Smalltalk and
|:“!£E.EI! Orientation

Smalltalk and Object Orientation:

An Introduction

John Hunt

JayDee Technology Ltd,
Hartham Park
Corsham,
Wiltshire,, SN13 ORP
United Kingdom

Email: john.hunt@jaydeetechnology.co.uk

'http://www.jaydeetechnol ogy.co.uk

http://www.jaydeetechnology.co.uk

Preface

This book was originally written to support an introductory course in Object Orientation through the
medium of Smalltalk (and VisualWorks in particular). However, it can be used as a book to teach the
reader Smalltalk, to introduce object orientation as well as present object oriented design and analysis.

It takes as its basic premise that most Computer Scientists/ Software Engineers learn best by doing
rather than from theoretical notes. The chapters therefore attempt to intro duce concepts by getting you
the reader to do things, rather than by extensive theoretical discussions. This means that these chapters
take a hands -on approach to the subject and assume that the student/reader has a suitable Smalltalk
environment available to them.

The chapters are listed below and are divided into six parts. The reader is advised to work through
Parts 1 and 3 thoroughly in order to gain a detailed understanding of object orientation. Part 2 then
provides an introduction to the Smalltalk environment and language. Other chapters may then be dipped
into as required. For example, if the reader wishes to hone their Smalltalk skills then the chaptersin Part
4 would be useful. However, if at that point they wish to get on and discover the deligh ts of graphical
user interfacesin Smalltalk, then Part 5 could be read next. Part 6 presents some more advances
subjects such as metaclasses and concurrency which are not required for straight forward Smalltalk
development.

Content Summary

Part 1: Introduction to Object Orientation

Chapter 1: Introduction to Object Orientation

The aim of this chapter isto provide an introduction to the range of concepts and ideas which make up
object technology. It presents the background which led to the acceptance of object orientation as a
mainstream technology and discusses the pedigree of the Smalltalk language.

Chapter 2: Elements of Object Orientation

This chapter provides a more formal definition of the terminology introduced in Chapter 1. It also
considers the advantages and disadvantages of an object oriented approach compared to more traditional
procedural approaches.

Chapter 3: Constructing an Object Oriented System

A typical problem for many people when being introduced to a new approach is that they understand the
terminology and the concepts but not how to use them. This chapter aims to aleviate this problem by
presenting a detailed worked example of the way in which an object oriented system may be designed
and constructed. It does so without referencet o any particular language so that language issues should
not confuse the discussion.

Part 2: The Smalltalk Language

Chapter 4: An Introduction to Smalltalk

The aim of this chapter isto provide some background on the history of Smalltalk and the developm ent
environments which are available to support it (such as the VisualWorks system). It also considers some
of the tools the reader will encounter.

Chapter 5: A Little Smalltalk

This chapter presents a number of other tools such as the inspectors and debu ggersavailablein
VisualWorks. It then uses aworked example to help the user to use some of the devel opment tools
available.

Chapter 6: Smalltalk Building Blocks
The chapter introduces the basic elements the Smalltalk language, it discusses the concep t of classesin
Smalltalk and how they are defined.

Chapter 7: Smalltalk Constructs
This chapter presents further details of the Smalltalk language including the representation and use of
numbers, strings and characters.

Chapter 8: An Example Smalltalk Class

In Chapter 7, the reader is presented with a detailed worked example of software development in
Smalltalk. This example presents a very simple class definition which uses only those concepts which
have been introduced at this stage. Theintentionist o illustrate how the constructs and language
elements can be combined in areal (if smple) program.

Chapter 9: Control and Iteration

This chapter introduces how control and iteration are achieved in Smalltalk. To do this a number of
concepts which are un ique to Smalltalk are also discussed (such as the block object). To simplify this
process for the reader, equivalent C constructs are illustrated beside Smalltalk constructs (where they
exist).

Chapter 10: The Collection Classes

This chapter discusses pro bably the most widely used class hierarchy in Smalltalk; the collection class

hierarchy. It presents the hierarchy in general and some of the commonly used collection classes. It also
illustrates how these classes can be used to construct other collection style classes such as queues and
stacks.

Chapter 11: Further Collection Classes
This chapter concludes the examination of the collection classes available in Smalltalk and presents an
application constructed using these classes.

Chapter 12: An Object Oriented Organizer

This chapter presents a detailed example application constructed using the collection classes. The
Organizer isintended as an electronic personal Organizer. It therefore possesses an address book, a
diary (or appointments section) and a section for notes. The remainder of this chapter describes one way
of implementing such an Organizer.

Chapter 13: Sreamsand Files

This chapter discusses the second most used class hierarchy in Smalltalk; the Stream classes. The
Stream classes are used (amongst other things) for accessing files. The Binary Object Streaming Service
for storing objectsin filesis also discussed.

Chapter 14: The Magnitude Class Hierarchy
This chapter considers the magnitude class and those classes which inherit fromit. This includesthe
Number hierarchy. The classes Character, Time and Date are also considered.

Chapter 15: Some More Tools of the Trade
This chapter introduces the use of breakpointsin Smalltalk, the purpose of the change list file and how
tofilein and file out Smalltalk code.

Part 3: Object Oriented Design

Chapter 16: Object Oriented Analysis and Design

This chapter introduces the concepts of object oriented analysis and design. It reviews a number of the
more popular techniques such as OOA, OMT, Objector y and Booch. It also briefly considers the
unification of the OMT and Booch notations.

Chapter 17: The Unified Modeling Language

The Unified Modeling Language (or UML for short) is athird generation object -oriented modeling
language which adapts and exte nds the published notations used in the Booch, OMT and Objectory
methods. It isintended that the UML will form a single, common, widely usable modeling language for

arange of object oriented design methods (including Booch, Objectory and OMT). Itisaso intended
that it should be applicable in awide range of applications and domains. This chapter (and the next)
summarize the UML notation.

Chapter 18: UML: Dynamic Modeling and Deployment
This chapter continues the description of the Unified Modeling Lan guage (UML) started in the last
chapter.

Chapter 19: The Object Modeling Technique

This chapter, and the next, discuss the influential design method referred to as the Object Modeling
Technique (OMT). It summarizes the main phases of OMT using the UML not ation. One extension to
OMT istheintroduction of use case models from Objectory to improve the requirements analysis
process. Thisis motivated by the inclusion of use case diagramsin the UML.

Chapter 20: More Object Modeling Technique
This chapter continues the description of the Object Modeling Technique (OMT).

Chapter 21: Frameworks and Patterns for Object Oriented Design

The aim of this chapter is to introduce the concept of frameworks and in particular patterns. Thisis till
arelatively new idea within Object Orientation, but one which isgrowing in popularity at an incredible
rate.

Part 4. Testing and Style

Chapter 22: Testing Object Oriented Systems

Object oriented systems may make code easier to reuse and may be supported by object oriented
analysis and design methods, but they do not guarantee that the code is correct. This chapter looks at
some of the issues behind testing object oriented systems.

Chapter 23: Method and Class Testing
The last chapter discussed the problems facing the test er of an object oriented system (and in particular
a Smalltalk system). This chapter considers current best practice in testing object oriented systems.

Chapter 24: Smalltalk Style Guidelines

The aim of this chapter is the promotion of readable, understan dable, concise and efficient Smalltalk
code. A point to note is that style guidelines for languages such as Pascal do not cover many of the
issues which are important in Smalltalk. As in any programming language there are a number of
acknowledged bad pract ices which are not specific to Smalltalk, for example the use of global
variables! Such guidelines are familiar to programmers of most languages. This section will therefore
try to concentrate on those style issues which are specific to Smalltalk.

Part 5. Graphical Interfacesin Smalltalk

Chapter 25: The Perform and Dependency Mechanisms

In this chapter the use of perform to provide an alternative method for sending messages is considered.
Thisisfollowed by a practical discussion of the dependency mecha nism. This includes what the
dependency mechanism is, why you might want to use, how you construct a dependency and the effect
that it has.

Chapter 26: The ModeViewController Architecture

The ModetView-Controller (or MV C) architecture is the basis upowhich user interfaces are constructed in
Smalltalk. The architecture separates out the application from the user interface. This chapter introduces the
MV C architecture and explains the motivation behind it. A worked example is presented to illustrate the
theoretical description.

Chapter 27: Graphic User Interface Construction Tools

The user interface construction facilitiesin Smalltalk are subject to the widest variation between
dialects of any aspect of the language. This chapter concentrates onthef acilities provided by the user
interface building facilitiesin VisualWorks.

Chapter 28: A Visual Organizer
This chapter describes a detailed worked example of how a user interface can be constructed for the
Organizer application constructed earlier in the book.

Chapter 29: Using a View Within a Window

This chapter explains how to use MV C applications within a VisualWorks window. It is useful to be
able to do this as not al user interfaces can be accommodated directly by the user interface builder in
VisualWorks.

Part 6: Further Smalltalk

Chapter 30: Memory Management and Garbage Collection

This chapter considers why automatic memory management is desirable. It also discusses how
Smalltalk’s memory is structured and the garbage collection strategies used. It concludes by considering
how to force VisualWorks to place long term objects in the most appropriate region of memory.

Chapter 31: Concurrency in Smalltalk
This chapter presents and explains a short example of how time slicing can be accomplished wi thin
Smalltalk.

Chapter 32: The Metaclass Framework

The aim of this chapter isto discuss the concept of classes, what they actually are, what they are really
used for and why they are important. To do thisit introduces the concept of ametaclassand con siders
how they are used to provide inheritance and the creation of instances. It also discusses whether it is
important for the Smalltalk programmer to be aware of the existence of the metaclass.

Part 7. The Future

Chapter 33:The Future for Object Technology

This chapter brings the many threads in this book together and considers the future of object oriented
systems.

Appendix

Appendix A: The Smalltalk Language Syntax

Obtaining Sour ce Code Examples

The source code for the examplesin thisbook is a vailable on the web at URL.:

Typographical Conventions

In this book the standard typeface is Times, however cour i er isused to identify source code. For
example,a := 2 + 3.

Trademarks

ParcPlace, VisuaWorks, Smalltalk -80, Smalltalk/V are registered trademarks, and BOSSisa
trademark, of ParcPlace-Digitalk Systems, Inc. Sun and Java are trademarks of Sun Microsystems, Inc.
M S-Windows and Windows 95 are registered trademarks of Microsoft Corporation. Appleis a
registered trademark of Apple Computer, Inc. UNIX isaregistered trademark of AT&T. The X
Window System is a trademark of the Massachusetts Institute of Technology. All other brand names are
trademarks of their respective holders.

Acknowledgments

The content of this book has been refined by alarge number of studentsin both academia and industry.
Many of these people have provided useful feed back and constructive comments. A number of them
have actively suggested topic areas which might be covered or which were poorly described; thank you
all for your interest. In particular thanks to Peter Holland, Paul Jones, Dave James, John Counsell, Clive
King, Andy Whittle and others who | am sure | have forgotten to mention. | would also like to thank
Rebecca M oore, of Springer -Verlag, for her patience and thoroughness during the preparation of this
book. Finally, thanks to my wife, Denise Cooke, for suffering my disappearances to the study most
evenings to work on “the book” and for helping with my many “printing” problems.

http://www.jaydeetechnology.co.uk/books.htm/

Preface

1. INTRODUCTION TO OBJECT ORIENTATION.....ooiiieiteecee ettt 15
1.1 INTRODUGCTION ...eiiiitieieeitteeeeteee e ettt e e seuseeeesabeeeeassseeesasseeassabseaaasseessansesesasseeesansseeesasseeesansenans 15
1.2 PROGRAMMING PARADIGMS........ueiieiiiiieeeitteeeeiteeeeeteeeseteeassisseeaasssesasaassessssssessssssesesasssesannens 15
1.3 REVOLUTION VERSUS EVOLUTION .. .utiiiiiiteeeeiteeeeetteeeeeseeesssseeassstesesassessssnsessssssesesassesssnnens 16
1.4 HISTORY /PEDIGREE OF OBJECT ORIENTED LANGUAGEScecotieitieereeesteeeereeessreesseeesssessseeennns 17
15 FUNDAMENTALS OF OBJECT ORIENTATION ..eiuutiieeeetieeeeeteeeeeteeeeesateeeeeseeseenseeseesseeesennneessnnnns 18
1.6 THE FOUR CATECHISM OF OBJECT ORIENTATION ...cciiiitiieeeitieeeeereeeeeneeeeeeareeeeeseeessnneeessnseeens 18
1.7 ENCAPSULATION ...eiiiiiitiieeetiee e et eeeestteeeeesteesetaeeeeeabeeeeasseeesssseeaassteeesasseseasnseesaasbeeesansneesannnns 19
1.8 INHERITANCE ... ttieeeittete ettt e e et ee e e ettt e e eettee e e saaeeeeaateeeeeaaseeeesaseeeaansseeesansesesasseeesasseeesnsseeesansnnans 20
1.9 AABSTRACTIONttieeiteieeeitteeeeeeeeeesbeeeeeteeeesaaseeeaasteeeeasseeeessseaeaasseeesasseeaesssaeesansseeesanseeesassenann 22
1.0 POLYMORPHISM ...cuiiiiiiiieeeeiteeeeeteeeeeteeeeeetteeeseaseeesaabeseeasseeesasseeesasbeeesansseessnseeesasbeeesanseeessnnens 22
I B R V1Y 1Y =3 2RO 23
1.12 FURTHER READING.......utieiiitieeeietteeeeteeeeaetteeeseaseeeeaabeeesasseessasseeesasteeesansseesasseeasassesesansseessnnens 24

2. ELEMENTSOF OBJECT ORIENTATION ..oooiiioiie e et e e s 25
2.1 INTRODUGCTION 1veeeieeeieitureeeeeeeiasusreeeeesseesasrasesesssesasssssesesesssasssssesssesssassssesseesssasasssssesessensnnnes 25
2.2 TERMINOLOGY .eeieeiieietrereieeeeeiiitteteeeseeesasssseeesesesassssesssssssasssssesssesssasssssesssesssnssssesesesseesssssenees 25
2.3 TYPES OF HIERARCHIES IN OBJECT ORIENTATION ...uvtiieieeeieiirreeeeeeseeinnreeeeesseessssseseeesseesnsssnees 26
2.4 RV N =T 1 = = 3 28
25 THE MOVE TO OBJECT TECHNOLOGYuuttrriieeeeeieiirrreeeeeessesssreeesesssasssssesesssssasssssesesesssasssssssees 32
2.6 S LY LY Y =S 32
2.7 EXERCISES.....icictteeeiee e e e ettt et e e e e e setbe e e e e e e eesaabeeeeeeeee s asbaseeeeeeesssbsseeeaseasassraseeesesesansssseeeeeeesnnsns 33
2.8 FURTHER READING......cieiitttttieeeeesiittereeesssesisraseeesssesasssssessssessassssssessssesassssssessssasssssssssesssssnnnes 33

3. CONSTRUCTING AN OBJECT ORIENTED SYSTEMccoeeiiieieeceeceecee e 34
31 INTRODUGCTION .utiieiiuieieieteeeeiteeeeeetteeeseaseeessseeeeassseeesasseeessaseeasasseessansesesassesesansseessnssesesssnnenn 34
3.2 THE APPLICATION: WINDSCREEN WIPE SIMULATIONuuieiiiiiieeeeieeeeereeeeessreeeeeneeessnseesssnneeens 34
3.3 WHERE DO WE START ... it ittt e e ettt e ee et e e e ttee e s stte e e eesaee e e sanaeeeasteeesansseassnsasesanseeesenseeessnsanenn 35
34 IDENTIFYING THE OBJECTS . iteeeeeitieeeeeureeeesteeeaaasteeesaseesssssseesaasseessanssssssssesesanssssssnssssssssnees 35
35 IDENTIFYING THE SERVICES/METHODSccitieetieiteeeeeestreesseesareesssessssessnseesaseesseesasessnseesanens 36
3.6 REFINING THE OBJIECT S .. cuttiieiieieeesiteeeeesteeestaeeessateeesasseeasassseassstesesanssesssnssesssnssesesansssessnnens 37
3.7 BRINGING IT ALL TOGETHERuttteeiiteeeeeirteeeeiteeeeesuteeesaseeessssaeesasssesesaassssssssssesssssesesansseessnnens 37
3.8 SUMMOARY wttieeiieeeeeette e e eetee e e setaeeeaaabeeesaseeeesasseeaeasteeasasseessssesasasseeeaansseeesasseeesssanasansseseanns 41
39 = 7 =TSP 41
3.10 FURTHER READING. ..ceieittteeeitteteeeteeeesteeeeaatteeesaseeessseeasaasseessassesasssssesansseessassssessnsesessssseeesans 41

4, ANINTRODUCTION TO SMALLTALK oottt eevee e eveeeeevae e enree s envee s 44
41 1 (010 o 1 [0) TR 44
4.2 VVHAT IS SMALLTALK cetee ettt e ettt e e ettt e eeteee e eeteeeeeetteeeeesaeeesssseeeeaasseeesasseeesssseeesansseesensseeesassenenn 44
4.3 OBUJIECTS IN SMALLTALK 1eeeettee e ettt e eetteeeeette e e eetaeeesesteeeeesaeeesesseeessssesesassseseenssesesassenesansseeeans 45
4.4 [TS 0] A R 45
45 THE SMALLTALK ENVIRONMENT .. .uvtiiiiitteeeeetteeeeetteeeeesseeeeesbesesessessessseessassesesanssesssnsseessassenens 47
4.6 FURTHER READING.....ccieittttttieeeeeiiitteeeeeeeeesiabeseeeeseesaassaseeaaseesassssssesaseesassssseeesseasassssseseseessnnes 52

B A LITTLE SMALLTALK ettt ettt et s b et e s reeebe e e ebeeebessebeesntesebaesnneeans 53
51 INTRODUGCTION ..utiieiiuieieiiieeeeiteeeeeetteeeseasaeessaaaeeeassseeesasseeeesaseeeaasseeesanseeesasseeesansseessnnnenesansnnenn 53
52 THE VW ORKSPACE.ueiiiitteeeeitteeeeiteeeesteeesassteeesasseeessbaeeeassteeesasseeasaseeeeaastesesansanessasseessanseeenn 53
53 TS = = S TR 54
54 LT = SR 54
55 ERROR PROCESSINGueeeiiuteeeiittieeeitteeeeaisteeesueeeesssteeesasseeasssseesasssesesasssesssssseessnssesesansensssnnens 55
5.6 SOME SMALLTALK etteeiitttteeeitteeesitteeesstteeeseateeesaseeesssteeasasseeesassaeessssaeesanssesssnssesessnsenessnssesesnns 56
57 WORKING WITH SMALLTALK ..ttt i icteeeeiteie e ettt e e eeteeessteeeeessteeeesssaeassnneseassssesesasesessnsssessssseeens 57
5.8 S LY LY N = S 60
59 FURTHER READING......uttieiittteeiteeeeestteeeeeiseeessaeeeessateeesasseeesssaseaasstesesansesssssssessnssesesansseessnnens 60

6. SMALLTALK BUILDING BLOCKS..... .ottt ettt eee e et eeaae e ennee e e enree s 61

6.1 INTRODUGCTION 1etiiiieiiiettttiiesesssesssreetiesssasissbasesesssessssssssssesssasssssesesssssasssssesssssssasssssssssessesssses 61

6.2 THE BASICS OF THE LANGUAGEuttiiiiteieeeetiee e ettt e s steeeeestteeeeeseeassnseaassssesesansseessnnseessassenans 61
6.3 CLASSES ..eiieittee e ettt e e ettt e e ettt e e seteeeeeeabeeeeaseeeesasseeaeaabeeaaaseeeesasseeaeasbaeesabbeeeeanseeasanbaeaaaasreaeanns 62
6.4 IMETHOD DEFINITIONS ...cieieuttteeiittieeestteeeeesteeeeiuseeasasbeeesasseeasasseeaasssesesassssssssseesssssesssansseessnnnns 66
7. SMALLTALK CONSTRUCTS ...ttt etee s stee et e e stee st e e steesae s e staesnne e s nraesnessnraesneeens 69
7.1 INTRODUGCTION ...utieiuteeiuteesteesureesseessteesseessseesseesasessseesssessnsessssesssessssessnsessssessnsesssessnsessnsees 69
7.2 NUMBERS AND OPERATORS ...cuvteiteresteesteeessessssesessessssesassessssessssessssesssssssssesssssssssssssssssnessnses 69
7.3 CHARACTERS AND STRINGS ...ceiuviiitiesieeeteesteesseesstesssseesssessssessseesssesssessssesssseesssssssssssssssnns 70
A NS S T e N Y 1= N TR 71
S TV 7Y 2 - = I = R 71
7.6 MESSAGES AND MESSAGE SELECTORSccccutvtriieeeeeiiutreteeeeseesasrsseeesssesassssseesssessasssssesesesssnnns 73
7.7 S LY LY 1Y = U 75
7.8 FURTHER READING......ceiiittttttieeeeesitreeeeesssesiuraseeesssesasssasesesseesassssssessssssassrsssessseesassssssesssssnnnes 75
8. AN EXAMPLE SMALLTALK CLASS. ...ttt ettt sttt sabe e sne e sare s 76
81 INTRODUGCTION ..eiiiiitieieiitteeeeteee e ettt e e eeaseeessabeeaeasseeesasneeeesabeeaaasseeesanseeesasseeesaasseeesnssenesassnnens 76
8.2 THE CLASS PERSON....ceiiiitiieieitiee e ettt e e steeeeeetteeeeeaseeessbeeeeassseeeeasseasssseeeaasreeesansaeesenseeesanrenann 76
83 DEFINING METHODS......cieiitiiieiiteie e e ettt eeeitteeesueeeeseabeeesasseeasssseeaassbesesassessssseesansseeesanseeessnnnns 77
8.4 CREATING AN INSTANCE .cttiieiiteeeeitteeeeetteeeeetaeeeseteeesaasseessasseeassasseasaassesesassesassnsesesanssesesnns 80
9. CONTROL AND ITERATION ..ottt e e et e eetee e e eaeee e esnveeeeensaesesnnneessnneeeeen 81
9.1 INTRODUGCTION 1viieieeeieittreeeeeesiasiusrereeesseesasrasesesssesasssssesesesssasssssesssesssassssesseesssasasssssesessessnnses 81
9.2 (071407 511 N O 81
9.3 BLOCKS cretiieii ittt ettt e e e e e s e e e e e e s e st be e e e e e e ee s b baseeeeeea s aabraeeeaeeeaaararreeaeeeaanrrrreeeeeaaannes 81
9.4 CONTROL STRUCTURES.....ccecttiieitteeeeisteeesesteeeesesseessastesesassssssssssesssasesesasssessssssessssssenesasssesesnns 83
9.5 SUMMOARY ...ttt e eteee e e ettt e eeteeeesebaeeasasbesesasaeesssaeeesasbesesassessasseessasseeesansbesesasseeessnsenesanssnessnns 86
9.6 FURTHER READINGciiictteteiee e e e siitete e e e e e e sitbereeesssesnsbaseeasseesassbsseessseesassraseeesseesasssssesesssssnnns 86
10. THE COLLECTION CLASSES..... oottt ettt ettt stee et s eteesbe s s sbaesbessnbaesnreeans 86
10.1 INTRODUCTION ...uuttiiiitieeeaatteeeeaseeessteeesaasseessaaseessassesesassseessassesesassesesansssessnsssessssesesansesessnnens 86
10.2 THE COLLECTION CLASSHIERARCHY ...ciiiitiiieiiiieeeiieeeeeiteeeeseuseeesssteeesasseessnsessssssesesansssessnens 87
10.3 CHOOSING A COLLECTION CLASSuttieeeetteeesereeeesteeesaasseessaseessassesssasssssssssssesssssesssanssssssnnees 88
10.4 THE COLLECTION CLASSutiiiiitteeeiteeeeaatteeesaseessatesesassseessassesesassesesasssesssssssesssssesssansesessnnens 88
FO.5 BAG ittt st et b e be e be e e be e eabe e aabeeaabeeebeeabeeebeeaateeebeeeareesreeans 89
J0.8 SET ittt ittt et e et be e e be e e be e e bee e beeaabee e beeabeeebeeebeeebeeeabeenbeeaareesreeans 20
10.7 ORDEREDCOLLECTION ...ceiittttteiatteeeiteeesaateeeesaseesassesesassseessassesesssesesassssessssssesssssesssasssesssnsens 91
10.8 STACK AND QUEUE CLASSESIN SMALLTALK tuttttieiiiiiitreeiieeiiisissreseeesssessssssseesssesssssssssesssesssnnns 92
O S V11 1Y =3 2SR (o)
10.10 FURTHER READING.......utiiiiitiiieiiieee e ettt e s eitteeeeeneeessteeesaasteeesanseeassnaeeesasteeesanseessenseessansenenn o)
11. FURTHER COLLECTION CLASSES.......oo et 95
J11.1 INTRODUGCTION ..tttieeeeeeieiittteeeeeeesastsreeeeesesaassseseeessaassassesseesseassassasssesseesasssssseesseesasssssseesseesnnses 95
11.2 SORTEDCOLLECTION ...vtieieetteeeieeeeeeeteeeeasteeeeseseeesassesesassseesassseessssseseaassseesassseesasssesssansseessnsens 95
5 G T I 1 OO 96
J1i4 INTERVALS. .. ttteiee e e e e ettt et e e e e e e et te e e e e e e s e taateeeeeaeeasasbaseeeaseaaasbaseeeaseasasbssseasssasassraneeeaseesnnses 96
R T AN = 7 SRRSO PRRRRNS 97
11.6 MULTI DIMENSIONAL ARRAYS.....ueiiiiteieeeetteeeeeeeeeeetesesessseesseseeessssesesasseessnsseeseassesesaseeesesens 97
J1.7 DICTIONARIES....utttieteeeieiittteeeeeeesestteeeeesesastsreeeeeasaaasasseseeasseasassasseeassasasbssseesssesassraseeesseesnnses 98
JL.8 STRINGS ..o ctteie et e eeee e ettt e e et e e et e e e e e taeeeeeaeeeeeasbeseeassee e e sseeeaasseeeeansseeessseeeastesesanseeesannees 99
11.9 ITERATING OVER COLLECTIONS. ...ceiiicteieeeitteeeeeteeeeeteeeseasteeesaseesseseeesasssessseseeessseeesansseseanns 100
11.10 INSERTING INTO A COLLECTION ...uuutiiiieeeieiiutreeeeeeeeesusrereeeeseesassssseeeeseesasssseeesesssassssseesasenn 101
11.11 CONVERSION. ...cceiiuteieeeitreeeeeteeeeeteeeseatteeseeaeeessaeeeeasseeessasseeeesssesesassaeesansseeseasteeesansseesennees 102
12. AN OBJECT ORIENTED ORGANIZERcuviiiteeeeeeceeeee ettt 104
12,1 INTRODUCTION ...uuttieiiteeeeeiuteeeeaseressseeesassseeesassssesssssesasssesesasssesssnsssessnssesssnsssssssnsssesansseseanns 104
12.2 THE ORGANIZER ...oeeiiiteieeeiteeeeetteesstaeeaesateeesaasaeessaaeesasseeesasseeesaseeesanssessanssesessnssnesansseseanns 104
12.3 THE CLASSDEFINITION ...ceiiitttteeatteeeiteeeeassreeesasseessasseesasssesesasssssssnsssessnssesssassssessnsssesansesesnns 104
12.4 THEINITIALIZE-RELEASE PROTOCOL ...uveeeeiuteeeisreeeesiueeeeassreeesaseesssssssssasssesssnsssssssnsssessnsesesnns 105

12.6 THE PRIVATE-UPDATING PROTOCOL ..vuviiiiiiiiitreriieeeessisissseeesessssssssssssssssssssssssssessssssssssssesssssns 107
12.7 THE ACCESSING PROTOCOL .viiiiiiiiutreriiesseesiisssseeesessiassssesssesssassssssssesssssssssssssessssssssssssessssss 107
12.8 THE FINANCIAL MANAGER PROJECT ..vvieiiiiiitririieeesiiiisstressesssssssssssssssssssssssssssssssssssssssesssssns 109
13. STREAMSAND FILES oottt e e s e vt e e aae e e s sate e e s abaeeseneeessenreeen 111
0 50 R [N = 01U T [111
T = =7 Y 1Y O 111
TG T N I = T =S 112
13.4 THE BINARY OBJECT STREAMING SERVICE ...vvviiiieiiiesieerieeesssssissesesesssesssssssssessssssssssssesssses 114
13.5 USING FILESWITH THE FINANCIAL MANAGERcciiiiieiieteieee e e eestteeeeeeseeseisseeeeesssssesssnseesssseas 116
G TS Y 1V N = 22 117
14. THE MAGNITUDE CLASSHIERARCHY oottt 118
I R | N = (o TU o 1 N 118
14.2 THE CLASS MAGNITUDE...uutttiiiiiiiiitttriieeeeesiitsseeesesssssssseeesesssassssssssesssesssssssesesssssssssssessesas 118
R T T =N oINSt B N = 119
N = oINS SRl N1 1 119
145 THE CLASS CHARACTER. ...utttiiitiiiiiitttrite s e e e sitbateeeseessasibabeeeeesssassabbaeeeesssesabbsseeesssssaabbaseeesesaan 120
14.6 FURTHER READING......ciitttttttiieeiieiitterteeseeesissbaseeesesssasssssesssesssassabasssesseessabbssseessssssssbsseessesaan 121
15. SOME MORE TOOLSOF THE TRADE ...ttt et e e e 122
15,1 INTRODUGCTION ..eeeieeeeeeeeeeeeereseseeeeesesessnes 122
15.2 ERRORSAND BREAKPOINTS ..iiiiiiiicittetiieestesisseseeesesssasissseessssssssssssssssssesssssssseesssssssssssesssssns 122
I5.3 FILE IN/FILE OUT S utittiteieeessreesseesesessesseesasssesssassssessasssesasssesssasssssssasssesssssesssassssessssssesssssessssns 123
S O N N 1 125
155 WORKING WITH PROJECTS. c.eeevteeeeeeeeeeseeeeeeeeeesessnsne 126
RN TS LY 1Y - = 22 128
16. OBJECT ORIENTED ANALYSISAND DESIGNociioiieieiie et 131
6.1 INTRODUGCTION .utttiiiieeiieiiuureeiieseiesisssseeesssssassssseessssssassssssssesssasssssssssssssasssssssesesssssnssssseessssns 131
16.2 THE UNIFIED MODELING LANGUAGEcoiiittttiiei ettt e s sesabse e e s s e sabbase s e s s s sabbaaeesessean 131
16.3 OBJECT ORIENTED DESIGN METHODS ...cciiiiiittttiieeeeiiiisisreeeiesssesssssssessssesssssssesssssssssssssssssssnns 131
16.4 OBJIECT ORIENTED ANALY SIS ciiiiiittttiieeiieiiiiiriees e s s sesibabeeesessssssaabesssessssssssbsseeesssssssssnsessssesns 132
16.5 THE BOOCH METHODcccuutieiieiiiiiiiririiesseeiissbsseeesesssssssssssssssssassssssssssssesssssssesesssssssssssesssssns 132
16.6 THE OBJECT MODELING TECHNIQUE ...cccciiiitririieeeeiiiisrreeeiesssesssrssseessssssssssssssssssssssssssssssnns 133
16.7 THE OBJECTORY METHOD..uuciiiiiiiiitteriieseeeiiisssseeesessiassssesssesssasssssssseessssssssssssessssssssssssessssns 134
16.8 THE FUSION METHODcccuutitiieiiiiiiitiriieseeeiisibaseeesesssasssssesssssssassssssssesssesssssssssssssssssssssssssesnns 135
RS TS 1Y 1Y N 2 2 136
17. THE UNIFIED MODELING LANGUAGEooo oottt e 137
17.1 INTRODUGCTION ..ceeivieieeeeeeeeeeeeeeeseeesesessnns 137
17.2 THEUML INFRASTRUCTUREccccttttiieeeiesetieteeeeeessessasseesesssessssssssessssssassssesasssssssssnseeessses 138
17.3 USE CASE DIAGRAMSeuttttieiiee e eesttee et e e s e e s eetbate e e e e s s sessbateeesessssssabeseeeessessabbsseeessssssbrnteeessssan 139
17.4 THE OBJECT MODEL ..ovvvitiieeeeeeeeeeeeeeeesseeeessnes 139
S T = 20X =S 145
18. UML: DYNAMIC MODELING AND DEPLOYMENT ..ot 147
18.1 INTRODUGCTION .uutteiiieeiiiiiusrerieesesesisrsseeesseesassssseeesssssassssssssesssassssssssessssesssssssssesssssnsssssssssssss 147
18.2 DYNAMIC MODELING FACILITIES .uuttttteeeiiiiiirreeeeessiasisseeeeesssasisssssseessessssssssssesssssssssssesessns 147
18.3 DEPLOYMENT DIAGRAMS . ..uutiiiiiieiittttiieeeeesibbareeesesssasbabeeeeesssasssbaseeesssessbbrsesesssssassbsseeessesan 152
S T Y 1Y 1 A 2O 153
19. THE OBJECT MODELING TECHNIQUE ..ottt 154
S I R N =16 10 o T N 154
19.2 THE OMT METHODOLOGY ..eiiiiiiiietreriieeseesissssseeesesssasisssssesesssssssssssssssssessssssesessssssssssssessssss 154
S R T AN N TN I Y = 7N 154
20. MORE OBJECT MODELING TECHNIQUE........cccoiie e 162

20.1 INTRODUCTION L.uuuttttiieeiieiiittrieessiesissestessssesssssssseasssssasssseeesssssasssssseessssssssssesssesssssssssesssssss 162

20.2 DYNAMIC MODELS . utiiiiiiiiittitiiee e iesitbeteiesssesssbssseassssssbbsseeesssssabbaseeesssssabbsbeeesesssassbabeeeassaas 162
bR T B 1= S e N = 7N = 166
20.4 IMPLEMENTATION PHASE ...uutitiiiiiiiiittetiie s e s esiibssiiesssssasbbsseesssessabbaseeesssssaabbsbeeesessssbbsseeeasssas 169
O R TS ULV Y 1Y = 2 170
21. FRAMEWORKSAND PATTERNSFOR OBJECT ORIENTED DESIGN................... 171
240 T A N =T 0 16 Tt 1 T N 171
21.2 PATTERNSAND FRAMEWORKSuvtiiiiiteieeietteeeeereeessssseessssseessasssssssssesssassesssassensssnsssessssenes 171
21.3 ANINTRODUCTION TO HOTDRAWutttiiiiiiiicitetiiee e e e seebereiesseesesseseeesssssessssseeesessssssanseeeesssas 174
214 VVHERE DO YOU START 2. ittttiieteieieittetteesssesasssssssesssssassssstessssssasssssssessssssssssssesssssssssssesssssns 176
215 BOXDRAWRFIGUREcoeiiiiicttetiiee e e eseiteteieessesesaesteesssssassbsseeasssssasbesseesssssaasssesesssssssssssrsesssss 177
DA TS WY Y . =27 180
22. TESTING OBJECT ORIENTED SYSTEMS ...ttt s 182
7 R | N 200016 o 1 T | 182
22.2 WHY ISTESTING OBJECT ORIENTED SYSTEMSHARD?....utvtiiiiiiiiiiiiriiee e e esiiirreees e e ssssaseeeee e 182
G T U N[= N N 184
224 ABSTRACT SUPERCLASSES ...tutiiiiiiiiitrttiieeeeisiitisseeesssssissssseessssssssssssssssssssssssssesssesssnsssssseeessas 185
S T = N[0 = U | Y 1 T 185
ST = 0 IV To == TS 187
22.7 ADDITIONAL SMALLTALK SPECIFIC FEATURES....ccttiiiiiiittrriieeeeesiiisreeeseessssssssesessssssssssssessssans 188
s TS UL Y 1 = 2 189
22.9 FURTHER READING. ...ciiiiiiiittitiieeeiesittestiesesesasbssseesssssabbsseesssessasbaseeesssssabbsseeesesssassbaseneasssan 189
23. METHOD AND CLASSTESTING ...ttt ettt e e e s s aare s 190
231 INTRODUCTION 1.uuutteriieesiesiiureeeresssesiassesesesssesasssssseesssssassssseesssssassssssessssssessssseesesssssssssseeesssns 190
23.2 OBJECT INTEGRATION TESTING .oeieeietveriieeeeesessesteesssssasssseeesssssasssssessssssssssssssesssssssssssessssens 192
23.3 SYSTEM TESTING . ..utttiieeiieiiireriressiesistsestresssesasssssteasssssassssseeesssssassssssessssssessssesessssssssssseesssssns 192
PG B R I o =S N 193
DG TS WY Y 1 =27 193
23.6 FURTHER READING. ...ciiiiiiieittttiieesiesestteteresssssessbssssesssssassssseessssssassssesesssssassrsesessssssssssreesssss 193
24. SMALLTALK STYLE GUIDELINES ...ttt st 195
ot R | N (011U o 1 [195
Y = 1Y = I = 195
e T O I S =S O 197
N S V1 = 0 LS 200
245 NAMING MESSAGE PROTOCOLScicttttiieeeiiiiirrriiesessiisbsseessssssssssseessssssssssssessssssssssssssssessnns 202
24.6 FURTHER READING. . .ciiiiiiiiittttiieeeiesiibeteeesesesesbaseeesesssabbsseeessessassbsseeesssssasssssesesessanssbsrenseessan 203
25. THE PERFORM AND DEPENDENCY MECHANISMS. ... 205
22 Y00 R LN 1210 16T 1 205
25.2 THE PERFORM MECHANISM ...eeiiiiiiietieeiieeeeeseiaeeeieeesesessssseeessssssssssssessssssssssssssssssssssssssseesssss 205
25.3 THE DEPENDENCY MECHANISMciuuttetiieeeieieiieeieeseessessssseeesssssassssssessssssssssssssessssssssssssesessss 206
B2 X S WY Y 1 = 2 212
26. THE MODEL-VIEW-CONTROLLER ARCHITECTUREocoeeeee e 213
26.1 INTRODUCTION ..uuutttriieeiiiiiittereieseeesitbeseeesssesasssssseesssssasssssesesssssassssesssssssssssssesssesssnssssessessas 213
26.2 THEMVC ARCHITECTURE PRINCIPLESccoieittttiieeeesiiiibrreeeseeeseiisseeesessssssssesssssssnsssssessesssns 213
26.3 THEMVC WITH THE STATEMENT MODEL ...cuuvtuiiiiieiiiiiiirriieseeeseiiinseeessessessssseessssssnssssesssssens 218
26.4 VIEWSAND SUBVIEWScicttitiieeeieiitteeeeeseeesesbaseessssssasssseessssssasssssesssssssssssssesssessssssssssseessn 220
26.5 THE CONTROLLER HIERARGCHY ..ciiiiiettetiieeeeiiiitireieesesssissbsseeessssssssssesssssssssssssessssssssssssssssessans 221
S SIS UL Y Y 1Y = 2 222
26.7 FURTHER READING. . .cciiiiiiiittitiieeeeesittereeesesesessbasseesesssasbsseeessessassbsseeesssssasssssesesesssnssbssenssessan 222
27. GRAPHICAL USER INTERFACE CONSTRUCTION TOOLS......ccoooeeeeeevrierieee e 223
DA % R | N 1210 16T 1 T 223
27.2 WHATISA USER INTERFACE BUILDER? ..ot ittetiiee e e e sttt ee s e e s seivatt e e s s e s sebnaaeeesssssessaneeeassenn 223

10

27.3 VISUALWORKSWINDOW PAINTING TOOLSceeeeurieeiiirieeeenteeeeeisreessanseessssreeesasssessssnsssesssesens 224
27.4 \WINDOW SPECIFICATION AND CREATION......uciiieitiiieiitieeeiteeeeeasreeesanseeesssreeesasseeessnnsesesssesens 226
27.5 APPLICATION MODELSVERSUS DOMAIN MODELS.......uutteiitiieeeiiteeeeireeeesreeeeesseeesennseeessnneeens 227
27.6 DEFINING A WINDOW’' SFUNCTIONALITY .eciiitiieieiieeeeiiteeeecteeeeestre e e snaeeessnseeesesneesenneeessnnenans 228
277 INITIALIZATION 1oiiettieeeittiee e ettt e eeiteeeeeeuseeesssbeeesasseesasseeassabeeesansseeesssesasasseeasasseessnnseeasansanann 229
27.8 RESOURCE FINDER......cttiiiiiiiie ettt e e eittee e e ettt e eeitte e e seaaeeessabeeesesseessanseeaessbeeasaseeesannseeasssrenans 230
27.9 VALUEHOLDERS.......oii i ittie e cteee ettt e e e ettee e e ettt e e e e te e e e e aae e e e eabeeesasseeesnseeaeasbeeesanseeeesnneeassnranens 231
27.10 THE ONCHANGESEND: TO: MESSAGE........uticieitieeeiiteeeeeatteeeeaseeessssseessssseessaseeesssssesssssesssans 232
27.11 W ISUAL REUSE.....ciiittieeeitteiecetteeeeteeeaaatteeesesseeassbeeeaasseeeaassseassasseaaasseeesasseeasssseessnsseeasnns 233
27.12 METHOD OF WORKING WITH THE Ul BUILDERcccctiiieitiieeectteeecetee e e cveeeeesnte e e eenreeaeenneea s 234
27.13 SUMMOARY ...itteeeiteee e e ettt e e eetee e e sbeeeeeatteeesasseeeeasbeeeaasseeesasseeeeasbeeesanseeesasseessasteeesansseesannnns 235
28. A VISUAL ORGANIZER ...ttt e e etae e et e e e satee e eenaee e s snaeeesaseeesenns 236
< 35 A N =T 0 16 Lot 1 T N 236
28.2 VISUALORGANIZER CLASSueieiecteeeeeiueeeeeesteeeeesseeessssseessssseessasssssssssseessasseessasseesssnsseessasseeees 236
28.3 THE ADDRESSBOOK CLASS.....ceeiictteeeiiteeeeeetteeeeesseeessssseessssseeesesssesssssseessssseessasseessansseessssseeees 239
P T S N Y 1Y VY = 243
28.5 THEVISUAL FINANCIAL MANAGER APPLICATIONcccuveeeeetteeeeeeeeeeeseeeeessseeeeesseesssnnneessesseeens 243
29. USING A VIEW WITHIN A WINDOW ...ttt ettt et s ereeevee s 244
29.1 INTRODUCTION .eiiieutieeiittieeeeteeeeaitteeesauseeesasbeeesasseesaasseeesssseeesasseeesassesesassesasanssesssnnseeessnsenens 244
29.2 THE CUSTOM VIEW WIDGETceeieitteeeiiutieeeiieeeeeiteeeesasseeesssseeesasssesssassesessssesesasssssssnsssesssenens 245
29.3 THE STRUCTURE OF THE APPLICATION ...eiiiiutiieieitiieeeitteeeeetteeesessteessenseeeesaseeesasseessnnsesessnsenens 246
29.4 THEINTERACTIONSBETWEEN OBJECTS....cccuttieieittieeeitteeeestteeesesreessansesessssesesasseesssnssssesssenens 247
29.5 THE CLASSESINVOLVED ..ccciiutiieieitteeeiiutieeesuteeesaasseessnssesssasseeesasssesssassessssssssesasssssssnssssssssesens 250
29.6 ADD A DELETE WIDGET OPTIONuuttiiiiutieeeiuteeeeateeessasseeesssseeesasssesssassessssssssesasssesssnssssssseeens 255
DA TS U 1Y 1Y VY = ST 255
29.8 FURTHER READING. ...c.cicttteeeitttteeeitteeesitteeesssteeesassseessasseeasasseeesaasseessassessssssesssasssesssnsssessssenes 255
30. MEMORY MANAGEMENT AND GARBAGE COLLECTION......cccceeeveeeeeeeeeeiieeeene 257
G0 I A N =T o 16 ot N O 257
30.2 WHY HAVE AUTOMATIC MEMORY MANAGEMENT?uviieiitieeeetreeeetreeeeenreeeeeteeeeenneeessnseee s 257
30.3 VISUALWORKSMEMORY MANAGEMENTcvviiieitrieeiitreeeeisteeeeeisresssssseesssssesesasssesssssssssssssenes 258
30.4 GARBAGE COLLECTION AND MEMORY COMPACTIONccciitiieeeitreeeerreeeeesreeeeesseeessnnseessssseeens 259
30.5 PLACING OBJIECTSIN PERMSPACEcueieiitiieceitteeeeieeeeeeteeeeestteeesareeesssbeeesensaesssnneessssreeens 259
31. CONCURRENCY IN SMALLTALK oottt etee e steeesvee s svaeentee s raeereeens 261
G 1 I A N =T o 16 Lo 1 N ST 261
31.2 CONCURRENT PROCESSES......0ceeitittteeiitteeeesteeesassseessaseessaseeesasssesssassesssasssesasssssssnssssssssseses 261
31.3 PROCESSES IN SMALLTALK ...uttieieiieeeeiteeeesteeeeeitteessesseeesssteeesassesssnsesssssseeesanssesssnnsssessnsesens 262
31.4 A CONCURRENT SMALLTALK EXAMPLE ..ccccuttieietieeecitteeeestteeesectteessnneeessateeeseneeesenneeessnnenens 264
315 FURTHER READING. ...cccicttteeeitttteieitteeesiuseeessuteeesaseeessasseeesasseeesaasseessanseeesasseeesanseessannnneessnsenenn 267
32. THE METACLASS FRAMEWORK ...ttt 268
G ¥4 N N1 =T o 16 ot 1 [| N [SR 268
32,2 WHAT ARE CLASSES?.....eeeeeeeetieeeetee e e eteeeeeteeeeeaaeeeeeaaeeeessteeesasteeeasseeeeasseeesasseeesnseeesasrenens 268
32.3 CLASSESAND METACLASSES.....ccectteeiitreeeeeteeeeeiteeesseseeesasteeesesssesssssseeesasseseeasseesssnsseesssseees 269
32.4 CLASSDESCRIPTION AND BEHAVIORcceiiitiieieteeeeeieeeeeeteeeeeetteeeeareeesssveeeeesaesssnneeesenseeens 271
325 THEMETACLASS CONCEPT GOESRECURSIVE!ooiiiiiiee ettt 272
32.6 FURTHER READING.cccttieeeetteeeeeetteeeeeeeeeeeteeesesssesseesseeeessseeesaassessssseeasasseeeeanseessansseeessssenens 275
33. THE FUTURE FOR OBJECT TECHNOLOGYooiiiiiieectee ettt st s 278
GG 35 A N =T 16 Lo 1 N SRS 278
33.2 THE SMALLTALK LANGUAGE ...cccccttieeitteee e etteee e tteessetseeessateeesesteessnneeesasseeesasseessnsesessnsnnens 278
33.3 OBJECT ORIENTED DEVELOPMENT TOOLKITS ..uttiieiitiieeeiieeeserteeesnneeessnteeesenneesenneeessnnneens 280
33.4 THEINTERNET AND OBJECTS. . ceeiecttteeiiuteeeeiuteeesaseeeesanseeesssseeesasssessssssssssssesesasssssssnnssssssssenes 281
33.5 OBJECT ORIENTED DATABASESuttiiiiteeeeitieeeeeitteessitseeeessteeesassteessassesesssseeesasssesssnsessssssenes 281
33.6 SMALLTALK ASA TRAINING ENVIRONMENT ...ecieiuieieiiueeeeesteeeessreeesnnseessssseeesanssesssnnssssssseeens 282
33.7 OBJECT TECHNOLOGY: THENEXT FIVE YEARSottiiiiiieeeiiieecetteesseeeessnteeeseneeessnneessnnnneens 282

11

34.

34.1
34.2
34.3
344
34.5
34.6

APPENDIX: THE SMALLTALK LANGUAGE SYNTAX ..ccooiirierereeneneeeneseeeeeneens 284

BASIC SYNTAX .ttt sttt ettt n e e e e een e r e e e e nnn e e e nre e nreennenns 284
LITERALSAND VARIABLEScccttiueesteereereeresseesseesneesnessnesnssessmeesneesneenesssesnnesnnssnessnesnsssnnes 285
CLASSES AND METHODS. . .c.uteueeuteseetestessessesseeseessesessessessessessessessessessessessessesssensessensessessenses 287
BLOCKS ..ttt r e r e ne s 288
CLASSBOOLEANecttitiiteeieee et se ettt sttt se e et bbbt se e e sr e b e s bt sreen e e e ensesn e nennesrennis 289
COLLECTIONS ...ttt ittt sttt eessesse st see bt st s seese e s e e seeebesbe e bt ese e e et e se e b e s b ereeb e e e ensesnenennenrennis 289

12

Part One

| ntroduction to Object
Orientation

14

1. Introduction to Object Orientation

1.1 Introduction

Thisbook is intended as an introduction to object orientation for computer science students or those
actively involved in the software industry. It assumes familiarity with standard computing concepts such
as stacks, memory allocation etc. and with a procedural language such as C. It uses this background to
provide a practical introduction to object technology. To do thisit uses Smalltalk, one of the earliest
pure object oriented languages.

The approach taken in this book isto try to introduce a variety of concepts through practical
experience with an object oriented language. It also tries to take the reader beyond the level of the
language syntax to the philosophy and practice of objec oriented devel opment.

In the remainder of this chapter we will consider the various programming paradigms which have
preceded aobject orientation. We will then examine what the primary concepts in object orientation are
and consider how to enable abject orientation to be achieved.

1.2 Programming paradigms

Software construction is still more of an art than a science. Despite the best efforts of many software
engineers, software systems are still delivered late, over budget and not up to the requirementsof th e
user. This situation has been with us for many years (indeed the first conference to raise awareness of
this problem was the NATO Software Engineering Conference of 1968 which coined the term software
crisis). Since then therehav e been avariety of programming paradigms which have either been
developed explicitly to deal with thisissue or which have been applied to it.

A programming paradigm is a particular programming style which embodies a particular
philosophy. These philosophies usually represent some sort of insight which sets a new type of best
practice. For a programming language to support a particular programming paradigm it must not just
alow adoption of that paradigm (you can use object oriented programming techniques in assembler -
but would you want to?) it must actively support implementations based on that paradigm. This usually
means that the language must support constructs which make development using that paradigm straight-
forward.

The major programming paradigms which have appeared in computer science include;

Functional Lisp isthe classic example of afunctional language (although by no means the only one for
example, ML isavery widely used functional language). These languages place far more
emphasis on ap plying afunction (often recursively) to a set of one or more dataitems. The
function would then return avalue - the result of evaluating the function. If the function changed
any dataitems then this was a side effect of the function. Thereis (was) limited support for more
agorithmic solutions which might rely on repetition viaiteration. The functional approach
turned out to be extremely useful as away of implementing complex systems for early Al
researchers.

Procedural as exemplified by languagessu ch as Pascal and C. These were an attempt to move
programming languages to a higher level (than the earlier assembler languages). The emphasis
was now on algorithmic solutions and on procedures which operated on data items. They were
extremely effective, but software developers still encountered difficulties. This was partly due to
the increased complexity of the systems typically being developed. It was a so because, although
high level procedural languages removed the possibility of certain types of error occurring and
increased productivity, devel opers could still cause problems for themselves. For example, the

15

interfaces between different parts of the system might be incompatible, but this might not
become obvious until integration testing or system testing.

Modular Languages such as Modula-2 and Ada employ modularization. In these languages a module
hides its data from module users. The users of the module can only access that data via defined
interfaces. These interfaces are “published” so that users know what interfaces are available (and
their definitions) and can check that they are using the correct versions.

Object oriented Thisisthe most recent “commercia” programming paradigm. This approach can be
seen as taking modularization a step further. Not only do you have explicit modules (in this case
objects) but these objects can inherit features from one another. We can of course ask “why
another programming paradigm?’. The answer to this partly liesin the fa ilure of many software
development projects to keep to budget, remain within time scales and to give the user what they
want. Of course, it should never be assumed that object orientation is the answer to all these
problems, it isreally just another tool available to software devel opers.

Thisbook is about this last programming paradigm. It attempts to introduce this paradigm through the
medium of an object oriented programming language. It assumes that the magjority of readerswill have a
background in at least one procedural language (in particular withaC -like language). It therefore
compares and contrasts the facilities provided with such alanguage at appropriate times.

It should be seen from the above list, that object orientation, even though it isquite different in many
ways from the procedural approach, has developed from it. Y ou should therefore not throw away all
that you have learnt using other approaches. Many of the good practices in other languages are till
good practicesin an object orie nted language. However, there will be new practicesto learn aswell as
new syntax. It will be much more than a process of learning anew syntax - you have a new philosophy
tolearn.

1.3 Revolution versus evolution

In almost every area of scientific endeavort here are periods of evolution followed by periods of
revolution and then evolution again. That is, someideaor theory is held to be “accepted” (not
necessarily true but at least accepted). During this period the theory is refined by successive
experiments / discoveries etc. Then at some point, the theory is challenged by a new theory. This new
theory istypicaly held by asmall set of extremely fervent believers. It is often derided by those who
are staunch supporters of the existing theory. Astime conti nues, either this new theory is proved wrong
and disappears, or more and more are drawn to the new theory until the old theory has very few
supports.

There are many examples of this phenomenain science. For example, the Copernican theory of the
earth rotating around the sun, Einstein’ s theory of relativity and Darwin’s theory of evolution. Men such
as Darwin and those who led him to his discoveries were revolutionaries. They went against the current
belief of the times and introduced a new set of theories . These theories were initially derided but have
since become generally accepted. Indeed we are now in an evolutionary phase, with regard to the theory
of evolution, where Darwin’ s theories are being refined. For example, Darwin believed that the
mechanism of fertilization of an egg was derived from an old Greek theory referred to as Pangenesis.
Every organ and tissue was assumed to produce granules, called gemmules. These were combined to
make up the sex cells. Of course we now believe this to be wrong and it was Darwin’s own cousin,
Francis Galton, who helped to disprove the Pangenesis theory. Whether we will enter a new
revolutionary phase where the theory of evolution will be over -turned is probably unlikely, however,
Einstein’stheory of relatively may well be (and is already being) challenged.

Programming is another example of this revolution / evolution cycle. The move from low level to
high level programming was one such revolution (and you can still find people who will insist that low
level machine code programming is best). Object orientation is another revolution, which in thiscaseis
still happening. Over the past ten years object orientation has become much more widely accepted and
you will find many organizations, both suppliers and users of so ftware, giving it lip service. However,
you will also find many in the computer industry who are far from convinced. A senior colleague of
mine recently told me that he believed that object orientation was severely over -hyped (which it may
be) and that he really couldn’t see the benefits it offered. Hopefully, this book will convince him (and
others) that object orientation has a great deal to offer.

16

Itislikely that something will come along to challenge object oriented programming, just asit has
challenged procedural programming, as the current software devel opment approach to use. It isaso
likely that a difficult and painful battle will ensue with software suppliers entering the market and
leaving the market. Many existing supplierswill argue that th eir system always supported approach X
anyway while others will attempt to graft the concepts of approach X onto theirs. When this will happen
or what the new approach will be is difficult to predict, but it will happen. Until then, object orientation
will be a significant force within the computer industry.

1.4 History /pedigree of object oriented languages

In the horse or dog breeding world, the pedigree of an animal can be determined by considering its
ancestry. Whilst you can’'t deter mine how good alanguage is by looking at its predecessors, you can
certainly get afed for the influences which have led to features it possesses. The current set of
commercial object oriented languages have all been influenced to a greater or lesser ext ent by existing
languages. Figure 1.1 illustrates some of the relationships between the various languages.

Lisp ALGOL
C Pascal Ada
Smalltalk /\ L
Eiffel
Self C++ Objective-C Object Pascal
Ada9s
cLos VisualC++
Java Delphi

Figure 1.1: Partial Smalltalk Family Tree

Figure 1.1 only partially illustrates the family relationships, as for example, ADA95 should have a
link to Smalltalk (or possibly C++). However, this figure attempts to illustrate the most direct influences
evident in the various languages. The diagram is also ordered in roughly chronological order. That is,
the further down the diagram alanguage is, the more recent it is. Thisillustrates for example, that
Smalltalk predates C++ and that Java isthe most recent object oriented language. Note that Lisp,
ALGOL, C, Pascal and Ada are not object oriented and that Simulaitself, is at most object based.

The extent to which alanguage can be considered to bea pure object oriented language (i.e. onein
which object oriented concepts are consistently adhered) as opposed to a hybrid object oriented
language (i.e. one in which object oriented concepts lie along-side traditional programming approaches)
tends to depend on their background.

A pure object oriented language only supports the concept of an object. Any program is made up
solely of interacting objects which exchange information with each other and request operations or data
from each other. This approach tendsto befollowed by those languages which most directly inherit
features from Simula (C++ is anotable exception). Simulawas designed as alanguage for discrete
event simulation. However, it was itself influenced by many of the features from ALGOL 60 and was
effectively the first language to use concepts which we now refer to as object oriented. For example, it
introduced the concepts of class, inheritance and polymorphism which we shall discuss below.

The primary language to inherit most directly from Simulais Smalltalk. This means that its ALGOL
heritage isthere for al to seein the form of structured programming constructs (although the syntax
may at first seem alittle bizarre). It is a pure object oriented language in that the only concepts
supported by the language are object oriented. It also inherits from Lisp (if not any syntax, then
certainly the philosophy). This means that not only does it not include strong typing, it also provides
dynamic memory management and automatic garbage coll ection (just as most Lisp systems do). This
has both benefits and drawbacks which we will discuss at alater stage. In contrast Eiffel, another pure
object oriented language, attempts to introduce “best software engineering practice” rather than the far
less formal approach of Lisp. Self is arecent, pure object oriented language, which is still at the
research stage.

Many language designers have taken the hybrid approach. That is, object oriented constructs have
either been grafted onto, or intermixed with, the language. In some cases the idea has been to enable a
developer to take advantage of object orientation when it appears appropriate. In other situationsit has

17

been to ease the transition from one approach to another. The result has often been aless than
satisfactory state of affairs. Not only does it mean that many software devel opers have moved to their
new object oriented language believing that it is just a matter of learning the new syntax, (it isn't), they
have proceeded t o write procedural programs in which the use of objectsis limited to holding data,
believing that thiswill be sufficient (it won't). It isreally only safe to move to a hybrid language once
you have learnt about object technology using a pure object oriented language.

1.5 Fundamentals of object orientation

The object oriented programmer’ s view of traditional procedura programming is of procedures wildly
attacking data which is defenseless and has no control over what the procedures do to it. This has been
called the rape and pillage style of programming. The object oriented programmers view of object
oriented programming is of polite and well behaved data objects passing messages to one another, each
data object deciding for itself whether to accept the message and how to interpret what it means.

The basic ideaisthat a system is seen as a set of interacting objects which are organized into classes
(of objects). For example, Figure 1.2 illustrates a (simplified) cruiseco ntrol system from acar. The
figureillustrates the objects in the system, the links between the objects and the direction that
information flows along these links. The object oriented implementation of this system would mirror
this diagram exactly. That is, there would be an object representing each box. Between the boxes would
be links allowing one object to request a service from another, or provide information to another. For
example, the cruise control electronic control unit (ECU) might request the c urrent speed from the
speed sensor. It would then use this information when asking the throttle to adjust its position. Notice
we do not talk about functions or procedures which access information from data structures and then
call other functions and proc edures. There is no concept such as the ECU data structure and the ECU
main program. This can be a difficult change of emphasis for some people and we shall try to illustrate

it further below.
Ignition on/ Off Cruise Control
Switch Switch Switches
Resume/ Cancel
Switch
Acc / Decelerate
Switch

Brake Switch

Cruise Control Electronic

Clutch Switch Throttle

Control Unit

Speed Sensor

Figure 1.2: A cruise control system as a set of objects

The aim in object oriented programming isto shift the focus of attention from procedures that do
things to data round to data which is asked to do things. The task is not to define the proce dures which
will manipulate data but to define data objects, their attributes and the way in which they may be
examined or changed. Data objects (and procedures) can communicate with data objects only through
narrow, well defined channels.

1.6 The four catechism of object orientation
The four catechism of object oriented programming are:

Encapsulation or data hiding. Encapsulation is the process of hiding all the details of an object that do
not contribute to its essential characteristics. Essentially, it means that what isinside the classis
hidden; only the external interfaces are known (by other objects). That is, as the user of an object
you should never need to look inside the box!

Inheritance. In many casesobje cts may have similar (but not identical) properties. One way of
managing (classifying) such propertiesisto have ahierarchy of classes. In this hierarchy of

18

classes a class inherits both from itsimmediate parent class, aboveitinthe hierarchy, and from
classes above the parent. (See the hierarchy in Figure 1.4). Thisinheritance mechanism permits
common characteristics of objects to be defined once, but used in many different places. Any
change isthuslocalized.

Abstraction. An abstraction denotes the essential characteristics of an object that distinguishesit from
all other kinds of objects and thus provides crisply defined conceptual boundaries, relative to the
perspective of the viewer. That is, it states how a particular object differsfrom al others.

Polymor phism. Thisisthe ability to send the same message to different instances which may appear to
perform the same function. However, the way in which the message is handled will depend on
the class of which the instanceis an example.

An interesting question to ask yourself is how do the following languages relate to the four concepts
related above? ADA, C and LISP. An obviousissueto consider isr elated to inheritance. That is, if we
define a concept animal and we then define a concept dog, we don’t have to redefine al the things
which a dog has in common with other animals. Instead we inherit these features by saying that adog is
a subclass of animal. Thisis afeature unique to object oriented languages. It is also the concept which
promotes (and achieves) huge amounts of reuse.

1.7 Encapsulation

1.7.1 The concept

Encapsulation or data hiding hasbeena major feature of a number of programming languages. For
example, Modula -2 and Ada both provide extensive encapsul ation features. But what exactly is
encapsulation? Essentidly, it is the concept of hiding the data behind a software “wall”. Those outside
thewall cannot get direct accessto that data. Instead they must ask intermediaries (usually the owner of
the data) to provide them with the data.

The advantage of encapsulation is that the user of the data does not need to know how, where or in
what form the owner of the data stores that data. This means that if any changes are necessary in the
way in which the data is stored, the user of the data need not be affected. That is, they will till ask the
data owner for the datain the sameway anditisonly the data owner who must change the way in
which they proceed in fulfilling that request.

Different programming languages have implemented encapsulation in different ways. For example,
in Adathe prevalent concept which enables encapsulation is the package . A package possess both data
and procedures. It also specifies a set of interfaces which publish those operations the package wishes to
make available to users of the package. These interfaces may for example implement some operations
or may provide access to data held within the package.

1.7.2 How OO languages provide encapsulation

Object oriented languages provide encapsulation facilities which present the user of an object with a set
of externa interfaces. These interfaces say what requests the object will respond to (or in the
terminology of object orientation, which the object will understand). These interfaces not only avoid the
need for the caller to understand how the internal details of the implementation work, they actually
prevent the user from obtai ning that information. That is, the user of an object cannot directly access the
data held by an object asit is not visible to them. In other words, a program that calls this facility can
treat the facility as a black box; the program knows what the facil ity’s external interfaces guarantee to
do, and that is all it needs to know.

It isworth pointing out a difference between the object oriented approach and the package approach
used in Ada. In general a package will be alarge unit of code providing awide range of facilitieswith a
large number of data structures. For example the Text 1O package in Ada. In an object oriented
language, the encapsulation is provided at the object level. While objects may well be aslarge and as
complex asthe typical Ada package, they are often much smaller. In languages such as Smalltalk where
everything is an object, this means that the smallest data and code units also naturally benefit from

19

encapsulation. Attempting to introduce the same level of encapsulation in Adacan be done, but it is not
natural to the language.

Objectl

Object 2
Key
[] Interface

i;l Procedures

f E Data

Figure 1.3: Object structure and interaction

Figure 1.3 illustrates the way in which encapsulation works within object oriente d languages. It
shows that anything outside the object can only gain access to the data the object holds via a specific
interface (the black squares). In turn these interfaces trigger procedures which are internal to the object.
These procedures may then a ccess the data directly, use a second procedure as an intermediary or call
an interface on another object.

1.8 Inheritance

1.8.1 What is inheritance?

A classis an example of aparticular type of thing (for example mammals are aclass of animal). Inthe
object oriented world a classis a definition of the characteristics of that thing. Thusin the case of
mammals, we might define that they have fur, are warm blooded and produce live young. Animals such
as dogs and cats are then instances of the class mammal. Thisis all quite obvious and should not present
a concept problem for anyone. However, in most object oriented languages (the language Self being an
exception) the concept of the classistightly linked to the concept of inheritance.

Inheritance allows us to state that one classis similar to another class but with a specified set of
differences. Another way of putting it, is that we can define all the things which are common about a
class of things, and then define what is special about each sub grouping within a subclass

For example, if we have a class defining all the common traits of mammals we can define how
particular categories of mammals differ. Take for examplethe Duck -billed platypus. Thisisaquite
extraordinary mammal which differs from other mammalsin a number of important ways. However,
we do not want to have to define al the things which it hasin common with mammals twice. Not only
isthis extrawork, but we then have two placesin which we have to maintaint hisinformation. We can
therefore state that a Duck -billed platypusis a class of mammal that differsin that it does not produce
live young (we might also want to mention its beak etc. but for now we will ignore these issues).

1.8.2 An example of inheritance

An example which is rather closer to home for most computer scientistsisillustrated in Figure 1.4. For
this example we will assume that we have been tasked with the job of designing and implementing an
administration sy stem for our local University. This system needs to record both employees of, and
students attending, the university. For students we need to record what department they are in, what
subjects/classes they are taking (referred to as modules) or what their t hesis is about. For employees we
need to record the department they work in, what their salary is, what subjects they lecture or research.
If they are a professor we need to record that fact. In the case of professors we might also want to
record the government bodies they work for.

Figure 1.4 illustrates a class hierarchy diagram for this application. That is, it illustrates each of the
classes we have defined and from where they inherit their information. Therearea number of points
you should note about this diagram:

20

Inheritance versusinstantiation. Stating that one classis a specialized version of amore generic class
is different from saying that something is an example of aclass of things. Inthefirst casew e
might say that alecturer is acategory of university employee and that a professor is another
category of university employee. Neither of these categories can be used to identify an
individual. They are, in effect, templates for examples of those catego ries. In the second case we
say that “John” is an example of alecturer (just as“Chris’, “Myra’ and “Denise” may also be
examples of lecturers). “John” istherefore an instance of a particular class (or category) of
things known as Lecturers. It isimport ant to get the concept of specializing a classwith a
subclass clear in your mind. It isall too easy to get instances of a class and a subclass of a class
confused.

University-M ember

department: ="'
Sudent University-Employee
yearStarted =" sdary = 14,000
registerStudent()
Undergraduate Postgr aduate Lecturer Professor
Student Student lect
modules Ph.D.Tile=" reselg; s ary = 30,000
changeM odule() = Title() givePaper() quangos=[]
T joinQuango()
|
|
(aL ecturer)

department = '‘Computer Science'
lectures = (CS36310,

C$41010)
research = (OORA.l.)

name = ‘John'

Figure 1.4: An example of inheritance

Inheritance of common infor mation. We have placed common concepts together in asingle class. For
example, all people have aname, all University -Members have a nominated department
(whether they are students or employees). All st udents have ayear in which they started their
studies, whether they are undergraduates or postgraduates. In turn all classes below University -
Member inherit the concept of a department. This means that not only will all Professors and
Lectures have adepa rtment, but “John” has a department which in this case is “ Computer
Science”.

Abstract classes. It is aso worth noting that we have defined a number of classes of which we have no
intention of making an example. Theseinclude Univ ersity-Member, University -Employee and
Student. These are termed abstract classes (we will come back to this terminology later). They
are intended as place holders for common features rather than as templates for a particular
category of things. Thisisqu ite acceptable and is common practice in most object oriented
programs.

Inheritance of defaults. Just because we have stated that all University -Employees earn a default
salary of £14,000 a year does not mean that all university employees have to have that default. In
the figure, Professors have a default of £30,000 illustrating that one class can over write the
defaults defined in one of its parents.

Single versus multipleinheritance. In Figure 1.4 we have only illustrated single inheritance. That is,
one class can inherit from only one other class. Thisisthe case in many object oriented
programming languages such as Smalltalk. However, other languages such as C++ and Eiffel
alow multiple inheritance. The idea behind multiple inheritance is that you can bring together
the characteristics of two classesin order to define a new class. For example, you might have a
class Toy and aclass Car which could be used to create aclass Toy- Car . Multiple inheritance

21

isacontroversia subject which is still being debated. Those who think it is useful fail to see why
other languages don’t include it and vice versa. Java the most recent object oriented language
does not include multiple inheritance.

1.9 Abstraction

We have already touched on the subject of abstraction in the previous section. However, abstraction is
much more than just the ability to define categories of things which can hold common features of other
categoriesof th ings(e.g. St udent isan abstract class of Under gr aduat e-St udent and
Post gr aduat e- St udent). It isin fact away of specifying what is particular about a class of
things. Often this means defining the interface for an object, the data that such an object wi |l hold and
part of the functionality of that object.

For example, we might defineaclass Dat aBuf f er . This class may be used to define an abstract
class for things that hold data and return them on request. This class may define how the dataisto be
held and that operators such as put () and get () will be provided to add datato the Dat aBuf f er
and remove it from the Dat aBuf f er respectively. In turn the implementation of these operators may
be left to those implementing another class which is asubclass of Dat aBuf f er .

The class Dat aBuf f er might, for example, be used to implement a St ack or a Queue. St ack
could implement get () as return the most recent data item added while Queue could implement it as
return the oldest data item held. In either case, auser of either class will know that put () and get ()
are available and will work in an appropriate manner.

In some languages it can a so be related to protection. For example, both C++ and Java have the
ability to state whether subclasses are allowed to overwrite data or procedures (and indeed whether they
have to overwrite them or not). Smalltalk does not provide the ability to state that a procedure cannot be
overwritten, but it does allow the devel oper to state that a procedure (or method) isa su bclass
responsibility. That is, asubclassis expected to implement the procedure in order to provide a
functioning class.

Abstraction is also associated with the ability to define Abstract Data Types (or ADTS). In object
oriented terms these are classes (or groups of classes) which provide some sort of behavior (e.g.
DataBuffer above) which acts as the infrastructure for a particular class of datatypes (e.g. thingslike
stacks and queues). However, it isworth pointing ou t that ADTs are more commonly associated with
procedural languages such as Ada. Thisis because the concepts in object orientation essentially
supersede ADTs. That is, not only do they encompass all the elements of ADTSs, they extend them by
introducing inheritance.

1.10 Polymorphism

Polymorphism is a strange sounding (Greek derived) word for arelatively simple concept. It is
essentially the ability to request that the same operation be performed by awide range of different types
of things. How that request is processed will depend on what it is that received the request. However,
you as a programmer, need not worry about how the request is handled, only that it is. For example, you
might ask arange of objectsto provide a printable string describing themselves. This would mean that if
you wished to ask an instance of the Lect ur er class (presented above or the system) or a compiler
object or a database object to return such a string, you would apparently use the same interface call
(suchasprint Stri ng in Smalltalk).

The name Polymorphismis unfortunate and often leads to confusion. Of course, it also makesthe
whole process sound rather grander than it actually is. There are two types of polymorphism used in
programming languages: overloadi ng and overriding. The difference in name relates to how the
mechanism used to resolve what code to execute is determined. The difference between the two is
significant and is important to understand. To understand what polymorphism actualy is, it helpst o
understand how these two different mechanisms work.

22

1.10.1 Overloading operators

This occurs when procedures have the same name but are applied to different data types. The compiler
can therefore determine which operator will be used at comp ile time and can use the correct version of
the operator. Ada uses exactly this type of overloading. For example, you can define a new version of
the‘+' operator for anew data type. Other programmers would usea‘+" for addition and the compiler
would use the types associated with the ‘ +' operator to determine which version of ‘+' to use. In C,
although the same function is used to print avalue (namely printf), thisis not a polymorphic function.
Instead, the user must explicitly make sure that they are using the correct optionsin the format specifier
to ensure that avalue is printed correctly.

1.10.2 Overriding operators

This occurs when a procedure is defined in one class (for example, St udent) and also in one of its
subclasses (for example, Under gr aduat e- St udent). Thisisreferred to as overriding. This means
that all instancesof St udent or Under gr aduat e- St udent will respond to requests for this
procedure (assuming it has not been made private to the class). For example, let us assumeth at we had
defined the procedure pr i nt St ri ng in these classes. The pseudo code definition of thisin St udent
might be:

printString
return ‘I ama student’

Where asinthe Under gr aduat e- St udent it might be defined as:

printString
return ‘I am an Undergraduate student’

The procedurein Under gr aduat e- St udent replacestheversionin St udent for all instances of
Under gr aduat e- St udent . That is, if we made an instance of Under gr aduat e- St udent and
asked for theresult of pri nt St ri ng, wewould get the string ‘1 am an Undergraduate student’. If you
are confused, think of it thisway:

“If you have asked an object to perform some operation, then to determine which
version of the procedure will be run, look in the class used to create your instance, if the
procedure is not defined there, look in the class's parent class. Keep doing this until you
find a procedure which implements the operation requested. Thisis the version which
will be used.”

In languages such as Smalltalk and Java the choice of which version of the procedure
print Stri ng to execute is not determined at compile time. Instead it is chosen at run time. Thisis
because the compiler would have to be able to determine what type of object will be operated on and
then find which version of the procedure will therefore be run. In Smalltalk’ s case it cannot determine
the type of object in most cases.

The technical term for this process of identifying which procedure to run at run time rather than
compiletimeiscalled “late binding” and we shall ook at this issuein more detail later in the book.

1.11 Summary

In this chapter you have been introduced to the background/history which led to object orientation. Y ou
have explored the main concepts which are the underpinnings of object orientation and have
encountered some of the (sometimes arcane) terminology used. Thereisagreat deal of new information
in this chapter which can at times appear to make obsolete all that you already know.

The object oriented view of the world can be daunting for a programmer who is used to amore
procedural view of the world. To have to adjust to this new view of the world is hard (and some never
do). Othersfail to see the difference between an object oriented programming language and alanguage
such as ADA (ADA hererefersto the pre-Ada 95 version of the language). However, object orientation

23

will become second nature to many once they have worked with object oriented systems for awhile.
The key thing isto try things out as you go along and if possible have someone around who understands
abit about object orientation - they can often illuminate and simplify an otherwise gloomy network of
tunnels.

1.12 Further reading

There are of course a great many books available on object orientation some of the best known include
[Booch 1994; Budd 1991; Wirfs-Brock et al 1990; Cox and Novobilski 1991]. An excellent book aimed
at managers and senior programmers who want to learn how to apply object oriented technology
successfully to their projectsis [Booch 1996]. Another good book in asimilar styleis[Y ourdon 1994].

Other books which may be of interest to those attempting to convince themselves or others that
object technology can actually work are [Harmon and Taylor 1993], [Love 1993] and [Meyer and
Nerson 1993]. Other places to find useful r eferences are the Journal of Object Oriented Programming,
Pub. SIGS Publications, ISSN 0896-8438 and the OOPSLA conferences. These are a set of world wide
conferences on Object Oriented Programming: Systems, Languages and Applications (hence
OOPSLA). They are held every year, references for some recent ones are listed at the back of this book.
Thereis aso a European Conference on Object Oriented Programming called ECOOP. Some of these
conference proceedings are also listed at the back of this book.

For further reading on the software crisis and approaches aimed at solving it see [Brooks 1987] and
[Cox 1990]. For adiscussion of the nature of scientific discovery, refinement and revolution see [Kuhn
1962].

24

2. Elements of Object Orientation

2.1 Introduction

This chapter isintended to reinforce what you have aready learnt in Chapter 1. It concisely defines the
terminology introduced in the last chapter and attempts to clarify issues associated with hierarchies. It
also discusses some of the perceived strengthsan d weaknesses of the object oriented approach. Some
guidance on the approach to take in learning about objectsis also offered.

2.2 Terminology

In Chapter 1 a number of terms were introduced during the discussion of object orientation . Herewe
recap on those terms and introduce a number of new ones.

Class. A classis adefinition for acombination of data and procedures which operate on those
procedures. Instances of other classes can only access that data or those proc eduresvia
specified interfaces. A class acts as a template when creating new instances. That is, aclass
does not hold any data, the datais held in the instance. However, the class specifies what data
will be held. Thiswill be considered in moredetail in Part 2 of this book. The relationship
between a class, its superclass and any subclassesisillustrated in Figure 2.1.

Superclass

Subclass 1 Subclass n

Subclass 2 }» - ==

Figure 2.1: The relationship between Class, Superclass and Subclass

Subclass. A subclass isaclass which inherits from another class. For example, in the last chapter,
Under gr aduat e- St udent wasasubclassof St udent . Subclasses are of course classes
in their own right. The term subclass merely indicates what is inherited by what. Any class can
have any number of subclasses.

Superclass. A superclassisthe parent of aclass. It isthe class from which the current class inherits. For
example, in the last chapter, Student class was the superclass of Under gr aduat e-
St udent . In Smalltalk a class can only have one superclass.

Instance/ Object . An instance is an example of aclass. All instances of aclasspossesst he same data
variables but have their own datain these data variables. Each instance of a class will also
respond to the same set of requests.

Instance variable. Thisisthe special name given to the datawhich is held by an obje ct. The “ state” of
an object at any particular moment relates to the current values held by its instance variables.
(In Smalltalk there are al'so class variable s but adiscussion of these will be left until later).
Figure 2.2 illustrates adefinition for a class in pseudo code. This definition includes some
instance variable definitions fuel, mileage and name.

Method. Method is the name given to a procedure defined within an object. T he name stems from its
usein early versions of Smalltalk where it was a method used to get an object to do something

25

or return something. It has since become more widely used with languages such as CLOS and
Java also using the term. Two methods are define d in Figure 2.2, one calculates the miles per
gallon while the other one sets the name of the car object.

dass Car extends Vehicle —— Class
int milage;
int total Fuel Used, Lnasnt:f: :
String name; fidds
define mpg()
begin
return milage/ total FuelUsed;
end
define name(aName) Methods
begin
sdf name = aName; Refaence 1o
end the object within
endClass; which the method
executes

Figure 2.2: A pseudo code definition of a class

Message. Thisis arequest from one object to another object requesting some operation or data. It is
traditional to say that one object sends a message to another object requesting it to do
something. The ideaisthat objects are polite well behaved entities which carry out functions
by sending messages to each other. In other languages it might be consider akin to a procedure
call (again thisissue will be discussed later in part 2).

Self. Thisis areference to the object within which the method is executing (see Figure 2.2). This means
that it is possible to send messages to this object (i.e. ones' self).

Single/M ultiple inheritance. Single and multiple inheritance refer to the number of superclassesthat a
class can inherit from. Smalltalk is a single inheritance system. This means that a class can
only inherit from one superclass. C++ isamultiple inheritance system. This means that C++
classes can inherit from one or more classes.

2.3 Types of hierarchies in object orientation

This can be an area of confusion. In most object oriented systems there are two types of hierarchy , one
refers to inheritance (whether single or multiple) while th e other refersto instantiation. The inheritance
hierarchy (or is -a hierarchy) has aready been described. It is the way in which an object “inherits’
features from a superclass.

The instantiation hierarchy relates to instances rather than classesand is important during the
execution of the object. There are in fact two types of instance hierarchy, one indicates a part -of
relationship while the other relates to a using relationship. Figure 2.3 illustrates the differences between
the two.

Part of relation

or

Reference / Using Relation

-

Figure 2.3: Instance relationships

The difference betweenan is-arelationanda part-of relationship is often conf using for new
programmers (and sometimes for those who are experienced in one language but are new to an object
oriented programming language such as Smalltalk). Figure 2.4 should makeit clear. Thisfigure
illustrates that a student is-atype of person where asan engineis part-of acar. That is, it does not
makes sense to say that a student is part-of a person nor that an engineis-a type of car!

26

Student Engine

is-a part-of

Person Car
A A

Figure 2.4: is-a does not equal part-of

In Smalltalk, the is-a relationship is generally implemented via the subclassing mechanism. It is thus
possible to build up large and complex class hierarchies which expressthese is-a relationships. These
classes express the concept of inheritance, allowing one class to inherit features from another. The total
set of features are then used to create an instance of a class. In contrast, the part-of relationships tend to
be implemented using instance variablesin Smalltalk.

However, is-a relationships and classes are not exactly the same thing. For example, if you wished
to construct a semantic network consisting of explicit is-a relationships between instances you might
have to construct such a hierarchy manually. The am of such a structure isto represent some sort of
knowledge and the relationships between elements of that knowledge and not for the construction of
instances. Thisis outside the scope of the subclassing mechanism and would therefore be inappropriate.

Another confusion between is-a relationships and classesis that John might be an instance of a class
Person. It would be perfectly (semantically) correct to say that John is-a Person. However, here we are
obviously talking about the relationship between an instance and a class rather than a subclass and its
parent class.

A further confusion can occur for those encountering Smalltalk who have first encountered a
strongly typed language. These people might at first assume that a subclass and a sub type are
essentially the same. However, they are not the same, although they are very similar. The problem with
classes, typesand is -arelationshipsisthat on the surface they appear to capture the same sorts of
concepts. For example, see Figure 2.5. Inthisfigure, the four diagrams all capture some aspect of the
use of the phrase is a. However, they are all intended to capture a different relationship.

Sports Sports Sports
Car Car Car

isa sub typing subclassing instance

‘ Vehicle

‘ Vehicle

‘ Vehicle

Figure 2.5: Satisfying four relationships

All of the confusion highlighted above is due to the fact that in modern English we tend to over use
the term is-a. We can distinguish between the four different types of relationship by being more precise
about our definitionsin terms of a programming language such as Smalltalk. For example, in Table 2.1
we define the meaning of the four different relationships identified above.

Table 2.1: Types of is-a relationships

type substitutability relationship. That is an example of
one type that can be used interchangeably with
another (sub)type.

subclassing / an implementation mechanism for sharing code and

inheritance representation

specialization specifying that one thing is a special case of another

instantiation one thing is an example of a particular category
(class) of things

To illustrate this point consider Figure 2.6. This figureillustrates the differences between the first
three categories. The first diagram illustrates the potential relationships between a set of classes

27

defining the behavior of different categories of vehicle. The second diagram presents th e sub type
relationships between the categories while the third diagram illustrates a straight specialization set of
relationships. Note that although the estate car is a specialization of acar with hatch, itsimplementation
(the subclassing hierarchy) in dicates that it does not share any of itsimplementation with the car with
hatch class.

Vehicle

Vehicle Vehicle

MotorVehicle MotorVehicle MotorVehicle

II

it at

Car ‘ Car ‘ ‘ Car with Hatch Car

‘ Car with Hatch ‘ ‘ Estate Car ‘ Subtyping Car with Hatch

Sports Hatch

‘ Sports Hatch

‘ Estate Car ‘

i

Subclassing (inheritance)

Sports Hatch

Specialization

Figure 2.6: Distinguishing between the relationships

It isworth noting that another difference between type and subclassing is that type relationships are
specifications, while classes (and subclasses) are implementations of behavior.

2.4 Why bother?

We have already stated that the transition from a procedural view point to an object oriented view poi nt
isnot always an easy one. This begs the question “why bother?’. Asyou are reading this book you must
at least be partly convinced that it isagood idea. Of course this could be because you have noticed the
number of job advertisements offering employ ment for those with object oriented skills. However, that
aside, why should you bother learning a new programming paradigm?

Hopefully, some of the reasons why you should bother will become clear during your reading of this
book. However, it is worth considering at least some of the issues at this point.

2.4.1 Software industry blues

Thereis till no silver bullet for the problems in the software industry. Object oriented technology does
not take away the problems which exist in constructi ng complex software systems, it just makes some
of the pitfalls harder to fall into and provides ways of simplifying traditionally difficult problems.
However, difficultiesin software development are almost inevitable, many of them arise due to the
inescapable intangibility of software and not necessarily all by accident or poor development methods.

We should not however just throw up our hands and say “well if that’ s the case, it is hot our fault”.
Many of the problems which have beset our industry relat e to some deficiency in how programmers
build software today. For example, if a software development is running late then just adding more
peopleto that late project is likely to make matters worse rather than get the project back on time.

Of course obje ct technology is not the first attempt at addressing these issues. However, past
attempts have met with mixed success. Thisis for a number of reasons, only some of which we will
consider below. However, as these issues are particularly pertinent to object technology, we will
therefore consider each in turn.

28

24.1.1 Modularity of code

Traditional, procedural systems, typically relied on the fact that not only would the data they were using
not change (e.g. itstype) but the way in which they got that datawould not alter. Invariably, it was the
function (or functions) using the data, that actually went and got that data. This meant that if the way in
which the data was accessed had to change, all the functions which used that data had to bere -written.
Those among y ou who have attended any sort of software engineering course will of course say that
what was required was a function to obtain the data. This function could then be used in many different
places. However, such application specific functions tend not to ge t used in “real world” systems. This
occurs for several reasonsincluding:

< Small subroutines are too much effort. Although many people talk about reusable code, they
often mean relatively large code units. Small functions of one, two or three linestend o nly to be
defined by a single programmer and are rarely shared amongst a development team, let alone
development teams.

« Too many subroutines leads to too little reuse. The larger the number of subroutines available,
the lesslikely that they will get reuse d. It isvery difficult to search through a code library of
small subroutines trying to find one which does what you want. It is often much quicker to write
it yourself!

e ldentifying that a function may be reusable may not be obvious. If you are a programme r
working on one part of a system, it may not be obvious that the function you are writing would
be of generic use. If these functions are small then they will not have been identified by the
designer as being useful reusable components.

2.4.1.2 Ability to package software

Another issue is the way in which programming languages package up software for reuse . Many
systems assume that the software should be partitioned into modules, which are then integrated at
compile time. Such fixed compile time int egration can be good for some types of problem, but in many
casesit istoo inflexible. For example, while this approach can ensure that the modules being reused are
compatible, the developer many not know until run time which modules they wish to use. The y would
therefore require some form of run time binding.

The UNIX pipes and filters are examples of software systems which can be bound at run time. They
act as glue allowing the developer to link two or more programs in sequence together. However, inthi s
case there is absolutely no error protection. It is quite possible to link two incompatible systems
together.

What would be really useful would be a combination of these features. That is, the ability to specify
either compile time or run time binding. | n either case there should be some form of error checking to
ensure that you are integrating compatible modules. An important criteriais to avoid the need for
extensive recompilation, for example just because one line has been altered. Finally, such asys tem
should by definition enforce encapsulation and make packaging of the software effortless.

2.4.1.3 Flexibility of code

In early procedural languages there was little or no flexibility, for example, C or Pascal. However, more
recent procedural languages have introduced some flexibility but need extensive specification to achieve
this. The result isinterna flexibility at the cost of interface overheads, for example Ada. Object
technology allows code flexibility (and data flexibility) with little overhead.

2.4.2 The claimed advantages of object orientation
There are arange of benefits which can be identified for object oriented programming languages. Not
all of these are unique to object oriented technology, but that’s okay, we are talking about the good

things about object orientation here. The main benefits can be summarized as.

Increased code reuse. Languages such as Smalltalk encourage reuse. Every time you specify that one
class inherits from another (and you do it al the time in Smalltalk) you areinvolved inr euse.

29

In time most developers start to actively look to see where they can restructure classesto
improve the potential for reuse. Aslong as thisis not taken too far, thisis an extremely healthy
thing to do.

Data protection for little effort . Duetothe encapsulation facilities provided as part of the language
you get your data protected from unscrupulous users. Unlike languages such as Ada, you don’t
have to write reams of specification in order to achieve this protection.

Encapsulation easesintegration. As users of an object cannot access the internals of the object they
must go via specified interfaces. Asthese interfaces can be published in advance of the object
being implemented, others can develop to those interfaces knowing that they will be avai lable
when the object is implemented.

Encapsulation eases maintenance . This point isreally avariation on the last point. As users of an
object have been forced to access the object via the specified interfaces, aslong as the external
behavior of these 0 bjects appears to remain the same, the internals of the object can be
completely changed. For example, an object could store an item of datain aflat file, read it
from a sensor or obtain it from a database. However, external uses of the object need never
know.

Simplified code - polymor phism. With polymorphism you don’t need to worry about exactly what
type of object you will get at run time, only that it must respond to the message (request for a
method to be executed) you send it. Thismeansthat itisa great deal easier to write reusable,
compact code, than in many other languages.

M oreintuitive programming paradigm. It has been argued that object orientation is amore intuitive
programming paradigm than approaches such as procedural. Thisis becausew e humanstend
to perceive the world in terms of objects. We see dials, windows, switches, fuel pumps,
automated teller machines (ATMs). These objects respond to our use in specific ways when we
interact with them. For example, an ATM will require acard, a PIN humber etc. in a particular
sequence. Of course those of us who have programmed before bring with us alot of baggage
including preconceptions of what a program should be like and how you develop one.
Hopefully, this book is about to turn all that on its head for awhile, before putting everything
back together again.

2.4.3 What are the problems/pitfalls?

Of course no programming language / paradigm is without its own set of problems and pitfalls. Indeed
part of the skill in becoming fluent in anew programm ing language is learning what the problems are
and how to avoid them. In this section we will concentrate on the damning statements usually leveled at
object orientation. We will deal with common software problemsin alater chapter.

2.4.3.1 Lots of confusing terminology

Thisisactually afair comment. Asyou have already seen, object orientation is littered with new terms
and definitions for what appears to have already been defined quite acceptably in other languages. It is
difficult to argue against this and o ne may ask the question why thisisthe case? Certainly, back in the
early 70s when Smalltalk was being researched, many of the terms we now take for granted were
aready quite well established. It would be unreasonabl e to assume that even if the inventors of the
language like their own terminology early users would have tried to get the terminology changed.

One possible answer to thisisthat in the past (that is, during the early and mid eighties) object
oriented languages, such as Smalltalk, tended to be the preserve of academics and research institutions.
(Indeed | myself was introduced to it while working on a research project at a British university during
1986/87 having worked with Lisp Flavors for afew years). It is often the case that these people enjoy
the mystique that alanguage with terminology all of its own can create. By now it is so well established
in the object oriented culture that you as a new comer will just have to adapt. The important point to
remember is that the concepts are actual ly very simple, although the practice can be harder. To illustrate
this, consider the following table, this attempts to illustrate the parallels between object oriented
terminology and procedural terminology:

These approximations should not betakentooli terally asthey are intended only to help you
visualize what each of the terms means. Hopefully, by the end of the book you will have gained your
own understanding of their meaning.

30

Table 2.2: Approximate equivalents

Procedural term OO term
procedure method
procedure call message
non-temporary data instance variables
record + procedures object

2.4.3.2 Yet another programming paradigm to master

In general people tend to like the things they are used to. Thisiswhy many people will buy the same
make of car again and again (even when it gives them trouble€). It is also why computer scientists will
refuse to move to a new word processor / editor / operating system or hardware. Over the years | have
had many “discussion” wit h people over the use of Latex versus Word versus WordPerfect, the merits
of Emacsand Vi or of UNIX versus Mac or Windows/DOS. In most cases the issues raised and points
made indicate that those involved in the discussions (including myself) are biased, h ave their own
“hobby horse” to promote and don’t understand fully what the other approach is about.

Object orientation both benefits and suffers from this phenomena. There are those who hold it up
amost like areligion and those who cast it aside because it is so different from what they are used to.
Many justify this latter approach by pointing out that procedural programming has been around for quite
awhile now and many systems are successfully developed using it. Thisis of course areasonable
statement and one which promotes the status quo. However, the fact that object orientation is a new
software paradigm, which is quite different from the procedural paradigm, should not be a reason for
rejecting it.

The important pointsto note about it arethat it explicitly encourages encapsulation (information
hiding), promotes code reuse and enables polymorphism. Most procedural languages have of course
attempted to present these advantages as well, however they have failed to do so in such a coherent and
concise manner. Take Adafor example, not only isit alarge cumbersome language, it requires an
extensive specification to be written to enable two packages to work together. Any error in these
specifications and the system will not compile (even if thereare no errors or incompatibilitiesin the
code). It isalso interesting to note that Ada 95 has introduced the concept of objects and classes into the
language. Although for most object technology practitioners, the way in which it has done this, is both
counter intuitive and unwieldy.

2.4.3.3 Many OO environments are inefficient

Historically, object oriented development environments have been inefficient, processor intensive and
memory hungry. Such environments tended to be designed for use on powerful workstationsor ~ mini-
computers. Examples of such environments have included Lisp Flavors (which even required specialist
hardware e.g. the Symbolics Lisp machine), Self and Smalltalk -80 (the fore runner of VisualWorks).
These machines were expensive, sometimes non-standard and aimed at the research community.

With the advent of the PC, attempts were made to rectify this situation. For example, Smalltalk/V
was designed specifically to run on the PC and the first version of Smalltalk used by the author was on a
286 PC. T he current versions of products such as VisualWorks are now extremely efficient and
optimized for use on PC platforms. Although in the case of VisualWorks the use of 16 megabytes of
RAM is advisable, any 486 machine or above provides ample performance. The issue of 16 MEG rather
than the current 8 MEG is not large, as an additional 8 MEG can be purchased at reasonabl e rates and
many industry pundits predict that 64 MEG (and more) will soon become industry standards. Indeed
systems are now emerging which ass ume that a user will have access to larger memory (such as J++
which requires a minimum of 24 MEG to run the debugger).

Of the course the whole of this section is not really relevant to C++ and object oriented versions of
Pascal (such as Delphi) asthey are no more memory or processor intensive than any non-object oriented
language. However, it is worth noting that these languages do not offer the same level of support for the
programmer as for example Smalltalk. In particular they do not provide automatic memory
management and garbage collection. However, we will discuss thisissue in more detail later in the
book.

31

2.4.3.4 Smalltalk environments are not geared up for project development

Smalltalk environments such as VisualWorks, are derived from the early Smalltal k development
systems (see chapter 4). These early development environments were originally designed for asingle
programmer to develop their own personal programs. This means that the environment provides a great
deal of support for developing asingle sy stem within a single process, however it provides little or no
support for group working. This means that when Smalltalk is used as the basis of a group project (such
asisthe norm in today’ s software industry), the project team members must use the facil ities provided
by the host operating system to share data and code.

In most devel opment environments the above issue is not a problem. However, in VisualWorks the
situation is rather different. Thisis because of the way in which source code and executabl e code are
held by the “environment”. It actually takes a conscientious act on the part of the programmer to
“extract” their code from the environment and save it onto the host operating system’sfile system. It is
therefore all to easy to get out of “sync ” with other members of the team, to forget to obtain the latest
version of source code or to have problems when attempting to merge code written by different
developers for the same class.

This obviously means that Smalltalk is unsuited to thistype of development! Doesn't it? In fact, it is
not difficult to provide suitable protocols to ensure that the above situation does not happen. These can
in some cases be used to program extensions to the basic environment to make group working easier. It
isalso po ssible to purchase support software which does provide extremely good support for group
project working. It is therefore incorrect to say that Smalltalk does not support team based software
development.

2.5 The move to object technology

At present you are stil | acclimatizing yourself to object orientation. It is extremely important that from
now on you do your utmost to immerse yourself in object orientation, object technology and (in the case
of this book) Smalltalk. Thisis because, when you first encounter a new language/paradigm, itisall to
easy to say that it is not good because you can’t do what you could do in language/paradigm X. We are
all subject to the “ better the devil you then the devil you don’t” style syndrome. If you embrace object
orientation, warts and all, at least for the present, you will gain most.

In addition, it is often afact of life that most of ustend to fit in learning something new around our
existing schedules. This may mean for example, that you are trying to read this book and do the
practicals presented while working in C, VisualBasic, Ada etc. either for various assignments or for
your employer. From personal experience, and from teaching others about Smalltalk, you will gain most
by putting aside a significant amount of time and concentrating on the subject matter involved. Thisis
not only because object orientation is so different, but also because you need to get familiar not only
with the concepts but also with Smalltalk and its devel opment environment.

So have ago, take a“leap of faith” and stick with it until the end. If at the end you still can’t see the
point then fair enough, but until then accept it.

2.6 Summary

In this chapter we have reviewed some of the terminology introduced in the previous chapter. We have
aso considered the types of hierarchy which occur in object oriented systems and which can at first be
confusing. We have then considered the pros and cons of object oriented programming. Y ou should now
be ready to start to think in terms of objects. As has are ady been stated, thiswill at first seem a strange
way to develop a software system, but in time it will become second nature. In the next chapter we
examine how an object oriented system might be devel oped and structured. Thiswill be done without
reference to any source code as the intention is to familiarize you, the reader, with objects rather than
Smalltalk. Thisisbecauseit isal to easy to get through a book on Smalltalk, C++, Java etc. and
understand the text but still have no idea how to start devel oping an object oriented system.

32

2.7 Exercises

Research what other authors have said about single and multiple inheritance. Why should languages
such as Smalltalk and Java not include multiple inheritance?

Look for terms such as class, method member, membe r function, instance variable and constructor
in the books listed in the further reading section. When you have found them, read their explanation of
these terms and write down you own understanding of their meaning.

2.8 Further reading

Suggested further reading for this chapter include [Coad and Y ourdon 1991], [Lalonde and Pugh 1991]
and [Meyer 1988]. In additional all the books mentioned in the previous chapter are still relevant.

33

3. Constructing an Object Oriented System

3.1 Introduction

This chapter takes you th rough the design of a simple object oriented system. It does not concern itself
with implementation issues nor with the details of any particular language. Instead, the aim of this
chapter isto illustrate how the concepts described in the last two chapter s can be used to construct a
software system. In the remainder of the chapter we describe the application to be constructed. We then
consider where to start looking for objects and from there, what the objects should do and how they
should do it. We conclu de by discussing issues such as class inheritance and answer questions such as
“whereisthe structure of the program?’.

3.2 The application: windscreen wipe simulation

Water
bottle

Figure 3.1: The windscreen wash wipe system structure

The aim of this system is to provide a system diagnosis tutor for the equipment illustrated in Figure 3.1.
That is, rather than use the wash wipe system from areal car, students on a car mechanics diagnosis
course will use this software simulation. The software system will provide a simulation whose behavior
will mimic that of the actual system, thus the behavior of the pump will depend on information provided
by the relay and the water bottle.

The operation of the wash wipe system is controlled by the wash wipe switch which can be in one of
5 different positions. These are: off, intermittent, slow, fast and wash. Each of these settings places the
system into adifferent state:

OFF. The system isinactive.

INTERMITTENT. The wiper motor wipes the wiper blades across the windscreen (or windshield
if you are American) every few second.

SL OW. The wiper motor continuously wipes the wiper blades across the windscreen.

FAST. The wiper motor continuously wipes the wiper blades quickly across the windscreen.

WASH. The wash setting is a power wash in which the water pump sprays water onto the
windscreen. Thiswater is drawn from the water bottle.

For the pump or the wiper motor to work corr ectly, the relay must function correctly. In turn the relay
must be supplied with an electrical circuit. This electrical circuit is negatively fused and thus the fuse
must be intact for the circuit to be made. Note cars (automobiles) are negatively switche d asthis
reduces the chances of short circuits which lead to unintentional switching of circuits.

3.3 Where do we start?

Thisis often avery difficult point for those new to object oriented systems. That is, they have read the

basics, understand the simple diagrams they have been presented with, but “where do they start?’. It is
the old chestnut, “I understand the example but don’'t know how to apply the concepts myself”. Thisis
not unusual and in the case of object orientation is probably normal.

The actual answer to the question “where do | start?’ may at first seem somewhat obscure, you
should start “with the data’. Remember that objects are based around the idea of having things which
exchange messages with each other. These things possess the datawhich is held by the system and the
messages which request actions to be performed that relate to this data. Thus an object oriented system
is fundamentally concerned with these data items.

Before we go on to consider the object oriented view of the system, let us stop and think for awhile.
Ask yourself “wherewould | start if | was going to develop such asystem in C or Pascal or even Ada?
In most cases the answer will be with some form of “functional” decomposition. That is, you might
think about the main functions of the system and then break them down into sub functions and so on. As
anatura part of this exercise the data required to support the desired functionality would be identified.
Note that the emphasis would be on the system functionality.

Let usta ke thisfurther and consider the example presented above and the functions we might
identify:

Wash pump water from the water bottle to the windscreen.
Wipe move the windscreen wipers across the windscreen

We would then identify important system variables as well as sub functions used to support the above.

Now let us go back to the object oriented view of the world. In this view we place a great deal more
emphasis on the dataitems involved and consider the operations associated with that data (which is
effectively the reverse of the functional decomposition view). This means that we start off by
attempting to identify the primary dataitemsin the system, next we look to see what operations are
applied to / performed on these data items. Finally, we group these data items and operations together to
form objects. Note that in identifying the operations to perform we may well have had to consider
additional dataitems. These additional dataitems might be separate objects or attributes of the current
object. Identifying which is which is mostly a matter of skill and experience.

Note that the OO approach makes the operations a far less important aspect of the design than the
data and their relationships. In the next section we will examine what objects might exist in our
simulation system.

3.4 ldentifying the objects

Aswas indicated in the last section we start off by identifying the primary data objects. In this case we
might look at the system as awhole and ask ourselves what indicates the state of the system . We might
then say that the position of the windscreen wash switch isimportant or that the status of the pump is
significant. This might result in the following table of dataitems:

Table 3.1: Data items and their associated state information

switch setting isit off, intermittent, wipe, fast wipe or wash
wiper motor isit working or not

pump state is the pump working or not

fuse condition has the fuse blown or not

water bottle level the current water level

relay status whether current is flowing or not

How these are identified in general will be considered in greater detail in Part 6 of this book. At this
point, merely note that we have not yet mentioned the functionality of the system nor how it might ~ fit
together, only what are the significant items.

Asthisissuch asimple system we could now assume that each of these elements will be an object
and illustrate this in a simple object diagram.

35

Wash wipe Wiper motor
switch
Water bottle

Figure 3.2: Objects in simulation system'

Noticethat | have named the objects after the element associated with the dataitem (e.g. the element
associated with the fuse condition is naturally the fuse itself) and that the actual dataitemsi nvolved
(e.g. the condition of the fuse or the level of the water in the bottle) is an instance variable of the object.
Thisisavery common way of naming objects and their instance variables. We now have the basic
objects reguired for our application.

3.5 Identifying the services/methods

At the moment all we have are a set of objects each of which can hold some data. For example, the
water bottle can hold an integer indicating the current water level. However, although object oriented
systems are structured around the data, we still need some procedural content to change the state of an
object or to make the system achieve some goal. Therefore, we also need to consider what operations a
user of each object might require. Note that the emphasis hereis on the user of the object and what they
will require of the object rather than what operations will be performed on the data.

Let us start with the switch object. The switch state can take a number of values such as ‘ off’,
‘wash’ and ‘wipe'. Aswedon’'t want other objects to have direct access to this variable we must
identify the services which the switch should offer. Asauser of a switch we want to be able to move it
between its various settings. As these settings are essentially an enumerated type, we can have the
concept of incrementing or decrementing the switch position. A switch must therefore provide a
moveUp and a moveDown interface. Exactly how thisis done will depend on the programming
language used. For now we will just concentrate on specifying the required facilities.

If we continue examining each object and identifying the required services we could end up with the
following list:

switch moveUp increment switch value as above

moveDown decrement switch value as above

state? return avalue indicating the current switch state
fuse working? indicate if the fuse has blown or not
wiper motor working? indicates whether the wipers are working or not
pump working? indicates whether the pump is active or not
water bottle fill fill the water bottle with water

extract remove some water from the water bottle

empty empty the water bottle

Note that we have generated the list by examining each of the objectsin isolation. The aim was to
identify the services which might reasonably be required. Wemay well identify further serviceswhen
we attempt to “put it all together” but for the moment we will stick to these.

Each of these services should relate to a method within the object. For example, the noveUp and
nmoveDown services should relate to methodsw hich changethe st at e instance variable within the
object. Using a generic pseudo code, the noveUp method, within the swi t ch object, might resemble:

define method moveUp()

if state = ‘off’ then
state := ‘wash’
elseif state = ‘wash’ then
* The hexagonal shape used in this figure for instancesis based on the structured cloud used in version 0.8 of the Unified

Modeling Language described in Part 6 of this book.

36

state := ‘w pe’
endi f
end define nethod

This method will change the value of the state variable in switch. The new value of the instance
variable will depend on its previous value. noveDown could be defined in asimilar manner. Note that
the reference to the instance variableillustrates that it is global to the object. Also notice that the method
nmoveUp requires no parameters. Thisis common in object oriented systems. That is, few parameters
need to be passed between methods (particularly of the same object) asit isthe object which holds the

data anyway.

3.6 Refining the objects

If welook back to Table 3.1, we can seethat relay, fuse, wiper motor and pump possess an interface
‘wor ki ng?’. Thisisafirst hint that these three objects may have something in common. Each of them
presents the same interface to the outside world. If we then consider their attributes, they all possess a
common instance variable. At this point it istoo early to be able to say whether relay, pump and fuse
are al instances of the same class of object (e.g. a Component class) or whether they are all instances of
their own classes which may inherit from some common super class (see Figure 3.3). However thisis
something we will need to bear in mind later.

Component
Component

-~
~ - N

-

<

\ S~
(aRelay) ‘ Pump ‘ ‘ Fuse ‘ Relay ‘ Motor
T T T

(oo) o] [] [veon]
)

@ (b

Figure 3.3: Possible classes for components in the simulation

3.7 Bringing it all together

So far we have identified the primary objectsin our systeman d the basic set of servicesthey should
present. These services were based solely on what data the objects held. We must now consider how to
make our system function. To do this we need to consider how it might be used. In the introduction it
was suggested that this system would be part of avery simple diagnosis tutor. The idea being that a
student would use the system to learn about the effects of various faults on the operation of areal wiper
system, without the need for expensive electronics. We theref ore wish to allow a user of the system to
operate in the following manner:

1. change the state of a component device,
2. ask the motor what isits new state.

Point 1 is already supported by the nmoveUp and noveDown operations on the switch. Similar
operations could be provided for the fuse, the water bottle and the relay. In the case of the fuse and the
relay we might provide a changeSt at e interface. Thisinterface might be implemented by a method
which used the following pseudo code al gorithm:

define nethod changeState()

if state = ‘working’ then
state : = ‘not Wrking’
el se
state : = ‘working’
endi f

end define net hod

37

Point 2 above is more complicated. For the first time we have encountered a situation where we
want one object’ s state (the value of itsins tance variable) to be dependent on information provided by
other objects. If we were to write down procedurally how the value of other objects affected the status
of the pump, we might get:

if fuse is working then
if switch is not off then
if relay is working then
punmp status := ‘working’
endi f
endi f
endi f

This algorithm says that the pump status depends on the relay status, the switch setting and the fuse
status. Thisisthe sort of algorithm you might expect tofindina mai n() program. It linksall the sub
functions together and processes the data.

Of course in an object oriented language (such as Smalltalk) we don’'t have amain program. In an
object oriented system we have well mannered objects passing messages between one another. How
then do we achieve the same effect as the above agorithm? The answer is that we must get the objects
to pass messages requesting the appropriate information. One way to do that would be to define a
method in the pump object which would get all therequired infor ~ mation from the other objects and
determine the motors state. However, thiswould require that the pump had linksto all the other objects
so that it could send them messages. Thisis alittle contrived and loses the structure of the underlying
system. It also loses any modularity in the system. That is, if we want to add new components then we
would have to change the pump object, even if the new components only affect the switch. This
approach also indicates that the developer is thinking too procedurally and not really in terms of objects.

Now let us consider the object oriented view of this system. The pump object only really needs to
know what state the relay isin. It should therefore request this information from the relay. In turn the
relay must request information from the switches and the fuse. Thisisillustrated in Figure 3.4.

Thisfigureillustrates the chain of messages initiated by the pump object. That is, the pump object
sends a message working to the relay, then:

1. relay sends a message state to the switch

the switch replies to the switch

2. relay sends a second message working? to the fuse
the fuse replies to the relay

3. therelay repliesto the motor

If at this point the pump is working, then the pump object sends on the final message to the water bottle.

4. pump sends a message extract to the water bottle.

Wash wipe Wiper motor
switch

1. working?

2. state?

3. working? working?

4. extract(pump status)

Water bottle

Figure 3.4: Collaborations between the objects for wash operation

Inthislast case aparameter has been passed with the message, thisis because, unlike all the previous
messages which were merely requesting state information, this message is requesting a change in state.
The parameter indicates the rate at which the pump is drawing water from the water bottle.

Note that the water bottle should not record the value of the pump’s status as it does not own this
value. That is, if it should ever need the motor’ s status in the future it should request it from the pump
rather than using the (potentially obsolete) value passed to it.

38

For completeness let us consider the algorithm used in the pump to initiate this process. In ~ Figure
3.4 we assumed that the pump provided the interface wor ki ng? which allowed thi s processto start.
Thus the pseudo code of wor ki ng? for the pump object is:

define net hod worki ng?()
self status := relay working.
if self status = ‘“working’ then
wat er bottle extract (self status)
endi f
end define met hod

Y ou should note a number of points about this method. Firstly it isalot simpler than the procedural
program presented earlier. Secondly, this algorithm only shows us part of the story. It only shows us
what is directly relevant to the pump. This means that it can be much more difficult to deduce the
operation of an object oriented system merely by reading the source code. Smalltalk alleviatesthis
problem, to some extent, through the use of sophisticated browsers. Finally, at no point do we change
the value of any var iables which are not part of the pump, although they may have been changed as a
result of the messages being sent.

3.7.1 Where is the structure?

One of the points made at the end of the last section can be very confusing and off putting to someone
new to object orientation. Thisis because they have lost one of the key elements that they use for
helping them understand and structure a software system - the main program body. Thisis because we
are dealing with objects and thus it is the objects and the interactio ns between them which act asthe
corner stone of the system comprehension. In many ways Figure 3.4 is the object oriented equivalent of
amain program. This also highlights an important feature of most object oriented a pproaches -
graphical illustrations. Many aspects of object technology are most easily explained graphically, e.g.
object structure, class inheritance and message chains. This has led to many object oriented design
methods being heavily graphical.

Let us now consider the structure of our object oriented system. The structure in this case is dictated
by the messages which will be sent between objects. That is, an object must possess a reference to
another object in order to send it a message. The resulting system structure isillustrated in Figure 3.5.

Wash wipe Wiper motor
switch

Water bottle

Figure 3.5: Wash wipe system structure

In Smalltalk this structure would be achieved by making instance variables reference the appropriate
objects. How thisis done will be considered at alater date. The point to noteis that thisis the structure
which exists between the instances in the system and does not relate to the classes which act as the
templates for the instances.

Earlier we discussed the relationship between the fuse, the relay and the pump. We will now come
back to thisissue to consider the classes used to create the instances. We could just assume that each
object is an instance of an equ ivalent class. Thisisillustrated in Figure 3.6.a. However, as has already
been noted, some of the classes bear a very strong resemblance. In particular, fuse, relay and motor all
share anumber of common features. Table 3.2 compares the features (instance variables and methods)
of these three objects.

Table 3.2: Comparison of Components

fuse relay motor pump
instance variable | state state state state

39

services | working? | working? | working? | working? |

Water

‘ Switch bottle

‘ Motor

‘ Fuse

(@)

Water
@ ‘ (aaterbore)

Switch

(©

@I

Figure 3.6: Possible classinheritance relationships

From this table it appears that the only way in which they differ isth at they have different names.
Thiswould suggest that they are al instances of a common class such as Component (see Figure 3.6.b).
This class would possess an additional instance variable name to simplify object ident ification.
However, the problem with making them all instances of a common classis that they must all behavein
exactly the same way. Thisis not the case. We want the pump to start the analysis process off when it
receives the message working?. Thus the definition of working? that it possesses must be different from
fuse and relay. However, in other waysit isvery similar to fuse and relay. Therefore, what we want is
for fuse and relay to be instances of a class (say Component) and for pump to beaninst ance of aclass
which inherits from Component (but which redefines working?). Thisisillustrated in Figure 3.6.c.

SimulationClass
name: "
traceMessages()

Switches Component Waterbottle
state state level
moveUp() ina? empty()
moveDown() working’ fill()
State? -7 Tt-- extract()

T T
J ,
Motor Pump

working? working?

/
. N / instance
class instance inheritance , of

Figure 3.7: Thefinal class hierarchy and instance diagram

40

3.8 Summary

In this chapter you have seen how one, very simple system, can be broken down into objects. These
objects combine to provide the overall functionality of the system. Y ou should have seen how the data
to be represented det ermines the objects used and that the inter object interactions determine the
structure of the system. Y ou should also have noted that the identification of the objects, their classes,
the methods and instance variables is more of an evolutionary processt han that used in non object
oriented languages.

3.9 Exercises

Take a system with which you are familiar and try to break it down into objects. Carry out asimilar set
of steps to those described above. Do not worry about how you would implement the objects you
identify or the classes required to generate these objects. Finally, use whatever representation best fits
your way of working for describing what the methods do. If you wish, use a pseudo code, or use a
programming language such as C or Pascal if you prefer. Y ou could even use aflow chart if that is what
you are most comfortable with. It is very important that you try and do thisasit isauseful exercisein
learning to think in terms of objects.

3.10 Further reading

A good place to start further reading on building object oriented systemsis with the first few chapters of
[Rumbaugh et al 1991]. In addition [Wirfs -Brock et al 1990] isan excellent, non -language specific
introduction to structuring object oriented systems. It uses arather simplistic approach which isideal for
learning about object oriented system design, but not really generally applicable. Thisis not a problem
here as what you want to do at the moment is get the background rather than specific techniques.
Another good references for further reading is[Y ourdon 1994].

41

Part Two

The Smalltalk Language

4. An Introduction to Smalltalk

4.1 Introduction

During the nineties the Smalltalk tools market has grown hugely, for example in 1994 in the US the
market was worth about $56 mi Ilion which was a 60% increase on the previous year [Shan 1995]. This
isnot just an American phenomena, Smalltalk is now taught in universitiesin China and Russia and the
number of American universities teaching Smalltalk doubled in 1994. The growing interest in Smalltalk
isfueled by two factors: alleged failures of C++ based projects and stories of successful Smalltalk
developments. For example, EDS (Electronic Data Systems) re -implemented a PL/I based application
in Smalltalk in order to compare the de velopment costs of the two languages. The results showed a 3:1
or 4:1 productivity increase in design and programming with little or no performance degradation
[Taylor 1992]. This has resulted in Smalltalk becoming the natural successor to COBOL (as oppose d to
C++) in many organizations. For example, of 137 MIS sites using COBOL in the US, that have
approved the migration to object oriented techniques, the majority have opted for Smalltalk and of the
remainder, 26% of the C++ developers would recommend Smalltalk [Shan 1995].

In this chapter we encounter Smalltalk, its development environment (and in particular
VisualWorks) and some of the tools available in that environment. We also learn alittle bit about the
history of Smalltalk and consider what Smallta Ik comprises (in the way of a programming language, a
programming system and a development environment).

4.2 What is Smalltalk

Smalltalk can be viewed from a number of different perspectives. This differs from most other
programming languages in that they can be viewed as a programming language and nothing else.
However, Smalltalk (at least as embodied by systems such as VisuaWorks) isfar more than just a
programming language. Below we consider some of the ways of classifying Smalltalk:

* An object oriented programming language . It certainly provides an OO language, that is the
syntax and semantics of the language. The language is supported by a number of compilers
which take programs written in Smalltalk and produce an executable. Asyou will seelater,
they actual tend to produce a byte code form which isthen run on avirtual machine. But more
on that later. Asfor the Smalltalk language itself, it is actually very small and rather compact,
unlike languages such as Ada, which are very large.

« A programming environment . We refer here to the presence of the ‘ system’ provided objects
rather than any particular development environment. Unlike many languages (including C++)
Smalltalk has associated with it alarge (and fairly standard) set of classes. These classes
(which run to over athousand in some versions of Smalltalk) make Smalltalk very powerful.

Y ou will spend most of your time extending the “ system” rather than programming from
scratch.

In anumber of cases these classes provide fac ilities which would normally be considered
to be part of the language in Ada, C and Pascal. The result isthat Smalltalk is anything but a
small programming system. In many ways Smalltalk takes to the extreme the approach that
some other languagestake, in that, the basic language is very small and isreally little more
than a set of building blocks, but these building blocks can be used to provide more complex
constructs. However, unlike many other languages Smalltalk does so by providing acommon
set of facilities.

« An application development environment (ADE). Because of Smalltalk’ s history, it hasan
extremely well developed ADE which provides far greater integration and openness than many

other systems. As the browsers, inspectors and debuggers are all derived from the same source,
there is also consistency between (some of) the various implementations. In addition, the
source code for these toolsis also available with the ADE.

Other languages now have similar environments (most notably Visual C++) h owever,
most of them are modeled on those found in Smalltalk implementations and few of them
illustrate any pretence of consistency between vendors.

Thusit is quite possible to say that Smalltalk is a programming language, a set of extensible classes, a
development environment or even a user interface development tool. It is, in fact, all of these.

4.3 Objects in Smalltalk

In Smalltalk everything is an object (or should be treated as an object). For example, the following
expression:
2 + 3.

should be read as the object 2 is sent the message +, with the argument the object 3. In fact in this case
for efficiency sake the + message is hard coded into the virtual machine (you will learn about this later).
However, if you search for the method + it isthere, it isjust that itsimplementation is hidden from you.

This pure object view has some interesting side effects on the language constructs such as
conditional statements. They are really messages to the objects true or false rather than being part of the
language syntax. Another example are the iterative control statements (the Smalltalk equivalent of for or
while loopsin procedural languages) which are messages to numeric intervals or blocks. You will learn
more about these from Chapter 6 onwards.

4.4 History

The original goals for Smalltalk were described by Alan Kay in the early 1970s. Theinitial sketches
that formed the basis for Smalltalk were heavily influenced by the idea of classes as an organizing
principle (taken from Simula-67), of turtle graphics (taken from the LOGO project at MIT) and of what
isnow called “direct manipulation” interfaces (inspired by the sketchpad drawing system, developed by
lvan Sutherland at MIT Lincoln Laboratoriesinthe early 1960s, and by Kay’s Ph.D. thesis on the
FLEX machine).”

Between 1971 and 1975, Kay’s group at Xerox PARC designed and implemented the first real
Smalltalk language, environment and applications. This system included a number of technical
innovations:

e Thelanguage was based entirely on the Smula concepts of class and message
« Thelanguage had no fixed syntax. Each class was responsible not only for its own behavior and
state definition, but even for parsing the token stream that followed a mention of an instance.

The innovations in the devel opment environment were equally radical. At that time bit mapped
displays were considered expensive and arcane. Nevertheless, Kay persuaded PARC to allow him to use
bit mapped displays, which enabled Kay and his team to implement bit -mapped text in multiple sizes
and styles, using multi-windowing environments, plus high level support for bit operations and graphics
operations.

The Smalltalk -72 system further took the view that therewasnoreasonfora separate operating
system, since the object paradigm could manage all hardware resources at least as easily as any other
approach.

By 1975-76, it had become clear that the lack of attention to issues of performance and scale were
hampering further invest igations. Kay’s group proceeded with a major redesign of all aspects of the
Smalltalk system. In the language area:

? Note this section is based on information described in a paper by L. Peter Deutsch, called The Past, Present and Future of
Smalltalk, which was presented at ECOOP’ 89 [Deutsch 1989].

45

* Theideaof inheritance and subclass hierarchy was incorporated into Smalltalk.

« The syntax of the language was fixed. This enabled compila tion into an efficient, interpretable,
compact (byte encoded), instruction set.

« Introduction of the Browser by Larry Teder. The Browser vastly increased the productivity of a
Smalltalk programmer.

All previous versions of Smalltalk had b een implemented on specialist hardware, until in 1977 -78,
Bruce Horn and Ted Kaehler ported Smalltalk -76 to a system which incorporated dual Intel 8086
processors with a custom display (called the NoteTaker). Only 10 such systems were produced,
however it was a positive demonstration that it would be possible to implement Smalltalk on
conventional processors.

4.4.1 Smalltalk-80

In 1979-80, partly due to the NoteTaker project, the attention of the Smalltalk team was drawn to the
possibility of marketing Smalltalk beyond Xerox PARC. The team designed and implemented yet
another generation of Smalltalk systems, this time with some changes specifically aimed at portability
and exploitation of standard hardware. These included:

e The adoption of the ASCII character set rather than the special character set used in Smalltalk-72
and -76.

« Smalltalk-80 removed the ability of primitive methods to directly access any memory location.
Instead Smalltalk -80 introduced a dozen primitive methods which provided the required
functionality. This significantly helped portability.

e The Smalltalk -80 language introduced the concept of metaclass, to provide away of talking
about behavior (messages) that were specific to an individual class. More about this towards the
end of this book.

¢ TheModel -View-Controller (MVC) system was introduced for interactive applications. More
about this later in the book.

Finally, by 1981 a significant number of t he Smalltalk team felt that it was important to take direct
action to propagate Smalltalk beyond Xerox PARC. Adele Goldberg, who had by now replaced Alan
Kay as head of the group, and Dave Robson, along time group member, decided to write a series of
books about Smalltalk. These books include descriptions of both the language and its implementation.
One of thefirst external implementors of the system was Digitalk. A company set up by Digital to
develop and market Smalltalk systems.

4.4.2 VisualWorks and commercial versions of Smalltalk

VisualWorks isthe commercial product developed and supplied by ParcPlace -Digitalk and is probably
the most widely used commercial Smalltalk system. Thisis at least one of the reasons why this book has
aVisuaWorks emphasis.

The language itself is now well established in the market place and in 1995 had about 17% of the
market in client -server systems development in the USA. Smalltalk systems are now available for
Macs, PCsand UNIX boxesand in some cases the same system is available on them all (e.g.

VisuaWorks).
In the case of VisualWorks, it provides not only the basic set of classes but also screen painting
facilities, database connectivity, business graphics aswell as interfacesto C and other compiled

languages. It also provides generic window support for the programmer, which is translated to whatever
windowing system is being used. This means that it is possible to develop a system on aMac but deliver
it on aPC or UNIX box. It is interesting to note that the market in Smalltalk systems (and VisuaWorks
in particular) is growing rapidly while the market for C++ systems appears to have begun to shrink.
Currently there are anumber of implementations of Smalltalk available. Theseincl ude Smalltalk/V
and Visual Smalltalk also from ParcPlace -Digitalk, Smalltalk Express, versions of Smalltalk produced
by Fuji Xerox, Sony and NEC in Japan and the GNU project’s public domain gSmalltalk. IBM isa
relatively new player in thisfield withits IBM Smalltalk (a standard interface based Smalltalk) and

46

VisualAge (aversion of Smalltalk with aVisuaWorks style interface). Hewlett Packard also market a
distributed version of Smalltalk called Distributed Smalltalk.

During 1995 there was a big shake -up in the Smalltalk vendor world when ParcPlace systems (the
Xerox spin off) and Digitalk merged to form ParcPlace -Digitalk. At the time these two vendors had the
lion’s share of the Smalltalk market. Their merger produced the largest single Smalltalk vendo r. Quite
what the future holds for the products produced by ParcPlace -Digitalk isstill unclear. Current reports
mention a product called JigSaw which appears to provide the best features of VisualWorks combined
with the best features of Vis ual Smalltalk. It islikely that this will mean that the VisualWorks
development tools will remain, while Visual Smalltalk’ s integration with the PC platform will be
exploited. Thisis one of the reasons that this book uses VisuaWorks asthe basis of the devel opment
environment described - future products from ParcPlace-Digitalk are likely to look very similar.

It should be noted, however, that unlike many other programming languages there is currently no
international standard for Smalltalk (although one isinthepipeline - seethe ANS| X3J20 draft
standard). This means that, although very similar, each of the commercial versions of Smalltalk is
dlightly different. The major differences are associated with their graphical interfaces an d database
connectivity (if any). However, there can be subtle differences between the versions such as the scoping
of variables within blocks of code. The examples described in this chapter and those that follow (as well
asthe tools described) are all taken from the VisualWorks system and should be usable with version 1.0
upwards of VisualWorks. They have been tested on versions 1.0, 2.0 and 2.5.

45 The Smalltalk environment

One of the mgjor differences between environments such as VisualWorks, and those you may have been
used to, is how development proceeds. Y ou are going to be in for a shock if you have been used to
having acompletely un -integrated environment in which you write the program with your favorite
editor (for example, Vi or EMACS), then run that through a compiler (for example, gcc), possibly
needing to use alinker before you are able to create an executable, which you can then run to test if it
works.

Even if you have been used to arather more integrated environment, asis often found on personal
computers or from commercial software suppliers (e.g. ALSY S Ada), you will be surprised just how
integrated Smalltalk is. For example, as soon as you have written some code, you can accept it (which
not only checks the syntax and attempts to correct spelling mistakes; it also compilesit) and then runiit.

To run apiece of code, you don’t even have to leave the window you arein, you can just select a
statement which will execute the whole “lump” of code in the same editor window and ask the system
to execute it, which, of course, it will. This means that you can “try out pieces of code” without having
to write large amounts of code which act as a program harness’.

As can be seen from this example, the edit / compile /link / execute cycle does not really exist in
Smalltalk. Y ou should therefore try to forget it and attempt to work inamuch more exploratory and
interactive manner.

4.5.1 The implementation of Smalltalk

Smalltalk is different to other devel opment environments you may have used in another way; when you
write Smalltalk code it does not execute on your host machine, even when it is“compiled”. Instead it
executesin a Virtual Machine, which in turn executes on your host computer *. In fact thisis part of the
secret behind VisualWorks' portability - you can write code on one hardware platform and, without re -
compilation, run it on another hardware platform with a completely different windowing system. In
effect, your Smalltalk codeisaways running on the same machine; the Smalltalk Virtual Machine.
Thereistherefore no concept of an “executable” in Smalltalk terms.

Instead of an executable file, what you build up in Smalltalk is called an “Image’. This however,
holds not only your executab le code, but also the compiler, the editors, debugging tools, class
definitions, instance definitions etc. available within Smalltalk. Theimage isliterally animage of the

® Thisis not necessarily anew feature for those used to a number of A.l. systems such as POPLOG or LISP, but for those used
to Adaor UNIX and gcc, it may be arevelation.

* When you compile your Smalltalk it is compiled into a byte code format rather tha n a machine executable format. These byte
codes are then executed by the virtual machine which has been heavily optimized to give very fast run times.

47

state of your development environment when you saved it. Figure 4.1 illustrates the structure of the
VisualWorks system.

Virtual Image

Smalltalk Virtual
Machine

Host
Computer

(tools, system classes,
user classes, instances)

Figure 4.1: VisualWorks system structure

When you deliver systemsto clientsit is poss ible to cut down to a minimum what you deliver (e.g.
you probably won’t need to give a client the compiler classes). To do this a number of tools are
available including the stripper tool (which strips out those parts of the image you don't need) provided
asautility with VisualWorks.

When you work with a Smalltalk system you should be aware of at least two files (besides your own
sourcefiles). Oneisreferred to asthe Virtual Machine (thisis also known as the Object Engine) and
oneisreferredtoasan Imagefile (see Figure 4.2). Theimagefileisan “image” of the state of your
development at a particular point in time as described above. To actually use VisualWorks you need to
run theimage o n the virtual machine. This meansthat you can have different images on your file
system possessing different sets of classes, in different states, all of which can be run by the same
virtual machine. It should be noted, however, that it isonly possiblet orunoneat atimeonasingle
invocation of the virtual machine.

Imagefile Changesfile

Visual.im » Visud.cha

VW.exe

Virtual Machine

Figure 4.2: Primary filesin VisualWorks

Finally, another file that you should be aware of is the changesfile . Thisfilelists all the
maodifications you make to any class, as well as the instructions you issue to the system (e.g. to accept
some code). In fact it is the changes file which holds the uncompiled version of your source code. The
relationship between the filesin VisuaWorksis thus that illustrated in Figure 4.2. Note that there arein
fact other files used by the system (e.g. such as the VisuaWorks sources file - called Visual.sou).
However, at present you do not need to worry about them.

48

4.5.2 The VisualWorks Launcher and Transcript

T Visualworks =[Ol

File_Browse Tools Changes Database Window Help

]
Magnituge-Numbers
book.im created at September 28, 1| Collections-Abstract
Collections-Unordered
Collections-Sequenced
Collections-String Sup

Welcome to,
VisualWorks® Release 2.5 of Sept 26, 1995
Copyright © 1995 ParcPlace-Digitalk, Inc. Al Rights Reserved.

Figure 4.3: The VisualWorks Launcher and Transcript, a System Browser and a Workspace

When VisualWorksisfirst started up, the user will see the Launcher and the system Transcript as
illustrated at the top of Figure 4.3. Thisillustrates VisualWorks on a Windows -95 system, however, it
looks identical on a Macintosh or a UNIX box.

We shall consider the Launcher and Transcript separately as they will be used by the developer in
different ways.

45.2.1 VisualWorks Launcher

The VisuaWorks Launcher is the primary w ay inwhich you will access the tools within the
VisualWorks environment. Y ou should think of it as the top menu bar across most PC and Macintosh
applications, like the start button on Windows -95 or like the pop -up menu used with many X windows
desktops. | t isyour interface to VisuaWorks. From the Launcher you can access al the system
browsers (for browsers also read editors), the screen painting tools, the database tools, help, file access
tools etc. Asyou use VisualWorks more and more you will cometo know where these tools are and
how to use them.

For speed of access a number of the most used tools have button icons below the menu bar. These
are (from left to right):

» Thefiletool (for browsing directories, editing files on the host file system and filing in (abit like

compiling) files.

¢ The System Browser, which is described below.

e Open a Workspace (see below for an explanation of Workspaces).

e The Screen Painter which is used to easily and quickly construct graphical interfaces.

e TheResource Finder which is used to find window and icon definitions.

« Database toolsfor working with relational database systems

e Theon-line help system.

The most important operations other than those covered above are Exit VisualWorks... and SAVE
AS. Both of these operations are found under the File menu. The Exit VisualWorks ... operation allows
the user to quit from VisualWorks at any time. This operation bringsup apop -up window with three
options, Exit, Save + Exit and Cancel. The Exit options quits VisualWorks and the current state of the
system is not saved and thus anything that you have done (including coding) since you last saved will be
lost. Remember that when you define new classes and methods you are only doing so within the
VisualWorks environment, you are not saving anything to file. There is away to recover anything you
have done, if you quit and have forgotten to save your image, which involves the changes list which we
won't look at yet. The Save + Exit option first saves the image and then exits VisualWor kswhile the
Cancel option, returns the user to the VisuaWorks environment.

The SAVE AS operation saves the current state of your VisualWorks environment as an image.
Look back in this chapter if you are not sure what an image is. Thisimage can bere -started again at a
later date.

49

45.2.2 System Transcript

The System Transcript is atext window which has the additional property of supporting display
operations from expressions as they are executed. It can be referred to using thename Transcript. In
effect, it isthe output window of the VisualWorks system. It iswhere the system itself reports
important information such as when the image was last saved etc.

It isalso very useful asaquick way of outputting information, for example by placin g trace
statements within code to see exactly what is happening or for displaying the results of computations
which do not require sophisticated presentation. For example:

Transcript show 'John'.

Y ou can do this anywhere within any part of your code because Tr anscri pt isactualy a global
variable and an instance of aclass called Text Col | ector.The Transcri pt (and other
TextCollectors) respond to the message:

show aString

Other useful messages understood ° by the Transcript include: cr (startsanew linein the
Transcript.), space (putsasingle space in the Transcript) andt ab (putsa‘tab’ in the Transcript).

The Transcript only knows how to print strings. Therefore, to make it easy to print anything in the
Transcript, you can use ame ssage called pri nt St ri ng. All objects understand this message (asitis
implemented inthe class Cbj ect). When sent to an object, the result is a printable string which
represents the object. The result will be different dependingonth e class of the abject, but you are
guaranteed something you can print. Theway tousepri nt Stri ngis

Transcript show sonmeCbject printString

Type the following into the Workspace (thisis the window at the bottom right of ~ Figure 4.3, more
information on this window is provided in the next chapter). Once you have typed it in, select it with the
left mouse button. Now use the right mouse button to bring up thewindow menu °. Thismenu hasa
number of options onit, half way down you will see an option called do it. Select this option. The code
will then be executed and the results will be printed in the Transcript.

Transcript show 'Hello World'.
Transcript show (3 + 4) printString.
Transcript cr.

You have now written your first piece of Smalltalk. Thisillustrates an important point, that with
Smalltalk you will get the most out of any book or course by trying things out. So try things out;
explore, be adventurous; it is the quickest way that you will learn.

4.5.3 The System Browser

The System Browser allows the user to inspect the definition of any object in the system, and to modify
it if required. More than one browser can be displayed simultaneously (indeed it is oft en useful to have
anumber of browsers open at the same time so that different classes can be considered at the same
time).

The System Browser is made up of five subviews (or windows) and two complementary items
marked instanceand class. By default, the instanceitem is selected; this means that the messages
displayed are the ones sent to instances of a class rather than to the classitself. Note that each of the
subviews has an independent scroll bar. The System Browser isillustrated in the middle of Figure 4.3.
In the figure, the object class has been selected (thisisindicated in the second window across the top).

From left to right, the top four panesin the System Browser are:

® Thisis an example of Smalltalk terminology. Rather than say that some procedure has been defined for a n object, Smalltalkers
say that it understandsit.

° This assumes that you are using a two button mouse, for example on a PC. If your mouse has only one button please refer to
the VisualWorks system manuals to find out what the appropriate key sequenceis to mimic the second and / or third mouse
button. If you have a three button mouse then the middle button is the equivalent of the right button on atwo button mouse.

50

Class categories. These are group s of classes which are categorized for convenience. One of these
categories may be selected (as in the figure); the classesin this category arethen
presented in the next subview.

Class Names. Classesin the selected ¢ ategory are presented. One of these classes may be selected
(for example, the class object is selected); various categories of messages are then
presented in the next subview.

M essage categories. These are the categories of messages which ¢ an be sent to either instances of
the selected class (instance selected) or to the classitself (class selected). One of these
categories may be selected; all message selectorsin this category are presented in the
right-most subview.

These message categories are also known as protocols. In the reminder of the chapters we shall refer to
thiswindow (pane) as containing protocols and thusit is the protocol window.

M essage Selectors. All of the message selectors (essentially method names) i n the protocol are
presented. One of these messages may be selected, its method (the code executed when
this message is received) will be shown in the lower (code view) area. For example, in
Figure 4.3 the isNil message is selected.

The code view window. Thiswindow is used to browse and define classes, write methods etc.

You will find that off the right mouse button (if you have a three mouse button then it is the middle
button) each window will produ ce a different menu. These are the window specific menus. Y ou will
make extensive use of them, so get familiar with what is on each menu. Figure 4.4 illustrates each of the
menus for each of the five different windows.

Category Class Protocol Message Code
file out as... file out as... file out as... file out as... find...
hardcopy hardcopy hardcopy hardcopy replace...
spawn spawn spawn spawn undo
add... spawn hierarchy add... senders copy
rename as... hierarchy rename as... implementors cut
remove... definition Temove... messages... paste
update comment edit all move to... do it
edit all inst var refs... find method... remove... print it
find class... class var refs... inspect

class refs accept
move to... cancel
rename as... format
remove... spawn
explain
hardcopy

Figure 4.4: The System Browser Menus

There are anumber of other browsers and inspectors in the Smalltalk system, for example the
Protocol Browser andthe Method Browser . They are condensed versions of the System Browser
which possess specific views onto the class hierarchy or onto a particular class. If you have obtained the
advanced programmer’ s tools with VisualWorks you will also be able to us ethe Full Browser . Thisis
an excellent browser which possesses a few more features than the basic system browser.

51

4.6 Further reading

A good paper giving some of the (historical) background on Smalltalk is[Deutsch 1989]. Asan
introduction to the language of Smalltalk and the VisualWorks environment you would be hard pushed
to find a better book than [Lewis 1995]. If you are only going to buy one other book on Smalltalk, buy
this one. Of course there are also the four Smalltalk -80 books produced by the Xerox people [Goldberg
and Robson 1983], [Goldberg and Robson 1989], [Goldberg 1984] and [Krasner 1983].

52

5. A Little Smalltalk

5.1 Introduction

In the last chapter we looked at browsers and the System Transcript, in this chapter we examine
Workspaces and inspectors. Workspaces and inspectors are the next most important tools in the
Smalltalk system. We then consider the debugger , one of the most useful tools available to the
developer. Having looked at all the major development tools you will use (at least for the time being)
you are introduced briefly to the Smalltalk language. Y ou will then use the tools available to write some
Smalltalk.

5.2 The Workspace

Workspaces are akind of direct interface to the system ¢ ompiler. They act a bit like an editor in that
you can type Smalltalk code into them, and execute that code immediately. Y ou can define temporary
and global variables, create instances of classes, perform arithmetic calculations et c. The only thing you
cannot do is define classes and methods (that must be done in one of the browsers). In the following
figure, the Workspace is being used to calculate the average of a set of numbers.

To compile code within a Workspace you first select the code using the |eft mouse button. Y ou then
bring up the Workspace operations menu using the right mouse button (if you have a three mouse button
you will use the middle button). Thismenu isalso illustrated in Figure 5.1. The fourth grouping on the
menu contains doit, print it and inspect. The doit and print it operations will compile and execute
thecode. doit will merely runthe code, whilethe print it operation will also prin t the result of
executing the last expression selected. The result isleft highlighted so that you can delete it with the
delete key if you no longer requireit. Try them out and see for yourself. The inspect operation will first
compile the code (if requi red) and then open an inspector (see below) on whatever you currently have
selected. It the system was consistent, this option would be called “inspect it”.

Y ou can have as many Workspaces as you require open, you are not limited to asin gle Workspace.
Of course on astandard PC or Macintosh screen, you may be limited by space. This highlights another
issue, for developing Smalltalk systems, it is often useful to have as much screen “real estate” asyou
can get. Bigger realy is better in this case.

] Workspace (]
Werlcoms to ind._. A

YisualWorkse Release 2.0 of 4 Augus
Copyright © 1994 ParcPlace Systems, TePlace.. g

Reserved. undo

copy

[temp average | cut

temp=2+6+4+5+6+7.
arerage = temp ! 6. paste

do it
print it
inspeck
accept
cancel

hardcopy

Figure 5.1: Using the Workspace

53

5.3 Inspectors

Another type of tool available in the Smalltalk environment are Inspectors. Inspectors permit the
internal state of an individual object to be viewed. | n particular they allow the user to view and change
instance variables directly. In effect inspectors are to instances as browsers are to class definitions.
Unlike other programming language development tools, you can use an inspector to change the state of
an instance (for example, to set up an object ready for testing a piece of code) as well as examineits
contents.

The inspector window is divided into two asshownin Figure 5.2. Theleft hand sides howsthe
instance variables of the object, while the right hand side shows the contents of those variables. For
example, in thefigure, the pr ef s instance variable has been selected (in the left hand side) while the
dictionary contained by that instance va riableis displayed (in the right hand side). If the contentsisa
composite object (that is an object which contains other objects e.g. such as the dictionary shown), then
you can open another inspector which will present the contents of that object. Tod o thisyou select the
inspect option off the right (middle on the three button mouse) button menu in the left hand side.

The right hand view of the window not only allows you to examine and change the contents of
instance variable, it also allows you to evaluate expressions (just as you can in a Workspace) except that
the evaluation happens within the context of the instance. This means that instance and classvariable s
can be referenced in the same way as they can within any method definition.

Note that two inspectors are built into the bottom of the debugger window and can be extremely
useful when attempting to decide why something unexpected has happened.

The use of inspectors provides a powerful debugging and testin g tool. All objects respond to the
message i nspect ; the basic inspector method isimplemented in the class oj ect’ s instance
protocol. Most objects respond by opening an inspector window, labeled with the class of the receiver.

77 GMTObject [_ O]]
self E Dictionary E

label
attributes
system n->'sys’

periods #ocalExtension-="
position
systems
prefs #globalExtension-
allGlobalPer =glb')
allLocalPeric

(#aysiemExtensio

lcl’

Figure 5.2: An example inspector

5.4 Notifiers

Y ou should also get familiar with the system notifier, such as those you will encounter when you typein
an incorrect Smalltal k expression. These notifiers are there to help you. For example, in Figure 5.3, |
have mis-typed show, the system recognizes this and informs me of the fact. If | selectthe correct it
option, it will try to find what it thinks | wastrying to type. In this case it will give aselect list
containing the show: message, which | can select. Thiswill replace my misspelling and the code will
successfully execute.

3| Melcome ko i
7l ¥YisualWorkse Helease 2.0 of 4 August 1994
Copyright © 1994 ParcPlace Systems, Inc. All Rights
< Reserved.

Transeript shew: “John’.

shew: is a new message

proceed I comrect it abort

Figure5.3: A system notifier

Notifiers can be displayed under a number of circumstances. They can be caused:

« Accidentally, by sending a message to an object which has no corresponding method. Thisisthe
usual response to a program error.

« Ddliberately, by typing 'CTRL-C' or equivalent to break into the current execution.

« Ddliberately, by inserting a breakpoint. We will discuss these later.

« Accidentally, by the system running out of memory.

« Accidentally, by recursion occurring in the system error handling.

5.5 Error processing

Handling run time errors in Smalltalk is slightly different to the way in which run time errors are
handled in some other languages. Unlike, for example, C++ on a UNIX box, you do not need to take
your core dump and analyze it using another piece of software. Instead, the system indicates the fault
and gives you a chance to decide what to do next. One possibility isto interactively fix the problem.
This was what was done during the exercise at the end of the last chapter.

r

% File Windows 2z00pm 7 W

File Browse Tools Changes Dalabase Wind

R ERE = EARC

& o +
I'workse Release 2.0 of 4 August 1994

ight © 1994 ParcPlace Systems, Inc. All Rights
ed.

+||| an Object +

|
= Organiser nevr.

iewaAddress: ‘Room 47" for: “John" |

ewAddress: "Room 46" for: "Palrick’.
ewAppointment: "Meet with MEng’ for: "10MD/95".

stUncerstand:
efinedOk ect=>unboundiiethod
UndefinedObjech Object)=>performiethod argumenis
UndefinedObjectObject)==performiethiod

CormpilerSmallalk Cormpiler}==svaluate inreceiver notifying IFFail:

]

. || step ” send ‘

"The defallt behavior is to create a Notifier containing the [+]
appropriate message and ko allowthe user o open a Deblgger,]
b Subclagses can ovettide this message in order ko modify this I
|| behavior”

Eceplmn

Unhandled exception: Message not
understood: FnewaAiddressfor:

Debug]l[Proceed][Terminate 'I__j-.n

| selectorSiring |
selectorSiring =
ObjecterrorSignal
handle: [ex | ex returni¥ith: = unprintable selector *+]
do: [aMessage selector printSiring]
Object messageMotUnderstood Signal

[Copy stack] [Correct it...

Organiser{Object)==doesMNotUnderstand

UndefinedObject=>unboundiethod

UndefinedObjechObject)=>performiethod arguments

UndefinedObjechObject)>=performiethod

CormpilerSmalkalk Cornpil..sver:notifying ifFail:
g

o

ring|
2 Message with
selector:
#newasddressfo
riand argume ks
L # Boom 43

anOrganiser

[I=][¢]

]

[+l
T B e B A e R B R T R e S R R e R R R e

IR 2o

Figure 5.4: Aninspector, notifier and debugger

Figure 5.4 illustrates an exception notifier warning that amessage (newaAddr ess: f or :) has been
sent to an o bject which does not understand that message. It also illustrates the debugger which would
be displayed if the debug option was selected. Finaly, it illustrates an inspector examining an instance
of classbj ect .

5.5.1 Exception notifiers

When amessage is sent to an object with no corresponding method, then an exception notifier window
(asillustrated in the bottom left hand corner of Figure 5.4) isdisplayed. This notifier is aso displayed if
ahalt message (a breakpoint) is encountered. The exception notifier has a number of options which
alow the programmer to determine what should happen next. The options are:

« Debug This closes the notifier view and opens a debugger view on the error condition.
* Proceed Continue asif the error had not occurred.

e Terminate Thisterminates the current evaluation.

* Copy Stack This copiesthe current state of the execution stack.

55

¢ Correct it Thisallowsthe user to correct the fault.

5.5.2 Types of run time error

When encountering a new language for the first time, it is quite common to get extremely frustrated
while you attempt to determine why a piece of code is causing arun time error. This often turns out to
be caused by atrivial fault which would have been dealt with immediately if you had been working in a
language with which you were familiar. This sort of problem afflicts us all and is the source of a great
deal of resistance to change. However, the problems can be eased somewhat if you areawa reof the
types of root causes for different failures. The following list attempts to ease this sort of problem. It
presents the types of run time error (other than incorrect message sends) which can occur:

* Sending a message to an object which does not respond to that message.

* Trying to create an instance of Character or Boolean.

« Trying to create instances with inappropriate instance creation messages.

« Evaluating a block (instance of BlockContext) with the wrong number of arguments.

* Numeric errors, such as divide by zero, or square root of a negative number.

« Lots of collection errors, such as trying to remove an element not in a collection, or trying to use
theadd: message on a collection class which does not support add: for example Ar r ay etc.

* Sending a message to an object where the corresponding method should have been defined in a
subclass. This can be identified by finding the following statement in a method:

sel f subcl assResponsibility

« Control messages to objects which are not Bool eans (ifTrue) or Bl ocks suchas []
(whileTrue).

5.6 Some Smalltalk

Let'slook at alittle Smalltalk, just to get you going. Y ou have already seen (and possibly written) some
Smalltalk when you typed in the Smallta Ik version of the “Hello World” program in the last chapter.
Now let’s add two numbers together. First we shall do it in anon -object oriented language such as
Pascal. For example, we might write:

int a b, c; This says som ething like, “ create three variables to hold
ﬁ - % integer values (call them a, b and c). Store the value 1 into
c:=a +b; the variable aand 2 into variable b. Add the two numbers

together and save them into the third variable ¢”.

Now let’slook at how we could write the same thing in Smalltalk.

| abec| Asyou can see thislooks basically the same (apart from the
ﬁ - %: use of afull stop (also known as a period) instead of a semi -
c:=a+bh colon). We also apparently forget to declare the types of the

variables a, b and ¢ (and put some bars around them).

However, although the affect is the same, and the look similar, the meaning is dramatically
different. In Smalltalk, this actualy says:

“Define three temporary variables a, b and ¢ (we don’t care what they will hold). Assign the
object 1 to variable a. Assign the object 2 to the variable b. Take the object in a, which hasthe
value 1, and send it the message “ +” , which includes the argument b, which in turn has the
value 2. Object a, receives the message and performs the action requested. This actionisto add
the value of the argument to itself. Create a new object and return this result as the result of
evaluating the message. Then save this object into the variable c”

56

These concepts of messages, receivers, objects etc. will be explained in alater chapter. Hopefully,
by the end of this book you will read the above definition and say “ of course”.

5.7 Working with Smalltalk

5.7.1 Open a VisualWorks image
First of al start up your current VisualWorks image, for example, on a UNIX system you might enter:
visualworks Visual.im

If thisis not local you may need to specify a path name for the object engine or the image. For example,
if you are on aUNIX system:

Jusr/local/ visua/bin/visualworks /usr/jjh/visua.im

If you are using a Macintosh or a Windows -95 PC then you just double click on the image file and the
VisualWorks virtual machine will be used to open it.

Once you have started VisualWorks, save the image to your own file store and exit. To do this, first
select the save as option off the file menu on the VisualLauncher. Y ou will be requested to provide a
name for your image. Note that if you do not give a path name as well as the image name, the image file
will be saved in the current directory.

Once you have created the image file, you can exit from VisualWorks. To do this you select the Exit
option (again from the File menu on the VisualLauncher).

5.7.2 Selecting, compiling and executing Smalltalk

If you have not aready done so, type the following into the Workspace:

Transcript show. 'Hello World'.
Transcript cr.

Transcript show (3 + 4) printString.
Transcript cr.

Select thetext and doit. That is, select the text with the left mouse button, then bringu p theright
(or middle on athree button mouse) mouse menu and select the do it option. Y ou should then see the
phrase “Hello World” and the number 7 appear in the Transcript window.

5.7.3 Using some VisualWorks tools

In many books you are presented with some so urce code to type in and execute, but are given very little
guidance on how to deal with errors etc. Therefore in this section, you get to type in some (intentionally
buggy) Smalltalk code and to compile it. This forces you to use tools such asthe debugge r to identify
and correct the errors. After all, at this stage, it islikely that you will write buggy Smalltalk rather than
perfect Smalltalk.

Typein the following exactly asit is (there are errors included so that you get some practice using
the tools available in Smalltalk).

| tenp |

temp := Set New.

tenp add: 'John'.

tenp add: ' Paul'.

tenp add: Peter.

tenp do: [:item | Transcript showiteni.
tenp inspect.

Now select all the code and “do it” as before. Y ou should now get adialog box such as that
illustrated below:

57

New is a new message

proceed | cnrmc‘litl cancel |

This dialog box indicates that New is not understood by the class Set (note the terminology). Thisis
an example of how Smalltalk (and VisualWorks in particular) attempts to help you if it finds a message
it does not understand. In this caseit did not understand “New”. It identified thisasa problem and is
now allowing you (the user) to

e Abort and correct the error yourself,

e Proceed as though nothing had gone wrong (however it would probably fail in another way

immediately) or to

e Correct it, the error, with the system’s help.

The correction option isillustrated below. Click on the “correct it” option. Y ou will then see the
following selection box:

Correct to...

D’j

OK | Cancel |

Select “OK”.

Thisis an example of how Smalltalk attemptsto help you if it findsam essage it does not
understand. In this caseit did not understand “New”, but it found that Sets do understand “new”. As
“new” isvery similar to “New”, Smalltalk presented it as a possible alternative.

Once you have selected “OK” on the selection dialog, you should then see the following dialog.

item is a new message

proceed | correct it| cancel |

For the moment select “proceed”. The problem here is not actually with item, but is a feature of
another problem which we will come back to later. Once you have selected “proceed” you will then see:

Declare Peter as
temp |

glohal |
undeclared |

Correct It | Cancel |

This dialog was generated because, Pet er , does not have single quotes around it (single quotes are
used to indicate a string). The system therefore assumes that it is a variable which has yet to be defined.

At this point press“cancel”. You should findthat ~ Pet er ish ighlighted in the Workspace. This
illustrates how Visua Works attempts to point out where the problem is. Now place single quotes
around Pet er , eg.

tenp add: 'Peter'.

Next re-select the whole lot and “do it” again. You will again see adialog warningyo uthat item
isn’t defined. For the moment select proceed.

Y ou will now get an Exception raised. Thisis because the Transcript object does not understand the
message “show”. The dialog you see should look like this:

58

Unhandled exception: Message not
understood: #show

Debug | Proceed | Terminate |

Copy stack | Correct it... |

TextCollector(Object)>>doesMotUnderstand
optimized [] in UndefinedObject>>unboundiethod
Set>>do:

UndefinedObject=>unboundhethod
UndefinedObject(Object)=>performhdethod:arguments

Select the “Debug” option. Thiswil | open adebugger on the error code. Now select the second line
down in the top window. This should start with opti m zed [] . Thedebugger with thisline selected
isillustrated below:

EUnhandled exception: Meszage not understood: Hshow

TextCollector{Object)>=doeshotUnderstand: A

optimized [] in UndefinedObject=>=unboundiethod J
Setx=do;
UndefinedObject=>unboundiethad
UndefinedObject(Object)>>peformMethod: argurments: 7
step | send |
Please refer to the documentation and the settings tool for help in A

setting up the proper source code files."

[t1]

(t1 := Set new) add: John'

t1 add: Paul.

t1 add: Peter’

t1 do: [:42 | Transcript show item].
A1 inspect

& A [t2 K

/N

In the top scrollable window of the debugger you see each method whi ch has been executed, in the
window below this, you see the source code relating to the method. In this case you see a*“ decompiled”
version of the code you wrote in the Workspace displayed. It is decompiled because you typed the
original code into the Work space rather than into a class. It therefore had no class to refer back to. You
will know decompiled code from original source code for two reasons. Firstly, there will be a comment
telling you that it has been decompiled and secondly the variables will ha ve names such astl and t2
rather than the variable names you chose.

In the debugger you can identify the point at which the error was caused because it will be
highlighted. That is, the message “show” will be in bold. Y ou can correct the error by changing “show”
to “show:”.

Y ou could now fix the problem here (and when you are debugging methods on actual classes you
may well do so). However, there is no point doing so thistime, as thisis the decompiled version of your
original. Thus any changes you make herewill belost once thisrunis completed (in addition the item
following show has not been compiled yet and therefore remains as item where as the temporary
variable at the beginning of the do: statement has been decompiledtot2 - rather t han item). It would
therefore be better to go back to the Workspace and fix it there.

Y ou should change the show statement to read:

L]

tenp do: [:item| Transcript show iteni

Now select all the code and “do it” again. This time the contents of the set shou Id be printed in the
Transcript.

Notice that the order in which you input the strings may differ from the order in which they are
printed. Thisis due to theway add: works (why not have alook and see for yourself).

59

Finally, you should see an inspector window displayed. Try clicking on some of the left hand items.

self EY A
tally

1

2

3

4

5

G

7

The left hand view of the window shows instance variables (such astally) and positions (e.g. 1 - 7)
and the right shows the contents of the variables (e.g. the string * John’).

Hereisaquest ion for you to ponder on and experiment with: “ What happens when the 8th itemis
added to this set?””.

5.8 Summary

By now you have used a number of Smalltalk toals, run VisuaWorks (or whatever Smalltalk system
you are using) and written some Smalltalk code. Y ou have also had the chance to use some of the tools
available to help you debug your code. Y ou are now ready for the Smalltalk language itself!

5.9 Further reading

If you are going to do any serious development in Smalltalk then you should consider obtaining at least
Vol. 1. of Inside Smalltalk [Lalonde and Pugh 1991] (which concentrates on the language) if not Vol. I1.
[Lalonde and Pugh 1991b] (which concentrates on the graphical facilities).

However, by far my own favorite book is [Hopkins and Horan 1995]. Thisisavery good
introductory book on Smalltalk using the VisualWorks 2.0 system. Indeed it is based closely on the
courses that were run by the University of Manchester by the authors and by the commercial suppliers
of VisuaWorks. This means that the material in the book has been “ debugged” over a number of years.
In particular it covers much of the same material asisin Part |1 of thisbook but spends much moretime
on the use of the graphical facilitiesin Smalltalk. It also goesinto agreat deal of detail about the tools
in VisualWorks and how to use. However it does not cover issues such as ‘what is object orientation in
much detail’, nor does it attempt to guide the novice through the application of object orientation to
developing a system.

" Answer: it grows. Try it for yourself - remember to use the inspector to examine the con tents of the set.

60

6. Smalltalk Building Blocks

6.1 Introduction

The aim of this chapter isto present an introduction to the Smalltalk Programming Language. The
scope of this chapter is to describe some of the features of the Smalltalk language. As such it is not
intended to bea comprehensive guide to the Smalltalk language. For a detailed description of the
Smalltalk language’ s syntax and most commonly used constructs see, Appendix 1.

The remainder of the chapter is structured in the following manner: Section two introduces the basic
elements of the Smalltalk language. Section three discusses the concept of classes and instancesin
Smalltalk and how they are defined. Section four presents methods and method definitions.

6.2 The basics of the language

Smalltalk isacompletely object oriented language and as such has no other concept other than object.
The actual language is very, very small, however the Smalltalk system (as exemplified by VisualWorks)
isvery big. All Smalltalk programmers make extensive use of the existing classese ven when they are
writing relatively trivial code. For example, even when a programmer writes the following version of
the traditional “Hello World " program they are reusing existing classes (rather than just using the

language):

| myName |
myNane : = 'John Hunt'.
(myNane findString: 'Hunt' startingAt: 1)
ifTrue: [Transcript show 'Hello ' , nyNane]

i fFal se: [Transcript show 'Hello World'].

Inthisexample, | havereusedthe Stri ng class to represent the string ‘ John Hunt’ and to find a
substring in it using the message selector fi ndStri ng: starti ngAt ;. Some of you may say that
there is nothing unusua in this and that in many languages string handling facilities are extensions to
the lang uage. However, in this case, the result of the test is an instance of either True or False
(subclasses of Boolean) and that this message receivesthemessage i f True: i f Fal se:. Whatis
printed to the Transcript obje ct depends on which object actually receives the message. Thus,

i f True: i f Fal se:isnot part of the language but a method defined in a class. In most languages the
if-then-else construct would be an inherent part of the language - in Smalltalk it isnot. Th isis because
everything is an object in Smalltalk, thus all language constructs are messages sent to objects. This
feature also illustrates the extent to which existing classesarereused - that is, you can’t help but reuse
existing code in Smalltalk because you do so by the very act of programming.

Aswell as possessing a completely object oriented programming paradigm, Smalltalk also possesses
an inheritance mechanism. It is this feature which separates Smalltalk from object based languages such
as Ada - they do not possess inheritance.

The availability of inheritance is very important in Smalltalk. For example, it promotes the reuse of
classes as well as enabling the explicit representation of abstract concepts (such asthe ¢l ass Collection)
which can then be turned into concrete concepts (such as the class Set). It is also one of the primary
reasons why Smalltalk is so successful as arapid application development tool - you inherit much of
what you want and only definethewa ysin which your application differs from what is already
available.

61

6.2.1 Some terminology

We will now recap some of the terminology introduced in Part 1 of this book, however we will explain
this terminology with reference to Smalltalk.

In Smalltalk programs are run or actions are performed by passing messages to and from objects. A
message is arequest for some procedure (referred to in Smalltalk terms as a method) to be performed by
the object receiving the message (referred to asthe receiver of the message). The object which sent the
message in the first place isreferred to asthe sender. Just as procedure calls can contain parameters, so
can messages. In addition, just as in some functional languages, all method executions result in a
response being returned to the sender.

Smalltalk isnot a strongly typed language. That is, you do not specify that a variable will take a
certain type of data structure. Nor does the compiler attempt to check what typesavar iable possesses.
However, it is not true to say that Smalltalk is not typed. Each object is an instance of aclass. These
classes give an object atype (as defined by the class). It is possible to send a message to an object to
determine thetype of itscl ass. Smalltalk isthus adynamically typed language. Thisis a feature of
Smalltalk which promotes its abilities as a rapid application development tool. It also enables the
polymorphic facilities available to be utilized appropriately.

6.2.2 The Smalltalk message passing mechanism

The Smalltalk message passing mechanism is somewhat like a procedure call in a conventional
language. That is:

« The point of control is moved to the receiver; the object sending the message is suspended until a

response is received.

* However, the receiver of amessage is not determined when the code is created (at compile time)

it isidentified when the message is sent (at run time).

This dynamic (or late) binding mechanism is the feature which gives Sma IItalk its polymorphic
capabilities (see Chapter 1 for a discussion of polymorphism).

Another difference between the message passing mechanism of Smalltalk and the procedure call
mechanisms of other languages, is that much of what one would consider the ba sics of the language are
implemented using message passing (for example the equivalent of control and iterations structures).
This means that not only is message passing fundamental to the language, it is also a critically important
feature of the performance of the language.

6.2.3 Smalltalk statements

In the remainder of this chapter you will encounter a number of pieces of Smalltalk. It istherefore
useful to introduce you to one of the features of the Smalltalk language; the statement terminator. In
Smalltalk thisisthe full stop (or period). For example:

Transcript show 'Hello Wrld'.

Thus the majority of statementswill terminatewitha“ . ’. There are afew situations in which it is not
necessary to terminate a statement with a full stop. However, in these situations it is often agood idea to
do so. In this and following chapters, we shall adopt the convention of always terminating a statement
with afull stop (period).

6.3 Classes

A class isthe basic building block in Smalltalk. Classes act as templates which are used to construct
instances. This means that programmers can specify the structure of an object (i.e. what instance
variables etc. it will possess) and the function of an object (i.e. what methods it will have) separately
from t he objects themselves. Thisisimportant, asit would be extremely time -consuming (aswell as
inefficient) for the programmer to have to define each object individually. Instead, they define a class
and create instances of that class.

62

6.3.1 Class definitions

In Smalltalk the format of a class definition isthe following:

NameCOf Super cl ass subcl ass: #NaneOf Cl ass
i nstanceVari abl eNanes: 'instVarNanmel i nstVar Nane2'
cl assVari abl eNanes: ' O assVar Nanel Cl assVar Nane2'
pool Dictionaries: "'
category: 'C ass protocol’

It is not necessary to remember this format precisely as the Smalltalk browsers will present the
above as atemplate for you to fill out whenever you wish to define anew class. The following isan

example of aclass definition:
hj ect subcl ass: #Person
i nstanceVari abl eNanmes: 'name age'
cl assVari abl eNanes: "'
pool Di ctionaries: "'
category: 'Exanple classes'

This definition statesthat | wish to defineanew class, Per son, which will be a subclass of the
oj ect class. My new classwill possesstwo instance variables called nameand age. It will hasno
classvariables or pool dictionaries (we will discuss these later). Finally, it will be part of the class
category ‘Example Classes'. Thislast field isnormally filled in for you by the system. It is derived
from whatever class category you are in when you attempt to define the new class.

Note that our class nameis currently a symbol (see below for an explanation of a symbol) denoted
by a#. Thisis because we have not defined it yet and it is therefore not a class name. An error would be
raised if wetried just to use it as class namein the definition. As soon as the definition is complete, we
can forget about the #.

However, classesare not just use d as templates, they have three further responsibilities which
include; actually holding the methods, providing facilities for inheritance and creating instances. We
shall consider each of these separately below.

6.3.2 Classes and messages

When amessage is actu ally sent to an object requesting it to perform some service, it is not the object
which possesses the method but the class. Thisisfor efficiency reasons. For example, if each object
possessed a copy of al the methods defined for that class then there w ould be agreat deal of
duplication. Instead, only the class possesses the method definitions. Thus when an object receives a
message, it searches its class for a method with the name in the message. If its own class does not
possess a method with the appr opriate name, it goesto its class's superclass and searches again. This
search process continues up the class hierarchy until either an appropriate method is found or the class
hierarchy terminates (with the class Object). If this happens an error is raised.

If an appropriate method is found, then that method is then executed within the context of the object.
This means that although the definition of the method resides in the class, the method executes within
the object. Thus different objects can be exec uting the same method at the same time but without any
conflict.

Do not confuse methods with instance variables. Each instance possesses its own copy of the
instances variables (as each instance possesses its own state). Figure 6.1 illustrates thisideamore
clearly.

6.3.3 Instances and instance variables

In Smalltalk objectsare instancesof classes. All instances of a class share the same responses to
messages (methods), but they will contain different data (i.e. they will possess a different “state”). For
example, the instances of class Poi nt will al respond in the same way to messages inquiring about the
value of the x coordinate, but may provide different values.

The class defi nition consists of variable declarations and all method definitions. The different state
of each instanceis maintained in one or more instance variables.

63

Class: person

Instance variables:
name, age

Methods: birthday

Object 1 ~ T~ _ Object4
¥ / \

name: "John' name: 'Peter’

/ \
age: 31 / \ age: 65
/ \
name: 'Dave! name: 'Chris’
age: 27 age: 39
Object 2 Object 3

Figure 6.1: Multiple instance variables but a single method

In Figure 6.1 there are four instance of theclass Per son. Each instance contains copies of the
instance variable definitions for name and age. Thus enabling them to have their own values for these
instance variables. In contrast, each instance references the single definition for the method bi r t hday
which is held by the class.

6.3.4 Classes and inheritance

It isthrough classes that an object can inherit facilities from other types of objects. T hat is, a subclass
inherits properties from its superclass. For example, inthe Per son definition above, we stated that
Per son wasasubclassof ~ Obj ect . Therefore, Per son inherits all the methods and instance
variables etc. which were defined in Cbj ect (except those that were overwrittenin Per son). Thus,
subclasses are used to refine the behavior and data structures of a superclass. It should be noted that
Smalltalk supports single inheritance while some of the object oriented languages (most notably C++)
support multiple inheritance. Multiple inheritance is where a subclass can inherit from more than one
superclass. However, difficulties can arise when attempting to determine where different methods will
be executed.

6.3.4.1 An example of inheritance

To illustrate how single inheritance works consider Figure 6.2. We will assume that we have three
classescalled O assl, O ass2and O ass3. d asslisasubclassof bject, C ass2isa
subclass of Cl ass1 and Cl ass3 isasubclassof Cl ass?2.

When an instance of Cl ass3 iscreated, it contains al the instance variables defined in classes 1 to
3and class Obj ect . If any instance variable possesses the same hame as an instance variablein a
higher class, then only one instance variable of that name will be created. We do not need to consider
which oneis created as they are both instance variables which can take any value (Smalltalk is not
strongly typed remember!).

When we have an instance of Cl ass3 we can send it a message requesting that a particular method
is executed. Remember that methods are held by classes and not by instances. This means that the
system will first find the class of the instance (in this case Cl ass3) and search that class for the
required method. If the method isfo und, then it is executed and the search stops. However, if the
method is not found, then the system will search Cl ass3’simmediate super class; in this case
Cl ass?2. Thisprocessis repeated until the method is found. Eventually, the search thr ough the
superclasses may reach theclass hj ect (whichistheroot classin the Smalltalk system). If the
required method is not found here, then the search process terminates and the
doesNot Under st and: method intheclass Obj ect isexecuted instead. This method causes an
exception to be raised stating that the message sent to the original instance is not understood.

T

message

Figure 6.2: Classinheritance in Smalltalk

This search process is repeated every time amessage is sent to theinstance of Cl ass3. Thus, if the
method which matches the original message sends a message to itself (i.e. the instance of C ass3),
then the search for that method startsagainin =~ C ass3 (evenif the origina metho d wasfoundin
Cl assl).

6.3.4.2 The Yo-Yo problem

The process described above can pose a problem for a programmer trying to follow the execution of the
system by tracing methods and method execution. This problem isknown astheYo -Yo problem (see
Figure 6.3). It occurs because, every time you encounter a message which is sent to “self” you must
start searching from your own class. This may result in the programmer jumping up and down the class
hierarchy.

Object Class

Classl

Class 2

Class 3

Figure 6.3: The Yo-Yo Problem

The problem occurs because you know that the execution search will start in the current instances
class, even if the method which sends the message is defined in a superclass of the current class. In the
figure, the programmer startsthe searchin =~ O ass3, but finds the method definitionin -~ Cl ass1,
however this method sends a message to “self” which means that the programmer must restart the
searchin C ass3. Thistime, the method defi nitionisfound intheclass Obj ect etc. Even with the
browsing tools provided, this can till be atedious and confusing process (particularly for those new to
Smalltalk).

6.3.5 Instance creation

Classes are al so the things which construct the instances. They do so in response to a class message. It is
probably confusing, but classes can possess class specific methods as well as class instance variable s.
These are often referred to as class side methods and variables. They can the n respond to a message as
an instance would (thisis because classes are in fact special instances - we will discussthisin alater
chapter. For the moment merely accept that classes can be sent messages).

The message most commonly sent to aclassisthe message new. This message causes a method to
execute which constructs a new instance of the class. This processis referred to asinstantiation. Y ou do
not need to know the details of this process. An example of sending the message new to a class
Per son is presented below:

Person new.

65

The result of sending this method isillustrated in Figure 6.4 along with the structure of aclass. The
class Per son receives the message new which causes the cl ass method new to execute which
generates a new instance of the class, with its own copy of the instance variablesage and nane.

Class: MyClass
Instance Variables | Classvariables < new MyClass new.
age, name numberOfInstances

Instance methods Class methods

birthday new age: 31
anlnstance name: ‘John'

Figure 6.4: Instance creation

Theissue of classes having methods, some of which are intended for an instance of the class, and
some of which are intended for the class, is not as complicated asit may at first seem. Not |east because
the tools used with Smalltalk tend to keep the two sides of the classes pretty well distinct. In an attempt
to make it clearer here are some definitions:

* Instancevariables: Defined by the class, but a copy is maintained in each instance which hasits
own value for that instance variable.
e Classvariables: Defined in the class with asingle copy inthe ¢l ass accessible by instances of

the class.
» Classinstance variables: Defined in the class with a single copy in the class and only accessible
by the class.

« Instance methods: Defined in the class with a single copy maintained in the class but executed
within the context of an object.

e Class methods: Defined in the class with a single copy maintained in the class and executed
within the context of the class.

Some of these concepts will be considered in greater detail later.

6.3.6 Classes in Smalltalk

There are very many classesin any Smalltalk system, e.g. in VisuaWorks there over 1,000 classes.
However, you will only need to become familiar with avery few of them. The remaining classes
provide facilities that you use without even realizing it.

6.4 Method definitions

Methods provide away of defining the behavior of an object i.e. what the object does. For example, a
method may change the state of the object or it may retrieve some information. A method is the
equivalent of aprocedure in most other languages. A method can only be defined within the scope of an
object (and there is no concept such as the main method asthereisin C). It has a specific structure:

messagePattern argunents
“comment"”
| tenporaries |

statenents

where the messagePatter n represents the name of the method and the ar guments represent the names
of arguments. These arguments are accessible within the method.

The “comment” field isacomment describing the operation performed by the methoda nd any
other useful information. Note that comments cannot be nested in Smalltalk. This can be awkward if
you wish to comment out some code for later. For example, consider the following piece of Smalltalk
which | havejust commen'Eed out:

X =12 * 4,

66

“Now cal culate y “
Ly =X * 23.

The Smalltalk compiler would read thisasacomment |, followed by thecode Now calculatey ,
followed by another comment. Thisis (almost) certainly going to cause an error.

The | temporaries| format is used to define variables which are local to the method. They must be
declared at the beginning of the method (just after the message pattern) and are initially ni | .

The statementsrepresentsany le gal set of Smalltalk statements. These statements are used to
implement the behavior of the method.

One of the uses of methods isin providing an interface between an object’ sinternal data and the
outside world. Such methods are often termed accessor methods. Such a method retrieves the value of
an instance variable and makes it available to other objects. For example, the class Enpl oyee hastwo
instance variables age and name. A method implementedin Enpl oyee returnsthe age of an
employee. Thusin response to the message age, this method would be executed and the value of the
employee’ s age returned to the object sending the message.

In this situation the employee’s age is held explicitly. An equally valid internal representation for an
Enpl oyee would be to have an instance variable dat eXf Bi r t h. The method age, would now need
to take the date of birth away from the current date, in order to obtain the employees age.

Note that this would be a change to the implementation of Enpl oyee, but there would be no visible
change asfar as any other object in the system is concerned. Thisillustrates the encapsulation possible
within Smalltalk (and other OOP languages).

6.4.1 The "™ (or return) operator

Once amethod has finished executing, an answer isret urned to the sender of the message. By default
the object returned is the receiver itself (i.e. self). However, other objects can be returned by use of a
return expression - an expression preceded by an up arrow (). The return expression must be the last
expression executed in amethod. This does not mean that it must be the last expression in the method,
merely that it isthe last executed. For example:

C Version Smal | tal k
if (x ==y) (x =y)
return x; i fTrue: [~X]
el se
return vy; i fFal se: [My].

In this case, either the value of x or y will be returned depending upon whether x and y are equal or
not.

6.4.2 An example method

L et us compare a procedure definition in alanguage such as C with the Smalltalk equivaent. We will
assume that we wish to define a procedure to take in a number, add 10 to it and return the result.

int nyAdd (int x) nyAdd: aNunber
{ int result; | result |
result = x + 10; result := aNurmber + 10.
return result; Aresul t.

From this example you will see that although the format is different you should soon be able to get
used to it. Let uslook at some of the constituent parts of the method definition. The method name (and
its message selector) is myAdd: . Note that because this meth od takes a parameter, the method name
must have atrailing colon. It has one parameter called aNunber . Just asin any other language, this
parameter variable islimited to the scope of this method. The method also defines atemporary variable
(resul t) whichisalso limited to the scope of this method.

Variable names are identifiers containing only letters and numbers which must start with aletter.
Some examples are;

67

an(bj ect My Car t ot al Nunber

A capitalization convention is used consistently throughout Smalltalk and most Smalltalk
programmers adhere to this standard which it is therefore advisable to follow:

e Private variables (instance/temporary variables) start with alower-case letter.
e Shared variables(class/global/ pool variables) start with an upper-case letter.

Note that message selectors should start with alower-case letter.

Another convention worth noting is that if a variable or a message selector combines two or more
words, the convention isto capitalize thefirst letter of the second word onwards. E.g.
di spl ayTot al Pay, r et ur nSt udent Nane.

If we consider our new method above, we have till to consider what happens in the assignment
statement (:=). We shall look at thisin the next chapter along with the range of arithmetic functions
available.

68

7. Smalltalk Constructs

7.1 Introduction

This chapter presents more of the Smalltalk language. Section two considers the representation and use
of numbersin Smalltalk while Section three considers strings and characters. Section four discu ~ sses
variablesin Smalltalk and Section five literals and variables. Sections six considers messages, message
types and their precedence.

7.2 Numbers and operators

7.2.1 Numeric values in Smalltalk

Numbersin Smalltalk are all objects, that means that they are ins tances of a class. For example, integer
numbers such as 2 are an instance of the class Smal | | nt eger . In fact there are a number of classes
which together provide for the types of humbers normally used, these include Smal | | nt eger,
Lar gePosi ti vel nt eger, Lar geNegati vel nt eger, Fl oat and Doubl e. Thesewill al be
considered in greater detail later in the book. For the moment we will just consider what numbers look
like in Smalltalk.

Just asin most programming languages, a numeric valuein Smalltal k is a series of numbers which
may or may not have a preceding ‘-’ and may contain adecimal point. For example:

25 -10 1996 12.45 0.13451345 -3.14

It is also possible to specify numbersin bases other than 10. Thisis done by preceding the number
with the base and the letter r (which stands for radix). For example:

2r101 16r452

Numbers can also be expressed using scientific notation using the ‘€’ (for exponent) or ‘d’ (for
double-precision) suffix plus the exponent in decimal. For example:

10e3 whi ch equal s 1000

In addition to integers and real numbers, Smalltalk also explicitly supports fractions (e.g. 7/8) and
radians. In al other ways numbersin Smalltalk are just like numbersin any other language.

7.2.2 Arithmetic operators

Table 7.1: Numeric operators

+ addition * multiplication

- subtraction / division

/] modulus quo guotiant

rem remainder \\ remainder from modulo division
< less than <= less than or equd to

> greater than >= greater than or equal to

max: maximum min: minimum

ceiling roundup floor round down

69

| rounded | round to nearest | truncate | round down |

In general, the arithmetic operators availablein Smalltalk are essentially thesa measin any other
language. For example, there is addition, subtraction, multiplication and division operators (+, -*D.
There are also comparison functions and truncation functions al of which are summarized in Table 7.1.

7.3 Characters and strings

7.3.1 Characters

Just like numbers, charactersin Smalltalk are instances of an associated class. In this case the class
Char act er . Again we will consider this class and the operations it providesin greater detail later. For
the moment we will consider what characters ook like. In Smalltalk, a single character is defined by
prefixing it with the $ (dollar) sign. For example:

$a $Z $@$1 $%

All the above specify asingle character, in this case the charactersa, b, @, 1 and $.

7.3.2 Strings

Strings in Smalltalk are part of the Col | ect i on class hierarchy. As such they are made up of
individual elementsin asimilar manner to stringsin C. However, thisisthe only similarity between C
strings and Smalltal k strings. Smalltalk strings do not need to be terminated by anull character, nor
should they be treated as arrays of characters. In Smalltalk, a string should be treated as an object in its
own right which responds to an appropriate range of messages (e. g. for manipulating or extracting
substrings).

In Smalltalk, a string is defined by one or more characters placed between single quotes. For
example:

*John Hunt' ' Tuesday' ' dog'

Note the use of single quotes rather than the double quotes used in some o ther languages (e.g. C and
Ada). This can be the source of much confusion and frustration when an apparently correct piece of
code will not work. Remember that double quotes indicate acomment in Smalltalk. Thus, the following
code will compile, but will generate arun time error:

a := "John Hunt".

Thisis because thereis nothing to assign to the variable a as the comment “ John Hunt” does not
return avalue. Also be wary of assuming that a string containing a single character is equivalent to that
single character. It is not. For example:

‘a' /= %a

The string ‘@ and the character $a are instances of different classes, the fact that the string contains only
one character isjust a coincidence. This can be particularly confusing for C programsas‘a ind icates
the character ain C.

7.3.3 Symbols

Synbol s are specia strings which are always unique in the system. They do not respond to many of
the usual string manipulation messages, but they can be more efficient for some tasks than strings. A
symbol isindicated by a preceding hash (#). For example:

#j ohn #Week #Systen#2

70

They are more efficient for storage and certain logical operations (such as =) and so may be used
instead of stringsif their values will not be altered and substring operations are not required.

7.4 Assignments

A variable name can refer to different objects at different times; assignments can be made to variable
names. The“:=" symbol is used in Smalltalk to indicate assignment . It is often read as “ become equal
to” although some do read it as“ colon equals’. Some examples are:

current Enpl oyeel ndex : = 1.
newl ndex : = ol dl ndex.
myNane : = 'John Hunt'.

Assignments return values (like other expressions), so that several assignments can be made
together:

next Gbj ect : = newCbject := ol dbject.

The above example also illustrates a feature of Smalltalk style - the specification of variable names
which indicate what they contain. This technique is often used where a more meaningful name (such as
currentEmployeel ndex) is not available, i.e. wheret enp might be used in other languages.

It isworth reiterating the point that variablesin Smalltalk are not strongly typed asin languages such
as Pascal and ADA. Instead, Smalltalk is dynamically typed. That is, avariablei snot un-typed, rather
itstypeis determined by its current contents. Thus, it is possible to determine the type contained in a
variable by sending it a message asking for its type. Of course, by type we really mean class. It isalso
possible that avaria ble which is currently holding a string, may then be assigned an integer. Thisis
quite legitimate and often happens, for example:

nyVariable : = "'John'.
myVariable := 1.
nyVariable := #(1 2 3 4).

An important point to note isthat assignment is by reference. This means that in the following
examplenext | ndex, newl ndex and ol dl ndex all refer to the same object.

new : = old : = (Bag new).
next := new.

The effect of these assignmentsisillustrated in Figure 7.1.

new
next old

Figure 7.1: Theresult of a multiple assignment

Asadl three variables point to an instance of a container class (inthiscase Bag), if an update was
made to the contents of any one of the variables, it would be made for al three!

7.5 Variables

7.5.1 Types of variable

There are a number of different types of variable available in the Smalltalk language. Some of these
have aready been discussed. The following provides areview of some of the different types:

71

instance variables - discussed above

class variables - will be discussed later in the book
classinstance variables - will also be discussed later in the book
temporary variables - see below

global variables- see below

ghrwnpE

7.5.1.1 Temporary variables

These exist only for the duration of some activity (e.g. the execution of a method). They are denoted by
being placed between two bars, e.g. | X y z | indicates that the variables x, y and z are temporary
variables. Try typing the following into the Workspace window:

| xy z]

X 1= 5.

y := 6.

zZ =X t+y.

Transcript show. z printString.

Now select al the text you typed in. Now use the right mouse button (middle if you have athree
button mouse) and select the do it option on the menu. Y ou should now see the value 11 printed in your
Transcript window.

7.5.1.2 Global variables

These are shared by all instances of all classes. These can be useful during testing if youwant to keep
hold of a particular object. They always start with a capital letter and can be deleted by looking at the
Smalltalk system dictionary. This can be accessed from the global variable Smalltalk (you can use the
inspect message to examine the contents of the variable Smalltalk). To delete a global variable from the
current system, use:

Smal | tal k renoveKey: #<gl obal variabl e name>.

It isinteresting to note that class names start with a capital letter and are therefore actually global
variables!

7.5.2 Pseudo variables

There are anumber of pseudo variablesin Smalltalk which can be referenced within a method. A
pseudo variableis a specia variable, whose value is changed by the system but whi ch cannot be
changed by the programmer. That is, the value of these variablesis determined by the current context
within which the code around it is executing. There are two such pseudo variables; they are sel f and
super:

self Thisrefersto the receiver of a message itself. When a message is received, the search for the
corresponding method starts in the class of the receiver. It isthe way in which a method in one
object can initiate the execution of another method in that same object.

super Also refers to the message receiver, but the method search starts in the superclass of theclassin
which super isused. Thisisoften used if the functionality of a method isto be extended rather
than overwritten. For example:

nyMet hod: anObj ect
new code before super.
super nyMet hod.
new code after super.

Don't worry about the syntax or the meaning of this at the moment just make sure you get the idea
of things.

72

7.5.3 true, false and nil variables

These variables represent the two boolean states, true and false and anull value (referred to as nil). This
should not be confused with the null pointer in languages such as C. It really means nothing or no value.
The three variables are:

e nil Thesingleinstance of classUndef i ned Obj ect (thenon-value).
e true Representstruth. It isthe only instance of class Tr ue.

« fal se representsfalsehood. Which isthe only instance of the class Fal se.

True and Fal se aresubclassesof Bool ean which implements boolean algebra and control
structures.

7.6 Messages and message selectors

7.6.1 Message expressions

Message expressions describe messages to receivers. They are composed of areceiving object (the
receiver), the message selector (which indicates which method to execute) and zero or more parameters.
Figure 7.2 illustrates the main components of a message expression.

Parameters

A message expression / \

anAddressBook addAddress: 'C47, UWA' for: ‘John Hunt'.

N\

Receiver Message selector

Figure 7.2: The components of a message expression

The value of the expression is determined by the method it invokes. For example, inthef ollowing
example, the result returned by the method mar r i es: is saved into the variable newSt at us.

newStatus : = thisPerson marries: thatPerson.
7.6.2 Message types

There are three different forms which a message can take. From the programmers point of view they are
essentially the same. They are only distinguished by the format they take and by the precedence they
have. The following description explains each of the three types of message and states their precedence.
The only exception to thisisthat parenthesized expressions take precedence over al message
expressions.
M essages without any arguments are termed Unary Messages, for example:

#($a $b 23 'john') size.

13 odd.

Ti me now.

Messages with asingle argument, where the selector is composed of one or two non -alphanumeric
symbolsaretermed Binary Messages. They have a higher precedence than keyword message s, but a
lower precedence than unary messages. Examples of binary messages include:

a > h. 24 * 7. recordCount + 1.

The second character in a binary message selector cannot be a minus sign.

73

Messages with one or more arguments, separated by part of the method selector and composed of
aphanumeric symbols and atrailing colon, are called Keyword Messages. For example;

Transcript show 'Hello John'.
10 max: 20.
aDictionary at: 'UK put: 'United Ki ngdom .

In the above examples show. , max: and“at : put : ” are the keywords (termed selectors) . This
means that the name of a message selector is spread amongst the arguments. These can be any simple
identifier with atrailing colon. The argument can be an expression representing any object. Keyword
expressions have the lowest precedence.

7.6.3 Message selectors

A message selector isthe term used to describe the method interface provided by one aobject to other
objects. For example, if an object possesses a method with the following definition then it possesses a
message selector of “addAddr ess: f or :”.

addAddress: anAddress for: aName
addressBook at: aNane put: anAddress.

Notice that the method selector only consists of the method name and does not include any of the
parameters dispersed amongst that name.

7.6.4 Precedence

Smalltalk has slightly different rules regarding precedence than many other languages. For those of you
who are unclear about precedence, this refers to the order in which operators are evaluated in an
expression. Many languages, such as C, have quite complex rule sregarding precedence, which
determine the order in which an expression such as.

2+5*3- 1/ 2.

would be evaluated. Smalltalk is rather more intuitive. Essentially it handles parsing in aleft to right
manner. For example, in the above example, 5is added to 2, the result (7) is multiplied by 3 (to give
21). 1 is subtracted from this (giving 20) which is divided by 2. The result of this expression is therefore
10. That is, there is no precedence difference between +, -, * or /. If you wish to alter t he way in which
the arithmetic calculations are performed, then you can use round brackets. For example:

24 (5%3) -1/ 2

This expression will be evaluated to the value 8. This rule also includes unary messages. For
example:

arraySize := #('a'" 'b'" 'c¢' 'd') size even

the message si ze issent to the array object, and even is sent to the resulting object. The result of this
isthen assigned to the variablear r ay Si ze.

Keyword messages are a special case, in that although they too are parsed in aleftt o right manner,
the system assumes that all the keywords within one expression are part of the same message selector.
Thus an expression such as:

aDog nane: 'Fido' age: 2.

will be parsed as calling amessage narme: age:. If thisis not the intention then t he programmer must
indicate to the system that what is required isthat themessage nane: and then a separate message
age: shouldbesentto aDog. For example, either as separate messagesto aDog or using the
cascading mechanism. A potential point of confu sion here is when the intention is to send the second
method to the result obtained from the first. For example:

74

anArray at: 1 max: 10.

Thiswill try and send themessage at : max: to anArr ay. Hereit is necessary to use round
bracketsto ensure that it is the object returned as a result of accessing position 1 in the array which
receivesthe max: message. For example:

(anArray at: 1) max: 10.
7.6.5 Parsing rules
Although the order in which expressions are evaluated is | eft to right, there arethree levels of

precedence amongst the categories of message which affect this evaluation. The three categories each
have a different precedence as indicated by the following table:

M essage category Precedence Example

unary 1 size, rem, odd
binary 2 * [-, +

keyword 3 max:, min:, at:put:

This means that a unary message will be evaluated before a binary or keyword message. In turn a
binary message will be evaluated before a keyword message. If this order is not what is desired then
round brackets can be used to alter the evaluation sequences as above. For example:

2 * 3 max: 3 * 4 odd.

Thiswould generate an error, because, the odd message at the end of the expression has the highest
precedence. This means that the result of sending the message odd to the value 4 would be used as the
parameter for the message ‘*’ to be sent to the value 3. Asthiswould result is multiplying 3 by false,
the system would generate a run time error. To ensure that we obtain the correct result, we might place
brackets around parts of the expression, thus:

((2 * 3) max: (3 * 4)) odd.

This can be acommon source of errors. If you have a problem with any of the parsing rules a quick
and easy way to make sure the system parses an expression in the way that you want, is to put brackets
around parts of the expression to describe your requirements. Then select the format menu optionin
one of the VisualWorks browsers. This option not only formats the code according to Smalltalk
standards, it also removes any unnecessary brackets.

7.7 Summary

In this chapter you have learnt about classes in Smalltalk, how they are defined, how instance variables
are specified and how methods are constructed. Y ou have also encountered many of the basic Smalltalk
language structures.

7.8 Further reading

Two good books to have alook at now, if you have not already done so, are [Lewis 1995] and [Hopkins
and Horan 1995].

75

8. An Example Smalltalk Class

8.1 Introduction

Y ou should now be ready to write some Smalltalk code. So this chapter will take you through aworked
example. It isavery simple example, in which you will create a new class, define some instance
variables and write a couple of methods.

8.2 The class Person

The Per son classwill provide avery basic set of features. It will record a person’s name and their age.
It will also alow a person to have a birthday (and thus increment their age).

8.2.1 Creating the class

Thefirst thing you should do isto create a new class category to put your class into. Thisisdone in the
class category w indow of the System Browser. Use the right button menu (middle on athree button
mouse) and select the add option. This option will prompt for a category name. It is best if you use a
meaningful category name. | have used the category name “Exanpl e Cl ass”.

Once you have provided a category name it will be immediately created. However, note that it will
add the category at the bottom of the list of categories or, if you have selected (highlighted) an existing
category, immediately above that category. This meansthat if you have accidentally selected a category
in the middle of the list, your new category will be added in the middle of the category list. It iseasier to
find your own categoriesif they are not mixed up with other categories. It istherefore advisableto
make sure that no categories are selected when you create a new one.

Next define anew class. Y ou can do this by filling out the template in the bottom window
(commonly called the code view) of the System Browser to mirror the following:

hj ect subcl ass: #Person
i nst anceVari abl eNanes: ' nane age '
cl assVari abl eNanes: "'
pool Di ctionaries: "'
category: 'Exanple d ass'

That is, define the class Per son asasubclass of Cbj ect and giveit two instance variables nane
and age. (Notethat if you have called your class category something other than“ Exanpl e O ass”
the category field will be different).

Notice in Visualworks, that the template fillsin the superclass, the class name and the variable fields
with default values, e.g.:

NameCf Super cl ass subcl ass: #NameOf d ass
i nstanceVari abl eNanes: 'instVar Nanel i nst Var Nane2'
cl assVari abl eNanmes: ' C assVar Namel C assVar Nane2'
pool Di ctionaries: "'

If you do not delete these fields, they will be included in the compiled class. For example, it is easy
to find that you have four instance variables and two classvariable s. The additional variables having
names such asi nst Var Nanel and Cl assVar Nanel.

If you have defined the new class correctly, then at this point your browser should | ook like that in
Figure 8.1. Do not worry if the list of class categoriesin the right most window is different, the
important points are that the class definitions match and that the highlighted text is the same.

76

77 System Full Browser [_ 0]

Example Class 3 [MyClass A

Test support Person

Organiser Class TesthyClass

dependency demo

File-Collection-Clas Object
7 Person

S — =i v class] =]

(B b

s fr—
1

I supers I subs - names

Object subclass: #ersan, E
instanceVariableMNames: 'name age '
classVariableMames: "
poolDictionaries: "

category: ‘Example Class'

Figure 8.1: Defining a new class

8.2.2 Defining a class comment

The next thing you should do is to define the class comment. It is generally agood ideato do this, but if
you wish to omit it, it will not effect how your class operates. If you do wish to add a comment then
select the comment option off the menu presented from the right mouse button (middle on athree
button mouse) in the class window. The comment | have defined isillustrated in Figure 8.2. Once you
have typed in the text of your comment you must “accept it”. This can be done from the right mouse
button (middle button on a three button mouse).

Thisisagood example of some common uses of the class comment. Note tha t | have not only
specified the intention of the class, what the instance variable of the class are and what they take, but
also how the class might be used.

8.3 Defining methods

Now you are ready to start defining methods for the class. The first method yous hould defineis one
which will be used to initialize the instance’ s state (i.e. initialize the instance variables). Traditionaly,
methods such as initialize, which are not intended for general use, are placed in a method protocol
caled “initialize-release”. If you look at the methods defined in the system classes you will note that
similar names are used for protocols possessing similar types of methods, “initialize -release” isan
example of such a protocol name. Y ou should therefore place the method i nitialize withinthe

protocol pri vat e.

8.3.1 The “initialize-release” protocol

To create the initialize method, you will first have to create the message protocol in which to place the
method definition. To do this, you usethe add option off the right button menu (middleif you have a
three button mouse) in the message protocol window. Thisis the third window aong in the System
Browser. This causes adialog to be displayed requesting the name of the new protocol. This will either
be blank or contain the name of the last protocol you visited. If itisnot initialize-release, then typein
“initialize-release”. Again the new protocol will be either placed at the end of the list of protocols or it
will be placed above the protocol currently selected (if one is selected).

Y ou will then be presented with a new message protocol in the message protocol window. This
protocol will be selected and the following template will be displayed in the code window:

message sel ector and argunment nanes
"coment stating purpose of nessage"

| tenporary variable names |
statenents

77

Y ou can now define the initialize method. In this case, the method is very simple asit merely sets
theinstance variable age to 0 and nane toanull string ' ' . To do thistypein the following method
definition into the code view window, replacing the method template displayed there.

initialize) S]
"This method is used to initialize any variables etc."
self nane: "'

sel f age: O.

Once you have typed in the method you can accept it. When you do so, the sy stem will inform you that
the two methods age: and nane: are undefined °. From the dialogs you should select the proceed
option aswe will define these methods later. Figure 8.3 illustrates the System Browser at this point.

AT-Tools 5 [MyClass
Tools-ObjectGraph
Applications-CCP
Example Class

Test support
Organiser Class
dependency demo
File-Collection-Classe

=

Object

[— P | E—

UlExamples Person
GrphEdit
EehEditor
SmallDraw ¥i
o T— | = 4 instance - class [T =] T
I supers I subs I names
Class: Person Author: John Hunt Date: October 27, 1996 -

Furpose: To provide an example of what a class looks like and how methods are defined
Type:Concrete SuperClass: Object

Copyright: (c) Dr. John Hunt, 1996

History:

October 27, 1996 John Hunt Mew Module
Instance variables:

name <aString> Holds a persons name

age <aMumber= Holds a persons age in years
Usage:

Itemp |

temp ;= Person new.

temp name: John’

temp age: 32, e

Figure 8.2: Defining a class comment

8.3.2 The “accessing” protocol

Now we will define the “accessing” protocol. Again thisis a protocol name which iswidely used within
the system classes. If yo u adhere to the standard protocol names you will find it easier to follow the
system classes (and other peoples classes). Define the new protocol as before and then define input the
following method.

age
"This is an exanpl e accessor nethod"
~age

Thisisan example of another feature of Smalltalk style, that is, if you write a method to return an
instance variable s value, you do not call it returnAge, instead you give it the same name as the instance
variable; in thiscase age. The system isableto det ermine whether you mean the instance variable or
the method from the way you call it. These methods are termed accessor methods.

The next method will be called age: thisillustrates another Smalltalk style element in this
example. This method updates an instance variable. The method is therefore given the same name as the
instance variable but with atrailing colon. Wedo not call it setAge: or updateAge:. You may not like

® Note that if you have objects in the system which define these messages, then Visual Works will not tell you that they are
undefined, even though they are undefined for Person!

78

this convention at the moment, however it is used throughout Smalltalk , it is therefore advisable to use
it.

age: anlnteger
"This met hod sets age."
age : = anlnteger

This method illustrates another feature of Smalltalk programming style, the use of class names as
parameter variable names. For example, inthismethod wea re expecting one parameter. Smalltalk is
untyped, therefore the contents of this parameter could be anything. However, the programmer of this
method has indicated to us that they expect the value passed into the method to be an integer. At least
now, if the system encounters arun time error and we enter the debugger, we can see if the contents of
anlnteger is an integer or not. If it is not, then we may have found the source of the problem.

__|Syslem Browser =] E3
Applications-CCP [|Persan -\ updating G [ieize |~
Example Class TestMyCIass accesslng

Test support mmalzwe release

Organiser Class

dependency dema |/ /\ instance - class 7
initialize A

"This method is used to initialize any variables etc.”
self name: *.
self age: 0

Figure 8.3: The System Browser displaying part of the Person definition

The equivalent methods for accessing and updating the value of the instance variable nane are

presented below. They are very ssimple and should not come asa surprise. They arethereforemer ely
listed and are not discussed in detail.

nane)
"This retrieves the contents of nane."
Aname

nane: aString
"This sets the contents of name."
name := aString

8.3.3 The “updating” protocol

Having defined all the methods for the “accessing” protocol, we will now define a new protocol called
“updating”. This protocol should be created in exactly the same way as the last two protocols. This
protocol isintended for methods which cause a change in the state of the object due to some calculation
or operation. This protocol will be used to definethebi r t hday method (see Figure 8.4).

7] System Browse: [_ O]
Applications-CCP [|Person - [birthday

Example Class TesthyClass
Test support
Qrganiser Class
dependency demo
File-Collection-Cla
UIExamples

=

A |updating
accessing
initialzie-release

) > instance ~ class

hirthday E
"This method increments age and prints a message to the user”
| aldAge |
oldAge = self age.
self age: oldAge +1.

Transcript cr.

Transcript show: self name
Transcript show: 'was .

Transcript show: oldAge printString.
Transcript show: ' but now is '

Transcript show: self age printString

Figure 8.4: Defining the birthday message

This last method uses the other methods in order to change the current value of the instance variable
age and to print a meaningful message to the user.

79

8.4 Creating an instance

Aswas suggested in the class comment, create an instance of the class and send it some messages. Y ou
can do that by typing thecodein Figure 8.5 into the Workspace and selecting it. Thenusethe doiit
option off the right mouse button menu (middle mouse button if you have a three button mouse).

The result of running this code should be that the following is printed into the Transcript:

0
Bob was 0 but nowis 1

Once you have done this and are happy with what is happening, why not try and change the method
definitions or add anew instance variable called addr ess and define the appropriate methods for that

variable.

T Workspace [_ O] =

=

Welcome to
VisualWorks® Release 2.5 of Sept 26, 1995
Copyright @ 1995 ParcPlace-Digitalk, Inc. All Rights Reserved.

I temp |

termp = MyClass new.

temp initialize.

Transcript show: temp age printString.
temp name: 'Bob'

termp hirthday

Figure 8.5: Creating an instance of Person

80

9. Control and Iteration

9.1 Introduction

This chapter introduces how control and iteration are achieved in Smalltalk. To do this a number of
concepts which are u nique to Smalltalk are also discussed (such as the block object). To simplify this
process for the reader, equivalent C constructs are illustrated beside Smalltalk constructs (where they
exist).

The remainder of this chapter is structured in the following manner. Section two introduces the
concept of cascading, Section three discusses blocks and Section four describes the control structures
avalablein Smalltalk.

9.2 Cascading

Cascading is a syntactic form that allows multiple messagesto be sent to the same object. The aim of
thisisto reduce the need for tediously repeating the same object over and over again, because awhole
set of messages must be sent to that one object. The intention is to produce more concise code which is
easier to read, and to avoid the need for additional temporary variables.

Cascading is achieved by using the semicolon delimiter. Thisis slightly confusing for those coming
from a C or Ada background as the semicolon is used there as a expression terminato r. Instead, in
Smalltalk, it should be read as send the next message to the same object as the last message. For
example, the expressions:

Transcript cr.

Transcript tab.

Transcript show 'Hello World'.
Transcript cr.

can be written in a shorter form as:

Transcript cr;
t ab;
show 'Hello World';
cr.

The programmer should be wary of using the cascade mechanism. Although it was intended to
simplify code, it can often have the opposite effect. For example, in avery long cascaded expression,
which appears al on the same ling, it can become difficult to determine exactly what is happening. It is
therefore often the case that a set of message expressions are easier to understand when they are not
written using cascading.

9.3 Blocks

9.3.1 Block definition and evaluation

Earlier in this book you were told to treat Blocks as the same as Begin/End constructs in Pascal and
ADA or {}'sin C. Thiswas, however, not exactly the truth. They are in fact objectsin their own right
(and are instances of BlockClosure) which represent code that can be executed (or evaluated) now or at
alater date. Block expressions therefore describe deferred activities.

81

Blocks are represented by square brackets ‘[] and obviously have avery different meaning to round
brackets ‘(). This can be yet another point of confusion for those new to Smalltalk. The round brackets
will return the result of evaluating what they contain, at the point at which the expression is
encountered. The square brackets will return ablock object. This block object will contain zero or more
statements. These statements will only be executed when the block is evaluated. Thisis achieved by
sending the message val ue to the block. For example:

[counter := counter + 1] val ue.

However, if we don’t want to execute the statements in this block until later, we don't have to. In
fact asthe block is actually an object, we can assign the block to a variable. Then when we are ready we
can evaluate the block held by the variable. For example:

myBlock := [counter := counter + 1].

rTyBI ock val ue.

Thus when a block expression is encountered, the statements enclosed are not executed
immediately. In other words, the contents of the square brackets are stored until a value message is sent
toit. Thusin the above example, counter will only be incremented when the message val ue issent to
nmy Bl ock.

It isimportant to note that the block will execute within the context in which it was defined and not
necessarily in the ¢ urrent context. This means that the value used for counter will be the value it had
wherever the block was created.

Aswas explained in Chapter 6 all expressions return avalue. In the case of ablock, whenitis
evaluated, the result returned is the resul t of evaluating the last expression in the block. Thus the value
18 isassigned to the variabler esul t in the following example:

result :=[2 * 4. 3 * 6].
9.3.2 Block parameters

Blocks can also take parameters. Thisis done by pre ceding the statements in the block by avertical bar
and the input parameter. This parameter has a preceding colon. For example:

[:counter | counter * 2.]

This block takes one input parameter and possesses a single statement which multiples the input
value by 2. This can then be evaluated with a single parameter. Thisis achieved by sending the block
the keyword message val ue: ; the argument isthe valueto bind to the block parameter count er .
For example:

[:counter | counter * 2] val ue: 10.

Thiswould produce the value 20. It is possible to pass in more than one parameter to a block. For
example, if we want to specify that a block takes two parameters, then we could use the following
definition:

[x iy | x*y]
This block would be evaluated using theval ue: val ue: message.
[:x :y | x +y] value: 10 val ue: 20.

The same number of arguments must appear in the block and the message. In fact there are al'so
val ue: val ue: val ue: and val ue: val ue: val ue: val ue: messagesfor blocks which take
three and four arguments. Thereisalsoa val ueW t hAr gument s: message for blocks taking more
than four arguments.

82

9.3.3 Block temporary variables

Blocks can also possess their own temporary variables. These variables are defined between two
vertical bars and after any input parameters. For example:

DX

|templ tenmp 2|
templ (= x
tenp2 :

templ * 3.]

A block can actually have up to 256 temporary variablesin VisualWorks. However this figure does
vary from implementation to implementation.

9.3.4 Typical block usage

Finally, blocks are often used for control structures:
aNurber even
ifTrue: [aString := 'even']
ifFalse: [aString := 'odd'].

Effectively this means send the message valu e to one of the blocks, depending on the result of
testing aNunber to seeif it iseven or odd. We shall look at the use of blocks in condition and iteration
statements later in this chapter.

9.4 Control structures

9.4.1 Flow of control

As has previously been menti oned, the if -then constructs in Smalltalk are actually methods defined on
the class Bool ean. However, ignoring that issue for a moment, the actual use of the structuresis very
straight forward. The basic formats of the if-then expression are:

aBool ean aBool ean
i fTrue: aBl ock i f True: aBl ock.
i f Fal se: anot her Bl ock.

aBool ean aBool ean
i f Fal se: aBl ock i f Fal se: aBl ock.
i f True: anot her Bl ock.

The boolean object is often generated dynamically viasome form of logical test(eg . a < b).
That is, thefirst operation is to create the boolean object, which is then sent the message
i f True:ifFal se: . Thisiswhy the boolean test is often bracketed with round brackets. Then if the
value of the boolean is true, the code in the if True block is executed, if it isfalse the code in the ifFalse
block is executed. Consider the following example:

C version Smalltalk Version
if (count < 100) (count < 100)
count ++; ifTrue: [count := count + 1]
else { i fFal se: [Transcript show
printf(“Overflown”); "Overflow .
count = O; Transcript cr.
} count := 0.]

In both cases the code increments the value of a counter if its maximum count has not been reached;
if the maximum count has been reached, the code resets the counter and prints an error message. Nested
if-then statements can be constructed asin any other language. For example, in Smalltalk:

(count < 100)
i fTrue: [(index < 10)
ifTrue: [....]
ifFalse: [..... 11

83

However, it is easy to get confused and therefore one must be careful. A facility not provided
explicitly by Smalltalk istheif -then-elseif-else type of structure. For example, inC it ispossibleto
write:

if (n < 10)

printf (“less than 10");
else if (n < 100)

printf (“greater than 10 but |ess than 100");
el se

printf (“greater than 100");

In Smalltalk it isnecessary tonest i f True: i f Fal se constructs as above. However, it iseasier to
seeif you have adangling el se problem as the built -in formatter available in the various browsers can
be used to seeif the code formats in the expected manner.

Thereis also no such thing as a case statement in Smalltalk. Instead, thefun ctionality required is
usualy achieved using a dictionary.

map := Dictionary new

map at: $" put: [Transcript show. 'It is a caret'].

map at: $> put: [Transcript show 'It is greater than'].
map at: $< put: [Transcript show. 'It is less than']

result := (map at: char) val ue.

Thisisthe Smalltalk equivalent of the following in C:

switch (char) {
case 'M':

printf(“It is a caret”);
br eak;
case: '>':
printf(“lt is a greater than”);

br eak;

Thisisactually an example of how Smallta Ik istruly object oriented. That is, even what would be
considered standard control structures in other languages, have to be implemented by using objects and
message passing. A point to note is that the control structures which do exist in Smalltalk may at first
seem to be similar to the control structuresin other languages. However, thisis both persuasive and
misleading. They are of course messages to objects (e.g. true, false or ablock object). Internally they
perform something which is similar in na ture to what we have done above for the switch statement. If
you find this confusing, don’t worry, but if you can see what is meant by this then you have gone along
way down the round to understanding Smalltalk.

9.4.2 Repetition

Iteration in Smalltalk is accomp lished with the ti mesRepeat :, whi | eTr ue:, whi | eFal se: and
enumerating messages (such as do:). The enumerating messages will be considered in more detail when
we discuss the collection classes. For the moment we shall limit ourselves to a simple form of the do:
message and the ti mesRepeat message. In the next subsection we will consider the while -based
messages.

Liketheir counter -partsin other languages, the ti nesRepeat :and do: me ssagesrepeat a
sequences of instructions a fixed number of times. In C, this construct is provided by the for loop. For
example:

for (n =1, n<=10; n =n + 1)
printf(“%8d”, n);

Thisassigns n theinitial value 1, it then repeats while the middlete st istrue during which the last
expression increments the value of n after each execution of the printf statement. In Smalltalk this can
be achieved using the do: message. This message is actually sent to an interval (which is discussed
elsewhere):

(1 to: 10) do: [:n | Transcript show n printString]

The brackets round the 1 to: 10 are required, because we create an interval object with therange 1 to
10 which is sent the message do: with ablock asits parameter. However, it has exactly the same effect
asthe C version presented above.

It should be noted that what is happening here is that the block object passed as the parameter to the
do: message actually takes a parameter itself. In fact it is passed the values 1 through 10 in turn. Each
value isthen bound to the block variable n. Thisisachieved by sending the message val ue: witha
different element of theinterval to the block within the do: message.

In situations where you merely require a piece of code to execute a given number of times, witho ut
the requirement to reference any loop variable, it is possible to use a very simple control structure. This
structureisthe t i mesRepeat : message. This message is sent to an integer and causes the associated
block to be executed n times, where n is the integer the message is sent to. For example:

10 ti mesRepeat: [Transcript show. 'Hello'; cr.].

thiswill cause Hello to be printed ten times in the Transcript window.
Blocks with arguments are al so used to implement functions to be applied to al element s of adata
structure. For example (using an array):
sum: = 0.

#(3 5 8 4 6) do:
[:item] total :=total + (item* item)]

Thevariable i t emtakes the value of each element in the array. The result of these expressionsisthe
sum of the squares of the valuesin the array. Thisis avery useful construct.

9.4.3 While loops

The whileloop existsin almost all programming languages. In most cases it has a basic form such as:

whi | e (expression)
st at enent

Because in Smalltalk awhileloop is achieved by sending a message to an expression the format is
dlightly different. In Smalltalk the basic format is:

[condition] whil eMessage:
[st at ement s]

where condition is the control expression in the form of aBlock Context. Statements are the controlled
set of Smalltalk code also in ablock context. The control of this statement is determined by the
whileMessage that can actually take a number of forms which will be discussed below.

The basic while messages are the whi |l eTrue: and whi | eFal se: messages. For the
whi | eTr ue: message, if the value of the control expression in the receiving block istrue, then the
controlled statements are executed. After thisthe control expression isevaluated againand soon. T his
is actually achieved in Smalltalk by sending the receiver block the message val ue; if the responseis
true, then the argument block is sent the message val ue. Thisrepeats until the receiver block answers
false.

For example:
CVersion Smalltalk Version
n =1, n:= 1
while (n <= 10) [n <= 10]
{ whi | eTr ue:
printf(“%3d”, n); [Transcript show n.
n++: n:=n+1].

}

This should be read as: The block object is sent the message whileTrue: with one parameter which is
also ablock object. If the first block object evaluates to true when sent the message valug, (i.e. if the
value of nislessthan or equal to 10) then the message value is sent to the second block object. If this
message is sent, then the current value of nis printed in the Transcript and is then incremented by one.
Thisisrepeated until the first block returnsfalse (i.e. n = 11). Note, asin any other language n must be

85

assigned an initial value before the condition expression. Thisisbecause the while message begins by
evaluating the control expression, if noinitial value is provided for n it will default to nil. Comparing nil
with anumeric value will result in an exception being raised.

Asyou can see the equivalent C code is not that diffe rent, but the semantic meaning is completely
different.

The whi | eFal se: message has exactly the same format asthe whi | e Tr ue: message. The only
difference isin the condition used to decide whether to evaluate the second block or not.

n:=1
[n > 10] whil eFal se:
[Transcript show n.
n:=n+ 1].

In some cases we want to do all the work in the receiver block. These versions of the while message
can be viewed as being similar to the do statement in C. To support such a feature there are two
versions of the while loop which do not require the second block to be provided. These are the
whi | eTr ue and whi | eFal se messages (note the absence of the‘:"). For example:

CVersion Smalltalk Version
do { [n := Transcript getNunber.
scanf (“%”, &n); Transcri pt show n; cr.
printf(“%l\n”, n); n < 1000] whil eTrue.

} while (N < 1000);

Both of these segments of code are expected to read in a number, print it back out and then check to see
if itislessthan 1000. If itisth e sequence of stepsis repeated, otherwise the loop is terminated. For
example, this could be used to ensure that some input isin the desired range.

9.5 Summary

Y ou now know virtually everything about Smalltalk except the classes which make up the very large
library of reusable components available to the devel oper. Y ou have learnt the basics of the language in
chapter 6 and in this chapter you have learnt about cascading, blocks and their use in iteration
constructs. You have also learnt about conditional sta tements and their use of blocks. Y ou are now
ready to explore the class structure in Smalltalk.

9.6 Further Reading

As ever, the Hopkins and Horan book [Hopkins and Horan 1995] is a good reference source for the
Smalltalk language. Other useful books are [Lalonde and Pugh 1991] and [Goldberg and Robson 1989].

10. The Collection Classes

10.1 Introduction

This chapter discusses probably the most used class hierarchy in Smalltalk; the collection class
hierarchy. The collection classes are the basis upon which data struc tures are constructed in Smalltalk.
Section two introduces the collection class hierarchy and the common functionality provided by all
collection classes. Section three presents a decision tree to help identify the most appropriate collection
classtouse. Sectionsfour, five and six present the Bag class, the Set classand the

86

Or der edCol | ect i on class (respectively). Section seven then presents how the
Or der edCol | ect i on class can be used to construct St ack and Queue classes.

10.2 The Collection class hierarchy

A collection isagroup of objects (these objects are called the elements of the collection). Collections
are the Smalltalk mechanism for building data structures of various sorts; it is therefore important to
become familiar with the collection hierarchy and its functionality.

Class Col | ect i on isthe abstract superclass of al collectionsin the system. Figure 10.1
summarizes the collection classesin VisualWorks. Some of the classesiillustrated are abstract classes on
which others build. In fact the collection class hierarchy is a classic example of the use of abstract
classes and how they can be used to group together functionality as well as indicate what is expected of
subclasses. Now might be ago od time stop and examine the collection classitself. Abstract classesin
this hierarchy include:

e Col | ecti on. Thisisthe abstract root class for the whole hierarchy.

e Sequenceabl eCol | ecti on. Thisisthe abstract class for collections which have a defined
sequence. That is, the subclasses of this class support the notion of havingan order associated
with the elements.

 ArrayedCol | ecti on. Thisisthe abstract class for those classes which have an array like
behaviour. That is, subclasses of this class support the notion of an externally defined ordering.

ﬁl]ﬁ Class Browser - [O] x]
FontDescriptionBundle A
SortedCollection
LinkedOrderedCollection |
OrderedCollection
SequenceableCollection | RunArray
LinkedList
KeyedCollection List
ArrayedCollection Text
Caollection Bag YWeakArray
Interval String
Set Array
Dictionary
LensContainer Character&rray
IdentitySet
Integerdrray
TableAdaptor
TwoDList
|] 1

Figure 10.1: Part of the collection hierarchy in Smalltalk

The concrete classes in the collection class can either be ordered or unordered and may or may not
possess duplicates. Concrete classes which are unordered include:

« Bag.A Bag containsall the objects put in it, in no particular order. Duplicate objects are
permitted.

e Set . Setscontains al the elements put into it, in any order. Duplicates are not kept; adding equal
objects many times results in only one such object in the Set.

e Dictionary.Class Di cti onary isasubclassof Set andrepresentsaset of associations
between pairs of objects.

Concrete classes which are ordered include:

87

e OrderedCol | ecti on. A collection where the ordering is given by the order in which
elements were added.

e Array. A collection which provides array like behaviour.

e String.Anindexed collection of Char act er s.

e SortedCol | ection. A collection of objects, which are sorted accordi ng to an ordering
defined in the instance of SortedCollection.

e Synbol . A subclassof Stri ng. All symbols are unique, while there can be two different
Strings containing the same characters.

« Text . A classwhich understands a notion of a collection of fonts associated with a string.

A relatively new class which incorporates some of the more useful features of the Array,
O der edCol | ecti on with Sort edCol | ect i on classesistheLi st class.
The basic operations that are performed by the collection data structures include adding and

removing elements, determining the size of the collection, querying the presence or absence of elements
and iterating over the elements.

10.3 Choosing a Collection class

It can sometimes be confusing for those new to Smalltalk to decide whi ch collection class to use. Some
make the mistake of always using an array (because it is similar to the constructs that they are used to).
However, thisisfailing to understand the way one should work with collections (data structures) in
Smalltalk. To this end the following decision tree may be of use.

Collection
Are elements ordered?

Access ble by key? Sequenceabl eCollection

yes order determined

Accesstest Duplicate dlowed?

externally internally

class of elements

= == yes no

Accessble by key?

‘Dictionary"IdmtityDictionary‘ ’ Bag ‘ ’ Set ‘

ArrayedCol lection class of dements
class of dements any, Link
Smalll nteger Character any
\
‘ByteArray ‘ ‘ Sring H Text ‘ ’ Array ‘ ’ RunArray‘ List OrderedCollection LinkedLig ‘

Figure 10.2: Selecting which Collection class to use

The most commonly used collection classes are, Array, SortedCollection,
Or deredCol | ection, List,Dictionary andSet.

10.4 The Collection class

The collection class is the abstract superclass which acts as the root of al collection classes. It provides
facilities for creating instances of a collection class, adding an element to a collection, accessing
elementsin a collection, removing an element from a collection and indicating the size of the collection.
It also provides facilities which allow an operation to be applied to all elements of the collect ion(ina
similar fashion to the mapcar functionin Lisp). It also provides a number of conversion routines which
allow one collection to be converted into another.

With one or two exceptions (e.g. Byt eAr r ay) any object can be stored into any collection. The
only message that these operations must be able to respond tois = (although objects to be placed in a
Sorted collection must also respond to <=). This means that a collection can be avery flexible way of

88

holding other objects. Typically, collections are used as data structures in Smalltalk systems. They can
also be used as temporary holding places for groups of calculations, results, operations etc.
The Col | ect i on class assumes that a new subclass will provide at |east the following:

e add: Thisadds an object to the collection

« renove:if Absent: Thisremoves an object from the collection. If it is not present in the
collection, the block provided as the parameter to if Absent: is evaluated.

« do: Thisappliesthe associated block to each element in the collection

e copyEnpty: (if the subclass possesses named instance variables). This creates a copy of the
receiving collection which contains no elements.

The Col | ect i on class defines the common protocols to which all types of collection are expected to
respond. For example, objects may be added to collections using:

e aCollection add: anCbject Subclassesredefine this message such that it will add a
single instance of anObj ect to the collection. In some classes this is dependent on the current
contents of the collection (e.g. class Set).

 aCollection addAll: ol dColl ection Addeachelementin oldCollection to
aCollection. This method uses add: and therefore does not need to be redefined in a subclass.

e size. Thecurrent size of the collection (i.e. the number of objectsit contains) may be
obtained using thesi ze message: aCol | ecti on si ze.

Objects may be removed using one of the following:

e aCollection renove: ol dObject.Removethefirst element whichequals
ol dObj ect

e aCollection renove: ol dObject ifAbsent: aBl ock. Subclassesredefinethis
method. The intention is that the method will remove thefirst instance of ol dCbj ect . They
will run aBl ock if that object is not present in the collection.

 renmoveAll: aColl ection.Thismethod removesall of the element contained in
aCol | ect i on from the receiving collection.

The Col | ect i on class also defines arange of test methods which can be used to identify the current
state of a collection or determine if an object is a member of a collection. The test operations supported
include:

e aCollection includes: anObject.Thistest swhether an elementiscurrently a
member of a collection. This method uses the = test.

e« aCol I ection isEnpty. Thismessagereturnstrue or false depending on whether the
collection contains any objects or not.

e aCollection occurrencesO: anCbj ect . Thismessage returns the number of times
anCbj ect ispresent in the collection. Again this uses the #= test.

Additional protocols are implemented by subclasses to support operations suitable only for that
class. For example, OrderedCol I ectionsupports first, atFirst: after:and
add: bef or e: whilearraysunderstandat : andat : put :.

10.5 Bag

Abstractly a Bag can be considered to be any collection of objects, which can be of any class; these
objects are the elements of the Bag. It is agenera place holder for collections of objects. Thereisno
order assumed. It isthe most general form of collection available in Smalltalk. (In many
implementations each entry in the bag is actually an association which indicates the object and the
number of timesit has been placed in the bag. Thisisintended as a performance enhancement and is
normally transparent to the user.)

89

If you are confused by this description of a bag, think of it as a shopping bag. At a supermarket, you
pick objects up from the shelves and place them in your shopping bag. For example, you pick up a pint
of milk, abox of corn flakes, a packet of biscuits, three bags of potato crisps, and a few bananas (see
Figure 10.3).

Corn
Flakes

_—]

Figure 10.3: A shopping bag

Each of the objects in the bag is a different type of thing, with different characteristics etc. Thereis
no particular order to them, they will have moved about in the bag w hile you were shopping and while
you brought them home. When you reach into the bag at home to remove the objects, the order in which
they come out will not be predictable. If you think of abag collection in these terms then you will not be
far off the mark.

Aswith any other class we create an instance of Bag by sending the message new to the class Bag.
For example:

| tenp |
tenp : = Bag new.

The bag object responds to the add: message to add objects as well as the add:withOccurrences:
messages which can be used to add an object n times. For example:

tenp add: 'John'.
tenp add: 'Hello' wi thCccurrences: 2.

At this point the bag object will contain three objects, the string ‘ John’ and two copies of the string
‘Hello’. We can examine the contents of the bag using the inspect message, for example:

tenp inspect.

Y ou will notice that the bag object does not record the objectsin the order in which they were
added. Instead, the order is not specified (it is actually determined for efficiency). Youwill also notice
that there are instance variables numbered 1 - 7. Thisis because collections are a specia type of object
whose instance variables are defined dynamically as and when required. They are termed “variable”
classes.

It is also possible to remove objects from aset using either the r enove: i f Absent: messageor
the renmoveAl | GccurrencesO : i f Absent: message. Thefirst isused to removeasingle
reference to an object, while the second is used to remove al reference sto an object. In both casesa
block must be supplied which is executed if the object is not a member of the bag. For example:

tenp renpve: 'Paul' ifAbsent: [].
temp renpve: 'Paul' ifAbsent: [Transcript show. 'No Record of Paul'].

Inthefirst example, if the string ‘Paul’ is not in the bag then the empty block will be executed, which
will result in nothing happening. In the second example, a message will be printed to the Transcript.

10.6 Set

Theclass Set isbasically thesameasthe class Bag, with the exception that it does not allow
duplicates. That is, it is only possible to hold a single reference to an object in a set. For example, try the
following out in a Workspace:

90

| tenp |

tenp := Set new.
tenp add: 'John'.
tenp add: ' Paul'.
tenp add: 'Peter'.
tenp add: 'John'.
tenp inspect.

Y ou will find that only one occurrence of the string John’ was added to the set. The second
addition was ignored.

Thereisaso aversion of the collection class Set called | denti t ySet . Thistype of set performs
an identity test to determine if an object isaduplicate or not. That is, it uses the == test rather than the =
test. This means that rather than an object having the same value as an object already inase t, it must
actually bethat object. If it is only equivalent then the object will be added to the set. In thisway it may
appear that duplicates have been added to the set. However, they are not the same object and are
therefore allowed.

Thel denti t ySet canbe useful if you know that duplicate elements to be added to the set will be
the same object. In such cases the Identity set can be used asit is more efficient than the standard set.

10.7 OrderedCollection

The Or der edCol | ect i on class can hold any type of object. It does so in a specified order. That
order is determined by the order in which objects are added to the OrderedCollection instance. An
instance of OrderedCollection is created by using either newor new.. The second version of new
alows an integer to be provided which indicates the maximum size of the collection required. This can
be useful in situations where this number is known and time is optimal. That is, it is not necessary to
waste time incrementally growing the collection.

Or der edCol | ect i on can be used in situations where the order in which the objects were added
to the instance must be preserved. For example, try out the following example of using an
Or deredCol | ecti on:

| x|

X := OrderedCol | ection new.
x add: ‘'one'.

X add: 'two'.

x add: 'three'.

X inspect.

Y ou will find that the strings ‘one’, ‘two’ and ‘three’ remain in the order in which they were added
(unlike instances of Bag and Set).

Thereis awide range of order related messages which alow obj ectsto be added and accessed with
reference to the order inthe Or der edCol | ect i on instance. For example, it is possible to access an
object “before” or “after” another object by using thebef or e: or af t er : messages, e.g.:

x after: 'two'.

It is also possible to add an object either before or after another object. For example:

x add: 'five' after: 'one'.
x add: 'six' before: 'three'.

To remove an object from the collection use r enove: i f Absent :, thisremovesthefirst instance
of the object specified in the collection. If the object is not present, then the absent block will be
executed. For example:

a renove: 'John' ifAbsent: [Dialog warn: 'John not present'].

91

The Or der edCol | ect i on class can be used to construct a St ack or Queue class. An example

of how to do thisis presented in the next section. Notice how little code has to be written and how much
isinherited.

10.8 Stack and queue classes in Smalltalk

In this section we will work t hrough an example illustrating how we can define new collection classes
(data structures). We shall put both classes we will define into a class category called “ Additional -
Collections’.

10.8.1 The Stack class

Thefirst classwewill defineisthe St ack class. Th e class definition of the St ack isillustrated
below’. Note that we are making St ack asubclassof Or der edCol | ect i on. Thisis because the
elements of a stack are ordered, and may be duplicated within the stack. Also note that we are not
defining any new in stance variables. The functionality of the St ack will come solely from extending
the interface, the structure of the class will be completely inherited fromthe Or der edCol | ecti on
class.

OrderedCol | ection vari abl eSubcl ass: #St ack
i nstanceVari abl eNanes: '
cl assVari abl eNanes: "'
pool Di ctionaries: "'
category: 'Additional-Collections'

Asbefore | am also providing a class comment (see Figure 10.4). Again it isup to you to decide

whether you wish to provide one as well (although | strongly recommend doing so - it isagood habit to
get into).

Eﬁystem Full Browser [_[a] x
Lens-Private-Taols-Con [[Stack [3] operations [y 3
Globalization

Drag-And-Drop

Messages

Tools-Parcels
System-Code Storage

AT-Tools
Tools-ObjectGraph Object A
Applications-CCP Caollection
Example Class SequenceableCallacti
Organiser Class OrderedCaollection
Additional-Collections Stack | |
I 4 instance ~ ctlass [= [~ I}
I supers I subs I names
Class: Stack Author. John Hunt Date: June 23, 1996 -

Furpose: To provide a very basic Stack class. It is intended that this class would be illustrative. It is
based on the discussion on p 158 of the Purple Book

Type: Abstract /Concrete SuperClass: OrderedCaollection
Copyright: (c) Dr. John Hunt, 1858

History:
June 23, 1996 Authors Mame Mew Module

Instance variables:
Usage:

Itemp |
temp = Stack new

Transcript show: temp isEmpty printString.
temp push: “"John"

Transcript show: temp top printString
temp pop 7

Figure 10.4: The Stack class comment

°As Order edCol | ect i ons are variable in size the variableSub class: class creation message is used. Don't worry too much
about this as the tool s provided with environments such as Visua Works ensure that the appropriate message is always used.

92

Next we will define a message protocol called “operations’. It iswithin this protocol that ~ we will
define al the methods which will provide the functionality of the Stack. These methods will be push:,
pop andt op.

The push: method is used to push something onto the top of the stack. It takes one argument, (an
object) and addsittothetop of thestack. Todothisitusesthe addLast: method inherited from
Or der edCol | ecti on.

push: new(bj ect
sel f addLast: new(bj ect

Next we will definethe pop method. This method removes the top element from the stack and
returnsit asthe result of evaluating pop. Again it uses methods inherited from
Or der edCol | ecti on todothis.

pop .
sel f isEnpty
ifTrue: [*nil]
i f Fal se: [~self renpvelLast].

Finally, we will define the method t op. Thismethod islike pop, except that it does not remove the
top most element from the stack. To do this we use the message | ast inherited from
Or der edCol | ecti on.

top
sel f isEnpty
ifTrue: ["nil
i fFal se: [~self last].

Thisclassisan excellent example of w hy Smalltalk is so powerful. We have defined a class which
provides the functionality of a St ack (no matter what the contents of that stack will be) in just afew
lines of code. Consider the amount of work required to achieve the sameresult in alanguage such as
Pascal or C (without purchasing additional libraries).

10.8.2 The Queue class

This class definition is very similar to the Stack example, it is therefore presented here with little
additional comment.

OrderedCol | ection vari abl eSubcl ass: #Queue
i nstanceVari abl eNanes: "'
cl assVari abl eNanes: "'
pool Di ctionaries: "'
category: 'Additional-Collections'

Again aclass comment should be defined. Thisisleft an an excersie for the reader. The methods
should again be placed in a protocol called “operations’. Each of the methods are listed below.

add: new(bj ect
sel f addLast: newObject.

del ete
sel f isEnpty
ifTrue: ["nil]
i fFal se: [self renoveFirst].
next
sel f isEnpty

i fTrue: [*nil
ifFalse: [~self first].

The state of the class definition at this point isillustrated in Figure 10.5.

93

10.9 Summary

In this chapter you have encountered for the first time, one of the most important class hierarchiesin
Smalltalk. The various col lection classes will form the basis of the data structures you build and will be
the corner stone of most of your implementations. So far you have looked at Bags, Sets and
Or der edCol | ect i ons. For those of you coming from a Lisp style language these concept swon't
have seemed too strange. However, for those of you coming from languages such as C, Pascal or Ada
you may well have found the idea of a bag and a set quite bizarre. Stick with them, try them out,
implement some simple programs using them and youwi 1l soon find that they are easy to use and
extremely useful. You will very quickly come to wonder why every language doesn’t have the same
facilities!

%

E System Full Browser =]

Lens-Private-Tools-Col | | Queue operations A ladd:
Globalization Stack J delete

=
1

Drag-And-Drop next
Messages

Tools-Parcels

Object
System-Code Storage Cgf;cctmn
AT-Toals

K
o

/
instance - class [1 - []

£

I subs _I names

hext
self isEmpty
ifTrue: [*nil]
ifFalse: [*self first]

Figure 10.5: The System Browser after the "next" method has been defined

10.10 Further reading

Almost any good book on Smalltalk includes a detailed discussion of the collection classes. However,
particularly good references can be found in [Lalonde and Pugh 1991]. Useful references for the Queue
and Stack classes can be found in [Goldberg and Robson 1989].

94

11. Further Collection Classes

11.1 Introduction

This chapter continues the discussion of the collection class hierarchy. It concentrates on the ordered
collections and builds on the previous chapter. Sections two, three an d four present the
SortedCol | ecti onclass, the List classandthe | nterval Class The Array class,
Di ctionary classand St ri ng class are presented in Sections five to seven. Section eight describes
how to iterate over collections while Section nine explai ns how to convert between collections. Figure
11.1 illustrates the relationships between some of the ordered collection classes.

Tj0G Class Browser |_ (O]]
FontDescriptionBundle e
SortedCollection
LinkedOrderedCollection
OrderedCallection
SeqguenceableCollection RunArray
LinkedList
KeyedCollection List
ArrayedCallection
Cuollection Bag WeakArray

Interval
ﬂ Array
v Dictionary
LensContainer | - CharacterArray
Identity Set
Integerdrray

TableAdaptor
TwoDList

Figure 11.1: Some of the ordered collection classes

11.2 SortedCollection

A Sort edCol | ecti on isacollection classin which the order of the elementsis determined by a
specified sorting criteria (for example x, < x,,,). Thisis specified by the sort block associated with ev ery
sortedCollection object. That is, the ordering is defined by a special block of code (for example, [: X
2y | x>= y]). Thisblock can be replaced by the user of the class so that any type of ordering can be
applied to the objects with in the collection. Why not browse the class using the class browser. Try and
find out what type of sorting algorithm is being used.

Try out the following in a Workspace:

| x|

x := SortedCol | ection new.
x add: 5.

X add: 6.

X add: 7.

X add: 1.

X inspect.

95

Thisisavery powerful class which greatly simplifies the production of ordered lists of information.
Y ou can change the block controlling the sort by sending the message sort Bl ock: tothe
sortedCollection instance with a new block definition.

11.3 List

TheLi st classisarecent addition to the collection classesin VisualWorks (which is not yet available
in other implementations of Smalltalk such as Visual Smalltalk). The List class combines some of the
more useful features of the Array, OrderedCol | ecti on, Sort edCol | ecti on classes and the
Model class. The order of its elementsisinitially determined by the order in which the elements are
added (asin Or der edCol | ect i on). These elements can then be accessed viaan index (asin

Ar r ay). However, the elements can a so be sorted using either the default ascending order, or a custom
sort block can be provided (asin Sort edCol | ecti on). Inaddition aList keeps arecord of
dependentsto which it should send updates (asin class Mbdel). However, as we have not yet |ooked at
the Mbdel class, wewill ignore this part of the class's operation.

The set of features provided by this class make it one of the most widely used types of collection, in
some cases supplanting the older OrderedCollection and SortedCollection classes. It responds to a
combination of the Ordered and Sorted Collection class protocols. Thereforeit understands after:,
before:, sort, sortWth:, add:, add: after:and add: bef or e:. It also respondsto
addLast :,addFi rst:, renove: i f Absent :, renoveFirst,renpvelast etc

To create anew instance of class Li st use either newor new. depending on whether you wish to
specify aninitial size or not.

For example, try this out in a Workspace.

| tenp |
temp : = List new 10.

tenp add: 'John'.

tenp addFirst:' Paul'.

tenp add: 'Peter' before: 'John'.
tenp inspect.

11.4 Intervals

Instances of class | nt er val represent finite arithmetic progressions. Such progressions are given by a
starting number, a (finite) limit, and amethod of computing the next number. Once created, new
elements cannot be added or removed from the | nt er val .

I nt er val s can be created using the class messages:

from start to: stop
from start to: stop by: step

start, stop and st ep canbeany kind of Nunber . Intervals are common enough that a shorthand
form has been provided. This shorthand form is achieved by sending to: or to: by: toakind of
Nunber . For example the following are equivalent:

Interval from 10 to: 100 by: 2
10 to: 100 by: 2

Theseareequivalenttoafor i = 10 to 100 step 2 typeloop. However, they actualy create
an interval containing all the obje ctsto be processed bef or e any further processing occurs. This
alows them to be used with a do loop.

I nt er val s respond to the message do: aBl ock by evaluating aBl ock for each of its values
in sequence. Thus, an| nt er val can be used to construct the equivalent of a FOR loop. For example:

(10 to: 100 by: 2) do: [:each | Transcript show each printString].

Thisistherefore roughly equivalent to the Cfor loop:

96

for (i =0; i <=100; i :=1i + 2)
printf (“%d”, i);

This construction is so commo n that the t 0: do: and t o: do: by: areasoimplementedin Nunber
so that the brackets can be omitted if desired. For example:

10 to 100 do: [:each | Transcript show each printString].

11.5 Array

Essentialy the Ar r ay classisjust the same as an array in any language. In an array of n locations there
will be1to nindexesin which objects can be stored. For those of you familiar with C, be warned
attempting to access the value of location O will result in an error. However, one major difference
between arrays in languages such as C and those in Smalltalk is that you do not specify the type that
each element in the array will take. For example, in C you might specify that an array will be of type
int. That isall elementsin the array will beintege rs. Instead, an array in Smalltalk can hold any type of
object.

Note that it is aso not necessary to specify the size of your new array, you can just create a new
array (e.g. Array new.). However, thiswill typically only allocate you 7 array locations. |~ f you want
more, the system will dynamically allocate you with more. However, thisis slow and time consuming.
If you know you want a hundred |ocations then say so when you create the array (i.e. Array new: 100).
Now let’slook at an example:

C Version Smalltalk Version
| x|
int x[10] X := Array new 10.
x[0] := "one"; x at: 1 put: 'one'.
x[1] := "two"; X at: 2 put: 'two'.
x[2] := "four"; x at: 4 put: 'four'.
x[3] := "five"; x at: 5 put: 'five'.
printf ("9%", x[4]); Transcript show (x at: 4)

printString.
X inspect.

Noticethat the at : put : message is used to put values at specific locations, and the at : message
is used to retrieve elements. Also notice that it was not necessary to specify the type of the array. Asit
happens al the elements are strings, but there is no reason why the element at location 3 can't be any
type of object at all.

The typical way to access an element in an array isto accessit viait sindex. Thismeansthat if you
wish to access al the elementsin the array x in turn you might use a do loop. For example:

CVersion Smalltalk Version
for (i =1; i <=5; i++4) 1to 5 do: [:i
printf (“%", x[i]); Transcript show (x at: i)].

These pieces of code are fairly similar and perform the same function. However, thisis not the most
appropriate way to process the elements of the array in Smalltalk. Smalltalk provides a number of other
constructs (referred to asiterat ion messages) which are not only more efficient but usually implement
the required functionality rather more elegantly. These will be considered in more detail later.

11.6 Multi dimensional arrays

Multi dimensional arrays can be created in Smalltalk, and there are two ways of doing this. One
provides atwo dimensional array (with list like features) which isfixed in size, while the second

97

provides any dimension size but requires additional programmer support. For example, in Cto create a
two dimensional array of 3 by 4 integer elements we could write:

int table [3] [4];

In Smalltalk we can either usea TwoDLi st or create the two dimensional structure manually. For
example, if we used the TwoDLi st class:

| aTwoDLi st |
aTwoDLi st := TwoDLi st colums: 3 rows: 4.

We could then place the string ‘ John' into position 1, 1 using the atPoint:put: ~ message. We can then
retrieve this string using the atPoint: message. Note these messages take a point object as the position. A
point object can be created using the @ form. For example:

aTwoDLi st atPoint: (1 @1) put: 'John'.
Transcript show (aTwoDList atPoint: (1 @1)).

Asthis class possesses list like behaviour it can be used in asimilar manner to an instance of list. For
this reason it is often used with the user interface facilities provided in VisualWorks. For example, with
the table widget. However, we cannot change the size of a TwoDList onceit is created. Nor do we have
the ability to use higher dimensions. It is sometimes therefore necessary to manually construct multi -
dimensiona arrays. For example:

temp := Array new. 3.

tenmp at: 1 put (Array new. 4).

tenp at: 2 put (Array new 4).
temp at: 3 put (Array new. 4).

We could then access elements of the object in the following manner:

((tenp at: 1) at: 1)

If you find yourself having to do this often then it probably means that you are thinking to o]
procedurally and need to reconsider your design.

11.7 Dictionaries

A Dictionaryisasetof Associ ati ons, each representing akey -value pair. It is a subclass of
Set . Theelementsina Di cti onary areunordered, but each hasadefinitename or key. Thusa
Di cti onary can be regarded as an unordered collection of object valueswith external keys. Part of
the protocol for dictionariesislisted below:

e at: akKey returnsthe value associated with aKey.

« at: aKey put: aVal ue putsaVal ue into adictionary with the externa key aKey.

e associ ati onAt: aKey answerswiththe association given by the key (i.e. the value and
the key).

« keyAt Val ue: aVal ue answerswith the name (key) associated with aVal ue.

* keys answerswith aSet of keysfrom the receiver.

* val ues answerswith a Bag of the valuesin the receiver. Note that values are not necessarily
unique (hence they are returned as a Bag rather than as a Set).

Hereisasimple Di cti onary example you might liketo typein and try out.

X |

;= Dictionary new.

at: 'John' put: "jjh'.

at: 'Myra' put: 'nmsw .

at: "Chris' put: 'cjr'.

at: 'Denise' put: 'dec'.

Transcript show (x at: 'Chris') printString.
Transcript show (x keyAtValue: 'Jjh') printString.

X X X X X—

98

X inspect.

This has some similarities to a hash table found in some other languages (e.g. Common LISP) or in
libraries available for other languages (e.g. C). The great advantage of Smalltalk isthat everyone has
the same type of Dictionary. In Pascal 0 r C almost everyone would havetore -invent their own or
purchase a library to get the same functionality. This, of course, leads to problems of consistency
between implementations.

Another form of the Di cti onary collection also exists. Thisform istermed the
IdentityDictionary.Likethe | dentitySet itusesthe == testrather thanthe =test. This
means that for an object to be returned, the object used as the key must bethe same object as was used
to create the key and not just an equivalent object. Like the IdentitySet it is more efficient that the
standard Di ct i onar y class and may be used in certain circumstances.

11.8 Strings

St ri ngs arerepresented in Smalltalk as collections of characters. Unlike in languages such as C,
there i s no need to provide special string processing functions such as strepy(). Instead, we can treat
strings as collections (and iterate over their contents) or as “strings’ in their own right. Thisis because
we are inheriting the collection class (and the su bclasses between the collection class and the class
String) methods and are using the methods defined in the class String.

Useful String operations include the concatenation of strings, searching for substrings and pattern
matching between s trings. For example, saneAs: aStri ng answerswhether the receiver and
aSt r i ng match precisely (ignoring case differences).

To concatenate two strings together use a comma. For example:

nyNane := 'John' , ' E' , 'Hunt'.

Notice that you do not have to specify the length of the string. Remember they are just objectsand a
variable can hold any object.

Substring operations are essential in any language and Smalltalk provides avariety of features for
searching for substringsand pat tern matching between strings. For example, the findString:
starti ngAt: message. This message searches the receiving string for the string passed as a
parameter to the method. For example:

"John Hunt was here' findString: 'Hunt' startingAt: 1.

There are two pattern matching methods defined for strings, sanmeChar act er s: and nat ch:. The
first method counts the number of beginning characters which are the same. The second method is more
powerful and can include two typesof wild card (# which can represent any single character and *
which can represent zero or more characters). For example:

‘Dr. * Hunt' match: ‘Dr. John Hunt’.

This expression evaluatesto true. There isavariant of the match: method which can either ignore or
consider case; mat ch: i gnor eCase: (which takes either true or false as the second argument).

Instances of class St ri ng aso respond to boolean operators such as ‘<. Thisis because strings
have an ordering (defined by the a phabet). For example:

"john' < 'Denise'

There are similar methods for ‘<=, *>" and ‘>=". Strings can also be converted into lower or upper
caseusing asLower Case and asUpper Case. Finaly, asst rings are types of collection they can
respond to the iteration message described above. These can be used for performing some operation on
each character in astring in turn.

99

11.9 Iterating over collections

A number of messages are available which allow the sa me operation to be applied to each element in a
collection and in some cases the results of this operation can be automatically collected. These
messages are referred to as the iteration messages, they include do:, sel ect:reject:, col | ect:
and det ect :. For al the messages (except do:), theresult isanew collection ‘just like the receiver’.
The elements of this object depend on the criteria specified in the block associated with the message.
Note the result can be an empty collection.

11.9.1 The do: message

The do: aBl ock messageevaluates aBl ock for each of the elementsin the receiver (a
Col | ecti on). aBl ock should have one argument. (Note that you have not yet encountered blocks.
For the time being treat them as begin/ends as in other languages su ch as Pascal or ADA. We will look
a them in more detail later.)

The following example illustrates the use of do:

count := 0.
letters do: [:each | each == $a ifTrue: [count := count + 1]].

This expression counts the number of ‘a’sin the collection letters. The do statement iterates over the
elementsin the letters collection. Each element is bound to the temporary variable “each” in turn. It
then compares each with the character “a’. If the result of this comparison is the object true (remember
all expression return an object of some form) thenthe i f Tr ue: message will execute the codein its
associated block.

Compareit with C style code for the same task:

count = 0; i = 0;

max_num = length(letters);
for (i =1, i <= max_num |++) {
if (letters[i] =="a") {
count ++;

}

-

Notice that in the Smalltalk version we did not need to calculate the length of the collection letters.
Also notice that we only specified the variable “each” which was local to the do block within the loop.

11.9.2 The select: message

The sel ect: aBl ock message evaluates aBl ock for each element in the receiving collection. It
returns a result which is a collection object containing the objects selected when the result of evaluating
aBl ock wastrue. For example:

(letters select: [:each | each == $a]) size

This creates a new collection containing only ‘& s then counts the number of elements. That is, it
only stores the elements of the collection letters which return true for the test presented in -~ the block.
The equivalent Pascal style code might be:

count := i :=0; index := 0;
max_num : = |l ength(letters);
for i =1 to max_num do
if (letters(i) ='a') then
newLi st (index) := letters(i);
index := index + 1;

0;

Asyou can see the Smalltalk construct is rather more el egant.

100

11.9.3 The reject: message

Therej ect: aBl ock message evaluates aBl ock for each element in the receiving collection. The
result of this message isthen acollection ¢ ontaining the objects selected when aBl ock evaluated to
false. For example:

(letters reject: [:each | each == $a]) size

Thiswill return a collection containing all the elementsin letters which weren't the lower case ‘d
character. That is, this message returns all the elementsin letters which fail the comparison test.

11.9.4 The collect: message

Withthe col | ect: aBl ock message aBl ock isagain evaluated for each element in the receiving
collection. The resulting returned collection object is the same size as the receiving collection. The
returned collection contains the result of evaluating the block for each of the elementsin the receiving
collection. For example:

(letters collect: [:each | each == $a]) size

Thiswill return acollection of the same size as letters, with either true or false in each element
depending on the outcome of the comparison.

11.9.5 The detect: message

In some cases we want to retrieve the first element in a collection which passes some test. The
detect: aBl ock message doesthisfor us. It evaluates aBl ock for each element in the receiving
collection and answers with the first element where aBl ock evaluatesto true. For example:

letters detect: [:each | (each asUppercase == $A) |
(each asUppercase == $B)]

This can be extremely useful if you have a collection of records and you need the first one which
matches some test.

11.10 Inserting into a collection

Theinsert message isavery useful and very efficient operation. For example, if you have acollectio n
of numbers which you wish to total you would either need to iterate over the collection using a do loop
or convert the collection to an array and use an interval to mimic a Pascal style for loop.

In Smalltalk, however, this type of operation (i.e. where you want to initialize some values and then
perform the same thing on all elementsin a collection) is so common that an extremely efficient
construct is provided. This construct is called thei nj ect : mechanism. For example, assume you have

abag of integers and real numbers which you want to sum. Y ou can use i nj ect: todothis, for
example:

| aBag result |

aBag : = Bag new.

aBag add: 12; add: 24; add: 23.56; add: 7.

result := aBag inject: O into: [:sum:item| sum+ item].

Thisinjectstheinitia value zero into sum and item. It then binds item to each of the elements of the bag
in turn. Each time it does so, it adds item to the current value in sum and saves the result into sum. This
is therefore equivalent to writing:

| sum aBag |

aBag : = Bag new. sum:

aBag add: 12; add: 24; add 23.56; add: 7.
aBag do: [: |tem| sum : —sum+|ten']
result := sum

101

An interesting exercise isto create avery large bag and an array (e.g. over 100,000 numbers) and time
the performance of the inject: message versus the do: message on the two objects. The result of doing
this for bags and arrays of 100, 1000, 10000, 100000 and 1,000,000 is interesting. The performance of
the array is noticeably faster, however the differences between the i nj ect : and do: messages (for the
same class) are negligible.

The Smalltalk facility which allows the developer to time their codeis mi | | i secondsToRun:.
Thisis used to calculate the processor time taken to execute the code in the block passed to it. For
example:

| anArray tinel aNunmber |
anArray := Array new. 10000000.

1 to: 10000000 do: [:i | anArray at: i put: i].
timel := Tinme mllisecondsToRun:

[anArray inject: O into: [:sum:item| sum+ item]].
Transcript cr; show 'Inject '; show tinel printString.

11.11 Conversion

An instance of one collection can be converted into a different sort of collection with certain conditions.
For example, it is possible to convert a Bag instance into a Set instance, but any duplicate objectsin the
Bag instance will be removed. For example:

ab |

:= Bag new.
add: 'John'.
add: ' Paul '.
add: 'John'.
= a asSet.

T

It is quite common to want to take a set or abag and to sort it in some manner. The easiest way of doing
thisisto convert it to a sorted collection. For example:

| aBag aSortedCol | ection |

aBag : = Bag new.

aBag add: 'John'; add: 'Paul'; add: 'Denise'; add: 'Fiona'.
aSortedCol | ection := aBag asSortedCol | ection.

aSortedCol | ection do: [:item]| Transcript cr; show itenj.

Thisresultsin the list of names being printed al phabetically in the Transcript (see Figure 11.2).

E\I'isualwnlks =

File Browse Tools Changes Database Window Help |

ElEC] WER @ e

Denise

A
Fiona
John
Paul 7

Figure 11.2: Printing a sorted list in the Transcript

Y ou should note that these conversion messages do no t affect the receiving object in anyway. That
is, it does not actually convert the collection, rather it creates a new collection of the correct class and
fillsit with the objects in the receiving collection.

The other commonly used conversion messages include:

e asBag. Thiswill return abag collection

* asSet. Thisreturnsaset collection. Note if duplicates existed in the receiving collection, they
will have been ignored.

e asOrderedCol | ection.Thisreturnsan Or der edCol | ect i on with elements from the
receiver. The ordering is arbitrary.

102

asSortedCol | ecti on. Thiscreatesa Sort edCol | ecti on, sorted so that each element
islessthan or equal to (<=) its successors. An error will be generated i f the elements within the
collection do not respond to this message.

asSortedCol | ection: aSort Bl ock ThisusesaBlock to sort the elementsin the
Sort edCol | ecti on TheaBlock must take two parameters. For example

#(513 7 9 2) asSortedCol lection: [:Xx 1y | x>=vy]

will produce a sorted collection of the numbers.

103

12. An Object Oriented Organizer

12.1 Introduction

This chapter presents a detailed example application constructed using the collection classes. The
Organizer isin tended as an electronic personal Organizer. It therefore possesses an address book, a
diary (or appointments section) and a section for notes. The remainder of this chapter describes one way
of implementing such an Organizer. At the end of this chapter is aprogramming exercise for you the
reader.

12.2 The Organizer

This example involves more than one class and has a more complex architecture than anything you have
seen so far. The architectureisillustrated in -~ Figure 12.1. This example illustrates another important
concept in object orientation, that of an object within an object. These are often referredtoas part-of
hierarchies, i.e. one objectis part-of another. This should not be confused withthecla sshierarchy
which is akind-of hierarchy.

anOrganizer

addriiiiook apiI ||ients
@ notes @

Figure 12.1: The structure of anOrganizer Object

Asillustrated in Figure 12.1 aninstance of the Or gani zer class contains three other objects.
These objects are held in the instance variables addr essBook, appoi nt nent s and not es. The
instanceswithin addr essBook and appoi nt nent s are dictionary objects, while the not es
instance variable holds a bag object.

12.3 The class definition

Weshdl putal Organi zer classinaclasscategory called Organizer Class. Asillustrated in the
above figure the class definition possesses three instance variables, addr essBook, appoi nt ment s
and not es. Figure 12.2 illustrates the class definition.

104

ﬁﬁyslem Full Browser [_ (O] %]
Example Class |~ [Drqanizer A |accessing ’j Y

Test suppart

Organizer Class
dependency der
File-Collection-C

TestOrganizer private
“isualOrganizet | || private-updatii

Object A
Organizer) v
=] T = ©inst - clas[] = [i

I supers | subs I names

Object subclass: #0rganizer
instanceariableMames: 'addressBook appointments notes '
class'ariableMames: "
poolDictionaries: "
category: 'Organizer Classes'

Figure 12.2: The Organizer class definition
The class comment has been defined as follows. Remember providing a class comment is a good
habit to get into.
Cl ass: Organi zer Aut hor: John Hunt Date: 27 Septenber 1995

Purpose: This is a class definition which provides sone of the facilities of a
personal Organizer.

Hi story:

27 Sept enber 1995 John Hunt New C ass

I nstance vari abl es:

addr essBook <aDi ctionary> Hol ds names and addresses.
Appoi nt ment s <aDi cti onary> Hol ds dates and things to do.
not es <aBag> Scratch pad for notes

Usage:

To try the class out select the followng and "do it'.

|tenp | _

tenp := Organi zer new.

tenp newAddress: 'Room 47' for: 'John'.

tenp newAddress: 'Room 46' for: 'Patrick'.

tenp newAppointnment: 'Meet with MeEng' for: '10/10/95".
tenp addNote: '| nust do all ny work'.

tenp addNote: 'Today is a brand new day'.

tenp addressFor: 'John'.

tenp appoi ntnent For: ' 10/10/95'.

tenmp print Not es.

tenmp I nspect.

12.4 The initialize-release protocol

The first protocol we will define will bethe “initialize -release” protocol. As usua we will define the
initialize method. This method will be us ed to initialize each of the instance variables with appropriate
objects. Thisis necessary for the other methods to function correctly. The addr essBook isinitialized
toholda Di cti onary object asisthe appoi nt nent s instance variable, while the not es instance
variable holds a Bag. Note however, that we do not access the instance variables directly, even though
we can as we are within the same class. Thisis because, by using the updater methods we can ensure
that any modification relating to how the Orga nizer class represents an addressBook, appointments or
notes will be localized to the methods which access and update the instance variables. Otherwise, if we
changed the internal representation we would have to modify every method which accessed them. Thi s
could make maintenance very difficult.

Figure 12.3 illustrates the System Browser with the initialize method for the Organizer class. Y our
definition should look like this.

105

E System Browser [_ O] =]
[y

Systern-Code Stor [|Qrganiser A |private-updating [|initialize
AT-Tools TestOrganiser initialize-release
YisualOrganiser accessing

Tools-ObjectGrapk
Applications-CCP
Example Class
Test support

Organiser Class
) 4 instance +/ class

initialize |
"This method is called whenever an instance of Organiser is created”

| adBook appDictionary aBag |
adBook = Dictionary newr.

self addressBook: adBoaok.
appDictionary = Dictionary new.
self appointments: appDictionary.
aBag := Bag new

self notes: aBag.

Figure 12.3: Defining the initialize method in the Organizer class

12.5 A class side method

We shall now do something we have not yet done. We shall define a class method. To do this, first
select the class radio button below the class list window. Y ou will n ow beonthe classside of the
Or gani zer class. You should see that the code view window has changed and now indicates the class
instance definition. Y ou will also seethat your initialize-release protocol and i ni ti al i ze message
have disappeared. Thisis b ecause you are now on the classside and they are part of the instance side
definitions.

We are now going to define a class message protocol. Just as before, to do this you must first define
the protocol name. Y ou do this using the right button menu in the protocol window. Call the new
protocol “instance creation”. Now define a method in the code view window called new. Follow the
exampleillustrated below exactly.

Asuper new initialize

Note you must make sure th at you include the return symbol “~”, otherwise you will get the class
Or gani zer returned in response to the message new, rather than the new instance you wanted. The
main purpose of this method isto make sure that the instance method i ni ti al i ze issent to the new
instance of an Organizer, before anything else happens. Thisis acommon use for redefining new, i.e.
doing something before anything else can get its hands on it. The System Full Browser (available with
the advanced toolkit) isillustrated in Figure 12.4. This figure presents the state of the system after the
class side method has been defined.

ﬁSystem Browser [_[O]x

Systern-Caode Stor | [Organiser 3 [instance creation | |- fnew
AT-Tools TestOrganiser

Tools-ObjectGrapk | [VisualOrganiser

Applications-CCP

Example Class) - instance * class

=

new

Asuper new initialize

Figure 12.4: Defining the class side new method

106

12.6 The private-updating protocol

Next we return to the instance side of the class (by selecting the instance radio button in the System
Browser) and define each of the methods in the private-accessing protocol. Remember you MUST move
back to the instance side of the class by selecting the instance radio button below the classlist. Notice
that the name of this protocol is comprised of two names “private” and “updating”. Thisis because, itis
not intended for use by users of this class. Rather it is used by the initialize method to set up an instance
of this class. The methods there are " private” to the object and are used for “updating” the state of the
object.

The addr essBook: method is an updater method for the addr essBook instance variable. It is
used to accept anew dictionary object to use for the addr essBook. It isintended only for use with
the instance creation method of the Or gani zer class.

addr essBook: abDictionary
addr essBook : = aDictionary

The appoi nt nent s: method isan updater method for the appoi nt ment s instance variable. It is
used to accept anew dictionary object to use for the appoi nt nent s. Itisintended only for use with
the instance creation method of the Or gani zer class.

appoi ntnents: abictionary
appoi ntnents : = aDictionary.

Finaly, thenot es: method givesthe not es instance variable a Bag to hold its contents.

notes: aBag
notes := aBag.

Figure 12.5 illustrates the state of the System Full Browser at the end of these steps.

E System Browser |_ O] %]

Systern-Code Stor [|Qrganiser A |private-updating |- [addressBaok: A
AT-Tools TestOrganiser

Tools-ObjectGrapk | |VisualOrganiser

Applications-CCP

initialize-release appointments:
Example Class |/ 4 instance . class

accessing notes:

addressBook: aDictionary
“This is an update method for the addressBook instance variable
It is used to accept a new dictionary object to use for the addressboaok.
It is intended only for use with the instance creation method of the
Organiser class.”

addressBook := aDictionary

Figure 12.5: The private-updating protocol

12.7 The accessing protocol

Now we will define the methods for the accessing protocol . First define the protocol then each of th e
following methods in turn. We will first define the instance variable accessors and then the Organizer
specific methods. As before, the accessor methods have the same name as the instance variables. We
will also define methods which are used to set the contents of instance variables.

TheaddNot e: method adds a new note to the not es instance variable.

addNot e: aNot e
not es add: aNote.

The newAddr ess: f or : method is used to add a new address to the address book. It isillustrated
in Figure 12.6.

107

E System Browser | _ (O] <]
Y

Systemn-Code Starag |- |Organiser private-updating A [addhate
AT-Tools TestOrganiser initialize-release addressBook
Tools-ObjectGraph YisualOrganiser accessing addressFor:
Applications-CCP appointmentFar:
Example Class appointments

Test support newAddress:far.
Organiser Class newAppointrent: for:

) 4 instance - class

=y

newhddress: anAddress for: aName
“This method is used to add & new address to the address book."

| alreadyThere |
alreadyThere := addressBook at: alame ifAbsent: [].
alreadyThere = nil,
ifTrue: [addressBook at: aMame put: anAddress)
ifFalze: [Transcript show: An entry with that key is already present’ printString]

Figure 12.6: The newAddress:.for: method

The method for adding a new appointment is essentially the same asthenewAddr ess: f or : method.

newAppoi nt nent: anAppoi ntment for: abDate
"This method is used to add a new appoi ntnent to the
appoi ntnents dictionary."

| alreadyThere |
al readyThere : = appointnents at: aDate ifAbsent: [].
al readyThere = nil
ifTrue: [appointnments at: aDate put: anAppoi ntnent]
i fFal se: [Transcript show
"An entry with key is already present']

The remaining accessor methods in this protocol are relatively straight forward, they are therefore
listed below with no additional commentary.

addr essBook
"This is an accessor nethod for the addressBook instance vari abl e"
~addr essBook

appoi ntment s)))
"This is an accessor nethod for the appointnments instance vari abl e"
Nappoi nt nent s

not es
"This is an accessor nethod for the notes instance variable"
~not es

Now we will define the methods used to access information within the instance variables. These are
Organizer specific operations. The addr essFor: method is used to retrieve an address from the
address book.

addr essFor: aNane
| anEntry |
anEntry : = addressBook at: aName ifAbsent: [nil].
~anEntry

The appoi nt ment sFor : method is used to retrieve an appointment from the appoi nt ment s
instance variable.

appoi nt nent For: aDate
| anEntry |
anEntry := appointnents at: aDate ifAbsent: [nil].
~anEntry

Finaly, the pri nt Not es method isusedt o display al the notes which have been made in the
Organizer.

pri nt Not es .
Transcript cr.
not es

108

do:
[:item]
Transcript show. itemprintString.
Transcript cr.]

Once you have defined all the methods, you are ready to use your Organize r. Figure 12.7 illustrates
how the Organizer might be used. For example, | have used the Workspace to create a new Organizer
and put some entriesin it. Try your Organizer out in asimilar way. Try extending it by addin g
additional functionality. For example, provide away of deleting an address or replacing it with a new
one.

EWulkspace | _ O]]
Wyelcome to E

VisualWorks® Release 2.5 of Sept 26, 1995
Copyright © 1995 ParcPlace-Digitalk, Inc. All Rights Reserved.

ternp |

ternp ;= Organiser new.

ternp newAddress: ‘Room 47" for: John'.
termp newbddress: ‘Room 46° for: Patrick’.
termp newbppointment: Meet with MEng' for: "10/08/96"
ternp addMote: 1 must do all my work'.
temp addiote: Today is a brand new day’
termp addressFor John'.

ternp appointmentFor 100396

temp printMotes.

temp inspect.

Figure 12.7: Using the Organizer classin a Workspace

12.8 The Financial Manager project

At certain points throughout the remainder of this book you will be asked to develop a small project.
This project will provide the basic functionality of the Financial Manager application.

The aim of the Financial Manager application isto keep arecord of deposits and withdrawals from a
current account. Associated with this, it should keep an up to date balance, as well as allow statements

to be printed.
Y ou should be able to:
1. Add depositsto the account for a specified amourt.
2. Make payments (withdrawals) from the account for specified accounts.
3. Get the current balance.
4. Get astatement of all payments and deposits made, in the order in which they happened. This

statement should be printed to the Tr anscri pt .

To do thisyou sho uld use a collection class to hold the statement in conjunction with a new class
subclassed off theclass Cbj ect , which will hold the current balance and handle deposits and

withdrawals.
Assuming the class you defineis called Fi nanci al Manager , then you should be able to run the

following Smalltalk:

| aFi nanci al Manager |

aFi nanci al Manager := Fi nanci al Manager new.

aFi nanci al Manager deposit: 25.00.

aFi nanci al Manager withdraw:. 12.00.

aFi nanci al Manager deposit: 10.00.

aFi nanci al Manager deposit: 5. 00.

aFi nanci al Manager wit hdraw:. 8. 00.

Transcript show ‘The current balance is ‘ ,
Fi nanci al Manager bal ance printString.

Transcript cr.

aFi nanci al Manager st atenent.

109

The result of evaluating this code should be:

The current balance is 20
St at enent :

deposit 25.00

wi t hdraw 12. 00

deposit 10.00

deposit 5.00

wi t hdraw 8. 00

110

13. Streamsand Files

13.1 Introduction

This chapter discusses the second most used class hierarchy in Smalltalk; the Stream classes. The
Stream classes are used (amongst other things) for accessing files . The remainder of the chapter is
structured in the following manner: Section two describes the Streams classes. Section three describes
how the stream classes can be used for file access. Section four describes an example of using files and
streams.

13.2 Streams

TJ0G Class Browser M=l E3
ExtemalReadStream [31
Randorn |———— RangedRandom EuﬁeredExtema\Slream {
ExtemaIStream ExternalWriteStream
Stream |Z

ExlEmaIDalahaseAnswerSlream/l, FositionableStream |< WmeSlrEam
\ InternalStream TextStream
PeekableStream EncodedStream ReadStream

ReadWr\teSlream

Figure 13.1: The structure of the Stream class hierarchy

Streams are the second most used set of classes. Streams are objects which serve as sources or sinks of
data. At first this concept can seem abit strange. The easiest way to think of streams are as streams of
data (as opposed to water) either flowing from a pool of data or into a pool of data.

There are a number of different types of stream in the Smalltalk system, and each can have a
surprisingly wide range of uses. Figure 13.1 illustrates the structure of the stream class hierarchy. The
Stream classis the root class of this hierarchy. Below this are stream classes for reading, writing, for
accessing external files etc.

A stream may be input only (ReadStream), output only (WriteStream) or input and output
(ReadWriteStream). They can beinternal streams (i.e. that act as a source or sink for datainterna to the
image) or external streams (i.e. the source or sink for the data is external to the current image. A fileisa
typical example of an external source or sink). Peekable streams also have an internal record of their
current position and can look ahead in the stream for information.

Streams have various access methods defined which allow the next item to be obtained or provided.
Some of the more useful methods include:

« next Answer the next object in the receiver stream and advance the position indicator by one.
« peek Answer the next object in the receiver stream, but do not advance the position indicator.
e nextPut: anCbj ect WriteanObj ect at the current position.

e nextPutAll: aColl ecti on Writeal elements of the collection to the receiver stream.
e at End Answer trueif the stream is at the end el se answer false.

Othersinclude next: anl nteger, peekFor: anQbject and ski pTo: anCbject.What
operations can be performed on Streams depends on the class of stream being used. Figure 13.1
illustrates the structure of the stream hierarchy.

Typically streams are connected to files (using one of the External Stream’ s subclasses) or to a
collection of data (using one of the Internal Stream’ s subclasses). |f a stream is connected to an

111

external device (including afile) then it essentially acts as an interface to that external device. It thus
allows messages to be sent to and received from an external device object enabling it to accomplish
various activities including input and output. If astream is connected to a collection (such as a string) it
can act as ameans for processing the contents of a collection. In both cases the stream views the source
(or sink) of the data as being able to provide (or receive) a dataitem on request.

13.3 ASCII files

13.3.1 Working with ASCII files

There are awide range of file handling facilities available within Smalltalk. Most are provided by one
of the subclasses of the class Filename and Stream . The Filename classis an abstract superclassin
which the basic framework for files is defined. Most of the work of this classis actually performed by
one of its (platform specific) subclasses. It isthiswhich is one of the facilities which alows you to
ensure that your code can run on any platform, even if you are accessing the host platform’s file system!
In the remainder of this section we shall look at some of the most common operations.

13.3.2 Creating, reading and writing a file

To create afile you must first have afilename to work with. A filename is created by sending the
message askilename to a string. This converts the string into an appropriate form for the host operating
system. Y ou now have a filename, however you need to link this file name with an actua file. To do
thisyou use aninstance of one of the streams classes (see earlier in chapter). This can be done by
sending the message writeStream, readStream or readWriteStreamto a filename (it israrely a good idea
to use the readWriteStream option. It isinvariably better to use either the readStream or writeStream
messages). In effect this links the resulting instance directly to the actual file. In the case of creating a
new file, it also creates the file for you when the first character iswritten to it. Y ou now have something
to which you can send ASCI| text.

Y ou may wish to check to seeif afile exists before attempting to open it (e.g. to be sure thereis
something to read from or to make sure you don’t overwrite an existing file). Y ou can do this with the
exists message. This message returnstrue if the fileis already present and falseif it does not exist.

To close the file once it has been opened there is a close message. This message closes the
associated file as well as the data stream to that file.

Try typing the following into the Workspace and evaluating it.

| enane stream |

| fi

filenane := '"tenp.txt' asFilenane.

(fileName exists)
i fTrue:
[Dialog warn: 'file ' , fileNane asString, ' already exists'.]
ifFalse: [

stream:= fileNane witeStream
stream nextPutAll: "Hello World'.
streamcl ose.].

Transcript show fileNanme fileSize printString.

This example creates afile called “temp.txt” in the current working directory, assuming that one
does not already exist. It then puts the string “Hello World” in that fileand closes thefile. It then prints
the size of the filein the system Transcript. For example, using VisuaWorks 2.5 on a Windows -95 PC,
this resultsin the value 11 being printed in the Transcript. If the code is evaluated a second time, it
resultsinadial og box (illustrated in Figure 13.2) being displayed which warns that the temp.txt file
already exists.

file temp.txt already exists

o |

Figure 13.2: Afile exists dialog

112

Noticethat in thisexamplewe used the message next Put Al | : to save the single string ‘ Hello
World'. Remember that strings are actually collections and what this says is save the whol e contents of
this collection to thefile.

An important point to note about filesis that it may sometimes be necessary to access afile whichis
in adifferent directory to the working directory. This can be a cause of problems when porting between
platforms unless careis taken. If you hard code the name of adirectory structure into your system then
you will need to modify the system code before it will work on a different platform. Thereisaway
around thisusing the const ruct : message. This constructs a path name which is appropriate for the
platform on which you are working. For example:

(("dcs' asFilenane construct: 'jjh')
construct: 'visual')
construct: 'exanples'.

Try typing the above into a Workspace and inspecting the result. The actual pathname you obtain will
depend on your host operating system. For example, on aWindows -95 PC you shou |ld see the style of
pathname illustrated in Figure 13.3.

FjFATFilename IB[=] E3
self = | ‘destjrvisuahexamples, [

oshame
publicMame

Figure 13.3: Inspecting a filename on a PC

Other messages which may be of useinclude:

e directory Return the directory containing the receiving file.
e isDirectory Checktoseeif afilenameisactualy adirectory.

It is also possible to obtain information on the date and time a file was modified, accessed or had its
status changed. To do thisfirst usethe message dat es (thisisanother aspect which can differ from
one Smalltalk implementation to another). Thisis sent to afilename, which returns a dictionary of
associations. Then the key #nodi f i ed will access the most recent modification, the key #accessed
will return the last access date and the key #st at usChanged will provide the date of the most recent
change in the files status (or privileges). For example Figure 13.4 illustrates checking when afile was
last accessed, modified and its status changed.

ﬁWnlk:pace |_ (O] x]
S

| aFilename fileDates |
aFilenarne = temp.tut' asFilenarme.
fileDates := aFilename dates.
Transcript cr.
Transcript show: Last access ',
(fileDates at: #accessed) printString
Transcript show: ' Last modified ', |
(fileDates at: #nodified) printString
Transcript show: ' Status changed ',
(fileDates at: #statusChanged) printString

[U e —

Figure 13.4: Accessing a files details

The result of evaluating the code in Figure 13.4 onthet enp. t xt file created earlier might look like:

Last access #(June 24, 1996 11:00:00 pn) Last nodified #(June 25, 1996 1:56:54 pm
St atus changed nil

113

Y ou can also copy, move and delete files, get the contents of directories and files as well as setting
file permissions and printing files all from within Smal Italk. The messages used for these functions are
al fairly intuitive and readily available in the Smalltalk documentation.

13.3.3 Handling file IO errors

Y ou should always wrap your file access code up in ablock and use the val ueNowOr OnUnwi ndDo:
message to evaluate it. Thisisaspecial version of value, which will execute the block passed to it asa
parameter if an exception israised, while the block it was sent to is executing. For example, if you try
and read to afile which does not exist, then an exception will be raised and your system will beleft in
an unstabl e state with streams still open. However, if you use the val ueNowOr OnUnwi ndDo:
message, then you can define what should happen if such an event occurs. For example, you could
specify that the stream should be closed. Thisis avery good way of ensuring that your file accesses are
handled tidily.

For example, consider the | oad: method defined below. This method accesses afile, reading each
line at atime. Once dl the lines in the file have been accessed it terminates.

| oad: filename
| newFi | e newLi neChar stream readi ngBl ock item student |
newrile : = fil ename val ue asFil enane.
newkil e exists
ifTrue:
[newLi neChar := Character cr.
stream : = newFil e readStream
contents := OrderedCol |l ecti on new. 250.
readi ngBl ock : =
[[stream at End]
whi | eFal se:
[item:= stream upTo: newLi neChar.
contents add: item]].
Cursor read showhil e:
[readi ngBl ock val ueNowOr OnUnwi ndDo:
[stream cl ose]]].
ifFalse: [Dialog warn: 'File does not exist!!"']

There are three things to note about this method from a Smalltalk point of view.

e Thefirstisthat we read in one line of the file at atime by telling the (read) stream that we wanted to
read up to a carriage return. To do thiswe send the upTo: message to the stream with the
newlLi neChar asthe parameter. Y ou can use thisto read in text up to any character in the input
stream.

« If thefile exists, ablock is created which co ntains the code which will read in the datain thefile.
Thisblock isassigned to avariable readi ngBl ock. Thisblock is evaluated by sending it the
val ueNowOr OnUnwi ndDo: message. Notice that if anything happens to raise an error during
these operations (e.g. the file system becomes full), the block passed as a parameter to the
val ueNowOr OnUnwi ndDo: message will be executed. In this case, it will close the stream (i.e. it
will close thefile). Thus, if anything goes wrong during the processing of thefile, thefilewill be
closed and the system left in a stable state. Indeed when the last statement has been executed in the
write block, the block passed as a parameter will be executed. Thus the stream will aso be closed.
Thisisavery good way of handling the process of closing the link to files.

e Theother point is that the whole of the read expression (i.e. r eadi ngBl ock
val ueNowOr OnUnwi ndDo: [stream cl ose])ispassedinablocktothe showwhi | e:
message. This message is part of the cursor protocol and is used to specify the type of cursor to be
displayed while a particular operation is being performed. In this case, the read cursor will be
displayed while the text file is being read in. This provides some visual feedback to the user.

13.4 The Binary Object Streaming Service

The Binary Object Streaming Service (or BOSS for short) isavery useful and effective way of storing
information in the form of objects (instances). If you were to save information to an ordinary text file,
then al you could save would be the ASCII version of the data held by the object. Y ou would then need

114

to reconstruct the data into objects when you read the text file. This would mean that you would have to
invent some way of indicating that certain data was associated withc ertain objects and that certain
objects were related (if you were dealing with a composite abject). All of thiswould be very time
consuming and error prone. It would also be very unlikely that the ASCII data written out by someone
else would be in the right format for your system.

The BOSSis provided by VisuaWorks as away around this. It allows objects to be directly stored
to afilein acompact and encoded form. Y ou do not need to convert the objects into anything special
nor do you need to worry abou t reconstructing the objects when you load them back in. In addition
everyone else who uses the BOSS will be able to read and write to your BOSS files. The action of
writing objectsto aBOSS fileis referred to by Smalltalkers as BOSSing out (or in) the objects.

13.4.1 Saving to BOSS

Itispossibleto “BOSS out” asingle object, a series of objects or awhole collection of objects. It isalso

possible to BOSS out a composite object. If an object references another object, then both the original

object and the objects which it contains are saved to the BOSS file. The BOSSfileis an incremental file

soitispossible to add objectsto aBOSS file at different times (i.e. in different executions of the same

image). It is also possible to read the BOSS file one objec t at atime (assuming the objects were written

incrementally). This means that you do not have to read the whole file to access the third object etc.
The procedure for creating a BOSSfileis relatively straight forward and is outlined below:

1. Create adat astream to writethe objectsto. Thisis usually awrite stream onto a specified
filename.

2. Create the BinaryObjectStorage system (BOSS) object. Thisis done using the instance creation
method onNew: with the data stream as the parameter.

3. Using the next Put : message save each object to the BOSS object. Each object you wish to
saveis passed as the parameter of the next Put : message.

4. Once you have finished BOSSing out the object you can closeit by sending it the message close.

If you want to save awhole co Ilection of objects to the BOSS file you can do so by using the
next Put Al | : message (instead of the next Put : message). Each object will be stored separately,
which allows each object to be retrieved separately at alater date.

If you wish to append an obje ct to an existing BOSS file then you create aread -append data stream
(rather than a write data stream), then create the BOSS file using the ond d: message (rather than the
onNew. message). Finally, you need to move the file pointer to the end of the BOSS file. Y ou can do
that by sending theset ToEnd message to the BOSS object.

A simple example of creating and saving to a BOSSfile is presented below. The bosFileName is set
to a string representing an appropriate file on the host computer system.

val uesFil eStream : = bosFil eNane asFil enane witeStream

bosFi | eStream : = Bi naryQbj ect St orage onNew. val uesFi | eStream
bosFi |l eStream next Put Al l : ali st.

val uesFi | eStream cl ose.

This example saves all the elementsin the variable aL ist to the bosFile indicated by the
bosFi | eNane. It then closes thefile.

A point to note isthat it can be agood idea to wrap the writing of objectsto the BOSS file with a
val ueNowOr OnUnwi ndDo: message. This message is used to ensure that the BOSS file you ar e
writing to is closed safely even if an abnormal interruption occurs. That is, the file will be closed and
freed up in an appropriate manner. The message is sent to a block in which you define the write
expression. It takes a second block asits argument, which executesif there is a problem or when the
first block terminates. For example, we could have written the write part of the above as:

[bosFil eStream next Put Al l : aList] val ueNowOr OnUnwi ndDo:
[val uesFil eStream cl ose] .

115

13.4.2 Reading from BOSS

Y ou can either load the whole contents of a BOSSfile, read individual objects from aBOSSfile (or if
you know the position of the object you are interested in) access a single object from any position in the
file. Thislast techniqueis much faster thanreading n - 1 objectsto get to the nth object, but it does
assume that you know that the object you are interested in is the nth object.

The procedure to follow is presented below.

1. First create adata stream to be used to read the BOSSfile. Thisistypically a chieved by send a
r eadSt r eammessage to afile name which representsthe name of the BOSSfile.

2. Now create a BOSS object by sending an ond d: creation message with the newly created data
stream as the parameter. Y ou can optimize this process if you knowt hat you are not going to
writeto the BOSSfile. To do thisyou canusethe ond dNoScan: message (rather than the
ond d: message).

3. Obtain the objects in the BOSS file using the appropriate access message (e.g. content s or
next).

4. Once you have finished reading from the boss file you should close it.

The next message listed in item 3 above will return a single object which can then be saved into an
appropriate collection / data structure etc. The cont ent s message will return an array of objects
which can then be manipulated in the same way as any other array of objects. For example:

| val uesFil eStream bosFil eStrean

val uesFi | eStream : = bosFi | eNane asFil enane readStream
bosFi |l eStream : = Bi naryQbj ect St orage onNew. val uesFil eStream
aBag : = Bag new.

[[bosFil eStream at End] whi | eFal se: [aBag add: bosFil eStream next]]
val ueNowOr OnUnwi ndDo: [val uesFi |l eStream cl ose].

This example illustrates two things, first it illustrates the equivalent of awhile not end of file (EOF)
style construct for BOSSfiles. Thiscons truct isthe at End message. This messageis used to test
whether the end of the BOSS file has been reached. It is therefore possible to useit in awhile loop
which says “read while not end of file". The other thing thisillustrates is the practical use of a
whi | eFal se: loop. Many other languages would force a construct such as not (fileName EOF) onto
the programmer. The whi | eFal se: construct isfar more elegant.

Finally, the posi ti on: messageis used to position the BOSS file pointer so that asingle objec t
can be read from a specific point in the BOSS file. However, arecord must have been maintained of
what the position is (note the third object stored is unlikely to have been stored at position 3). This
message could be used to create a file based versio n of a collection class. We shall ook at thisin more
detail in the next section and so will leave adetailed discussion of this message until then.

13.4.3 Warnings about BOSS files

Y ou should only use BOSS files to store data objects and never for interface objects. Thisis because the
objects you BOSS out will lose their reference to onscreen objects. Y ou should also avoid BOSSing out
any objects associated with the execution machinery of VisuaWorks. Finally, you should take care
never to BOSS out acircular references as this can confuse the BOSS system.

13.5 Using files with the Financial Manager

This application builds on that carried out in the last chapter. Theaim of that ~ Fi nanci al Manager
application was to keep arecord of depositsan d withdrawals from a current account. Associated with
this, it kept an up to date balance as well as allowing statements to be printed.

A problem with that version of the application was that there was no way of permanently storing the
account information. Assoon asthe Fi nanci al Manager object was destroyed (or referenceto it
lost) then all the information associated with it was also lost.

The aim of this exerciseis to extend the existing application by adding the following features:

116

1. Theability to savethe current statement to afile.
2. The ahility to load an existing statement from afile.

This means that you should provide two new interfaces to your application, one to load afile and one to
save afile. These fileswill contain aformatted version of the information held in the statement. The
format of the text file might be: <t ype of acti on> <anmount> new i ne. For example:

deposit 24.00
wi t hdraw 13. 00

Note you should try to use a BOSS file as this will make accessing the contents of the file much e asier.
Other points to note include:

» Check to see that the file exists before loading it.
» Defineasave: method which will save the current statement to the specified file.
« Defineal oad: method which will load a statement into the statement collection.

If you are successful then you should be able to evaluate the following in a Workspace and get the same
result from both Fi nanci al Manager objects.

| aFi nanci al Manager anot her Fi nanci al Manager |
aFi nanci al Manager := Fi nanci al Manager new.
aFi nanci al Manager deposit: 25.00.
aFi nanci al Manager withdraw:. 12.00.
aFi nanci al Manager withdraw 8. 00.
Transcript show 'The current balance is ' ,
aFi nanci al Manager bal ance printString.
Transcript cr.
aFi nanaci al Manager statenent.
aFi nanaci al Manager save: 'accountl'.

anot her Fi nanci al Manager : = Fi nanci al Manager new.
anot her Fi nanci al Manager |oad: 'accountl'.
Transcript show 'The current balance is ' ,
anot her Fi nanci al Manager bal ance printString.
Transcript cr.
anot her Fi nanci al Manager statenent.

13.6 Summary

In this chapter you have encountered streams and their use in file input and output. Many simple
Smalltalk applications never need to worry about file access, however, if you are ever going to do
something where information needs to be stored or shared between images, th en you are going to need
to interact with the host file system. Y ou have now seen the basic facilities available, the Binary Object
Streaming Service (BOSS) approach to storing and accessing information in filesis particularly useful.
Y ou should now spend some time exploring the stream and file facilities available in your Smalltalk
system.

117

14. The Magnitude Class Hierarchy

14.1 Introduction

This chapter considers the magnitude class and those classes which inherit from it. Thisincludes the
Nunber hierarchy. We also consider the classes Char act er, Ti ne, and Dat e.

14.2 The class Magnitude

The Magni t ude classisthe abstract super class of all classes which possess some concept of asize
and the comparison of objects of different size (see Figure 14.1). This meansthat all types of humbers
inherit (eventually) from Magni t ude, athough they arein fact all subclasses of another class
Nunber , which acts as the abstract superclass for all numbers. This abstract classinh erits al of itssize
related behavior from the Magni t ude class. Other classes which have some concept of size and thus
can be compared vialogical operators such as <, = and > include Ti e, Dat e and Char act er. The
subclasses of Magni t ude will be considere d later in this chapter, in this section we will concentrate
on the Magnitude class.

EDG Class Browser H= 3
Character
leedF‘olnt Smalllnteger
Time
F'mnt Fraction Largelnteger | LargeMegativelnteger |
Magnitude | Lookupkey | Z
MNurmnber Integer loat LargePositiveInteger
Arithmetichalue Q 4
LimitedPrecisionReal | Double |
Date
I~ | -

Figure 14.1: Thetop of the Magnitude class hierarchy

The Magni t ude class provides protocol for comparing objects whic h possess size and which can
use their size to rank themselves. The relationship of this size to their peersis class dependent and is not
defined by the Magnitude class. The comparing protocol in Magnitude defines the methods< and = :

e <. Theintentioni sthat this method will determine if the receiver isless than the argument
object. This method is a subclass responsibility. It is used by numerous other methods and is
defined here to indicate which methods should be redefined by subclasses.

e =.Thismeth od is another subclass responsibility. It is intended to determine equality between
the receiver and the argument object.

Other comparison methods defined include; <=, > and >=adll of which are definedintermsof <
and =. Theprotocol also definesmax: and min: messages used to return either the maximum or
minimum of two numbers respectively. For example:

10 max: 15.
10 min: 15.

Thefirst expression returns the result 15 and the second 10. Magnitude also provides a test method

which checksto seeif avalue is between two other values. For example:
10 between: 1 and: 9.

118

14.3 The class Date

Class Dat e, asubclassof Magni t ude, represents aparticular day, in aparticular month of a
particular year. A date object can be created in a number of ways . For example, it is possible to request
the date today and thus create a date object:

todaysDate : = Date today.

It isalso possible to create a date object for an explicit date, usingthe newbDay: nont h: year: .
For example:

birthDate := Date newDay: 23 nonth: #Sep year: 1964.

Note that only the first three letters of the month name are significant and that if the century is not
provided in the year parameter (e.g. if 64 had been passed in rather than 1964), then the current century
is used as a defaullt.

The Dat e class also alows date objects to be compared, added, subtracted etc. by virtue of its
inherited abilities from Magni t ude. For example:

(todaysDate < birthDate) ifTrue: [Transcript show 'Weird!'].
Transcript show (todaysDate subtractDate: birthDate) printString.

Thiswill calculate the difference between today’ s date and the 23rd of September 1964. The result
will be printed in terms of the difference in days. To convert thisinto (an approximate) number of years,
you can divide by 365. Thisignores leap years. For example:

Transcript show ((todaysDate subtractDate: birthDate) // 365).

Question: Why have | used // rather than / ? Answer, because / will return afraction if the number of
days cannot be divided exactly by 365, where as// will ignore any remainder.

There are also arange of other messages which are supported by the class Date. These messages
alow you to determine if the date object isin aleap year, which day of the year it is, which month the
date object isin, which year it is part of etc. Some examplesusingt odaysDat e are presented below:

t odaysDat e day.

t odaysDat e | eap.

t odaysDat e nont hNane.
t odaysDat e weekday.

t odaysDat e year.

Class Dat e also supports arange of messages itself. These messages provide additional behavio r
related to dates. For example, the Dat e classwill respond to messages requesting the number of days
in a particular month for a particular year:

Dat e daysl nMonth: #Feb forYear: 1997.

Another class method can be used to determineif agivenyearisal eap year or not. Thisisdone
using thel eapYear : messageto the Dat e class:

Date | eapYear: 1999.

14.4 The class Time

Theclass Ti e, provides asimilar set of features for objects which represent a specific instant of time

(to aparticular second) asthe class Dat e doesfor a specific calendar date. A new instance of the class
Ti me can be created using the instance creation message nowor by reading from a string. The string

can contain hours, minutes and seconds separated by colons (* 11:59:20'). It can aso contain an AM or
PM designation. For example:

currentTime := Time now.
previousTime := Time readFronBtring: '1:10:20 ani.

119

Just as with the class Dat e, these times can be compared, added and subtracted. For example:

(currentTine = previousTine) ifTrue:
[Transcript show 'Tine has stood still!'].
differentTime := currentTime subtractTime: previousTi ne.

However, the usefulness of the subt ract Ti me: message is somewhat limited. For example,
having evaluated this expression | obtained theresult 2:57:18 PM, when what | really wanted to know
was the difference in hours. In the case of time, | can obtain this by converting the time into seconds
and dividing by 3600 (the number of secondsin an hour). For example:

| currentTine previousTine differentTime |

currentTinme := Tinme now.
previousTine := Tinme readFronString: '1:00:20 ani.
differentTime := currentTi me asSeconds - previousTi me asSeconds.

differentTinme // 3600.

There are two class side messages which may be of general use. The firstis
m | i secondd ockVal ue. This message returns a value indicating the number of milliseconds
since the system clock was reset. It can be useful as a means for generating an unique name for a
temporary file etc. The uniqueness of such a filename can not be guaranteed as there is a vague chance
that a file with the same name may have been left around from an execution of the system prior to the
resetting of the system clock (athough the chances of atemporary file being created with a name
derived from the same millisecond clock reading are remote). For example:

Time mllisecondd ockVal ue.

The second class side messageisthe ni | | i secondsToRun: message. Thistakes ablock asa
parameter and generates a report on the time required to evaluate that block. This message is most often
used when determining the performance of various constructs. For example, in the last chapter it was
used to compare the do: loop withthe i nj ect : construct on two collection classes Bag and Ar r ay.
For example:

Time millisecondsToRun:
[1 to: 10000 do: [:i | Transcript show ' ' , i]].

On a Pentium 120 PC with 16 megabytes of memory thisresulted inavalueof 79056 seconds being
returned.

14.5 The class Character

Characters such as letters (e.g. A, b or Z) are objectsinthe ir own right in Smalltalk. When they are
written alone they are preceded by adollar sign. For example:

$A, $b, $Z

These objects can be combined together to form strings (which are actually collections of characters).
Asthe Char act er classinheritsfrom Magni t ude, you can compare charactersto determine if
oneis greater, less than or equal to another. For example:

Transcript show ($A < $a) printString.

In addition, Char act er adds another comparison method called sameAs: . This method ignores
case. Thusit is possible to evaluate the following and have true printed in the Transcript:

Transcript show ($A saneAs: $a) printString.
The Char act er class aso understands the differences between al phabetic characters, numeric

characters, vowels, uppercase and lowercase | etters etc. These are provided by methods in the testing
protocol, which include:

120

aChar acter isAl phabetic.
aCharacter isDigit.
aCharacter islLetter.
aCharact er isLowercase.
aCharacter isVowel.

It also provides some useful conversion methods, including:

aChar acter asUpper case.
aChar acter aslLowercase.
aChar acter aslnteger.

The first two messages would convert the contents of aChar act er either to an uppercase character or
alowercase character while the third message would return the ASCII code a letter or number.

Just liketheclasses Dat e and Ti ne, the Char act er class provides some useful class side
protocol. The methods provided on the class side provide access to non -a phanumeric characters. These
can be extremely useful w hen processing text (as wasillustrated in the example presented earlier in the
book). The facilities available allow you to obtain the character for carriage return, backspace, space,
new page and tab (amongst others). For example:

new i neChar := Character cr.
spaceChar := Character space.
tabChar := Character tab.

14.6 Further reading

The Object Reference manual supplied with your Smalltalk system will provide a detailed description
of al the classes described in this chapter. For a detailed description of t he Nunber hierarchy see
[Hopkins and Horan 1995].

121

15. SomeMore Toolsof the Trade

15.1 Introduction

In this chapter you are introduced to the use of breakpoints and user initiated exceptions. Breakpointsin
particular are extremely useful and you will find that you will make extensive use of them, not just for
debugging but aso to help you understand how objects are behaving. The use of the filein and file out
facilities for saving classes onto your host file system are also discussed. These are important as without
this ability you would loose any source code you developed when you started a new image. Finally the
use of the changes file and projects are discussed.

15.2 Errors and breakpoints

Asin most languages, it is possible to generate user specified errors (sometimes known as mishaps or
exceptions in other languages). This is achieved by sending the message er r or to an object. Errors are
usualy intended to force the user of the system (which may be another devel oper) to stop executing and
investigate the problem. A similar operation is provided by the hal t message. The only real difference
isthat the halt message isintended as a debugging aid, while the error message isintended for usein
undesired situations.

15.2.1 Programmer generated errors

Programmer generated errors are really exceptions, which are not handled by the system. These
exceptions are generated by the message er r or . For example:

self error

This message would result in an exception dia log being displayed. These dialogs alow the user a
number of options, however, you should notice that the “proceed” option is grayed out. Thisis because
proceeding is not an option if an error has been encountered.

If you wish, you can use aversion of t he error message which will take a string as a parameter. This
string is displayed to the user and can act to provide further information about the error. For example:

self error: 'This is not allowed!'.

Note that an error message isamessage just | ike any other. Y ou can therefore use it anywhere that you
would use a message expression, this means for example that you can conditionalize the call to error:

(x <0)
ifTrue: [self error: ‘Divide by zero conming'].
z:=y /| x

Have alook at the add: method defined within the Ar r ay class of objects for an example of an error
handling method. Y ou can do this by selecting the “find class’ option off the right mouse button (middle
on athree button mouse) in a browser.

15.2.2 Breakpoints
Breakpoints are often useful in determining what is realy happening inside the system. In Smalltalk,

breakpoints simply provide a controlled mechanism for entering the debugger at a known point in the
execution.

122

Breakpoints may be placed iname thod by usingthe hal t breakpoint method. This can be used
with or without arguments. For example;

self halt. or self halt: 'An exanple breakpoint'.

This form of the halt message is useful if more than one breakpoint exists within the system asit
allows the breakpoint to be identified. For example, the result of executing the above halt message
expressionisillustrated in Figure 15.1. Notice that, the dialog is actually entitled “Exception ”. Thisis
because both error messages and halts raise asignal which is caught by the exception handler. Notice,
that unlike the result of encountering an error message, the user can proceed after evaluating a halt

message.

EExceplion |_ O] %]

0 An example breakpoint

Debug | Proceed | Terminate |
Copy stack

UndefinedObject(Object)==halt:
UndefinedObject==unboundhethod
UndefinedObject{Object)==>performMiethod: arguments:
UndefinedObject{Object)==performMethod:
Compiler{Smalltalk Compil.. eiver: notifying: i ail:

Figure 15.1: An example breakpoint dialog

When a halt expression is encountered, the message halt is sent to the receiver. The corresponding
method isimplemented in Obj ect so al objects respond to it. This opensthe halt notifier from which
point you can proceed asif the halt had never been encountered, terminate or select the debug option if
you wish to analyze the state of the object when the breakpoint was encountered. If the debug optionis
selected then a debugger window is opened on the method currently executing.

Note that just like an error message, a halt message can be used anywhere that you would use any

other message expression. Y ou can therefore conditionalize the call to halt:
X <
(y)ifFaI se: [self halt].

15.3 File in/file outs

15.3.1 File out

Itispossibleto file out any group of definitions using the System Browser (or one of its derivatives).
That is, you can save to afile whole class categories, individual classes, whole method protocols or just
individual methods. By doing so you create afile on the host system’s file system, which contains a
plain ASCII definition of the appropriate class, method etc. To saveinformation to file, select the file
out option in the appropriate browser window.

This ASCI | file can be viewed in the same way as any other ASCI| file using one of the host
system’s editors/ viewers (e.g. EMACS, vi or more on a UNIX system). However, if you do this, you
will notice that some additional characters have been added (theseare“!” and used as delimiters) as
well as extra statements indicating that something is a class comment or a method protocol name etc.
Normally, you would not need to edit this file and indeed, unless you are sure of what you are doing,
you should not do so.

The purpose of creating “file outs’ can be to provide a permanent storage for your class definitions
etc. or to share those definitions with others. If you have created a definition which is particularly
important and which you do not want to lose at any cost, it is often agood ideato fileit. At least then, if
you have a catastrophic failure and have to create a whole new image on a new platform, you can still
reconstruct your important work.

Another reason for creating file outs, isthat they takeup alo t less space than the system image.
Therefore, if you have anumber of sets of definitions which you wish to retain, but not enough spaceto

123

maintain alarge number of images, then you can create file outs which will allow you to construct the
images you require, when you require them.

You can file out awhole class category, a class, a message protocol or asingle method. Thisis done
by selecting “ fileout” from the right mouse button menu (middle mouse button on a three button
mouse) in the appropriate w indow from the System Browser (or one of the other available browsers,
e.g. the excellent Full Browser).

15.3.2 Filein

T File List on c:\AAusers\JJHAWISUALACS 4104= st =] E3

cAAugersh UHWISUALMC SA10W. ot [T auto read

ciAuserst JHWISUALC S 0wz asebase. st A
cidAuserst JHWISUALC S W lass Comment. st
chBAuserstIHWISUALVC S410NDEFINER. ST
ciAALgerstWIHWISUALVC S410vdependancy. st
coAAuse s WIHWISUALC S 1D Example. st
Al serst JHWISUALC S4104ile-collection. st
chAAuserstIHWISUALVC S41O0V INARNCE. ST
chbAuserstIHWISUALC S ONGA 5T
ciaALserstIHWISUALVC S410Hot Draw. st

=

Object subclass: #yClass
instancevariableMames: ‘age '
classiariableMarmes: "
poolDictionaries: "
category: Example Class!
MyClass comment:
Thig class is intended ag an example of what a class looks
like, what method look like and how they are used.

To try out this class select the following and use the "do it"
option of the middle mouse button.

| termp |
temp ;= MyClass new.
temp initialize.

Transcript show: temp age printString. /

Figure 15.2: The File List tool

If at alater stage you wishto “filein " a“file out” file, you can do so using the file tool. Thistool is
accessible from the VisualWorks Launcher by clicking on the filing cabinet icon. This presents the user
with a (very) basic file editor.

To view files, type into the top pane of the file editor th e appropriate path (if required) for your host
system, followed by either a specific name or awild card.

Thelist of fileswill be displayed in the middle pane of the file tool. If you select any of these files,
their contents will be displayed in the bottom window. If the files are very large the system will ask you
whether you really want to see their contents or whether just information on the file (such asits size)
will do. Y ou would use the right (or middle) mouse button to file in one of thefiles. If you dofileitin,
then atrace of what is being loaded (and compiled) will be printed in the system Transcript window.
Oncetheload is completed, if it is successful you will be able to view it using the System Browser.
Note that if you have loaded in awhole class category, you will not be able to view it until you select
update in the category pane of any open browsers, or you open anew browser. Figure 15.2 illustrates
thefilelist tool being used to examinethe contents of afile called Example.st. Thisfile contains the
source of asimple example class.

If afileis selected and displayed in the bottom window, then you can edit that file and save the
changes you have made. Y ou can also select part (or al) of t he file and then use the “do it” or “print it”
options to execute that selected code. This can be avery useful feature.

Note that you can aso file in source code under programmatic control. To do this you need to send
themessagef i | el n to afile. For example:

‘exanpl e.st' asFilenane fileln.

124

If the file does not exist you will raise an exception “File not found”. Otherwise the result of filing in
the file will be printed in the System Transcript window.

15.4 Change list

15.4.1 The changes file

To understand the use of the changes list tool, you must first understand the significance of the changes
file. Thisisasystem provided filewhichhasa . cha extension (and is named after the image, for
example, if theimageisnamed Vi sual . i mthen the changesfile will be named Vi sual . cha). The
changesfileis always located in the same directory (folder) as the image file (and should never be
manually moved).

Thisfilelists al the changes which have been made to VisuaWorks for the current image. That is,
all the changes to existing classes and methods as well as all new classes and methods which have been
defined. It also records all the actions that have created objects and sent messages in the image. Thus as
you develop a system within an image, your changesfile grows - each time you make achangeitis
recorded.

In fact, if you manually move your changes file and then attempt to view the code you have written
you will find that VisualWorks says that it can’t find the changes file and wi |l have to disassemble your
code. Thisisan indication that VisualWorks uses the changes file to store the actual source of the
compiled byte encoded class and method definitions.

The main use of the changes file, however, isas arecovery aid. It allows asequence of changesto
be replayed. This may be done following a system crash, or following the accidental deletion of a class
or method. The result isthat, even if you did not save your work before a system crash, you can get
back to where you were by replaying the changesfile. Thisis done using the Change List tool.

15.4.2 Viewing and replaying the changes file

The Change List tool (illustrated in Figure 15.3) is used to view the contents of t he changesfile. Itis
made up of:

e ascrollablelist selection (referred to as the changes view),

* aset of selection boxes which allow the user to restrict the display of past changes (for examplein
Figure 15.3 the | ist has been restricted to references to the same class, inthiscasethe Myd ass
class.

« acode display areawhere the result of the change (if any) isdisplayed. In Figure 15.3 the result of
editing the age method is presented.

125

E book_cha [_[O] %]

define WyClass & | show file
comrment MyClass h 0
MyClass initialize {change) I show category
MyClass age: (change)
MyClass age (change)
MyClass name (change)
My Class name: (change) Z Cla‘ﬁ
MyClass age: (change) | yory
MyClass birthday (change) -l selector
MyClass birthday {change) 7| - same

I file
| type

age: anlnteger E
"This method sets age.”
age = anlnteger

Figure 15.3: The Change List tool

The changes presented inthe changes view often need to be filtered beforebeingre -run. For
example, if the list of changes includes the creation of windows or test objects, you probably don’t need
to redo those commands. If the system crashed in response to a message sent, you probably don’t want
to resend that message etc.

Once you have got alist of changes which reflect the set of operations you want to perform you can
replay them using one of the replay options from the right mouse button (middle on athree button
MOuse) menul.

15.5 Working with projects

15.5.1 Projects - what are they?

A project isaway of organizing your development environment. It allows the developer to manage a
number of different tasks at the same time within the sameimage. The way to think about thisis that if
what you see on the screen can be viewed as the VisualWorks desktop, then projects allow you to have
multiple desktops for different parts of your work.

Why isthis feature useful? Well consider that you are trying to draw a diagram on aflip chart. Then
you might see a blank page with a number of pens clipped to the side of it. Thiswould be fine for some
diagrams, however, if you need to draw a number of associated diagrams, then you would either need to
get alarger flip chart, or you would have to use more pages. Projects alow you to use multiple pages,
each page having its own VisualLauncher. When you switch between proj ects, the layout of the screen
will be restored to the state of the screen when you last |eft that project. If the project has just been
created, then you will see only the visual Launcher.

15.5.2 Creating a new project

By default, when you start the VisualWorks image you are in the root project. To create a new project
you select the Open Project option off the changes menu on the VisualLauncher. In response to this,
the system displays the window illustrated in Figure 15.4. This allows you to provide some notes about
the project in a scrollable text window (for example, what the project is about, things to do etc.). Thisis
agood idea asit acts as a project documentation tool. It is also agood ideato ch ange the window |abel
to something which indicates the purpose of the project. This can be done using the right mouse button
(on athree button mouse). This displays a menu with arelabel as.. option.

126

E Project =]

enter

| A sample project, B

Figure 15.4: Creating a project

To enter the project select the enter button on the window. To exit a project select the EXxit project
option from the Visual Launcher from within the project. Exiting the project in thisway will bring you
back up alevel and your desktop will be restored to the state it was in when you entered the project.

Y ou can delete a project by closing the project window. For example, if | wished to destroy the project
in Figure 15.4, then | would close that window using the Windows-95 close icon.

Root

Data
Management
1

ﬁ‘ﬁ

Database Sensor
interface interface

User Interface

Operations

Figure 15.5: Project hierarchy

Projects can be nested hierarchically to any depth (although it israrely useful to go beyond 2 or 3
levels). This meansthat the project structure illustrated in Figure 15.5 can easily be constructed. In this
structure, at the top level the developer seesthe User Interface project, the Data Management project
and the Operations project. When the user entersthe Data Management project, then they see the
Database Interface project and the Sensor Interface project.

This means that, when they are working on the user interface project, they do not see the windows
they have been us ing in any of the other projects. They can thus leave one of the other projectsin a
particular state and come back to it later.

15.5.3 Changes and projects

In addition to the changes file created for the wholeimag e, aproject hasitsown changes set. This
changes set is a summary of the changes which have been made to that project. This means that, unlike
the changes file, it does not include all changes to the system. Instead it lists those classes which have
been modified within the current project.

The changes set of a project can be accessed using the Inspect ChangeSet option from the changes
menu on the VisualLauncher. If you wish to save the changes made to a project, you can do it using the
fileout as.. option from the right mouse button menu (middle on athree button mouse) available from
the left hand window of this inspector. This can be a useful way of exchanging changes with other
developers.

15.5.4 Warnings about projects

There are two points you should note about projects. Thefirst it that they are only avisual aid to project
organization. That is, all the source code changes you make are global to the current image. Many
developers when they first encounter projects assume that changesin one project will be limited to that
project. They aren’t and this can be rather counter intuitive. Care should therefore be taken when
modifying classes in one project which may be used in another project. Secondly, as al changes are
actually made to the whole image, iti samistake to assume that when a project is deleted, its affects
will also be deleted.

127

15.6 Summary

In this chapter you have encountered a number of tools which you are likely to make agreat deal of use
of. At this point you should try some of them out and ge t familiar with what they do. None of the tools
isthat complicated and once you understand what they do and why, they can prove to be extremely
useful and make your life alot easier.

128

Part Three

Object Oriented Design

130

16. Object Oriented Analysisand Design

16.1 Introduction

This chapter provides an introduction to Object Oriented Analysis and Design. It will survey the most
significant methods to emerge since the late 1980's. This means that we will concentrate primarily on
OOA [Coad and Y ourdon 1991], Booch [B ooch 1991, 1994], OMT [Rumbaugh et al 1991], Objectory
[Jacobson 1992] and Fusion [Coleman et al 1994]. We will also introduce the Unified Modeling
Language (or UML) [Booch et al 1996; Booch and Rumbaugh 1995].

The aim in this chapter is not to be compreh ensive either with regard to the range of methods
available, nor with the fine details of each approach. Rather it isto provide an overview of the design
process, strengths and weaknesses of some of the important and reasonably representative methods.

In the remainder of this chapter we briefly introduce the Unified Modeling Language, Object
Oriented Design (OOD) and then summarize a number of OOD methods.

16.2 The Unified Modeling Language

The Unified Modeling Language (or UML asit isknown) is an attempt by Grady Booch, Ivar Jacobson
and James Rumbaugh to build on the experiences of the Booch, OMT and Objectory methods [Booch et
al 1996; Booch and Rumbaugh 1995]. Their aim isto produceasing le, common, and widely usable
modeling language for these methods and, working with other methodologists, for other methods as
well. This means that the UML focuses on a standard language and not a standard process. This
reflects what actually happensin reality: aparticular notation is adopted as the means of
communication on a specific project and between projects. However, between projects (and sometimes
within projects) different design methods are adopted as appropriate. For example, adesignmet hod
intended for the domain of real -time avionics systems may or may not be suitable for designing a small
payroll system. The result is that the UML is an attempt to develop a common metamodel (which
unifies semantics) from which a common notation can be built. We will discuss the UML in greater
detail in alater chapter.

16.3 Object oriented design methods

The object oriented design methods (OOD methods) we shall be considering are all architecture -driven,
incremental and iterative. That is, they do not adopt the more traditional waterfall software
development model adopting instead an approach which is more akin to the spiral model of Boehm
[Boehm 1988]. Thisreflects developers' experiences when creating object oriented system s - the object
oriented development process is more incremental than that for procedural systems with far less distinct
barriers between analysis, design and implementation. Indeed some organizations take this process to
the extreme and have adopted an Evolutionary Development approach. That isasystem whichis
developed around the concept of evolutionary delivery. This means that system functions are delivered
to usersin very small steps with project plans being revised in light of experience and user feed-back.
This has proved to be very successful for those organizations who have fully embraced this philosophy
and has led to much earlier business benefits and successful end -products from large devel opment
projects.

16.4 Object Oriented Analysis

We shall first consider the Object Oriented Analysis Approach (known as OOA) of Coad and Y ourdon
[Coad and Yourdon 1991]. Thisis because the identification of objects and classesisacrucia task in
OO0 analysis and de sign, however, many techniques ignore thisissue. For example, both the Booch
method and OMT do not deal with thisissue at all. They indicate that it is a highly creative process
which can be based on the identification of nouns and verbsin an informal verbal description of the
problem domain! A different approach is to use a method such as OOA as the first part of the design
process and then to use some other OOD method for the later parts of the process.

OOA isaimed at helping designers identify the requirements of their software in detail - rather than
how the software should be structured or implemented. It therefore aims to describe the existing
system, how it operates and how the software system should interact with it. One of the claims of OOA
isthat it helps the designer to package the requirements of the system in an appropriate manner (for
object oriented systems?) and helps to reduce the risk of the software failing to meet the customer’s
requirements. In effect, OOA helpsto build the Obj ect (systems) Model which we will look at in more
detail when we look at OMT.

There arefive activities within OOA. These act asthe framework used to direct the analyst during
the analysis process. They are:

1. Finding classes and objects. This activity aimsto identify the objects (and the classes of objects)
in the domain.

2. ldentifying structures (amongst those classes and objects). Here structures relate to relationships
such asisaaswell as part of.

3. ldentifying subjects. In essence subjects indicate related objects.

4. Defining attributes. These are the data elements of the objects.

5. Defining services. These are the active parts of objects and indicate what the object does.

These are not five steps (as steps implies a sequentia ordering to the acti vities). Instead, asinformation
becomes available, the analyst performs the appropriate activity. Theintention isthat the analyst can
work in whatever way the domain expert finds easiest for them to express their knowledge. Thusthe
analyst may drop down deeper into one activity than the others as the domain expert provides greater
information on that area. Equally, the analyst may jump around between activities identifying classes
one minute and services the next.

16.5 The Booch method

The Booch method (also known as just Booch and Object Oriented Devel opment or confusingly OOD)
isone of the earliest recognizable object oriented design methods. It was first described in a paper
published in 1986 [Booch 1986] but has becom e widely adopted since the publication of the book
describing the method [Booch 1991] and the more recent second edition [Booch 1994].

The Booch method provides a step by step guide to the design of an object oriented system.
Although Booch's books do dis cuss the analysis phase, they do so in too little detail, compared to the
design phase.

16.5.1 The steps in the Booch method

The major steps in the Booch method are the identification of objects and their classes, identification of
the semantics of classes and ob jects, identification of the relationships between classes and objects and
the implementation of the classes and objects. Each of these stepsis briefly outlined below:

Identification of classesand objects. Thisinvolves analyzing the problem domain an d the system
requirements to identify the set of classesrequired. Thisisnot trivial and relies on a suitable
reguirements analysis.

Identification of the semantics of classesand objects . This step involvesidentifying the services
offered by an objec t aswell asthose required of an object. A serviceis essentially afunction
performed by an object (it is therefore during this step that the overall system functionality is

132

devolved amongst the abjects). Thisisanother non -trivial step and may result in modifications
to the classes and objects identified in the last step.

Identification of the relationships between classes and objects . Thisstep involvesidentifying
links between objects as well as inheritance between classes. As this step may ident ify new
services required of objects, thereis usually an iteration between this step and the last step.

Implementation of classesand objects. This step attemptsto consider how the classes and objects
will be implemented, how attributes will be defined and services provided. Thiswill involve
consideration of algorithms etc. This process may lead to modificationsin the deliverables of all
of the above steps and may force the designer to return to some or al of the above steps.

During these steps cla ss diagrams, object diagrams, module diagrams, process diagrams, state
transition diagrams and timing diagrams are produced. The class diagrams illustrate the classesin the
system and their relationships. The object diagramsillustrate the actual object sin the system and their
relationships. Module diagrams, in turn, package the classes and objects into modul es (these modules
illustrate the influence Ada had on the devel opment of the Booch method [Booch 1987].) Process
diagrams perform asimilar funct ion for processes and processors. The state transition diagrams,
together with the timing diagrams, describe the dynamic behavior of the system (while the class, object
and other diagrams describe the static structure of the system).

It is notable that Bo och recommends an incremental and iterative development of a system through
the refinement of different yet consistent logical and physical views of that system.

16.5.2 Strengths and weaknesses

The biggest problem for a designer approaching the Booch method for t he first timeis that the plethora
of different notations are supported by a very poorly defined and loose process (although the revision to
the method described in [Booch 1994] addresses this to some extent). It lacks the step by step guidance
required. In particular it possesses very few mechanisms for determining the system’ s requirements.
Thusits main strengths are its (mainly graphical) notations which cover most aspects of the design of an
object oriented system, whilst its greatest weaknessisth elack of sufficient guidance in the generation
of these diagrams.

16.6 The Object Modeling Technique

The Object Modeling Technique [Rumbaugh et al 1991] is an OOD method which aimsto construct a
series of models which refine the system design, such that the final model is suitable for
implementation. The actual design processisdivided into 3 phases:

¢ the Analysis Phase which attempts to model the problem domain;
< the Design Phase which structures the results of the analysis phase in an appropriate manner;
« the Implementation Phase which takes into account target language constructs.

Each of these will be briefly described below.
16.6.1 The Analysis phase

Three types of model are produced by the Analysisp hase; these are the object model, the dynamic
model and the functional model.

The Object Model describes the objects in the domain, their class and the rel ationships between the
objects. For example, the obj ect model might represent the fact that a department object possesses a
single manager (object) but many employees (objects). The object model therefore represents the static
structure of the domain. The actual notation used is based on an extension of t he basic Entity -
Relationship (E-R) notation.

The Dynamic Model expresses what happensin the domain, when it occurs and what the effect is.
That is, the dynamic model expresses the behavior of the system (although it does not represent how the
behavior is achieved). The formalism used to express the dynamic model is based on avariation of
finite state machines called statecharts. These were developed by Harel [Harel et al 1987, Harel 1988]

133

for representing dynamic behavior in real -time avionic control systems. Essentially statecharts indicate
the states of the system, the transitions between states, their sequence and the events which cause the
state change.

The Functional Model describes how system functions are performed. To do thisit uses data flow
diagrams (DFD). Theseillustrate the sourcesand sinks of data as well as the data being exchanged.
They contain no sequencing information or control structures.

The relationshi p between these three models is important as each model adds to the designer's
understanding of the domain. Essentially the relationships are:

» The object model defines the objects which hold the state variables referenced in the dynamic
model and are the sources and sinks referenced in the functional model.

* Thedynamic model indicates when the behavior in the functional model occurs and what
triggered it.

* Thefunctiona model explains why an event transition leads from one state to another in the
dynamic model.

The construction of these modelsis not sequential, with changes to any one of the models having a
knock on effect in the other models. Typically, the designer will start with the object model, then
consider the dynamic and finally the functional, but the process s iterative.

The actual analysis processis described in considerable detail and is supported by step by step
guidance. Thisensures that the developer knows what to do at any time to advance the three models.

16.6.2 The Design phase

The Design phase of OMT builds upon the model s produced during the analysis phase by breaking them
down into subsystems and by identifying appropriate algorithms for methods. These two steps are
performed during the system design and object design steps.

e Thesyste m design breaks the system down into subsystems and determines the overall
architecture to be used.

* The object design decides on the algorithms to be used for the methods. The methods
themselves are identified by analyzing the three analysis models for each class etc.

Each of these steps possess some guidelines for their respective tasks, however, far less support is
provided for the designer than in the analysis phase. For example, systematic guidance for the
identification of subsystemsismissing. In stead the issues involved are discussed such as resource
management, batch versus interactive modes etc. This means that identifying where to start, how to
proceed and what to do next can be difficult.

16.6.3 The Implementation phase

The implementation phase rep resents the process of codifying the system and object designsinto the
target language. This phase does provide some very useful guidance on how to implement features used
in the model -based design process used, but is again lacking in the step by step g uidance which would
be so useful for those new to object orientation.

16.6.4 Strengths and weaknesses

OMTS greatest strength isthe level of step by step support which it provides during the analysis phase.

However it is much weaker in its guidance during thede sign and implementation phases providing
general guidance (and some heuristics).

16.7 The Objectory method

The Objectory method [Jacobson 1991] possesses three phases each of which produce a set of models.
Thethree phasesare: the Requirements phase, the Analysis phase and the Construction phase. The

134

driving force behind the whole of the Objectory method isthe concept of a usecase. A usecaseisa
particular interaction, between the systemand auser of that system, for a particular purpose (or
function). The users of the system may be human or machine and aretermed actors. A complete set of
use cases therefore describes a system’ s functionality based around what actors should be able to do
(with the system).

16.7.1 The Requirements phase

The Requirements phase uses a natural language description of what the system should do to build three
models: the Use case models, the Domain Object model and the User Interface descriptions.

The use-case model describes all the interactions between actors and the system. Each use case
specifies the actions which are performed and their sequence. Any alternatives are also documented.
This can be done in natural language or using state transitions diagrams.

The domain model describes the objects, classes and associations between objects in the domain. It
uses a modified E-R model.

The user interface descriptions contain mock ups of the various interfaces between actorsand the
system. User interfaces are represented as pictures of windows while other interfaces are described by
protocols.

16.7.2 The Analysis phase

The Analysis phase produces the analysis model and a set of subsystems. The analysis model is
essentially arefineme nt of the domain object model produced in the last phase. It also contains
behavioral information as well as control objects which are linked to use cases. Aswell as control
objects, the analysis model also possesses entity objects (which are objects wh ich exist beyond asingle
use case) and interface objects which handle system -actor interaction. The subsystem description aims
to partition the system around objects which are involved in similar activities and which are closely
coupled. Thisorganization is used to structure the remainder of the design process.

16.7.3 The Construction phase

The Construction phase refines the models produced in the analysis phase. For example inter object
communication isrefined aswell as consideration of facilities provided by the target language. Four
models are produced by this phase:

¢ Block models which represent the functional modules of the system.

< Block interfaces which specify the public operations performed by blocks.

« Block specifications are optional descriptionso f ablock behavior in the form of finite state
machines.

The final stage is then to implement the blocks in the target language.

16.7.4 Strengths and weaknesses

The most significant aspect of Objectory isits use of use-cases. These act as the cement which joins the
various building blocks of the whole method. As such Objectory is unique in the methods considered
here asit provides a unifying framework for the design process. However, it still lacks the step by step
support which would simplify the whole design process.

16.8 The Fusion method

The mgjority of OOD methods currently available, including those described in this chapter, possess
some form of systematic approach to the design process. However, in ailmost all cases this processis
rather weak, providing i nsufficient direction or support to the developer. In addition methods such as
OMT rely on a*“bottom up” approach. This means that the developer must focus on the identification

135

of appropriate classes and their interfaces without necessarily having thei nformation to enable them to
do thisin an appropriate manner for the overall system. For example, little reference is made to the
system’s overall functionality when determining class functionality etc. Indeed, some methods provide
little more than some vague guidelines and anecdotal heuristics.

In contrast, fusion explicitly attempts to provide a systematic approach to object -oriented software
development. In many ways the fusion method is a mixture of arange of other approaches (indeed the
authors of the method acknowledge that thereis little that is new in the approach other than the fact that
they have put it all together in a single method, for example see Figure 16.1).

&

Formal Methods Requirements
Analysis

Figure 16.1: Some of the influences on Fusion

Aswith other OOD methods, fusion is based around the construction of appropriate models that
capture different elements of the system aswe |l as different knowledge. These models are built up
during three distinct phases. The analysis phase, the design phase and the implementation phase:

e Theanalysis phase produces analysis models which provide a description of the high level
constraints from which the design models are developed.

» The design phase produces a set of models that describe how the system behavesin terms of a
collection of interacting objects.

« Theimplementation phase describes how to map the design models onto implementation
language constructs.

Within each phase a set of detailed steps attempts to guide the developer through the fusion process.
These steps include checks to ensure the consistency and completeness of the emerging design. In
addition the output of one step acts as the input for the next.

Fusion's greatest weakness is its complexity - it really requires the use of a sophisticated CASE tool.
Without such atool it is amost impossible to produce a consistent and complete design.

16.9 Summary

In this chapter we have reviewed a number of OO analysis and design methods as well as the Unified
Modeling Language. We have briefly considered what each offers aswell astheir strengths and
weaknesses. It should be noted that a problem encountered with all these systemsisth at during the
design processit is often difficult to identify commonalities between classes at the implementation

level. Thismeans that during any implementation phase, experienced OO technicians should be looking
for situations in which they can move i mplementation level components up in any class hierarchy. This
can greatly increase the amount of reuse within a software system. This may then lead to the
introduction of new abstract classes whose role is to contain the common code. The problem witht his
isthat the implemented class hierarchy no longer reflects the design class hierarchy. It istherefore
necessary to have afree flow of information from the implementation phase to the design phase and
vice versain an object oriented project.

136

17. The Unified Modeling L anguage

17.1 Introduction

The Unified Modeling Language (or UML for short) is part of a development being carried out to
merge the concepts in the Booch, Objectory and OMT methods [Booch and Rumbaugh 1995, Booch et
al 1996]. This effort has bee n termed the unification or the Unified Method. The method is still under
development (and has taken a much lower profile recently) however the notation underlying this method
is nearing completion. This notation has now become the focus of Booch, Rumbaugh and Jacobsons
current work and isreceiving a great deal of interest. For example, Microsoft Corporation, Hewlett
Packard, Oracle, Texas Instruments have all endorsed the UML.

The UML isathird generation object -oriented modeling language [Rational 1996] which adapts and
extends the published notations used in the works of Booch, Rumbaugh and Jacobson [Booch 1994,
Rumbaugh et al 1991, Jacobson et al 1992] as well as being influenced by many others (such as Fusion
[Coleman et al 1994], Harel’s statecharts [Harel et al 1987; Harel 1988] and CORBA [Ben -Natan
1995], see Figure 17.1). It isintended that the UML will form a single, common, widely usable
modeling language for arange of object oriented design methods (includ ~ ing Booch, Objectory and
OMT). It isalso intended that it should be applicable in awide range of applications and domains.
Therefore it should be equally applicableto client -server applications asitistoreal -time control
applications.

Corba OLE/

COM
‘ Java Applets

Figure 17.1: Theinfluences on the UML notation

Part of the justifications for thisis that different organizations, applications and domains require
(and use) different design methods. In many cases organizations have devel oped their own methods or
have modified other methods through experience. In some cases different parts of the same
organizations may use different methods. The result is that the notation used acts as alanguage in which
ideas represented in part (or all) of the design are expressed and communicated. For example, the
production of shrink wrapped, off the shelf software, is different from the creation of one off bespoke
software. However both activities may be carried out by a software company. Such an organization may
well wish to exchange ideas, designs or parts of designs amongst its various departments or operational
units. Thiskind of exchange relies on the availability of acommon language - UML provides such a
language.

At present the UML isin draft form [Booch et al 1996], however it is being presented to the OMG
(Object Management Group) in the hope that it will be accepted as a standard (thisis an on going
process and is part of the OMG’s call for information on obje ct-oriented methods). For the latest
information on the UM L (as WeII as any other devel opments on the unification front) see the Rational

This chapter provides a brief mtroductl on to the UM L but 0 mitsmany of the details. For further
information on the UML please see version 1.0 of the UML documentation set. Thereis also a series of
books on the UML including a Reference Manual, a User Guide as well as a process book (which at the
time of writing were still in the pipe line) that should be referenced for more information.

137

http://www.rational.com

In the remainder of this chapter we consider how the UML can represent the class, objects,
relationships and attributes in an object oriented system. The next chapter considers sequence and
collaboration diagrams, Sate diagrams and deployment diagrams.

17.2 The UML Infrastructure

The UML is built upon a common metamodel which defines the semantics of the language. On top of
thisis a common notation which interprets these semanticsin an easily (human) comprehensible
manner. Each of theseis discussed below.

17.2.1 The Metamodel

A metamodel describes the constituents of a model and its relationships. That is, it isamodel (inits
own right) which documents how another model can be defined. S uch models are important because
they provide a single, common and unambiguous statement of the syntax and semantics of amodel. It
thus allows CASE tool builders to do more than provide diagramming tools. In fact the metamodel
serves several purposesincluding:

» Defining the syntax and describing the semantics of the UML’ s concepts.
* Providing a (reasonably) formal basis for the UML.

* Providing adescription of the elements of the UML.

« Providing the basis for the interchange of models between vendors' tools.

In the normal course of events a user of the UML (or indeed of atool which supports the UML) need
never know anything about the metamodel. It should be, and is, hidden from sight. However, for the
developers of the UML and for tool vendorsin general itisavaluable, indeed essential, feature.

At present the UML metamode is defined in terms of the UML and textual annotations (although
this may appear infinitely recursive, it is possible). Work on the metamodel is still progressing with the
authors of the UML attempting to make it more formal and simpler.

17.2.2 The UML models
The UML defines a number of models and the notations to be used with these models. They are:

Use case diagrams. These diagrams are based on the use case diagrams of Objectory and organiz e
the use cases that encompass a system’ s behavior.

Class diagrams. These are derived form the Booch and OMT methods and express the static
structure of the system. For examplethe part of and isa relationships between classes and
objects. Note that the ¢ lass diagrams also encompass the object diagrams. Therefore, in this
book, we will refer to them as the object model following the name used in OMT.

State machine diagrams . These, like thosein OMT, are based on statecharts. They capture the
dynamic behavior of the system.

Sequence diagrams. Sequence diagrams (formerly known as message-trace diagramsin version 0.8
of the Unified method draft) deal with the time ordered sequence of transactions between
objects.

Collaboration diagrams. Collaboration diagrams (previously known as Object -message diagrams)
indicate the order of messages between specified objects. They are complementary to sequence
diagrams as they both illustrate the same information. The difference is that the sequence
diagrams hi -light the act ual sequence, while the collaboration diagrams hi -light the structure
required to support the message sequences.

Component diagrams. In version 0.8 of the Unified Method draft these diagrams were called
module diagrams. These diagrams represent the develop ment view of the system or how the
system should be developed into software modules. They can also be used to represent concepts
such as dynamic libraries.

138

Deployment diagrams. Deployment diagrams (previously known as platform diagrams). Asthis
model attempts to capture the topology of the system onceit is deployed, it reflects the physical
topology upon which the software system isto execute.

17.3 Use case diagrams

Use case diagrams explain how a system (or subsystem) will be used. The elements which interac t with
the system can be humans, other computers or dumb devices which process or produce data. The
diagrams thus present a collection of use cases which illustrate what the system is expected to do, in
terms of its external servicesor interfaces. Suchdi agrams are very important for illustrating overall
system functionality (to both technical and non -technical personnel). In addition they can act as the
context within which the rest of the system is defined.

Case based retrieval system

Load casebase <<actor>>

Telephonist

\
\
N
\

N
Delete case \

Search
casebase

4
I

<<actor>>
Service
Engineer

Save casebase

{04

\
A\

I
I
\
Add case

Figure 17.2: Case-based retrieval system Use Case example

Thelarge rectanglein Figure 17.2, indicates the system’ s boundaries. The rectangles on either side
of the system indicate external ac tors which interact with the system. In this case the Service Engineer
and the Telephonist (this assumes a system being used as a telephone help desk adviser).

The actual notation used for actors is based on what are called stereotypes (stereotypes are discussed
in more detail later in this chapter). Actors are in fact classes with stereotypes. The <<actor>> indicates
the actor stereotype and the stick figure is the actor stereotype icon. Although we have used the class
icon (abox) aswell asthe stereotyp eicon (the stick man) we could have used only one of them if we
had so wished.

The ovalsinside the system box in Figure 17.2 indicate the actual use cases themselves. For
example, both the actors will wish to be able to “load a casebase’. Each individual use case can have a
name, have a description explaining what it does aswell asalist of itsresponsibilities, attributes and
operations. They may also describe their behavior in the form of a state chart. The most ap propriate
form of description for a use case will differ from one domain to another and thus the format should be
chosen as appropriate. Thisillustrates the flexibility of the UML asit does not prescribe the actual
format of a use case.

It isalso possib le to use sequence diagrams and collaboration diagrams with use case diagramsto
illustrate the sequence of interactions between the system and the actors. Use cases should also be
annotated with a statement of purpose to place the use case itself in some overall context.

Finally, the relationship between use case diagrams and class diagrams is that use cases are peers of
classes. Depending on the size of the system, they can be grouped with the object model in a package or
remain totally independent.

17.4 The object model

Thisisredly the key element of a UML model. The constituent diagrams illustrate the static structure
of asystem viathe important classes and objects in the system and how they relate to each other. The
UML documentation currently talks abo ut class diagrams (and within this about object diagrams)
stating that “ class diagrams show generic descriptions of possible systems and object diagrams show
particular instantiations of systems and their behavior”. They go on to state that class diagrams contain

139

classes, while object diagrams contain objects, but that it is possible to mix the two. However, they
discuss both under the title class diagrams. Therefore, to avoid confusion, we adopt the term Object
Model to cover both sets of diagrams (followi ng the approach adopted in both the Booch and OMT
methods).

17.4.1 Classes and objects

A classisdrawn as a solid -outline rectangle with three components. The class name (in bold type) isin
the top part, alist of attributes (with optional typesand initial val ues) in the middle part and alist of
operations (with argument types and return values) in the bottom part. Figure 17.3illustrates two
classes, one for aclass Car and one for aclass File. The Car class possesses thr ee attributes called
name, age and fuel. Their types are string, integer and string respectively. The class also possesses four
operations start(), lock() and brake(), plus accel erate which takes a single parameter “to” which isan
integer and represents the new speed.

Car File
name: string fileName: string
age: integer size: integer
fuel: string lastUpdate: string
start() print()
lock()
accelerate(to:integer)
brake()

Figure 17.3: Class with attributes and operations

An attribute has a name and a type specified in the format name: type = initial Value. The name and
type are strings tha t are ultimately language dependent. The initial valueis a string representing an
expression in the target language. Operations have a name and may take one or more parameters and
return avalue. The format of an operationis name (parameter : type = defa ultValue, ...): resultType.
The operation’ s constituent parts are strings that are language dependent.

The attribute and operation compartments can be hidden from view to reduce the detail shownin a
diagram. Omitting a compartment says nothing about that part of the class definition. However, leaving
a compartment blank implies that there are no definitions for that part of the class. Additional language
dependent and user -defined information can also be included in each compartment in atextual format.
The intention of such additionsisto clarify any element of the design in a similar manner to a comment
in source code.

The class stereotype can be shown as a normal -font text string in between << >> centered above the
classname (see Figure 17.4). A stereotype tellsthe reader what “kind” of classit is. Examples of
stereotypes are exceptions, controllers, interfaces etc. However, UML makes no assumptions about the
range of stereotypes which exist and the designer is therefore free to develop their own. Other (language
specific) class properties can also be indicated in the class name compartment. For examplein Figure
17.4 the Window classis an abstract class, thus the label abstract is printed below (and to the left) of the
class name.

140

<<user interface>>
Window Key
abstract| | $ Class responsibility
+ Public
Protected
- Private

+size : Area = (10,10)
#visible : Boolean = false
+$defaultSize : Rectangle
#$maxSize : Rectangle
-grid : GraphicsContext

+display() {abstract}
+hide()

+$new()
-displayOn(grid)

Figure 17.4: Class with additional annotations

Attributes and operations can also have their intended scope indicated inthe ¢ lass definition. This can
be useful even for languages such as Smalltalk which do not support concepts such as Public, Private
and Protected attributes and operations. The absence of any symbol at all in front of an attribute or
operation indicates that th e element is a public instance attribute or operation for that class. The
significance of this depends on the language. The range of symbols currently supported isindicated in
Figure 17.4 and combinations of symbols can be used to indicate (for example) that a method is a class
side public method (such as +$new() - a class side operation intended for instance creation).

repMobilel : Car

name = XK8
age=1
fuel = petrol

Figure 17.5: An object (structured cloud)

An object is drawn as a hexagon with straight sides and a slight peak at the top and bottom (as
illustrated in Figure 17.5). For those familiar with the Booch clouds this can be thought of asa
structured cloud otherwise just accept that this is the object symbol *°. The object symbol can be divided
into two sections. The top section indicates the name of the object and its class in the format
objectName : className. For example, in Figure 17.5 the object is repMobilel and the classis Car (see
Figure 17.3 for the definition of the class Car). The object name is optional athough the class nameis
compulsory. The lower compartment contain salist of attributes and their valuesintheformat name
type = value (athough thetypeis usually omitted). For examplein Figure 17.5 the three attributes
defined in Figure 17.3 for a Car have the values XK 8, 1 and petrol. The bottom compartment can be
suppressed for clarity. It is also possible to indicate how many objects of a particular class are
anticipated. Thisis done by indicating the maximum value, range etc. inthetop compartment. The lack
of any number indicates that a single object is intended.

17.4.2 Associations

Relationships between classes and objects are represented by associations drawn as a solid line between
classes or objects (for example see Figure 17.6). An association between classes may have a name with
an optional small “direction arrow head” (which is drawn as an arrow head on the association) showing

which way it isto be read. For examplein Figure 17.6 therelationship is called hasEngineand is read
from the class Car to the class Engine. In addition each end of an association isa role. Roles may have
anameillustrating how its classis viewed by the other class. In Figure 17.6 the engine sees the car as

being a name and the car sees the engine as being of a specified type (e.g. Petrol, Diesel, Electric etc.).

* Note that as of September 1996, the 0.91 addendum to the UML statestha t objects are now drawn as rectangles with the
object name and its class name (separated by a colon) underlined. Thisisamajor notational change which the authors of the
UML wish to make so that they do not have to invent different symbols every time the y have atype (or class) - instance
relationship. However this means that the distinction between objects and classes in diagramsis minimal and can easily lead to
confusion. In an attempt to make objects clearly distinguishablein this, and subsequent cha pters, we shall continue to use the
structured cloud symbol for objects.

141

hasEngine

Car name v Engine

Golf : Car Petrol : Engine

Figure 17.6: Association between classes/ link between objects

Eachrole (i.e. each end of the association) indicates the multiplicity of its class (i.e. how many
instances of the class can be associated with one instance of the other class). Thisisindicated by atext
expression on the role. The expression can either be a* (indicating zero or more), a number (e.g. 1), a
range (e.g. 0..3) or nothing (indicating exactly 1). These expressions areillustrated in Figure 17.7. It is
also possible to specify that the multiple objects should be ordered using the text { Ordered} . It isalso
possible to annotate the association with additional text (such as{ Sorted}) but thisis primarily for the
readers benefit and has no semantic meaning in UML.

In some situations it is sensible for associations to have attributes of their own. In these situations
associations need to be treated as a class. Such asituation isillustrated in Figure 17.8. These
associations have a dashed line from the association line to the association class. Thisclassisjust like
any other class and can have a name, attributes and operations.

Wheels 1
1.%
Wheels 1 or more
0.1
Wheels Zeroor 1
*
Wheels Zero or more
3.%
Wheels Specifies ordering
{Ordered}

Figure 17.7: Types of association annotations

In Figure 17.8 the associations possess an access permissions attribute which indicates the type of
access allowed for each user for each file.

AuthorizedFor *
File ‘ User
|
|
|
1
Authorization
Access Permissions
letc/termcap (read) Pheobe
lusr/home/pah/.login (read/write) Pheobe

Figure 17.8: Associations with attributes

Aggregation represents part-whole relationships. That is, it indicates that one or more objects are
dependent on another object for their existence. For example, in Figure 17.9 the Micro Computer is
formed from the Monitor, the System box, the Mouse and the Keyboard. All of these objects together
are needed for the fully functioning Computer. Aggregation is actually represented as an empty
diamond on the role attached to the whole object.

142

Micro
Computer

| |

‘ Monitor ‘ ‘ System ‘ ‘ Mouse ‘ ‘Keyboard‘
Box

Figure 17.9: Aggregation tree notation

A qualified association is an association which requires both the object and the qualifier to uniquely
identify the object involved in the association. It is represented as a box between the association and the
class. For example, in Figure 17.10, it is necessary to use the catalog and the part number to identify a
unique part. Note that the qualifier is part of the association, not the class.

Catalog

partNumber

Part

Figure 17.10: Qualified associations

Ternary (or indeed higher order) associations are drawn as diamonds with onelinep ath to each of
the participating classes (for example see Figure 17.11). Thisisactually the traditional entity -
relationship model symbol for an association (the diamond is omitted from the binary form to save

space). Ternary associations are very rare and higher order associations are almost none existent.
However, the facility to model them is available.

Project Language

Pheobe : Person

Figure 17.11: Ternary Associations

CAD : Project Java : Language

It issometimes useful to differentiate between by -value references and by -reference ones. Thisis
done using the aggregation symbol. If the aggregation symbol is hollow, it indicates a by -reference
implementation (i.e. a pointer or other reference); if the aggre gation symbol isfilled, it indicatesaby -
value implementation, i.e. a class that is embedded within another class (see Figure 17.12).

- i 3.
Polvgon o)y
{ordered}

1

GraphicsBundle

colour
texture
density

Figure 17.12: Implementation adornment

Inheritance of one class by a subclassisindicated by a solid line drawn from the subclass to the
superclass with alarge (unfilled) triangular arrowhead on the superclassend (see Figure 17.13). For

143

compactness a tree structure can be used to show multiple subclasses inheriting from asingle
superclass.

Animal

1

Mammals

/\

Humans

| |

Figure 17.13: Inheritance : specialization - generalization

Multiple inheritance can also be modeled as languages such as CL OS (the Common Lisp Object
System) and C++ support it. Thisis done by drawing multiple inheritance lines from a single subclass to
two or more super classesasin Figure 17.14. Inthisfiguretheclass Motor powered water vehicle
inherits from both Motor powered and Water vehicle.

Water Vehicle

Motor Powered
Water Vehicle

Motor Boat

Figure 17.14: Multiple Inheritance

Derived values can be repr esented by adlash (*/") in front of the name of the derived attribute. Such
an attribute requires an additional textual constraint defining how it is generated (asin Figure 17.15).
Thisisindicated by atextual annotation below the class between curly ({}) brackets.

Person
birthdate
/age

{age = currentDate - birthdate}

Figure 17.15: Derived values

144

connectedTo

Traffic Light Central Control

* * *
1 1 \’* 1 1
Lamp Controller - Computer
* coordinatedBy
1]
*
*
Weight
Sensor *

A class may define a pattern of objects and links that are part of it and that exist whenever the class
isinstantiated. Such aclassis called acomposite. It is a class that contains an object diagram. It may be
thought of as an extended form of aggre gation where the relationships among the parts are valid only
within the composite. A compositeisakid of pattern or macro that represents a conceptual clustering
for agiven purpose. Composition is shown by drawing a class box around its embedded components (as
illustrated in Figure 17.16) which are prototypical objects and links. That is, a composite defines a
context in which references to classes and associations, defined el sewhere, can be used.

Figure 17.16: Example composites

17.5 Packages

Packages are used to group associated modeling elements such as classes in the object model (or
subsystems in component diagrams). They are drawn as tabbed folders asillustrated in Figure 17.17.

Figure 17.17 actually illustrates four packages called clients, Business model, Persistent store, Bank
and Network. In this particular diagram the contents of Clients, Persistent Siore, Bank and Network have
been suppressed (by convention these packag es have their names placed in their body) with only
Business Model being shown in detail (with its name in the top tab). This package possesses two classes
Customer and Account as well as a nested package Bank. The dashed lines between the packages
illustrate dependencies between packages. For example, the package Clients directly depends on the
packages Business Model and Network (this actually means that at least one element in the package
Clientsrelies on at least one element in the other two packages).

Clients

T
|

|

: Business Model

|

|

| Customer
|

|

|

|

|

|

|

|

|

Network - Persistent Store

Figure 17.17: Packages with Dependencies

Classes may belong to exactly one package but references may be made to classes in other packages.
Such references have the package name foll owed by the class name (separated by two colons), for
example: Business Model :: Customer.

145

Packages allow models to be structured hierarchically, they therefore act to organize the model and
control its overall complexity. Indeed packages may beusedtoe nable top down design of a system
(rather than the bottom up design typical of many OOD methods) by allowing designers to specify high
level system functionality in terms of packages which are “filled out” when and as appropriate.

146

18. UML: Dynamic Modeling And Deployment

18.1 Introduction

The basic class and association notations of the object model in the Unified Modeling Language (or
UML for short) were presented in the last chapter. This chapter presentsthe sequence, collaboration
diagrams and state diagrams as part of the dynamic modeling facilitiesin the UML. We then consider
deployment diagrams.

18.2 Dynamic modeling facilities

18.2.1 Sequence diagrams

A scenario shows a particular series of interactions among objectsinas ingle execution of a system.
That is, it isahistory of how the system behaved from one start state to a single termination state. This
differsfrom an envisionment which is adescription of all system behaviors from all start statesto all
end states. En visionments thus contain all possible histories (although they may also contain paths
which the system is never intended to take).

Scenarios can be presented in two different ways: Sequence Diagrams and Collaboration Diagrams
Both these diagrams presentt he same information athough they stress different aspects of this
information. For example, sequence diagrams stress the timing aspects of the interactions amongst the
objects, where as the collaboration diagrams stress the structure between these objects (which helpsin
understanding the requirements of the underlying software structure).

Figure 18.1illustrates the basic structure of a sequence diagram. The objectsinvolved in the
exchange of messages are represented as vertical lines (which are labeled with the object’ s name). For
example, Caller, Phone Line and Callee are al objects involved in the scenario of dialing 999 (the
Emergency services number in the UK). Time proceeds vertically down the diagram, asindic ated by
the dashed line arrow. The horizontal arrows indicate an event or message sent from one object to
another. The arrow indicates the direction in which the event or message is sent. That is, the receiver is
indicated by the head of the arrow. Normall y return values are not shown on these diagrams. However,
if they are significant, they can beillustrated by return events annotated with the type of value returned
etc.

Time proceeds vertically and can be made more explicit by additional timing marks. T hesetiming
marks indicate how long the gap between messages should be or how long a message or event should
take to get from the sender to the receiver.

147

Caller Phone Line Callee

caller lifts receiver),
dial tone begins
dial(9) »

dial tone ends

time

dial (9)
dial (9)
¢inging tone phone rings >

v @nswer phone
tone stops ringing stops »

Figure 18.1: A sequence diagram

A variation of the basic sequence diagram (called afocus -of-control diagram) illustrates which
object has the thread of control at any one time. Thisis shown by afatter line during the period when
the object has control (asillustrated in Figure 18.2). Note how the bar representing the object C only
startswhen it is created and terminates when it is destroyed.

i B C
i 4to_>l
:
v‘i I

Figure 18.2: Segquence diagramwith focus-of-control regions

18.2.2 Collaboration diagrams

As stated above, collaboration diagrams illustrate the sequence of messages between objects based
around the object structure (rather than the temporal aspects of sequence diagrams). A collaboration
diagram is formed from the objects involved in the collaboration, the links (permanent or temporary)
between the objects and the messages (numbered in sequence) that are exchanged between the objects.
An example collaboration diagram is presented in Figure 18.3.

148

window

redisplay() —»

Controller

(window)

‘ 1: displayPositions(window) fl 1.3.1: add(self)

new contents

temp (line)

1.1.2: create(r0,r1) —
1.1.3: display(window) —¥

* 1.1.1a: r0 := position() +1.1.1b: rl := position()

Figure 18.3: An example collaboration diagram

Objects which are created during the collaboration are indicated by the label new before the object
name. For example the Line object in Figure 18.3. Links between objects are annotated to indicate their
type (e.g. permanent or temporary existing for this particular collaboration). These adornments are
placed in boxes on the ends of the links and can have the following values:

A - association (or permanent) link

F - Object field (the target object is part of the source object)
G - global variable

L - local variable

P - Procedure parameter

S - salf reference

Role names can a so be added to distinguish links (e.g. self, wire and window in Figure 18.3). Role
names in brackets indicate atemporary link, i.e. onethat is not an association.

The messages which are sent along linksare indicated by labels next to the links. One or more
messages can be sent along alink in either or both directions. The format of the messagesis defined by
the following (some of which are optional):

1. Acomma-separated list of sequence numbersin brackets: [segno, seqno]. The sequence numbers
indicate messages from other threads of control that must occur before the current message can
occur. This element is only needed with concurrency.

2. A sequence humber containing a list of sequence elements separated by full stops (periods).
These represent the nested procedural calling sequence of the message in the overall transaction.
Each element section has the following parts:

A letter (or name) indicating a concurrent thread. All letters at the same level of nest ing
represent threads that execute concurrently e.g. 1.2a and 1.2b are concurrent. Omitting the
letter entirely is equivalent to another dummy letter and usually indicates the main
sequence.

An integer number. The numbers show the sequential position of th e current message
within its thread. For example, message 2.1.4 is part of the procedure invoked by message
2.1 and follows message 2.1.3 within that procedure.

Aniteration indicator. Thisisastar (*), optionaly followed by an iteration expression in
parentheses. Iteration indicates that several messages of the same form are sent either
sequentialy (to asingle target) or concurrently (to the elements of aset). If thereisan
iteration expression, it shows the values that the iterator or iterators assume, such as
“(i=1..n)"; otherwise the details of the iteration must be specified in text or ssmply deferred
to the code.

149

« A conditional indicator. Thisis a question mark (?), optionally followed by a Boolean
expression in parentheses. Theiteration and conditional indicators are mutually exclusive.

3. Areturn value name followed by an assignment sign ~ (“:="). If present thisindicates that the
procedure returns a val ue designated by the given name. The use of the same name elsewhere in
the diagram designates the exact same value. If no return value is specified, then the procedure
operates by side effects.

4. The name of the message. Thisis an event name or operation name. It is unnecessary to specify
the class of an operation since thisisimplicit in the target object.

5. Theargument list of the message . The arguments are expressions defined in terms of input
values of the nesting procedure, local return values of other procedures and attribute val ues of
the object sending the message.

Argument values and return values for messages may optionally be shown graphically using small
data flow tokens near a message. Each token is a small circle, with an arrow showing the direction of
the data flow, labeled with the name of the argument or result.

18.2.3 State machine diagrams

Scenarios are used to help understand how the objects within the system collaborate, where as state
diagramsiillustrates how these objects behave internally. That is, state diagrams relate eventsto state
transitions and states. The transitions change the state of the system and are triggered by events. The
notation used to document state diagrams is based on that developed by Harel [Harel et al 1987, Harel
1988] and termed Satecharts.

Statechartsareavari ant of thefinite -state machine formalism which reduces the apparent
complexity of agraphical representation of afinite -state machine. Thisis accomplished through the
addition of asimple graphical representation of certain common patterns of finite sta te machine usage.
Asaresult, what might be a complex subgraph in a“basic” finite state machine isreplaced by asingle
graphical construct.

Each state diagram (statecharts are referred to as state diagramsin UML) has a start point a t which
the state is entered and may have an exit or termination point at which the state is terminated. The state
may also contain concurrency as well as synchronization of concurrent activities.

Figure 18.4 illustrate s atypical state diagram. This state diagram describes a (very) simplified
remote control locking system. The chart indicates that the system first checks the identification code of
the hand held transmitter. If it isthe same as that held in the memory it will alow the car to be locked
or unlocked. For the car locking situation, the windows are also closed and the car is alarmed.

Remote locking

Start [transmittedI D = memoryID]

unlock

car unlock
requested

car unlocked

ock I"close
LN | .\
car Tock | window close
requested requested
|

carlocked |

car locked and alramed

Figure 18.4: An example Sate diagram

A state diagram consists of a start point, events, aset of transitions, a set of variables, a set of states
and a set of exist points. These are described briefly below:

150

18.2.3.1 A dtart point

A start point is the point at which the state diagram isinitialized. In the figure, there are actually four
start pointsindicated (‘ Start’, ‘lock’, ‘close’ and ‘unlock’). The ‘ Start’ start point isthe initial entry
point for the whole diagram, while the other three indicated start points are for sub State diagrams.

Any preconditions required by the State diagram ¢ an be specified on the transition from the start
point (for example, in the figure the transmittedlD must be the same as the memorylD memorized by
the system). It istheinitial transition from which all other transitions emanate. This transition is
automatically taken when the State diagram is executed. Note that theinitial ‘ Start’ point is not
equivalent to a state.

18.2.3.2 Events

Events are one way asynchronous transmissions of information from one object to another. They can
possess parameters with names and types. The general format of an event is: eventName
(parameter:type, ...). Of course many events do not have any associated parameters.

18.2.3.3 A set of transitions

These are the statements which move the system from one state to another. In the state diagramseac h
transition is formed of four (optional) parts:

an event (e.g. lock).

acondition (e.g. transmittedlD = memory| D]

the initiated event (e.g. “EngineM anagementUnit.|ocked)
an operation (e.g. /setDoorToL ock)

EalE S o

The event is what triggers the transition, howev er the transition will only occur if the condition is
met. If the event occurs and the conditions are met, then the associated operation is performed. An
operation is a segment of code (equivalent to a statement or program or method within a programming
language) which causes the system state to be altered. Some transitions can also trigger an event which

should be sent to a specified object. For example, the above example sends an event locked to the
EngineManagementUnit. The process of sending a global event is a special case of sending an event to a
specified object.

The syntax of an event istherefore:
event(arguments) [condition] “target.sendEvent(arguments) /operation(arguments)

18.2.3.4 A set of state variables

These are variablesreferred to in a State diagr am (for example memoryID is a state variable). They
have the format name: type = value.

18.2.3.5 A set of states

A state represents a period of time during which an object is waiting for an event to occur. It isan
abstraction of the attribute values and links of a n object. A stateis drawn as arounded box containing
the (optional) name of the state. A state may often be composed of other states (the combination of
which represents the higher level state). A state has duration, that isit occupies an interval of time.

A state box can contain two additional sections, one section containing alist of state variables and
the other section containing alist of triggered operations (as illustrated by Figure 18.5).

car alarmed

sensors: List = {}

entry / set alarm active
do / check sensors
exit / set alarm inactive

Figure 18.5: Sate box with state variables and triggered operations

151

Operations can be of the following types:

« entry (executed when the state is entered). These are the same as specifying an operation ona
transition. They are useful if all transitionsinto a state perform the same operation (rather than
need to specify the same operation on each transition). Such operations are considered to be
instantaneous.

e exit (executed when the state is exited). T hese are less common than entry actions and indicate
an operation performed before any transition from the state occurs.

« do (executed while the state is active). These are operations which start on entry to the state and
terminate when the state is exited.

e event. A specified event can also trigger off an operation while within a particular state. For
example, the event help could trigger the help operation which in the state active.

Each operation is separated from its type by aforward slash (“/”). The ordering of operationsis:
operation on incoming transitions-> entry operations-> do operations-> exit operations ->
operations on outgoing transitions.

State diagrams allow a state to be a single state variable, or a set of substates. This allows for
complex hierarchical models to be developed gradually as a series of nested behavior patterns. This
means that a state can actually be a State diagram in its own right. For example, car alarmed isasingle
state, however the car locked state, is actually another State diagram. Notice that the transition from car
alarmed to accepted jumps from an inner state to an outer state.

The dotted line down the middle of car locked state indicates that the two halves of that state run
concurrently. That is, the car islocked as the windows are closed.

A special type of state, called a history state, is used to represent a state which must be remembered
and used the next time the (outer) state is entered. The symbol for a history stateisan H in acircle.

18.2.3.6 A set of exit points

Exit points are used to specify the result of the State diagram. They also terminate the execution of
the State diagram.

18.3 Deployment diagrams

PC Order
Entry

devi 1
<<ISDN> <<device>>
> Fax

N

Receivin

g
\ 1
<<ISDI Server

>

PC N

o2
Purchasin <<ISDN> <<device>>
g > Printer

1
PC

Figure 18.6: Nodes in a Deployment Diagram

The elementsin Figure 18.6 are called nodes and represent processors (such as PC's and servers) and
devices (such as Printers and Faxes). A node is thus aresource in the real world upon which we can
distribute and execute elements of the (logical) design model. A node isdrawn asathree -dimensional
rectangular solid with no shadows. The <<device>> stereotype designation of the Fax and Printer
indicates that these nodes are not processors. That is, they do not ha ve any processing ability (at least
not from the point of view of the model being constructed). It is also possible to show how many nodes
arelikely to be involved in the system. Thus the Order Entry PC is of order * (0 or more), while there
will be exactly one server, printer, fax etc. Finally, we have aso indicated the roles of the associations

152

between nodes and their stereotype. For example the Receiving association on one PC which will
employ atype of I1SDN connection (which has yet to be specified).

18.4 Summary

This chapter (and the last) have presented an overview of the Unified Modeling Language (or UML).
The UML is an attempt to develop athird generation object oriented modeling language for use with a
variety of object oriented design methods. It ¢ an be used for documenting the design of client -server,
real-time, distributed as well as batch style applications. It captures the best elements of the notations
used by a number of existing design methods including Booch, OMT and Objectory while attempting to
remain extensible, simple, clear and (relatively) concise. Many CASE tool vendors are already
committed to supporting the UML and it is being presented to the OMG by a consortium of
organizations as the basis of a standard notation for object-oriented systems development.

153

19. The Object Modeling Technique

19.1 Introduction

This chapter provides an overview of the Object Modeling Technique (OMT). It should not be treated
as adefinitive, nor complete, description of the method. For that the reader should see [Rumbaugh et al,
1990] and [Derr 1995]. Instead, this chapter provides an introduction to the basic phases and a summary
of the steps which form each phase. As such it should provide an insight into an object oriented design
(OOD) method.

The chapter first introduces the OMT methodology. The analysis phase is then described in some
detail. The use of use case analysisisincluded. Thisis not actually part of OMT (in fact it is part of the
Objectory method of [Jacobson et al 1992]) but is a useful adjunct to the method. The dynamic and
functional models of the analysis phase are described in the next chapter. The design phase (which is
then introduced) and the implementation phase are described in detail in the next chapter.

19.2 The OMT methodology

The OMT methodology consists of several phases. These phases progress a design from (relatively)
early requirements analysis through detailed design to the implementation. The phases are thus: the
analysis phase, the design phase and the implementation phase.

The analysis phase is concerned with understanding and modeling the application and the domain
within which it operates. The OMT book suggests that the initial input to the analysis phaseis a
problem statement which describes the problem to be solved and provides a conceptual overview of the
proposed system. This problem statement may be a textual description (as suggested by the authors) or
it might be amore formal description as provided by atechnique su ch as OOA or one of the structured
analysis methods in the software engineering field.

The design phase is made up of two sub -phases, the system design phase and the object design
phase. The system design sub -phase is concerned with the overall architectu re of the system. This
architecture is based on the information provided during the analysis phase (in particular the object
model).

The object design sub -phase attempts to produce a practical design by refining, optimizing and
reviewing the models produce d during the analysis phase. This therefore involves moving the focus
away from conceptual objects and towards computer implementation objects. It also involves
identifying appropriate a gorithms, ensuring efficient communication between objects and accoun ting
for the flow of control and concurrency issues.

The final phase, the implementation phase, considers how the design should be implemented. It
considers, amongst other issues, mapping a design onto an object oriented language, a data base system
aswell as non object oriented languages.

19.3 Analysis phase

The analysis phase is concerned with producing a precise, concise, understandable, and correct model of
the real -world. Thisis done by constructing a series of models. In particular OMT defines an object
model, a dynamic model and a functional model. OMT does not attempt to construct use case diagrams
to help understand how the system is used and what the main functions of that system are. However, it
is probably avery good ideato start the analysispha se by carrying out a use case anaysis. We will
therefore consider use case analysis before continuing with the OMT method.

154

OMT isa prescriptive method, it provides guidance on how the various models it generates should
be constructed. In the remainder of this section we will consider the guidelines given.

19.3.1 Use case analysis

The intention of the use case analysisisto identify how the system isto be used and what the system is
expected to do in response to this use. Thisinvolvesidentifying the external users of the system (human
or machine) and the required system functionality. The users of the system and the roles they play are
referredtoas actorswhile the functions requested and their sequence are called use cases. The
combination of the actors and the use cases are referred to asthe use case model. Each of these will be
considered in more detail below.

19.3.1.1 Actors

An actor can be anything which interacts with the system. This means they can be human users, other
computer systems, dumb terminals, senso rs, devices to be controlled etc. However, they not only
represent the user, but also the role that the user plays at that point in time. For example, in a small
company the accountant might act as the data entry clerk at one time, the internal auditor at another and
asthe payroll administrator at yet another time. Each of these roles would be represented by a different
actor, even though they would all be performed by the same person. To stress the difference between
actors and users [Jacobson et al 1992] says that they think of an actor as “a class, that is, a description of
abehavior” while a user is described as playing “ severa roles’ which are “many actors’.

Identification of the actorsin the system isnot trivial and as[Jacobson et al 1992] point out “all
actors are seldom found at once”. Jacobson goes on to state that a*“ good starting point is often to check
why the system isto be designed?’. Having done thisit should be possible to identify the main users of
the system and what they will need t o do with that system. From these users and their needs, actors can
be identified. Identification of such actorsis usually relatively straight forward, but it is often much
more difficult to identify non-human actors. In general, as the rest of the use case model develops, these
actors* come out in the wash”.

The notation used (in this book at least) for actors is based on that presented by the UML in the last
chapter.

For a simple bank account system the actors may be the customer, the bank clerk and the bank
manager.

19.3.1.2 Usecases

When an actor interacts with the system it is for a specified purpose. The achievement of this purpose
involves following one or more steps. If there are multiple steps there may be a specific sequence to
these steps in order to ac hieve the desired purpose. For example, if you are attempting to obtain money
from a*“holein the wall machine” (cash dispenser/ATM) then you must first input your card, typein
your PIN, select the type of transaction your require, specify the amount of ¢ ase required, take the card
and then take the money. If you attempt to change this sequence you will fail to obtain your money (e.g.
you type in your PIN before inputting your card!). The combination of the purpose, and the specified
sequence of steps, forms a use case.

A use case can be represented in a number of ways, the two most common are as natural language
and as state transition diagrams. Whichever approach is adopted, the same information should be
captured. The most appropriate form may dependon the availability of support tools for the state
machine notation.

The collection of al uses cases for a system defines the functionality of that system. The
identification of uses casesis based on the identification of actors. Each actor will needtod ooneor
more things to the system, each of these uses will be a use case. That is, each actor must have at least
one use case (and may be involved in many use cases). Whether each use caseis unique (or merely a
duplication of another use case) may only b e determined once al the uses cases are identified and
defined. To help in identifying the uses cases, the following questions can be asked [Jacobson et al
1992]:

¢ What are the main tasks of each actor?

155

« Will the actor have to read/write/change any of the system information?
< Will the actor have to inform the system about outside changes?
* Doesthe actor wish to be informed about unexpected changes?

Early in the analysis processit is often enough just to identify the possible uses cases and not to worry
about their details. Once areasonable set of uses are identified, it may be possible to analyze the
systems requirementsin greater detail in order to flesh out the uses cases. Use case identification tends
to be iterative and should not be treated as a single step process for all but the simplest of systems.

Having identified the uses cases, we can identify the steps performed within each use case. In many
cases this can help to identify omissions and over generalizations in any problem statement or domain
understanding, that we may have.

For the simple bank account system mentioned above, atypical use case might be:

Check account is started by Customer when they want to find out their current bal ance.
This is acconplished by:

1. typing in their account nunber followed by the PIN

2. requesting the current balance of their account (this may be on screen or on a
print out)

3. receiving the bal ance

4. acknowl edgi ng recei pt of the bal ance

5. logging off the system

Notice that the first element of the use case is a statement of its purpose. This isthen followed by the
sequence of steps performed by the use case. The steps described above are referred to as the basic
course of the use cases. That is, the normal way in which the use case will execute. In general uses
cases only possess a single basic course. However, they may possess one or more alternative courses.
These alternatives deal with exceptional situations or errors. For example, what if the customer does not
have a current account, what happens if they do not accept receipt of their balance?

19.3.1.3 Use case models

The identification of the actors and the uses cases together help to specify the limits of the system. That
is, anything that is an actor is outside the system, whereas anything that is a use case is within the
system boundaries. This means that it is possible to draw aline around the uses cases indicating the
boundary of the system. Thisisvery useful in helping to identify the bounds of the software project asa
whole in terms which both a devel oper and a user ¢ an understand. This can help to clarify
misunderstandings between users and devel opers over what is the system’ s responsibility and what is
not. A partial use case model for the simple account system is presented in Figure 19.1.

Account System

Deposit cash <<actor>>ﬂ
7 Clerk

<<actor>>
Customer

#

ustomel || <<actor>>
report Manager

Figure 19.1: Use case model

19.3.1.4 Interface descriptions

Having defined the actorsin the system and the uses they make of the system, the next step is often to
specify thei nterfaces between the actors and the system. For human users of the system, these
interfaces may well be graphical user interfaces (GUI’s) and may be drawn using a drawing tool or
mocked up using some form of interface simulation software. Theseinterfaces can be very useful in

156

confirming the users’ needs, their anticipated use, as well as helping to keep them involved in the
development. As the use cases specify the sequences of operations to be performed, the GUI’s can be
made to mimic the desired system behavior. Thisis a good way of confirming that the use caseis
correct. For non-human interfaces any proposed communications protocols can be defined and checked
(for example, that the interacting system is capable of sending and receiving the appropriate
information).

19.3.1.5 Relating the use case model to OMT

The use case model dictates the formation of the modelsin OMT’ s analysis phase as indicated in Figure
19.2. For example,

e it helpsidentify the primary objects in the object model,

» it helps specify the top level behavior of the system in the dynamic model,

it helps determine the inputs and outputs provided by, and expected by, the actors for the
functional model.

In addition use cases may aso have an influence on ho w the system will be organized into subsystems
asthey indicate associated behaviors. In the implementation phase the use cases may be used to identify
suitable scenarios and expected results for integration or system testing.

Use case model

-

T ———tested in—

—
identifies O ~_ Test
Model _— mp\emented specification

specifies
inputs + reallzed
outputs
Dynamic orgamzes s
Model ou[;ce
Funcuona\ Object code
Model Subsyslem Desu_;n

Figure 19.2: How the use case model can be used in OMT

19.3.2 Object modeling

The first step in requirements analysis phase, of the OMT method, is the construction of the object
model. The abject model is essentially com prised of the class and object diagrams described in the last
chapter. Aswith BOOCH and the UML it is the object model which isthe core of the OMT
representation. As we have already encountered object models before we will not attempt to explain
what they are other than to state that the object model “ shows the static data structure of the real -world
system and organizes it into workable pieces’.

The information for the object model comes from:

¢ the problem statement (written in natural language according to OMT),
e requirements analysis process such as OOA,

¢ thedomain experts,

e genera knowledge of the real world,

¢ theusecase model (if you have constructed one).

Aninteresting point to note isthat OMT claims that object models promote communication betwe en
computer professionals and application-domain experts (what do you think?).

OMT suggests the following steps as being an appropriate way in which to construct an object
model.

Identify objects and classes.

Prepare adata dictionary.

Identify associations (including aggregations) between objects.
Identify attributes of objects and links.

Organize and simplify object classes using inheritance.

agrwDNE

157

6. Verify that access paths exist for likely queries.
7. Iterate and refine the model.
8. Group classesinto modules.

However, you should not take the sequence of these steps too strictly: remember analysis and design
arerarely completed in atruly linear manner. It islikely that some steps will be performed to greater
depths as the whole process proceeds. In addition, some steps may (will) lead to revisionsin other steps
and once an initial design is produced it will doubtless require revisions. Therefore you should consider
that they are a sequence of processes which should be performed. The order of which may be influenced
by the domain, the expertise available, the application etc. However it is probably a good idea always to
start with the process of identifying objects and classes.

We will consider each of the above stepsin more detail below.

19.3.2.1 Identify objects and classes

Thefirst step in constructing the object model isto identify the objects in the domain and their classes.
Such objects may include:

« physical entities such as petrol pumps, engines and locks

» logical entities such as employee records, purchases and speed

« soft entities such as token, expression or data stream

* conceptual entities such as needs, requirements or constraints.

Aslong as they make sense for the application and the domain then they are a candidate object or class.
The only thingsyou shoul d avoid are objects which might relate to the proposed computer
implementation.

OMT suggests that you start identifying these candidate objects by looking in the textual problem
description. It indicates that classes are often found by identifying nounsin the description and making
them into classes. However, if you have amore formal problem specification it might be easier to
identify a set of potential classes. If you have used the use case analysis method you may also be ableto
identify the top most objects directly from the use case diagrams.

Do not worry about getting it right at this point or about identifying classes which should not be
there. Inappropriate classes will be filtered out later on - for the moment, attempt to find anything which
could be aclass.

Once you have a comprehensive list of candidate classes you can discard any unnecessary and
incorrect ones. Thisis done by using the following criteria:

Are any of the classes redundant ? That is, two or more classes express the same informat ion. For
example, customer and user might just be different names for the same thing.

Are any of the classesirrelevant ? That is, are they outside the scope of the system to be built even
though they are part of the domain. For example, although porterswo rk in a hospital they are probably
not relevant to a hospital bed allocation system.

Are any of the classes vague ? That is, do they represent ill defined concepts? For example, history
provision isvague - what isit a history of?

Are any of the classes really attributes of other classes? For example, name, address, salary, job title
tend to be attributes of an object employee rather than objects in their own right.

This can be atricky one asit is often possible to represent something as both aclass or a n attribute.
One way of handling thisisto leave the decision until later. If the class possesses only one type of
information and has no operations then it should probably have been an attribute.

Are any of the classes really operations? If a class appears to describe an operation that is applied to
objects and not manipulated in its own right then it is not a class. For example, atelephone cal isa
sequence of actions performed by a caller. In the implementation you may wish to make this an object,
however at this point in the design we are trying to produce a model of the application domain (i.e. not
an implementation model).

Does the name of the class represent itsintrinsic nature and not its role in the application ? For
example, the class Person mig ht represent an object in arestaurant booking system, but the class
Customer is a better representation of itsrole in the system.

Isa classreally an implementation construct ? For example, things such as process, algorithm,
interrupt, exception are implementation concepts and tend not to be related to the application domain.

158

19.3.2.2 Prepare a data dictionary

A datadictionary provides a definition for each of the terms/ words being used in the evolving analysis
models. Each entry precisely describes each objec t class, its scope, any assumptions or restrictions on
its use and its attributes and operations (once they are known).

19.3.2.3 Identify associations between objects

The next step isto identify any (and al) associations between two or more classes. Thisis done by
looking for references between two classes. OMT suggests that a good place to look for these
relationships is to examine the problem description for verbs or verb phrases between known objects. In
particular it identifies the following types of relationships:

« physical location (next to, part of, contained in)

« directed actions (drives)

e communication (talks to)

* ownership (has, part of)

» satisfaction of some condition (works for, married to, manages)

Again OMT exhorts you to identify all possible relationships and not to worry at this point about getting
it right.

If you have used a method such as OOA you might already have some knowledge about the
relationships between the classes in the domain, if not then considering which classes are likely to need
to work with which other classes (i.e. the accounts clerk may need to work with the salaries clerk) is
also agood place to start. This process will be simplified if you have performed a use case analysis.

Once you have a set of candidate associations, OMT pr ovides adetailed set of criteriato helpin
refining them. The criteria are:

I's the association one which is between eliminated classes ? If one of the classesinvolved in the
association has been eliminated then the association should be eliminated.

Are any of the associations irrelevant or implementation associations ? Eliminate any associations
that are outside the scope of the application domain (including implementation related associations).

Are any associations transient ? An association should beas tructural property of the applications
domain. For example, interacts with user is atemporary association in a hotel booking system.

Are any of the associationsternary ? Although the OMT notation and indeed the UML notation
alow ternary associations, the y are not encouraged. Instead you are encouraged to decompose these
associations into binary ones (they are easier to implement, maintain and understand!).

Are any of the associations derivable ? OMT suggests that you should remove any associations
which ca n be derived from other associations. However you should be wary of removing such
associations as they may be critical to understanding the domain relationships. That is, if an association
can be replaced by two existing associations, only do so if the semantic meaning of the two associations
can be combined to provide the same semantic meaning as the one to be removed. A good exampl e of
thisisthat a GrandparentsOf relationship can be replaced by two ParentOf relationships.

Having removed inappropriate associations, you can now consider the semantics of the associations
you have left. To do this you should use these criteria:

Are any of the associations misnamed ? That is, do they actually reflect what they represent? Are
they named after their use or the relationship they indicate?

Add role names where appropriate . As described in the last chapter, role names describe the role
that a class plays in the associations from the point of view of the other class.

Arethere any qualified associations? That is, are there any associations which require aqualifier to
identify a unique object.

Foecify multiplicity on the associations . That is, indicate how may objects areinvolved in the
association. By default all associations are 1 to 1 associations. Where no multip licity is specified check
that thesereally are 1 to 1 links.

Arethere any missing associations ? Check that all reasonable associations are present. This may
need to be done in consultation with the domain expert.

159

19.3.2.4 Identify attributes of objects

OMT suggests that attributes correspond to nouns followed by possessive phrases, such as “the color of
the car” or “the position of the cursor” in the problem statement. Although the authors do admit that
attributes are less likely to be fully described in the probl em statement and that you must draw on your
knowledge of the application domain and the real world to find them. If you have aready used a method
such as OOA you may aready have identified the key attributes. Luckily attributes can (usually) be
easily added to objects as and when they areidentified - it is rare that the addition of a new attribute will
cause the structure of the system to become unstable.

An important point to note is that you should only be trying to identify application domain attributes.
This means that attributes which will be needed during the implementation of the system should not be
included at this stage. However, link attributes (which might appear to be implementation attributes)
should be identified at this stage asthey have an impact on the systems structure. A link attributeisa
property of the link between two objects, rather than being a property of an individual object. For
example, the many to many association between Stockholder and Company has alink attribute of
“number of shares”.

Having identified the set of candidate attributes for each object you should then challenge these
attributes using the following criteria:

Should the attribute be an object? For example, earlier we said that a telephone call should not be an
object, however if you are constructing a telephone call billing system, then it is probable that it should
be an object. Y ou therefore need to think carefully about the domain when deciding whether something
is an attribute or an object. Don’t worry ab out getting it wrong (there may be no correct answer) you
can come back to it later and refine the model.

Isan attribute really a name ? Names are often actually selectors used to identify a unique object
from a set of objects. In such situations a name should really be a qualifier.

Isan attribute an identifier ? Here identifier relates to a computer based identifier and is an
implementation issue and not part of the application domain. For example, obj ect | d isan identifier
which is probably not in the applications domain.

Isan attribute really a link attribute ? Link attributes are often mistaken for object attributes. Link
attributes are most easily identified when it becomes difficult to identify which of two (or more) classes
the attribute should belong to. In such situations it is an attribute of the link between the two classes.

Does the attribute represent an internal state of the object which is not visible outside the object ?If
it does remove the attribute. It is an internal implementation issue and not part of the domain problem.

Does the attribute represent fine detail ? If the attribute represents some aspect of the object which is
relatively low level then omit it. It will not help with the overall understanding of the domain and will
increase the complexity of the object model.

Are any of the attributes unlike the othersin their class ? Such discordant attributes may either be
misplaced (this may indicate that one class should actually be two or more) or that the attribute is not
part of the current application (although it may be part of the overall domain).

19.3.2.5 Organize and simplify object classes using inheritance

The next step is to refine your classes using inheritance. This can be done in both directions, that is,
either by grouping common aspects of existing classes into a superclass from which the existing classes
inherit or by specializing an existing class into a number of more specialized subclasses which serve
specific purposes. Again if you have used an analysis method such as OOA, some o f this may aready
have been performed. Note that you are not doing this with a view to implementing the class hierarchy
being generated, rather you are trying to understand the commonalities in the domain.

Identifying potential superclassesis easier tha nidentifying specialized subclasses. To find potential
superclasses, you should examine the existing classes looking for common attributes, operations or
associations. Any common patterns you find may indicate the potential for a superclass. If such a
situation is found, then the superclass should be defined with an appropriate name (i.e. one that
encompasses the generic roles of the class which will inherit from it). Then move the attributes,
associations and operations which are common up into thissuper class. Do not try to force unrelated
classes to become subclasses of a superclass just because they happen to have similar attributes (or
associations or operations). Attempt to make sure that when you do group a set of classes together under
asuperclass, that grouping makes sense in the application domain. For example, grouping the classes

160

car, truck and bus under a superclass vehicle makes sense. However, adding the class student just
because they all share the attribute registrationNumber does not make sense!

I dentifying specializations can be more difficult, however if you find a class playing a number of
specific roles then specialization may be appropriate. Note that you should be wary of specialization as
you do not want to over specialize the classesin your object model. Thisis because you may actually be
talking about separate instances of the same class, rather than subclasses.

19.3.2.6 Testing access paths

This step involves checking that paths in the model make sense, are sufficient and are necessary. O MT
suggest that you trace access paths through the object model to seeif they yield sensible results. The
sorts of issues you might wish to consider are:

« Where aunique value is expected, is there a path yielding a unique result?
« For multiplicity “many” isthere away to pick out a unique value when needed?
e Arethereany useful (domain specific/application specific) questions which can’t be answered?

19.3.2.7 Iterate and refine the model

There are two things you will come to learn about object design, firstly iti s still more of an art than a
science and secondly (unless the problem istrivial) the first version of the object model will probably
not be correct (or complete). Object oriented design is far more iterative in nature than some other
design methods and i t therefore acknowledges that you will need to iterate over the whole of the above
process a number of timesto get a reasonable object model. Indeed some changes will be initiated by
the development of the dynamic model and the functional model which you have not even considered
yet (for example we have not attempted to identify any operations for the object model at this point).

At this point some of the questions you can ask yourself about the object model are:

e Arethere any missing objects (does one class play two roles)?

» Arethere any unnecessary classes (such aclass might possess no attributes)?

< Arethere any missing associations (such as a missing access path for some operation)?
» Arethere any unnecessary associations (such as those that are not used by anything)?

e Areall attributesin the correct class?

» Areall associationsin the correct place?

Cross referencing the object model with the use case model may help answer some of the above
questions.

19.3.2.8 Group classes into modul es/packages

Thefinal step associated directly with the object model is to group classes into packages. Packages
should be identified by looking for classes which work together. Do not base the packages purely on
system functionality asthisislikely to change and will result in inappropriate packaging. OMT suggests
that you ensure that a package can be fitted onto a single drawing surface (be that paper or the screen)
asthis aids comprehensibility. In addition, packages can be hierarchical and can be avery useful way of
partitioning the design of the system amongst a number of designers.

161

20. More Object Modeling Technique

20.1 Introduction

This chapter continues from where the last chapter finished. It describes the dynamic and functional
models of the analysis phase as well as the design and implementation phases.

20.2 Dynamic models

The dynamic models of the analysis phase capture the behavior of the system being analyzed. That is
they describe what states the system can be in and what causes a state change to occur.

20.2.1 Dynamic modeling

The dy namic model describes the behavior of the application and the objects which comprise that
application. The sequence, collaboration and state diagrams described in the last chapter are the main
components of the dynamic model. OMT usesthe term event trace to mean a sequence diagram and
event flow to mean a collaboration diagram (in UML terms).

The aim of the dynamic model analysisisto identify the important events which occur and their
effects on the state of the objects. Thus the first step in this phase isthe identification of events and the
objects associated with those events. Next the sequence in which those events occur must be identified
which allows a state diagram to be drawn.

OMT recommends the following steps are performed in the construction of a dynamic model:

Prepare scenarios of typical interaction sequences.

Identify events between objects.

Prepare an event trace (sequence diagram and collaboration diagram) for each scenario.
Build a state diagram.

Match events between objects to verify consistency.

agrwDNRE

20.2.1.1 Prepare scenarios

Scenarios illustrate the major interactions between the system and external actors on that system
(whether human or otherwise). These scenarios are essentially the use cases in the use case model, if
this has been performed. | f not it is necessary to consider the different ways in which the system will be
used and to determine the likely interactions. The scenarios can be written down as sequences of steps
which describe one path through the systems. Y ou should first prepare sc enarios for the normal system
interaction and then for exceptional system interaction.

20.2.1.2 ldentify events between objects

The scenarios essentially document external events between the system and the actor(s). These events
should trigger internal events betw een the objects in the system. Y ou should trace these events through
the system, noting the objects involved and the types of events occurring. Having obtained sets of events
you should group together events which have the same effect (even if they have di fferent parameters).
For example, an event to close afile has the same effect whichever fileis being closed!

162

20.2.1.3 Prepare sequence and collaboration diagrams

Once you have identified events within the system document them first as sequence diagrams and then
as collaboration diagrams. This approach is easier, as sequence diagrams tend to deal with the
sequential ordering of the events from one object to another whereas a collaboration diagram may
involve a number of objects.

20.2.1.4 Build a state diagram

A state diagram should be constructed for each object class with nontrivial dynamic behavior. Every
sequence diagram (and thus collaboration diagram) corresponds to a path through a state diagram. Each
branch in control flow is represented by a state with morethan one exit transition. The procedure for
producing state diagrams as described by the OMT method, is summarized below by the following
agorithm:

1. Pick aclass.

2. Pick one segquence diagram involving that class.

3. Follow the events for the class, the gapsin between the events are states. Give each state aname
(if it is meaningful to do so).

Draw out a set of states and events linking states based on the sequence diagrams.

Now find loops within the diagram. That is, repeated sequences of states.

Chose another sequence diagram for the class and produce the states and events for that diagram.
Next merge these states and events into the first diagram. That is, find the states and events
which are the same and find where they diverge. Now add the new events and states.

7. Repeat step 6 for all sequence diagrams involving this class.

8. Repeat from step 1 for all classes.

o oA

After considering all normal events, add boundary cases and special cases. Also consider events which
occur at awkward times including error events.

Y ou should now consider any conditions on the transitions between states and any events which are
triggered off by these transitions. Note that we still have not really considered the operations which the
system will perform.

20.2.1.5 Match events between objects

Having produced the state diagrams you should now check for completeness and consistency across the
whole system. Every event should have a sender and areceiver, al states should have a predecessor and
asuccessor (even if they are start points or exit points) and every use case should have at least one state
diagram which explainsits effect on the system’ s behavior. Y ou should also make sure that events
which are the same but on different state charts have the same name.

20.2.2 Functional modeling

The functional model in OMT describes how values are computed. UML does not possess any hotation
for representing functional models and this reflects the lack of emphasis placed on functional model
style analysis by object oriented design methods. OMT uses Data Flow Diagrams (or DFD’s) to
represent functional models. In essence the functional model explains how the operations (yet to be
added) in the object model and the actions/ activities of the dynamic model are achieved. It can also be
used to represent constraints amongs the values of the model.

A DFD possesses inputs and outputs, data stores, processes and data flows (arrows). Figure 20.1
illustrates an example DFD diagram.

Data stores are passive objects which store datafor later use. That isthey merely respond to
requests to store and access data. The Icon Definitions label between two parallel bars indicates a data
store.

Processes are drawn as an ellipse. They possess afixed number of inputs and outputs which are
labeled with their type or name. Processes may be nested and of arbitrary complexity and eventually
reference atomic operations.

163

Data flows are indicated by an arrow labeled with the type of data. They may split or converge. The
tail of the arrow indicates the source and the head of the arrow the sink for the data.

Actors (drawn as rectangles) act as the eventual sources and sinks of the whole data flow. For
example, thescr een buf f er isthe eventua sink for the data flow in Figure 20.1.

WINDOW

ICON DEFINITIONS

icon name
Expand into application
Vectors vector list

SCREEN
BUFFER

screen
vector list

Figure20.1: A Data Flow Diagram

OMT advisesthat it is best to construct the functional model after the object and dynamic models.
The steps in this phase defined by OMT are:

Identify input and output values.

Build data flow diagrams showing functional dependencies.
Describe functions.

Identify constraints.

Specify optimization criteria.

gkrwnhpE

20.2.2.1 ldentify input and output values

Input and output values are parameters of events between the system and the outside world. Y ou should
reference the use case diagram to see whether the actors should provide information to the system or
expect aresponse from the system.

20.2.2.2 Build data flow diagrams

The data flow diagrams are constructed by pr oducing a diagram which groups inputs, processes those
values and generates outputs. Each nontrivial process should then be broken down (at alower level) into
smaller steps. This processis repeated until only atomic operations remain. The result isahie rarchical
model containing data flow diagrams which implement (higher level) processes.

Objects can also store data for use at afuture date. These objects can beidentified in a DFD because
they receive values that do not result in immediate outputs but instead are used at some future time.

20.2.2.3 Describe functions

Once the DFD for a particular function has been defined you should write a description of that function.
This description can be in the form of natural language, pseudo code, mathematical equations, d ecision
tables or any other suitable form. The intention is that the function description places the DFD (which
indicates how datais processed) into context.

20.2.2.4 ldentify constraints
Congtraints are functional dependencies between objects. They may be precond itions or postconditions
on afunction or arelationship which must hold (for example bi rt hDat e < current Dat e). They

may exist between two instances or between different instances at different times. Either way, they need
to be documented.

164

20.2.2.5 Specify optimization criteria

Specify any data values which should be maximized (for example, process as many ordersin an hour as
possible), minimized (for example, ensure that system response is < 2 milliseconds) or otherwise
optimized.

20.2.3 Adding operations

Itisonly at this point that the operations in the analysis models are considered. Note how this differs
from the procedural approach in which the operations to be performed would be considered right up
front. The operations are summarized by the object model (but rel ate to functions, actions and eventsin
the functional and dynamic models). The criteria used for identifying operations are:

e operationsimplied by events,

« operationsimplied by state actions and activities,
< operations from functions,

« application / domain operations,

« simplifying operations.

20.2.3.1 Operationsimplied by events

All the events in the object model correspond to operations (although a single operation may handle
multiple events and vice versa). OMT suggests that during analysis “ events are best repres ented as
|abels on state transitions and should not be explicitly listed in the object model”. However, if you find
it clearer to list the operations corresponding to the events in the object model; then do so.

20.2.3.2 Operationsimplied by state actions and activities

The actions and activities in the state diagrams correspond to operations. These can be listed in the
corresponding classes in the object model.

20.2.3.3 Operations from functions

Each function corresponds to one or more operations. The functions should be organized into operations
on objects. Thisis not as straight forward as it might at first seem since we have not yet associated the
functions with objects.

20.2.3.4 Domain operations

There may be additional domain operations which are not immediately obvious from th e problem
description. These should be identified from additional domain knowledge and noted. For example,
athough a cash point system (ATM system) does not allow you to open and close accounts, such
operations are appropriate within the domain and may be important for understanding the domain or for
aspects of the application which have yet to cometo light.

20.2.3.5 Smplifying operations
Examine the object model for operations which are essentially the same. Replace these operations with
ageneric one. Notethat earlier steps may well have generated the same operation but with different

names. Therefore check each object’ s operations to see if they are intended to do the same thing even if
they have very different names. Adjust the other models as appropriate.

165

20.3 Design phase

The aim of the analysis phaseisto identify what needs to be done and not how it is done. The design
phase takes the models produced by the analysis and considers how the requirements can be achieved. It
is broken down into two sub-phases. The first, called the system design, breaks the overall system down
into components called subsystems, while the second, called the object design, moves the models
produced towards the implementation.

20.3.1 System design phase

The subsystem architecture provides the context within which the more detailed design decisions, made
during the object design, are performed. The subsystem decomposition defines an architecture which
can be used as the basis by which the detailed design can be partitioned among a number of des igners,
thus allowing different designers to work independently on different subsystems. The steps used to
generate this architecture are:

Organizing the system into subsystems.

Identifying concurrency inherent in the problem.
Allocating subsystems to processors and tasks.
Choosing an approach for management of data stores.
Handling access to global resources.

Choosing the implementation of control in software.
Handling boundary conditions.

Setting trade offs between competing priorities.

ONOUA~WDNE

Of course not all these steps will be important for al applications. For example, a batch oriented, purely
serial process, probably cannot have much concurrency imposed onit.

20.3.1.1 Breaking the systeminto subsystems/packages

Most systems will be comprised of anumber of subs ystems, for example, a payroll system might
possess a file subsystem, a calculation subsystem and a printing subsystem. A subsystem isnot an
object nor afunction, but a package of classes, associations, operations, events and constraints that are
interrelated and that have a reasonably well -defined and (hopefully) small interface with other
subsystems. The package notation in the UML can be used to represent subsystems.

A subsystem (or package) is usually characterized by the common (or associated) set of services that
it provides. For example, the file package would provide a set of servicesto do with creating, deleting,
opening, reading and writing files. The use case model may be useful in identifying such common
services.

Each package therefore provid esawell defined interface to the remainder of the system which
alows other packages to useits facilities. Such a specified interface also allows the internals of the
package to be defined independently of the rest of the system (i.e. it encapsulates th e package). In
addition, there should be little or no interactions between objects within the package and objectsin
another package (except viathe specified interfaces).

Packages can be hierarchical and may beinvolved in client-server or peer to peer relationships with
other packages. Client -server relationships are easiest to implement and maintain as one package
responds to requests from another package and returns results. In peer to peer relationships both
packages must be capable of respondingtor equests from the other. This can result in unforeseen
circularities.

20.3.1.2 ldentifying concurrency
Concurrency can be very important for improving the efficiency of a system. However, to take full
advantage of concurrency the system must be designed around the ¢ oncurrency inherent in the

application. This can be done by examining the dynamic model for objects which receive events at the
same time or perform any state transitions (and associated actions) without interacting. Such transitions

166

are therefore concurrent and can be placed in separate execution threads without effecting the operation
of the system.

20.3.1.3 Allocating subsystems to processors and tasks

Each concurrent package should be allocated to an independent process or processor. The system
designer must therefore:

e estimate performance needs and the resources needed to satisfy them,

» choose hardware or software implementations for packages,

 dlocate packages to processors to satisfy performance needs and minimize inter processor
communication,

* determine the connectivity of the physical units that implements the packages.

A deployment diagram can be used to illustrate the results of this step.
20.3.1.4 Management of data stores

The designer must identify appropriate data stores for both internal and external data. Thi sinvolves
identifying the complexity of the data, the size of the data, the type of accessto the data (single or
multiple users), access times and portability. Having identified these issues decisions can be made about
whether data can be held in internal memory, on secondary storage devices, whether it should be held in
flat files, relational or object database system.

20.3.1.5 Handling accessto global resources

The system designer must identify what global resources are required and how access to them can be
controlled. Global resources include processors, disk drives, disk space, workstations as well asfiles,
classes and databases.

20.3.1.6 Choosing the implementation of control in software

The choice of the internal control mechanism used by the system will be mediate d by the facilities
provided by the implementation language. For example, Ada supports concurrent tasks whereas
VisualBasic does not. Smalltalk and Java support light weight processes and therefore can be said to
mimic concurrent systems. The choices available are:

e procedure oriented systems. Such a system represents a procedure calling mechanism in which
the flow of control is passed from one procedure / method to another when the first calls the
second.

e event driven systems. Thisisthe appr oach taken by the dynamic model of the analysis phase.
Essentially operations are triggered off by events which are received by objects. Many window
based interfaces operate in this manner.

e concurrent systems. In which the system existsin several processe swhich execute at the same
time. Some synchronization between the processes may take place at certain times, but for the
magjority of the time they are completely separate.

20.3.1.7 Handling boundary conditions
There are three primary boundary situations which the designer should consider. These are:
initialization, termination and failure. Initialization involves setting the system into an appropriate,

clean, steady state. Termination involves ensuring the that the system shuts down in an appropriate
manner. Failure involves dealing with unplanned termination of the system cleanly.

167

20.3.1.8 Setting trade offs between competing resources

In any design there are various trade offs to be made. For example, the trade off between speed of
access and data storage is acommon one i n database systems. The larger the number of indexes used,
the faster dataretrieval can be made (however the indexes must now be stored along with the data).
Such design trade offs must be made with regard to the system as awhole (including non -software
issues) as sub -optimal decision will be made if they are left for designers concentrating on asingle
package.

20.3.2 Object design phase

The object design essentially takes the models produced by the analysis phase and fleshes them out
ready for the implementati on. Thus the objects identified during the analysis act as the skeletons for the
design. However, the designer must now consider how the analysis objects (partitioned into packages)
should be implemented. They must express the operations identified earlier in terms of algorithms
which can be implemented and associations as appropriate references from one object to another (taking
into account the type of facilities provided by the target language). New classes may need to be
introduced to deal with aspects which are important for the design (and ultimately the implementation)
but are not significant for the analysis.

The following steps are performed by the designer during the object design:

Combine the three model s to obtain operations on the classes.
Design algorithms to implement operations.

Optimize access pathsto data.

Implement control for external interactions.

Adjust class structure to increase inheritance.

Design associations.

Determine object representation.

Package classes and associations into modul es.

ONOOUOA~WDNE

As stated before, these steps are iterative.
20.3.2.1 Combining the three models

If the implied operations from the dynamic and functional models have not been added to the object
model, then they should be added now.

20.3.2.2 Designing algorithms

Each of the DFD sin the functional model needs to be expressed as an algorithm to indicate how they
perform the function. The DFD says what it does, but the algorithm says how it doesit. The algorithm
designer must:

* Choose agorithms that minimize the cost of implementing operations.
e Select data structures appropriate to the algorithms.

« Define new internal classes and operations as necessary.

« Assign responsibility for operations to appropriate classes.

Note that any algorithms defined in pseudo code during the analysis phase were intended to explain
the required functionality. It is therefore necessary at this stage to consider what algorithms are required
in the implementation. For example, athough a bubble sort algorithm may have been used in the
analysis phase, an insertion sort may well be a more efficient algorithm to chose for the design.

168

20.3.2.3 Design optimization

The analysis model was only intended to describe the application and its requirements and did not
attempt to take into account efficient information access or processing. These issues need to be
considered by the designer at this point. In particular they should consider:

« adding redundant associations to minimize access cost and maximize convenience,
* rearranging the computation for greater efficiency,
» saving derived attributes to avoid recomputation of complicated expressions.

20.3.2.4 |mplementation of control

During the system design, an approach for handling the internal control of the system must have been
identified. That approach is fleshed out here. Thisincludes determining how the selected approach can
be implemented and identifying any constraints this choice imposes on the design.

20.3.2.5 Adjust class structure

Asthe design progresses the class hierarchy islikely to change, evolve and become refined. It is quite
common to produce a design and then to rearrange it in light of commonalities which were hidden at an
earlier stage. The designer should:

« rearrange and adjust classes and operations to increase inheritance,
» abstract common behavior out of groups of classes,
» use delegation to share behavior when inheritance is semantically invalid.

20.3.2.6 Design associations

Associations are an important aspect of the analysis object model. However, they are conceptual
relationships and not implementation oriented relationships. The designer needs to consider how the
associations can be implemented in a given language. The choices made for representing associations
may be made globally for the whole system, locally to a package or on an association by association
basis. The criteria used for determining how associations should be represented in the design are based
on how are they traversed. If they are traversed only in one direction then a pointer representation may
be sufficient. However, if they arebi -directiona then an intermedi ate object may best represent the
association.

20.3.2.7 Determine object representation

In most situationsit is relatively straight forward to identify how to represent an object. However in
some cases consideration needs to be given to decide whether to use a sysem primitive or an object. For
example, in Java there are basic typesint and char and there are also classes I nt eger and
Char act er.

20.3.2.8 Package classes

The system will have been decomposed into logical packages in the system design. However, dif ferent
languages provide different facilitiesfor physically packaging a system. VisualWorks provides class

categories which can be used in a similar manner to packages but they do not provide any information
hiding etc.

20.4 Implementation phase

OMT states that implementation is “an extension of the design process’ and that “writing code should
be straightforward, almost mechanical, because all the difficult decisions should already have been

169

made”. (However implementation still tends to possess unexpected desi gn problems which must be
solved. These decisions should be subject to, and determined by, the processes described above).
Because of this, OMT places alimited amount of emphasis on the implementation phase, concentrating
instead on stylistic points. You should treat the implementation of an object oriented system in just the
same way as you would treat the implementation of any software system. This means that it should be
subject to, and controlled by, the same processes as any other implementation. Ina ddition it should be
subjected to similar testing (as discussed earlier in this book). This is where the use cases may come
back into usein helping identifying suitable test scenarios.

20.5 Summary
As can be seen from this chapter, OMT concentrates the mgjorit y of its guidance on the analysis phase,
the design and implementation phases are far less well supported. It is however one of the most widely

used object oriented design methods and is likely to have avery large influence on any method
developed by Booch, Rumbaugh and Jacobson to support the UML.

170

21. Frameworks and Patternsfor Object Oriented
Design

21.1 Introduction

Designing complex software systemsis hard. It isagreat deal easier to reuse an existing software
system, merely modifying it where necessary, than to build it from scratch. These two facts have led to
agreat deal of interest in what has become termed software frameworks in the object oriented
community. A software framework is “the reusable design of a system or a part of a system expressed
as a set of abstract classes [and concrete classes] and the way instances of (subclasses of) those classes
collaborate” [Beck and Johnson 1994]. However such frameworks are notoriously difficult to document.
For example the Model View Controller (MVC) framewo rk in Smalltalk is very powerful, but it has
proved difficult to explain in aclear and simple manner how the MV C should be used [Krasner and
Pope 1988].

In the object oriented community a number of researchers have explored the work of an architect
who d esigned a language for encoding knowledge of the design and construction of buildings
[Alexander et a 1977, Alexander 1979]. The knowledge is described in terms of patterns which capture
both a recurring architectural arrangement and arule for how and wh en to apply this knowledge. That
is, they incorporate knowledge about the design as well as the basic design relations.

Theresult is that there is now a growing community exploring how software frameworks can be
documented using (software) design patterns (for example, [Johnson 1992] and [Birrer and
Eggenschmiler 1993]). Johnson’s paper describes the form that these design patterns take and the
problems encountered in applying them.

The remainder of the chapter is structured in the following manner: Sectio ntwo considers what a
framework is and the role of patternsin documenting frameworks. Section three introduces the
HotDraw framework and Section four presents a very simple pattern documenting how you can use
HotDraw to construct a simple editor.

21.2 Patterns and frameworks

21.2.1 What is a framework?

A framework is areusable design of aprogram or a part of a program expressed as a set of classes. That
is, aframework is a set of prefabricated software building blocks that programmers can use, extend, or
customize for specific computing solutions. With frameworks, software developers don't have to start
from scratch each time they write an application. Frameworks are built from a collection of objects, so
both the design and code of aframework m ay be reused. However frameworks are not necessarily easy
to design or implement. Questions such as “how much will it cost” to produce aframework and “how
much will we benefit” from the network are difficult to answer [Moser and Nierstrasz 1996]. In addition
reusing frameworks instead of libraries can cause subtle architectural changesin an application calling
for innovative management [Sparks, Benner and Faris, 1996].

Frameworks can provide solutions to different types of problem domain. Theseincludea pplication
frameworks, domain frameworks and support frameworks:

« Application framewor ks encapsul ate expertise applicable to awide variety of programs. These

frameworks encompass a horizontal dlice of functionality that can be applied across client
domains. An application framework might provide the basic facilities of a payroll system, or a

171

geographic information system. These facilities could then be used to construct a concrete
payroll (or GIS) system with the features required by a specific organization.

« Domain frameworks encapsul ate expertise in a particular problem domain. These frameworks
encompass a vertical slice of functionality for a particular client domain. Examples of domain
frameworks include: a control systems framework for developing contro | applications for
manufacturing systems or drawing frameworks such as HotDraw, Unidraw for C++/X windows
and DRAW_Master for C++/0OS 2 and Windows environments.

e Support frameworks provide system-level services, such as file access, distributed computing
support, or device drivers. Application devel opers typically use support frameworks directly or
use modifications produced by system providers. However, even support frameworks can be
customized - for example when developing a new file system or device driver.

Since frameworks are reusable designs, not just code, they are more abstract than most software
which makes documenting them more difficult. Documentation for a framework has three purposes and
patterns can help to fulfill each of them. Documentation must provide:

1. the purpose of the framework,
2. how to use the framework,
3. thedetailed design of the framework.

21.2.2 Designing object-oriented frameworks

The process of designing and implementing frameworksis not trivial and is, in many ways, harder than
designing and implementing a one off application. Thisis because the framework needs to be complete,
robust, generic, easy to use, extensible and flexible if it is to be effective:

« Complete. A framework must provide all the infrastructure required to construc t applications.
Thisincludes documentation, concrete examples as well as the underlying skeleton of the
framework. If any of these are missing (in particular the underlying skeleton) then this will act as
an impediment to the adoption of the framework.

« Robust. A framework that is not robust will soon be ignored as users will not want to have to
debug the framework as well as their own code.

* Generic. A framework that is not generic (relative to its application area) will be difficult to
apply except in very specific ways. This can reduce the incentive for organizations to adopt a
framework.

e FEasytouse. A framework which is difficult to use will not be adopted as few developers have
the time to gain the necessary understanding to take advantage of such aframework.

« Extensible. Users of the framework should find it easy to add and modify default functionality.
That is, the framework should provide hooks so that users can apply the framework in different
ways.

« Flexible. One of the claimed benefits of frameworks isthat they can be applied and used in ways
which were not envisaged by their creators. They therefore need to be flexible.

Thefirst step in developing aframework is to analyze the application problem domain such that you
know the requirements of any frameworks, the types of frameworks that would be useful and how they
might be used. For example, look for the types of subsystems which are built repeatedly. A pseudo
natural language parser might be a common subsystem within arange of diagnostic tools.

The next step involves identifying what is common about these systems and what is different. This
allows the identification of the primary abstractions for the framework. These are the components
which are constant across applications (even though they ma y have different names in these different
applications). Note that it is often easiest to work bottom up in identifying these abstractions (in some
cases the designs of the system might be the best starting points and in others the source code).

The third step involves taking these abstractions and constructing a skeleton for the framework. This
skeleton should provide the basic infrastructure (comprised of the abstract concepts) for the framework.
Thisisabit like attempting to produce a set of abstract classes and their interactions for some
application, without filling out all (or most) of the concrete classes.

172

Asthe framework takes shape you should be continually attempting to refine it by adding more
default behavior, more hooks into it as well as additional ways for usersto interact with it. Y ou will also
need to produce concrete instantiations of the framework to test its functionality and to customizability.
These exampl e instantiations should be included with the framework as part of the deliver ed product
(whether it is delivered internally or externally to your organization).

The whole development processis extremely iterative but is by necessity subject to the strictest of
software engineering practice. In addition suitable documentation of the framework is essential (and this
iswhere design patterns come into their own) from design, implementation and user perspectives.

Finally, some useful general comments about framework development include:

* Develop frameworks by examining existing applications.

« Develop small focused frameworks (breaking down larger frameworks when the opportunity to
do soisidentified).

« Build frameworks using an iterative process prototyping how the frameworks will be used all the
time.

e Alwayslook out for additional fun ctionality for the framework. For such functionality,
determine whether it should be a default behavior of the framework or whether a hook should be
provided to allow auser to implement it.

* Good documentation is essential and should include sampleinstant iations of the framework,
descriptions of the framework architecture, descriptions of the framework and its intent,
guidelines on using the framework and cookbook examples for particular operations.

21.2.3 What is a design pattern?

Design patterns capture expertise in building object oriented software [Gamma et al 1993; Johnson
1992; Beck and Johnson 1994]. A design pattern describes a solution to a recurring design problem. It
also contains information on the applicabili ty of a pattern, the trade offs which must be made and any
consequences of the solution. Books are now appearing which present such design patterns for arange
of applications. For example, [Gamma et al, 1995] isawidely cited book which presents acat alog of
23 design patterns. Design patterns are extremely useful for both novice and experienced object
oriented designers. Thisis because they encapsulate extensive design knowledge and proven design
solutions with guidance on how to use them. Reusing common patterns opens up an additional level of
design reuse, where the implementations vary, but the micro -architectures represented by the patterns
still apply.

There are potentially very many design patterns available to adesigner. A number of these patterns
may superficially appear to suit their requirements, even if the design patterns are available on -line (via
some hyper text style browser) it is still necessary for the designer to search through them manually,
attempting to identify the design which best matches their requirements.

In addition, once they have found the design which they feel best matches their needs, they must
then consider how to apply it to their application. Thisis because a design pattern describes a solution
to aparticular design problem. This solution may include multiple trade offs which are contradictory
and which the designer must choose between, although some aspects of the system structure can be
varied independently (although some attempts have been made to automate this process for example
[Budinsky et al 1996]).

Patterns seem to be exceptionally well suited for documenting frameworks. They certainly provide
guidance on how to use a framework, the purpose of the framework, they can also include concrete
examples and can be used to document the design of the framework.

21.2.4 Pattern templates

The pattern template used in [Gamma et al, 1995] provides a standard structure for the information
which comprises adesign pattern. This makesit easier to comprehend a design pattern aswell as
providing a concrete structure for those defining new patterns. Gamma s book [Gamma et al, 1995]
provides a detailed description of the template; only a summary of it is presented in Table 21.1.

Patterns are best suited for teaching how to use a framework, but with care they can meet al three
purposes identified earlier. By describing the design of aframework in terms of patterns, you describe
both the design and the rationale behind the design. As patterns also show how to use the framework for

173

aparticular problem, the user gains a better understanding of the framework as awhole. It is essentially
atutorial on using aframework, but one which is more than a cookbook.

The problem with cookbooks is that they describe a single way in which the framework will be used.
A good framework will be used in ways that its designers never conceived. Thus a cookbook is
insufficient on its own to describe every use of the framework. Of course adevelope r'sfirst use of a
framework usually fits the stereotypes in the cookbook. However, once they go beyond the examplesin
the cookbook, they need to understand the details of the framework. The problem is that cookbooks tend
not to describe the framework its ~ elf. But in order to understand a framework, you need to have
knowledge of both its design and its use. Patterns provide opportunities for describing both the design
and the use of the framework as well asincluding examples, all within a coherent whole. | n some ways
patterns act like ahyper -graph with links between parts of patterns. To illustrate the ideas behind
frameworks and patterns the next section will present the framework HotDraw and a tutorial HotDraw
pattern example explaining how to construct a simple drawing tool.

Table 21.1: The design pattern template

Heading Usage

Name The name of the pattern

Intent Thisis ashort statement indicating the purpose of the pattern. It includes
information on its rationale, intent, problem it addresses etc.

Also known as Any other names by which the pattern is known.

Motivation Illustrates how the pattern can be used to solve a particular problem.

Applicability This describes the situation in which the pattern is applicable. It may also
say when the pattern is not applicable.

Structure Thisisa(graphical) description of the classesin the pattern.

Participants The classes and objects involved in the design and their responsibilities.

Collaborations This describes how the classes and objects work together.

Conseguences How does the pattern achieve its objective? What are the trade offs and
results of using the pattern? What aspect of the system structure does it let
you vary independently.

Implementation What issues are there in implementing the design pattern.

Sample Code Code illustrating how a pattern might be implemented.

Known uses How the pattern has been used in the past. Each pattern has at least two
such examples.

Related patterns Closely related design patterns are listed here.

21.3 An introduction to HotDraw

What is HotDraw ? HotDraw is a drawing framework developed by Ralph Johnson at the University of
Illinois at Urbana-Chapaign [Johnson 1992]. It isareusable design for adrawing tool expressed as a set
of classes. However, it is more than just a set of classes; it possesses the whole structure of a drawing
tool, which only needs to be parameterized to create a new drawing tool. It can therefore be viewed as a
basic drawing t ool and a set of examples which can be used to help you develop your own drawing
editor!

Essentially HotDraw is a skeleton DrawingEditor waiting for you to fill out the specific details. That
is, al the elements of a drawing editor are provided including a basic working editor., which you, asa
developer, customize as required. What this means to you is that you get aworking system much, much
sooner and with agreat deal less effort.

21.3.1 The HotDraw framework

HotDraw was first presented at the OOPSLA’ 92 conf erencein a paper entitled “Documenting
Frameworks using Patterns’ by Ralph Johnson [Johnson 1992] . This paper is somewhat abstract,
however the appendices included with the paper are very useful as guides for changing the default
drawing editor. The concept behind frameworks is that a set of abstract classes are only so useful, itis
much more useful to capture the design in the classes along with concrete examples. The combination
of design information, concrete examples and an explicit skeleton to work with is easier to understand.
Indeed it is usualy the case that concrete examplesto follow and modify are a much better way to learn

174

about a set of classes, than to attempt to understand the class and work from there (particularly when
you are learning Smalltalk). For example, if a method takes a block as an argument, what is that block
supposed to look like? An example or two are often invaluable.

Every HotDraw application is comprised of a number of elements, these are the Drawing Editor, the
Drawing V iew, the Drawing Controller, the Drawing, figuresin the drawing, handles, constraints
between drawings and creation tools. Each of theseis explained briefly below:

DrawingEditor Dr awi ngEdi t or isasubclassof Model that represents agraphical drawing ed itor.
It isthe model of the MV C triad that includes a Dr awi ngVi ewand a
Dr awi ngCont rol | er. It sharesthe Dr awi ngVi ewand the Dr awi ngCont r ol | er witha
Dr awi ng.

DrawingView A Dr awi ngVi ewisthe view component of aMVC triad. The Dr awi ng and the
Dr awi ngContr ol | er arethe other components. A Dr awi ngEdi t or also usesthe
Dr awi ngVi ewinaMVC triad.

DrawingController A Dr awi ngCont r ol | er isthe controller component of a pair of MV C triads.
A Drawi ng and A Drawi ngVi ewisonepar anda Dr awi ngEdi t or and Dr awi ngVi ew
are the other pair. A DrawingController’s primary task is to del egate mouse and keyboard
activity to the current tool of the Dr awi ng.

Drawing A drawing is adirected graph of figures (or complex figures). Asindicated aboveit is amodel
inaMVC triad with the Dr awi ngVi ewand Dr awi ngControl | er.

FiguresA Fi gur e isakind of drawing element or widget which describes how it should be drawn
withina Dr awi ngEdi t or. A Conposi t eFi gur e isafigure which can contain other
figures as components, which al havean influence on what the composite figure looks like.
Conposi t eFi gur e aso defines a bounding box which isindependent of its sub -components.
Only components which are wholly within the bounding box are actually displayed. Unlike
VisualComponentsin Visual Works, figures keep track of which objects which depend on them.

Handles All figures can potentially have handles. Handles are away to modify afigure' s attributes, for
example by resizing the figure, or by linking afigure to another figure and thereby crea ting a
dependency. The Figure class defines a method handles which returns a basic set of handles for
resizing afigure. It is therefore common for subclasses of figure to redefine the handles method,
either to overwrite this, or to add to it (in which cas e the method would “call super” handles at
some point).

Constraints HotDraw provides Const r ai nt objects which are used to express dependencies between
objects. A Mul ti headedConst r ai nt, which isasubclass of constraint, makes the state of
one object be the function of the states of many other objects. The one object isthe “sink” and
the many objects are the “sources’. For example, if the value of one cell in a spreadshest isthe
sum of five other cells, then the five cells are the sources and the cell with the sum isthe sink.

CreationTools These are used to create a new instance of afigure. They are parameterized by the class
of the figure to display, the icon to display in the tool palette and the cursor to use while that tool
is selected.

21.3.2 Obtaining HotDraw

HotDraw is available by anonymous FTP from the Smalltalk repository at st.cs.uiuc. There are versions
available for most of the recent releases of ParcPlace Smalltalk (e.g. VisuaWorks version 1.0, 2.0 and
2.5). You should follow t heinstallation instructions and then immediately save the image onto your
local file store and exit VisualWorks.

21.3.3 Examples with HotDraw

The examples provided with HotDraw include a Pert Chart tool, a HyperCard clone, HotPaint and
Network Editor which allows you to play with nodes in a network which are either attracted or repulsed
by each other and a diagramming inspector. If you have accessto HotDraw (e.g. via ftp) then explore
them! Explore the patterns at the end of this chapter which describes the patt erns based on one of these
example applications.

175

Finally, it isinteresting to note a comment made in Ralph Johnson’s paper “ The implementation [of
HotDraw for ObjectWorks Rel 4.0] was simpler than previous ones because the design of the user
interface framework for release 4.0 was influenced by HotDraw”.

21.3.4 Facilities provided by HotDraw

So what does HotDraw provide in this framework. (I will use the term framework to describe the basic
HotDraw editor). Y ou get the following facilities:

e ATool Pal etteVi ew. Thisisthetool bar down the left hand side of the display.

e« A Drawi ngVi ew. Thisistheareaauser would actually draw in.

e A Draw ngEdi t or. Thisisthe model for the DrawingView and Drawing Controller.
* A Draw ng. Thisisalsoamodel used by the DrawingView and Drawing Controller.
* A Draw ngControll er.whichallowsyou to interact with the application.

All these are aready connected together in the appropriate manner, unlike many class-only packages, in
which you as the devel oper must determine how to bring these elements together.

21.4 Where do you start?

E Drawing [_ (O]

N
]

) Figure1

%

v

1

0 %e

A |
/

o

O

O FigureV

3]

I—J

%=t

= ¥
i | -

Figure 21.1: The BoxDraw application to be built
The remainder of this document isin effect a sample pattern which illustrates how you create asimple
extension to the drawing editor. The problem to be addressed by this patterniis:

The basic facilities provided by HotDraw make it very easy to construct a simple graphic
editor for drawing diagrams. One useful feature of such diagramsisthe ability to link figu res
together and to get those links to move when the figures are moved. Thus there needsto be a
way to link two figures together.

21.4.1 The DrawingEditor

You will almost always start by subclassing the DrawingEditor. Thisis the basic element of any
HotDraw toal. In this case we shall subclass DrawingEditor to create BoxDrawEditor, which will be the
basis of our application BoxDraw. The definition of the BoxDrawEditor is presented below:

Drawi ngEdi t or subcl ass: #BoxDr awEdi t or

176

i nstanceVari abl eNames: "'
cl assVari abl eNanes: "'
pool Dictionaries: "'
category: ‘BoxDraw

Note that | have put this classin a category called BoxDraw. Also note that | have not had to define
any new instance or classvariables - itisnot necessary asl i nherit al | need from DrawingEditor. In
fact | am not even going to define any instance methods for this class. So why have a BoxDrawEditor
class at all? Because | want a different set of tools in the tool Pal ette.

21.4.2 Define the set of tools to use

The next step is therefore to define the set of tools available to a user of BoxDraw. Thisis done by
defining amethod called def aul t Tool s on the class side. This method is used to create the

Tool Pal ett eVi ew. Thismethod returnsan Or der edCol | ecti on of creati onTool s. Every
type of figure will provide a creation tool for example:

Li neFi gure creationTool .

We are going to use the default set of tools, with the addition of just one figure, called
BoxDr awi gur e. We can thereforeusethe def aul t Tool s method definedint he superclass of
BoxDr awEdi t or and just add a creation tool for BoxDr awi gur e to the end of this
O der edCol | ect i on. The code for this method is listed below:

def aul t Tool s]
"Answer an OrderedCol | ection of the tools | can use"
A(super defaul t Tools) add: (BoxDrawFi gure creationTool); yourself.

This method should be defined in a class method category called “defaults’.

21.4.3 An example class method

Finally, for the BoxDr awEdi t or classwe shall define a class method protocol called “examples’. In
this protocol we shall define asingle method called exanpl el. This method will send the message
opentothe BoxDr awkdi t or which will create anew instance of the BoxDr awkdi t or and will
cause the graphic editor we are constructing to be displayed.

exanpl el)
BoxDr awEdi t or open.

21.5 BoxDrawFigure

21.5.1 Defining the figure

We now have a drawing editor for BoxDraw with everything we need defined - except what a
BoxDr awFi gur e is. Thisisthe next step.

We could make a BoxDr awi gur e asubclass of asimple figure such as Rect angl e, El | i pse
or Pol yl i neFi gur e. However, we want to have atext field in the middle of BoxDr awfFi gur e
which will represent the name of the figure. Thismeansthat BoxDr awi gur e will have at least one
subfigure, we therefore want to make BoxDr awFi gur e asubclass of Conposi t eFi gur e.

A Conposi t eFi gur e isafigure which possesses subfigures, who determine part or al of the
look of the figure. Conposi t eFi gur es are also often used if it is necessary to give auser access to
the subfigures (for example to change the text in the text field of the BoxDr awFi gur e). The
definition for BoxDr awfi gur e isgiven below:

Conposi t eFi gure subcl ass: #BoxDr awFi gure
i nstanceVari abl eNanes: "'
cl assVari abl eNanes: "'
pool Di ctionaries: "'
category: ' BoxDraw

177

21.5.2 Adding an instance creation method

Now we have aclass called BoxDr awFi gur e, we need some way of instantiating this class. HotDraw
expects afigure' sinstance creation method to be called cr eat eAt : (rather than newor open with
which you may be more familiar). We will therefore define amethod cr eat eAt : in the protocol
“instance creation”:

creat eAt: aPoi nt
Nself new initializeAt: aPoint

This method first creates a new instance of the BoxDr awFi gur e and then sendsit an
initializeAt:messagewith aPoi nt asthecurrent cursor position .The initializeAt:
method will actually draw the figure and its component elements. We will look at this method below.

21.5.3 Defining a creation tool

While we are still on the class side, we shall definethe creat i onTool method which specifies what
icontouse inthe Tool Pal ettefora BoxDrawri gur e. Rather than define anew
creationTool class, wewill providea creationTool method whichwill return the default
creationTool, parameterized for BoxDr awFi gur e. This method will be defined in the class protocol
“tool creation”. Thecr eati onTool methodis:

creationTool
ATool
icon: (lmage
extent: 16 @16
depth: 1
pal ette: MappedPal ette bl ackWite
bits: #[255 255 255 255 255 255 128 1
191 253 160 125 191 253 160 197
191 253 160 125 191 253 28 1
255 255 255 255 255 255 255 255]
pad: 8)
cursor: Cursor crossHair
class: self
creati onMessage: #createAt:

This method is based on that definedin PERTEvent in one of the Hot Dr aw example applications. It
returns an instance of Cr eat i onTool which usesaparticular icon on class BoxDr awFi gur e and
uses a crossHair (rather than origin) style cursor. Note that the cr eat i onMessage is specified here.
We could have used a different creation message to that used el sewhere in HotDraw. However, to
remain consistent with existing HotDraw applicationswe usedcr eat eAt : .

21.5.4 The initializeAt: method

We now need to define what the elements of this drawing will be. That is, “what the figure will look
like”. Thisisdonewithin i ni ti ali zeAt: definedin“initialize’ protocol on the instance side of the
class. The code for this method is:

initializeAt: aPoint
| title myFigures aRectangle |
"Get the bounding rectangle"
aRectangl e : = aPoint extent: 90 @ 45.
origin := aRectangle origin.
"Position the text field relative to the origin"
title := FixedTextFigure string: 'A Nane' at: origin + (5 @5).
title nmaxLength: 65.
"Add the text field to the subel enments of this figure"
myFigures := (OrderedCol |l ection new) add: title; yourself.
sel f setFigures: nyFigures visibleArea: aRectangl e.
"Draw t he boundi ng box of this figure"
sel f showvi si bl eAr eal ndi cat or.

This method first creates a rectangle whose right hand corner isindicatesby aPoi nt and whose extent
is 90 by 45. Having done that, it then sets the origin of the figure relative to the rectangle. Next it
creates atext field at a particular point and then uses the bounding box of the figure to draw the shape of
the figure (in this case arectangle).

178

21.5.5 Running the editor

Y ou have now done enough to open a BoxDrawEditor. Do this by evaluating:

BoxDr awEdi t or open.

in a Workspace window.

The BoxDr awFi gur e isthelasticoninthe Tool Pal ett e. However, al you can doisplacea
BoxDr awfi gur e in adrawing and change the label. Note to change the label, select the Text tool (the
big ‘' T’) and hold down the shift button while selecting the label with the left mouse button.

21.5.6 Adding handles

Tobeabletolinka BoxDr awFi gur e to another figure we need to add another handle. Handles
provide away of telling afigure that so me operation should be performed. The most common handles
are for shrinking or growing afigure. For example, handles on the four corners of afigure. We want to
add another handle which will allow usto link oneBoxDr awfi gur e to another BoxDr awfi gur e.
By default we have inherited the handles defined in the figure. These handles are on the four corners
of our figure and allow the user to resize the figure. The method handl es in the protocol “accessing”
ontheclass Fi gur e providesfor this. Wewant to add an additional handle which allows linksto be
created. We shall select the center point. However we do not want to lose the ability to resize our
figures, we shall therefore define a new handles method in the “accessing” protocol of the
BoxDr awi gur e which uses super to obtain the original handles and then add our handle to this
collection of handles:

handl es
"Add a handle at ny center that draws connections to other figures"”
N(super handl es) add: (ComrandHandl e
connectionFor: self
at: #center
class: LineFigure); yourself

We now have afully functional BoxDraw application. Open the BoxDr awEdi t or again and place
some BoxDr awfi gur es on the drawing area. Now select the “arrow” icon on the icon menu. Thisis
the top icon. Next select one of the BoxDr awfi gur es. You should see asmall square (ahandle) in
the center of the figure. Click on this and drag the resulting line to another BoxDrawFigure. This should
connect the two figures together. Now move the figures around. Y ou should find that the lin k between
the two figures moves with you.

21.5.7 Changing a figure menu

To complete this application we shall change the menu available when clicking on aBoxDr awFi gur e
using the middle mouse button. At present the user has the option to show visible area, hidev isible area
and reset visible area as well as the standard cut, copy and paste options. We only want the user to have
access to the standard cut, copy and paste options. To do this we redefine the menu method inherited
from Conposi t eFi gur e. Thismethod is defined within the accessing protocol:

nenu
"Define a pop up Menu for use w th BoxDrawFi gure”
AMenu | abel s: 'cut\copy\paste' withCRs
val ues: #(#cut #copy #paste)

21.5.8 The (pattern) solution statement
The ability to specify handles which performspeci fic functions allows operations to be performed

through operation of the mouse. The use of a CommandHandle with a LineFigure can be used to link
two figures together.

179

21.6 Summary

In this chapter we explored the concepts of frameworks and patterns as a method o f documenting
frameworks. We have briefly considered what we mean by frameworks and how frameworks can be
developed. We then discussed what a pattern is and how they may be used to document a framework.
Following on from this an extended tutorial describin g how the framework HotDraw can be used to
develop asimple drawing tool called BoxDraw. This tutorial example was presented in the manner of a

very (simplified) pattern.

180

Part Four

Testing and Style

22. Testing Object Oriented Systems

22.1 Introduction

Testing object oriented systemsis a very important issue as more and more organizations are starting to
develop Smalltalk (aswell as C++ and Java) based applications. Many such organizations have been
forced to come up with their ow n solutions for assuring the quality of their product. However, little
attention has been focused onto this subject at Smalltalk -centered conferences or in Smalltalk literature
(see the workshop at OOPSLA-95 for a notable exception). Thereisa particular scarcity of literature on
“how-to” test Smalltalk systems as well astools to support such testing. For organizations just starting
to use Smalltalk for major projects thisis a very worrying situation.

Object oriented techniques do not (and cannot) guaran tee correct programs. They may well help to
produce a better system architecture and an object oriented language may promote a suitable coding
style, but these features do not stop a programmer making mistakes. Although this should be self
evident, for al ong time there was a feeling that object oriented systems required less testing than
systems constructed with traditional procedural languages, was prevalent (for example see the book
describing the OMT method by Rumbaugh et al).

Where the testing of object oriented systems has been considered it is often the user interface of the
system which has actually been tested in a principled or systematic manner. These tests usually
concentrate on overall system functionality, u sability issues (such as the ability of the user to use the
system or the speed of response) and stress or exception testing. Stress or exception testing relate to
attempting to break the operation of the system by inputting unacceptable dataor crashing p art of the
system (e.g. an associated relational database system) to ensure that the system can recover from such
catastrophic failures.

However, this chapter aims to show you that if anything, object oriented systems require more
testing, not lesstestin g than traditional programming languages. In the remainder of this chapter we
shall consider what effects inheritance, encapsulation, polymorphism and dynamic typing have on
testing as well as approaches to method and class (unit) testing, object integration and system testing.

22.2 Why is testing object oriented systems hard?

22.2.1 An example

To illustrate the point consider the following Smalltalk. Let us assume that we have defined a method
ret ur nSymnbol which returns a symbol based on the current state of an object . Let us aso assume
that we have defined another method passesTheTest which returnstrue or false based on the state
of its object. We could then write the following method:

nyMet hod: aCol | ecti on and: anObj ect

| aVariable |
aVariabl e : = anObj ect returnSynbol .
aCol l ection do: [:item| (item passesTheTest) ifTrue:

[itemperform aVariable]].

Inthiscaseit isvery difficult to determine statically what is going to happen in this method. Thisis
because until the method is executed, wedo not k now the content (let alone the type (class) of the
objects) in aCol | ect i on. We cannot determine therefore which objects must respond to the
passesTheTest message. Nor can we determine which objects will return true from this message
and thus which objects will cause the if True block to be evaluated. In this example, the situation is

made worse, because the symbol held in aVariable (which is the name of the message to send to the
item) isdetermined by anObj ect which isan object passed into this method. We therefore do not
know:

1. What the contents of aCol | ect i on will be

2. Which classes must respond to the message passesTheTest

3. Which instances are likely to result in the if True block being evaluated (thisis context
dependent).

4. What the message to be sent within the if True block will be (thisis content dependent).

5. Which objects must respond to the message we don't yet know.

It could be argued that thisis true, but irrelevant. However, the point is that a number of the above
issues would be resolved by theco mpiler at compile time in other languages such as Ada or Pascal.
These static compile time checks can identify what type of object will be held in the aCollection, if the
type of object receiving the message will understand that message etc. Whereasin S malltalk, it isleft
up to the devel oper to ensure that no problems are likely to occur.

Asyou can see from this very simple (although slightly contrived) example traditional static test
generation techniques, although of use in object oriented language s such as Smalltalk, do not provide
the whole answer. In the example above, the problems are due to the dynamic typing of Smalltalk and
the late binding and polymorphism of object oriented languages.

22.2.2 What makes it hard?

Part of the problem for object orien tation is that space of possibilitiesis so much greater. For example,
not only are we concerned about objects sending messages requesting that other objects run specified
methods correctly, we are also concerned with which class of object will receive the message and which
class of object sent the message as thiswill therefore have an effect on which method will be used.
These issues are related to the polymorphic nature of object oriented languages and the use of
abstraction and inheritance as a basic system construction tool.

In addition encapsulation leads to a fundamental problem of observability; asthe only way to
observe the state of an object isthrough its operations. Thisis fine for black box testing, but makes
white box testing extremely diffic ult. This problem is compounded as traditional control flow analysis
techniques are not directly applicable as there is no definite sequential order in which methods will be
invoked. That is, another object may request that a method is executed at a point which cannot be
statically determined (see example in introduction). Indeed, as the state of the object may affect what
the method does, it may not even be possible to determine how the method will behave. Of course this
doesintroduce the issue of “what is correct behavior”, however we will leave the issue of “correctness”
until alater section.

In traditional programming languages the basic unit of test is usually taken to be procedure or
function. However, it should be seen from this brief discussiont hat, the object oriented equivalent i.e.
the method, cannot be taken as the basic unit of test. It is affected by the state of the object, possibly by
the state of the class (if the class has class variables), may interact in unforeseen ways with other
methods and may rely on methods defined elsewhere in the class's superclass hierarchy.

Inheritance also affects testing and introduces the following question “after a change, to what extent
should the code currently in the system bere -tested?’. In atraditio nal programming language it is
usualy quite straight forward to identify what parts of the system code are affected by some change. In
an object oriented system it is far less obvious.

The implication of the above is that in object oriented programs, suc h as those implemented in
Smalltalk, the basic unit of test must be considered to be the class. That is not to say that careis not
given to exercising individual methods within a class, merely that the individual methods should not be
treated in isolation.

22.2.3 Why a lack of emphasis?

Part of the reason for the lack of Smalltalk testing literature or toolsis probably due to the background
of Smalltalk. In the past it was often used as asingle (or at most afew) developer’ slanguage. It was
often considered to be a personal development environment or a good prototyping tool. However few

183

people considered it suitable for constructing industrial strength systemsin. The reasons for this have
aready been considered in the introductory chapters of this book.

Ast hetypes of systems being constructed were experimental, the tools available made code
debugging easy and could be done even when the implemented system was executing. This led many
people to design the overall system, roughly specify the components, imple ~ ment them and test the
resulting system (not the components) using the user interface. If the system failed (at any time
including once devel opment was compl ete) then a quick fix could sort out the problem. This approach
can work well for asingle develope r-user, non critical, application where the mgjority of the system is
the user interface. However, for serious development this approach is inappropriate.

Smalltalk applications require testing just as any other software requirestesting. Indeed thetypeo f
testing normally applied to traditional programming languagesis also required by object oriented
systems. However, object orientation imposes unique requirements on the testing process. Why these
reguirements exist and how they can be handled is the subject of the remainder of this chapter.

22.3 Inheritance

Inheritance is afundamental feature of object oriented programming languages. However, it is both a
blessing and a curse. For example, many programmers believe that they can inherit many of the features
they require in their new classes from existing classes (and often they can). However, they also tend to
feel that it is not necessary to test those features they have inherited because they have been tested very
many times before (both by the system devel o pers and by the many thousands of users). However, this
is misleading because in defining a new subclass they have changed the context within which the
methods will execute at least in the subclass. The problem is that each new subclass may not require any
re-testing and may very well function acceptably, but you are relying on a continuing hypothesis. Of
course this hypothesis may have held many times before, but there is no guarantee that it will hold this
time. Interestingly, the same problem also occurs with Ada generics. In this case each instantiation of
the generic package may work as intended but equally thistime it may fail.

22.3.1 The effects of inheritance

There are anumber of waysinwhich inheritance can affect thetestin g required in asubclass. The
following list summarizes these and lists the type of testing required:

Adding functionality . For example, by adding new methods. In these situations, the tests should
concentrate first on the new functionality, to ensure tha t the class works correctly (relative to its
specification). If the new functionality calls on existing methods, then tests should be performed
to ensure that these methods continue to function correctly. If any existing instance variables are
modified by the new methods, or the methods they call, then the effects of these changes should
be determined. This may result in re-testing the whole class.

Over-riding methods. In these situations, the newly defined methods must of course be tested. This
should test the new definition to ensure that it handles the same range of values as the original
and produces the same results. If thisis not what was desired, then over -riding was not the
correct approach.

Next all the methods which invoke the overridden operatio n must be re -tested. This can be
done by using the tools provided with the Smalltalk system to identify all the senders of the
messages associated with the changed methods. Thiswill provide the initial test list. If the
behavior of inherited methodsisch anged in any way then this should be treated as adding
functionality and tested as above.

Super Classreferences . If the subclass changes anything used by the super class, for example by
referencing a pool variable, then the super class must also be subje cted to incremental testing.
Again, the process needs to identify the elements of the class which have been affected and to
test those elements. In the case of a pool variable, it may also involve testing other classes which
reference the pool variable.

184

22.3.2 Incremental testing

Incremental testing is one obvious answer, i.e. we don’t want to re -test the whole class if we don’t need
to, only those elements which have been affected by the additions in the subclass need to betes ted. Of
course thisis the key issue here: what determines whether or not we “need to” re -test a subclass. One
answer isthat it isthe properties of the class which are affected by the subclass, including which
instance variables may be atered and which methods may be directly or indirectly affected, which
determine what should be re-tested. For example, adirectly affected method may be one which iscalled
by a (re)defined method in the subclass or which directly references an instance variable which is
modified by (re)defined methods. Indirectly affected methods are much harder to identify. They are
methods which may be affected due to a chain of interactions. For example, suppose that amethod “ a”
references an altered instance variable and modifies ano ther instance variable. Thisresultsin a second
method operating in a different way generating a different result which is used by athird method. The
third method isindirectly affected by the original change in the instance variable. In the worst case,
every element of a class may be affected in such away. In such cases, either the whole class must be re-
tested or the developers must use their own intuition and experience to decide how much testing is
required.

A subtlety which can often be missed ist hat although an inherited method has not been changed, a
method which it calls may have been redefined in the subclass. Thus the inherited method is directly
affected by the subclass and must be re-tested.

However, we want to be sure that any inherited fu nctionality has not been adversely affected in an
unanticipated way (note that thisimplies that we have some sort of specification against which we can
compare the functionality of the class). We must therefore also consider some form of regression
testing. This can be achieved by defining an appropriate set of regression tests on the class side of the
root superclass. These tests can then be performed whenever the root class or one of its subclassesis
changed in anyway. |deally these tests should include their own evaluation so that a report can be
generated (to the Transcript or to afile) stating the result of the tests. If appropriate, additional tests can
be defined (in subclasses of the root superclass) to test the added functionality. If new testsa re defined
each time the functionality is extended or modified, then the tests on the class side also act as a
repository of testing knowledge which can be exploited by future users of the classes without the need
to understand their full functionality.

22.4 Abstract superclasses

Abstract superclasses bring together common features, which are to be used in many subclasses.
However, from atesting point of view they are adifficult problem. The definition of an abstract
superclassisaclasswhich is never intend ed to be instantiated and which does not provide, in its own
right, enough functionality to be useful. Given these two features, it is extremely important to test
abstract superclasses thoroughly. However as they do not provide enough information to create an
instance of the class, it isimpossible to test the class directly. The tester should provide a subclass
which acts as atest harness for the facilities defined in the abstract class (such a class can be easily
removed from the Smalltalk image).

The test subclass might provide awide range of facilities. For example, a method may be defined
which sets the state of the instance such that a particular method can be called and then sends a message
causing the method (inherited from the parent class) to be executed.

Note that testing the abstract superclass does not mean that exhaustive testing of the methods in the
subclasses, which inherit from it, is not required. As each subclass has changed the context within
which the method will be run, the same appr oach to testing as discussed in Section 3 must be
performed.

22.5 Encapsulation

Encapsulation is a great bonus from the point of view of the user of an object - they do not need to know
anything about the object’ s implementation, only what its published protocols are. This aso means that
the developer of the class knows that any potential users will have to come through the front door etc.

185

However, for the tester of the classit is both a benefit and a drawback. It is a benefit bec ause the
encapsulated object is clearly designated for unit testing. That is, it is clear what the boundaries of the
classare, i.e. anything that is not in the class is in another class and thus does not come into the picture
(from the point of view of unit testing). It is therefore possible to test the unit in isolation.

22.5.1 Black box testing

Encapsulation therefore promotes black box testing. Black box testing can be carried out in the normal
way with the addition that the state of the object (and possibly t he class) must be taken into account.
Black box testing (also called specification based testing) is aimed at testing a program against its
specification only. That is, the class should be tested regardless of the way in which it has been coded. It
is usually accomplished, even in object oriented systems, by identifying a set of messages to send to the
object and the parameters to use with these messages. The results of sending these messages are then
compared to the original specification (assuming oneexi sts). The product of this comparison is then
used to determine if the class has passed the test or not. In general, if some results are not as expected
further testing would be used to determine the actua behavior of the class. A decision would then be
taken to determine what action was required (i.e. modification of the source code or if appropriate,
modification of the specification).

22.5.2 White box testing

Although encapsulation promotes black box testing, it can make white box testing much harder. White
box testing (also known as program -based testing) is complementary to black box testing. It consists of
examining the internal structure of a piece of code to select test data which will exercise that code
thoroughly either because that piece of codeiscrit ical or to gain confidence in the code to eliminate it
from suspicion (for example if you are attempting to track down the source of some undesired
behavior).

A problem with encapsulation is that whileit is entirely possible to view the source code and
identify the tests to perform, it is not possible to access the instance variables of the object directly, nor
isit usually possible to monitor the execution of the methods externally to the object.

Of course in most Smalltalk environments you could uset he debugger and the inspector to examine
the source code during execution (and indeed thisis the intention of these tools). However, using such
tools presents problems for both traceability and accountability. Thusit is not possible to trace the tests
which have been performed during a project nor is it possible to record these tests and their results for
later quality audits. Of course, you can require the developer to note what they are doing, but thisis
nowhere near as good as having the systemdo it for you automatically. This approach also failsto
support repeatability of tests. That is, once you have completed your testing, it is not possibleto re -run
the tests and check the results following some change to the class.

22.5.3 Overcoming encapsulation during testing
In Smalltalk it is possible to work around the problems imposed by encapsulation in a number of ways:
22.5.3.1 Use of the halt message

Smalltalk provides a halt message which can be sent to an object. Thiswill causethe obje ct to stop
executing at that point and allow the user to enter the debugger. The debugger will then alow the user
to view the method that is executing as well as the state of any instance and temporary variables

This may at first seem intrusive, asthede veloper is modifying the source code of the method by
adding the halt message. As has already been stated thisis not desirable. However, inthiscase, it is
possible to control the method' s execution through the debugger. This means that the developer can
ensure that the intended operation of the method remains unchanged before attempting to identify the
behavior of the method under test situations. Thus this approach may not be as intrusive as would at
first appear.

It isunfortunate that the debugger is so named, asit is not only useful for debugging systems, it is
aso aparticularly useful tool for white box testing. Thisis because, once you have entered the
debugger (e.g. by introducing a self halt message into the source code of amethod) itispos sibleto

186

control the execution of the method in a number of ways. For example, atester can change the state of
an object or the input parameter values using the inspectors at the bottom of the debugger. They can
control the execution of the method either by stepping through the method a line at atime, descending
into methods called by this method or proceeding to run the whole method as though the debugger had
never been entered. By default the tester controls the execution of the method from the point
immediately after the halt message. However, it is aso possible to re-run the whole method.

22.5.3.2 Subclassing the test class

A more object oriented approach is to define atest subclass for the class being tested (this approach has
aready been mentioned above). The tester can then define an appropriate set of test harness methods
which exercise the class in the desired manner. As the test harness methods have the same ability to
access the state of the object as the methods under test, it is possible to determin ethe object’s state
before and after amethod is executed. The results of these tests can then be written to the Transcript and
/ or to afile. If theresults are written to afile, thetests can bere -run at alater date and the new results
compared with the previous results. Thisis cleaner than writing print statements within the source code
of the methods to be tested, however it does not allow the internal operation of the methods to be
monitored as closely.

To monitor the actual execution of thedesi red methods, it ispossibletoplacea self halt.
message just prior to any super message. This invokes the debugger and allows the devel oper to step
down into the super method’ s code. For example:

age
self halt.
super age.

Of course, in practice acom bination of al of the above may be necessary to accomplish both black
box and white box testing effectively.

22.6 Polymorphism

Polymorphism is the ability of objectsto send the same message to instances of different classes which
do not have a common superclass. It is made possible by the dynamic binding of messages to objects.
That is, it isonly at run timethat it is possible to determine to which object the messages will be sent.
From the point of view of testing, there are an umber of problems associated with polymorphism. Each
of theseis discussed separately below.

22.6.1 Undecidability

Polymorphism allows the programmer to specify which message will be sent to an object, but not which
object will receive that message. Thiswill onl'y be determined at run time. It is therefore not possible to
provide any form of static check to see that the message will be “ understood” by the object (other than
checking that at least one class somewhere in the system will respond to that message). In addition,
even when it is known that the object receiving the message will understand the message (e.g. al
objectsin Smalltalk understand printString), it is not possible to identify which version or
implementation of the method will be executed. Thatis , the tester will know that the object will
understand the message printString, however, which version of printString will be used will depend on
the class of the receiver. It might be that defined inclass bj ect , that defined inclass Col | ecti on
€etc.

It istherefore impossible for the tester to know what would be an appropriate range of testsfor a
polymorhpic message expression. They therefore have to make assumptions about the range of objects
which are likely to be sent the message. In some casesthis range may be very large indeed. In such
situations it is necessary to produce one or more class hierarchies for different implementations of the
method. These trees can then be used to identify those classes in which new definitions of the method
are provi ded. The assumptions being used in the tests should, of course, be made explicit in the test
report, so that they can be challenged if it isfelt that they were inappropriate.

187

22.6.2 Extensibility of hierarchies

Another problem associated with polymorphism is presented when an operation, which possesses one or
more parameters which are polymorphic, is being tested. That is, the operation can be called with a
range of different types of object as a parameter. For example, a parameter may be assumed to be a
collection, however it could be a set, abag, an array, alist, a sorted collection or an ordered collection.
Each of these have specific features which may or may not affect the operation of the method. They
may also contain elements which are of any type, which inturn may or may not affect the method’s
behavior.

Astesting a method consists of checking its effects when executed for various combinations of
actual parameters, atest suite must ensure that all possible input types are covered. This of course
implies that some form of specification exists which specifies the acceptable range of input types.
However, it isimpossible to plan a set of testsin which you check all possible parameter values for a
method. Thisis because the range of different types of o bjects which could be presented to amethod is
huge in Smalltalk. Remember that the hierarchy of classesis very large (e.g. every class under
oj ect) and isfreely extensible. For example, | can define my own stack and queue collection
classes. However, even if the method | am testing includes atest to seeif it has been presented with an
instance of a collection class, it could easily encounter atype of collection class for which it was never
designed. Remember you (or anyone else) can extend the set of collection classes whenever you wish. If
the method is part of aclass which isto be provided as part of a set of “highly” reusable classes, either
within asingle project or for externa use, thisisasignificant issue.

22.6.3 Heterogeneous containers

Ashas been briefly mentioned above, there are many classes which are designed to hold elements
which may be any instance in the system. In Smalltalk, this means that they can hold instances of
classes, classes, metaclasses etc. If the tester is considering amet hod which will be applied to, or will
consume, the members of such a heterogeneous container (e.g. acollection), it isamost impossible to
ensure that a complete range of tests has been performed. For example, it may be assumed that al the
members of su ch a container are conventional instances of user defined classes, however thereis
nothing to stop the member of one of these containers being a class or the system dictionary etc.

In such situations care must be taken to ensure that reasonable usage of the method has been tested.
In other words, with reference to the classes specification, assumptions must again be made, thistime
about the use of the method. Again, these assumptions should be documented so that they can be
challenged if necessary at alater date.

22.7 Additional Smalltalk specific features

22.7.1 Block evaluations

Blocks introduce another complexity to the testing process which is particular to Smalltalk. Not only are
they more difficult to test physically (it is more difficult to get hold of them i nisolation), they also
execute in the context within which they were created (rather than the context in which they are
evaluated). This second issue isimportant because in many situations a block is defined in one place,
and then passed as a parameter t o0 another place, where it is evaluated. If the receiving method is being
tested, it isimpossible to conceive of all the contexts in which the block could be created and therefore
impossible to produce a comprehensive test suite. Again, care must be taken to test the receiving
method against its specification and not the assumptions which this led to.

In addition when they are examined in the debugger, they are treated in a different way to genera
Smalltalk code, which makes it more difficult to follow the thread of execution. Instead of immediately
stepping through the code in the block, it is necessary to step down into the value method and then into
the block. It isal to easy to step over the block and fail to see the result.

188

22.7.2 The Perform: message

The perform message takes a symbol as its parameter. It then uses this symbol as the name of a method
to execute on the receiving object. Asthe symbol can be stored in avariable, it isimpossible to
determine al the possible symbol va lues which will be passed to the perform message. It is therefore
advisable not to use perform unlessit is absolutely necessary. However, if the developer has used a
perform expression, then a reasonable set of tests should be identified. Once again, the assumptions
used to generate this set should be made explicit.

22.8 Summary

In this chapter we have considered some of the special problems which face a devel oper when testing an
object oriented system (with special consideration for Smalltalk implementations) . Ashas been
discussed inheritance, abstraction, polymorphism and encapsulation all play a major part in determining
the best practice in testing Smalltalk systems. A number of recurring themes have been:

* Theimportance of specifying what a class or object is intended to do.

e Theuse of scenariosto aid in the adequate testing of methods and classes.
* The adequacy of testing and the importance of deciding what is sufficient.
e Examples and assumptions need explanation (including their context).

A final comment isthat this chapter should not put you off constructing large complex systemsin
Smalltalk. Rather it should make you aware of the difficulties you will face in testing such a system.

22.9 Further reading

Little has been written about the special problemso f testing object oriented systems, however the
papers by [Barbey and Strohmeier 1994] and [Barbey, Amman and Strohmeier 1994] are an exception
and provide an excellent introduction to the subject of testing object oriented systems. [Perry and Kaiser
1990] adiscussion of the effects of inheritance on object oriented testing. The next chapter also
provides further reading on the subject of object oriented testing.

189

23. Method and Class Testing

23.1 Introduction

In the last chapter we discussed the problems facing the tester of an object oriented system (and in
particular a Smalltalk system). We also briefly considered some approaches which overcome these
problems. In this chapter we will consider the current best practice in testing object oriented systems.

23.1.1 Class and instance sides

Aswas stated in the last chapter, the basic unit of test in Smalltalk is the class. However, there are two
sidesto aclass, oneisreferred to asthe class side and the other the instance side. The class side can be
tested directly by send ing messagesto the class. However, the instance side can only be tested by
creating instances of the class. That is, although you define the instances’ methods in the class, you
must test them using an instance. An important point to remember isthat, it may be necessary to use
both the class and instances of the class together, to adequately test both the class side and the instance
side. For example, let us assume we have a class such as that illustrated in Figure 23.1.

Clas side

Methods:

currentLinkType
AXLinkType

Instance side
Instance variables
myLink
Methods:
createLink
myLink := self class currentLinkType new|

Figure 23.1: Instance and Class method interaction

In this situation, it is possible to test the class side method currentLinkType directly by sending a
message to the class and in isolation. However, it is not possible to test the instance method createl ink
without considering the range of values which may be returned by currentLinkType. Inthiscase, itis
the class XLinkType which is returned, however, it could easily be one of arange of values. In addition,
the class to which the currentLinkType message is sent, depends on the class of the object in which the
createLink method is executing. As the createlink method may be inherited by other classes, we cannot
guarantee which class will receive the currentLinkType message.

23.1.2 Testing methods in a class

Each method in a class should first be tested in isolation. However, once all the individual methods in
the class have been tested, threads through the meth ods in the class should be identified. This can be
done by postulating scenarios of normal and exceptional usage (which may have been produced when
the class was being designed). By tracing the result of these scenarios through the classit is possible to
identify threads of execution amongst the methods in the class. An example of athread of executionis
illustrated in Figure 23.2. This thread was obtained by considering a scenario in which aper son object
hasabirthd ay. Thisleadsto the per son object being sent the message bi rt hday. The associated
method bi r t hday is presented below:

bi rt hday
Transcript show 'A happy birthday to ' , self nane.
sel f increnent Age.
Transcript show 'l amnow' , self age.

190

From the scenario that a person might have a birthday and therefore receive the message birthday,
and from examining the source code of bi rt hday (andi ncr enent Age) we can obtain the thread in

Figure 23.2.
|

incrementAge

age instance
varigble

Figure 23.2: A thread of execution through an object

23.1.3 Object state

Another point to bear in mind when testing a class, is that both instances and classes have state. For
example, aclassmay haveaclassin stance variable which is used to keep arecord of the number of
instances which have been created of that class. This information may be used purely for book keeping
or may be used to limit the number of instances created. In the latter case, atest needs to be performed
which sets the counter to its limit and then a new instance should be requested. This could be done,
either by creating the required number of instances, or by manually setting the counter to the
appropriate value (e.g. by using the debugger or inspector).

It is also important to remember that although a method has been tested in the context of a state
instance, it is possible that some unintended sequence of message sends could result in the method being
executed with the object in an unintended state. It is therefore not possible to test individual methodsin
isolation thoroughly, nor isit sensible to ignore the state of the object when performing these tests. It is
of course quite possible to ignore the state, however the tester does so at their peril.

23.1.4 Private methods

Some methods are defined such that the user of the class is never expected to see them. This may be
because they do some housekeeping which islocal to the object (for example the initialization method)
or because they provide facilities which are relevant to the internals of the object and not to the external
interface to the object In Smalltalk, this method hiding is not enforced, it is usually left implicit (unlike
C++ or Java inwhich the equivalent of privat e methods really are private and are not available as
external messages). For example, in VisualWorks Smalltalk this can be done by placing the appropriate
set of methods in a protocol entitled private or private-*. The convention isthat a user of this classis not
expected to use or to need to know about these methods. Thisis useful from atesting point of view as
the tester can test the individual execution of these methodsin ablack box fashion. They can aso use
the approaches described above to perf orm white box testing. However, it also meansthat a user of the
class, if they so wish, can call these methods. Asthisis not what isintended it is arguably reasonable to
ignore this scenario. However, it may be wise in some situations at least to know what the effects will
be and whether the object’ s methods will respond in a meaningful or at least well defined manner. For
example, it may be useful to know what will happen if another object sends the message initialize to the
current object at some point after the object has started to be used.

23.1.5 Pool variables

An additional problem with testing classes (as opposed to unit testing in other languages) is the presence
of pool variables. These are rather like limited scope global variables. They are common to aset of
classes and may affect the operation of these classes. As any one of the classes associated with the pool
can change their value it is possible for one class (or its instances) to have a profound effect on the
operation of acompletely different class or itsinstances elsewhere in the system. Thisis something
which requires careful thought.

191

23.1.6 Tracing a classes operation

In order to trace a classes operation it would be possible to create a subclass which mirrored the parent
classes methods exactly. The subclasses methods could print the value of any parameters into the
method before calling the method and then any results returned by the method. If necessary tests could
be performed to ensure that the parameters or the returned value were within ant icipated ranges. The
advantage of testing the class method callsin this way would be to encapsulate all the test information
into atest subclass which could be removed from the Smalltalk image for the delivered system.

23.1.7 Sources of test information

The con cept of use cases discussed earlier in this book is an important source of test cases.
Opportunities for the merging of the use case specifications into test specifications abound.

A styleissug, rather than atesting issue, isthat itisgood styletopro vide a set of test examples,
often on the class side, which exercise some behavior of the objects of the class. These can be used to
illustrate how to use the objects of the class. They can also act as aform of regression testing either
when the class is modified or when a subclassis defined. If these test methods are placed in appropriate
protocols, then the whole protocol can be filed out in one go, thus creating atest file.

23.2 Object integration testing

The above section deliberately only dealswith the issue of testing a classin isolation. Thisinvolves
individual method testing followed by testing combinations of methods. Object integration testing
involves testing instances of the same or different classes when they are collaborating in some
operation. Thisis different from traditional procedural integration testing as the structure of traditional
programming languages is fairly rigid and is unlikely to vary while the system is executing. It is also
different from statically bound procedural programs, because when alanguage such as Pascal is used,
the compiler is able to test to see whether the called procedure or function definition matches the calling
definition. For example, if a procedure expects an integer as a parameter the compiler checksthat an
integer is being presented to it.

In Smalltalk, neither the structure of the objectsis fixed nor are the actual types of parameters etc.
likely to be known. It is therefore necessary to perform object integration testing in a methodol ogical
and principled manner. If the specification of two classes indicates that they are intended to collaborate
to achieve some behavior, then those two classes should be tested together. Again the specification
should be used to generate scenarios which exercise normal and abnormal interactions. These scenarios
can then be used to define tests to perform. Having tested the two classes other cooperations may be
identified involving these and other classes. Each of these collaborations also needs to be tested.

Integration testing (like multiple method testing in a single class) relies on the identification of
scenarios which will be used to define appropriate test suites. However, consideration should also be
given to identifying anticipated message paths. The differencesb etween these two tests are akin to
black box and white box testing for a single method. The scenario based testing relies on testing the
specification of the behavior of the collaborating objects, while the white box testing is intended to test
particular message paths through the classes. Again, the two approaches to testing are intended to be
used together.

23.3 System testing

System testing of Smalltalk systems should be carried out in essentially the same way as system testing
of any computer system. Thisis because a system implemented in Smalltalk should be subject to the
same types of requirements as a system written in any other language. There are some specia situations
which you might wish to test for, such as ensuring that the system does not run out of memory before a
garbage collection isforced or that the system will till work once the image has been “ stripped” of
those classes not required by the production system (e.g. the compiler classes etc.). However, in general
the system should be subject to the same range of tests as any other.

192

23.4 Self testing

An approach, suggested by Charles Weir of Object Designers Ltd., would be to provide facilities which
enable code self-testing within Smalltalk. A simple technique is to make the code do its own self-testing
using assertions. Thisis a code statement that is always true; it tests that the code is behaving as
expected. If the statement is fal se the assertion stops processing to allow debugging.

An implementation of assertionsin Smalltalk is

assert
self value ifFalse: [self halt].

This method should be added to the Bl ockCont ext classand allows the developer to verify
assertions wherever required, for example:

[range first == 1] assert.

Of course in the released version of the system, these tests ar e redundant and waste processing time. So
they could be replaced by a null version of the method:

assert
sel f.

The overhead of the extra method dispatch isrelatively small; of courseif it is still significant, we
could write a utility to find the senders of the method and to comment out the assertion statements.

Assertions are particularly useful for testing preconditions, postconditions and class invariants. The
Syntropy design method makes extensive use of such assertions [Cook and Daniels1994]. It would
therefore be possible to use the assertions identified during the design as the basis of the assertionsto
place in the Smalltalk code.

This approach could be taken further with the introduction of universal quantifiers (there exists and
for a I). Thiswould allow expression such asif there exists avalue x. The introduction of such
quantifiers is not without its problems but should be possible. In addition assertions could also be used
to ensure that the relationships between pre and post values during some operation is appropriate. Again
this would not necessarily be straight forward, but it should be possible.

23.5 Summary

Throughout the chapter, guidance has been given to ways to overcome the problems inherent in testing
object oriented systems. In the next chapter we shall consider asimple set of extensions to the basic
VisualWorks environment which greatly simplify the whole testing process.

23.6 Further reading

Asthereis so little written about testing object oriented systems, this section provides an extended set of
references on the subject.

In 1994 a special issue of the Communications of the ACM was published which focused on testing
object oriented systems[Binder 1994]. In this special issue a number of papers cover topics related to
object oriented testing. For example, [Binder 1994b] discusses design for testability in object oriented
systems which is a particularly important issue given the effects of inheritance, polymorphism and
particularly encapsulation on testing.

Other papers relevant to object oriented testing include [Beck 1994], [Hoffman and Strooper 1995],
[Hunt 1995], [Jorgensen and Erickson 1994], [Siepmann and Newton 1994].

The workshops on testing held at the OOPSLA conferences are also a useful source of references.
For example the workshop held as the OOPSLA *95 Conference. For more information contact Barbara
Y ates, OOPSLA Workshop, 2002 Parkside Court, West Linn, Oregon, 97068 -2767, USA (Email:
barbara.bytesmiths@acm.org).

193

A good discussion of incremental testing for C++ ¢ an be found in [Harrold, McGregor and
Fitzpatrick 1992]. While [Feigenbaum 1995] discusses some of the features which could be introduced
into Smalltalk which would improve its potential as a development language.

The Syntropy object oriented development m ethod makes explicit use of assertions. This method is
documented in [Cook and Daniels 1994].

There are also many references which discuss various aspects of testing which are as appropriate for
object oriented systems asthey are for procedural systems. For example, [Beizer 1990], [Freedman
1991], [Myers 1979], [Pyle 1991] and [1SO 1993].

194

24. Smalltalk Style Guidelines

24.1 Introduction

Good programming style in any language helps promote the readability, understandability and clarity of
your code. In many languages there are established standards to which many people adhere (sometimes
without realizing it). For example, the way in which a C or Pascal program isindented is such a
standard. However, style guidelines which have evolved for these proc edural languages do not cover
many of the issues which are important in Smalltalk. These are issues relating to classes, instances and
methods. As nhon-object oriented languages do not have these concepts, they do not have standards for
dealing with them.

Of course you should not forget al the pearls of wisdom and programming practices that you have
learnt using other languages. Just as in any other language there are a number of acknowledged bad
practices (which are not specific to Smalltalk), for example, the use of global variables! In this chapter
(asin the whole of the book) we will assume therefore that you do not need to have the basic concepts
explained, instead we will try to concentrate on those style issues which are specific to Smalltalk.

The remainder of the chapter is structured in the following manner: Section two considers style
issues associated with variables including temporary variables, instance variables as well as class, class
instance and pool variables. Section three provides some gu idance on the use of classes within
Smalltalk. Section four considers methods, their naming, use and code placement within methods.
Section five discusses how to name message protocols for both instance and class methods.

24.2 Variables

24.2.1 Naming variables

In Smal ltalk variable namessuchas t 1,i,]j,or t enp should rarely be used. Instead variable names
should either be descriptive (known as semantic variables) or should indicate the type of object which
the variable will hold (known as typed variables). Which app roach should be chosen depends on both
personal style and the situation in which the variables are being used. Instance and class variables, for
example, tend to have semantic-oriented names, while parameters to methods often have typed names.

The semanti ¢ approach has the advantage that less needs to be assumed about what the variable will
be used for. Since subclasses can inherit instance and class variables, the point at which they are defined
and the point at which they are used may be very remote. Thu s any contextual meaning and
commentary, provided with their definition, will have been lost. Examples, of semantic variable names
include:

score
current Wr ki ngMenory
Tot al Popul ati onSi ze

The typed approach is often adopted for parameter names asit is ea sier to see what type of object is
reguired as an argument to a method. For example:

add: anQbject ifAbsent: aBl ock
at: anlndex put: anQbject

Although some methods mix the use of the two, for example: at: key put: anObject .

195

Temporary variables, which ar elocal to a method, often have a mixture of semantic and typed
names. Larger methods often have semantic local variable names due to the additional complexity they
represent.

Table 24.1: Variable naming conventions

Variable type Convention Variable type Convention
Global variable | Capitalized Temporary variables Lower case
Classvariable Capitalized Class instance variables Lower case
Class hames Capitalized Instance variables Lower case
Pool variables Capitalized Method parameters Lower case

In addition, if the variable name is made up of more than one word, the words should not be
separated by ‘-" or *_’, but by the capitalization of the first letter of all but the first word. For example:

t heDat eToday
enpl oyeeRecor d
obj ect I nLi st

Whether the first word in the variable is capitalized or not depends on the type of variable being
used. Table 24.1 summarizes the conventions.

24.2.2 The role of variables

Instance variables , class variables and class instance variables all play particular roleswithin a
Smalltalk system:

I nstance variables should only be used for holding local data or for holding references to other objects.
In the latter case, these other objects should be involved in some form of collaboration with the
object (otherwise why does the object have areference to them).

Classvariables should only be used as ‘ constant’ values which are referenced by all instances of a
class. They should never be used as aform of limited global variable. Such a use is frequently an
indication that a solution has not been designed with the proper amount of care and attention. A
very nice use of class variable can be found in the database classes of VisualWorks.

Classinstance variables are often ignored by most Smalltalk programmers because they are not sure
what to do with them. Thisis partly due to the lack of their use in much of the VisualWorks
image and partly dueto the rarity of occasions when their use isjustified. A classinstance
variable, isalocal variable for the class. They are only accessible by the classitself and each
classwill hold its own copy of the data.

Class instance variables should only be used when either:

« classes need to hold some local data which instances should not have access to (otherwise use
aclassvariable)

« each classin aparticular class hierarchy needs to hold its own copy of some data whi ch
should not be shared with other classes.

If you wish to see an example of their use look up Ul LookPol i cy inthe VisuaWorks image.
24.2.3 Therole of pool variables

Pool variables are global variables whose scope is limited to those classes which have (explicitly) joined
the pool. They should not be used as a cheap way of sharing information amongst a disparate set of
classes (for example as ameans of providing a global variable without the stigma of atruly global
variable). In generd their useisreadly on |y justifiable within an application framework (a set of
cooperating objects of different classes). Such frameworks often regquire some common shared values.
For example, the text style to use in an application, the name of a preference file or the settings obtained
from such afile. Pool variables can then be used to record this information once, but allow it to be used
by all the objects within the framework.

196

24.2.4 Adding variables to system classes

Always add class and instance variables to the end of any exist ing variablesin asystem class. Thisis
because the interpreter on some Smalltalk implementations accesses the variables of certain classes by
position rather than by name!

24.2.5 Accessing instance and class variables

In general it is always better to access in stance and class variables viaintermediate methods, referred to
as accessor methods, rather than access or set them directly. Thisiscalled variable-free programming.
This promotes the modularity of your methods and insul ates the methods against changes in the way the
object (or class) holds instance (or class) information. Thisisavery important concept, as direct access
to instance variables can limit the power of subclassing.

It isalso possible to protect the instance (or class) variables from undes ired changes. For example,
you can put preconditions on an access method, or return a copy of the contents of the variable so that it
cannot be directly affected.

24.3 Classes

24.3.1 Naming classes

The naming of aclassis extremely important. The classisthe core el ement in any object oriented
program. Class names are always capitalized. For example:

e Collection
e GraphicalClassBrowser
* EmployeePensionPaymentsHistory

The second and third class names above provide extremely good examples of how a class name can
describe the class. Thisis because the name of the classis used by most developers to indicate its
purpose or intent. Thisis partly due to the fact that it is the class name which will be used when
searching for appropriate classes (for example by using thefind class... menu option).

The class name should therefore be descriptive, for example, classes with names such as MyClass or
ProjectClassl are of little use. However, class names should not be so specific that they make it appear
that the classis unlikely to be of use except in one specific situation (unless of course thisis the case).
For example, in an application to record details about university lecturers, a class with a name such as
Comput er Sci enceDepart ment Lect ur er isprobably not appropriate unlessit really does relate
only to lecturers in the computer science department. If thisisthe case, you need to ask yoursdlf in what
way are computer science lecturers special over other lecturers.

24.3.2 Therole of subclasses

A subclass should only be used to modify the behaviour of its parent class. This modification should be
arefinement of the class; this can be accomplished in three ways (or in combination):

« Changesto the external protocol, that is the set of messages that the instances o f the class respond
to.

» Changesin the implementation of the methods, that is changes in the way the messages are
handled.

 Additional behaviour, which references inherited behaviour.

If a subclass does not provide one or more of the above, then it isincorrectly placed. For example, if

asubclassimplements a set of new methods, but no reference is made to the parent classes' instance
variables or methods, then this classis not really a subclass of the parent (it doesn’t extend it).

197

The one exception to thisrule are subclasses of Qbj ect . Thisisbecause Obj ect istheroot class
of al classesin Smalltalk and as you must create a new class by subclassing it from an existing class, it
istypical to subclass off Obj ect when there is no existing appropriate class.

24.3.3 Capabilities of a subclass/class

A subclass or class should accomplish one specific purpose, that isit should capture only oneidea. If
more than one ideais encapsulated in a class you may be reducing the chances for reuse as well as
contravening the laws of encapsulation in object oriented systems. For example, you may have merged
two concepts together so that one can directly access the data of another. Thisisrarely desirable.

This guideline leads to small classes (in terms of methods, instan ce variables and code). Breaking a
class down costs little but may produce major gainsin reusability and flexibility. If you find that when
you try and separate one class into two or more classes, some of the code needs to be duplicated for
each class, then the use of abstract classes can aso be very helpful. By placing the common code into a
common abstract superclass, you may be able to avoid unnecessary duplication of that code.

The following two guidelines are intended as an aid in identifying when aclass should be split:

1. Look in the class comment (if thereis no class comment than thisis abad sign in itself). Consider the
following points:

* Isthe comment short and clear. If not isthis areflection on the class? If it is, then consider how
the comment can be broken down into a series of short clear comments. Now base the new
classes around these comments.

« If thecomment is short and clear, do the class and instance variables make sense within the
context of the comment? If they do not, thenthe class needsto re -evaluated. It may be that the
comment isinappropriate, or the class and instance variables inappropriate.

« |If the comment is short and clear, do the class and instance methods make sense within the
context of the comment? Again if they do not then appropriate action should be taken.

2. Look at the instance variable references (i.e. look at where the instance variable access methods are
used). How are the instance variables being used? Is their use in line with the class comment?
Again, if the answer to thisis no, then appropriate action should be taken.

24.3.4 Changes to system classes

In general attempts should be made to avoid making changes to system classes if at all possible. Such
changes can produce surprising side effects aswell areduc e the portability of your code and others. In
addition you may find it difficult to support the changes you have made to the system classes in future
releases of the system.

However, there are certain circumstances in which it is necessary and useful to extend system
classes. However, it is an extremely bad idea to modify an existing method of a system class. Thisis
because if you are not absolutely sure about what you are doing you can affect the behaviour of very
many objects. If you really feel you have to modify an existing class' s method(s), then it is much better
to subclass off the existing system class and modify the method(s) behaviour(s) there. Then if you do
something which has unanticipated effects, those effects are localized.

If you are merely adding new methods to an existing system class, then it isavery good ideato
place your additionsin a separate category. This means that not only isit easier to find these additions,
but that you can file out the category to a different file so that w hen updates to the system are delivered,
you can easily patch in your extensions.

24.3.5 Creating new collection classes

When working with collections, there is always the question of whether to subclass a new collection
classto hold your data (aswe didforth e Queue and St ack classes) or whether to define anon
collection class which will hold a collection within one of its instance variables and then provide
methods which will access that instance variable. For example, let us assume that we wish to define a
new class called account, which will hold information on deposits and withdrawals. We believe that we

198

should use adictionary to hold the actual data, but should Account beasubclassof Di cti onary or
asubclass of something else (for example Obj ect)? The two options are illustrated below:

hj ect
Account hasin an instance variable holding an instance of class Di cti onary

or would it be better to have:

hj ect
Di ctionary
Account

Of course this point also depends on what you aregoingtodo withthe Account class. If itis
providing a new collection class (in some way) even if it isonly for your application, then the above
should be born in mind. However, if what you are actually doing, is providing afunctionally complex
class which just happens to contain a dictionary, then the above would be the wrong way to do it. In this
case it isalmost certainly better to make the new class a subclass of Cbj ect .

There are two further pointsto bear in mind about this. Thefirstistha tif you define any instance
variablesin Account , then when you examine any instance of Account you will find that you get the
Di cti onary inspector which does not display the instance variables. This can be quite infuriating. Of
course you can subclassth einspector and extend it so that it does display the instance variables. A
second point isthat if an instance of Account needsto grow, then the contents of the instance
variables defined in Account will apparently disappear, unless you extend the copy Enpt y method it
will have inherited. This method must be extended such that the contents of the instance variablesis
copied. Again, thisisonly aminor point, but can be extremely annoying when you have spent a great
deal of time attempting to track down abizarre bug, only to find thisis the root cause of your problem.

24.3.6 Class comments

Every class should have a class comment, no matter whether it is an abstract or concrete class. This
comment should act as the basic documentation for the class. It should th erefore tell both a devel oper
subclassing from the class, or a user of the class, what they need to know. The comment may also
contain information about the author’s name, affiliation, history of the class's modifications, as well as
its purpose and status. Information which might be placed in the class comment includes the name of
the class author, its purpose, who has modified the class, when and why, the type of class, instance and
class variables (including the class of object they will hold and their use), collaborations between this
class and others, example usage, copyright information and class specific information such aswhat a
subclass of an abstract class is expected to redefine.

24.3.7 A class or an instance

In some situationsit may only ever benec essary to create asingle instance of aclass. Thissingle
instance must be created and then referenced where it is required. A point of continued debateis
whether it is worth creating such an instance or whether it is better to define the required behavi our in
class methods and reference the class (after all aclassis an object aswell). Invariably the answer to this
is no, for the following reasons:

» Such an approach breaks the standards which have been set, not only in the VisuaWorks image,
but by the majority of Smalltalk developers. Y ou will therefore be reducing the readability and
comprehensibility of your system.

* Thecreation of an instance requires a minimum of overhead. After all thisisakey featurein
Smalltalk and it has therefore received extensive attention.

¢ You may require more than one instance sometime in the future. If you have implemented all the
code on the class side, it will be necessary to move these methods onto the instance side of the
class.

¢ Indoing so, you may be tempted to tr eat the class asaglobal reference. This suggests that the
implementation has been poorly thought out.

199

24.4 Methods

24.4.1 Naming methods

Method names should always start with alower case letter. If the method name is made up of more than
one element then each eleme nt following the first one, should start with a capital letter. This standard
follows that used for variable names. For example:

account deposit: 100
account printStatenment.

If the method is a keyword method containing more than one parameter, then each of the key words
should start with alower case letter, with each subsequent word starting with a capital letter. For
example:

Di al og request: 'Name' initial Answer: 'John
onCancel : [Transcript show 'Error'].

The naming of methods is extremely important. An appropriate method name will not only make the
code easier to read it will also aid in reuse. Therefore method names should be selected to illustrate the
method’ s purpose. In addition, it is common to try to select a name which makesit possible to read an
expression containing the method name in a similar manner to reading a sentence . For example:

statement deposit: 100 on: Date today

Thisis actually helped by the ability to spread the arguments amongst the method name.

Methods which return true and false as the result of some test follow a common format throughout
the Smalltalk system. These methods use averb such as isor has concatenated with whatever is being
tested, for example:

isString

i sActive
hasFood

Notice that in the first case the method is testing to see if the receiver is an object of class St ri ng.
It therefore uses the name of the classin the method name. In the next two cases some aspect of the
receiver is being tested. For example, the second method may test to seeif a processisactiveor not. In
this case, the value being tested for is used as part of the method name.

24.4.2 General comments about methods

In general it is better to percolate a method up as high as possible in the inheritance hierarchy as long as
it makes sense. The higher the method is, the more visibility it has to classes in other branches of the
hierarchy, and the more method level reuse you can achieve. Y ou should aso consider:

Theroleof a method. Think carefully about the purpose and placement of methods within a class. Just
as aclass should have a specific purpose, a alower level a method should also have asingle
purpose. If amethod is used to perform more than one function, then it should be divided into
separate methods. In general terms methods should be no longer than one page of A4. Small but
beautiful methods are desirable.

Code placement within methods. Deciding how to break up the desired functionality into procedural
elements can be difficult in procedural programming languages. In Smalltalk it is made more
difficult by considerations of object encapsulation and reuse. However, there are a number of
questions which you can bear in mind when determining whether your code is correctly placed
within the methods you have defined:

« If amethod does not refer to any aspect of the object (e.g. super, self, or instance variables
etc.) what isit doing? Should the method be there?

200

* A method should only send messages to alimited set of objects. This promotes
maintainability and comprehensibility and increases the modularity of the method.

« Have you used accessor methods for instance variable access? Thisis known as variable-free
programming. This can greatly insulate the method from changesin how the object holds
information.

* Isthe behaviour encapsulated by the method intended for public or private (to the object)
use? If it is amixture of the two, then the method should be decomposed into two or more
methods. The private code should be placed in a method which is defined within ~ aprivate
protocol (see below). Thisindicates to devel opers that the method is not intended for external
use.

« Doesthe method rely more on the behaviour of other objects than on its own object (that is,
a series of messagesis being sent to some object(s) other than “self”)? If so, the method may
be better placed in another object (or objects).

Thislast point isworth considering in slightly more detail. The series of messages in such a method
may be better placed in amethod in the class of the receive r object. Thisisbecauseit isreally
describing behaviour associated with that object. By placing it with the receiver object’s class, all
maodifications to the behaviour of the receiver are encapsulated in that object. In addition, this behaviour
may be useful to other objects, by encoding it within the receiver’s class, they can al gain access to that
behaviour (rather than having to duplicate it in a number of places). It is not easy to get good method
level code reuse with poorly placed code. To do this most messages should be sent to self. Note: Thisis
probably one of the hardest things to do well in object oriented programming. However, if done
correctly it can pay very high dividends.

24.4.3 Class methods versus instance methods

It may at first seem unclear what should normally go in a class (side) method as opposed to what should
goin an instance (side) method when defining a new class. After all they are both defined in the class!
However, it isimportant to remember that one defines the behaviour of th e instance and the other the
behaviour of the class (the class side methods). The class side methods should only perform one of the
following roles:

Instance creation. Thisroleisvery important asit is often used to initialize instance variables of an
object to appropriate values. For example, it is quite common to see a class side method called new
used to send the message initialize to a new instance.

Classvariable access. See below for adiscussion of thisrole.

Inquiries about the class. Such methods answer with generally useful objects, frequently derived from
class variables. For example, they may return the number of instances of this object created.

I nstance management. To control the number of instances created. For example, some classes only
allow one single instance of that class to be created.

A documentation role. Class methods solely for documentation are sometimes used. Generally the
class comment is a better place for this information unless such afacility isnot available e.g. in
Smalltalk V.

Examples. Occasionally class methods are used to provide helpful examples which are aimed at
explaining the operation of aclass. Thisis good practice.

Testing. Class side methods can be used to support testing of an instance of a class. Such meth ods can
be used to create an instance, perform some operation and then compare the result with a known
value. If the values are different an error can be reported. Thisis avery useful way of providing
regression tests.

Support for one of the above.

Anything else should be performed by an instance method.
24.4.4 Class instance creation methods

It is quite common to want to redefine the way in which a new instance is created. This can be because
you wish to:

201

« provide amore meaningful instance creation interface (for example, Linefrom: (3 @ 3) to: (5 @
5)

e ensurethat certain information is provided which is necessary to instantiate the class (for
example Account newBalance: 24.00)

« forceaninitialization routine to be executed before any user of the object can send it any other

messages.

We shall consider the correct way to achieve the last of the above points. That is, we wish to force
the execution of an initialization method before returning the newly created instance. To do this we can
redefine the message new in the instance creation class side protocol of aclass as follows:

new o
Asuper new initialize

This method says, use the inherited method new to create a new instance of the class and
immediately send that new instance the instance messagei nitialize (thisis extremely good Smalltalk
style). In turn, theinitialize method (defined on the class side) should have a format which follows this
pattern:
initialize

super initialize "to initialize inherited instance variabl es"
"initialize variables that | define"

24.4.5 Programming in terms of objects

Itisall too easy when you are first starting with Smalltalk to write procedure oriented code within
methods. Indeed, in version 1.0 of VisuaWorks there was code which had clearly been written by aC
or C++ programmer rather than a Smalltalk developer. In such situations the devel oper has been
thinking in too procedurally a manner. In Smalltalk what the programmer should try to do isto think in
terms of objects.

24.4.6 Example methods

Example methods are class side methods which illustrate how the instances of an object should be used.
They are particularly useful for complex classes which form part of aframework. In these classesit is
often difficult to comprehend how the various classes work together, with out seeing them work
together. The example methods can then be filed out in a production system as they are not required for
the correct functioning of the class.

24.4.7 Test methods

These have aready been mentioned above and were discussed at length in the last few chapters.
However, they are an extremely useful tool for the developer and should be encouraged at every
opportunity.

24.5 Naming message protocols

An important style consideration for any VisuaWorks developer is the naming of protocols (or message
categories). It isagood idea to follow the conventions laid down in the existing classes for two reasons.

1. your own classes will follow the same pattern as those which have already been encountered and
will thus be easier to follow for you and others

2. tools such as the Full Browser will allow you to see methods, defined in other classes higher up
the class hierarchy, in a given category. When you want to name a new category you can search
for similar methods, when you find them you can merely use the same category name.

202

Table 24.2; Class message categories

Protocol Use

instance creation Used for methods associated with creating instances

classinitialization Methods which initialize class variables

examples Methods which illustrate some use of the class, e.g. instance
creation

private Methods that provide support for one of the above

Table 24.2 illustrates the common class message protocols and what they areused for. Table 24.3
does the same thing for the instance message protocols. Notice the practice of naming instance message
protocols as actions. These actions are intended to indicate the type of activity being performed. A n
exception to thisisthe initialize (or its variant initialize -release) protocol. Although this does not
conform to the standard it is consistent throughout the VisualWorks image and you are therefore
advised to comply with this exception.

Table 24.3: Instance message categories

Category Use

accessing Methods used for accessing and updating instance variables.

adding Used in collection classes for methods which add elements to the
collection.

converting Holds methods which convert one instance into another instance.
comparing Groups methods used for comparison tests.
displaying Holds methods which relate to displaying information graphically

initialize Holds methods which initialize the instance.

printing M ethods associated with printing the instance such as printString

updating Used to hold methods which cause some change in the instances
state.

24.6 Further reading

There are a number of places which can provide very useful further reading, f or example [Skublics et al
1996] isan excellent little book which really does provide pearls of wisdom on good Smalltalk style. It
is abook to be dipped into, rather than read from cover to cover. However, if you do manage to
inwardly digest this book, you will be able to write clear, concise, reusable Smalltalk. In addition many
of the core system classes also provide excellent examples of the good Smalltalk style.

203

Part Five

Graphical interfacesin
Smalltalk

25. The Perform and Dependency M echanisms

25.1 Introduction

This chapter introduces the use of the perform mechanism which provides an aternative method for
sending messages. It then presents a practical discussion of the dependency mechanism. This includes
what the dependency mechanism is, why you might w ant to use it, how to construct a dependency and
the effect that it has.

25.2 The Perform mechanism

The perform mechanism is avery important feature of Smalltalk. Some people consider it to be the
most powerful feature available to the develope r while others consider it essential for the construction
of truly reusable classes (it should be noted however than many others consider it avery bad feature!).
Those of you who have been exposed to languages such as Common LISP or POP11 will not find th is
concept too strange, however those of you who have been brought up on languages such as Pascal and
ADA may find the perform mechanism horrifying at first glance. Aswith most language constructs it
can be very useful if used judiciously.

Normally, when amessageisto be sent to an object, it is specified by the programmer when they
write the method. For example:

myMet hod: anCbj ect
Transcript show anObject printString.

In this example, | have specified that first the object contained in the temporary variable anObj ect
will be sent the message pr i nt St ri ng and that the result of this message expression will be used as a
parameter with the message show: to the object Tr anscri pt . Thisisall perfectly normal.

However, in some cases the programmer may not know what messages the object passed to them
may respond to, or they may not know what type of message should be sent. This may well be the case
with ageneralist class which isintended to act as some sort of framework which will be reused and
customized by the users of the class.

One way around this problem would be to specify that the user of the class should write their own
method (e.g. by using a subclass responsibility message) or should modify the current method
specifying what the message should actually be. This second approach, (which would be the case, if we
know what the method should do, but were lacking the name of one particular message to send to one
particular object), is not really desirable.

In some cases, even the person reusing the ¢l ass may not know what the message to send is; it may
only be possible to determinethat at run time. To get around this, a programmer might have to write a
large case -style statement, which tested the object to see what type it was, and then selected the
appropriate message to send depending on that type. Again, thisis not really desirable as the number of
possihilities may be large and each time a new message was used, the programmer would have to
update the method accordingly.

Smalltalk providesaway ar ound thiswhich is referred to as the perform mechanism. The
per f or m message (and those associated with it) can be used to request that an object receive a
message which is contained within avariable. For example:

anCbj ect perform sonmeMessage.

In this example, the object anObj ect is specified to receive amessage per f or m with asingle
parameter. This parameter will be the contents of the variable someMessage. Thus at compile time,

205

we cannot tell from thisline alone, what actionthe object will perform. The mechanism essentially
alows the method name, as well as the object, to be held in avariable. For example,

aVariabl e : = #si ze.
aCol | ection perform aVari abl e.

isequivaent to:

aCol | ection size.

The contents of the variable passed with the per f or m message must be a symbol, otherwise an
error will be generated. It must also be alegal message otherwise an error will also be generated. For
example, if the variable contained the symbol ~ #abcd, then that would be equivalenttoe valuating
aCol | ecti on abcd. Unlessthis messageis defined for this class of object, then the message will
generate a“not understood” exception (whether it is sent directly or as part of a perform message).

The perform mechanism can also handle methods which take arguments. The arguments are handled
by different versions of the perform: message:

1. for methods with one argument useper f or m wi t h:
2. for methods with two argumentsuseper form wi t h: wi t h:
3. for methods with three argumentsuseper formwi t h: wit h: wi t h:
4. for methods with morethan threeargumentsuse perf or m wi t hAr gunent s: wherethe
arguments are assumed to be in an array.
For example,

anCbj ect perform aSymbol with: another Qbject.

anCObj ect perform aSynbol with: objectl with: object2.

anCbj ect perform aSynbol with: objectl with: object2 with: object3.
anObj ect perform aSynbol wi thArgunments: aCollection

Note that the symbol held in aSynbol will be the message selector name. That is, if the message to
be sent would normally be written as:

anCbj ect at: 2 out: 5.

then with the perform mechanism this would be written as:

aSynbol : = #at: put:

objectl := 2.

object2 := 5.

an(oj ect perform aSynbol with: objectl with: object2.

The perform mechanism is very powerful and provides a great deal of flexibi lity. However, in most
normal situations you should not need to use it. Indeed, there are a number of points to remember when
thinking about using the perform mechanism. The first isthat it isless efficient than directly sending a
message to an object. T he second is that it can be more difficult to maintain asit is not immediately
obvious what message is being sent to the object. Thirdly, it can be an awful lot harder to debug code
containing per f or m messages. Thisis because the system back trace displ ayed in the debugger may
not display the same chain of message sends that the user of the class expects.

So where should you use it? The situations where you are likely to encounter it are almost all
associated with the user interface. However, you should not try to avoid it just because it may be less
efficient at run time and more difficult to debug. There may be situations in which the perform
mechanism can allow the construction of very powerful and flexible frameworks. The important point
to note is that in this situation there may be atrade off between flexibility and efficiency.

25.3 The Dependency mechanism

There are a number of different relationships between objects in the Smalltalk environment which we
have already looked at. In particular we have considered:

206

* Inheritance (class to class relationships)
e |nstantiation (class to instance)
« Part of or contains (instance to instance relationships)

However, there is another important relationship supported by Smalltalk, thisis the depende ncy
relationship. Thisis where the state or behavior of one object is dependent on the state of another object.
For example, Figure 25.1 indicates that there are a set of dependency relationships between the objects
AtoF.

Tail depends
on head

Figure 25.1: Dependency between objects

Thisfigureillustrates that object A is dependent on some aspect of objects B and D. In turn object B
is dependent on some aspect of object C and so on.

In Smalltalk dependency is a relationship which can be used to relate two objects such that, asthe
state of one changes, the state of another automatically changes in an appropriate manner. In such a
relationship we say that one object is dependent upon another.

25.3.1 Why do we want it?

The reasons for dependency are al down to change. That is, we wish to communicate the fact that one
object has changed its value to another object which may be interested in either the fact of the change or
the new value effected by the change. The dependency mechanism provides away of communicating
such events in a generic implementation independent manner.

An obvious question is “why not just get an object to send messages to those interested in it?" The
answer to thisisthat if you know what objects you want to send messages to, then do so. However, if al
you know is that sometime, at alater date, some object may need to know something about the state of
an object (but at present we don’t know what that other object might be) then we cannot arrange to send
messages to that object - because we don’t know what it will be. However, the dependency mechanism
alows any object (whose classisasubclassof Cbj ect) to beinvolved in adependency. A second
advantage is that we don’t have to know about the objects interested in the object we are working on.
All we need to know is that it might be involved in a dependency relationship and we can let the
(hidden) dependency mechanism take care of informing these unknown objects about the updates.

25.3.2 How does it work?

Asishinted at in the above section, the dependency mechanismisimplemented intheclass Obj ect .
This of course meansthat, as al classesin Smalltalk are subclasses of oj ect , al objects can be
involved in adependency. Y ou can browse the Cbj ect classto explore the dependency mechanism. If
you use the implementors option off the message window menu you will find that some of the messages
are redefined lower down in the class hierarchy. Thisis purely for internal efficiency or specific
implementation reasons - you will still use the mechanism in the same way.

The basic implementation, inherited from Cbj ect , associates a collection of other objects with an
object. This collection holds the objects whic h are dependent on the object (collectively these objects
are known asthe objects dependents). For example, in Figure 25.2 the object Obj ect A hastwo
dependents Cbj ect Band Obj ect C. Thelinkstothe dependent objects are held separately from
oj ect Ainadependentslist. Obj ect A can access thislist via the message dependents.

207

dependents

ObjectA
ObjectB ObjectC

Figure 25.2: An object and its dependents

The message dependent s can be used to obtain alist of al the dependents of an object (no matter
what the class of the object). For example, to obtain alist of the dependentson Qbj ect A we could use:

hj ect A dependent s.

From the point of view o f the actual implementation, the dependents are sometimes held in an
instance variable inherited from above (so you can see it in an inspector). Thisis the case for most of
the user interface classes. In other cases the dependents list is held as part of an
I dentityDi ctionary inaclassvariable (thisisthe default mechanism inherited from Obj ect).

25.3.3 Constructing dependencies

The addDependent : messageis used to add an object to another object’ s dependency list. For
example, we can construct the above dependencies using:

bj ect A addDependent : Cbj ect B.
bj ect A addDependent: hj ect C.

Note that an object holds (or can access) alist of objects which depend on it. Whereas an object
cannot access information about the objects on which it depends. For example, there are no references
from Cbj ect B or Obj ect Cback to Cbj ect Ain Figure 25.2. Thus an object does not hold alist of
objects on which it depends. This may seem a bit strange at first, however, o nce you gain an
understanding of how the dependency mechanism works, hopefully you will see why things are this
way round.

It is also possible to remove dependencies once they have been created. This can be done using the
r enoveDependent : message. For example:

bj ect A renoveDependent : Obj ect B.

Thisremoves Obj ect B from the dependency list of Obj ect A. It should be noted that as an
I dentityDi ctionary isused (at least in objects which areinstances of classesbelow Cbj ect),
Ooj ect B must be the same object as was used to create the dependency. It cannot be merely
equivalent.

ESyslem Full Browser [_ O] x
Graphics-Text Suppart [|Boolean A |dependents access -+ |addDependent: A
Graphics-Support B Falze lepend llecti | 1
Graphics-Printing-Suppor Model error handling expressinterestin:for:se
Graphics-Printing-PostSc Object / |removeDependent:
Graphics-Printing-Host True Ohject = |retractinterestin:for:
Kemel-Objects UndefinedOhbject 7| Layout o "
X f
E — R L e p— Pl —
- supers I subs I names

dependents
“Angwer 8 Collection of the objects that are dependent on the
receiver, that is, the objects that should be notified if the receiver changes."

*gelf myDependents asDependentsAsCollection

Figure 25.3: The dependents message defined in Object

208

Y ou can find the methods which implement dependents, addDependent: and
r enoveDependent : al defined in the class hj ect inthe dependents access protocol (as
illustrated in Figure 25.3). Browse these methods yourself, they will help you to understand how the
dependency mechanism works.

25.3.4 A simple dependency example

This subsection presents a very simple dependency example, which we will develop further during the
chapter. It creates two objects and creates a dependency between them. The objects are instances of a
class Dat alhj ect and Dependent Obj ect . These classes are direct subclasses of Qbj ect . Create
the classes placing them in an appropriate class category (for example, dependency demo). For example:

hj ect subcl ass: #Dat athj ect
i nstanceVari abl eNanes: "'
cl assVari abl eNanes: "'
pool Di ctionaries: "'
category: 'dependency denp'

Then evaluate the following in a Workspace:

| templ tenp2 |

tenpl : = DataCbject new.

tenp2 : = Dependent Obj ect new.

tenpl addDependent: tenp2.

Transcript show (tenpl dependents) printString.
tenpl inspect.

The result of the show message expression, printed in the Transcript, is:

#(a Dependent Obj ect)

Noticethat, dthoughthe dependent Cbj ect instance was printed in the Transcript, no
dependents can be found for the dat aCbj ect intheinspector. Indeed no instance variable called
dependents can be found at all.

From the point of view of theclass Dat aChj ect , dependency is an invisible mechanism which
works behind the scenes. Of course, thisis not really the case. The dependency mechanism has been
inherited from Obj ect and isimplemented via message sends and method executions just like any
behavior provided by an object.

25.3.5 Making dependency work for you

We have now considered how we construct a dependency relationship. However, we want this
relationship to be used to inform the dependent object(s) that a change has occurred in the object on
which they depend. That is, we want to tell one object that another object, has changed in some way.

To do this we use two sets of methods. One set is used to statethat something has changed. These
are called “changed” methods. The other set are used to state what type of updateis required. These are
called “update” methods. They work asillustrated in Figure 25.4.

dependents
message
changed ObjectA update 9
message d message

Figure 25.4: The dependency mechanismin action

update

Figure 25.4 illustrates the sequence of messages which are sent in response to a change message
being sent to an obje ct. That is, when Cbj ect A issent a changed message (usualy by itself) al its
dependents are sent an update message. Again from the point of view of Obj ect A much of this
behavior is hidden. In fact so much so that a point of confusion relates to the sending of one message

209

(i.e. the changed message) and the execution of another method (i.e. the update method). That is, a
programmer defining Objects A, B and C will:

1. send achanged message to ObjectA
2. define an update method in ObjectB and ObjectC.

The confusion here stems from the need to send one message but define another. However, if you think
about how you are linking into the existing dependency framework, it can make more sense. Essentially
the change message is a message to the dep endency mechanism asking it to notify the object’s
dependents about a change. The dependency mechanism isinherited and is generic across applications.
However, there is no way that the system developers could know when the change message should be
sent. T hat is application specific. It istherefore the application developer’ s responsibility to send the
changed message. For example, you may only want dependents to get told of certain changes, such as
updates to only onefield on an input screen etc.

Inturn, there is no way that the system devel opers could have known how you would want the
dependents to update themselves. The update message could indicate that the new value produced by
the originating object should be displayed, that some calculation should be re-performed, or that a
database should be accessed. In fact in the default implementation, inherited from Cbj ect , the update
methods do nothing. They are only there so that an error is not generated if amessage is sent to an
object which does not have a new update method defined for it.

Inthesimple Ohj ect A, Obj ect B and Obj ect C example above, we would need to specify what
oj ect Band Obj ect Cshould dowhen Obj ect A changed. Thiswould require defining our own
update methods.

25.3.6 The “changed” methods

There are three different changed messages which take zero, one or two parameters. They are:

anObj ect changed: anAspect wi th: aParaneter.
anCbj ect changed: anAspect.
anoj ect changed.

Thefirst point to note about the changed messages are that they are sent to the object which has
changed in someway. That is, they are used to inform the object that a change has taken place to it and
that this change should be passed onto any dependents it may have. That is, the changed message does
not effect the change, nor isit sent to the objects which wish to be notified about the change, rather it is
telling the changed object that it should notify the dependency mechanism of the change.

Each of the three messages will trigger off the update part of the dependency mechanism. The only
difference between the messages relates to the amount of information provided. The first message can
be used to not only tell the dependent objects what aspect of the object changed but also what the new
value produced by the change was. For example, the aspect that has been modified might be an instance
variable and the parameter the new value of the instance variable. In turn the second message only tells
the dependents what aspect has changed, while the third only in forms the dependents that some change
has taken place. Therefore the simplest changed message (and the one with the least information) is the
changed message. This can be useful when you want to make sure that the dependents assume
nothing about the object to which the change is happening.

A point to note is that the way that these messages are implemented is that the changed method calls
the changed: method with ni | asaparameter. In turn this method calls the changed: wi t h:
method with the parameter passedto it anda ni | parameter. Thusif you wish to modify the way that
the dependency mechanism works, the changed side is encapsulated within the changed: wi t h:
method.

25.3.7 The “update” methods

There are three different versions of the update messages which take one, two or three parameters. They
are

updat e: anAspect with: aParaneter from anObject
updat e: anAspect w th: aParaneter
updat e: anAspect

210

These messages are sent automatically by the dependency mechanism in response to a change d
message being sent to the object, on which the object they are sent to depends. That is, if Cbj ect Ais
sent a changed message, one of the above will be sent to Obj ect B. Which message appearsto be sent
depends on which method has been defined in Cbj ect B. Thisis because the method calling processis
implemented such that the first message sent to the object will be updat e: wi t h: f rom . Unlessthis
isoverwritten, thismethod calls update: wit h: .Inturnthe update: wi t h: method calsthe
updat e: method. This method by default does nothing. Therefore, if you define any one of these three
methods, that method will be executed.

This means that the devel oper can decide how much information the dependent object wishes to
work with. The parameter values that the developer can work with are:

e anAspect the value used for anAspect in the changed message or nil.
» aParameter the value used for aPar anet er in the changed message or nil.
« anObject the object which received the changed message.

25.3.8 Extending the dependency example

This section will provide an example of how the dependency mechanism works. We shall use the
Dat athj ect and Dependent Cbj ect classes defined back in section 25.3.4.

Thefirst thing we shall do isto define a couple of instance var iablesin Dat albhj ect . These
variableswill beage, name and addr ess. For example:

hj ect subcl ass: #Dat abj ect
i nstanceVari abl eNanes: 'age nane address '
cl assVari abl eNames: "'
pool Dictionaries: ''
category: 'dependency denp'

Next we shall define an updater method for each of these instance variables. For example, in Figure
25.5, we have defined anew method age: which setsthe age instance variable. It then informs the
object that we have changed itsageand that this fact should be passed onto its dependents (i.e. self
changed: #age). Thisisatypical usage of achanged message. That is, itissent to sel f informing
sel f about the change which has taken place. It is very poor style to have one object send an inst ance
of Dat alhj ect themessageage: , followed by the changed message!

Next we shall define how aninstanceof Dependent Cbj ect should respond to the changein a
Dat athj ect . That iswe will define one of the update methods. The method we will defineisthe
updat e: method. This method is placed in a protocol called updating. The actual method isillustrated
in Figure 25.6. Asthisisjust asimple example, al that this doesisto print astring in the
Transcri pt which illustrates the change which has occurred to aDat aObj ect instance.

Eﬁyslem Full Browser M=l B3
Tools-ObjectGrs: [|DataObject - |accessing - |address: [3
Applications-CC| |DependentObje J
Example Class name:
Test support Ohject _)
7 -
1 = 4> instanc - clas[] 1 =] T
| supers I subs I names
age: aNumber E

age = alNumber.
self changed: #age.

Figure 25.5: Defining an updater for age

We are now ready to try out this simple example. To do thiswe will use the source code previously
typed into the Transcript (minus the last inspect statement). To this we will add three statements which
set the dat aCbj ect 'sage, nane and addr ess:

211

| tenpl tenmp2

tenpl : = DataObj ect new.

tenp2 : = Dependent Obj ect new.

tenpl addDependent: tenp2

Transcript show (tenpl dependents) printString
tenpl age: 32.

tenpl nane: 'John'.

tenpl address: 'CAT'

The result of evaluating this code, isthat the following statements are printed in the Transcript:

#(a Dependent Obj ect)

The obj ect | am dependent on has changed its #age

The object | am dependent on has changed its #nane
The obj ect | am dependent on has changed its #address

Noticethat the dependent Cbj ect has been informed of the changes to the dataObject’'s age,
name and addr ess, even though we have not defined a method which does this directly.

ESyslem Full Browser [_ O] x]
I

Example Class [|DataObject - |updating ’j update:

Test support DependentObject
Object Ij)

Organiser Class
] T 1~ instance - class []] B 1

dependency demo
I supers I subs | names

File-Callection-Clas

update: anAspect
Transcript show: The object | am dependent on has changed its '
anAspect printString;

£Lr

Figure 25.6: Defining the update: method in DependentObject

25.3.9 Discussion

In the simple example presented in section 25.3.8, you should note (and unders tand) the following
points:

1. In Dat aCbj ect wedid not have areference to, nor did we know anything about, a
Dependent Obj ect .

2. TheDependent Obj ect doesnot reference abDat aCbj ect anywhereinternaly.

3. Thelink betweent enpl andt enp2 was made externally to either object.

It should a so be noted that it can be more difficult to debug and maintain relationships which have been
implemented using the dependency mechanism (as the message chain is partly hidden from the
developer). Therefore care should again be exercised in its use.

25.4 Summary

This chapter has introduced the perform mechanism and the dependency mechanism. The former is
relatively straight forward but should be used with care. The latter is more complex, but extensive useis
made of it by the user int erface classes. Y ou should therefore gain some experience in using it. For
example, have ago at modifying the Fi nanci al Manager example, add a monitor class which will
send the user amessage if their bank balance dips below a certain threshold.

212

26. The Modd-View-Controller Architecture

26.1 Introduction

The Model-View-Controller architecture (more commonly known as the MV C) is an oft misunderstood
part of Smalltal k. It is the basis upon which the user interface to a system is constructed. Its influence
has been so great that numerous other system builders have based their user interface facilities upon it.
Indeed so all pervading has the MV C been that at arecent ¢ onference an American computer science
professor queried whether VisualWorks and Smalltalk was only a user interface development
environment!

One of the causes of the confusion surrounding the MV C is that conceptually it isasimple
architecture, but in pr acticeit is rather more complicated. Indeed the construction of a good graphic
interface, using the MV C, is rather more of an art than a science. There are very many classes involved,
which must work together in specific ways. This chapter therefore provi des a basic introduction to the
MV C. For adetailed understanding of the classes available and how they should be used, the reader is
directed to their system manuals and the books listed at the end of this chapter.

The situationisnot asbad asit seems however, as many developers will never need to use the
MVC. Thisis because of the user interface building facilities provided by tools such as VisualWorks
and Window Builder (for Smalltalk/V). These tools provide interactive drawing tools which allow the
user to construct certain types of graphical interface without the need for complex programming.
However, these tools build on the basic MV C architecture thereforeiit is useful to understand at least the
basic theory. In addition, in some circumstances, it is necessary to fall back on more basic techniques

(especially for highly graphic displays).

26.2 The MVC architecture principles

The Model -View-Controller architecture, often known just by the letters MV C, has been a feature of
Smalltalk since Smalltalk -80. It is based on the concept of separating out an application from its user
interface. This means that different interfaces can be used with the same application, without the
application knowing about it (see Figure 26.1). The intention is that any part of the system can be
changed without affecting the operation of the other. For example, in the figure, the way that the
graphical interface displays the information could be changed without modifying the actual application
or the textual interface. Indeed the application need not know what type of interface is currently
connected to it at all.

Textual Interface Graphical Interface

Printed Information

Figure 26.1: Splitting the interface

Theintention of t he MV C architectureis to separate the user interface from the underlying
information model. There are anumber of reasons why thisis useful:

213

« reusability of application and / or user interface components,
« ability to develop the application and user interface separately,
« ability to inherit from different parts of the class hierarchy.

In fact, in the MV C, the user interface is further subdivided into the output (to the screen) part and
the input (from the user) part. This enables different output elements (look) to be connected with
different input elements (feel). Each part of the MV C therefore attempts to provide the functionality
reguired by one of these three areas.

26.2.1 The structure of the MVC
The MV C is actually made up of three cooperating components. T hese three components are known as

the Model, the View and the Controller. These three components areillustrated in Figure 26.2 and are
collectively known as the MV C triad.

Model View Controller

Data Display Menu

Cut
Paste
Copy
Save

Figure 26.2: The use of the MVC

This division of responsibility in the MV C is broken down in the following way:

¢ Model - Theinformation model which handles data storage and informatio n processing. That is,
it manages the behaviour of the data in the application domain.

« View - Which handlesthe visua display (the output part). That is, it handles how the
information about the application is displayed on the screen.

e Controller - This providesthe user interaction to, or control of, the information models
processing (the input part). That is, it handles the mouse and keyboard inputs.

Thediagramin Figure 26.2 illustrat es the idea behind each aspect of the MV C. To usethe MVC
architecture you must understand the division of labor within the MV C triad. However, you should be
awarethat in real applications, this division of labor is not aways as clean asit should be. Fo r example,
controller like behaviour can leak into the view object, while view like behaviour can leak into the
controller object!

In addition, you must also understand how the three elements communicate (even if you are using
one of the window building to ols). Of coursein any application there are many objects which aren’t
models (or which are contained withinthe model but don’t realize that they are part of amodel or a
graphical system). However, they invariably work with the model to provide the overal application.

26.2.2 The elements in the MVC triad

26.2.2.1 Models

As has already been stated a model handles data storage and information processing. That is, it handles
how the application datais processed (i.e. the functionality of the system). That meansthat model sare
responsible for holding data, operating on that data and responding to requests for information.
Essentialy, they are exactly what you have aready been looking at throughout this book: “they are one
or more objects which provide some set of operati ons’. For example, the St at enent classin the
financial manager application, which you have encountered a number of times in this book, could be
considered to be amodel. It held information on deposits and withdrawals. It responded to new deposits

214

and wit hdrawal s and requests for the current balance. It could therefore be used with aview and a
controller as part of a graphic application.

In some versions of Smalltalk (for example VisualWorks) there is an explicit class Model from
which models can inherit model like behaviour. Figure 26.3 illustrates part of the Model class hierarchy.
Itillustratesthat classessuchas Br owser and | nspect or are actualy models, which hold some

data. However, there is no re ason why an object which will be used as part of the MV C triad must be a
subclass of Model .

The important point to note about an object, which will be used as a model within the MV C, isthat
it must provide the application functionality independent of the type of user interface being used (ignore
the issue of printing the statement in the financial manager example here). In earlier chapters, we
explicitly sent messages to the financial manager application viathe Workspace. However, these

messages could have been sent by another object, such as a banking system object, or by a controller or
view object.

— 1
I J0G Class Browser S [=]

UIPainter E
UlIPainteryWatcher

UlPalette

VisualLauncher

Spechlodel
LensBrowsingToolMaodel
LensApplicationSpecEditor |
LensApplicationModel
ExamplesBrowser

LensEditar
LensApplicationStructureiew |
SimplaDialog
QuaryEditor
UIFinderA2
UlISettings

CodingAssistant
Debugger
LensMappingEd; ﬁ

ParcelBrowser
Browser

FullBrowser]
Inspectar

ChangeList
FileBrowser
SimplaListEditar

AdHocCQueryTool

LabelConstructor
= [i

SelectioninTable
SelectionlnList ;:E:
Explainer _:;;E:'
SyntaxError
SerollvalueHolder
Applicationhodel
“aluehodel MethodListBrowser
LDMSelectionServi I HierarchyBrowser
Modsl |
[

LDMBrovwsertiodel

LDMAbstractBody
LensApplicationSpec f::
UlDataReference !
Tablelnterface
ChangeSet
LensSession
ObjectGraph

Drawinghdodel |

Figure 26.3: Part of the Model class hierarchy

26.2.2.2 Views

The information held by the model is presented to auser viaaview. That is, aview obtains information
from the model and decides how to present that information to the user. This can be in the form of text,
graphics, widgets, or combinations of these etc. However, an important point to noteisth at the view
should not possess any knowledge of what the data means, neither should it change it, initiate some
application process because of it, or processit (other than what is necessary for the user interface).
Notice that it is the view that decides how the data should be displayed independently of the model.

The result of thisis that we could have one view which displays the balance after each transaction as
atable, and another as a graph. Depending on which view we connect to the model, we will ge ta
different user interface. However, we will not have had to change the model at all.

Figure 26.4 illustrates part of the Vi ew class hierarchy. This hierarchy illustrates how the various
elementstypicall y found in agraphical interface are different types of view. For example, a
Radi oBut t onVi ewisasubclassof Label | edBut t onVi ew, which inturnis asubclass of
Basi cButt onVi ew, whichisasubclassof Si npl eVi ew, whichisadirect subclassof Vi ew.
Similarly Scrol | Bar, Menul t enVi ewand Launcher Vi ewareal direct subclassesof Vi ew.
Thisfigure aso illustrates one of the interesting facilitiesin VisualWorks. Consider the

215

CheckBut t onVi ew class and its subclasses. This class has five subclasses including

MacCheckBut t onVi ew, W n3CheckButtonVi ewand Motif CheckButtonVi ew. Inthis
case when a user requests that a CheckButtonView is created, one of its subclasses will be used
depending on the user interface look requested by the user. For example, either an Apple Macintosh,

Windows 3 or X/Matif style button will be displayed. Here different views can be used, without any
modification of the model or the associated controller.

E 0G Class Browser [_[C]
| DirectBit'iew

I Launcheriew
BasicButton'view
I Menultermiew

Sliderview LabeledButtoniew | RadioButton'/iew ‘
Simpleiew

Scrollingiew | ScrollerButton'iew | CheckButton'iew |
ColoredArea E

Ohjechrapthew ComboBoxButtonView ‘

PushButtoniew ‘ ActionButton'iew |
AutoScrollingiew X

MenuButton'view |

M CompusedText\/lew | Selection'iew | Seqguencet/iew |
EUUIEaﬂWldgelVlew
Table\/lew \TextCollecmr\/ew | E ETabBar\/lew ‘ MenuBarButton'iew |
Scrollbar
AclonButm\ TextEditoryiew DataSetView

Bit'iew
Natifieryiew

Behawuur\/lew
GraphWiew /

Drawingiew

LabeledBoolean'iew ‘ Geﬂera\Se\echunTableVleWT\InpulF\eId\/lew ‘

Figure 26.4: Part of the View class hierarchy

26.2.2.3 Controllers

Controllers handle the user interaction with the application. They work in tandem with the view so that
when a user clicks on a button (displayed by a view) the controller can decide what to do. For example,
the controller can ask the view to confirm that the cursor was within the active area of the button and
then call the method associated with that button. That is, when the button is “pressed”, the controller
will ensure that the appropriate method is evaluated.

Aswassaid e arlier, al views have an associated controller (even if it is an instance of the
NoCont r ol | er class). Therefore, in many situations there are controller classes available which

mirror the view classes. For example, thereisa MenuBut t onControl | er (togow iththe
MenuBut t onVi ew), thereisa Scrol | Bar Cont rol | er (togowiththe Scrol | Bar view) and
there are various ButtonControllers. The St andar dSyst enCont r ol | er andthe

Appl i cati onSt andar dSyst entCont r ol | er are used with the top most application view while
many of the other controllers are used to handle input and output for small subviews (such as buttons).

216

— 1
106G Class Browser =]

FParagraphEditor E

Controllervithienu ModalController
MenulternContraller BitEditar
SelectContraller LDMCaormpasitet/iewController |
WidgetController LOMElementviewContraller |
MoCantraller DataSetController
LauncherController SequenceController

Controller | StandardSystemControlle\\ OhjectGraphContraller
MenuBarButtonContraller GraphController
MenuButtonCantraoller DrawingCantroller
ComboBoxButtonCantraller | ColoredAreaCantraller |
ScrollbarController TabBarController
MenuController SliderContraller
DataSetControllerProxy BasicButtonContraller

ApplicationStandardSystemContraller |

[=

Figure 26.5: Part of the Controller class hierarchy

It might seem understandable that them odel should be separated out from the user interface, but
why is the input separated from the output? Thisis for two reasons:

* Firstly, it allows the controllers and the views to inherit from different class hierarchies. This
alows the developer to overc ome the limitation of single inheritance enforced by Smalltalk (but
not all object oriented languages).

« Secondly, it allows different combinations of views and controllers. This may give different looks
(views) or feels (controllers).

26.2.3 How the MVC works

You may noticethat in Figure 26.6 the arrows only point from the view and controller to the model.
There are no arrows from the model back to the view or controller. Thisis because the model does not
directly know anythi ng about its view or controller. Thisis partly because it does not need to know
anything about them and also because it enforces this separation. A common mistake for those new to
the MV C isto find that they have created instance variablesin their model object which alow them to
link the model directly to the view and/or controller. Thisisextremely poor Smalltalk style!

So how do the view and the controller find out about changes in the model. Remember, the view
bases what it displays on the data held within the information model. In terms of Smalltalk relationships
this means that the view is a dependent of the model (see last chapter). The view, must therefore, record
itself as a dependent of the model (Figure 26.6 illustrates how interaction occurs between the model,
view and controller). This means that it is the responsibility of the model to inform its dependents of
any changes to its contents (i.e. its view). Thisis done by the model sendin g a message to itself stating
that its contents has changed in some way. The changed method is actually defined in class Cbj ect
and isthusinherited by all classes in the system. This means that any object in the system can act asthe
model in an MV C tria d*. Thismethod causesan updat e: message to be sent to each of the views
referenced in the dependents collection.

 This actually means that any object, irrespective of whether it is used in the MV C, can have dependents , and that those
dependents can be informed of changestot he object is the same way that views are informed of changesin their associated
information model.

217

How the update message is handled is the responsibility of the receiver (in this case the view). For
example, in order to find out what change has occurred, the view will need to request some information
maintained within the model. Thus the information model only needsto sendthe change method to
itself at the appropriate times, the views must then handlethe updat e: message i ndependent of the
model.

depedents

(O model
view

controller (™)

|

Oview
controller
(O model

Figure 26.6: The dependency relationship within the MVC

In Figure 26.6 notice that the view and the controller both have direct links to the model and to each
other. This means that the controller can send requests for services directly to the model while the view
can request state information directly from the model. Also note that the controller and view both
possess explicit links to each other which allows them to communicate directly. However, athough the
model must know that something may be interested in it (i.e. it must send itself one of the changed
messages), it does not know what that thing is - it could be any t ype of object including aview. Also
remember that it is the view that would have had to make itself a dependent of the model and thus the
model developer need never know how the model would be used.

This arrangement means that:

« Viewsand controllers tend to be tightly coupled.

* Viewsand controllers comein pairs. To support this most views in VisuaWorks know what
controller they should have and can instantiate it for you.

* More than one view can be associated with a single model.

Thislast situation is k nown as having multiple views and isillustrated in Figure 26.7. Thus the same
information can be displayed simultaneoudly by different views. All of which are updated as
appropriate, if and when required.

dependents

() model
viewl
controller()

view

(O model
viewN
Col\ev

O view
controllerN
(Omodel

controllerl
{(Omodel

Figure 26.7: Multiple views

26.3 The MVC with the statement model

Using the financial manager application example described earlier in this book, we will look at how the
balance might be displayed and u pdated. The diagram illustratedin ~ Figure 26.8 shows the three
elements of the MV C triad, the model (in this case an instance of statement - hence the use of statement
in brackets to indicate we mean a statement and not a general type of model object), the view and the
controller.

218

o o
2. 0¥ (view) -
model / <
'&.
e
(statement) f
(halance 2.)
deposit (controller)

3. changed:
#balance

Figure 26.8: Tracing the interactionsin the MVC

The view is displaying avery simple window, which can display the curre nt balance and a button
|abeled deposit. The controller is responsible for responding to the button click.

The sequence of message which would be sent between these objects as the window was created and
auser interacted with the window are illustrated in Figure 26.8 and described below:

1. The statement object isinstantiated and the view is opened. The view object must first draw the
window. To determine the current balance it must send the message balancetoitsmodel (the
statement). The returned value is then displayed in the output field.

The user clicks the mouse in the area of the screen used to display the button. The controller
sees this click and entersinto a dialogue with the view to determine if the click was actualy
within the button or not”. If it was, then the controller must send a message to the model to tell it
to deposit ten pounds (we are assuming every deposit equals ten pounds for simplicity). Thisis
done by sending the message:

nodel deposit: 10.

2. The model (a statement) receives the message deposit and records this. It then updates the
current balance and sends itself a changed message, e.g.:

bal ance: newAmount
bal ance : = newAnount
sel f changed: #bal ance.

3. Because the model sent itself the cha nged message, an update message is sent to its dependents,
one of which isthe view.

4. The view receives the update message. Itsimplementation of updatere -runs the code used to
create the balance view in the first place. That is, it sends the message balan ce to the model asin
step 1.

There are a number of points worth noting about this example. Firstly, the view does not record
anywhere what the actual balanceis. It merely obtains the value from the model and displaysit on the
screen. From that moment on it forgets it. Secondly, the controller must ask the view to determine if the
cursor iswithin the region of the button. That is, the controller does not know where on the screen the
button is displayed, nor does it attempt to obtain that information fro m the view. Thirdly, even though
the controller has direct access to the view, it does not tell the view what it is asking the model to do.
The view is unaware of any change in the model until it is sent an update message. At this point it
requests the cur rent balance from the model. Note that this means that if the statement was sent a
deposit message by some other object (rather than by the controller) it would still result in the view
being told to update itself. Finally, the model is unaware that the message:

deposit: 10.

came from the controller. It could have come from any object and thus the model is completely
insulated from the controller and the view.

2 Wewill come back to thisissue of which controller actually catches the input and which view is questioned about the
position of the cursor at alater date.

219

26.4 Views and subviews

In the example in the previous section, it is unlikely that the button would actually have been handled by
the window controller or that the window view would have determined how it was displayed. Rather the
button would have had its own ButtonView and associated ButtonController (indeed Figure 26.4 and
Figure 26.5 suggest this). The ButtonView would have been a subview of the main window and would
have been responsible for displaying the button and checking whether the mouse was over the button.

In fact views are designed to be nested. Most windows actually involve at least two views, one
nested inside the other. The outermost view, known as the top component, manages the familiar
window features (for example, the window menu bar etc.). It has an associated controller which
manages the familiar moving, framing, collapsing and closing operations available from windowing
environments.

Inside the top component are one or more subviews, known as components, and their controllers
(remember almost al views have an associated controller) which manage specific elements of the view
(e.g. buttons, scroll bars, selection boxes etc.). The subview (component) refers to the view it isan
element of, asits container. Thus a subview is held withinac ontainer and a container possesses
components (which are its subviews).

A component may, in turn, have additional components (although thisis often not required). The
container/component relationships are recorded in instance variables within the views. Each component
has alink to its container and a container possesses an ordered collection of components. Thus each
window’ s top component is the top of a hierarchy of components.

Typicaly, this means that when creating awindow you first instantiate the top most view and then
create and place subviews within the top level view. Figure 26.9 illustrates exactly this for avery simple
window. Thisis aworking example which you can type into a Workspace and evaluate.

The actual source code can be broken down into three sections. The first section creates a new
Schedul edW ndow. Scheduled windows represent the top connection to the host window system
They are always the top of the view hierarchy (that isthey are dwayst he top component). Scheduled
windows can have alabel, a minimum and maximum size, can possess a single component (which can
be made up of multiple views), possessa St andar dSyst entCont r ol | er (acontroller specifically
designed to work with scheduled window s) and of course amodel. Having created the scheduled
window, the code setsits controller, gives the window alabel and specifiesits minimum size.

T Workspace =]
5

| topComponent aString cormpositePart |

13

a3tring 1= 'Sample window',
topComponent ;= ScheduledyWindow new.
topCaormponent
controller: StandardSystermContraller newy,
label: aString;
minimumSize: 200 @ 100,
compositePart .= CompositePart new.
compositePart add: Hello' asComposedText at: 40&10.
compositePart add: 'Goodbye' asComposedText borderedin: (0.2@&0.3) cormer: [0.5&0.6)).
topCaormponent camponent: compositePart.

topComponent open.

Figure 26.9: Creating a simple window

The second part of the code creates a composite part. A composite part is essentially aview which is
made up of one or more subviews. That is, it isa collection of subviews and appropriate behaviour for
handling these subviews ™. In the examplein Figure 26.9, two components are added to the
compositePart. One is avery simple view which is a composed text. Composed texts allow strings to be
displayed as aview. Note that it is the compositePart which determines where the ‘Hello” will be

¥ “Scheduled” really relates to the fact that all Schedul edW ndows are held by a control manager which determines
(schedules) which of them is active at any one moment in time. Note only one window can be active for user input at any
particular moment.

* Thereis of course more to it than that, involving Wrappers and Visual Components, however as these are essentially
modifications of the basic MV C we shall leave an investigation of thisissue to the reader.

220

displayed. The second component added to the compositePart is another composed text (displaying the
string Goodbye). However thistime, the string is being bordered. That is, a box is being drawn around
that string as a border. This border is actually handled bya W apper (Wrappers provide needed
bookkeeping information such as tranglation, clipping, borders, etc.). Note that the border is specified
relative to the size of the encapsulating window (this is why the rectangle specifying the border is
specified as 0.2 by 0.3 to 0.5 by 0.6. This means that the top right hand corner of the border should start
at aposition which is 20% of the width of the window by 30% of its depth and should extend to a
position which is 50% of its width and 60% of its depth (note windows have their zero, zero positionin
the top left hand corner of the window).

The third part of the source codein Figure 26.9 adds the compositePart (containing the two strings)
to the scheduled window and openst he scheduled window. The result of opening the window is
illustrated in Figure 26.10.

E Sample window =
Hella

Goodbye

Figure 26.10: A simple window

An important point to note is that although a view can co ntain multiple subviews which it
coordinates, only the views are connected; the associated controllers are not. Thisisillustrated in Figure
26.11. Finally, views can only have one controller and one model. Controllers can aso only have one
view and one model. However, models may have any number of views associated with them.

26.5 The controller hierarchy

To determine which controller should respond to the user input, there is a controller hierarchy which
mirrorsthe view hierarchy. At the root of thistreeis the controller associated with the top component.
This controller tries to find a sub controller which will accept control. If none will accept control then it
must process the input. Controllerswil | only accept control if the cursor iswithin their view. Upon
accepting control the first thing a controller will do is seeif a subcontroller will accept control. Once a
controller has control, it will retain control until the cursor leavesitsview. Any input from the user will
then be handled by the appropriate controller.

controllerl

controller3

Figure 26.11: The view-subview / controller relationships

controller2

The actual mechanism through which thisis performed is slightly complicated, however, basically,
whenever the cursor enters awindow a control manager (seetheclass Cont r ol Manager for further
details) passes control to that window. Thisis done by asking each window controller whether it wants
to take control or not (viaamessagei sCont r ol Want ed). Thefirst controller that requests control is
given control. Thisisdone viathe messagest ar t Up.

It is then up to the windows controller to decide how it will handle this control. Typically it
determineswhic h of its subcomponents wants to gain control via the message
subVi ewMant i ngCont r ol . The window (or top component) then asks its components whether they
want control (usingthe obj ect Vant i ngCont r ol message). The components (or views) then ask
their controllers whether they want control. If the controller identifies that it should have control, then it
takes over the primary control operation.

221

26.6 Summary

In this chapter you have encountered the Model -View-Controller (MVC) architecture for the first time.
Y ou have seen the basic principles behind the construction of graphical user interfaces to applications
and examined the concepts of the View, the Model and the Controller. Remember these are just the
basics, not only is the situation much more complicated than i ndicated here for real world applications,
it varies from dialect to diaect (and in some cases from version to version). Windowing systemsin
general have become very powerful, this means that very large books can be dedicated to explaining the
minute of a particular language and its facilities and Smalltalk is no exception. So if you want to get to
know more about how Smalltalk handles graphic windows, read the manual s, examine the classes and
experiment. Enjoy!

26.7 Further reading

This chapter has only attem pted to provide a very basic introduction. However, there are a number of
useful places for you to look for further guidance. For example [Lalonde and Pugh 1991b]. This book
goes into the user interface side of Smalltalk in great detail. Some parts of it a re now out of date,
however it is still an excellent reference. As aways [Hopkins and Horan 1995] is an excellent reference.
In particular see Chapters 29 to 34. Y ou should also have alook at your system’s manuals, for example,
the following manuals supp lied with VisualWorks are also very good references: VisualWorks User’s
Guide, ParcPlace-Digitalk, Chapters 18 to 20 and the VisualWorks Cookbook, ParcPlace-Digitalk.

222

27. Graphical User Interface Construction Tools

27.1 Introduction

This chapter provides a brief introduction to the VisuaWorks window building facilities. The
VisualWorks user interface builder is atool which allows the devel oper to interactively construct a
window using an object oriented drawing tool (ala MacDraw, xfig or AutoSketch). Thisdrawi ng tool
can then generate the Smalltalk source code required to actually create an instance of the window
designed by the user. This Smalltalk window definition can then be easily and ssimply linked to auser’s
application. Thus making it particularly easy to construct graphical interfaces to Smalltalk applications.

This chapter is intended to provide a description of some of the features of the User Interface
Painting tools. It is not intended to be a complete introduction to either the User Interface Buil der or to
the instance structure of VisualWorks windows.

In the remainder of this chapter we first consider what a window building tool is and then what
window construction tools are available in VisualWorks (which are very similar to those tools in other
Smalltalk development environments). We then consider the use of associated classes such as
Appl i cati onMbdel and Val ueHol der aswell ashow to construct windows using the availab le
tools.

27.2 What is a user interface builder?

A user interface builder is atool which allows a developer to construct awindow by drawing it rather
than by defining it programatically. Thisisavery great advantage as the construction of windowsin
many windowing systems is unnecessarily complex and difficult to understand. It often takes a great
deal of source code just to create awindow, giveit alabel, place an input field, an output field and a
button on that window. In many situationsthe resulting “program” is difficult to maintain and may be
error prone. Theresult isthat it is difficult to build and modify windows, whereas windowing systems
by their very nature are intended to be easy to use.

One approach to this problem was the construction of w indow construction toolkit. TCL/TK isan
example of such atoolkit [Ousterhout 1994]. It allows the user to specify the structure of awindow in a
simple scripting language. The resulting window can then be integrated with a program written in
another language such as C. The problem with this approach is that firstly the developer must learn the
TCL scripting language, secondly they must integrate the windowing system with their C programs (not
aways a straight forward task) and thirdly when abug isencou ntered they must search through two
separate systems to identify where the fault occurred. In addition this approach till relies on the
developer laying out the window programatically.

Another approach is to use awindow drawing tool. The motivation for such tools was to allow users
to construct their windows graphically, enabling them to easily and quickly modify the window layout
and then to compile the graphic window into source code. The source code could then be compiled to
construct the window. In th e early days of these systems it was necessary to integrate your application
code with the source code generated by the window construction tool. Having done this, if you ever
modified the window, you would overwrite any application code. Obviously thiswa s not acceptable,
and was caused because the window construction tools were not closely integrated with a development
environment.

The age of the visua tool overcame this hurdle. Languages such as VisualBasic, Visual C++,
Symantec’s Visual Cafe and of course VisualWorks, allow a developer to draw a window on the screen,
compileit, add their own application code and modify the window without any loss of information.
These tools have greatly simplified the construction of graphical interfaces and enabled a far wider
range of applications to benefit from sophisticated windowing environments.

223

27.3 VisualWorks window painting tools

PI=

Figure 27.1: The user interface builder and resource Launcher buttons

The VisualWorks user interface builder is initiated using the canvas tool button on the Visual Launcher.
This button has a picture of an easel with an artist’s canvasonit (see Figure 27.1). The user interface
builder is comprised of three tools. These tools are the pal ette, which contains the elements to be placed
on awindow, the canvas, which isthe drawing area for the window and the canvas tool, which alows
the user to issue specific commands such as the installation of awindow.

The user interface builder in VisualWorks allows the user to create the window of an application
from awide range of visual components. These visual components are available from the Palette and
include components such as buttons, text, sliders, tables and static visuals like rectangles and lines.
Using these components the user can build up awindow much in the same way as a diagram might be
drawn in an object based drawing tool.

The user interface builder also providesa set of layout optionsin the canvas tool for relative and
absolute positioning and sizing, alignment and grouping of objects. Again thisisdonein asimilar
manner to that of an object based drawing tool.

Figure 27.2 illustrates the window painting facilities being used to draw a modified VisualLauncher.
On the left of the diagram is the Palette on which iconic versions of graphic objects are made available
to the user. On the right of the Palette is the canvas on which the | ayout of the window is drawn.
Additional tools are available which allow the user to specify the properties associated with the graphic
objects, for example, it is possible to specify what action should be performed when a button is pressed
etc. The Canvas Control is displayed above the canvas window. This window allows the properties of
the canvas to be specified.

T§Canvas Tool on: VisualWorks - |O] x|

Edit Tools Layout Arrange Grid Look Special

Prupertiesl Install... | Define... | Browse... | Open |

ﬁVisuaMorks 1 =]

BEE NEE @ mEw e K

[

Figure 27.2: Creating a new Launcher using the window pairting facilities

It isalso possible for the user to generate an actual working version of the window which has just
been painted. This can be done by first installing the window. This actually generates a class definition
for the window. However, thisis o nly the first step towards generating a functioning window. It isthen
necessary to create the appropriate methods for displaying and updating values displayed in the window
and to produce stub methods for any actions which should be associated with the gr aphic objectsin the
window. Such information can be entered by the user viathe definer option in the canvastool. This
generates accessor methods for the variables referred to or stub methods for the actions entered earlier
by the user. These stub method s must then be “filed out” with Smalltalk code using the standard set of
browsers.

224

27.3.1 Palette

The Palette tool provides a set of ready made graphic components (or widgets) which can be placed on
the canvasto form part o f awindow using asimple drag and drop method. Thisisillustrated in Figure
27.3 where atable component is being placed on a blank canvas.

The top two icons on the palette indicate the single component option (the left hand icon) and the
multiple component option (the right hand icon). The multiple component option allows multiple
components of the same type to be placed quickly and easily onto the canvas. For example, if you wish
to place three buttons on the canva s, then either you have to select the button icon each time you have
placed a button on the canvas, or you can select the multiple component icon and then the button icon.
Thisthen allows you to place as many buttons on the canvas as you require.

b
=
&

o
]
[/

o

E Unlabeled Canvas [_ (O] %]

. J

IEESEE
G

e]

Figure 27.3: The Palette and the Canvas

The remaining icons allow various component parts to be placed on the canvas, these are (from top
left to bottom right): button, check box , radio button, textual or graphical label, input and/or output
field, text editor field, menu button, list selection box, combo box (a menu and a button combination),
horizontal or vertical divider, graphical box (with or without alabel), rectangular or circular graphical
region, dlider, table, data set, notebooks, subcanvas (see later), view holder (see later chapter) and charts
icon. The final icon indicates a graph browser (thisis an example of athird party widget which is
integrated with the palette).

27.3.2 Canvas

The canvas is the drawing area of the user interface builder (see Figure 27.3). In effect it is the window
which will be displayed to auser. The developer can place graph ic components on the canvas, move
them around, give the canvas alabel and define its size, background color and foreground color. For
further details on how to do these operations see the VisualWorks manuals.

27.3.3 Canvas Tool

E[ﬁanvas Tool on: Unlabeled Canvas |- [O] x]

Edit Tools Layout Arrange Grid Look Special

W] [E 22| =|@]0]n T

Prupertiesl Install... | Define... | Browse... | Open |

Figure 27.4: The Canvas Tool

Thecanvastool (illustratedin Figure 27.4) provides arange of facilities which can be used in
conjunction with the cur rent canvas. These facilities can be divided into three: widget layout control,
window and widget properties and window specification and construction. Each of these will be
considered separately below.

225

27.3.4 Widget layout control

The widget layout control butto ns are presented across the top of the canvas tool window. The first six
buttons control widget alignment, the next four control widget distribution and the last two control
widget size. Each of the operationsis relative to the first widget selected. For example, the first button
will align all the currently selected widgets such that their tops are all in line with the very first widget
selected.

27.3.5 Properties, aspects and actions

The properties button on the canvas tool brings up the properties tool. Thistool displays the information
appropriate for the selected widget. If no widget is selected then the window details are sel ected.

T Properties Tool on: Unlabeled Canvas =] B3

I||I|.
Basics

Action Button
Label: I Add

Details
Action: | #doAdd

Walidation

1D: I

I Be Default
J7 Size as Default
_I Label Is Image

Motification

Drop Target

Apply Cancell Apply & Close Prev Nextl

Figure 27.5: The Properties tool

The properties tool allows the user to specify awide range of details about awidget. For example, it
is possible to specify any associated colors, position, etc. The precise details of what can be defined
depends on the particular widget.

Figure 27.5illustrates the propertiestool for an action button. In Figure 27.5 the developer has
specified that the selected button should have alabel * Add’ (thisisatextua label but equally the label
could be a graphic image) and the action which isthe symbol #doAdd. The action isthe name of the
message which will get sent to the object displaying the window when the button is pressed. The
developer therefore defines this method to specify the add buttons' behavior.

In asimilar manner other widget’s details are defined using the properties tools. For example, for an
input/output field the tool would request the field’ s name, and whether it should be output only or input
and output (buttons and input/output fields are probably the most common widgets that you will use).
The name of theinput field isreferred to asits aspect. Essentialy it isthe name of an instance variable
which will be used to hold the field' s data. Other common widgets are the list widget which displays the
contents of alist and table widgets which display data held in tabular form. For further details on the
properties tool see the VisuaWorks manuals.

27.4 Window specification and creation

Once the devel oper has designed the window to their satisfaction you can instal | it onto aclass
(essentialy this means that you can compile it into Smalltalk). Thisis done using the ‘Install’ button on
the canvastool. This button triggerstheinstaller (illustrated in - Figure 27.6). The develop er must then
specify the name of the classto install the window onto. If the class does not already exist it will be
created by the system. In such a situation the devel oper must select what category to place the classinto
and what the superclass of the classwill be.

In almost all circumstances the superclass of the new classwill be Appl i cat i onMbdel , or one
of its subclasses. Appl i cati onMbdel isan abstract classthat provides the functionality required to

226

build arunning user interface from the output of the user interface builder. Therefore by inheriting from
Appl i cat i onMbdel , the new class (called ToDoOr gani ser in Figure 27.6) is able to create user
interfaces.

You may notethat in Figure 27.6 1 also specified a“‘Selector’ called windowSpec. Thisis actually
where the window specification will be placed. The selector is actually the name of a class side method
defined within aclass protocol called interface specs, which return sawindowSpecification. Thisis
actually an array of widget specifications. This approach allows different windows to be defined for the
same class and saved under different names. For example, we could construct a welcome window, an
input window and an o utput window for some class and call each of them by different selector names.
We could then choose which window we wished to open using the openl nt er f ace: message. Note
that by default it is the window defined by the specification heldin - wi ndowSpec which iscreated in
response to an open message. Therefore:

e aToDol nterface open. Thisopensawindow defined by the wi ndowSpec classside
method.

e aroDoOrganizer openlnterface: #welcome. This opens the window defined by the wel cone
class side method”

Once the window has been installed onto a class you now have the potential to create a graphical
application.

INSTALL on Class:
I TaDaOrganiser
and Selector:
A
or enter new Selector:
I windowSpec
0K Cancell

Figure 27.6: The Installer

27.5 Application models versus domain models

In the last chapter we talked about the MV C architecture and that the model was the element of the
MV C which held the data. However, in this chapter we have introduced a new class called

Appl i cati onModel (whichif you are very observant you will have noticed in the last chapter was a
subclass of M odel). So where does that leave the good old MVC?Isthe Appl i cati onMbdel the
original model from the MV C or isit something different?

In fact when we talked about the MV C we did actually state that there may be very many objects
involved in providing the functionality of the whole system, but that only one of them might act asthe
model in the MV C. Essentially, the use of an explicit Appl i cati onMbdel classisrealy
acknowledgment of this. By creating a class which is intended to provide the behavior nec essary to
create and manage the graphic user interface the devel oper can encapsulate al the user interface
functionality they need in subclasses of thisAppl i cati onhMbdel .

227

ApplicationModel

Statement

FinancialManager

aFinancialManager
account Q)

Figure 27.7: Using an ApplicationModel with an domain object

aStatement

The objectsinvolved in providing the applications functionality (or domain model) no longer need to
be involved in the model hierarchy, they can inherit from any class in the system. For example, if we
wereto link our class St at enent into this architecture we would do so asindicated in Figure 27.7. In
this figure the classes are indicated by rectangles and instances by round cornered boxes.

The approach of separating o ut Appl i cat i onMbdel functionality is extremely powerful aswe
can now develop the user interface and the system functionality completely separately. The following
table summarizes this separation.

application model Provides user interface processing capahlities
domain model Provides system functionality

The Appl i cati onMbdel classisactually the root of its own application model hierarchy. Figure
27.8 illustrates part of this hierarchy. As can be seen fromthisdiag ram many of the graphical tools
provided within VisualWorks are subclasses of Appl i cati onibdel . For example, the user interface
builder isprovided by classsuchas Ul Bui | der, Ul Bui | der Wat cher and Ul Pal ette. The
browsers are subclassof Appl i cat i onMbdel as istheinspector, the changes tool and the file
browser. The graphical class browser used to display the class hierarchiesis also a (user) defined
subclass of Appl i cati onivbdel .

— 1
710G Class Browser =
3

LENSAPPICELIUTNIDITUULUTE Y 1w |

MethodListBrowser
HierarchyBrowser
Debugger
ParcelBrowser
FullBrawser

i SimpleDialog
|

i QueryEditor
i UIFinderyyyz2

,; UlSettings

. CodingAssistant

ApplicationModel :
1 ChangeSetlnspector
I CompiledCodelnspector
| Dictionarylnspector
! Changelist SequenceableCaollectioninspectar |
FileBrowser Contextinspector
hi SimpleListEditor
AdHocQueryTool
j' LabelCaonstructor
b i/
|) =]

Figure 27.8: Part of the ApplicationModel hierarchy

27.6 Defining a window'’s functionality
We return now to the process of creating awindow. So far we have defined the structure of the window

but not yet how information is made available to the window (or obtained f orm the window), nor what
happens when buttons are pressed etc. We have however defined the aspects for input fields (their

228

names) and the actions for buttons (the messages to send if they are selected). We can now get the
system to define these for us aut omatically. Thisis done using the ‘ Define’ option from the canvas toal.
This brings up the definer window asillustrated in ~ Figure 27.9. This allows the user to select which
aspects and which actions they wish to define. This can be used to ensure that modifications made to the
definitions by the developer do not get over written.

DEFINE Models

doAdd
doDelete
antry

exit
todoTable

L-

[T Add Initialization

OK Cancell

Figure 27.9: The Definer

Different things happen to input fields (and to lists and tables) than to action buttons. In the case of
an input field the system defines an instance variable on the class and creates an accessor method as
illustrated in Figure 27.10. Thisaccessor method also provides alazy initialization approach to the
instance variable.

For an action the definer merely creates a stub method which returns self. This ensure that when the
window is created an exception is not generated when a button is pressed. Th euser isthen ableto
redefine the action methods to perform the desired operations.

ﬁHielalchy Browser on: ToDoOrganiser [_[o]x
Hierarchy™ actions N Er—
aspects todoTahle
Object
Model
Applicationiodel
ToDoOrganiser

4 instance ~ class |~
entry E

"This method was generated by UlDefiner. Any edits made here
may be lost whenever methods are automatically defined. The
initialization provided below may have been preempted by an
initialize method."

“entry isNil
ifTrue:
[entry = String new asvalue]
ifF alse:
[entry]

Figure 27.10: The defined entry aspect

27.7 Initialization

Itisimportant when using an a pplication model to ensure that any initialization performed does not
overwrite that accomplished higher upinthe Appl i cat i onModel class hierarchy. For example, in
Figure 27.11 we define an initialization method for th e simple to do list Organizer presented in Figure
27.12. Thefirst thing that this method doesisto send amessage i ni ti al i ze up theclass hierarchy
using:

super initialize.

This ensures that the initialization steps performed by the Appl i cat i onModel will be carried out
first. Thisisessential becauseif i niti al i ze merely overwrote the inherited method, then the user

229

interface builder would be unable to create the user interface window (thisis actually acommon
mistake even for those used to the VisuaWorks system).

EMelhod Browser on ToDoOrganiser H=
initialize
initialize E

| list valuesTahle |

"Call super initialize to make sure that all the initialization
perfarmed in Applicationmodel is still done.”

super initialize.

“Set up the instance variables of this class"
toDoList := List new: B.

toDaoList at: 1 put: 'Phone home'; at: 2 put: 'done’.
toDoList at: 3 put: 'Cancel papers’; at: 4 put: toda’
toDalist at: & put: 'Get flowers’, at: B put: toda',

"Set the aspects here rather than relying on lazy instantiation”
entry ;= String new as%alue.
list .= TwoDList
on: toDaoList
columns: 2
rows: 3.
valuesTable := SelectionlnTable with: list.
todoTable := Tablelnterface new selectioninTable: valuesTable

Figure 27.11: Initializing an application model

The remainder of the method in Figure 27.11 can then initialize the appl ication specific aspects of
the subclass of Appl i cat i onMbdel . Inthiscaseit initializes an instance variable called t oDoLi st
and avalue holder * on astring for an instance variable ent ry. Finally it constructs the selection list
displayed on the left hand side of Figure 27.12 and storesit inthet odoTabl e instance variable.

EUnlabeled Canvas | _ O]]
Phane home done R li
Cancel papentodo
Get flowers todo Add

Deletel
Exit |
e —

Figure 27.12: The working interface

27.8 Resource Finder

The Resource Finder (also known as the Finder) is anavigation aid for developers. It isintended to help
developersto find, edit, delete and execute resources such as windows and menus. Figure 27.13
illustrates the VisualWorks Finder. The left hand selection windo w presents application classes, while
the right hand selection window indicates the resources defined for the selected application class. There
are various filter options which can be used to reduce the number of application classes displayed. The
filters can be accessed by selecting the classes sub-menu from the view menu.

Figure 27.13 illustrates the resources defined for the Vi sual Launcher class (the classwhichis
used to display the VisualWorks Launcher window). As can be seen from this example, an application
can have more than one window specification (in this case it has two: wi ndowSpec - the default
window specification and about Di al ogSpec). If when one of these is selected the user selectsthe

* Wewill come back to value holders later in this chapter.

230

Edit button, then the user interface builder is Launcher for the given specification. If the Start buttonis
selected then an instance of the application classis created and opened on the specified specification.

Eﬂesoume Finder =]

View Class Resources |
Browse | Start | Add... | Remove... | Edit |

Class Resources
UltaskEditor A |% aboutDialogSpec [
UIMenuEditar % windowSpec | J
UIPaintar B BYWWAppFinder24
LIFainterCantraller B BwW.AppFinder32
UlIPalette B BWWBrowser2d
UIFroperiesTool B BYWWBrowserd2
UISettings B BYWCanvas24
WisualLauncher B BWWCanvas32
WindowSpec % B BYWCDLLFinder24 /

Figure 27.13: The Resource Finder

The Resource Finder is auseful way of finding the specifications provided for various classes,
menus, starting applications and editing existing applications.

27.9 ValueHolders

In VisuaWorks the biggest departure from the original ParcPlac e version of Smalltalk, which was
known as Smalltalk -80 and then ObjectWorks, istheuse of ValueHolders. VaueHolders represent a
modification to the way information is exchanged within the MV C architecture. This modification is
intended to further buffer the user interface from the application model. The ideais that the model
should present only that - a data structure and its associated methods. However inthe MVC
architecture, information about the interface often crept into the model. For example, the model would
have to send the change message to itself at the right times and make the appropriate information
available to the view (when the view received the resulting updat e: message). The use of
ValueHoldersis an attempt to remove this concern from the model.

aController

aValueHolder

anObject

Figure 27.14: The modified MVC architecture in VisualWorks

27.9.1 How they work

The Val ueHol der acts as an intermediate object which buffers the application model from the actual
objects it maintains. The model now refersto ValueHolders, which refer to the actual objects being
modeled (thisisillustrated in Figure 27.14). Thus the model doesnot make direct reference to other
objects, instead it refers to a ValueHolder. When the model wants to access avalue it requests that the
ValueHolder providesit. Similarly, if it wants to update a value it sends a message telling the
ValueHolder to update its value.

When the object referred to by aVValueHolder changes, it is the responsibility of the VValueHolder to
inform the associated view that its value has changed and that the view should display this new value (in
the original MV C it was the responsibi lity of the model). Similarly, if the controller receives input from
the user which directly changes the value of the ValueHolder, the controller merely informs the value
holder that its value should change.

231

While this may seem to be a complicated (and rat her convoluted) way to change the value of part of
the model, it has many advantages in flexibility and modularity. No longer does the model haveto
inform the interface (view) about any updates; the ValueHolder ~ doesit automatically wh enever the
value it holds changes. Indeed, it is no longer necessary for the model to concern itself with any aspect
of the view (or controller) at all. The model now really is separated from the view and controller. This
makes the task of developing highly graphical systems much easier.

27.9.2 Working with value holders

If the user interface builder described above is used to construct a window and the definer has been used
to generate the instance variables and accessor methods for the windows aspects, then valu e holders for
these instance variables will automatically be created. However, it is still possible to do this manually
(and may be used with non interface instance variables).

A new value holder can be created in two ways:

1. By creating an instance of the class VaueHolder. For example,
bal ance := Val ueHol der with: 230.

2. By converting an object to a value holder and object. For example,
bal ance : = 230 asVal ue

Whichever approach is used, the contents of the value holder is accessed and up dated in the same
way. Accessing the valueholder’s contentsis performed using the val ue message and updating it is
performed using theval ue: message. For example:

current Bal ance : = bal ance val ue.)
bal ance val ue: (currentBal ance + deposit)

If anew valueisassigned to avalue holder the val ue: message must be used, otherwise the value
holder will be deleted and the link to awindow (if present) and to any dependents will be lost.

27.10 The onChangeSend:to: message

In an earlier chapter we discussed theuseof the dependency mechanism as a means of informing
interested parties about a change in the value of something. Value holders take this concept one step
further and makes it more explicit. Whenever the value of avalue holder is modified using the val ue:
message a check is made to see whether there are any interests recorded on that value holder. If there,
then the associated action is performed.

Theinterest in avalue holder is registered using the onChangeSend: aSynbol to:
an(Obj ect message. This message states that when the value holders value changes (viavaue:) the
symbol is sent to the object as amessage. A common use of this message is to ensure that some action
is performed whenever the user changes a value currently being displayed. For example:

bal ance onChangeSend: #checkl nTheRed to: currentAccount

states that when the value holder held in bal ance ismodified, the message checkl nTheRed should
be sent to the object heldin cur r ent Account . Note that unlike the version of the dependency
mechanism discussed earlier, this approach explicitly states what action should be performed on what
object when a particular value changes.

If at alater date the dependency between the value holder and the message send to the specified
object should be retracted, the (less meaningfully named) retract| nterestsFor: anCbject
message can be used.

232

27.11 Visual reuse

Theaim of visual reuseisto avoid the necessity to rebuild applications from scratch. There are
essentially threety pes of visual reusein VisuaWorks, these are: cut and paste between windows, the
use of subcanvases and the use of inheritance. Each of these will be discussed briefly below.

27.11.1 Cut and paste reuse

It ispossible to cut and paste widgets from one window to another using the canvas and the copy edit
menu option. Essentially you open the user interface builder on a particular window, select the elements
of the window that you wish to copy, use the edit menu to copy them and then go to another canvas and
use the edit menu option paste, to place them on the new window. This copy operation also copies all
the preference information defined for the first window (although it does not copy any instance variable
definitions, initialization or accessor methods). All that is now required for these widgets to be available
on the new window isto define them and carry out any initialization operations required.

This approach saves time on building new windows as whole window layouts (such as buttons, input
fields, test labels, text boxes etc.) can be copied at once. It is also possible to mix widgets copied from a
number of different windows.

However, this approach suffers with problems of maintenance (for both window layout and source
code). For example, if the purpose of copying a set of widgets was to ensure that all windows had a
similar look (for example, with the same set of buttons across the bottom of the window for operations
such as next, last, quit and help). Then whenever a change was made to one window, the same change
would have to be performed for every window in the system. Similarly, if the windows were on
different classes it would be necessary to ensure that any source code changes were reflected in each
class.

Many early graphical user interface building t ools provided only this sort of reuse. Indeed there are
many systems still in use which provide only thislevel of support.

27.11.2 Subcanvas reuse

Each window is actually a canvas which has certain properties including the windowSpec. These
canvases are by defaul t used to construct the window. However, the layout of part of awindow can be
defined by a different specification. The top level window handles this by treating the lower
specification as a subcanvas. That is a subcanvas takes its layout from adifferent window specification
from that of the result of the window.

There are in fact two ways in which a subcanvas can be used. These are specification based and
instance based. We will consider each of these separately.

window window

reference

subcanvas subcanvas F\

object providing
specification and
functionality

window specification

(@) (b)

Figure 27.15: Subcanvas reuse

Specification based reuse. Specification based reuse uses another window specification (in addition
to the current window specification) to define what the area of the window controlled by the subcanvas
should look like. This subcanvas can be supplied by another application model (by referencing the other
class). Thisisindicated in Figure 27.15(a). In this situation, the window’ s application model must
provide the necessary functionality required by the widgetsin the subcanvas area.

I nstance based reuse. Instance based reuse differs from specification based reuse in that in addition
to being able to obtain the window specification used to determine the win dow layout of the subcanvas
from another class, the functionality of the widgetsis handled by an instance of that class. Thus the
subcanvas now relates to a completely separate object from the remainder of the window. Thisis
indicated in Figure 27.15(b).

233

Instance based reuse is more complicated to achieve but has the advantage that the required
functionality is also obtained.

27.11.3 Inheritance of canvases

Subcanvas reuse as described aboveredly relatesto part-of relationships and must be redefined for
each window which wishes to use the same subcanvas even if al the windows relate to subclasses of a
common ancestor class.

ApplicationModel 1 commonSpec
j ProjectAnblicationModel behaviour

AccountModel T accountSpec
account behaviour

accountSpec

commonSpec

Figure 27.16: Inheritance of subcanvases

One way of alleviating this duplication isto use inheritance with the reuse of parts of agraphical
user interface. For example, rather than obtaining the subcanvas specification from another class, the
subcanvas specification is inherited from a parent class. Thisisillustrated in Figure 27.16.

This enables not only part of the window layout to be inherited, but instance variables, accessor
methods and value holder relationships etc. This can bedoneby s pecifying the inherited window
specification containing the required layout, in the canvas property of a subcanvas widget.

27.12 Method of working with the Ul builder

At this point it is worth noting the sequence of steps (and their order) which are generally ta ken when
developing awindow using the user interface builder. We will assume that we are constructing a new
window on anew class. The only differences that you need to bear in mind if thisis not the caseisto
ensure that you don’t over write existingw indow specifications or method definitions (unless that is
what you intend to do).

1. Open the user interface builder using the canvasicon on the Visual Launcher and draw the desired
window.

2. Onceyou have drawn the window, select Install from the canvastoo |. Thiswill bring up the
installer window (illustrated in Figure 27.6) with an empty class hame. Y ou must enter a class name
before you can continue.

3. Having specified a class name the window illustrated in - Figure 27.17 will be displayed. Aswe are
defining a new window we select the Application option in the Define As grouping which resultsin
the Appl i cat i onModel classbeing selected as the super class of our newly defined class. If we
wish the class to be defined in a category other than Ul Appl i cat i ons- New, then we also need
to specify the category (if this does not already exist it will be created). We can now select OK.

4. Thisreturns usto the installer where we have the option of specifying awindow specification name
other than wi ndowSpec. Remember wi ndowSpec will be used as the default window layout
when awindow is opened. Thisis done by typing in a new name into the box below the prompt
saying “or enter new Selector”.

5. Weare now ready to define any action methods, accessor method etc. for the window. Thisis done
using the Define button on the canvastool. This causes the definer window to be displayed (as
illustrated in Figure 27.9).

6. You are now ready to define any additional initialization code required. Once this is done you can
start the window using the Open button on the canvastool.

7. Any subsequent editing of the window follows a similar pattern. However you will not be prompted
for the superclass nor category of the class again.

234

CREATE New Class

Name: I Temp
Cateqgory: I UlApplications-MNew
Define As
~~ Dialog < Application
+ Data Form + Database Application
Superclass: Applicationtdodel

0K | Cancel| Help |

Figure 27.17: Defining the parent class and category

27.13 Summary
In this chapter you have learnt about the VisualWorks window construction tools their use and the

concept of value holders. Y ou have a so been told about the modifications introduced in VisualWorks to
the basic MV C framework and the difference between application models and domain models.

235

28. A Visual Organizer

28.1 Introduction

This chapter presents aVisuaWorks version of the Or gani zer Class described earlier in the book.
That is, agraphical front end is constructed that works with the classes previously constructed. The
organizer was intended as an electronic personal organizer. It therefore possessed an address book, a
diary (or appointments section) and a section for notes. However the version previously described
reguired the user to send the appropriate messages to an instance of Or gani zer using the Workspace.
For example, in Figure 28.1 the user has created an instanceof Or gani zer and sent it avariety of
messages which record addresses, appointments and notes. This certainly works, however, the use of a
graphical interface would be preferable. Thiswo uld alow the user to input the appropriate information
viabuttons, input fields and text windows.

T Workspace _ O]
7.

Welcome to
VisualWorks® Release 2.5 of Sept 26, 1995
Copyright @ 1995 ParcPlace-Digitalk, Inc. All Rights Reserved.

[temp |

temp ;= Organiser new.

temp newAddress: ‘Room 47" for: John'.
temp newAddress: 'Room 46" for: 'Patrick’.
temp newAppointrment: ‘hMeet with MEng' for: 10/08/96"
temp addMote: | must do all my wark'.
termp addMote: Today is a brand new day”.
temp addressFor: Uohn'

temp appaintmentFar 10/05/96"

temp printhotes.

temp inspect,

Figure 28.1: Using the (non graphical) Organizer

Figure 28.3 illustrates the type of interface to be constructed for the address input window. As can
be seen from thisfigure, having a graphical user interface (GUI) leadsto afar more intuitive interface.

The chapter is structured in the following manner: Section two desc ribesthe Vi sual Or gani zer
class which acts as the class used to define the graphical interface, Section three describes the
associated Addr essBook class and Section four provides afinal comment.

28.2 VisualOrganizer class

In the examplein this chapter weare going to construct a graphical version of the Or gani zer we
constructed earlier in this book. We shall make a number of changes to the architecture of the

Or gani zer inorder to define the Vi sual Or gani zer . The major changes are:

1. TheVi sual Organi zer classwill beasubclassof Appl i cati onModel rather than Obj ect .
Thisis because we wish to inherit all the facilities used to manage VisualWorks windows. Thisis

236

important, as these facilities handle everything from creating the window to handling user
interaction (e.g. input and output).

2. The other mgjor changeisthat we have brokenthe Or gani zer classdown into its constituent
parts. i.e. we now have separate classes for the address, appointments and notes functionality. the
Or gani zer classnow acts as a composite class which obtains its functionality from the instances
it will possess.

The Vi sual Or gani zer now works by displaying a Launcher window when the
Vi sual Or gani zer issent the message open. Thismessage islike new exceptitnot only creates a
new instance of aclass, it also causes that instance to open whatever window is defined in the default
window definition method. This method is called windowSpec and is maintained on the class side. The
VisualOrganizer Launcher isillustrated in Figure 28.1.

28.2.1 Constructing the Launcher

First of al we need to define the class category we are going to put our classesin. The category will be
called 'Visual Organizer Classes . If you wish to follow the exampl e in this chapter yourself, you should
create this category now.

Next we will define the layout of the VisualOrganizer Launcher window. To do this we use the
VisualWorks User interface builder. As we are creating a completely new application you should launch
the user interface builder from the VisualWorks Launcher using the easel icon (if you are unclear on
what the user interface builder does see the last chapter).

Having launched the user interface builder, the first thing to do isto givethewindow as awholea
label. This can be done using the properties option available from the right mouse button menu (or
middle if you have athree button mouse). Note that the properties window will display the properties of
the selected widget or the window as awhole if no widget is selected.

| have chosen to use the label “Visual Organizer” for my window, however you can use whatever
label you feel is most appropriate as the label is not significant for the operation of the system. Once
you have provided a suitable label select accept and close the properties window. Next resize the canvas
as appropriate. Y ou are now ready to begin constructing the Visual Organizer Launcher.

The window layout for the Launcher isillustrated in Figure 28.2. It shows that four buttons have
been placed on the window. The text boxes with arrows indicate the action properties assigned to each

button.

I_|‘-I’|sual Organizer

Addressesl Diary | Notes |¢
Action: openAddresses \M‘

Figure 28.2: Defining the actions for the Launcher's buttons

Each button is a basic action button with atextual label rather than an icon. Place each button on the
window using the palette asindicated in Figure 28.2. Remember you can use the button widget with the
multiple placement option (the box in the top right hand corner of the Palette) to place more than one
button. Then use the properties tool to ensure that the button properties match those in the diagram.

The Exit button also possesses a number of look preferences. These are set using the Color optionin
the properties tool. The actual colors selected are:

» Foreground color: white and Background color: Royal Blue
¢ Sdlection Foreground Color: Pale Blue and Selection Background Color: Red

The first two colors are used to display the button on the window. The Foreground color relates to
the color in which the text on the button is displayed and the background color the is the main color of

237

the button. The selection colors are the colors which the button changes to when a user selects the exit
button. The contrast between red and blue helps the user identify that they have selected this button.

Y ou have now defined all that is required to display the window. Y ou are therefore ready to install
the window onto aclass. To do this you should now select the Install button from the Canvas Tool
window. You should install the window on aclasscalled Vi sual Or gani zer whichisasubclass of
Appl i cati onMbdel . The window selector name should beleftas wi ndowSpec. Don’'t forget to
change the category to Visual Organizer Classesotherwiseit will be placed in the default category.

Once you have installed the window onto a class you are now ready to define the action methods for
the window (a.k.a. the methodt o run when the button is clicked). Y ou can do this by selecting the
Define option in the Canvas Tool window. Do this now. The definer should define four methods named
after the action properties you defined above.

28.2.2 The VisualOrganizer class

Now go to the Sy stem Browser and look at the class definition for VisualOrganizer. Y ou will seethat a
full class definition has been generated for you by the User interface builder. Y our newly created class
definition should look like this:

Appl i cati onMbdel subcl ass: #M sual O gani zer
i nstanceVari abl eNanes: "'
cl assVari abl eNanmes: "'
pool Di ctionaries: "'
category: 'Visual Organizer C asses'

Next add a class comment. Thisisleft as an exercise for the reader.

28.2.3 The “actions” protocol

Methods for each of the buttonsint he window are defined by the User interface builder when the
Define option is selected (the user can select not to define methods using a scrolling selection window).
These methods are placed in the “actions’ protocols. By default, these methods are defined to return the
value of self. For example, the definitions generated by the User interface builder are:

openAddr esses openDi ary
“sel Nsel f
openNot es doExi t
"sel f "sel f

If we wish them to do anything useful, then we need to edit these methods and define what they should
do.

We shall first look at the doExi t method asthisis the simplest method. This method will close the
window. To do thiswe usethe cl oseRequest method defined inthe Appl i cat i onModel class.
We therefore merely need to send the message cl oseRequest tosel f.

doExi t])]
"This method cl oses the associ ated wi ndow
sel f cl oseRequest.

This method is associated with the “exit” button on the Visual Organizer Launcher.

The other three actions are associated with the three launch buttons on the Visual Organizer
Launcher. These are used to open the address book, the diary and the notestool. The openbDi ary and
openNot es methods will remain unchanged. They will return self when called. Extending the
application for appoi ntments and notes is left as an exercise for the reader.

The only action method which possesses “ content” will be openAddr ess book. This should send
the message open tothe Addr essBook class. Thiscausesaninstanceof Addr essBook to be
created and the default window defined on this class opened:

openAddr esses
Addr essBook open.

Define this now and accept it (Ileave any classes undefined when VisualWorks warns you about them).

238

28.3 The AddressBook class

28.3.1 The AddressBook window

— Input Field
I "JAddress Book [_[O] Aspect: name

Name I =

Text Editor

A
l
J Aspect: address

/lng&l ngll Exit |
I

Action Button Action Button Action Button
Action: dolnput Action: doQuery Action: doExit

Figure 28.3: The layout and definition of the AddressBook window

Figure 28.3 illustrates the layout of the AddressBook window. As can be seen it has two input fields as
well as three buttons and two text labels. The specifications for these different widgets are indicated in
the figure. Using the palette and the properties tools define the window following the steps outlined
above.

For the window as awhole | have used the label “Add ress Book” however as before you can use
whatever label you feel appropriate. The three buttons along the bottom of the window will be referred
to these asinput, query and exit (from left to right).

Once you have defined the layout of the window and the v arious properties you are ready to install
the window on aclass. To do this select the Install button from the Canvas Tool window and install the
window on aclasscaled Addr essBook whichisasubclassof Appl i cati onMbdel . Don't forget
to change the category to “Visual Organizer Classes’ otherwiseit will be placed in the default category.
Once you have installed the window onto a class you can select the Define option in the Canvas Tool
window to define the instance variables and accessor methods for the two aspects (input fields) and the
actions for the buttons (ak.a. the method to run when the button is clicked). Y ou are now ready to
define the functionality of the AddressBook class.

28.3.2 The AddressBook class definition

In the System Browser, have alook a t the class definition for Addr essBook. You will seethat afull
class definition has been generated for you by the User interface builder. Y ou now need to add the
instance variable specific to the functioning of the class (rather than the instance variabl es specific to
the user interface). Thisvariable will becalled addr essBook. Once you have done that, your newly
created class definition should look like:

Appl i cati onMbdel subcl ass: #Addr essBook
i nstanceVari abl eNanes: 'nane address addressBook '
cl assVari abl eNanmes: "'
pool Di ctionaries: "'
category: 'Visual Organizer C asses'

Don’t forget to accept the class definition. The class comment is left as an exercise for the reader (you
must get use to defining them). Y ou should also note that when you sele cted the Addr essBook class
there were two method protocols defined for you aready. These were ‘aspects’ and ‘actions'. The
‘aspects’ hold the instance variable access methods and the ‘actions' hold the methods which will be run
when the buttons are clicked.

239

28.3.3 The “aspects” protocol

The next thing we will do isto look at the methods which have been defined for us by the User interface
builder in the “aspects’ protocal. If you examine this protocol you should find two methods defined.
Onecalled addr ess and one called nane. If you examine these methods you should find that their
definition matches those presented below:

addr ess
"This method was generated by U Definer. Any edits nade here nay be | ost whenever
net hods are automatically defined. The initializaion provided bel ow nay have been
preenpted by an initialize nmethod."
Naddress isNi |
i fTrue: [address := String new asVal ue]
i fFal se: [address]

We shall stop for amoment and consider what this method actually says. The method possesses one
expression, the result of which will be returned when the method completes. The value will returned is
dependent on the result of the i sNi | test. If the contents of the instance variable addr ess “isnil”
thenthe i f True: clausewill execute, if not thenthe i f Fal se: clausewill execute. We shall take
thefalse casefirst. If addr ess doesnot contain ni | thenthevalueof addr ess isreturned by the
i f Fal se: clause. However, if thevalue of addr ess is ni |, then the assignment expression in the
i f True: clauseisexecuted. This assignment expression creates a new instance of theclass Stri ng.
It then sends the message asVal ue to this new string instance. This creates a value holder around the
string. This value holder with string construct is then assigned to the instanc e variable addr ess. The
result of this expression is the value of assignment which is returned.

Thus, if the addr ess instance variable has not yet been set (indicated by the value nil)an
appropriate value for it is generated, otherwise its valueis return ed. Thisform of expression isreferred
to as lazyinitialization. That is, addr ess isinitialized appropriately when it isrequired, rather than
when the system isinitialized. This can be useful sometimes, however it does mean that every time the
value of addressis obtained an extra expression must be considered (i.e. i sNi |). Thismeansthat is
less efficient than initializing the value of address appropriately in an i nitialize method. The
accessor method for the instance variable nane is defined in asimilar manner.

28.3.4 The “initialize” protocol

Now let us define the “initialize” method protocol. This method protocol will only possess one method,
initialize.Thismethod ispresented below. It instantiatesa Di cti onary object to use with the
addr essBook instance variable. Notice that once again we do not access the instance variable
directly. Instead we use an updater method.
initialize

"This method is called whenever an instance of Organizer is created"

| adBook |

"ApplicationMdel defines its own initialize so send a nessage to super"”

super initialize.

"Next we set up the address book instance vari able"

adBook : = Dictionary new.
sel f addressBook: adBook

Aswe are currently using lazy initialization with the ‘aspect’ methods nane and addr ess we have
not init ialized them here. However, as was indicated above, it would be more efficient to do so.
However, it must be remembered that they are “aspect” variables rather than plain instance variables.
This means that for the windowing operations to work correctly they must contain a value holder, which
acts as awrapper around the actual value they represent (see the last chapter for more details).

A common mistake (and the cause of much frustration) isto initialize the aspectsin an initialize
methodasa Stringor a Nunber (with no value holder). This means that the “ aspect” method
i sNi | testfailsandthe String or Nunber etc. isreturned. The problem isthat thisisnot avalue
holder and thus cannot respond to input and output properly. Often this manifests itself when values fail
to update themselves or updates from the user fail to propagate to the instances etc. Thus appropriate
initialization should follow that used in the aspect methods, e.g.

address : = String new asVal ue.
nane := String new asVal ue.

240

The aspect methods can then be simplified to just return the contents of the associated instance variable.
28.3.5 The “actions” protocol

Another set of methods defined by the User interface builder are the “actions” methods. These arein the
“action” protocol. We have aready seen examples of theseinthe Vi sual Or gani zer class. Asyou
saw there, by default, these methods are defined to return the value of self. We therefore need to define
them.

We shall first look at the doExi t method asthisis the simplest method. This method will close the
window. To do thiswe again use theinherited cl oseRequest method. We therefore merely need to
send the message ¢l oseRequest tosel f.

doExi t
"This nmethod cl oses the associ ated w ndow"
sel f cl oseRequest.

Next we will look at the dol nput method. This method takes input from both the name input field
and the address input field and storesthem usingthe newAddr ess: f or : method which we will
define later. Notice that once again we use an intermediate updater method to actually access any
instance variables (thisis good Smalltalk style). Thedol nput method is presented below.

dol nput
"The method is executed when the input button is pressed"
| aNane anAddress |
aNane : = nanme val ue.
anAddr ess : = address val ue.
sel f newAddress: anAddress for: aNane.

Notice that we do not just accessthe nane and addr ess aspects (instance variables) and save them
into the temporary variables aNanme and anAddr ess. Instead, we send the message value to each of
the aspectsfirst. Thisis because, if we just took the contents of name and addr ess we would obtain a
Val ueHol der object. What we really want is the contents of the value holder. To get this we must
send the message val ue tothevalueholder. Thus name val ue, will return the value held by the
value holder in the instance variable name.

Remember when you type this method in and accept it, the system will notify you that the method
newAddr ess: For : isundefined. We will defineit later!

Next we will examine the doQuer y action method. This method accesses the nane input field and
updates the addr ess input/output field. Again we must use the message val ue to access the contents
of the nane value holder. Wethen usethe addr essFor: accessor method (which we will define
below) to obtain the address assoc iated with the name. If the addressretrieved isnot ni | then we put
the address retrieved into the addr ess input/output field. If it isnil we display an okay dialog with an

appropriate warning message.

doQ.JerK]])
"The method is executed when the input button is pressed”
| aNane anAddress |

aName : = nane val ue.
anAddress : = sel f addressFor: aNane.
anAddress isNi |
ifTrue: [Dialog warn:' There is no address for ' , name val ue.]

i f Fal se: [address val ue: anAddress asText.]

We will ju st examine the last statement in the method for a moment. This time we used the message
val ue: rather than the message val ue with thevalue holder in addr ess. Thisis because we were
updating the contents of the value holder rather than accessing it. Thus the address value holder is set to
the value of the parameter sent with the message val ue:. This parameter was actually the string
returned by the addr essFor : method. However, to be displayed it must be converted into a Text
object (which unde rstands how to display strings). Thisis achieved by sending the string in

anAddr ess the message asText . Thisis necessary because the text editor field assumes that it will
display atext (which has special properties such as font and style) rather thanj ust aplain string. When

241

we access the value holder using value, it knows to return the string held by the text object within the
value holder. But when we update the value holder we need to wrap the string in atext object.

28.3.6 The "accessing” protocol

Next we shall define the methodsin the “accessing” protocol. There are four methods in this protocol.
We shall first consider those associated with setting and updating the address book dictionary. The first
of these isused to initialize the instance variable addr essBook and the second to add new name and
address associationstothe addr essBook. Theseare addr essBook: and newAddr ess: for:
respectively. Theaddr essBook: method is very straight forward and is presented below.

addr essBook: abDictionary
"This is a n update nmethod for the addressBook instance variable. It is used to
accept a new dictionary object to use for the addressBook. It is intended only for
use with the initialization method of the AddressBook class."
addressBook : = abDictionary

The newAddr ess: f or : method takes two parameters, the new address and the name. The method
usestwo different Di ct i onary methods. Thefirst isused to check to seeif thereis already an

addr essBook entry with that name. We could not usethebasic at : message asthat generates an
error if the key provided with the at : messageis not present in the dictionary. However, the

at : i f Absent : message allows the code block provided withthei f Absent : parameter to be run if
the key is not present. In our case we do not want it to do anything other than return ni | . By default
when ablock is evaluated it returns ni | if nothing elseis returned. We therefore only need to provide
any empty block which will always return the value ni | . We can then test the value of the temporary
variable al r eadyTher e toseeif itis ni | . If itisnil then we can add the new name and addressto
the dictionary heldin addr essBook. If it isnot nil we can warn the user that an entry with that key
aready exists using a dialog window.

newAddr ess: anAddress for: aNane
"This method is used to add a new address to the address book."
| alreadyThere |
al readyThere : = addressBook at: aNanme ifAbsent: [].
al readyThere i sN |
i fTrue: [addressBook at: aName put: anAddress]
ifFalse: [Dialog warn: 'That key is already present']

We shall now consider the last two methods in this protocol. These methods are addr essBook which
returns the contents of the addr essBook instancevariableand addr essFor : which returnsthe
address associated with a particular name (if oneis present). The addr essBook method is:

addr essBook))
"This is an access nethod for the addressBook instance variabl e"
~Naddr essBook

The addr essFor : method is slightly more complex asit must handle the situation where an
addressis not available (it usesthe at:i f Absent : message to do this).

addr essFor: aNane
"This nethod is used to retrieve an address fromthe address book."
| anEntry |
anEntry : = addressBook at: aNane ifAbsent: [nil].
NanEntry

28.3.7 A working application

If you have followed all the steps above correctly you should now have aworking application. To start
the application, type the following into a Workspace and evaluate it:

Vi sual Or gani zer open
Thiswill display the window illustrated in Figure 28.2. Now select the Addresses option and you should

see awindow such asthat displayed in Figure 28.3. Y ou can now typein afew names and addresses
selecting input between each. Next try out the query option by typing in a name and selecting query. If

242

the name isin the address book, it will be displayed in the address book field. If not awarning message
will be displayed.

28.4 Summary

Y ou have now created a VisualWorks GUI application. This a pplication provides you will the basics of
an address book. Of course, if you quit from the window you will lose all the names and addresses you
have input. We will look later at how you can store the dictionary used for the names and addresses into
afile so that you can access it again. The method we will useis called the Binary Object Streaming
Service (or BOSS for short). It is better than saving straight ASCII, as it perseveres the objects rather
than just plain text (where you would have to reconstruct the dictionary from the text).

An important point to consider is how we have structured this application. We have effectively
bound the address book functionality into the user interface. Thisis not particularly good style, however
for such asmall app lication it seemed acceptable. A better structure would have been to construct a
graphical interface which used the facilities defined in the original Or gani zer class.

28.5 The visual Financial Manager application

Thisisan exercise for you the reader. Thisap plication builds on the Fi nanci al Manager you have
been constructing at various times throughout this book. The aim of this exerciseisto provide a
graphical interface to this application. The graphic interface should alow the user to:

1. Add deposits to the account for a specified amount.
2. Make payments (withdrawals) from the account for specified accounts.
3. Get the current balance and print a statement of all payments and deposits.

Y ou should define the window independently of the Fi nanci al Manager class. This meansthat you
can make the GUI Fi nanci al Manager classasubclassof Appl i cati onMbdel . You should then
provide an instance variable in which the actual Fi nanci al Manager object will be held. This could
bedoneinan initialize method. | have assumed that the two input/output aspectsare anount
and bal ance. These could aso beinitialized in this method. For example:

initialize
super initialize.
account := Fi nanci al Manager new.
amount := 0. 00 asVal ue.
bal ance : = 0. 00 asVal ue.

Inthe above example, account isan instance variable used to hold the Fi nanci al Manager
object. Note that we must first send the message super initialize toensurethat theinherited
initialization is performed.

It should now be possible to write methods to handle user inputs in the form of button clicks which
pass the appropriate information onto the object held in account. For example (Note this assumes that
the amount to be input field is called “amount”):

deposi t]
account deposit: (anount val ue).

243

29. Using a View Within a Window

29.1 Introduction

This chapter describes how a custom view can be incorporated into the type of window seen in the last
two chapters. Thisisimportant because although the user interface builder is extremely good at creating
buttons, input/output field style windows, it cannot be used to display graphical information. For
example, if you wish to construct a graph of nodes to illustrate a particular route in a path finding
application then this must be generated using the basic MV C (Model-View-Control) features.

In this chapter we consider a simple drawing application which we will call SmallDraw . This
application isillustrated in Figure 29.1.

ESmallDlaw H=l 3
Circle | Exit |

Point | Box

=

Q P 0 e e

Figure 29.1: The SmallDraw application

SmallDraw allows boxes, circles and points to be placed on a scrollable drawing. The three widget
buttons and the exit button have been defined using the user interface builder. The scrollable drawing
areais ascrollable view which has be created by the user interface builder but which is controller by a
separate model, view and controller.

In the remainder of this chapter we will consider how this application was constructed.

244

29.2 The custom view widget

29.2.1 What is a custom view widget?

Any widget displayed in awindow created using the window building facilities of the canvas, the
palette and the canvas tools uses a view to display itself. This view determines what will be displayed,
what the associated view does and how it links with your application. However, not everything you will
wish to do is covered by the widgets provided by the palette. For example, if you wish to display a
network of nodes, then there is no built in widget to do this - you must write the code which will display
such anetwork using a custom view.

Figure 29.2: The View Holder Palette icon

A custom view is held within aview holder which can be placed onto awindow usi ng the user interface
builder. Thisis done using the view holder icon which is available on the user interface builder’s
palette. It allows the user to place aview holder widget onto the canvas being designed. Such a holder
can take advantage of some of the widget properties defined by the user interface builder such as diders
etc. However, the devel oper must supply the majority of the code that connects the graphic contents of
the view holder to the application as well as the code which actually generates the graphics.

29.2.2 How do you create a custom view?

T SmallDiaw I [m]
Point Box Circle E it
ﬁ
FPe... ulillz - -
I “jProperties Tool on: SmallDraw C
:
Yiew Holder
e Bl
= o= View: ud.awing\.rie Basics
fo———
E’ Color
il
g | Apply I‘ Cancel ” Apply & Close ” Plevl He
View Holder +
| L1

Figure 29.3: Defining a custom view

To create a custom view a user must first place aview holder onto the canvas representing thewind ow
being constructed. For example, in Figure 29.3, we have placed a view holder across the majority of the
window and added a horizontal and vertical slider. Thisview is then linked to the window via an
instance variable specified in the view' s properties window.

The result of thisisthat when the user interface window building software encounters this window’ s
definition (held in a class side window specification method) it will construct a window with four
buttons and a scrollable view. However that isall that it will do. It will not attempt to perform any
operations to determine what the interior of the view should look like.

29.2.3 Managing a custom view
Associated with this view holder will beamodel, acontroller and aview instance. Asyou will note

from these classes custom views are implemented and controlled using the traditional MV C framework
described earlier in this part of the book. Remember:

245

* Views control what is displayed on the screen.
» Controllers handle user interaction.
* Models hold the domain data to be displayed by the view.

Thereforeit isin the view class that the developer must define a method which will specify what the
custom view widget will display. Thismethod isthe di spl ayOn: method. It takes one parameter
whichisa G aphi csCont ext . GraphicsContexts are objects which work with windows to display
graphical objects (determining how the graphic object should be rendered).

Thedi spl ayOn: method is sent by the system to the view whenever a change has occurred in one
of the objects on which it depends (such as the model) or when the screen needs to be updated (for
example, after awindow which has been partially covering the view is closed).

For the view to determine what it should display it needs to communicate with the model which
holds the data. It must therefore have alink to the model (whether it is a separate object or the instance
of application model which holds the parent window).

Finally, the view must also work witha controller. This controller will determine what action the
application should take whenever the user interacts with the view widget. Note that this controller does
not attempt to control how the user interacts with the whole window, rather it is only concerned with the
user’s interaction with the view. For example, what happens when the user clicksin the view etc.

We shall now consider how the SmallDraw application is structured.

29.3 The structure of the application

Figure 29.4 illustrates the inheritance structure between the classes used in the SmallDraw application.
This class hierarchy istypical of an application which incorporates a custom view. For example, we
havean Appli cati onModel hierarchy with the main SmallDraw application. We have a
Control | er subclass(Draw ngControl |l er),a Mdel subclass(Drawi nghbdel) and a
Vi ewsubclass (Dr awi ngVi ew). In addition we have three types of object which can be drawnin a
Smal | Dr awdrawing: BoxW dget, Circl eW dget and Poi nt W dget . The only difference
between these three classes is what is drawn on to the graphics context representing the view. The

Dr awi ngW dget class from which they all inherit defines common attributes used by all objects
displayed withina Dr awi ngVi ew (such ast heir origin, the extent of their boundary and the size of
their border). Each of these classes will be considered in more detail in alater section in this chapter.

Object

Model

Controller View DrawingWidget
origin
view model extent

border
A model controller
DrawingModel
style ‘

ControllerWi DrawingView BoxWidget Circlewidget

Pointwidget
diameter
defaultController

nodes SmallDraw

drawingView

DrawingController

Figure 29.4: Inheritance in SmallDraw

Note that the dashed line betweenthe bj ect classandthe Vi ewclassindicatesthat therearea
number of classes between these two in the actual class hierarchy. It is useful to examine these classes
yourself to see what facilities they add.

246

DrawingView
model

DrawingController

controller-

view

defaultController

SmallDraw
‘model

drawingView

drawingModel
DrawingModel

style

nodes

anOrderedCollection

CircleWidget
origin o
extent

border

BoxWidget

origin o
extent

border

Figure 29.5: The object relationships

LineWidget
origin
extent
border

However, what inherits from what is only part of the story for any object oriented application.
Figure 29.5 illustrates the next part of the story: how the objects relate to one another within aworking
application (note this diagram only presents the user defined objects within the application. There are
other objects such asthe Ul Bui | der whicharealso involved but which are generated by
VisualWorks).

Asyou can seefrom Figure 29.5the Smal | Dr aw application model has instance variables which
possesslinkstothe dr awi ngvbdel andthe dr awi ngVi ew. The presence of a link to the
dr awi ngVi ewobject alows the window building facilities associated with the SmallDraw window to
inform the view that it needs to redisplay itself. Thelink to the dr awi nghbdel allowsthe effects of
user interaction outside the view to be passe d onto it. For example, the user selects which object to add
to the drawing by selecting one of three buttons at the top of the SmallDraw window (Figure 29.1). The
user’s choice must be passed through to the dr awi ngModel so that it can add the appropriate drawing
object to itslist of displayed objects.

It is also worth noting that if you examine the Dr awi nghbdel , Drawi ngVi ewand
Dr awi ngContr ol | er you will seethat these three classes exhibit the classic MV C structure. T he
Vi ewandthe Contr ol | er have knowledge of each other andthe Model , whereasthe Mbdel
knows nothing about the Vi ewor the Cont r ol | er . Thisisbecause VisuaWorks recordsthe Vi ew
asadependent of the Mbdel when the view records the presence of themode | (usingthe super
nmodel : aMbdel . message expression).

Finally it isworth pointing out that in thiscasethe Dr awi nghbdel isarelatively simple model
which merely records a set of nodesinan Or der edCol | ect i on. These nodes could be anything and
could be displayed in any way. It is the nodes themselves which determine what they should look like
when drawn.

29.4 The interactions between objects

We have now examined what the physical structure of the application is but not how the objects within
that application interact. In many situations this can be extracted from the source code of the application
(with varying degree's of difficulty). However, in the case of a custom view within an
Appl i cati onMbdel , itisuseful to explicitly describe the system interaction. There are four
different interactionsin the system and each will be considered separately.

We shall adopt the following conventions for the diagramsillustrating the interactions between the
objects (these diagrams are based on the mechanism diagrams described by [Rumbaugh et al 1991]):

e asolid arrow indicates a message send,

» adashed arrow indicates instance creation,

e asquare box indicates a class,

e around box indicates an instance,

e anamein brackets indicates the type of instance,

« numbers are used to indicate the sequence of message sends.

247

29.4.1 Initialization

3. model:

initiali ‘ 1 i 4. addDependent:
MPQSmaIIDraM DrawingView }» - - —bQDrawmgView)

m DrawingModel }» - - >@rawingModel)

Figure 29.6: Object interaction during initialization

When the SmallDraw application is opened (i.e. when themessage open issent to the Snal | Dr aw
class) aninstance of Smal | Dr awis created and sentthemessage initialize (asillustrated in
Figure 29.6). Thisresultsin the creation of two further instancesonea dr awi ngVi ewand the other a
dr awi nghbdel . The drawi ngControl | er isautomatically instantiated when the view is
displayed (note the type of controller to be used is specified by the dr awi ngVi ewin theinstance
variabledef aul t Control | er).

Once the two instances have been created the message nodel : issent to the dr awi ngVi ew. This
in turn causes the dr awi ngVi ewto become one of the drawing models dependents. Note that this last
message send is defined in the Dependent Part class, which is one of the superclasses of
Dr awi ngVi ew.

At thispoi nt the structure required by the custom view isin place. It is now possible for the
applicationmodel ~ Smal | Dr aw and the user to interact with the dr awi ngVi ewand
drawi ngControl |l er.

29.4.2 Changing the type of graphic object to be displayed

tBoxStyl :
setBoxStle / smaliraw) 1&?)‘3’)'(9' (DrawingModel)

Figure 29.7: Changing the graphic object to be added

Aswe have used the user interface builder to add buttons to the main window which will be used to
determine which type of graphic object to addtothed rawing, we require some way of passing that
information onto the objects involved in managing and maintaining the custom view. That means we
must inform the model of the type of object which will be added.

The actual interaction illustrated in Figure 29.7 involves the message set Box St yl e being sent to
the Srmal | Dr aw application when the Box style button is selected in the main window. This messageis
sent in response to an event being raised (we do not cover how thiswork sinthisbook: it isleft asan
exercise for the reader).

When the message set Box St yl e isreceived by the smal | Dr aw object, afurther messageis
thensenttothe dr awi ngivbdel (which smal | Dr awhasalink to viathe instance variable
dr awi ngModel) setting the current style to the symbol #box. The style value can currently be one of
#box, #circl e or #poi nt .

29.4.3 Adding a new graphic object

(OrderedCollection)

4/add: (BoxWidget)

BoxWidget

1

igin: 8. displayOn:forDisplayBox:
(BoxWidget) (border)

9. displayRectangle:
7. displayOn: (GraphicsContext)

(GraphicsContext)

5. changed:with:

(DrawingView)

Figure 29.8: Adding a box graphic object

248

The action of adding a new graphic object to the drawing displayed by the custom view in the
SmallDraw application isinitiated by the user pressing the left mouse button. Historically the mouse
buttons were known as red, yellow and blue for the left, middleand righ ~ t mouse buttons. Thiswas
because the original system on which Smalltalk was developed had multi -color mouse buttons (colored
red, yellow and blue). Although Smalltalk is now available on systems with one, two and three mouse
buttons (all of which tend to be shades of the same color e.g. white, gray or cream) there are still places
in the system where reference is made to the color of the mouse button - thisis one of them.

When the left mouse button is pressed a redBut t onActi vi t y messageis sent to the
drawi ngControl | er (asillustratedin Figure 29.8). Thisalowsthe drawi ngControl | er to
decide what action to perform in response to the left mouse button being pressed. For example, an
application may specify that amenu should be displayed or that any object under the mouse is selected
etc. In the case of the SmallDraw application the action is to place a graphic object (of the appropriate
style) at the current cursor location. To do this, the drawi ngControl | er sendsan
addW dget At : messagetothedr awi nghodel .

Next the dr awi ngMbdel creates a new instance of the appropriate type of object. In the diagram
illustrated in Figure 29.8 the current style isthat of #box. Therefore anew instance of BoxW dget is
created. This boxW dget instanceisthen sent amessage ori gi n: which setsits position within the
view. The boxW dget isthenaddedtothe or deredCol | ecti on usedto hold all the graphic
objects. Nextthe dr awi nghodel sendsitself the changed: wi t h: message so that al of its
dependents can be informed that a change has taken place.

Thisresultsinan updat e: wi t h: message being sent tothe dr awi ngVi ew viathe dependency
mechanism. The dr awi ngVi ewthen sendsa di spl ayOn: message to the o bjects to be displayed.
TheboxW dget then uses aborder object to display itself onthegr aphi csCont ext .

This section has outlined the most difficult part of constructing a custom view for the novice -
working out what is sent where, by what and when. The thing to remember is that you are slotting your
application specific code into a generic framework. However at this stage it is often much easier to ook
at what someone else has done and to use it as the basis of what you require. While this approach can be
extremely useful as alearning exerciseit is still important to become familiar with this framework. One
way to do thisisto place sel f hal t messagesinto strategic methods (such as updat e: wi t h: and
di spl ayOn: inthe dr awi ngVi ewobject) and then to u se the debugger to explore the objects and
messages which have been sent.

29.4.4 Refreshing

The fina set of interactions which you should be aware of relate to refreshing the window following
some operation which invalidates part or all of the screen display (su ch asthe movement of a partialy
overlapping window). In such circumstances the message checkFor Event s issent to the
appl i cati onW ndow, the application controller (which acts as the controller for the overal
application). (Note that in Figure 29.9 the large dashed line indicates missing message sends).

The applicationwWindow then sendsadi spl ayDamageEvent : aRect angl e messageto itself.
This message basically means that an event is raised which indicates that there ma y be some damage to
the displayed area (specified by arectangle). If the applicationWindow is open, then the message
di spl ayOn: will be sent to thedr awi ngVi ew.

The di spl ayOn: method in dr awi ngVi ew (as opposed to that defined in the “wi dget” classes)
obtains a collection of objectsto be displayed fromthe dr awi ngvbdel using the nodes message
and sends each object a di spl ayOn: message aspart of a do: message expression. Thisresultsin
each of the graphic objects being redraw on the screen.

(BoxWidget)

5. displayOn:

2. displayOn: 4. do: aBlock

checkForEvents, - ;
(ApplicationwWindow)

1. displayDamageEvent:

(DrawingView) (OrderedCollection) (Circlewidget)

3. nodes 7. displayOn:

(PointWidget)

(DrawingModel

Figure 29.9: Refreshing a custom view

249

29.5 The classes involved

This section describes how to implement the classes in the SmallDraw application in detail (see Figure
29.4 which illustrates the classes in this application). We will first consider the SmallDraw application
itself before considering the three classes involved in the MV C framework (Dr awi nghbdel ,
Dr awi ngVi ewand Dr awi ngCont r ol | er) and wi Il conclude by describing the “widget” classes:
Dr awi ngW dget , Poi nt W dget , G rcl eW dget and Poi nt W dget .

29.5.1 The SmallDraw class

The Smal | Dr awclassisasubclassof Appl i cat i onModel . It possesses two instance variables,
dr awi ngVi ew (which isactually an aspe ct referencing the custom view) and dr awi nghodel . The
class definition is presented below and can be typed in using the System Browser. Note that this
assumes that the classis being defined in a class category called SmallDraw.

Appl i cati onMbdel subcl ass: #Snal | Draw
i nstanceVari abl eNames: ' draw ngVi ew dr awi nghbdel
cl assVari abl eNanes: "'
pool Di ctionaries: "'
category: 'SnallDraw !

The SmallDraw application provides the main window for the application. It possesses four buttons, and
aview asillustrated in Figure 29.10. Y ou should use the canvas tool and the palette to create a window
which resembles this. Next use the properties tool to define the properties for the four buttons and the
view. The figureillustrates the actions defined for each button and the aspect name of the custom view.

Action: setPaintStyle Action: setBoxStyle Action: setCircleStyle

FjSmallDraw

Point Box Circle Exit_ g Action: exit

=l

View: drawingView

Figure 29.10: Defining the graphic elements of the SmallDraw application

Next use the definer tool fromt he canvastools Launcher to create stub methods for the actions
illustrated in Figure 29.10.

We shall now definethe i ni ti al i ze method inthe initialize protocol inthe Smal | Dr aw class
(use abrowser to do this). The i ni ti al i ze method creates an instance of the Dr awi ngVi ewclass,
the Dr awi ngMbdel class and links them together. The method is presented below:

initialize
drawi ngVi ew : = Drawi ngVi ew new.
dr awi nghodel := Drawi nghbdel new.

drawi ngVi ew nodel : dr awi nghbdel .
Y ou are now ready to define each of the action methods in the actions protocol. The first method we
shall consider isthe exi t method which is executed when the exit button is selected. This message
usesthecl oseRequest method we saw in the last chapter to terminate the application:

exit
sel f cl oseRequest

250

The next method we shall consider isthe set BoxSt yl e method. This method is executed when
the Box button is selected. This method sendsthe st yl e: messagetothe dr awi nghvbdel withthe
parameter #box. That is, it causes the current graphic object style to be set to #box.

set BoxStyl e
drawi nghbdel style: #box.

In addition there are two other methods which set the style of object to be added. These are
setCircleStyleand setPointStyle.They areexactlyt hesameasthe set BoxStyl e
method except that they passthe symbols #ci rcl e and #poi nt tothe dr awi nghMbdel viathe
message st yl e: . The set G rcl eSt yl e method is called whenever the Circle button is selected
and theset Poi nt St yl e method whenever the Point button is selected:

setCircleStyle
drawi nghbdel style: #circle.

set Poi nt Styl e
drawi nghbdel style: #point.

Finally the aspects protocol (automatically generated for you if you have used the definer) will
contain a single method called dr awi ngVi ew. This isan accessor method for the aspect
dr awi ngVi ew.

drawi ngVi ew
Adrawi ngVi ew

Asusual the SmallDraw application isinstantiated by sending the message open totheclass
Smal | Dr aw. For example:

Smal | Draw open

29.5.2 The DrawingModel class

The Dr awi ngMbdel class isasubclassof Mbdel . It possesses two instance variables nodes and
st yl e. Theinstance variable st y| e indicates the type of object to add to the collection of objectsin
nodes. The class definition is:
Model subcl ass: #Dr awi nghbdel
i nst anceVari abl eNanmes: 'nodes style '
cl assVari abl eNanes: "'

pool Di ctionaries: "'
category: ' Small Draw

The Dr awi nghbdel class comment isleft as an exercise for the reader.
Having defined the Dr awi ngMbdel class and class comment we are now ready to define the
i nitialize method. Asusua wewill placethismethodinan i niti al i ze method protocol. The
i ni tialize method initializesthetwo instance variables nodes and styl e. A new ordered
collection isinstantiated for the first and the st yl e: accessor method is used to set the second (with a
default style of #box):
initialize
nodes : = OrderedCol | ection new.
sel f style: #box.

We are now ready to definethe accessing methods for Dr awi ngMbdel . These methods (defined
withinan accessing protocol) accesstheinstance variabl es of the class. For example, nodes and
st yl e retrieve the value of their associated instance variables, while styl e: resetstheinstance
variablest yl e.

nodes
~nodes.

style
Nstyle

styl e: aSynbol

251

styl e : = aSynbol

Next we define an updating protocol. This protocol will hold asingle method addW dget At : .
This method adds the appropriate type of graphic object to the objects held in nodes. Theinstance
variable style is used to determine the type of object to add. The parameter aPoi nt indicatesthe
location, within the drawing view, at which the object should be displayed. Finally, the method informs
the dr awi nghbdel that something has changed and that its dependents may be interested in that
change.

addW dget At: aPoi nt
| aNode pos |
self style #point ifTrue: [aNode := Poi nt Wdget newj.
self style = #box ifTrue: [aNode := BoxW dget newj.
self style #circle ifTrue: [aNode := CircleWdget new.
aPoint = nil ifTrue: [pos := 0 @O] ifFalse: [pos := aPoint].
sel f nodes add: (aNode origin: pos).
sel f changed: #object with: aNode.

We will also define asingle class side method new. This method will extend the functionality of the
new method by sending the message i ni ti al i ze to anewly created instance. The method is defined
in the class side protocal instance creation:

Asuper new initialize.

29.5.3 The DrawingView class

The Dr awi ngVi ewclassis asubclass of the Vi ewclass. It possesses a single instance variable called
def aul t Control | er d ass. The contents of thisvariable will be used to instantiate the correct
type of controller (in this case an instance of Dr awi ngCont r ol | er).

Vi ew subcl ass: #Drawi ngVi ew
i nstanceVari abl eNanes: ' defaul tControllerd ass '
cl assVari abl eNanes: "'
pool Di cti onari es:
category: ' Small Draw

The class comment for the Dr awi ngVi ew classis left as an exercise for the reader.
Thei ni ti al i ze method for the Dr awi ngVi ewclassisdefined as:

initialize
super initialize.
defaul t Control l erC ass := Draw ngController.

This method is defined withinthe initialize protocol. To ensurethat all initialization donein
superclassesis also carried out in this class, the method first sendsthe messagesuper initiali ze.
It theninitializesthedef aul t Cont r ol | er A ass instance variable.

Following the conventions laid down in the system view class hierarchy we will define a
def aul t Control | er O ass accessor method in a protocol referred to as controller accessing. This
method returns the contents of thedef aul t Cont r ol | er O ass instance variable:

defaul t Control | erd ass
Ndefaul t Control |l erd ass

In the model accessing protocol we will define an updater method for the model associated with the
dr awi ngVi ewinstance caled nodel :

nodel : aMbdel
super nodel : aModel .
sel f invalidate.

This method uses an inherited version of the nobdel : method to set the model and then sends the
message i nval i dat e toitself. Thisinforms the view that some part of what is currently being
displayed may need to be redrawn. Thiswill causea di spl ayOn: aG aphi csCont ext message
to be sent to self.

252

Inthe updating protocol we need to define a method which will catch the result of the change
message set when a new widget is added to the model. Thisisthe updat e: wi t h: message. In our
case we merely wish to draw the newly added object in the view:

updat e: anAspect with: anObject
anAspect == #object ifTrue: [anObject displayOn: self graphicsContext].

We now need to definethe di spl ay On: method for the drawing object within a displaying
protocol. Thisis sent to the drawing view when what is being displayed needs updating (e.g. when part
of the window is uncovered). This method sends the di spl ayOn: messageto all the elements
currently held in the nodes list of thedr awi nghvbdel :

di spl ayOn: aGraphi csCont ext
sel f nodel nodes do: [:node | node displayOn: aG aphi csCont ext]

Finally we need to extend the class side method in the instance creation protocol so that it sends the
messagei ni ti al i ze to the newly created instance:

Asuper new initialize

29.5.4 The DrawingController class

The Drawi ngControl | er classisasubclassof the Control | er Wt hMenu class. Thisis
because we wish to catch the left mouse button pressed event. Thisis simplified for the

Control | er Wt hMenu classasamethod called redButtonActi vity iscaled whenever the
left mouse button is pressed.

Control | erWthMenu subcl ass: #Draw ngController
i nstanceVari abl eNanmes: "'
cl assVari abl eNanes: "'
pool Di cti onari es:
category: ' Small Draw

The class comment for the Dr awi ngCont r ol | er isleft asan exercise for the reader. Only two
methods are defined for thisclass: cont r ol Loop and r edButt onAct i vi t y. Both methods are
defined inthe control defaults protocol. The cont r ol Loop method is called whenever thecurso r
enters the area of the window displayed by the Dr awi ngVi ew. This cont r ol Loop method merely
changes the type of cursor displayed (to that of a cross) when the user moves the cursor onto the
drawing area. It then sendsthe message super contr ol Loop. Thisallows the control operations
defined higher up the class hierarchy to be invoked:

control Loop)]
"Change the cursor to a cross-hair for draw ng."
Cursor crossHair showhile: [super control Loop].

Finally the redButtonActi vi ty method defines what should happen when the left mouse
button is pressed. In this case a new graphic object is added to the drawing at the point indicated by the
current cursor position:

redButtonActivity o
"Place widget at the current cursor position when left button pressed"
sel f nodel addW dget At: self sensor cursorPoint.

29.5.5 The DrawingWidget class

The Dr awi ngW dget classisan abstract superclass which captures all the elements which are
common to graphic objects which will be displayed within adrawing. The Dr awi ngW dget class(a
subclass of Cbj ect) definesthreeinstance variables or i gi n (the cursor position when the mouseis
clicked), theext ent (or size of the object) and the bor der :

Obj ect subcl ass: #Dr awi ngW dget
i nstanceVari abl eNanmes: 'origin extent border '

253

cl assVari abl eNanes:
pool Di cti onaries: '
category: ' Small Draw

Theinitial i ze method for thisclass (definedinthe i niti al i ze protocol) sets the default
values for each of the instance variables. For example:

initialize
origin:=0 @O0.
extent := 30 @ 30.
border := Border width: 1.

Y ou can experiment with these values by changing the extent or the border (do so and see what the
effects are).

Next we will define the methodsinthe accessing protocol. These methods retrieve and set the
border, the origin and the extent:

bor der
“bor der
border: aBorder
border := border
origin
Aorigin
origin: aPoint
origin := aPoint.
ext ent
“ext ent

extent: aPoint
extent := aPoint

The displaying protocol hastwo methodsinit: di spl ayOn: and bounds. The di spl ayOn:
method is a subclass responsibility. Thisis because each subclass needs to specify what it should look
like independently. Thisisdonein thedi spl ayOn: method.

di spl ayOn: aGraphi csCont ext
sel f subcl assResponsibility
The bounds method calculates the bounds of the object using the ori gi n and the ext ent . The
return object isaninstance of r ect angl e.

bounds
~origin extent: extent.

Finally, as before we need to extend the basic instance creation method new by sending the message
i nitialize tothenewly created instance. Thisis|eft as an exercise for the reader.

29.5.6 The PointWidget class

The Poi nt W dget isasubclassof Dr awi ngW dget that specifies how a point should be drawn in
adrawing. It defines asingle instance variable di arret er . Thisindicates the size of the point to draw:

Dr awi ngW dget subcl ass: #Poi nt W dget
i nstanceVari abl eNanes: 'dianeter '
cl assVari abl eNanes: "'
pool Di cti onari es:
category: ' Snall Draw

The i ni ti al i ze method specifiesthe default size of the di anet er . Asthe Dr awi ngW dget
defines some initializations as well, we must send the messagesuper initiali ze.

initialize
super initialize.
di ameter := 4.

254

The displaying protocol containsthe class specific di spl ayOn: method. Thismethodu sesthe
di spl ayDot O Di anet er : at : message to draw a point on the graphics context:

di spl ayOn: aGr aphi csCont ext
aQ& aphi csCont ext di spl ayDot Of Di aneter: diameter at: origin

29.5.7 The CircleWidget class

The Circl eW dget isanother subclass of Dr awi ngW dget , however it only redefines the
di spl ayOn: method such that it draws a circle within the boundsreturned by the sel f bounds

message:

di spl ayOn: aGraphi csCont ext

| bnds |
"CGet the bnds of the node."
bnds := sel f bounds.

"Draw the circle representing the object on screen”
aG aphi csCont ext di spl ayAr cBoundedBy: bnds
start Angl e: 1 sweepAngl e: 360.

29.5.8 The BoxWidget class

The BoxW dget classisthe last subclass of Dr awi ngW dget . Againit only redefines the
di spl ayOn: method. Thistime the border itself is displayed.

di spl ayOn: aGraphi csCont ext
| bnds rect |
"Get the bnds of the node."

bnds : = self bounds.
"Di splay the nodes border."
rect := self border insetDi splayBoxFor: bnds.

sel f border displayOn: aG aphicsContext forDi splayBox: rect.

29.6 Add a delete widget option

The exercise associated with this chapter is to extend the SmallDraw application by adding a delete
option. This could be done by adding afifth button to the window labeled delete. Thiswould then set
thestyleto #del et e. The redBut t onAct i vi t y method would then need to be changed to send
either an addW dget At: messageora del et eW dget At : message. It would then be the
responsibility of the dr awi ngModel to find and remove the appropriate graphic object, remembering
of course to send the changed message to itself.

29.7 Summary

This chapter has introduced the concept of custom views and how they are implemented. The use of
custom views provides a great deal of flexibility for devel opers when constructing graphic user
interfaces. In addition the availability of the user interface builder smplifies the task of creating such
interfaces and allows the devel oper to concentrate on the implementation and control of the view rather
than issues such as scrolling, or event capture.

29.8 Further reading

One of the best places to look for further guidance on thisareais in the VisuaWorks Cookbook and
Tutoria which accompanies the VisualWorks system. In addition almost any book which discusses the
MV C will be a useful reference.

255

Part SIx

Further Smalltalk

30. Memory Management and Gar bage Collection

30.1 Introduction

This chapter describes how Smalltalk managesits memory and how automatic garbage collection is
achieved. Automatic garbage collection and memory management are one of the m ain features lacking
from some other object oriented languages (such as C++). We therefore begin the chapter by
considering why high level object oriented languages should provide automatic memory management
and garbage collection. A discussionisthen pr esented of the way in which VisualWorks manages its
memory and identifies those objects whose memory can be collected and reused. The process, by which
obejcts can be relocated into permanent memory, is described. This can improve the efficiency of the
garbage collector. Following this we consider the exception handling facilitiesin Smalltalk.

30.2 Why have automatic memory management?

One of the many advantages of Smalltalk over languages such as C++ is that Smalltalk automatically
manages memory alocation an d reuse. It is not uncommon to hear C++ programmers complaining of
the problems they have had spending many hours attempting to track down a particularly awkward bug
only to find it was a problem associated with memory allocation or pointer manipulation. S imilarly, an
often heard problem from C++ developersisthat of memory creep - aproblem which occurs when
memory is alocated at some point but never freed up. The application then either eats up all available
memory or runs out of space thus producing arun-time error.

Most of the problems associated with memory allocation in languages such as C++ are because the
programmer must not only concentrate on the (often complex) application logic but also on memory
management. They must ensure that they allocat e only that memory which is required and deallocate it
whenitisno -longer required. This may sound ssimple, but it isno mean feat in alarge complex
application.

An interesting question to ask is “why do programmers have to manage memory allocation?’. Th is
is areasonable question to ask. For example, there are few programmers today who would expect to
have to manage the registers being used by their programs, however 20 or 30 years ago the situation
was very different. One answer to the memory management question, often cited by those who like to
manage their own memory, isthat “it is more efficient, you have more control, it is faster and leads to
more compact code”. Of course, if you wish to take these comments to their extreme, then we should all
be programming in assembler. Thiswould enable us al to produce faster, more efficient and more
compact code than that produced by Pascal, C++ or Smalltalk.

The point about high level languages, however, is that they are more productive, introduce fewer
errors, are more expressive and are efficient enough (given modern computers and compiler
technology). The memory management issue is somewhat similar. If the system automatically handles
the allocation and deallocation of memory, then the programmer can concen trate on the application
logic. This makes them more productive, removes problems due to poor memory management and
when implemented efficiently, can still provide acceptable performance.

30.3 VisualWorks memory management

Maximum
Memory f
OldSpace
PermSpace
Object
Memory LargeSpace
NewSpace
T Obj ect Engine memory
Obj ect Engine
ﬁ Virtuad Machine
0

Figure 30.1: Memory organization in VisualWorks

VisualWorks provides automatic memory management. Essentially it does so by allocating a portion
of memory as and when required. Then, when memory is short it searches through memory looking for
areas which are no longer referenced. These areas of memory are then freed up (deallocated) so that
they can bere -allocated. This processis often referred to as “garbage collection”. A second process,
invoked with garbage collection is memory compaction. This involves moving all the allocated memory
blocks together so that free memory is contiguous rather than fragmented. The Smalltalk memory is
divided up as shown in Figure 30.1.

As can be seen from this figure there is an area of memory allocated to the Virtual Machine (the
object engine). This area, below the black line, holds both the virtual machine and the memory it uses.
Thisareais outside the scope of this book and will therefore not be considered in greater detail.

The regions in the Object Memory are used to hold the objects created by the system and by user
programs. It is useful to distinguish between parts of this memory, not least because the Visual Launcher
offers the user two different types of garbage collection, one called “ Garbage Collection” and one called
“Global Garbage Collection”. The options relate to which parts of memory are processed.

30.3.1 NewSpace and OldSpace

NewSpace isfixed in s ze (the default for NewSpace is about 200 K) and is used to hold newly created
objects. When the amount of memory used in NewSpace crosses the scavenge threshold , the
“generation scavenger” is called. Thisis aprogram which frees up memory from objectswh ich are no
longer referenced. This memory can then be used again. If an object has survived for long enough it
may get moved in OldSpace.

References to objects in OldSpace are not quite as fast as those to objects in NewSpace, however,
OldSpace is not fixed in size and can grow as long as there is memory available. The scavenger does
not operate in OldSpace asiit is optimized for NewSpace handling objects which are rapidly created and
then de-referenced.

30.3.2 LargeSpace

Thisisaspecial areaof memory for very large byte objects (typically larger than 1 KB) e.g. bitmaps.
This saves the need to move large areas of memory around because of small frequently used areas of
memory being repeatedly allocated and deallocated. Objectsin LargeSpace are only freed up or moved
when LargeSpace is compacted as part of a“ compacting garbage collection” or when LargeSpace has
filled up.

258

30.3.3 PermSpace

Thisis used to house objects which are rarely eligible for garbage collection. Examples of such objects
are the system classes, tools and compilers. None of the garbage collections attempt to process this area
of memory except the “ Global garbage collector”. Thisisinitiated by the user from the VisualLauncher.
Again thisis aperformance “tweak” and means that most of the timeitems such as a class do not have
to be checked to seeif the memory they occupy should be reclaimed nor must PermSpace be
compacted.

30.4 Garbage collection and memory compaction

There are a number of different waysin which garbage collection and memory compaction can occur.
Thefirst isthe “ Generation Scavenger”. Thisis called whenever NewSpace exceeds the scavenge
threshold. It only processes objects in NewSpace (although it does place objects in OldSpace).

Another garbage collector is the incremental garbage collector (or IGC). Thisiscalled from
Smalltalk code (as opposed to the scavenger which is called automatically by the Virtual Machine). The
IGC reclaims objects in OldSpace, NewSpace and LargeSpace. It is called the incremental garbage
collector because it works in an incremental manner to avoid disturbing the executing VisualWorks
environment.

The two remaining garbage collectors are the “ Compacting Garbage Collector” and the “ Global
Garbage Collector”. These two garbage collect ors are under user control and are initiated from the
VisualLauncher. The compacting garbage collector is run when the user selects the “ Garbage
Collection” option on the special menu on the Launcher. The global garbage collector is run when the
user select the “Global Garbage Collection” option on the same menu (and processes al of the memory
available).

Finally, there is a data compactor which runs on the OldSpace which does not do any garbage
collection, only memory compaction. This runs considerably faster than the garbage collectors.

30.5 Placing objects in PermSpace

PermSpace is an error of memory which isintended to hold objects which will never die or which will
only rarely die. This means that most of the garbage collection methods do not need to worry about
what isin PermSpace, thus reducing the amount of memory they must scan. Obviously some of the
objects in PermSpace may die off, the global garbage collector therefore scans PermSpace as well.

It is possible to move objects from OldSpaceto PermSpac e to increase the performance of the
garbage collector. This effect is achieved because by moving objects out of OldSpace the number of
objects which must be considered is reduced. This can have a major effect on the performance of the
garbage collector.

When you start up your “clean” image, most of the objects (including classes) present in the system
will be located in PermSpace. When you create new objects these will reside in NewSpace or OldSpace.
To relocate them into PermSpace it is necessary to save the current image using the “ Perm Save As...”
option from the“ File” menu option in the VisualLauncher. This writes the objects in OldSpace into
PermSpace in the saved image. It does not affect where objects are located in the current (executing)
image, only in the saved image. It is therefore necessary to exit the image and start up the newly saved
image to have an executing image, in which the objects are stored in PermSpace.

There will however be a number of objects in PermSpace which are transient (i.e. likely to diein the
short term). These objects will have been placed into PermSpace, because all objects, whether or not
you wanted them to, will have been saved into PermSpace. Example of such objects may included
windows, objects with which you were w orking etc. To remove these from the image (thus improving
the performance of the garbage collector) perform a global garbage collection. Once you have done this
save the image in the norma manner (i.e.“ Saveas...”). Having started up the newly saved ima ge you
could increase the time taken to start the image by performing one last save of theimage. Thisis
necessary because the global garbage collector compacts the objects in PermSpace. This means that
when the image is started up, the system must relocate these objects. If you make one more image, then
the objects will already have been relocated and the startup time will be minimized.

259

It is also possible to move objects from PermSpace into OldSpace. This can be done using the
“Perm Undo As... " option again from the “ File” menu option in the VisuaLauncher. Thiswill move
all objects from PermSpace into OldSpace. Thiswill obviously have an impact on the performance of
the garbage collector, and is not recommended unless you intend to remove alarge numbe r of objects
which were previously in PermSpace. Y ou should then save the image again using the “ Perm Save
As..."” option.

260

31. Concurrency in Smalltalk

31.1 Introduction

This chapter presents and explains a short example of how concurrency can be accomplished wit ~ hin
Smalltalk. It also considers lazy evaluations (i.e. you only perform the evaluation if you absolutely have
to), futures (you start an evaluation now which you will need later) and persistence.

The remainder of the document is structured in the followin g manner: Section two introduces the
concept of concurrency, Section three briefly discusses processes within Smalltalk. Section four
introduces the concepts used in the time slicing scheduler and Section five explains how future and lazy
evaluators may be implemented in Smalltalk.

31.2 Concurrent processes

The concepts behind object oriented programming lend themselves particularly well to the concepts
associated with concurrency. For example, a system can be described as a set of discrete obj ects
communicating with one another when necessary. In most Smalltalk implementations, only one object
may be executing at any one moment in time. However, conceptually at least, there is no reason why
this restriction should be enforced. For example, the basic concepts behind object orientation still hold,
even if each object executes within a separate independent process.

Traditionally, a message send is treated just like a procedural call, in which the calling object’s
execution is blocked until arespo nse is returned. However, we could extend this model quite simply to
view each object as a concurrently executable program module, with activity starting when the object is
created and continuing even when amessage is sent to another object (unlessthere sponseisrequired
for further processing). In this model, there may be very many (concurrent) objects all executing at the
same time. Of course this introduces issues associated with resource allocation etc. but no more so than
in any concurrent system.

One implication of this concurrent object model is that objects are necessarily larger than in the
traditional single execution thread approach. Thisis because the overhead of having each object asa
process. A process scheduler for handling these process es and resource allocation mechanisms mean
that it is not feasible to have integers or characters etc. as separate processes. (Note in Smalltalk integers
etc. are objects. In such a system there might be a separate type of object which isaconcurrent obje ct
which is assumed to be alarge grained object).

Smalltalk has limited built -in support for concurrency. However, it does support Processes and
Semaphores as primitive types. Other conventional inter -process communication and protection
mechanisms such as SharedQueues and critical regions, are implemented in terms of these primitives.
However, the processor scheduler (part of the virtual machine) implements a naive non -preemptive
scheduling policy, with limited support for re-scheduling within a particular priority level. Further, once
ahigh-priority processisrunning, no lower priority process will run until the high priority process
suspends or terminates. For these reasons, the basic Smalltalk system contains only afew processes and
typical applications using concurrency do not create more than afew tens of processes.

However, as the source code is available to the developer it is possible to extend the scheduler such
that a pre-emptive policy isintroduced. Thisis described in Section 3 following on from a discussion of
the facilities provided in Smalltalk which enable the construction of such a scheduler.

261

31.3 Processes in Smalltalk

For further details on processes in Smalltalk see the appropriate system documentation, for examplein
VisualWorks see Chapter 8 in the Smalltalk User's Guide, Release 4.1 and pages 25 -40 of [Laonde and
Pugh 1991b]. In this section we shall only provide a brief introduction to this subject.

A Smalltalk processis anon -preemptive light-weight process. That i s, a Smalltalk process will run
to completion unless a higher priority process attempts to gain control Smalltalk does not attempt to
share the processor time amongst processes of the same priority. When the highest priority is held by
multiple processes, the active process can be bumped to the back of the line with the expression:
Processoryield - otherwise it will run until it is suspended or terminated before giving up the processor.
A process that has been bumped will regain control before a process of lower priority.

This of courseimpliesthat every process has an associated priority. By default a process inherits the
same priority as the process which spawned it. The priority of a process can be changed using the
priority: message.

The process which is currently being executed by the processor is termed the active process. A
process can a so be waiting to use the processor or stopped, waiting for some resource. There are a
number of message related to the state of a process these are:

e aProcess resune. Thisschedulesa process.

e aProcess suspend. Thisstopsthe process from executing.

* aProcess termn nat e. Thisunschedules the process permanently.
There are a number of messages which are sent directly to the process scheduler which can be useful in
working with active processes. These are:

e« Processor activeProcess . Thisreturnsthe processwhich is currently executing.

 Processor activePriority.Thisreturnsthe priority of the active process, i.e. the
priority of the process which is currently executing.

e Processor ternminateActivity .Permanently removesthe active processfrom
execution.

Note that the messages are sent to a global variable Pr ocessor , which holds the instance of
Pr ocessor Schedul er.

For a process to be spawned from the current process there must be some way of creating a new
process. Thisis done using one of four messages to a block. These messages are:

aBl ock fork This creates and schedulesa process which will execute
the block. The priority of this processisinherited from the
parent process.

aBl ock forkAt: This creates and schedul es a process executing the block at
aPriority aspecific priority.

aBl ock newProcess Thiscreatesanew pro cess. It does not schedule the
process. The processis created with the same priority as
the parent block. It can be scheduled using the resume

message.

aBl ock newProcessW th: | Thismessage createsanew process with the same priority
anArray Par amet er s as the parent process. An array of parameters s passed to
the block.

31.3.1 Semaphores

Semaphores provide a (simple) means of synchronization between multiple processes. For example, if
two processes are executing and one must not pass a certain point until the other has completed some
operation, then a semaphore between the two processes can be used as a flag to indicate to the first
process that the operation has been completed.

262

The Semaphore class provides facilities for achieving simple synchronization, it is ssmple because it
only alows for two forms of communication si gnal and wai t . Essentialy, asignal putsalinthe
queue representing the semaphore and wait pops a 1 off the semaphore. The advantage of this approach
issimplicity and eff iciency. the disadvantage of this approach is that more complex synchronization is
not possible. Of course, more complex synchronization can be achieved using semaphores and shared
queues, but the key thing isthat it is not directly supported.

When a process sends await message to a semaphore, that process will only be allowed to proceed
if a corresponding signal has been sent to the semaphore. If there is no corresponding signal, then the
process will be suspended. It will only be resumed when such asignal is sent.

Semaphores are ordered queues. If five waits have been sent to a semaphore then the fifth wait will
only be serviced once five signals have been sent to the same semaphore. This means that they pay no
attention to the priority of the process (' unlike the scheduler). A high -priority process must wait in line
for asignal in just the same way as alow priority process.

There are two instance creation methods for the Sermmaphor e class. These are:

Semaphor e new. This creates a new empty semaphore.

Senaphor e] This creates anew semaphore with asingle signal iniit.
forMital Exclusion. | Thigisaspecial type of semaphore which is used in
association with a special message critical and provides
for mutual exclusion.

As stated above there are two synchronization messages; si gnal andwai t :

aSemaphore signal . | Thisincrementsthe semaphoresignal count.
aSemaphore wait. This increments the semaphore wait count and causes the
sender to suspend if fewer signals were previously sent.

An additional messag eto asemaphoreis criti cal :. Thisshould only be sent to a semaphore
which was created using the f or Mut al Excl usi on instance creation message. The format of this
message expression is:

aSenmaphore critical: aBl ock

Thisisuseful if the block isaccessing shared information. This message only allows the block to
execute if no other block controlled by the same semaphore is executing; otherwise, it causes the active
process to suspend until the block can be executed. In effect it is performing the following process:

* Send await message to the semaphore.
 Executes the block.
 Send a signal message to the semaphore.

31.3.2 Shared queues

When distinct processes access shared objects, then the access to those objects must be carefully
controlled. For example, if two obj ects were to access a common set of data and one was in the process
of adding some data, then when another (higher priority) process pre-emptsit and attempts to perform a
different addition operation, the original changes might well be lost. Since the ori ginal addition was not
completed the set could be in a partially modified state, this could have extremely unpredictable resullts.

Smalltalk does not provide protected collection classes (although again these could be implemented
using semaphores etc.). Instead, Smalltalk provides a Shar edQueue class which guarantees that only
one process will be ableto accessit at atime and that the expression being performed will execute to
completion without being pre-empted. The design of ashared qu eueis essentially that presented in the
Purple Book [Goldberg and Robson 1989], in Chapter 15 starting on page 258 265.

Elements can be placed in a shared queue using the next Put : message, while elements can be read
from a shared queue using the next message. If no elements are currently in the shared queue when a
next messageis sent, then the sending process is suspended until a nextPut: message is sent to the
queue. If three successive next messages are sent to an empty shared queue by three separate

263

processes, all three processes will be suspended. When a subsequent next Put : messageis sent to the
shared queue, the first processto have senta next message will be resumed. An additional message
availableisthe peek message. Thisreturnsthe nextitemi nthe shared queue, however unlike the
next message, it does not remove it from the queue. The instance creation methods for a shared queue
are

Shar edQueue new.
Shar edQueue new. anlnitial Size.

Both these messages return a shared queue. The three messages used with shared queues are:

aShar edQueue next.
aShar edQueue next Put :
aShar edQueue peek.

The following passage is taken from page 36 [La onde and Pugh 1991b].

“In general, creating new shared classesisrelatively easy. A specialization of the original
classis created with two new instance variablesto play the role of the two semaphores (one
semaphore for co -ordinating user access and another for mutual exclusion while executing
critical code). Then, all operations with side effects arerevised using the following template.
If a method being revised iscalled aMethod, the critical section code is simply a variant of
“ super aMethod.” .”

For example:

aMet hod: anbj ect
mut ual Excl usi onSemaphore critical: [super aMethod: anObject].
readi ngSynchr oni sati onSemaphore signal .

or
aMet hod
| anEl ement |
readi ngSynchr oni sati onSemaphore wai t.
mut ual Excl usi onSemaphore critical: [anEl enent := super aMethod].

NanEl enent .

31.4 A concurrent Smalltalk example

This section presents an example t o show how time slicing could be done within Smalltalk using the
current process scheduler (based on an example produced by Hubert Baumeister - see end of section).
The basic idea behind the effective control of multiple processes within Smalltalk isthei ntroduction of
ahigh priority process. This process wakes up every few milliseconds and regroups the processes in the
waiting queue of the highest priority that has more than one process. It then goes back to “sleep” for a
few milliseconds. It is thus time slicing between the various processes at the lower priority.

The approach taken in this section isthat if it is necessary to develop a preemptive scheduler (that is
one in which the processor time is shared between a given number of processes, rather than dedicated to
asingle process), then this can be done by using the facilities provided by the standard scheduler. In
effect this results in two schedulers. One, is the system scheduler, the other is a user defined scheduler.

The system scheduler is stil | used to actually enable a process to execute. For example, it isstill this
scheduler which can suspend a process when asignal is sent to a semaphore.

The user defined scheduler is used to manage the queues of user processes waiting to be handed to
the system scheduler. These queues are controlled by the user scheduler when ever it “wakes up”. Of
course, in order for it to gain control of the processor it MUST HAVE aHIGHER PRIORITY than al
other user processes. It can then interrupt the user processes and select which processto initiate.

The key to the user defined scheduler isthat it “wakes up” every few milliseconds. This can be
simply and easily achieved usinga Del ay. Thiswill send the process to sleep for the period of the
delay. Actualy, it wi |l cause the process to suspend until the timer associated with the delay period
sends the process aresume. It is this resume which will cause it to take control of the processor again.

264

Once the process wakes up it can determine which of the processescur rently waiting to use the
processor should be resumed next. One way in which this can be done is to regroup the processes in the
waiting queue of the highest priority queue that has more than one process. Thus ensuring that a
different processis at the head of the queue each time the user defined scheduler process “ goes back to

sleep”.

Check to see if tine slicing is already being used.

If not set up the a new process to sleep for 5 mlliseconds
and then to initiate the time slicing process.

Set the process to have the highest available priority.

Schedul e the process for execution.

Figure 31.1: Thetime slicing algorithm

31.4.1 The source code for the example

As explained above the mechanism which allows this time slicing scheduler to work is the user of a
Del ay. Thisdelay forces the user extensio nsto the scheduler to sleep. When it wakes up it selectsa
new process for execution using the slice method. It then goes back to sleep.

This continuous sleeping and slicing cycle can be achieved by spawning anew process (with the
highest allowable priority). This process continually loops, seeps and slices. The method which initiates
thisbehaviour is st art Ti meSl i ci ng. This method, defined in time slice process protocol, uses the
algorithm in Figure 31.1. The actual Smalltalk method is presented below:

start Ti meSlicing
"self startTineSlicing"
TimeSli ceProcess notNi |l ifTrue: ["self].
Ti meSl i ceProcess : =
[[true] whileTrue:[(Delay forMIliseconds: 5) wait.
Processor slice]] newProcess.
Ti meSl i ceProcess priority: (Processor highestPriority).
Ti meSl i ceProcess resune.

Of course having set up such aprocesswe must p rovide some way of killing the process. If thisis
not done, then this process will always run (until the image is deleted). Thisisin fact the reason why the
new process was stored into a variable named Ti meSl i ceProcess. Thisisof course agloba
variable and could easily have been stored as an instance variabl e of the ProcessorSchedul er class.
However, for ease of debugging it is often easier to store a process such as thisin aglobal variable. This
isbecauseitisat ahigher priority level then most user processes. If an unexpected “feature” has been
introduced, the process can be killed by sending the message t er m nat e to the contents of the
Ti meSl i cePr ocess global variable, either in anormal debugger or an emergency debugger.

Thest opTi meSl i ci ng method provides arather more managed way of stopping the time slicing
process. Thisdoessend the t er mi nat e message to the time slicing process and then sets the global
variable to nil. This method is available in the 'time slice p rocess method category. The method
definitionis:
st opTi meSlici ng

"sel f stopTineSlicing"

Ti meSl i ceProcess notNi |
ifTrue: [TimeSliceProcess term nate. TineSliceProcess := nil]

So far we have set up the means by which anew, user defined pr ocess, can interrupt lower priority
processes, and alter the process which will get run next. However, what we have not doneis to define
how this re-ordering of processes will occur.

Themethod sl i ce inthe method protocol process state change of the Pr ocessor Schedul er
performs this reorder. Thisiswhere the real meat of the time slicing operation occurs. The algorithm
describing this method’ s operation is:

1. Find thefirst process priority queue which contains more than one process.
2. Remove the front process from thislist and add it to the end of the list.

265

Thisisavery simple algorithm, but it works! The actual implementation of this algorithm is not quite as
tidy. It is presented below:

slice
| aPriority list |
aPriority := self highestPriority.
"Find highest priority level with processes init"
[aPriority > O and:
[(qui escent ProcessLists at: aPriority) size <= 1]]
whil eTrue: [aPriority := aPriority - 1].
"Reorder that priority queue"
aPriority = O
ifFalse: [list := (quiescentProcessLists at: aPriority).
list addLast: (list removeFirst)].

To test out the effects of the time slicing try evaluating the following in a Workspace:

Processor Schedul er stopTi neSli ci ng.
Processor Schedul er exanpl e i nspect.
Processor Schedul er startTi meSlici ng.
Processor Schedul er exanpl e i nspect.

This executes an example method defined in the time slice process method protocol which produces
two inspectors. This method forks two processes, each of which puts a number onto a shared queue. The
inspectors are opened on the shared queues produced. In the firgt, al the 1'swill comefirst and all the
2'swill follow them. In the second the 1'sand 2'swill be mixed in together.

exanpl e
| queue |
gqueue : = SharedQueue new.
[10000 tinesRepeat: [queue nextPut: 1]] fork.

[10000 tinesRepeat: [queue nextPut: 2]] fork.
Aqueue

Thistype of exampleisillustrated in the next section as part of a stand alone application.
31.4.2 Using the example

To see how the time slicing works evaluate the following Smalltalk in a Workspace.

| queue |
Processor Schedul er st opTi neSli ci ng.
queue : = SharedQueue new.

[10000 tinesRepeat: [queue nextPut: 1]] fork.
[10000 ti mesRepeat: [queue nextPut: 2]] fork.
queue i nspect

In the contents of queue you will find first all the 1's and then all the 2's. If you then evaluate:

| queue |
Processor Schedul er startTi meSlicing.
queue : = SharedQueue new.

[10000 tinesRepeat: [queue nextPut: 1]] fork.
[10000 timesRepeat: [queue nextPut: 2]] fork.
queue i nspect

then thel’sand 2's are mixed.
However, you should be aware that time slicing is dangerous in the current implementation of the
Smalltalk user interface, as the following example illustrates:

Processor Schedul er startTi neSlicing.
[100 timesRepeat: [Transcript show 'Process |'; cr]] fork.
[100 timesRepeat: [Transcript show 'Process 2'; cr]] fork

Thiswill hang up Smalltalk because some resources are not protected against multiple access. (Thisis
why the example above used Shar edQueue instead of aW i t eSt r eam)

266

31.4.3 Acknowledgments
Acknowledgments are made to Hubert Baumeister, of the University of Dortmund, Germany, who

developed the original example. Thiswas from an original idea put forward by Kent Williams of the
University of lowa.

31.5 Further reading

A good article on writing concurrent Smalltalk programsis [Hopkins and Wolczko 1989]. Lazy and
future evaluators can also be implemented using these facilities. A good discussion on such evaluators
can be found in [Lal onde and Pugh 1993].

267

32. The Metaclass Framework

32.1 Introduction

The metaclass concept is probably one of the most confusing parts of the whole of Smalltalk. Thisis
partly due to the very confusing names used (for example, Cl ass cl ass and Met acl ass cl ass)
but also because ailmost all of it is hidden from the devel oper. Y ou are therefore only vaguely aware of
it (if you are aware of it at all) during development. This means that devel opers do not need to
understand it in detail and most people avoid trying to understand what appear s to be a difficult concept
if they don’t have to. It also means that developers can only grasp what is happening abstractly, with
little chance to see the mechanics of what is going on.

However, contrary to popular myth, the metaclass concept is actually not that difficult (if you can
get around the terminology), although it can be confusing especially when its recursive definitions are
encountered. We will however leave that aspect of metaclasses until right at the end. This means that
you should hopefully gain at least an appreciation of what metaclasses about, even if the fine details of
the implementation pass you by. In many ways, it is only an appreciation that you need (if you need it at
all) to understand what you observe in the development environment.

Asthe basic concept being considered in this chapter is the concept of aclass, Section 2 provides a
review of what is meant by a class etc.

Metaclasses have not always been present in Smalltalk, they were only introduced into Smalltalk
with the dev elopment of the Smalltalk -80 version of Smalltalk. Thisis essentially the version of
Smalltalk which is used as the basis of commercial versions of the language (such as Visual\Works).
Prior to that a number of (simpler) approaches were used. However, each of these provided fundamental
problems which were overcome with the introduction of metaclasses.

Section 3 discusses the metaclass mechanism and how it works. Aswas stated before, it doesthis
without going into the complexities of the implementation of metaclasses. This allows the casual reader
to understand where metaclasses fit in and what they do without needing to understand the intricacies of
the full metaclass inheritance hierarchy.

Theclasses Cl assDescri ption and Behavi or areintroduced in Secti on 4. These classes
encapsulate what it means to be a class and how classes do what they do. Section 5 considers the
relationship between metaclasses, classes and the Metaclass class. Thisis not actually that complex, but
can appear confusing at first sight.

A point to note before reading this chapter are the conventions used for Smalltalk, classes and
instances. Remember:

* All Smalltalk code appearsin acourier font, e.g. Col | ecti on new.
« All classes start with acapital |etter e.g. Set , Cbj ect , Array.
« All instance names start with alower case letter, e.g. aSet , anCbj ect , anEnpl oyee.

These conventions are adhered to rigidly below.

32.2 What are classes?

All classes are ultimately subclasses of theclass Obj ect (with the exception of (hj ect itself). That
is, a class inherits properties form its superclass (which in turn inherits properties form its superclass)
up to Obj ect . Inturn every thing in Smalltalk is an object and every object is an instance of aclass.
On page 269 of the Purple Book [Goldberg and Robson 1989] the following statement is made:

268

“There are two kinds of objects in the system, ones that can create instances of
themselves (classes) and ones that can not.”

Thisisavery important point, it highlights the fact that everything in Smalltalk is an object. That is,
everything, including classes, are objects and can be sent messages (this of course means that classes
are also instances of something, but what thisiswe will leave until later). However classes are special,
they can create new objects called instances. | nstances of classes however cannot create other instances
(they must ask aclassto do it for them).

In fact classes have only avery few rolesin the system and these are essentially limited to:

* creating new instances,
« defining what those instances will do,
* holding class information (such as class variables).

Whereas instances hold application data and perform the operations defined by the (instance)
methods held by the class. That is, the instance holds the data, but when it isse nt amessageit looksin
the instance methods of its class for a method which implements that message. If no method isfound in
its class, then its superclass is searched for such a method. This search continues until the classObj ect
isreached. If nomet hod isfound then the message doesNot Under st and: is sent to the original
receiver.

32.3 Classes and metaclasses

32.3.1 Metaclasses

Aswas indicated in the last section each classis an instance of a class. However we want each classto
be able to behave in adifferent manner to any other class. Therefore each class must be an instance of a
different class (as al instances of the same class must behave in the same manner). In Smalltalk -80 the
concept of a metaclasswas introduced. A metaclassis a special class, whose instanceisaclass. In
general ametaclass only possesses a single instance (a class) and a class will be an instance of asingle
metaclass.

That is, aclassis an instance of a metaclass and a metaclass defines how a class behaves. This
meansthat it is actually in the metaclass that the class methods are defined and held. This means that
when aclassis sent amessage, it looksin its metaclass for the method which implements the message.
In effect, when you click on the class radio button in one of the various browsersin VisualWorks you
are actually examining the classes’ metaclass”.

If you are confused by the terminology try to think of it in this way:

“A metaclass defines information about a class (hence the term meta)”.

M etaclasses are not actuall y named directly, instead their names are a combination of the name of
the class they define and “ class’. Thusthe metaclassof Col | ecti onisCol | ection cl ass, the
metaclass of (hj ect is Cbj ect cl ass andthe metaclassof aclasscalled Enpl oyee would be
Enpl oyee cl ass. Itisat thispoint that people begin to be confused by the terminology. We shall
therefore attempt to recap.

* A classisan object which can create instances.

* A metaclassis aclass which defines aclass.

« A metaclass has only one instance (the class it defines).

* A metaclass is named after the classit defines concatenated with the word class.

* |nfact if you examinethe Br owser classyouwill find referencesto sel f met a. Thisis areference to whether the user is
currently examining the instance side (meta = false) or the class side (meta = true).

269

In addition a metaclass cannot be accessed directly. It can only be access by sending the message
cl ass to aclass. For example:

Col | ection cl ass.

If you evaluate this and print the result, you will get the name of the Collection classes’ metaclass,
which isof course Col | ecti on cl ass (which confusingly looks exactly like the expression which
accessed the metaclass).

32.3.2 The Metaclass hierarchy

7] 0G Class Browser = S |
LensLinkedDictionary class 5
PoolDictionary class
IdentityDictionary class
LensRegistry class
CEnvironment class

Dictionary class | }Array class ‘

Bag class TwoByteString class
IdentitySet class ‘ CharacterArray class ‘

KeyedCaollection class, ‘ | EyteEncndedStrmg c\ass

LinkedList class List class Text class

Caollection class ‘ LensContainer c f A Q

GapStrmg c\ass
‘ArrayedCaHect\on class | IntegerArray class ‘ Strmg class

Set class UmqueF\Iemame class
OrderedCollection class ‘ TwoDList class |
SeguenceableCollection class Symbaol class
Interval class | TableAdaptor class ‘
WeakAmay class
RunArray class
FontDescriptionBundle class
SortedCallection class

LinkedOrderedCollection class

Figure 32.1: The metaclass hierarchy for the Collection classes

Asyou are aware, the classes in the Smalltalk system form a hierarchy rooted on the class bj ect .
Thustheclass Di cti onary inheritsfrom Set whichin turninheritsfromtheclass Col | ecti on
which ultimately inherits from the class Obj ect . This means that when instances of these class are
sent messages, the system can search up through the class hierarchy for methods which implement that
message.

Metacl asses al so possesses a metaclass hierarchy. In this hierarchy one metaclass can inherit from
another metaclass. In Smalltalk -80 the metaclass hierarchy was constrained to mirror the class
hierarchy. This meansthat if some class side behavior isdefined in Col | ecti on, thenit will be
inherited by Set and Di cti onary viatheir metaclasses. Figure 32.1 presents part of the metaclass
hierarchy for the Collection classes. The net result isthat if aclassis sent amessage, t he system begins
the search for a corresponding method in its metaclass. If it does not find it there, it then looksin the
superclass of its metaclass. This process continues until either a suitable method is found or until the
doesNot Under st and: message is triggered.

Figure 32.2 illustrates the relationships between the two hierarchies. Note that dashed arrows
represent instance rel ationships, whereas solid arrows represent inheritance. Please note the case used
for each label. As can be seen from this figure, this means that each classis an instance of its metaclass
and that the metaclass hierarchy exactly mirrors the class hierarchy. In the figure, the instance of the
class Dictionary, labeled as aDictionary, ispres ented in arounded box, because it is an object which
cannot create new instances. Thereforeit is a different kind of instance. To make this distinction clear a
different box styleis used.

270

Figure 32.2: Class and instance relationships

32.4 ClassDescription and Behavior

One point we ignored above was “what happenswhenwegetto (Obj ect ?7°. Thatis, Obj ect isthe
root of the class hierarchy in Smalltalk and therefore Obj ect doesnot inherit from any superclass.
Thisisnot aproblem for the class hierarchy as bj ect encapsulates all the concepts associated with
being an object. However, what happens in the metaclass hierarchy? One possibility is that Object’s
metaclass, Cbj ect cl ass, encapsulates all the concepts associated with being a class. However, in
Smalltalk-80 a different and more sophisticated approach was adopted. (The reasons for adopting this
approach only really become clear later when we discuss the recursive nature of metaclass, for the
moment just accept that the following approach was taken).

In Smalltalk-80, Obj ect cl ass, themetaclassof Obj ect inheritsfromaclasscalled C ass
(See Figure 32.3). Thisallows Obj ect cl ass to define how the class Obj ect should behave, while
the concepts associated with being a class are encapsulated within Cl ass. In particular, O ass defines
what instances of a class should look like and how they should behave. It also provides facilities which
enable class variable names and pool (shared) variables.

ClassDescription H Class }—»{ Object class }—»{ c‘l'::;z"”

Figure 32.3: The metaclass hierarchy up to Behavior

Inturn, Cl ass inheritsfrom Cl assDescri pti on. Thisclass providesfacilities for naming
classes, commenting classes (and thisis why we defined coment Tenpl at eSt ri ng here) and
naming instance variables. Cl assDescri pti on wasprovided asasuper classof Cl ass sothat
another classcalled Met acl ass (which wewill consider in the next section) could also inherit these
facilities.

271

Behaviour

Behaviour -— -
class

gl

ClassDescription }» - == »{ ClassDescription
class

Class -— - Class class

‘ Object }“ - *{ Object class
l l
Collection }» - % Collection
class
l l
‘ Set }» - *{ Set class
l l
GDictionarD» - *{ Dictionary }» - ’{ Dité:i:snsary

Figure 32.4: The metaclasses for Class, ClassDescription and Behavior

i+

gin

Cl assDescri pti on theninheritsfromaclassknownas Behavi or . Theclass Behavi or
defines how classes should behave (for example how to create new instances). In particular it defines
the minimum state necessary for objects that have instances.

Together these three classes define what aclassis, how it should behave, how new inst ances should
be created and what a class should look like. Figure 32.3 illustrates the metaclass inheritance hierarchy
up to the class Behavior.

Y ou may have noticed from the above class names, that Cl ass, C assDescriptionand
Behavi or are not metaclasses (i.e. they do not have class after their names). They are in fact classes,
thus at the top of the metaclass hierarchy we find (not surprisingly) that metaclasses are classes after all.
Thisraises two questions, firstly “do Class, ClassDescription and Behavior have metaclasses?’ and “If
metaclass are really classes, shouldn’t they be instances of something?’. In this section we will answer
the first question, the second question is deferred to the next section.

As C ass, C assDescri pti on and Behavi or are classes, they are all instances of their
metaclasses. Thisisillustrated in Figure 32.4. The metaclassof Cl ass isof course Cl ass cl ass
(the terminology can and will get worse!), the metaclass of Cl assDescriptionis
Cl assDescri ption cl ass and the metaclass of Behavi or isBehavi or cl ass.

If you are comfortable with the description so far you have learnt most (if not al) of what you need
to know to exploit the metaclass structureandt he presenceof C ass, Cl assDescri ption and
Behavi or . If you find that you become lost in the next section don’t worry, much of what is described
there isimplementation level detail and overly convoluted.

32.5 The metaclass concept goes recursive!

32.5.1 What are metaclasses?

A question which was raised in the previous section (but not answered) was “ If metaclass are realy
classes, shouldn’t they be instances of something?’. The answer to this question is“yes’, just like any
class, they arein fact an object and objects are all instances of some class. The next question then is, “of
what class is ametaclass an instance?’. The answer thistime, isthe class Met acl ass (notethe
capitalization and font).

That is, al metaclasses (suchas Col | ecti on cl ass, Cbj ect class and Set cl ass) are
instances of theclass Met acl ass. Thisisbecause all metaclasses have the same behavior. They
define the structure, definition and behavior of a class. Each subsequent class may have a different

272

behavior, but from the point of view of th e metaclass, al classes are constructed in the same way, are
structured in the same way (i.e. they have class methods, class instance variables and class variables)
and all require the same set of operations (i.e. they must be able to construct instances).

32.5.2 What is metaclass an instance of?

« _ _ _| Metaclass class
\ (metaclass)

\ -
\ -~

~

s
’

Array class
(metaclass)

-
-

#($a $b $c)

#(1234)‘

Figure 32.5: Instance relationships between instances, classes and metaclasses for array

Met acl ass, being aclass, must also be an instance of somet hing. Following the standards laid down
about it istherefore an instance of its metaclass. This metaclass, like all other metaclasses, hasits name
derived from the class, it isthereforecalled Met acl ass cl ass . However, every metaclassis an
instance of Met acl ass, thusthe Met acl ass cl ass isaninstanceof Met acl ass. Thisisthe
first point of circularity in Smalltalk and it is worth summarizing:

¢ All metaclasses are instances of Met acl ass.

* Themetaclass of Met acl ass isMet acl ass cl ass.

e Metacl ass cl ass isametaclass, it istherefore an instance of Met acl ass.

* Therefore the metaclass of Met acl ass isaninstance of Met acl ass.
Thisisillustrated in Figure 32.5. This figure shows that an object such as an array isan ins tance of the
class Array.Inturn Array isaninstance of itsmetaclass Array cl ass. Thismetaclassisan
instance of theclass Met acl ass, which isan instance of itsown metaclass Met acl ass cl ass.
And as has been said, Met acl ass cl ass isaninstance of Met acl ass (seewhat | mean about the
terminology!).

32.5.3 Instance relationships for classes and metaclasses
o | e |
class
\
\
\
ion ion class
\ \
\ A\
\ \
ANEEAY
\\ A
\ ATEAY
N\
NNy
AN AR
class - \ .
- - - class
///

Figure 32.6: Instance relationships

To complete the explanation being given, consid er Figure 32.6. Thisillustratesthe instance
relationships between classes, their metaclasses, the Met acl ass andthe Met acl ass cl ass. Note

273

that no distinction is made between a class being an instance of another class and a user generated
instance of the Di ct i onary class.

32.5.4 Class inheritance

A point we have still not covered iswhat does the class Met acl ass inherit from? Remember all
classes (except Obj ect) haveasuperclassand Met acl ass isno exception. Met acl ass inherits
from Cl assDescri pti on, thisis because the structure of classes and metaclasses are very similar.
For exampleinstances of both C ass and Met acl ass can have methods. In turn, the metaclass of
Met acl ass, (i.e. Metacl ass cl ass) followsthe standard laidd own and it inherits from the
Cl assDescri ption cl ass. Thisisillustrated in Figure 32.7.

As Cl assDescriptionisasubclassof Behavi or, it also meansthat both C ass and
Met acl ass inherit from the facilities provided by Behavi or . This means that instances of both
Metaclass and Class can create new instances etc. (Remember Behavi or providesall the protocol for
making new instances so thisis not surprising).

t

Behaviour
class

T T

ClassDescription

ClassDescription

class
—

‘ Class ‘

Class class

e

‘ Object ‘

T T

Collection
class

T T

‘ Set ‘

T T

Dictionary
class

Object class

Collection

Metaclass
class

Metaclass

Set class

Dictionary

Figure 32.7: Classinheritance

We are now left with theclass Behavi or and what it inherits from. All other classes have been
accounted for. What then does Behavi or inherit from? It inherits from the class Obj ect . Thiscloses
the loop and ensures that all things in the whole of Smalltalk are objects (i.e. at some point their class
inherits from Obj ect) whether they are class, metaclasses or ordinary instances.

274

32.5.5 The whole enchilada

Behaviour
} Behaviour }»7){ Class }\
\
\
\
\

ClassDescription [+
class

i

N
N

Class class
A

\
N \

ClassDescription

Object }» Object class

Collection

1
x

@ —»{ Dictionary }>7.{ Dlg:‘aosnsary },

Figure 32.8: Combining both the instance and class relationships

Ny

- Metaclass
M I -
_ ,/%{ etaclass }» b{ class

o],
.
e Y
-

The last two sections have considered the instance relationship and the inheritance relationship between
classesin Smalltalk respectively. Each of thesein isolation isn’t too complicate d, however when you
put the two together you obtain a diagram such asthat illustrated in Figure 32.8.

Thisfigureillustrates the instance and inheritance relationships between classes and metaclasses. As
can be seen f rom this diagram the overall structure is quite complex. However, if you study it closely
you should find that it does make sense. Even when there appears to be the potential for excessive
circularity it can be seen that thisis not the case. Thereisone point of circularity which should be
noted, that isan Qbj ect isaninstance of Qbj ect classwhich (eventually) inherits from Behavi or
which inherits from Obj ect .

32.6 Further reading

See Chapters 5 and 16 in the Purple Book [Goldberg and Robson 1989] for anin troduction to
metaclasses and a detailed description of theclass C ass, Met acl ass, C assDescri pti on and
Behavi or . However, the actual description of the metaclass concept and the diagrams presented with
it are alittle confusing. Also see Chapter 26 of [Hopkins and Horan 1995] for an excellent introduction
to metaclasses.

Part Seven
The Future

275

276

33. The Futurefor Object Technology

33.1 Introduction

This chapter is structured in the following manner: we first consider issues directly relating to the future
of the Smalltalk language and then the type of object oriented development toolkits which are, and will
be, available. We next consider the impact of the internet on object technology. We then briefly discuss
the development of object oriented databases and then address Smalltalk’ srole as atraining
environment for object technology before concluding by considering very briefly the future of object
technology over the next five years.

33.2 The Smalltalk language

The Smalltalk languageis unlikely to change a great deal for the new ANSI standard being produced by
the X3J20 standard committee. This committee was formed in late 1993 and draws its members from
both the user and vendor communities. This standard is necessary as more and more vendors are
producing Smalltalk based devel opment systems which, while similar, all possess (significant but
subtle) differences. Although the merger of the two largest Smalltalk vendors ParcPlace and Digitalk in
1996 could be seen as resulting in the creation of an enforce d standard, other vendors could still “go
their own way”.

However there are other aspects of the Smalltalk language which need to be addressed, some of
which are fundamental to Smalltalk and others of which are technology oriented. Each of these areas
will be considered below.

33.2.1 Smalltalk issues

There are a number of language issues which Smalltalk must addressiif it isto survive and prosper into
the next century. All of these are related to providing better support for large scale, commercialy
critical systems. Such systems require:

¢ Non-interpreted implementations: All commercial version of Smalltalk rely on the use of a
virtual machine which executes byte codes. The byte codes are the “compiled” version of the
Smalltalk source cod e. This means that Smalltalk is compiled into an intermediate language
which isthen “interpreted” by the virtual machine rather than being compiled into a native code.
Theresult is that Smalltalk does not produce a true executable image which generaly r esultsin
significant performance and memory overheads.

¢ Class-based version control : Within a software development project, different team members
will be developing different parts of the system. In many cases they will maintain their source
code using a source code control systems such as SCCS under UNIX. This meansthat al the
source code control operations are outside of the Smalltalk system and require external
intervention. For example, if a developer within a project using SCCS, wishesto see how an old
version of aclass would interact with a set of newly defined classes, they must leave
VisualWorks, retrieve the old version of the class from SCCS, fileit into VisuaWorks, probably
having removed the newer version of the class from the image to ens ure that no additions
remain. When they have finished performing these tests they must then retrieve the new version
of the class. Such version control of classes and methods should be inherent to the devel opment
environment rather than athird party after sales add-on.

* Team-based development support : Smalltalk was originally conceived as alanguage and
development environment for asingle user. It therefore has inherent weaknesses when it comes

278

to team development. At present if members of adevelopmentte am wish to share their work
they must file out (all) the relevant classes and methods from their own images and file in those
from their fellow workers. This can be problematic as well as cumbersome. This problem stems
from the very nature of theimagein which al the “source code” is held and within which
development takes place. A fundamental change in the way that the image works is required.

e Typed variables: Smalltalk is a dynamically typed language. That is, avariable' stypeis
determined by the type of object that it holds. Thisis all very well for rapid prototyping and for
small single user developments, however for large projects which must exist for significant
periods of time, this can result in disaster. For example, “type mismatches’ cannot be detected at
compile time and will only manifest themselves at run time. This places a huge burden on testing
which must now catch such mismatches. In addition the performance of adynamically typed
language can be lower than that of a statically typed lan guage as the run time system must now
perform various checks which could otherwise be performed at compile time.

« Improved exception management : At present Smalltalk possesses only very rudimentary
exception handling. If the developer has not defined how th e exception should be caught it is
merely presented to the user. Thisis acceptable for a single user/developer system, however for
delivered systems thisis unacceptable. Even the facilities that are available are extremely
limited. For example, class lev el rather than block or method level support is required, such that
if aparticular type of exception occurs anywhere within an instance of a class (or one of its
subclasses) then that exception is handled cleanly and in an appropriate manner.

« Private methods: In Smalltalk all methods are publicly available, that is any object can send a
message requesting that the receiving object perform any of the defined methods. In general
Smalltalk developers place those methods which are not intended for external use in method
protocols such as private (or private -<some-additional-description>). However thisis only
convention and there is no system support for these “ private” methods. Other object oriented
languages such as C++ and Java do support the definition of private and public methods. Indeed
these languages take the concept of private and public further. For example, in Java [van der
Linden 1996] there are a number of classes of access indicated by keywords:

1. public- world access.

2. protected - accessible to any object in the current package or any subclass in any package.

3. default - any classin the package (A Java packageis agroup of classes which areto be
bundled together. They are essentially the same aslibrariesin C++).

4. private protected - class/ subclass access only.

5. private - accessible to the current class only.

Of course some of the above issues are being addressed by current research (for example [Feigenbaum
1995]) however there appears to be little interest in following this lead from the vendor community.

33.2.2 Technology issues

There are a number of technology based issues which will affect Smalltalk’s popularity in the coming
years. These are less related to Smalltalk itself and more to the way in which softwareis, and will be,
developed.

The mgjority of software today is developed for use on PCs running either Windows 95, Windows
NT or Windows 3.1. Therefore Smalltalk needs to be able to easily and simply interact with these
environments. For example, explicit support for OLE and dynamically linked librariesis a must.

Inthefutureitislikely that the influence of the World Wide Web (or Web) and the internet will
continue to grow. Smalltalk vendors must provide facilities which will allow Smalltalk to take
advantage of t his (ParcPlace-Digitalk have aready produced a product called VisualWave whichisa
VisualWorks based Web server).

Object sharing and natification must be made significantly easier. CORBA (see[Ben-Natan 1995]
for asummary of the CORBA sta ndard and [Orfali etal 1995] for an excellent compendium of
distributed object technology including OLE, OpenDoc aswell as CORBA) while providing a possible
infrastructure for such object sharing resultsin large cumbersome ORBs (CORBA st andsfor the
Common Object Request Broker Architecture. It is a specification for an ORB (Object Request Broker)
which allows distributed objects within different systems to communicate. Simpler and easier to use

279

solutions are needed which suit therequire mentsof lesstechnically complex systems, such asa
database server which is accessed by a small number of interacting Smalltalk clients.

Improved support for deploying applicationsis required. The process of removing as many system
classes as possible without damaging the application’s operation is still largely an art rather than a
science. VisuaWorks 2.5 does give greater support for this, however it is still severely limited in its
operation.

Finally, there needs to be a convergence between the di fferent Smalltalk dialects. Thiswill happen
to some extent through the new ANSI standard. However, if this standard does not cover issues such as
the user interface, database access, web access, the use of dynamically linked libraries and OLE, then it
will have only limited success.

33.3 Object oriented development toolkits

For Smalltalk to maintain its position as a mainstream language it must be supported by appropriate
development tools, as well as by a number of language vendors. The merger of Digitalk and Parcplace
systems raised the prospect of the emergence of essentially a single language vendor (as ParcPlace and
Digitalk between them accounted for the majority of Smalltalk system sales). This has been an
impediment to alanguage’ s successin the past. F or example, devel opers are unwilling to commit to a
language which, on the demise of their system supplier, forces them to re -implement the whole system
in anew language. However IBM have entered the market with their range of Smalltalk products thus
aleviating the situation to a certain extent.

However we are still left with the issue of the range of development tools and toolkits available. It is
possible to classify object oriented development toolkits into a number of categories:

* Object oriented lang uage compilersand linkers . These tend to be command line programs
which read in a source code file and produce object files which are then combined with other
object filesto create a stand alone executable. They are typically used in an Edit -Compile-Link-
Execute cycle in which the various tools used are poorly integrated (if they are integrated at all).

e Object oriented application development environments . Object oriented Application
Development Environments (or OOADES) are comprehensive devel opment environments that
not only possess highly integrated devel opment tools but also provide afar greater level of
developer support than the basic language compilers. For example, database access, use r
interface construction, code generation and libraries of reusable components. Typically
OOADEs exploit an iterative development cycle in which the devel oper writes some code,
compilesit in-situ and executes it before writing some more code.

¢ Object oriented CASE (OOD methodology -based) tools. OO CASE tools differ from the OO
ADES because they support one or more OOD methodologies. The most common OOD
methodol ogies used with OO CASE tools are OMT and Booch. These two accounted for over
50% of OOD methodologies used world wide in 1995. Given this, it islikely that the Unified
Modeling Language (UML) will have asignificant impact in the future, asit is the inheritor of
both OMT and Booch.

There are in fact two different types of OO CASEto olsavailable: OO analysis and design
tools and OO Integrated CASE tools. The former act as diagramming tools while the | atter are
model-based code generating tools. Most of the code generation tools support C++ although
versions for Smalltalk have been ap pearing since the end of 1995. Thisis now asignificant
market which increased in the US by 82% in 1995 to be worth about $138 million.

Smalltalk examples of each of these can be identified. For example gnu -Smalltalk fallsinto the first
category, while VisuaWorks itself falls into the second. There are also a growing nhumber of Smalltalk
based OO CASE tools. For example, Rationa (probably the most influential OO CASE devel oper
having Grady Booch, Jim Rumbaugh and Ivar Jacobson working for them) hasave rsion of its product
ROSE for Smalltalk (It also produces versions of Rational ROSE for C++, SQL Windows and Ada).

However it is worth noting that although OO CASE tools are the fastest growing product area, thisis
an areain which Smalltalk hasbeen are latively late entrant. OO CASE toolsfirst started appearing
commercialy , in any number, around 1992. It was three years before many of these tools offered direct

280

Compatibility (or code generation) for Smalltalk. For Smalltalk to continue as acommercial success it
isessential that it gains a similar level of support in this area as C++.

33.4 The internet and objects

The world wide web (or just the Web for short) is one of the phenomena of the last few years. It is set to
revolutionize the way we think about computers and computing. However, at present most information
available on the web isin the form of static web pages. These are useful in providing information but
arefairly limited in their ability to do much more. Java has of course alowed Web pages to possess at
|east some dynamic element, however the majority of Java applets on the Web make little cartoon
characters do something. To gain the full benefits of the Web it is necessary to be able to connect
applets, downloaded form the Web, into corporate databases or to existing programs. Such an ability
will open the Web up to a huge range of applications both within and between corporations.

Java, of course, has aready guaranteed that object technology will play an important role in the
development of such applications. Javaisin many ways just another object oriented language, which
like Smalltalk, is not compiled into an executable but into byte codes which are then “executed” by an
interpreter (or virtual machine). Thus any Java applet is an object or set of objects which communicate
with each other via message passing. Thus these applets should be capable of communicating, relatively
easily, with adistributed object system. Indeed developments are already under way to link Java applets
to CORBA compliant ORBs, and to OLE/COM.

To simplify this sort of task, specia OO WEB site development tools will be (and are being)
developed. It isalso likely that many of the existing OO CASE tools will provide Web additions s o that
they too can be used with the Web and for Web development.

However, which language will dominate, and which type of distributed system will be adopted, are
two different questions. Javawill certainly be the dominant Web language, although thereis no great
reason why Java should be any better as a Web language than Smalltalk or any other interpreted OO
languages such as Objective-C or Eiffel, other than the fact that Java got there first and has the backing
of both Netscape and Sun. However, in earl y 1996, ParcPlace-Digitalk released VisuaWave. Thisisan
application devel opment environment (ADE) for building live applications on the Web. VisualWave
runs on VisualWorks and hides all the HTML (Hyper Text Markup Language) and CGI (Common
Gateway Interface) details from the developer. Instead, the devel oper can concentrate on creating Web
applicationsin a Smalltalk environment. This allows the user to access multiple databases, use
interactive window building tools, Smalltalk classes and the VisualWork s browsersto develop
applications. At present VisualWave relies on the use of a CORBA compliant ORB, however it claims
that it will be able to access OL E components soon.

It isinteresting to compare and contrast Java and Smalltalk. Smalltalk appearsto be the better OO
language for theinternet asit is not a hybrid language and has many features built into it which would
work well with the Web. Thismeansthat it is likely that companies which already have significant
Smalltalk experience will stick with Smalltalk and use VisualWave, athough many others will swallow
the hype surrounding Java, and go with it.

The question of which distributed object technology will be adopted is more complex. OMG would
certainly like CORBA to be adopted as the accepted standard, while Microsoft would prefer their own
OLE/COM infrastructure standard. An open question iswhat will Netscape do? It is probable that
Netscape will do both. For example, Sun have already linked Javawith CORBA and Sun and Netscape
are closely linked, but agreat deal of the world uses Microsoft products.

33.5 Object oriented databases

An object oriented database system is one which relies on an object-oriented view of the world, that is,
uses classes and objects as the basic storage mechanism rather than forms and tables. In genera these
databases are also quite flexible about the type of datathey hold including text, programs, graphics,
video and sound. However OO databases have been fairly thin on the ground until recently. The main
playersin thisfield have tended to concentrate on Smalltalk based systems. Either providing Smalltalk
binding or in some cases implementing the system in Sm alltalk and treating Smalltalk as the database

281

scripting and query language to use. Recently however, agreat deal of interest has been shown in using
OO databases with the Web.

Web developments are not only based around a variety of different datatypes, they aso requirethe
ability to navigate easily around datain a domain model. Many OODB vendors (as well as many users)
are coming to the conclusion that OO databases are ideal for supporting aHTTP server. By storing the
Web site within the OO database the process of exchanging data with the database, and modifying the
Web pagesis simplified.

Thistrend islikely to increase significantly in the future. It is aready the case that other OO
database suppliers are adding Java interfaces or making their s ystems Web compliant. It isalso likely
that the Web will act as the motivating force which will force many organizations to adopted OO
database technology (as opposed to relational database technology).

33.6 Smalltalk as a training environment

Itislikely that Smalltalk will reach a point in the commercial sector where its use does not increase. At
what level thiswill occur is still unclear, however | believe that Javais going to have a greater impact
on the use of C++ than Smalltalk. If anything, | suspect that Javawill help to interest peoplein OO
languages including Smalltalk. At this point | believe that Smalltalk’s strengths as an educational
language will cometo the fore.

Far too many people believe that it is possible to move from aprocedural deve lopment language,
such as C, to an OO language just by reading a book on C++. The result is that they develop C programs
but maintain their data within objects. | myself have been involved in discussions with devel opers who
have claimed that object technol ogy is awaste of time because they did not accrue the benefits claimed.
When pressed it is almost always that case that they failed to invest in appropriate training for their
staff. Thiswas their mistake.

The transition to object technology is not an easy one. Indeed it becomes harder the greater the level
of experience of those trying to make the change. This does not necessarily have anything to do with
their ability to adapt to new ideas, rather | believe it isto do with the fact that they have aver y firm
grasp of one paradigm where as |ess experienced software devel opers have a poorer grasp of (for
example) the procedural paradigm. It is therefore necessary to include in the first object oriented
development attempted by an organization, a suitable training budget. This budget needs to be seen as
an investment in the future, rather than a cost of the actual project involved. In addition it should not be
seen as alanguage programming exercise. The best approach isto view it as atraining in the phil osophy
and techniques of object technology. The aim of such atraining is not necessarily to educate those
involved in the use of the tools to be used on the actual project (such as OO CASE tools and the OO
language to be used). Such an approach will allow the staff involved to explore the concepts rather than
worrying about a particular syntax and how it differs from what they are used to.

Of course educating software developersin abstract conceptsis only of limited use, therefore such
training courses should re-enforce what is being taught with practical experience of a pure OO language
such as Smalltalk. After al it is not possible to write anything in Smalltalk without using objects and
message passing. In addition it is easier to spot conceptual pro blemsin Smalltalk (as evidenced by
students attempting to write the main program or worrying about procedures rather than objects).

| therefore believe that Smalltalk will have a concrete future as an educator as well as a practical OO
development environ ment. Indeed it may well have a greater influence as an educational language
alowing organizations to migrate to object technologies in as painless a manner as possible.

33.7 Object technology: the next five years

What will happen to object technology over the next five years? Thisis both an interesting and a
difficult question. Object technology is certainly gaining an ever increasing share of the market for
commercially developed systems, however there is still agreat deal of resistanceto it in many quarte rs.
This resistance is sometimes due to ignorance and sometimes due to bigotry. In either case it requires
someone to champion its cause in the affected organizations. However the Web is here, and despite the
hype, islikely to be amajor factor during the next ten years.

282

Thanks mostly to Java, object technology is seen as the developer’ s Web technology. This therefore
meansthat it islikely that much of the development in object technology will be Web driven (we have
aready considered some of its effects above). Thiswill probably continue to grow and may have both a
positive and detrimental effect. The positive effect will be that many new and existing companies will
adopt object technology, many other companies will move to support their requirements an d many new
start up companies will be created. Over time many of these companies will close down again only to
be replaced by other small start up companies. It is within these companies that many of the most
innovative ideas will probably be generated (co nsider Netscape as an example). Thiswill be avery
creative and dynamic time.

However there are two possible results of this. Oneis that object technology becomes so successful
that companies such as Microsoft consider it a part of their core business and move into the market with
such force that they come to dominate. | have always believed that monopolies (or virtual monopolies)
are abad idea and certainly tend to be bad for any industry. The other concern isthat object technology
becomes so tightly | inked to the Web in people’ s minds that the technology providers ignore other
aspects of the computer world and focus solely on the Web (which | believe would be a mistake). Such
a close binding might have a short term benefit, but let us hope that whenth e Web bubble bursts or
when the next great new thing comes along, object technology is not left behind with the Web and
ignored.

283

34. Appendix: The Smalltalk Language Syntax

34.1 Basic syntax

34.1.1 Statement separation

Achieved in Smalltalk by the period or full stop rather than the semi -colon asin Pascal or C. For
example:

Transcript show 'Hello World'.
Transcript show. ' John'.

Although it is unnecessary to put a period at the end of the last line of code, asin Pascal it isagood
idea.

34.1.2 Assignment operator

The assignment operator is the colon equals combination as in other languages such as Pascal. For
example:

a:=2 + 4.

This operator is not a“copy” operator and thus may result in two variables referencing the same
object. Not that := is not amessage as var iables are not objects (whereas + is amessage as it relates to
two objects even if oneis contained within avariable).

Further example are;

ol dlndex := 1.

newl ndex := ol dl ndex.
nyArray := #(1 2 3 4).
nyName : = 'John Hunt'.

Assignments return values (like other expressions), so that several assignments can be made together:

next | ndex : = new ndex := ol dl ndex.

34.1.3 Comments

Comments are defined using “ . Everything between the double quotesis treated as a comment. Note
that comments cannot be nested in Sma lltalk. This can be awkward if you wish to comment out some
code for later.

34.1.4 The return operator

This operator is used to return avalue from a method. By default a method will return the object that the
message which triggers the method was sent to. Howeve r, this can be altered using the return operator
A, For example:

n24

would cause a method to return the value 24. Note that the method will “return” as soon as it encounters
areturn operator. It is therefore possible, although not necessarily agood ide a, to have more than one

284

return operator in a method. Thus allowing a method to return from different points depending on the
execution path taken through the method.

34.1.5 Cascading

The cascade operator, represented by acomma (,) can be used to send a series of messages to the same
object (which is only referenced once). For example:

Transcript cr.

Transcript show 'John Hunt'.
Transcript: tab.

Transcript show '1995'.
Transcript cr.

Can bere-written as:

Transcript cr;
show. 'John Hunt';
t ab;
show. '1995';
cr.

34.2 Literals and variables

34.2.1 Literals
Literals are constant objects such as numbers, characters, strings, symbols etc.

Number s are a sequence of numeric characters with an optional decimal point and an optional minus
sing. Example of numbers are:

8 12.7 -44.7 0. 0009

In Smalltalk a number is positive unless otherwise stated. there is therefore no need for a unary
plus sign. Numbers can also be represented in other bases, by preceding them with aradix and
the letter “r":

6r145 8r5E

Charactersareindividua letters and are distinctly different to a string containing only asingle letter.
They are represented by a single character preceded by a“$” symbol. For example:

$a $d $ $+ $4

Strings are collections of characters encompassed within single quotes. They can possess spaces, under
bars etc. For example:

"Hello World'

Symbols are specia objects that represent unique entitiesin the Smalltalk system. These are
represented using aleading the hash (#) symbol.

#tenp #j ohn
34.2.2 Variables

Variable names describe accessible variables. Variable names are identifiers made up of letters and
digitswith an initial |etter:

some(hj ect MyCar total Nunber

285

A capitalization convention is used consistently throughout the standard image. Most Smallta Ik
programmers adhere to this standard which it is therefore advisable to follow:

* Private variables (instance variables, temporaries) start with an initial lower-case letter.
e Shared variables (class variables, global variables, pool variables) start with aninitial upper-case
letter.

Message selectors should also start with alower -case letter. For both variable names and message
selectors, if the name is a combination of two or more words, the convention isto capitalize the first
letter of the second word onwards. For example:

di spl ayTot al Pay ret ur nSt udent Nare
34.2.3 Pseudo variable names
A pseudo variable name refers to an object which cannot be changed; these include:

e nil. A valueused when no other valueis appropriate, such asun -initialized variables. ni | is
the sole instance of classUndef i ned Obj ect .

e true. Representstruth. The soleinstance of class Tr ue.

» fal se. Represents falsehood. The sole instance of the classFal se.

True and False are subclasses of Bool ean which implements Boolean algebra and control structures.
In addition there are two pseudo variables whose value changes depending upon the context. They
are therefore not constants, however the programmer has no ability to change their value.

sel f. Thisrefersto the receiver of amessagei tself. It literally means “the object within which the
method is executing”. It is used to send a message to the object requesting the another method
defined on the object is executed.

super . Also refers to the message receiver, but the method search star tsin the superclass of the
classinwhich super isused. Thisisoften used if the functionality of amethod isto be
extended rather than overwritten. For example:

myMet hod: anQbj ect
new code before super.
super nmyMet hod.
new code after super.

Thereis aso a pseudo message, which just returns the receiver of the message as the result of
evaluating the message. Thismessageisyour sel f:

your sel f . A message which returnsthe receiv er of the message. It can be used in any situation,
however its most common useis in a cascade of messages, whereit is necessary to return the
original receiver of the cascaded messages.

34.2.4 Declaring a variable

To declare atemporary variable, place the variable to be declared betweentwo bars,eg. | x y z |
indicates that the variables x, y and z are temporary variables.

If you reference an undeclared variable the system will assume you wish to declare a new global
variable and do so. Global variables should, by convention, aways start with a capital letter. They can
be deleted by looking at the Smalltalk system dictionary and deleting the appropriate entry.

286

34.3 Classes and methods

34.3.1 Defining a class

The structure of aclass definitionis;

NameCf Super cl ass subcl ass: #NanmeOf C ass
i nstanceVari abl eNanes: 'instVarNanel i nstVar Nane2'
cl assVari abl eNanes: ' C assVar Nanel Cl assVar Nane2'
pool Dictionaries: ''
category: 'Visual Organiser’

Where

NameOf Super cl ass isthe parent class of the class to be defined.

NameOf O ass isthe name of the class being defined. (Note that at this stage it does not exist and
must therefore be preceded by a#).

i nstanceVari abl eNames isused to list the instance variable to be used with this class.

cl assVari abl eNanes isused to define the class variable to be used with this class.

pool Di cti onari es definesthe pool variablesto be used with this class.

cat egor y defines the category in which this class will be placed.

Note that this definition may not define all the variables associated wi th this class, for example, it may
have inherited instance variables from its parent.

34.3.2 Methods

The structure of amethod is:

messagePattern: argunentl additional Pattern: argunent2
"coment"
| tenporaries |

statenments

Where

messagePat t ern and addi t i onal Patt er n: representsthe name of the method. Notice that
the method name is divided up amongst the arguments and that a part of the message name
which precedes an argument has atrailing colon ‘:’.

ar gunent s the names of arguments in the message pattern are accessible within the method.

“coment " isacomment describing the operation performed by the method and any other useful
information.

| tenporaries | isusedtodefinevariableswhich arelocal to the method. They must be
declared at the beginning of the method (just after the message pattern) and are initialy ni | .

st at ement s represents any legal set of Smalltalk statements. These statements are used to
implement the behaviour of the method.

34.3.3 Message expressions

Message expressions describe messages to receivers. The value of the expression is determined by the
method it invokes. For example, the following is a message expression:

newStatus : = thisPerson marries: thatPerson

This expression is made up of an assignment and a message exp ression. In turn the message expression
ismade up of areceiver, amessage selector and an argument:

¢ thisPersonisthereceiver

287

e marries: isthe message selector
e thatPerson isthe argument

Aswith every message expression it returns aresult, which iswhat is saved into the variable newStatus.
34.3.4 Message types
There are a number of different types of message. These are:

* Unary Message have no arguments.
anArray size. theta sin. 4 even.

the message selector (i.e. size) can be any simple identifier.
* Keyword Messages have one (or more) keywords, each with an argument.
index max: limt
anArray at: first put: ‘John’
In the above examples max: and at : put : arethe keywords (termed selectors). This means
that the name of a message selector is spread amongst the arguments. These can be any simple
identifier with atrailing colon. The argument can be an expression representing any object.
< Binary Messages have one argument, and the selector isone or two non -alphabetic symbols. For

example:
3 > 4. 100 / 17. ol dl ndex + 1.

The second character in a binary message selector cannot be a minus sign.
34.3.5 Parsing rules
The parsing rules of Smalltalk can be summarized in the following points:

« Multiple expressions are separated by full stops.

* Unary expressions parse left to right.

e Binary expressions parse |eft to right.

* Unary expressions take precedence over binary expressions.

« Parenthesized expressions (using round brackets) take precedence over unary expressions.

To summarize then the precedence order isunary - binary -keyword (plus take into account round
brackets).

34.4 Blocks

A block isa sequence of statements whose execution is deferred. They are evaluated in the context in
which they were defined. Each block is an object of class Context. The statements are enclosed in
square brackets e.g. []. The block will be executed when it is sent the message “value’. The result of the
last message sent is returned as the value of the block. For example:

| temp |

tenp := [Transcript show ‘Hello John'.].
Transcript show ‘Hello Wrld'.
tenp val ue.

Blocks are most commonly used with control structures such as:

anObj ect
i fTrue: [Transcript show ‘Hello Qut There'.].

They may aso be used in iteration statements, for example:

[x > 0]
whil eTrue: [..... 1.

288

Thisrepeatedly eval uates the Smalltalk code in the second block while the result of the first block
evaluates to true. Note that whileTrue: isamessage to the first block, it is therefore a method defined
in class Context. Other control structures which use blocksincluder epetition e.g. timesRepeat: and
do..

34.5 Class Boolean

Class Bool ean, although not exactly part of the Smalltalk syntax, isimportant enough to be
considered here. It may at first seem confusing that class Bool ean isnot part of the language and isin
fact ac lasswith methods defined which provide the usual logical operations. However, given
Smalltalk’ s commitment the the philosophy of object orientation, it is perhaps not that surprising that
facilities such as Bool ean are actually provided by a class definition.

Once you get used to theidealit is not that strange and most of the time you do not need to worry
about the fact. Indeed, aslong as you learn the “ syntax” of boolean operators you need never actually
know that they are not part of the basic language.

Theclass Bool ean defines the whole protocol for boolean operations. This class has two
subclasses Tr ue and Fal se which determine what should happen when different messages are sent to
them. Thus the equivalent of C'sif statement in Smalltalk is:

anCbj ect
i fTrue: [some code].

Thereis also the equivalent of the unless statement in some languages:

anCbj ect
i fFal se: [some code].

These can be combined to form an if-then-else construct.

anObj ect
ifTrue: [some code]
i f Fal se: [some other code].

Note the period is only placed after the last line. The message selector used here is actualy
i fTrue:ifFal se:.

The usual range of boolean functions have been defined such as (&) and (]) or as well as specialized
versions such as and: and or: which only evaluate the second operator if necessary. For example:

(a <2) &(b>2) And
(a<2) | (b>2) Or
(a>0) and: [b > (6 / a)] And where the second expression is only evaluated

if the first expression evaluatesto true. As here,
this construct may be use d asacheck to ensure
that erroneous operations are not performed.
(a>0) or: [B>0] Or where the second expression will only be
executed if the first evaluates to false.

34.6 Collections

Aswith class Bool ean, collections are not strictly part of the Smal Italk language, however they are so
important that they will be mentioned here.

Collections are the elements used to construct data structuresin Smalltalk. They alow any object to
be grouped together and manipulated. Complex data structures can be built up by combining collections
together. Abstract Data Types (ADT’s) can be instantiated by subclasses the default collection classes.
They therefore provide avery powerful data construction mechanism.

The most commonly used collection classes are:

Set A collection of objectsin any order. No duplicates are allowed.
Bag A collection of objectsin any order; duplicates are allowed.

289

Array Like an array in Pascal, has a fixed size (which can be grown)
and accessed by explicit position references.

OrderedCol I ection | Abitlikealinked listin Pascal or C. Elements are added to
specific locations specified either asfirst, last or relative to
another object.

SortedCol | ection A collection whose order is determined by a sort block. This
block isapiece of code which returns true or false depending
upon the test performed.

Dictionary Rather like a hash table. Objects are stored with a key and
accessed by akey. Dictionaries are therefore a set of key -> value
associations

Elementsin collectionsarein general accessed by the at : and added by the at : put: or add:
messages. It is possible to iterate over the elements of a collection using thedo: construct.

290

Bibliography

[Acron and Walden 1992] T. L. Acron and S. H. Walden, SMART: Support Management Automated
Reasoning Technology for Compaq Customer Service, pp 3 - 17, Innovative Applications of
Artificial Intelligence 4, Ed. A. Carlisle Scott and Philip Klahr, (1992).

[Alexander et d 1977] C. Alexander, S. Ishikawa and M. Silverstein with M. Jacobson, |. Fiksd ahl-
King and S. Angel, A Pattern Language, Oxford University Press, 1977.

[Alexander 1979] C. Alexander, The Timeless Way of Building, Oxford university Press, 1979.

[Barbey and Strohmeier 1994] Stephane Barbey and Alfred Strohmeier, The Problematicsof Te sting
Object-Oriented Software, in SQM’94 Second Conference on Software Quality Management, Vol
2, M. Ross, C. A. Brebbia, G. Staples and J. Stapleton (eds), pages 411-426, July 26-28, 1994,

[Barbey, Amman and Strohmeier 1994] Stephane Barbey, Manuel M. Ammann and Alfred Strohmeier,
Open Issuesin Testing Object-Oriented Software, in ECSQ’ 94, European Conference on Software
Quality, Basil Switzerland, Oct. 17-20, 1994.

[Beck 1994] K. Beck, Simple Smalltalk testing, The Smalltalk Report, Vol 4, No. 2, pp 1 6-18, October
1994.

[Beck and Johnson 1994] K. Beck and R. Johnson, Patterns Generate Architectures, Proc. Eccop’ 94, pp.
139-149, 1994.

[Ben-Natan 1995] R. Ben -Natan, CORBA: A Guide to Common Object Request Broker Architetcure
McGraw-Hill, ISBN 0-07-005427, 1995.

[Beizer 1990] B. Beizer, Software Testing Techniques Van Nostrand Reinhold, New Y ork, 1990.

[Binder 1994] Robert V. Binder, Guest Editor, Special Issue of Communications of the ACM, Object
Oriented Software Testing, Vol. 37, N0 9, 1994. ACM Press.

[Binder 1994b] Robert V. Binder, Design for Testahility in Object-Oriented Systems, in Special |ssue of
Communi cations of the ACM, Object Oriented Software Testing, Vol. 37, No 9, pp. 87-101, 1994.

[Birrer and Eggenschmiler 1993] Andreas Birrer and Thom as Eggenschwiler, “Frameworksin the
Financial Engineering Domain: An Experience Report:, ECOOP’ 93, pp 21-35.

[Boehm 1988] B. W. Boehm, A spiral model of software development and enhancement, |IEEE
Computer, pp 61-72, May 1988.

[Booch et al 1996] G. Booch, |. Jacobson and J. Rumbaugh, The Unified Modeling Language for Object
Oriented Development , Documentation Set, Version 0.91 Addendum, UML Update, Rational

[Booch 1996] Grady Booch, Object Solutions: Managing the Object -Oriented Project, Pub. Addison -
Wesdley, Menlo Park, ISBN 0-8053-0594-7, (1996).

[Booch and Rumbaugh 1995] Grady Booch and James Rumbaugh , The Unified Method Documentation
Set, Version 0.8, Rational Softwar e Corporation, (available on the web

[Booch 1994] Grady Booch, Object-Oriented Analysis and Design with Applications , 2nd Edition,
Benjamin Cummings, Redwood City, California, (1994).

[Booch 1991] Grady Booch, Object-Oriented Design with Applications, Benjamin Cummings, (1991).

[Booch 1987] Grady Booch, Software Components with Ada , Benjamin Cummings, Menlo Park,
Cadlifornia, 1987.

[Booch 1986] Grady Booch, Object Oriented Devel opment, | EEE Transactions on Software
Engineering, 12 (2), pp 211-221, February 1986.

[Brooks 1987] Fred Brooks, No Silver Bullet: Essence and Accidents of Software Engineering, |EEE
Computer, April 1987.

[Brown 1989] A. L. Brown, Persistent Object Stores, Ph.D. Thesis, University of St. Andrews, 1989.

[Budd 1991] T. Budd, An Introduction to Object Oriented Programming , Pub. Addison-Wesley, ISBN
0-201-54709-0, (1991).

[Budinsky et al 1996] F. J. Budinsky, M. A. Finnie, J. M. Vlissidesand P. S. Y u, Automatic code
generation from design patterns, IBM Systems Journal, Vol. 35, No. 2, 1996.

[Coad and Y ourdon 1991] P. Coad and E. Y ourdon, Object-Oriented Analysis, Y ourdon Press,
Englewood Cliffs, NJ, (1991)

291

http://www.rational.com/ot/uml.html
http://www.rational.com/ot/uml.html

[Coleman et al 1994] D. Coleman, P. Arnold, S. Bodoff, C. Dallin, H. Gilchrist, F. Hayes and P.
Jeremes, Object Oriented Development: The Fusion Method , Prentice Hall International, ISBN O -
13-101040-9, 1994,

[Cook and Daniels 1994] S. Cook and J. Daniels, Designing Object Oriented Systems. Object -oriented
modelling with Syntropy, New Y ork, Prentice Hall, 0-13-203860-9, 1994.

[Cox 1990] Brad J. Cox, Therelsa Silver Bullet, BYTE, October 1990, pp 209-218.

[Cox and Novobilski 1991] Brad J. Cox and Andrew Novobilski, Object-Oriented Programming: An
Evolutionary Approach (2nd dition), Pub. Addison Wesley, ISBN 0-201-54834-8.

[Derr 1995] K. W. Derr, Applying OMT: A Practical step -by-step guide to using the Object Modeling
Technique, Prentice Hall, 0-13-231390-1, 1995.

[Deutsch 1989] L. Peter Deutsch, The Past, Present and Future of Smalltalk, Proc. ECOOP’ 89, Third
European Conference on Object Oriented Programming, pp 73-87, (1989).

[Feigenbaum 1995] Barry Alan Feigenbaum, Smalltalk/2: An enhanced Smalltalk , Journal of Object
Oriented Programming, Vol. 8, No 7, pp. 50-56, 1995.

[Freedman 1991] R. S. Freedman, Testability of software components, |EEE Trans. Softw. Eng. 17 (6),
pp. 553-564, June 1991.

[Gamma et al, 1995] E. Gamma, R. Helm, R. Johnson and J. Vlissades, Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley, 1995.

[Gamma et al 1993] E. Gamma, R. Helm, R. Johnson and J. Vlissades, Design patterns: Abstraction and
reuse of object-oriented design, in ECOOP’ 93 (Lecture Notes in Computer Science 707) , pp. 406-
431, Springer-Verlag, 1993.

[Goldberg and Robson 1983] A. Goldbe rgand D. Robson, Smalltalk-80: The Language and its
Implementation, Addison-Wesley, 1983.

[Goldberg and Robson 1989] A. Goldberg and D. Robson, Smalltalk-80: The Language, Pub. Addison-
Wesdley, ISBN 0-201-13688-0, (1989).

[Goldberg 1984] A. Goldberg, Smalltalk-80: The Interactive Programming Environment , Addison -
Wesley, 1984.

[Harel et al 1987] D. Harel, A. Pnueli, J. P. Schmidt and R. Sherman, 1987. On the formal semantics of
Statecharts, Proc. 2nd |EEE Sump. on Logic in Computer Science, pp 54-64.

[Harel 1988] D. Harel, On visual formalisms, 1988. Communications of the ACM , Vol 31, No. 5., pp
514-530.

[Harmon and Taylor 1993] P. Harmon and D. Taylor, Objectsin Action: Commercial Applications of
Object-Oriented Technologies, Pub. Addison-Wesley: Massachusetts, (1993).

[Harrold, McGregor and Fitzpatrick 1992] Mary Jean Harrold, John D. McGregor and Kevin J.
Fitzpatrick, Incremental testing of object -oriented class structures, in Proc. of the 14th
International Conference on Software Engineering, pages 68-79, May 11-15, 1992. ACM Press.

[Hoffman and Strooper 1995] Daniel Hoffman and Paul Strooper, The testgraph methodol ogy:
Automated testing of collection classes, Journal of Object Oriented Programming , Vol. 8 No 7,
pp. 35-41, 1995.

[Hopkinsand Horan 1995] T revor Hopkins and Bernard Horan, Smalltalk: An Introduction to
Application Development Using VisualWorks Pub. Prentice Hall, ISBN 0-13-318387-4, 1995.
[Hopkins and Wolczko 1989] T. P. Hopkinsand M. |. Wolczko, Writing Concurrent Object -Oriented

Programs using Smalltalk-80, in The Computer Journal, 32 (4), Oct. 1989, pp 341-350.

[Hunt 1995] Neil Hunt, Automatically tracking test case execution, Journal of Object Oriented
Programming, Vol. 8 No 7, pp. 22-27, 1995.

[Jacobson 1992] 1. Jacobson, M. Christers on, P. Jonsson and G. Overgaard, Object-Oriented Software
Engineering: A Use Case Driven Approach , Addison-Wesley, Reading, MA, ISBN 0 -201-54435-
0, 1992.

[Johnson 1992] Ralph. E. Johnson, Documenting Frameworks with Patterns , Proc. OOPSLA' 92,
S GPLAN Notices 27(10), pp. 63-76, 1992.

[Jorgensen and Erickson 1994] P. C. Jorgensen and C. Erickson, Object-Oriented Integration Testing, in
Soecial Issue of Communications of the ACM, Object Oriented Software Testing , Vol. 37, No 9,
pp. 30-38, 1994.

[Kemerer 1987] ChrisF. Kemerer, An Empirical Validation of Software Cost Estimation Models,
Communications of the ACM, Vol. 30, No. 5, May 1987, pp 416-429.

[Krasner 1983] G. Krasner (ed.), Smalltalk-80: Bits of History, Words of Advice , Addison-Wesley,
1983.

292

[Krasner and Pope 1988] G. E. Krasner and S. T. Pope, A Cookbook for Using the Model -View
Controller User Interface Paradigm in Smalltalk-80, JOOP 1(3), pp. 26-49, 1988.

[Kuhn 1962] Thomas Kuhn, The Structure of Scientific Revolutions, The University of Chicago Pres s,
1962.

[Lalonde 1994] W. Lalonde, Discovering Smalltalk, Benjamin/Cummings Pub. Co. Inc. ISBN 0 -8053-
27207, 1994,

[Lalonde and Pugh 1993] W. Lalonde and J. Pugh, Idle time computing with futures, Journal of
Object Oriented Programming, Vol 6 (6), pp 69-76, 1993.

[Lalonde and Pugh 1991] W. Lalonde and J. Pugh, Inside Smalltalk Volume I, Pub. Prentice Hall, ISBN
0-13-468414-1, (1991).

[Lalonde and Pugh 1991b] W. Lalonde and J. Pugh, Inside Smalltalk Volume Il , Pub. Prentice Hall,
ISBN 0-13-465964-3, (1991).

[Lalonde and Pugh 1991] Wilf Laonde and John Pugh, Subclassing /= subtyping/=1s -a, Journal of
Object Oriented Programming, Janurary 1991, pp 57-62.

[Lewis 1995] Simon Lewis, The Art and Science of Smalltalk: An Introduction to Object Oriented
Programming Using VisualWorks, Hewlett-Packard Professional Books: Prentice Hall, Pub 1995.
ISBN 0-13-371345-8.

[Love1993] T. Love, Object Lessons: Lessons Learned in Object -Oriented Development Projects ,
SIGSBooks: New York, (1993).

[Meyer and Nerson 1993] B. M eyer and J. Nerson, Object-Oriented Applications, Prentice-Hall: New
Jersey, (1993).

[Meyer 1988] B. Meyer, Object-Oriented Software Construction , Prentice Hall International,
Englewood Cliffs, NJ, (1988).

[Moser and Nierstrasz 1996] S. Moser and O. Nierstrasz, The Effect of Object-Oriented Frameworks on
Developer Productivity, pp 45-51, IEEE Computer, Sept. 1996.

[Myers 1979] G. J. Myers, The Art of Software Testing, Business Data Processing: a Wiley Series, John
Wiley and Sons, 1979.

[Orfali etal 1995] R. Orfali, D. Harkey and J. Edwards , The Essential Distributed Objects Survival
Guide, John Wiley & Sons, ISBN 0-471-12993-3, 1995.

[Qusterhout 1994] John K. Ousterhout, TCL and the TK Toolkit , Pub. Addison -Wesley Professional
Computing Series, ISBN 0-201-63337-X, 1994,

[Perry and Kaiser 1990] D. E. Perry and G. E. Kaiser, Adequate testing and object oriented
programming, Journal of Object Oriented Programming, 2 (5), pages 13-19, January 1990.

[Pyle 1991] I. C. Pyle, Developing Safety Systems: A Guide Using Ada, pp. 177-195, Pub. Prentice Hall,
1991.

[Rational 1996] Unified Modeling Language for Real -Time Systems Design , Rational Software

[Rumbaugh et al 1991] J. Rumbaugh, M. Blaha, W. Pe rmerlani, F. Eddi and W. Lorensen, Object-
oriented modeling and design, Prentice Hall, 1991.

[Shan 1995] Y -P Shan, Smalltalk on the Rise, Communications of the ACM, Vol. 38, No. 10, pp 103 -
104, October 1995.

[Siepman and Newton 1994] E. Siepmann and A. R. Newton, TOBAC: A Test Case Browser for
Testing of Object -Oriented Software, Proc. of the International Symposium on Software Testing
and Analysis (ISSTA), ACM 1994,

[Skublics et al 1996] Suzanne Skublics, Edward J. Klimas and David A. Thomas, Smalltalk with Style,
Prentice Hall, ISBN 0-13-165549-3, 1996.

[Smith 1994] David N. Smith, IBM Smalltalk: The Language. Benjamin/Cummings Pub. Co. Inc. ISBN
0-8053-0908-X, 1994.

[Sparks, Benner and Faris, 1996] S. Sparks, K. Benner and C. Faris, Managing Object -Oriented
Framework Reuse, pp 52-61, IEEE Computer, Sept. 1996.

[Taylor 1992] D. A. Taylor, Object-Oriented Information Systems: Planning and I mplementation. John
Wiley, N.Y. 1992.

[van der Linden 1996] P. van der Linden, Just JAVA, SunSoft Press, A Prentice Hal | Title, ISBN 0-13-
565839-X, 1996.

[Wirfs-Brock et al 1990] R. Wirfs -Brock, B. Wilkerson, L. Wiener, Designing Object Oriented
Software, Pub. Prentice Hall, ISBN 0-13-629825-7, (1990).

[Yourdon 1994] E. Y ourdon, Object-Oriented Systems Design, Prentice Hall: New Jersey, (1994).

293

http://www.rational.com/ot/uml.html

OOPSLA/ECOOP 90, Joint Conference, on Object -Oriented Programming: Systems, Languages and
Applications, Ed. Norman Meyrowitz, Pub Addison Wesley, ISBN 0-0201-52430-X, (1990).
OOPSLA ‘91, Conference on Object-Oriented Programming Systems, Langauges and Applications, Ed.
Andreas Pagpcke, Pub Addison Wesley, ISBN 0-0201-55417-8, (also as ACM SIGPLAN Notices

Vol 26, No. 11), (1991).

OOPSLA ‘92, Seventh Annual Conference on Object -Oriented Programming Systems, Languages and
Applications, Ed. Andreas Paepcke, Pub Addison Wesley, ISBN 0 -201-53372-3, (also asACM
SIG PLAN NOTICES Val 27, No. 10, (1992).

OOPSLA ‘93. OOPSLA’93 Conference Proceedings, ACM/SIGLAN, Pub. Addison Wesley, ISBN O -
201-58895-1, 1993.

ECOOP ‘89, Third European Cnnferenc e on Object -Oriented Programming, Ed. Stephen Cook, Pub.
Cambridge University Press, (in the British Computer Society Workshop Series), ISBN O -521-
38232-7, (1989)

ECOOP ‘92, European Conference on Object Oriented Programming, Ed. O. Lehrmann Madsen, Pub.
Springer-Verlag, ISBN 0 -387-55668-0, (Published in the Lecture Notes in Computer Science
series), (1992).

ECOOP ‘93. European Conference on Object Oriented Programming, Pub. Springer -Verlag, Lecture
Notesin Computer Science Vol 707, 1993.

ECOOP ‘94, Europe an Conference on Object Oriented Programming, Pub. Springer -Verlag, Lecture
Notesin Computer Science Vol 821, 1994.

ECOOP '95, Ninth European Conference on Object -Oriented Programming, Lecture Notesin
Computer Science, Vol. 952, Springer Verlag, 1995.

[1SO 1993]. Information technology, software packages, quality requirements and testing , 1SO Draft
International Standard, |SO/IEC DIS 12119. 1993.

Workshop on Testing Smalltalk Applications , held at the OOPSLA ‘95 Conference, Monday October
16, 1995. For more information contact Barbara Y ates, OOPSLA Workshop, 2002 Parkside Court,
West Linn, Oregon, 97068-2767, USA (Email: barbara.bytesmiths@acm.org).

294

| ndex

; 81
N
N 67
A
Abstract
ClaSSES ...viicee e 21
PAY o1 (= Tox {0 o 19
ACCEPL ... 47
BCCESSING ..eeveeenerie et seenes 78
ACCESSON .1vveieeeieiirereeeeeeestrereeeeeeesasreeees 67,78
ACCOUNE.....vveeieeeeeiireeeeee e e 199
7o 2 R 16, 17
A . 89, 96
=T [0 /A | S 89
F=T0 [0 | =T = R 96
F=T [0 I L 93
(< GO 91, 96
DEfOre. ..o 91, 96
AA: e 56
addDependent @ ... 208
AnalysSiSphase........coeeeeeveenesienieniene 133,134
ANSI X3J20......ciiiieierieece et 47
ApplicationModd 223, 228, 236
INitialiZationcooveeeeeeeiee e 229
Arithmetic Operatorscoceeveeveveenesieniennes 70
J N 1 ¢ YR 97, 98, 122
Multi dimensional arrays...........coeeueeneene 97
TWODLISE...vicviceectiecrecrece e 98
aSBag ..o 102
asLower Caseccovvceevcie e, 99
asOrderedCol | ection......oveeneeeee 102
2o <. 102
ASSIgNMENL.....ceiiieeeeeee e 68, 71
asSortedCol | ection ... 103
asSortedCol | ection: aSortBIl ock
.. 103
asUpper Casecccicvveviinsiee s 99
ASVAUB......eveeiteeeee e 232
A e 97
at ;i PUL L 97, 98
APOIN: ..ot 98
= 12 011 014 o 11 | 98
B
Bag....o oo 89
removeAllOccurrencesOf..........ccoevenee. 20
binary Mmessage.......oceoveveenenecne e 73
2o v 81
Block parametersccoveveerenienenienen. 82
Block temporary variables..................... 83
BIOCKCIOSUrE........ccccveeeveecriecree e 81
Typical block usageccooveeerireeniennee 83

295

VAUeeecteecteee ettt 82
VAIUE: ..ottt 82
BOOCHueeetieeeecece e, 132
Bool€ancccccevveeiieeceee e, 61, 73, 83
IFTrueifFalSe ..o 83
BOSS.....cci ettt 114
Breakpointsccoeeveneeneneenese e 122
BrowSerccccvveeieeeeecieeeee e, 46, 50, 51
C
O SRR 17,21, 22
CanVaS.......coeeeeecieee e 224, 225
CasCadingcoeeeeeeneie e 81
CAEGOTY ..ot 27,51
Category ..evcvereeeeeeeseee e 203
changed ... 72
Changes
Change List.....ccoeeveeriririeeereeceeee 125
changes file. ... 125
[(0= ot 127
changes file. ..o 48
Charact ereceeeeveeceeeeeeeee 70, 120
ClBSS..ccivieiieieeceeee e, 17,21, 25, 27
ClBSS..uiiciic e 62
Classdefinitions........ccccceveeeveeevieecveecnen, 63
PEISON.....covieiteeeieeee et 76
classinstancevariable.........cccccoevveecveennen. 65
Classinstance variables
0] 1TSS 196
ClasSNAMES......ccoveeeeeectieecee et 51
classvariable.......cccccovveeieeenennn, 25, 54, 63, 76
Classvariables
0] 1TSS 196
COHECE: .o 101
COollECHiON ..., 87,88
add: 89
COPYEMPLY: oo 89
[0 [0) 89
[g o1 0 Lo (=T 89
ISEMPLY et 89
FEMOVE. ...t ceee et e e e e saree e 89
Selecting which Collection...................... 88
SIZB ettt 89
(0001011011 | P 66, 67
CONCUIMTENCY ..vveeereeeiee et 261
EXample......ccooovvieeeeeeee e, 264
Controllercoveunee.. 46, 213, 214, 217, 221
CORBA ...ttt 279
(O1 5= o | 114, 178, 253
D
[(T 119
dEDUGOES ..o 53
Dependency ..o 206
dependents................... 96, 207, 208, 209, 217
Design patterns.........coeeveereneeerenienesiennene 173

DT oo [P 91
D] Tox (0] 4= o 98
displayon:.......cccoovvvrvnnnee. 246, 249, 252, 253
(o [0 1 | PRSPPI 50
Lo [0 ST OSRRPRRRRR 59
AO: e 84, 96, 100
doesNotUnderstand:...........coceeeveevveeeneennnen. 64
E
Encapsulation..........ccocveeeeeeeenernnennnn 18, 19
(< (o) SRR 15, 55, 67, 122
[SY('= o1 [0] 1 SN 55,123
F
L= £ SRS 45,73
FalSE..ciictieeteeceeeee e 61,73
FIlEIN e 124
FIlEOUL ... 123
Filename.......coccooeeiieeccee e, 112
FinancialManager.............. 109, 116, 212, 243
Fl oat oo 69
Frameworks..........ooveeeeeeieeeceee e 171
FUIl BrOWSESveeceeeceecee e 51
U T o) O 136
G
Garbage Collectionccooeeevineninnene. 258
global variables.........cccooeviiiiiniienes 53,72
H
7= | 55, 123
helloWOrld.......coveeeeieeeececer e, 61
hierarchyccooeevveeveeeeere e 18, 26
Hierarchy
(3 T 26
PArt-OFcviiieiriiieree e 26
HOEDIaW......cvveeeeeeeieciieeeee e e 174
BOXDIawccoovveeeeeeeeiiieeeee e 176
{0 S 175
I
IdentityDictionarycccceeeeveeeeeceeseesnene 99
ldentitySet . 91
ITFAISE oo 61
If-then expression.........ccooveevenccnenenenen, 83
ITTIUE. oo 61
10> = 47,57
INNEMITANCE.ee e 64
INheritancCe.......occcoveeeeeeceeccec e 18, 20
1451 1 OO 184
TNJECE: i s 101
(115 01 o SRR 53,54
(1115 01 o (o (RSP 53,54
INSEANCE.....uveieeee e 25
INStaNCe Creationc.ecceevveeeeeeieveeeeeenes 65
Instancevariable.......ccccccevvveeceeiieecneee, 25
instance variables.........ccccceeevieecei e, 63

Instance variables

296

FOIE.oiriereetee e 196
INSEBNCES.......ovveeceerrereee e 63
INEENVA ..o 96
TEEIBLIVE. ... 45
10 g2 (0] NSRS PN 149
J
Java........ 17, 22, 167, 169, 182, 191, 279, 281
JGSAW .t 47
K
KEY'S e 98
Keyword MeSSage........ccoveeverereeeeneenienienans 73
L
1= 1S SRS 93
LaUNCNES ..o 49
LSttt 96

SOttt 96
M
MBgNI T UdE i 118
ML CH: e 99
Memory compaction...........ccoeeevereerereeneen. 259
Memory managementccccceveereeneennne. 257
MESSAgE. ..ot 26,51, 73
MeSSage eXPreSSioNSooveeeeereerereesienesieneene 73
message passing Mechanism..........coeeevenes 62
Message SElECtOrcoevvererinererere e 74
MESSAGE LYPES.....evereeereeerreeereeee e 73
Methodooveieeer e 25

0] 200
method definitionccccoevveevceeierenecees 66
Modelcoovveieeeeee 46, 213, 214, 215
Model View Controller 46, 213, 214, 231
Multipleinheritance........cccccocevvnenene 21,26
N
NEISCAPE.......ee e 281
011 67,73
NOFIErS....e e 54
NUMDBEN ..o 96
o]

(0] 7=, 16, 25, 45
HISLOIY v 17
RYDIId ..o 17
Terminologyccoeeevereeerenecnereenieeae 25

Object ENQINe.......cccovverieenineereseeicenes 48

Object Management Group 153, 281

Object Management Technique................. 182

Object modelcooeevereiiieeeee 135

Object Modeling Technique............cccc..... 133

Object Oriented ANalYSIScoeevereeerienns 132

Object oriented Application Devel opment
ENVIironments........cceeeeeeeeeeenenennseennenn 280

Object oriented database..........cccccevvrvenee 281

Object oriented design........ccoeevereeerienns 131

ODJECLONY ... 134

OLE.. it 279
OMT e s 133
Methodology.......cccevererieeiiree e 154
onChangeSend........ccceceeenenenieniennenn 232
OO CASE ...ttt 280
OOA ... s 132
00D
(2700 o D 132
Dynamic modelcccceeeeeneneinnicnnne 133
Functional model...........coeoeveeveenennen. 134
FUSION.....couier e, 136
Object modelcooereeiiiiiiceee 133
ODJECtOrY ..o 134
OMT e 133
OPENDOC ..o 279
OrderedCollection..........cccecveeveeireeiiesinennnns 91
OrganiSer......oceeeveereerennens 104, 105, 109, 236
Overloadingccccoeeeeveneneneee e 23
OVETIdiNG....cceeeeieiee e 23
P
PArAMELENS......eeeiieeeee e 62, 73
o (S 45
ParcPlaCe.......ccooevereriseseeeeere e 46
Parsing rUlES........ccoveveenere e 75
Patternscccoeveeiieenee e 173
L 011 205
Changedovvrerieree e 210
UPELE. ... 210
PEFOIM: Lo 205
Polymorphism........ccocoerrieieiinene 19, 22
PreCedenCecoueurrenere e 73
PrNE L. 53
PrNESIIING .o 50
PrOCESSES......oiiiiee et 262
PrIOMLY oo 262
TESUMIE. ..c.ueieeeeieeeeeesre et e s see e 262
STES o< 010 262
Processor Schedul er 262, 265
Project.....coeveereeeree e 126
ChaNQES......ccverieere e 127
1 126
ProtoCOlc.covirieiiirieere e 51
Protocolcccceveienineneneeeee e 203
Protocols
accessing protocolcccceeeveeeeeenneene, 107
initidlize-release.......c.ccoeveeeveneieccnnne 105
INStaNCe Creation.........ccccvevereerereeseennnn 106
Private-acCessiNg.......cccvevveveeveeseeseennnes 107
Pseudo variablescoooerereiiieienee 72
Q
QUEUIE...... it 93
R
FECEIVES ..vviiiieei et 54,62, 73
F €] BCL o 101
[EIMDVE ittt 89
removeLast......ccoeeveeiereeree e 93, 96

297

renoveDependent @ ... 208

(1001017 T 6 S 93
FEUSEvvee e ecteeereeesteeesree e sraeenaee e 19, 29, 61
Reuse
VISUAL ...t 233
RUNtiME Errors.......ccccceeveevee e 55, 122
S
SEIECE: .t 100
SEIf e 26, 39, 72
SEMEPNOTE. ..o 263
SENAES ..ot 62
SEL. e 90
Shar edQUEUEccevvvvveeeeeeeree e 263
S 0 50
Singleinheritance.........c.ccooveveeienencienens 26
SMAIDIaW ..o, 244
SMmalltalK.....cooeeeeieee s 44
fULUFE ..o, 278
VisuaWave.......cccccveeviieieeieeeeecins 281
SMalltalk-80cc.eeeeeeieriicierieeee e 46
Software CrisSiS.....ccocveveeveciecee e, 15,28
SOt BIOCK......ecieieiecec e 95
SortedCollection..........cccoveveeeeecieccie e, 95
SOUICES. ..vetiueeeeerereteessressnseestessnseesssesssessssens 48
Spiral lifecyclemodelccoceeeninnnene 131
SEACK ..t 92
Statecharts.......coocoeeeerierieieriicee 133, 150
Streams
ReadStreamcccocvrveieninee e 111
WHtESIreamcceveiiinereee e 111
SHING e 61, 70, 99
StHiNG CONVErSIONccveeveeiecie e, 99
Strings
pattern MatChingcocceceeeeereeienesenenene 99
SAMEAS. ..ottt 99
SIYIC e 195
SUDCIESS ..o 19, 20, 21, 25
Subclass responsibilitycccceeeeieiiiennenns 22
subclassResponsibility..........ccccceeueeee. 56, 254
S 0 R TSR 64, 72
SUPEN ClaSS......eeeeeriereeienie e 25
System Browsercccceeeeeeeneeneenenene. 50, 51
T
temporary variables.........cccceeveivicennnnne 56, 72
L= (11 SR 182
Encapsulationcccceeevvveveeceeseeenen. 185
halt messagecccceeveececiecee e, 186
Incremental testingccoceeeveeveeinenen. 185
MELNOOS ... 190
Object State......ccovveeveeveeceee e 191
PEfOrM ..o, 189
Polymorphism..........ccccovecevieveeneecieenen, 187
TEXE e 241
TIME oo 73,119, 120
tiMeSREPEAL:ccocceeeeeeee e, 84
TranSCriPt ...ceveeee e 49, 50
TUE e 45,73

TIUE. .. 61, 73
U
UML ettt 147
State diagrams.......ceeeeeeeeveerceseniesennens 150
UNGEY coeeeeieeeseeesee e eee e es e eseeeeeeeeeneesneens 73
Unified Modeling Language.............. 131, 147
(U100 = (S 217, 253
(U]970 7 1] o [79
Usecase Modelccceeeeveeeeceeeiieeeeee e, 135
User Interface Builder..........cccocveeveenene. 223
(0= 0117 225
Canvastool.........cceeeeeereeeeeeee e 225
(D1 10 229
PAlEE ... 225
\%
VaueHolder......c..oceeveeveeveennnns 223, 231, 232
val ueNowOr OnUnwi ndDo........... 114, 115
Val UBS oo 98
Variables........cooeeeeeeiieecee e 71
VieW. oo, 46, 213, 214, 215, 216

298

Views

SUDVIEBWS ..ottt 220
Virtua Maching.........ooceeeeecnie e 47
VisualWOorKs........ccoeeevevveeeieciee e 44, 46, 47

Memory management..........cceveeveereeenen. 258
W
LTI =T (o] o T 85
WhIleFalSE: ..., 85
WhHIlEFAISE ... 84
WHIETTUE, .t 85
WHIETTUE. .o 84
WOrKSPaCEScovveererieeesee e 53
World wideWebccooeveeeeeeeeieeeee e, 281
X
D QN 2 O LR 278
Y
YOUFSEIf oo 197
YO-YOoproblemcccooeveninninineecene 65

