoft.com/library/default.asp
http://www.ibm.com/developerWorks
http://www-106.ibm.com/developerworks/webservices/library/ws-soapenc/
http://www-106.ibm.com/developerworks/webservices/library/ws-transpec/
http://www-3.ibm.com/software/integration/wmq/transclient.html
http://www-106.ibm.com/developerworks/webservices/library/ws-secure/
http://wp.netscape.com/eng/ssl3/

http://www.ietf.org/internet-drafts/draft-ietf-pkix-logotypes-10.txt

� WebSphere MQ supported software

http://www-3.ibm.com/software/integration/mqfamily/platforms/supported/wsmq
_for_winnt2000_5_3.html

� OASIS

http://www.oasis-open.org/committees/wsbpel

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips,
draft publications and Additional materials, as well as order hardcopy Redbooks
or CD-ROMs, at this Web site:

ibm.com/redbooks

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
 Related publications 335

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
http://www.ietf.org/internet-drafts/draft-ietf-pkix-logotypes-10.txt
http://www-3.ibm.com/software/integration/mqfamily/platforms/supported/wsmq_for_winnt2000_5_3.html
http://www.oasis-open.org/committees/wsbpel

336 WebSphere MQ Solutions in a Microsoft .NET Environment

Index

Symbols
.NET application to .NET application 8
.NET application to a J2EE Web Service 10
.NET Application to J2EE Application 8
.NET Web Services and transactions 301

A
Access the DatabaseDOM in C# 125
Access the DatabaseDOM in VB .NET 130
Account opening 140
ACID properties 284, 291
Adding a reference to WebSphere MQ Transport for
SOAP 189
Adding external classes to the CLASSPATH 219
Adding IAS Web Service proxy 191
Adding the WebSphere MQ reference to the project
119
Additional WebSphere MQ configuration 56
Alternative solutions 161
Apache Axis 7
Application layer security services 252
Application Programming Interface (API) 4
Asymmetric and symmetric cryptography tech-
niques 263
Asymmetric key algorithm 255
Atomic Transactions (AT) 304
Atomicity 285
Attribute types commonly found in DN 259
Authentication 251
Authentication code 256
Authentication service 252
Authority 250–251
Authority database 251
Authority service 252
Authors xiv
AutoComplete attribute 297
Automatic Transaction 286

B
Bank service application 143, 147

Bank service application (C#) 121
Bridge between WebSphere MQ and Microsoft Mes-
© Copyright IBM Corp. 2004. All rights reserved.
sage Queuing (MSMQ) 162
BSS user interface testing 203
BSS Web Application deployment 197
BSS Web Application Solution 192
Builds of software components and packages 229
Business Activity (BA) 304
Business logic implementation 213
Business Process Execution Language (WS-BPEL)
304

C
C, C++ or Java API. 3
CA certificate 258
CA generates a digital certificate that contains 258
Calling deployWMQService 31
Calling the service from the IAS client 222
Certificate chain 261
Certificate Revocation List (CRL) 259, 262
Certificates

When they are no longer valid? 261
Certification Authority (CA) 258–259
Change request queue to use new initiation queue
63
Ciphertext 254
Client environment 24
Code example 287
Coding Standards 306
Common errors 305, 307
Common Name (CN) 259
Component Services 291
Component Services Administration 292
Concepts of SSL 262
Concurrent Versions System (CVS) 315
Confidentiality 251
Confidentiality service 253
Configuring BSS to use SOAP 135
Configuring BSS to use SSL 135
Configuring IIS for BSS Web Application 134
Consistency 285
Core systems overview 110
CPS and SQS communication logic testing 201
Create the DOM in C# 125
Create the DOM in VB .NET 129
 337

Create the new initiation queue 62–63
Credit check application 124
Credit check application C# snippet 125
Credit check application VB .NET snippet 129
Credit check database 124
Cryptographic concepts 254
Cryptographic techniques 255
Cryptography 251, 254
csUnit 313
Current status and future plans 69
Customer profile application 144, 150
Customer Service Diskette (CSD)

latest 4
Customizing authentication using SOAPHeaders
198

D
Data integrity 251
Data integrity service 253
Database 145
Decipherment 255
Decryption 255
Define the WebSphere MQ response queue 43
Define WebSphere MQ channel definitions 46
Demo (test) certificates 260
Demo facility 260
Deploy the service 54
Deploying BSS 134, 157
Deploying CCS 136
Deploying CPS 157
Deploying the Microsoft .NET service 39
Deployment 133, 157, 194, 219
Deployment of J2EE Web Services 48
Development 119, 147, 213
Digital certificate 258

What is it? 258
Digital signature 251, 257
Digital signature process 257
Direct Internet Message Exchange (DIME) 21
Distinguished Name (DN) 259
Distributed test in WebSphere MQ client mode 45,
59
Distributed test in WebSphere MQ server bindings
mode 57
Distributed transaction 283, 290–291, 294
Distributed Transaction Coordinator (DTC) 291
Document Object Model (DOM) 125, 213, 307
Document Style encoding (also known as messag-

ing style) 21
Downloading WebSphere MQ transport for SOAP
13
DTC terms 291
Durability 285

E
Eavesdropping 250
Effective programs 305
Encipherment 254
Encryption 254
Encryption and decryption algorithms 256
Environment Setup 110
Error handling in the Web Service 202
Examples

of common security mechanisms 251
WebSphere MQ transport for SOAP

used with a Microsoft .NET Web Service 36
used with J2EE Web Service 52

Executing MQSoapHost 35
Executing SimpleJMSListener 52
eXtensible Markup Language (XML) 6

F
File Transfer Protocol (FTP) 2
Functional testing 230

G
gacutil 220
gacutil utility 15
General data flow 231, 241
Generating WebSphere MQ reply 128, 132
Global Assembly Cache (GAC) 19
Global unit of work 291

H
Hash function 256–257
Hash method 280
HashTable 281
Hints and tips 305–306
How to

Access the DatabaseDOM in C# 125
Access the DatabaseDOM in VB .NET 130
Create the DOM in C# 125
Create the DOM in VB .NET 129
Read a WebSphere MQ message in C# 126
Read a WebSphere MQ message in VB.NET
338 WebSphere MQ Solutions in a Microsoft .NET Environment

130
Send a WebSphere MQ reply 129
Specify RPC or Document style encoding 22
Start BSS 136
Start CSS 137

Hypertext Transfer Protocol (HTTP) 2, 4, 7

I
IAS Web Service deployment 194
IAS Web Service testing

using Microsoft Visual Studio .NET 199
IBM (WebSphere Application Server) 304
Identification 251
Identification and authentication 250
Identification and authentication services 252–253
Identification service 252
identification service 252
iKeyman tool 260
Impersonating 250
Importing WebSphere MQ Transport for SOAP 190
Installation 17
Installing Internet Information Services (IIS) 90
Installing Microsoft Visual Studio .NET 93
Installing WebSphere MQ 90
Installing WebSphere MQ classes for Microsoft
.NET 90
Installing WebSphere MQ Transport for SOAP 90
Integration issues

solutions 305
Integration runtime environment 229
Interface definitions 118, 208
Internet Information Services (IIS) 4
Internet X.509 Public Key Infrastructure 254
Interoperability of the Web Services 2
Interoperability within heterogeneous environments
2
Inter-system communications 229
Introduction 283
Investment advisory 141
Investment advisory application 144, 148
Isolation 285
IVT 49
IVT (Independent Verification Test) 17

J
J2EE technology 6
Java 2 Platform, Enterprise Edition (J2EE) 1
Java Message Service (JMS) 146

Java Message Service (JMS) API 139
Java Naming and Directory Interface (JNDI) 146
Java Transaction API (JTA) 285, 331
Java Virtual Machine (JVM) 219
JMS administered objects 146
JMS listener 218
JMSListener 33
JUnit 313

L
Linked transactions using manual transaction man-
agement 296
Local transaction 283, 291, 294
Local unit of work 291
Long term maintenance 305

M
ma0r_netdir environment variable 15
Management Console (MMC) 299
Manual Transaction 286
Message Authentication Code (MAC) 257
Message digest 256–257
Message flow 80
Messaging service 1
Microsoft (BizTalk Server Technologies) 304
Microsoft .NET 1
Microsoft .NET Framework 7
Microsoft .NET Framework and SDK 15
Microsoft DTC transaction manager 292
Microsoft Internet Information Services (IIS) 14
Microsoft Management Console (MMC) 292
Microsoft Message Queuing (MSMQ) 1, 4
Microsoft Transaction Server

MTS and WebSphere MQ 300
Microsoft Transaction Server (MTS) 300

N
NET application to a .NET Web Service 9
New coding standards for the .NET technology 305
Non-repudiation 251, 253
NUnit 313

O
Obtaining personal certificates 260
Organization for the Advancement of Structured In-
formation Standards (OASIS) 304
Overview of security services 250
 Index 339

Overview of WebSphere MQ transport for SOAP 11

P
Persistent storage 215
Personal certificate 258
Plaintext 254
Planning the security services in use cases 252
Pre-Installation 15
Prerequisite software 14
Prerequisite software installation order 15
Process overview 116, 140, 208
Programming distributed transactions 294
Programming local transactions 285
Programming Web Services transaction in .NET en-
vironment 301
Public Key Infrastructure (PKI) 262

Q
Quality Management (QM) 228
Quality of Service (QoS) 228

R
Read a WebSphere MQ message in C# 126
Read a WebSphere MQ message in VB.NET 130
Redbooks Web site 335

Contact us xvii
Registering WebSphere MQ Transport for SOAP
190
Registration Authorities (RAs) 262
Remote Procedure Call (RPC) encoding 21
Remote Procedure Call (RPC) Literal encoding 21
Resource Manager (RM) 291
Roles of a CA 259
Root CA certificate 261
Run the trigger monitor with the new initiation queue
63
Runtime environment 219
Runtime errors 307

S
Scenario overview 117
Secure Sockets Layer (SSL) 4, 253
Secure Sockets Layer (SSL) introduction 262
Secure Sockets Layer (SSL) provides 262
Secure the transportation of messages between ap-
plications and Web Services 250
Securing the IAS Web Service 197

Security concepts 250
Security mechanisms 251
Security problems 250
Security services 250

application layer 252
overview 250
transmission layer 252

Security services that are identified in security archi-
tecture 250
Security that HTTP provides 2
Send a WebSphere MQ reply 129
Server configuration 82
Service application binary (Java classes and librar-
ies) 219
Service code use of external classes 59
Service operation definition 209
Setting environment variables 15
Setting up the JMS administered objects 158
ShareQuote service deployment 220
Signer certificate 258
Simple API for XML (SAX) 213, 307
Simple demonstration with SSL 65
Simple Mail Transfer Protocol (SMTP) 2
Simple Object Access Protocol (SOAP) 2, 4, 6, 20,
163
SOAP

What is it? 6
SOAP formatting 20
SOAP processing in Java 307
SOAP style and encoding variants 21
SOAP with attachments 21
Software prerequisites 90
Solution discussion 225
Solutions for integration issues 305
Specify RPC or Document style encoding 22
SSL authentication 263
SSL connection 263
SSL handshake 263
Standard Security 197
Start BSS 136
Start CSS 137
Start the prepared JMS listener 56
Start the prepared Microsoft .NET listener 43
Starting listeners with WebSphere MQ triggering 60
Submit 244
Symmetric cryptography techniques 263
Symmetric key algorithm 255
System Context 208
System context 118, 142
340 WebSphere MQ Solutions in a Microsoft .NET Environment

System integration 228
System integration and functional test

summary 248

T
Tampering 250
Techniques and implementation for securing the
transportation of messages 249
Test 1 Pass known data 137
Test 2 Pass unknown user 138
Test Case 1

successful account opening
full qualification 231

successful investment advisory
portfolio recommendations 242

Test Case 2
successful investment advisory

no investment 245
unsuccessful account opening

unqualified credit score 235
Test Case 3

negative tests
exception recovery and system unavailability
236

unsuccessful investment advisory
invalid customer data 246

Test Case 4
negative tests

exception recovery and system unavailability
247

Test data 229
Test result 224
Test the service 44, 57
Testing 136, 159, 222, 313
Transaction ID (TID) 294
Transaction Manager (TM) 292
Transaction Models in .NET Framework 286
Transaction Process Managers (TPM) 294
Transaction support under Windows 2000 291
Transactions 283–284
Transactions in a COM+ 285
Transmission layer security services 252–253
Two phase commit (2PC) protocol 293
Two-phase commit

What is it? 293

U
Unauthorized access 250

Unit Testing with csUnit 314
Unit Testing with JUnit 313
Unit Testing with NUnit 313
Use case 1

account opening 75, 231
account opening message flow 80

Use case 2
investment advisory 76, 241
investment advisory message flow 81

Use of SSLPeerName 66
User certificate 258
User database 251
Using a different initiation queue 62
Using Component Services Manager 299

V
VB.NET 5
Visual Basic (VB) 5
Visual SourceSafe 315

W
Web Service transactions 283, 300
Web Services 162
Web Services Description Language (WSDL) 25
Web Services Security 334
Web Services Security (WS-Security) 253
WebSphere Application Server 2
WebSphere MQ xiii, 1
WebSphere MQ as a transport mechanism 4
WebSphere MQ classes for Microsoft .NET xiii, xvi
WebSphere MQ classes for Microsoft .NET and
WebSphere MQ classes for Java 161
WebSphere MQ client connection options 30
WebSphere MQ configuration 83
WebSphere MQ definition 218
WebSphere MQ queue setup and WebSphere MQ
transport for SOAP deployment 196
WebSphere MQ setup 112
WebSphere MQ SSL support 263
WebSphere MQ terms 291
WebSphere MQ Transport for SOAP

SimpleJMSListener 49
WebSphere MQ transport for SOAP xiii, xvi

.NET deployment 25
and SSL 64
application development 23
checking the release level 20
deployment for IAS 185
 Index 341

installation 13
listener for .NET 33
overview 11
What is it? 12
with J2EE deployment 48

WebSphere MQ transport for SOAP and SSL 64
WebSphere MQ URI Syntax 29
WebSphere MQ, IBM messaging service 1
What is a digital certificate? 258
What is SOAP? 6
What is two-phase commit? 293
What is WebSphere MQ transport for SOAP? 12
When certificates are no longer valid? 261
World Wide Web (WWW) 9
Write the .NET ASMX service directive file 38
Write the client application 41, 55
Write the Web Service 36, 53
WS Coordination 304
WS Transaction 303–304

X
XML data format 209
XML element versus attribute 307
XML processing in Java 307
XML schema 307
XML style comments 306

Y
YuBank architecture 82
342 WebSphere MQ Solutions in a Microsoft .NET Environment

(0.5” spine)
0.475”<->

0.875”
250 <->

 459 pages

W
ebSphere M

Q Solutions in a M
icrosoft .NET Environm

ent

®

SG24-7012-00 ISBN 0738498521

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

WebSphere MQ Solutions
in a Microsoft .NET
Environment

Invoking WebSphere
MQ from a .NET
application

WebSphere MQ as a
SOAP transport
mechanism

.NET and J2EE
integration using
WebSphere MQ

The importance of the .NET platform is growing. This IBM Redbook
illustrates how to integrate WebSphere MQ technology in a .NET
environment, specifically with Microsoft Windows, by providing
samples and guidance about how this can be achieved. It
demonstrates the use of WebSphere MQ technology in a Microsoft
Windows platform and proves WebSphere MQ is well integrated with
the .NET environment.

This redbook demonstrates the use of WebSphere MQ in a .NET Web
Service in these ways:

WebSphere MQ is used as a transport mechanism for the invocation
of the Web Service by modifying the SOAP protocol wrapper to utilize
WebSphere MQ rather than HTTP.

WebSphere MQ is used as a middleware product in the
implementation of a Web Service. For example, the Web Service
sends an MQ message as a request to another application and when
this application responds, the Web Service provides a response back
to the .NET Web Service client. Some sample applications in, C#,
J2EE and VB.NET also demonstrate this.

Finally, a discussion about transactions is included, which highlights
how WebSphere MQ participates in a transaction managed by DTC,
and also how WebSphere MQ implements and uses Windows
security interfaces, such as Secure Sockets Layer (SSL), is covered.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Chapter 1. Introduction
	Chapter 2. Overview
	2.1 The aim
	2.2 Technologies
	2.2.1 .NET environment and C# programming language
	2.2.2 J2EE
	2.2.3 WebSphere MQ
	2.2.4 WebSphere MQ classes for Microsoft .NET
	2.2.5 What is SOAP?
	2.2.6 WebSphere MQ Transport for SOAP

	2.3 Usage scenarios
	2.3.1 Usage scenarios: .NET application to .NET application
	2.3.2 Usage scenarios: .NET application to J2EE application
	2.3.3 Usage scenarios: .NET application to a .NET Web Service
	2.3.4 Usage scenarios: .NET application to a J2EE Web Service

	Chapter 3. WebSphere MQ Transport for SOAP
	3.1 What is WebSphere MQ transport for SOAP?
	3.2 WebSphere MQ transport for SOAP Installation
	3.2.1 Downloading WebSphere MQ transport for SOAP
	3.2.2 Prerequisite software
	3.2.3 Pre-installation
	3.2.4 Installation
	3.2.5 Running the demonstration programs
	3.2.6 Re-registration to the Global Assembly Cache
	3.2.7 Checking the WebSphere MQ transport for SOAP release level

	3.3 SOAP formatting
	3.3.1 How to specify RPC or Document style encoding

	3.4 WebSphere MQ transport for SOAP application development
	3.4.1 Client environment

	3.5 WebSphere MQ transport for SOAP .NET deployment
	3.5.1 WebSphere MQ URI Syntax
	3.5.2 WebSphere MQ client connection options
	3.5.3 Calling deployWMQService

	3.6 WebSphere MQ transport for SOAP listener for .NET
	3.6.1 Executing MQSoapHost

	3.7 A simple example with a Microsoft .NET Web Service
	3.7.1 Write the Web Service
	3.7.2 Write the .NET ASMX service directive file
	3.7.3 Deploying the Microsoft .NET service
	3.7.4 Write the client application
	3.7.5 Define the WebSphere MQ response queue
	3.7.6 Start the prepared Microsoft .NET listener
	3.7.7 Test the service
	3.7.8 Distributed test in WebSphere MQ client mode
	3.7.9 Distributed test in WebSphere MQ server bindings mode
	3.7.10 Distributed WebSphere MQ using MQ clustering

	3.8 WebSphere MQ transport for SOAP with J2EE deployment
	3.8.1 Deployment of J2EE Web Services
	3.8.2 WebSphere MQ Transport for SOAP SimpleJMSListener
	3.8.3 Executing SimpleJMSListener

	3.9 A simple example with a J2EE Web Service
	3.9.1 Write the Web Service
	3.9.2 Deploy the service
	3.9.3 Write the client application
	3.9.4 Additional WebSphere MQ configuration
	3.9.5 Start the prepared JMS listener
	3.9.6 Test the service
	3.9.7 Distributed test in WebSphere MQ server bindings mode
	3.9.8 Distributed test in WebSphere MQ client mode
	3.9.9 Distributed WebSphere MQ using MQ clustering
	3.9.10 Service code use of external classes

	3.10 Starting listeners with WebSphere MQ triggering
	3.10.1 Using a different initiation queue

	3.11 WebSphere MQ transport for SOAP and SSL
	3.11.1 Simple demonstration with SSL
	3.11.2 Use of SSLPeerName

	3.12 Asynchronous invocation of Web Services
	3.13 Current status and future plans

	Chapter 4. Business case scenario
	4.1 Business domain
	4.2 Business process
	4.2.1 Use case 1: Account opening
	4.2.2 Use case 2: Investment advisory

	4.3 Non-functional requirements and assumptions

	Chapter 5. Solution design
	5.1 Message flow
	5.1.1 Use case 1: Account opening message flow
	5.1.2 Use case 2: Investment advisory message flow

	5.2 Server configuration
	5.3 WebSphere MQ configuration

	Chapter 6. Environment setup
	6.1 Software prerequisites
	6.2 Installation
	6.2.1 Installing WebSphere MQ
	6.2.2 Installing WebSphere MQ classes for Microsoft .NET
	6.2.3 Installing WebSphere MQ Transport for SOAP
	6.2.4 Installing Internet Information Services (IIS)
	6.2.5 Installing Microsoft Visual Studio .NET

	6.3 Environment Setup
	6.3.1 Core systems overview

	Chapter 7. Messaging solution: .NET application to .NET application
	7.1 Process overview
	7.1.1 Scenario overview

	7.2 System context
	7.2.1 Interface definitions

	7.3 Development
	7.3.1 Adding the WebSphere MQ reference to the project
	7.3.2 Bank service application (C#)
	7.3.3 Credit check application
	7.3.4 Credit check application C# snippet
	7.3.5 Credit check application VB .NET snippet

	7.4 Deployment
	7.4.1 Deploying BSS
	7.4.2 Deploying CCS

	7.5 Testing
	7.5.1 How to start BSS
	7.5.2 How to start CCS
	7.5.3 Test 1 pass known data
	7.5.4 Test 2 pass unknown user

	Chapter 8. Messaging solution: .NET application to J2EE application
	8.1 Process overview
	8.1.1 Account opening
	8.1.2 Investment advisory

	8.2 System context
	8.2.1 Bank service application
	8.2.2 Investment advisory application
	8.2.3 Customer profile application
	8.2.4 Database
	8.2.5 JMS administered objects

	8.3 Development
	8.3.1 Bank service application
	8.3.2 Investment advisory application
	8.3.3 Customer profile application

	8.4 Deployment
	8.4.1 Deploying BSS
	8.4.2 Deploying CPS

	8.5 Testing
	8.6 Alternative solutions
	8.6.1 WebSphere MQ classes for Microsoft .NETand WebSphere MQ classes for Java
	8.6.2 Web Services
	8.6.3 Bridge between WebSphere MQ and Microsoft Message Queuing (MSMQ)

	Chapter 9. Messaging solution: .NET client to .NET Web Services using WebSphere MQ SOAP transport
	9.1 Process overview
	9.2 System context
	9.3 Development
	9.3.1 .NET Web Service development
	9.3.2 IAS Web Service solution
	9.3.3 WebSphere MQ transport for SOAP deployment for IAS
	9.3.4 BSS client
	9.3.5 BSS Web Application solution

	9.4 Deployment
	9.4.1 IAS Web Service deployment
	9.4.2 WebSphere MQ queue setup and WebSphere MQ transport for SOAP deployment
	9.4.3 BSS Web Application deployment
	9.4.4 Securing the IAS Web Service

	9.5 Testing
	9.5.1 IAS Web Service testing using Microsoft Visual Studio .NET
	9.5.2 BSS user interface testing

	Chapter 10. Messaging solution: .NET client to J2EE Web Services using WebSphere MQ SOAP transport
	10.1 Process overview
	10.2 System context
	10.2.1 Interface definition
	10.2.2 Service operation definition
	10.2.3 XML data format

	10.3 Development
	10.3.1 Business logic implementation
	10.3.2 Persistent storage
	10.3.3 WebSphere MQ definition
	10.3.4 Adding external classes to the CLASSPATH

	10.4 Deployment
	10.4.1 Runtime environment
	10.4.2 ShareQuote service deployment

	10.5 Testing
	10.5.1 Calling the service from the IAS client
	10.5.2 Test result

	10.6 Solution discussion

	Chapter 11. System integration and functional test
	11.1 Scope and objectives
	11.2 System integration
	11.2.1 Runtime environment
	11.2.2 Test data
	11.2.3 System build and deployment
	11.2.4 System startup

	11.3 Functional test
	11.3.1 Entrance and exit criteria
	11.3.2 Use case 1: Account opening
	11.3.3 Use case 2: Investment advisory

	11.4 Summary

	Chapter 12. Security
	12.1 Security concepts
	12.1.1 Security services
	12.1.2 Security mechanisms

	12.2 Planning the security services in use cases
	12.2.1 Application layer security services
	12.2.2 Transmission layer security services

	12.3 Cryptographic concepts
	12.3.1 Cryptography
	12.3.2 Message digest
	12.3.3 Digital signature
	12.3.4 Digital certificate
	12.3.5 Public Key Infrastructure (PKI)

	12.4 Secure Sockets Layer (SSL) introduction
	12.4.1 Secure Sockets Layer(SSL) concepts
	12.4.2 CipherSuites and CipherSpecs

	12.5 WebSphere MQ SSL support
	12.6 WebSphere MQ working with SSL on Windows
	12.7 Deploy SSL support in use cases
	12.7.1 Obtaining certificates
	12.7.2 Deploying SSL support in CCS
	12.7.3 Deploying SSL support in IAS
	12.7.4 Deploying SSL support in BSS

	Chapter 13. Transactions
	13.1 Local transactions
	13.1.1 ACID properties of a transaction
	13.1.2 Programming local transactions

	13.2 Distributed transactions
	13.2.1 Transaction support under Windows 2000
	13.2.2 Programming distributed transactions: Credit Check Service
	13.2.3 Microsoft Transaction Server: MTS and WebSphere MQ

	13.3 Web Service transactions
	13.3.1 .NET Web Services and transactions
	13.3.2 Programming Web Services transaction in .NET environment
	13.3.3 WS Transaction

	Chapter 14. Best practices
	14.1 Coding standards
	14.2 Hints and tips
	14.2.1 XML style comments
	14.2.2 XML processing in Java
	14.2.3 SOAP processing in Java
	14.2.4 XML element versus attribute

	14.3 Common errors
	14.4 Testing
	14.4.1 Unit Testing with JUnit
	14.4.2 Unit Testing with NUnit
	14.4.3 Unit Testing with csUnit

	14.5 Version management
	14.5.1 ClearCase
	14.5.2 Concurrent Versions System
	14.5.3 Visual SourceSafe

	Appendix A. Scripts, source code and test data for YuBank
	WebSphere MQ Setup
	Use case 1
	Use case 2

	Appendix B. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material

	Glossary
	Abbreviations and acronyms
	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

