
Practical Programming
in Tcl and Tk

Brent Welch

DRAFT, January 13, 1995

Updated for Tcl 7.4 and Tk 4.0

THIS IS NOT THE PUBLISHED TEXT

THE INDEX IS INCOMPLETE
SOME SECTIONS ARE MISSING

THE MANUSCIRPT HAS NOT BEEN EDITED

GET THE REAL BOOK: ISBN 0-13-182007-9

An enhanced version of this text has been published by
Prentice Hall: ISBN 0-13-182007-9

Send comments via email to

welch@acm.org
with the word “book” in the subject.

http://www.sunlabs.com/~bwelch/book/index.html

The book is under copyright. Print for personal use only.

This on-line DRAFT is available curtesty the kind folks at PH.

Table of Contents

Created: May 9, 1994 —bookTOC.doc—Copyright Prentice Hall—DRAFT: 1/13/95

1. Tcl Fundamentals ... 1
Getting Started ..1
Tcl Commands ...2
Hello World ..3
Variables ..3
Command Substitution ..4
Math Expressions ..4
Backslash Substitution ..6
Double Quotes ...7
Procedures ...7
A While Loop Example ..8
Grouping And Command Substitution10
More About Variable Substitution11
Substitution And Grouping Summary11
Fine Points ...12
Comments ...13
Command Line Arguments ...13
Reference ...14

Backslash Sequences ...14
Arithmetic Operators ...14
Built-in Math Functions15
Core Tcl Commands ...15
Predefined Variables ..18

2. Strings and Pattern Matching 19
The string Command ..19
Strings And Expresssions ...20
The append Command ...21
The format Command ..21
The scan Command ...23
String Matching ...24
Regular Expressions ..25
The regexp Command ..26
The regsub Command ..28

Created: May 9, 1994 —bookTOC.doc—Copyright Prentice Hall—DRAFT: 1/13/95

ii

3. Tcl Data Structures ...29
More About Variables ...29

The unset command ..30
Using info to find out about variables30

Tcl Lists ...31
Constructing Lists: list, lappend, and concat32
Getting List Elements: llength, lindex, and lrange33
Modifying Lists: linsert and lreplace34
Searching Lists: lsearch ...34
Sorting Lists: lsort ..35
The split And join Commands35
Arrays ..36
The array Command ..37
Environment Variables ...38
Tracing Variable Values ...39

4. Control Flow Commands41
If Then Else ..42
Switch ..43
Foreach ..44
While ...45
For ...46
Break And Continue ...46
Catch ...46
Error ..48
Return ...49

5. Procedures and Scope51
The proc Command ..51
Changing command names with rename52
Scope ...53
The global Command ...53
Use Arrays for Global State ..55
Call By Name Using upvar ..55

Passing arrays by name56
The uplevel Command ..57

6. Eval ..59
Eval And List ...59

iii

Created: May 9, 1994 —bookTOC.doc—Copyright Prentice Hall—DRAFT: 1/13/95

Eval And Concat ..61
Double-quotes and eval62

Commands That Concat Their Arguments62
The subst Command ..63

7. Working with UNIX ... 65
Running Unix Programs With exec65

auto_noexec ...67
Looking At The File System ..67
Input/Output ..70
Opening Files For I/O ..70
Reading And Writing ..72

The puts and gets commands72
The read command ..73
Random access I/O ...73
Closing I/O streams ...74

The Current Directory - cd And pwd74
Matching File Names With glob74
The exit And pid commands75

8. Reflection and Debugging 77
The info Command ...77

Variables ...78
Procedures ...79
The call stack ..79
Command evaluation ...80
Scripts and the library ...80
Version numbers ...80

Interactive Command History81
History syntax ...82
A comparision to /bin/csh history syntax82

Debugging ..83
Don Libes’ debugger ...84

Breakpoints by pattern matching85
Deleting break points ...86

The tkerror Command ..87
The tkinspect Program ...87
Performance Tuning ...87

Created: May 9, 1994 —bookTOC.doc—Copyright Prentice Hall—DRAFT: 1/13/95

iv

9. Script Libraries ...89
The unknown Command ..89
The tclIndex File ...90
Using A Library: auto_path ...90

Disabling the library facility: auto_noload91
How Auto Loading Works ...91
Interactive Conveniences ..92

Auto Execute ...92
History ...92
Abbreviations ...92

Tcl Shell Library Environment93
Coding Style ...93

A module prefix for procedure names94
A global array for state variables94

10. Tk Fundamentals ..95
Hello World In Tk ...96
Naming Tk Widgets ..98
Configuring Tk Widgets ..98
About The Tk Man Pages ..99
Summary Of The Tk Commands99

11. Tk by Example ..103
ExecLog ...103

Window title ...105
A frame for buttons, etc.105
Command buttons ...106
A label and an entry ...106
Key bindings and focus106
A resizable text and scrollbar107
The Run proc ...107
The Log procedure ...108
The Stop procedure ..108

The Example Browser ..109
More about resizing windows110
Managing global state ..111
Searching through files111
Cascaded menus ..112
The Browse proc ..112

v

Created: May 9, 1994 —bookTOC.doc—Copyright Prentice Hall—DRAFT: 1/13/95

A Tcl Shell ..113
Naming issues ... 114
Text marks and bindings 114

12. The Pack Geometry Manager 115
Packing towards a side ... 116

Shrinking frames and pack propagate 116
Horizontal And Vertical Stacking 117
The Cavity Model ... 118
Packing Space and Display Space 119

The -fill option ... 119
Internal padding with -ipadx and -ipady 120
External padding with -padx and -pady 123

Expand And Resizing ... 123
Anchoring ..125
Packing Order .. 126

pack slaves and pack info 127
Pack the scrollbar first 127

Choosing The Parent For Packing 128
Unpacking a Widget ... 129
Packer Summary .. 129
The pack Command ... 130
The Place Geometry Manager 130

The place Command .. 131
Window Stacking Order .. 132

13. Binding Commands to X Events 133
The bind Command .. 133
All, Class, And Widget Bindings 134

The bindtags command 135
break and continue in bindings 135
A note about bindings in earlier versions of Tk ... 135

Event Syntax ... 136
Key Events ... 137
Button Events .. 138
Other Events .. 138
Modifiers ..139

Events in Tk 3.6 and earlier 141
Event Sequences .. 141

Created: May 9, 1994 —bookTOC.doc—Copyright Prentice Hall—DRAFT: 1/13/95

vi

Event Keywords ...142

14. Buttons and Menus145
Button Commands and Scope Issues145
Buttons Associated with Tcl Variables149
Button Attributes ...151
Button Operations ...153
Menus and Menubuttons ...153
Manipulating Menus and Menu Entries155
A Menu by Name Package ..156
Popup Menus and Option Menus159
Keyboard Traversal ..159
Menu Attributes ...160

15. Simple Tk Widgets163
Frames and Top-Level Windows163

Attributes for frames and toplevels164
The label Widget ...165

Label attributes ...166
Label width and wrapLength166

The message Widget ...167
Message Attributes ..168

Arranging Labels and Messages169
The scale Widget ..169

Scale attributes ..170
Programming scales ...171

The scrollbar Widget ..172
Scrollbar attributes ..174
Programming scrollbars175
The Tk 3.6 protocol ..175

The bell Command ...176

16. Entry and Listbox Widgets177
The entry Widget ..177

entry attributes ..180
Programming entry widgets181

The listbox Widget ..183
Programming listboxes185

Listbox Bindings ..189
Browse select mode ..190

vii

Created: May 9, 1994 —bookTOC.doc—Copyright Prentice Hall—DRAFT: 1/13/95

Single select mode ... 190
Extended select mode .. 191
Multiple select mode .. 192
Scroll bindings ... 192
listbox attributes ... 193
Geometry gridding ... 194

17. Focus, Grabs, and Dialogs 195
Input Focus ... 195

The focus command ... 196
Focus follows mouse .. 196
Click to type .. 197
Hybrid models ... 197

Grabbing the Focus .. 197
Dialogs ...198

The tkwait Command ... 198
Prompter dialog ... 198
Destroying widgets ... 200
Focusing on buttons .. 200
Animation with the update command 200

File Selection Dialog ... 201
Creating the dialog ... 201
Listing the directory ... 204
Accepting a name .. 205
Easy stuff .. 207
File name completion ... 207

18. The text Widget ... 211
Text widget taxonomy .. 211

Text Indices ... 212
Text Marks ... 213
Text Tags ...214

Tag attributes .. 215
Mixing attributes from different tags 216

Line Spacing and Justification 217
The Selection ... 219
Tag Bindings .. 219
Embedded Widgets ... 220
Text Bindings ... 222

Created: May 9, 1994 —bookTOC.doc—Copyright Prentice Hall—DRAFT: 1/13/95

viii

Text Operations ..223
Text Attributes ...225

19. The canvas Widget227
Hello, World! ..227
The Double-Slider Example229
Canvas Coordinates ...233
Arcs ...233
Bitmap Items ...235
Images ...236
Line Items ..236
Oval Items ..238
Polygon Items ...239
Rectangle Items ..240
Text Items ..241
Window Items ..244
Canvas Operations ...246
Generating Postscript ...248
Canvas Attributes ..250
Hints ..251

Large coordinate spaces251
Scaling and Rotation ..251
X Resources ...252
Objects with many points252

20. Selections and the Clipboard253
The selection Command ...254
The clipboard Command ..255

Interoperation with OpenLook255
Selection Handlers ...255

A canvas selection handler256

21. Callbacks and Handlers259
The after Command ...259
The fileevent Command ..260
The send Command ...261

The sender script ...262
Using sender ..264
Hooking the browser to a shell266

ix

Created: May 9, 1994 —bookTOC.doc—Copyright Prentice Hall—DRAFT: 1/13/95

22. Tk Widget Attributes 269
Configuring Attributes .. 269
Size ..270
Borders and Relief .. 272
The Focus Highlight ... 273
Padding and Anchors ... 274
Putting It All Together .. 275

23. Color, Images, and Cursors 277
Colors ..278
Colormaps and Visuals .. 280
Bitmaps and Images .. 281

The image Command ... 281
bimap images .. 281
The bitmap attribute .. 282
photo images ... 283

The Mouse Cursor .. 285
The Text Insert Cursor ... 287

24. Fonts and Text Attributes 289
Fonts ...289
Text Layout .. 292
Padding and Anchors ... 293
Gridding, Resizing, and Geometry 294
Selection Attributes .. 295
A Font Selection Application 295

25. Window Managers and Window Information 303
The wm Command ... 303

Size, placement, and decoration 304
Icons ...305
Session state ... 306
Miscellaneous .. 307

The winfo Command .. 308
Sending commands between applications 308
Family relationships .. 308
Size ...309
Location ... 310
Virtual root window ... 311

x Chap.

Created: May 9, 1994 —bookTOC.doc—Copyright Prentice Hall—DRAFT: 1/13/95

Atoms and IDs ...311
Colormaps and visuals312

The tk Command ...313

26. A User Interface to bind315
A Binding User Interface ..315
A Pair of Listboxes Working Together317
The Editing Interface ..319

27. Using X Resources323
An Introduction To X Resources323

Warning: order is important!325
Loading Option Database Files325
Adding Individual Database Entries326
Accessing The Database ...326
User Defined Buttons ...327
User Defined Menus ...328

28. Managing User Preferences331
App-Defaults Files ..331
Defining Preferences ...333
The Preferences User Interface335
Managing The Preferences File338
Tracing Changes To Preference Variables340

29. C Programming and Tcl341
Using the Tcl C Library ..342
Application Structure ...342
Tcl_Main and Tcl_AppInit ...343

The standard main in Tcl 7.3344
A C Command Procedure ...345
Managing The Result’s Storage346
Invoking Scripts From C ...347

Bypassing Tcl_Eval ..347
Putting A Tcl Program Together349
An Overview of the Tcl C library349

Application initialization350
Creating and deleting interpreters350
Creating and deleteing commands350
Managing the result string350

xi

Created: May 9, 1994 —bookTOC.doc—Copyright Prentice Hall—DRAFT: 1/13/95

Lists and command parsing 350
Command pipelines ... 351
Tracing the actions of the Tcl interpreter 351
Evalutating Tcl commands 351
Manipulating Tcl variables 352
Evalutating expressions 352
Converting numbers .. 352
Hash tables ... 352
Dynamic Strings .. 353
Regular expressions and string matching 353
Tilde Substitution .. 353
Working with signals ... 353

30. C Programming and Tk 355
Tk_Main and Tcl_AppInit .. 355
A Custom Main Program .. 357
A Custom Event Loop ... 360
An Overview of the Tk C library. 361

Parsing command line arguments 361
The standard application setup 362
Creating windows .. 362
Application name for send 362
Configuring windows ... 362
Window coordinates ... 362
Window stacking order 363
Window information ... 363
Configuring widget attributes 363
Safe handling of the widget data structure 363
The selection and clipboard 363
Event bindings ... 364
Event loop interface ... 364
Handling X events .. 364
File handlers .. 364
Timer events .. 365
Idle callbacks ... 365
Sleeping ... 365
Reporting script errors 365
Handling X protocol errors 365
Using the X resource database. 365

xii Chap.

Created: May 9, 1994 —bookTOC.doc—Copyright Prentice Hall—DRAFT: 1/13/95

Managing bitmaps ...366
Creating new image types366
Using an image in a widget366
Photo image types ..366
Canvas object support366
Geometry managment ..367
String identifiers (UIDS)367
Colors and Colormaps ..367
3D Borders ..368
Mouse cursors ...368
Font structures ..368
Graphics Contexts ...368
Allocate a pixmap ..368
Screen measurements ..368
Relief style ...369
Text anchor positions ...369
Line cap styles ...369
Line join styles ...369
Text justification styles369
Atoms ..369
X resource ID management369

31. Writing a Tk Widget in C371
Implementing a New Widget371
The Widget Data Structure372
Specifying Widget Attributes373
The Widget Class Command375
Widget Instance Command376
Configuring And Reconfiguring Attributes378
Displaying The Clock ..380
The Window Event Procedure383
Final Cleanup ..384

32. Tcl Extension Packages387
Extended Tcl ..388

Adding tclX to your application388
More UNIX system calls389
File operations ...389
New loop constructs ...389

xiii

Created: May 9, 1994 —bookTOC.doc—Copyright Prentice Hall—DRAFT: 1/13/95

Command line addons 389
Debugging and development support 389
TCP/IP access .. 390
File scanning (i.e., awk) 390
Math functions as commands 390
List operations ... 390
Keyed list data structure 390
String utilities .. 391
XPG/3 message catalog 391
Memory debugging ... 391

Expect: Controlling Interactive Programs 391
The core expect commandsl 392
Pattern matching ... 393
Important variables .. 393
An example expect script 394
Debugging expect scripts 395

Expect’s Tcl debugger ... 395
The Dbg C interface ... 396
Handling SIGINT .. 397

BLT ..398
Drag and drop ... 398
Hypertext ... 399
Graphs .. 399
Table geometry manager 399
Bitmap support ... 399
Background exec ... 399
Busy window ... 399
Tracing Tcl commands 399
The old-fashioned cutbuffer 400

Tcl-DP ..400
Remote Procedure Call 400
Connection setup ... 401
Sending network data .. 401
Using UDP ... 401
Event processing .. 401
Replicated objects .. 402

The [incr tcl] Object System 402
Tcl_AppInit With Extensions 404
Other Extensions ... 407

xiv Chap.

Created: May 9, 1994 —bookTOC.doc—Copyright Prentice Hall—DRAFT: 1/13/95

Tcl applications ..407

33. Porting to Tk 4.0 ...409
wish ...409
Obsolete Features ..409
The cget Operation ...410
Input Focus Highlight ..410
Bindings ..410
Scrollbar Interface ..411
Pack info ..411
Focus ...411
Send ..412
Internal Button Padding ...412
Radio Buttons ..412
Entry Widget ..412
Menus ..413
Listboxes ..413
No geometry Attribute ..413
Text Widget ..413
Canvas scrollincrement ..414
The Selection ...414
Color Attributes ...414
The bell Command ...415

List of Examples 0

10Tcl Fundamentals..1

1.1 The “Hello, World!” example. ...3
1.2 Tcl variables. ..3
1.3 Command substitution. ..4
1.4 Simple arithmetic..5
1.5 Nested commands...5
1.6 Built-in math functions...5
1.7 Controlling precision with tcl_precision.5
1.8 Quoting special characters with backslash..................................6
1.9 Continuing long lines with backslashes.......................................6
1.10 Grouping with double quotes allows substitutions.7
1.11 Defining a procedure...8
1.12 A loop that multiplies the numbers from 1 to 10.9
1.13 Embedded command and variable substitution.........................10
1.14 Embedded variable references...11
20Strings and Pattern Matching ..19

2.1 Comparing strings. ...21
2.2 Regular expression to parse the DISPLAY environment variable. .27
30Tcl Data Structures ...29

3.1 Using set to return a variable value...30
3.2 Using info to determine if a variable exists.30
3.3 Constructing a list with the list command.32
3.4 Using lappend to add elements to a list.32
3.5 Using concat to splice together lists. ...33
3.6 Double quotes compared to the list command.33
3.7 Modifying lists with linsert and lreplace.................................34
3.8 Deleting a list element by value...34
3.9 Sorting a list using a comparison function.35
3.10 Use split to turn input data into Tcl lists.35
3.11 Using arrays. ..36
3.12 What if the name of the array is in a variable.37
3.13 Converting from an array to a list..38
3.14 printenv prints the environment variable values.39
3.15 Tracing variables...40
3.16 Creating array elements with array traces.40
40Control Flow Commands ...41

4.1 A conditional if-then-else command......................................42
4.2 Chained conditional with elseif. ..42
4.3 Using switch for an exact match. ..43
4.4 Using switch with substitutions in the patterns.44
4.5 Using switch with all pattern body pairs grouped with quotes. ..44
4.6 Looping with foreach. ...44
4.7 Parsing command line arguments. ..45
4.8 Using list with foreach..45

xvi

Created: September 9, 1994 —bookLOX.doc—Copyright Prentice Hall—DRAFT: 1/13/95

4.9 A while loop to read standard input. ...46
4.10 A for loop. ..46
4.11 A standard catch phrase...47
4.12 A longer catch phrase. ..47
4.13 The results of error with no info argument.48
4.14 Preserving errorInfo when calling error.48
4.15 Specifying errorinfo with return. ...49
50Procedures and Scope... 51

5.1 Default parameter values. ...52
5.2 Variable number of arguments..52
5.3 Variable scope and Tcl procedures. ...53
5.4 A random number generator. ..54
5.5 Using arrays for global state. ..55
5.6 Print by name. ..56
5.7 Improved incr procedure. ...56
5.8 Using an array to implement a stack...56
60Eval .. 59

6.1 Using list to construct commands...60
6.2 Using eval with $args. ..61
70Working with UNIX ... 65

7.1 Using exec on a process pipeline...66
7.2 A procedure to compare file modify times.68
7.3 Creating a directory recusively. ...69
7.4 Determining if pathnames reference the same file.69
7.5 Opening a file for writing...70
7.6 Opening a file using the POSIX access flags................................71
7.7 A more careful use of open. ...71
7.8 Opening a process pipeline. ..72
7.9 Prompting for input. ...72
7.10 A read loop using gets. ...73
7.11 A read loop using read and split. ...73
7.12 Finding a file by name...74
80Reflection and Debugging ... 77

8.1 Printing a procedure definition..79
8.2 Getting a trace of the Tcl call stack. ..80
8.3 Interactive history usage..82
8.4 Implementing special history syntax. ..83
8.5 A Debug procedure. ..83
90Script Libraries... 89

9.1 Maintaining a tclIndex file. ..90
9.2 Loading a tclIndex file..91
100Tk Fundamentals.. 95

10.1 “Hello, World!” Tk program..96
110Tk by Example.. 103

11.1 Logging the output of a UNIX program. 104
11.2 A browser for the code examples in the book........................... 109
11.3 A Tcl shell in a text widget. ...113
120The Pack Geometry Manager... 115

xvii

Created: September 9, 1994 —bookLOX.doc—Copyright Prentice Hall—DRAFT: 1/13/95

12.1 Two frames packed inside the main frame...............................116
12.2 Turning off geometry propagation..116
12.3 A horizontal stack inside a vertical stack.................................117
12.4 Even more nesting of horizontal and vertical stacks.117
12.5 Mixing bottom and right packing sides....................................118
12.6 Filling the display into extra packing space.119
12.7 Using horizontal fill in a menubar. ..120
12.8 The effects of internal padding (-ipady)....................................122
12.9 Button padding vs. packer padding...122
12.10 The look of a default button. ...123
12.11 Resizing without the expand option...124
12.12 Resizing with expand turned on. ...124
12.13 More than one expanding widget...125
12.14 Setup for anchor experiments. ..125
12.15 The effects of non-center anchors..126
12.16 Animating the packing anchors...126
12.17 Controlling the packing order..127
12.18 Packing into other relatives. ..128
130Binding Commands to X Events ..133

13.1 The binding hierarchy. ..134
13.2 Output from the UNIX xmodmap program.140
13.3 Emacs-like binding convention for Meta and Escape.141
140Buttons and Menus ...145

14.1 A troublesome button command. ..146
14.2 Fixing up the troublesome situation..147
14.3 A button associated with a Tcl procedure.148
14.4 Radio and Check buttons..150
14.5 Acommand on a radiobutton or checkbutton...........................151
14.6 A menu sampler..154
14.7 A simple menu-by-name package..156
14.8 Adding menu entries...157
14.9 A wrapper for cascade entries. ..158
14.10 Using the basic menu package. ...158
14.11 Keeping the accelerator display up-to-date.158
150Simple Tk Widgets ...163

15.1 A label that displays different strings.165
15.2 The message widget formats long lines of text...........................167
15.3 Controlling the text layout in a message widget.168
15.4 A scale widget. ...169
15.5 A text widget and two scrollbars...173
160Entry and Listbox Widgets...177

16.1 A command, a label and an entry. ...179
16.2 A listbox with scrollbars. ...183
16.3 A listbox with scrollbars and better alignment.184
16.4 Choosing items from a listbox 188
170Focus, Grabs, and Dialogs...195

17.1 Setting focus-follows-mouse input focus model.196

xviii

Created: September 9, 1994 —bookLOX.doc—Copyright Prentice Hall—DRAFT: 1/13/95

17.2 A simple dialog. ..199
17.3 A feedback procedure..200
17.4 A file selection dialog. ...201
17.5 Listing a directory for fileselect..204
17.6 Accepting a file name. ...206
17.7 Simple support routines. ..207
17.8 File name completion..208
180The text Widget... 211

18.1 Tag configurations for basic character styles. 216
18.2 Line spacing and justification in the text widget. 217
18.3 An active text button..219
18.4 Delayed creation of embedded widgets. 221
190The canvas Widget .. 227

19.1 The canvas Hello, World! example. .. 227
19.2 A double slider canvas example. ..229
19.3 Moving the markers for the double-slider. 231
19.4 A large scrollable canvas. ..233
19.5 Canvas arc items. ...234
19.6 Canvas bitmap items. ..235
19.7 Canvas image items. ..236
19.8 A canvas stroke drawing example. ... 237
19.9 Canvas oval items ..238
19.10 Canvas polygon items. ..239
19.11 Dragging out a box. ..240
19.12 Simple edit bindings for canvas text items. 242
19.13 Using a canvas to scroll a set of widgets. 244
19.14 Generating postscript from a canvas. 249
200Selections and the Clipboard... 253

20.1 Paste the PRIMARY or CLIPBOARD selection. 253
20.2 A selection handler for canvas widgets..................................... 256
210Callbacks and Handlers .. 259

21.1 A read event file handler. ..261
21.2 The sender application..262
21.3 Using the sender application...264
21.4 Hooking the browser to an eval server. 266
21.5 Making the shell into an eval server. 267
220Tk Widget Attributes ... 269

22.1 Equal-sized labels...272
22.2 3D relief sampler. ...273
22.3 Borders and padding. ...275
230Color, Images, and Cursors... 277

23.1 Resources for reverse video. ..277
23.2 Computing a darker color ...279
23.3 Specifying an image attribute for a widget. 281
23.4 Specifying a bitmap for a widget..282
23.5 The built-in bitmaps ...282
240Fonts and Text Attributes ... 289

xix

Created: September 9, 1994 —bookLOX.doc—Copyright Prentice Hall—DRAFT: 1/13/95

24.1 FindFont matches an existing font. ...291
24.2 Handling missing font errors...291
24.3 FontWidget protects against font errors...................................292
24.4 A gridded, resizable listbox..295
24.5 A font selection application. ..295
24.6 Menus for each font component. ..296
24.7 Using variable traces to fix things up.297
24.8 Listing available fonts. ..297
24.9 Determining possible font components....................................298
24.10 Creating the radiobutton menu entries.298
24.11 Setting up the label and message widgets.299
24.12 The font selection procedures..300
250Window Managers and Window Information ..303

25.1 Gridded geometry for a canvas. ...304
25.2 Telling other applications what your name is...........................308
260A User Interface to bind ...315

26.1 A user interface to widget bindings..316
26.2 Bind_Display presents the bindings for a given widget or class.317
26.3 Related listboxes are configured to select items together..........318
26.4 Controlling a pair of listboxes with one scrollbar.318
26.5 Drag-scrolling a pair of listboxes together................................319
26.6 An interface to define bindings. ...320
26.7 Defining and saving bindings. ...321
270Using X Resources...323

27.1 Reading an option database file...325
27.2 A file containing resource specifications.325
27.3 Using resources to specify user-defined buttons......................327
27.4 Defining buttons from the resource database.328
27.5 Specifying menu entries via resources.....................................328
27.6 Defining menus from resource specifications...........................330
280Managing User Preferences..331

28.1 Preferences initialization. ..332
28.2 Adding preference items..333
28.3 Setting preference variables. ...334
28.4 Using the preferences package. ...334
28.5 A user interface to the preference items...................................335
28.6 Interface objects for different preference types.........................336
28.7 Displaying the help text for an item...338
28.8 Saving preferences settings to a file...338
28.9 Read settings from the preferences file.339
28.10 Tracing a Tcl variable in a preference item.340
290C Programming and Tcl ...341

29.1 A canonical Tcl main program and Tcl_AppInit........................343
29.2 The RandomCmd C command procedure.345
29.3 Calling C command procedure directly.348
29.4 A Makefile for a simple Tcl C program.349
300C Programming and Tk..355

xx

Created: September 9, 1994 —bookLOX.doc—Copyright Prentice Hall—DRAFT: 1/13/95

30.1 A canonical Tk main program and Tcl_AppInit. 356
30.2 A custom Tk main program...357
30.3 Using Tk_DoOneEvent with TK_DONT_WAIT. 361
310Writing a Tk Widget in C ... 371

31.1 The Clock widget data structure..372
31.2 Configuration specs for the clock widget. 373
31.3 The ClockCmd command procedure. ... 375
31.4 The ClockInstanceCmd command procedure. 377
31.5 ClockConfigure allocates resources for the widget. 378
31.6 ComputeGeometry figures out how big the widget is................... 380
31.7 The ClockDisplay procedure. ..381
31.8 The ClockEventProc handles window events. 383
31.9 The ClockDestroy cleanup procedure. 384
320Tcl Extension Packages... 387

32.1 A sample expect script. ...394
32.2 A SIGINT handler..397
32.3 Summary of [incr tcl] commands...403
32.4 Tcl_AppInit and extension packages.. 404
32.5 Makefile for supertcl. ..406
330Porting to Tk 4.0 ... 409

List of Tables 0

10Tcl Fundamentals..1
1-1 Backslash sequences. ...14
1-2 Arithmetic Operators from highest to lowest precedence............14
1-3 Built-in Math functions...15
1-4 Built-in Tcl Commands ...15
1-5 Variables defined by tclsh..18
20Strings and Pattern Matching ..19
2-1 The string command..20
2-2 Format conversions...22
2-3 format flags...22
2-4 Regular Expression Syntax ...25
30Tcl Data Structures ...29
3-1 List-related commands..31
3-2 The array command..37
40Control Flow Commands ...41
50Procedures and Scope ...51
60Eval...59
70Working with UNIX..65
7-1 Summary of the exec syntax for I/O redirection.66
7-2 The Tcl file command options. ..67
7-3 Tcl commands used for file access...70
7-4 Summary of the open access arguments.71
7-5 Summary of POSIX flags for the access argument.......................71
80Reflection and Debugging ..77
8-1 The info command. ..78
8-2 The history command. ...81
8-3 Special history syntax..82
8-4 Debugger commands. ...85
90Script Libraries..89
100Tk Fundamentals ..95
10-1 Tk widget-creation commands...100
10-2 Tk widget-manipulation commands...100
110Tk by Example...103
120The Pack Geometry Manager ...115
12-1 A summary of the pack command..130
12-2 Packing options. ...130
12-3 A summary of the place command. ...131
12-4 Placement options...132
130Binding Commands to X Events ..133
13-1 Event types. Comma-separated types are equivalent.136
13-2 Event modifiers...139
13-3 A summary of the event keywords. ..142
140Buttons and Menus ...145
14-1 Resource names of attributes for all button widgets.152
14-2 Button operations. . ..153
14-3 Menu entry index keywords ..155
14-4 Menu operations. ..155
14-5 Resource names of attributes for menu widgets.........................160
14-6 Attributes for menu entries. ..161

xxii

Created: December 15, 1994 —bookLOT.doc—Copyright Prentice Hall—DRAFT: 1/13/95

150Simple Tk Widgets .. 163
15-1 Resource names of attributes for frame and toplevel widgets. 164
15-2 Resource names of attributes for label widgets....................... 166
15-3 Resource names for attributes for message widgets. 168
15-4 Default bindings for scale widgets. ... 170
15-5 Resource names for attributes for scale widgets. 170
15-6 Operations on scale widgets.. ...171
15-7 Default bindings for scrollbar widgets. 174
15-8 Resource names of attributes for scrollbar widgets. 174
15-9 Operations on scrollbar widgets. ...175
160Entry and Listbox Widgets .. 177
16-1 Default bindings for entry widgets. ... 178
16-2 Resource names for attributes of entry widgets....................... 180
16-3 Indices for entry widgets...181
16-4 Operations on entry widgets. ..182
16-5 Indices for listbox widgets ...186
16-6 Operations on listbox widgets..186
16-7 The values for the selectMode of a listbox. 190
16-8 Bindings for browse selection mode. .. 190
16-9 Bindings for a listbox in single selectMode. 190
16-10 Bindings for extended selection mode...................................... 191
16-11 Bindings for multiple selection mode...................................... 192
16-12 Scroll bindings common to all selection modes........................ 193
16-13 Resource names of attributes for listbox widgets. 193
170Focus, Grabs, and Dialogs .. 195
17-1 The focus command. ..196
17-2 The grab command. ..197
17-3 The tkwait command..198
180The text Widget... 211
18-1 Forms for the indices in text widgets. 212
18-2 Index modifiers for text widgets..213
18-3 Attributes for text tags. ..215
18-4 Options to the window create operation. 221
18-5 Bindings for the text widget. ..222
18-6 Operations for the text widget. ...224
18-7 Resource names of attributes for text widgets. 226
190The canvas Widget .. 227
19-1 Attributes for arc canvas items. ..234
19-2 Attributes for bitmap canvas items. ... 235
19-3 Attributes for image canvas items.. 236
19-4 Attributes for line canvas items. .. 238
19-5 Attributes for oval canvas items. .. 239
19-6 Attributes for polygon canvas items. 240
19-7 Attributes for rectangle canvas items. 241
19-8 Indices for canvas text items..241
19-9 Canvas operations that apply to text items............................. 242
19-10 Attributes for text canvas items. .. 244
19-11 Operations on a canvas widget. ...246

xxiii

Created: December 15, 1994 —bookLOT.doc—Copyright Prentice Hall—DRAFT: 1/13/95

19-12 Canvas postscript options. ..248
19-13 Resource names of attributes for the canvas widget.250
200Selections and the Clipboard ...253
20-1 The selection command...254
20-2 The clipboard command...255
210Callbacks and Handlers...259
21-1 The after command..260
21-2 The fileevent command...261
220Tk Widget Attributes..269
22-1 Size attribute resource names. ..270
22-2 Border and relief attribute resource names.272
22-3 Border and relief attribute resource names.274
22-4 Layout attribute resource names...274
230Color, Images, and Cursors ...277
23-1 Color attribute resource names. ..278
23-2 Visual classes for X displays. Values for the visual attribute....280
23-3 Summary of the image command...281
23-4 Bitmap image options ...282
23-5 Photo image attributes ..283
23-6 Photo image operations. ..284
23-7 Image copy options. ..285
23-8 Image read options..285
23-9 Image write options...285
23-10 Cursor attribute resource names...287
240Fonts and Text Attributes ..289
24-1 X Font specification components...290
24-2 Resource names for layout attributes.293
24-3 Resource names for padding and anchors.293
24-4 Geometry commands affected by gridding.294
250Window Managers and Window Information ..303
25-1 Size, placement and decoration window manager operations. ..305
25-2 Window manager commands for icons.306
25-3 Session-related window manager operations.307
25-4 Miscellaneous window manager operations.307
25-5 Information useful with the send command.308
25-6 Information about the window hierarchy.309
25-7 Information about the window size..310
25-8 Information about the window location.310
25-9 Information associated with virtual root windows.311
25-10 Information about atoms and window ids................................312
25-11 Information about colormaps and visual classes.312
260A User Interface to bind ...315
270Using X Resources...323
280Managing User Preferences..331
290C Programming and Tcl ...341
300C Programming and Tk..355
310Writing a Tk Widget in C..371
31-1 Configuration flags and corresponding C types........................374
320Tcl Extension Packages..387
330Porting to Tk 4.0..409
33-1 Changes in color attribute names..414

xxiv

Created: December 15, 1994 —bookLOT.doc—Copyright Prentice Hall—DRAFT: 1/13/95

Created: January 6, 1994 —Preface.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Preface

I first heard about Tcl from John Ouster-
hout in 1988 while I was his Ph.D. student at Berkeley. We were designing a net-
work operating system, Sprite. While the students hacked on a new kernel, John
was writing a new editor and terminal emulator. He used Tcl as the command
language for both tools so that users could define menus and otherwise custom-
ize those programs. This was in the days of X10, and he had plans for an X tool-
kit based on Tcl that would allow programs to cooperate by communicating with
Tcl commands. To me, this cooperation among tools was the essence of the Tool
Command Language (Tcl).

That early vision imagined that applications would be large bodies of com-
piled code and a small amount of Tcl used for configuration and high-level com-
mands. John’s editor, mx, and the terminal emulator, tx, followed this model.
While this model remains valid, it has also turned out to be possible to write
entire applications in Tcl. This is because of the Tcl/Tk shell, wish, that provides
all the functionality of other shell languages, which includes running other pro-
grams, plus the ability to create a graphical user interface. For better or worse, it
is now common to find applications that contain thousands of lines of Tcl script.

This book came about because, while I found it enjoyable and productive to
use Tcl and Tk, there were times when I was frustrated. In addition, working at
Xerox PARC, with many experts in languages and systems, I was compelled to
understand both the strengths and weaknesses of Tcl and Tk. While many of my
colleagues adopted Tcl and Tk for their projects, they were also just as quick to
point out its flaws. In response, I have built up a set of programming techniques
that exploit the power of Tcl and Tk while avoiding troublesome areas. Thus, this
book is meant as a practical guide that will help you get the most out of Tcl and
Tk while avoiding some of the frustrations that I experienced.

xxvi

Created: January 6, 1994 —Preface.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Who Should Read This Book

This books is meant to be useful to the beginner as well as the expert in Tcl.
For the beginner and expert alike I recommend careful study of the first chapter
on Tcl. The programming model of Tcl is different from many programming lan-
guages. The model is based on string substitutions, and it is important that you
understand it properly to avoid trouble later on. The remainder of the book con-
sists of examples that should help you get started using Tcl and Tk productively.

This book assumes that you have some UNIX and X background, although
you should be able to get by even if you are a complete novice. Expertise in UNIX
shell programming will help, but it is not required. Where aspects of X are rele-
vant, I will try to provide some background information.

How To Read This Book

This book is best used in a hands-on manner, at the computer trying out the
examples. The book tries to fill the gap between the terse Tcl and Tk manual
pages, which are complete but lack context and examples, and existing Tcl pro-
grams that may or may not be documented or well written.

I recommend the on-line manual pages for the Tcl and Tk commands. They
provide a detailed reference guide to each command. This book summarises some
of the information from the man pages, but it does not provide the complete
details, which can vary from release to release.

I also recommend the book by Ousterhout, Tcl and the Tk Toolkit, which
provides a broad overview of all aspects of Tcl and Tk. There is some overlap with
Ousterhout’s book, although that book provides a more detailed treatment of C
programming and Tcl.

How To Review This Book

At this point I am primarily concerned with technical issues. Don’t worry
too much about spelling and other copy edits. Concentrate on the examples and
passages that are confusing. You can mark up the manuscript with a pen and
return it to me. Or, send me email at welch@parc.xerox.com with the subject “tcl
book”. This is the last major draft I will post before getting the book ready for
final publication. If you can return your comments by mid to late February it
would be best. Thanks, in advance!

I would like to highlight a few key spots in the manuscripts as “hot tips”. If
you could nominate one or more such paragraphs from each chapter I will add
some sort of icon to the margin to indicate the “reviewer-selected” hot tips!

Thanks

Many thanks to the patient reviewers of early drafts: Don Libes, Dan Swinehart,
Carl Hauser, Pierre David, Jim Thornton, John Maxwell, Hador Shemtov,
Charles Thayer, Ken Pier. [UPDATE] (Mention email reviews, too)

Created: March 15, 1994 —Overview.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Introduction 0

This introduction gives an overview of Tcl and the organization of this book.

Why Tcl? Is it just another shell lan-
guage? How can it help you?

Tcl stands for Tool Command Language. Tcl is really two things: a scripting
language, and an interpreter for that language that is designed to be easy to
embed into your application. Tcl and its associated X windows toolkit, Tk, were
designed and crafted by Prof. John Ousterhout of U.C. Berkeley. These packages
can be picked up off the Internet (see below) and used in your application, even a
commercial one. The interpreter has been ported from UNIX to DOS and Macin-
tosh environments.

As a scripting language, Tcl is similar to other UNIX shell languages such
as the Bourne Shell, the C Shell, the Korn Shell, and Perl. Shell programs let
you execute other programs. They provide enough programmability (variables,
control flow, procedures) that you can build up complex scripts that assemble
existing programs into a new tool tailored for your needs. Shells are wonderful
for automating routine chores.

It is the ability to easily add a Tcl interpreter to your application that sets it
apart from other shells. Tcl fills the role of an extension language that is used to
configure and customize applications. There is no need to invent a command lan-
guage for your new application, or struggle to provide some sort of user-program-
mability for your tool. Instead, by adding a Tcl interpreter you are encouraged to
structure your application as a set of primitive operations that can be composed
by a script to best suit the needs of your users. It also allows programmatic con-
trol over your application by other programs, leading to suites of applications
that work together well.

There are other choices for extension languages that include Scheme, Elisp,
and Python. Your choice between them is partly a matter of taste. Tcl has simple

xxviii

Created: March 15, 1994 —Overview.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

constructs and looks somewhat like C. It is also easy to add new Tcl primitives by
writing C procedures. By now there are a large number of Tcl commands that
have been contributed by the Tcl community. So another reason to choose Tcl is
because of what you can access from Tcl scripts “out-of-the-box”. To me, this is
more important than the details of the language.

The Tcl C library has clean interfaces and is simple to use. The library
implements the basic interpreter and a set of core scripting commands that
implement variables, flow control, file I/O, and procedures (see page 15). In addi-
tion, your application can define new Tcl commands. These commands are associ-
ated with a C or C++ procedure that your application provides. The result is that
applications are split into a set of primitives written in a compiled language and
exported as Tcl commands. A Tcl script is used to compose the primitives into the
overall application. The script layer has access to shell-like capability to run
other programs and access the file system, as well as call directly into the appli-
cation by using the application-specific Tcl commands you define. In addition,
from the C programming level, you can call Tcl scripts, set and query Tcl vari-
ables, and even trace the execution of the Tcl interpreter.

There are many Tcl extensions freely available on the net. Most extensions
include a C library that provides some new functionality, and a Tcl interface to
the library. Examples include socket access for network programming, database
access, telephone control, MIDI controller access, and expect, which adds Tcl
commands to control interactive programs.

The most notable extension is Tk, a toolkit for X windows. Tk defines Tcl
commands that let you create and manipulate user interface widgets. The script-
based approach to UI programming has three benefits. First, development is fast
because of the rapid turnaround - there is no waiting for long compilations. Sec-
ond, the Tcl commands provide a higher-level interface to X than most standard
C library toolkits. Simple interfaces require just a handful of commands to define
them. At the same time, it is possible to refine the interface in order to get every
detail just so. The fast turnaround aids the refinement process. The third advan-
tage is that the user interface is clearly factored out from the rest of your appli-
cation. The developer can concentrate on the implementation of the application
core, and then fairly painlessly work up a user interface. The core set of Tk wid-
gets is often sufficient for all your UI needs. However, it is also possible to write
custom Tk widgets in C, and again there are many contributed Tk widgets avail-
able on the network.

Ftp Archives

The network archive site for Tcl is ftp.aud.alcatel.com. Under the /tcl

directory there are subdirectories for the core Tcl distributions (sprite-mirror,
for historical reasons), contributed extensions (extensions), contributed applica-
tions (code), documentation (docs), and Tcl for non-UNIX platforms (distrib).
Mirror sites for the archive include:

ftp://syd.dit.csiro.au/pub/tk/contrib

ftp://syd.dit.csiro.au/pub/tk/sprite

xxix

Created: March 15, 1994 —Overview.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

ftp://ftp.ibp.fr/pub/tcl/distrib

ftp://ftp.ibp.fr/pub/tcl/contrib

ftp://ftp.ibp.fr/pub/tcl/expect

(ftp.ibp.fr = 132.227.60.2)

ftp://src.doc.ic.ac.uk/packages/tcl/tcl-archive

(src.doc.ic.ac.uk = 146.169.2.10)

ftp://ftp.luth.se/pub/languages/tcl/

http://ftp.luth.se/pub/langugages/tcl/

ftp://ftp.switch.ch/mirror/tcl

(Contact address: switchinfo@switch.ch)

ftp://ftp.sterling.com/programming/languages/tcl

ftp://fpt.sunet.se/pub/lang/tcl

mailto://ftpmail@ftp.sunet.se

(Contact: archive@ftp.sunet.se)

ftp://ftp.cs.columbia.edu/archives/tcl

(Contact: ftp@cs.columbia.edu)

ftp://ftp.uni-paderborn.de/pub/unix/tcl/alcatel

ftp://sunsite.unc.edu/pub/languages/tcl/

ftp://iskut.ucs.ubc.ca/pub/X11/tcl/

ftp://ftp.funet.fi/pub/languages/tcl/

ftp://coma.cs.tu-berlin.de/pub/tcl/

ftp://nic.funet.fi/pub/languages/tcl/

You can verify the location of the Tcl archive by using the archie service to
look for sites that contain the Tcl distributions. Archie is a service that indexes
the contents of anonymous FTP servers. Information about using archie can be
obtained by sending mail to archie@archie.sura.net that contains the message
Help.

World Wide Web

There are a number of Tcl pages on the world-wide-web:
http://www.sco.com/IXI/of_interest/tcl/Tcl.html

http://web.cs.ualberta.ca/~wade/Auto/Tcl.html

Typographic Conventions

The more important examples are set apart with a title and horizontal
rules, while others appear in-line as shown below. The examples use courier for
Tcl and C code. When interesting results are returned by a Tcl command, those
are presented below in oblique courier, as shown below. The => is not part of
the return value.

expr 5 + 8

=> 13

xxx Chap.

Created: March 15, 1994 —Overview.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

The courier font is also used when naming Tcl commands and C proce-
dures within sentences.

The usage of a Tcl command is presented as shown below. The command
name and constant keywords appear in courier. Variable values appear in cou-

rier oblique. Optional arguments are surrounded with question marks.
set varname ?value?

The name of a UNIX program is in italics, e.g. xterm.

Tcl 7.4 and Tk 4.0

This book is up-to-date with Tcl version 7.4 and Tk version 4.0. There are
occasional descriptions of Tk 3.6 features. The last chapter has some notes about
porting scripts written in earlier versions of Tk.

Book Organization

The first chapter of this book describes the fundamental mechanisms that
characterize the Tcl language. This is an important chapter that provides the
basic grounding you will need to use Tcl effectively. Even if you have pro-
grammed in Tcl already, you should review this chapter.

Chapters 2-5 cover the basic Tcl commands in more detail, including string
handling, regular expressions, data types, control flow, procedures and scoping
issues. You can skip these chapters if you already know Tcl.

Chapter 6 discusses eval and more advanced Tcl coding techniques. If you
are running into quoting problems, check out this chapter.

Chapter 7 describes the interface to UNIX and the shell-like capabilities to
run other programs and examine the file system. The I/O commands are
described here.

Chapter 8 describes the facilities provided by the interpreter for introspec-
tion. You can find out about all the internal state of Tcl. Development aids and
debugging are also covered here.

Chapter 9 describes the script library facility. If you do much Tcl program-
ming, you will want to collect useful scripts into a library. This chapter also
describes coding conventions to support larger scale programming efforts.

Chapter10 is an introduction to Tk. It explains the relevant aspects of X
and the basic model provided by the Tk toolkit.

Chapter 11 illustrates Tk programming with a number of short examples.
One of the examples is a browser for the code examples in this book.

Chapter 12 explains geometry management, which is responsible for
arranging widgets on the screen. The chapter is primarily about the packer
geometry manager, although the simpler place geometry manager is also briefly
described.

Chapter 13 covers event binding. A binding registers a Tcl script that is exe-
cuted in response to events from the X window system.

Chapter 14 describes the button and menu widgets. The chapter includes a

xxxi

Created: March 15, 1994 —Overview.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

simple menu package that hides some of details of setting up Tk menus.
Chapter 15 describes several simple Tk widgets: the frame, the toplevel,

the label, the message, the scale, and the scrollbar. These widgets can be
added to your interface with two or three commands. The bell command is also
covered here.

Chapter 16 describes the entry and listbox widgets. These are specialized
text widgets that provide a single line of text input and a scrollable list of text
items, respectively. You are likely to program specialized behavior for these wid-
gets.

Chapter 17 covers the issues related to dialog boxes. This includes input
focus and grabs for modal interactions. It includes a file selection dialog box as
an example.

Chapter 18 describes the text widget. This is a general purpose text widget
with advanced features for text formatting, editting, and embedded images.

Chapter 19 describes the canvas widget that provides a general drawing
interface.

Chapter 20 explains how to use the selection mechanism for cut-and-paste.
Tk supports different selections, including the CLIPBOARD selection used by
OpenLook tools.

Chapter 21 describes the after, fileevent, and send commands. These
commands let you create sophisticated application structures, including cooper-
ating suites of applications.

Chapter 22 is the first of three chapters that review the attributes that are
shared among the Tk widget set. This chapter describes sizing and borders.

Chapter 23 describes colors, images and cursors. It explains how to use the
bitmap and color photo image types. The chapter includes a complete map of the
X cursor font.

Chapter 24 describes fonts and other text-related attributes. The extended
example is a font selection application.

Chapter 25 explains how to interact with the window manager using the wm

command. The chapter describes all the information available through the winfo

command.
Chapter 26 presents a user interface to the binding mechanism. You can

browse and edit bindings for widgets and classes with the interface.
Chapter 27 describes the X resource mechanism and how it relates to the

Tk toolkit. The extended examples show how end users can use resource specifi-
cations to define custom buttons and menus for an application.

Chapter 28 builds upon Chapter 27 to create a user preferences package
and an associated user interface. The preference package links a Tcl variable
used in your application to an X resource specification.

Chapter 29 provides a short introduction to using Tcl at the C programming
level. It gets you started with integrating Tcl into an existing application, and it
provides a survey the the facilities in the Tcl C library.

Chapter 30 introduces C programming with the Tk toolkit. It surveys the
Tk C library.

Chapter 31 is a sample Tk widget implementation in C. A digital clock wid-

xxxii Chap.

Created: March 15, 1994 —Overview.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

get is built.
Chapter 32 is a survey of several interesting Tcl extension packages. The

packages extend Tcl to provide access to more UNIX functionality (TclX), control
over interactive programs (Expect), network programming (Tcl-DP), more Tk
widgets (BLT), and an object system ([intr tcl]). The chapter concludes with a
program that integrates all of these extensions into one supertcl application.

Chapter33 has notes about porting your scripts to Tk 4.0.

On-line examples

The final version of this book will include a floppy disk with copies of the
examples. In the meantime you will be able to find them via FTP.

ftp://parcftp.xerox.com/pub/sprite/welch/examples.tar

1

C H A P T E R

Created: December 15, 1994 —TclIntro.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

 1

Tcl Fundamentals 1

This chapter describes the basic syntax rules for the Tcl scripting language. It
describes the basic mechanisms used by the Tcl interpreter: substitution
and grouping. It touches lightly on the following Tcl commands: puts,
format, set, expr, string, while, incr, and proc.

Tcl is a string-based command lan-
guage. The language has only a few fundamental constructs and relatively little
syntax, which makes it easy to learn. The basic mechanisms are all related to
strings and string substitutions, so it is fairly easy to visualize what is going on
in the interpreter. The model is a little different than some other languages you
may already be familiar with, so it is worth making sure you understand the
basic concepts.

Getting Started

With any Tcl installation there are typically two Tcl shell programs that you
can use: tclsh and wish*. They are simple programs that are not much more
than a read-eval-print loop. The first is a basic Tcl shell that can be used as a
shell much like the C-shell or Bourne shell. wish is a Tcl interpreter that has
been extended with the Tk commands used to create and manipulate X widgets.
If you cannot find the basic Tcl shell, just run wish and ignore for the moment
the empty window it pops up. Both shells print a % prompt and will execute Tcl
commands interactively, printing the result of each top level command.

You may also find it easier to enter the longer examples into a file using

* You may have variations on these programs that reflect different extensions added to the
shells. tcl and wishx are the shells that have Extended Tcl added, for example.

2 Tcl Fundamentals Chap.1

Created: December 15, 1994 —TclIntro.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

your favorite editor. This lets you quickly try out variations and correct mis-
takes. Taking this approach you have two options. The first way is to use two
windows, one running the Tcl interpreter and the other running your editor.
Save your examples to a file and then execute them with the Tcl source com-
mand.

source filename

The second way is to create a stand-alone script much like an sh or csh

script. The trick is in the first line of the file, which names the interpreter for the
rest of the file. Support for this is built into the exec system call in UNIX. Begin
the file with either of the following lines.

#!/usr/local/bin/tcl

or
#!/usr/local/bin/wish

Of course, the actual pathname for these programs may be different on your
system*. Also, on most UNIX systems this pathname is limited to 32 characters,
including the #!. The 32-character limit is a limitation of the UNIX exec system
call. If you get the pathname wrong, you get a confusing “command not found”
error, and if the pathname is too long you may end up with /bin/sh trying to
interpret your script, giving you syntax errors.

If you have Tk version 3.6, its version of wish requires a -f argument to
make it read the contents of a file. The -f switch is ignored in Tk 4.0.

#!/usr/local/bin/wish -f

Tcl Commands

The basic syntax for a Tcl command is:
command arg1 arg2 arg3 ...

The command is either the name of a built-in command or a Tcl procedure.
White space is used to separate the command name and its arguments, and a
newline or semicolon is used to terminate a command.

The arguments to a command are string-valued. Except for the substitu-
tions described below, the Tcl interpreter does no interpretation of the arguments
to a command. This is just the opposite of a language like Lisp in which all iden-
tifiers are bound to a value, and you have to explicitly quote things to get strings.
In Tcl, everything is a string, and you have to explicitly ask for evaluation of
variables and nested commands.

This basic model is extended with just a few pieces of syntax for grouping,
which allows multiple words in one argument, and substitution, which is used
with programming variables and nested command calls. The grouping and sub-
stitutions are the only mechanisms employed by the Tcl interpreter before it
runs a command.

* At Xerox PARC, for example, the pathnames are /import/tcl7/bin/tclsh and /import/tcl7/bin/
wish.

 Hello World 3

Created: December 15, 1994 —TclIntro.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Hello World

Example 1–1 The “Hello, World!” example.

puts stdout {Hello, World!}
=> Hello, World!

In this example the command is puts, which takes two arguments: an I/O
stream identifier and a string. puts writes the string to the I/O stream along
with a trailing newline character. There are two points to emphasize:

• Arguments are interpreted by the command. In the example, stdout is used
to identify the standard output stream. The use of stdout as a name is a
convention employed by puts and the other I/O commands. Also, stderr is
used to identify the standard error output, and stdin is used to identify the
standard input.

• Curly braces are used to group words together into a single argument. The
braces get stripped off by the interpreter and are not part of the argument.
The puts command receives Hello, World! as its second argument.

Variables

The set command is used to assign a value to a variable. It takes two arguments:
the first is the name of the variable and the second is the value. Variable names
can be any length, and case is significant. It is not necessary to declare Tcl vari-
ables before you use them. The interpreter will create the variable when it is
first assigned a value. The value of a variable is obtained later with the dollar-
sign syntax illustrated below.

Example 1–2 Tcl variables.

set var 5
=> 5
set b $var
=> 5

The second set command above assigns to variable b the value of variable var.
The use of the dollar sign is our first example of substitution. You can imagine
that the second set command gets rewritten by substituting the value of var for
$var to obtain a new command.

set b 5

The actual implementation is a little different, but not much.

4 Tcl Fundamentals Chap.1

Created: December 15, 1994 —TclIntro.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Command Substitution

The second form of substitution is command substitution. A nested command is
delimited by square brackets, [and]. The Tcl interpreter takes everything
between the brackets and evaluates it as a command. It rewrites the outer com-
mand by replacing the square brackets and everything between them with the
result of the nested command. This is similar to the use of backquotes in other
shells, except that it has the additional advantage of supporting arbitrary nest-
ing of other commands.

Example 1–3 Command substitution.

set len [string length foobar]
=> 6

In the example, the nested command is:
string length foobar

The string command performs various operations on strings Here we are
asking for the length of the string foobar.

Command substitution causes the outer command to be rewritten as if it
were:

set len 6

If there are several cases of command substitution within a single com-
mand, the interpreter processes them from left to right. As each right bracket is
encountered the command it delimits is evaluated.

Note that the spaces in the nested command are ignored for the purposes of
grouping the arguments to set. In addition, if the result of the nested command
contains any spaces or other special characters, they are not interpreted. These
issues will be illustrated in more detail later in this chapter. The basic rule of
thumb is that the interpreter treats everything from the left bracket to the
matching right bracket as one lump of characters, and it replaces that lump with
the result of the nested command.

Math Expressions

The expr command is used to evaluate math expressions. The Tcl interpreter
itself has no particular smarts about math expressions. It treats expr just like
any other command, and it leaves the expression parsing up to the expr imple-
mentation. The math syntax supported by expr is much like the C expression
syntax, and a more complete summary of the expression syntax is given in the
reference section at the end of this chapter.

The expr command primarily deals with integer, floating point, and boolean
values. Logical operations return either 0 (false) or 1 (true). Integer values are
promoted to floating point values as needed. Scientific notation for floating point
numbers is supported. There is some support for string comparisons by expr, but

 Math Expressions 5

Created: December 15, 1994 —TclIntro.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

the string compare command described in Chapter 2 is more reliable because
expr may do conversions on strings that look like numbers.

Example 1–4 Simple arithmetic.

expr 7.2 / 3
=> 2.4

The implementation of expr takes all its arguments, concatenates them
back into a single string, and then parses the string as a math expression. After
expr computes the answer, the answer is formatted into a string and returned.

Example 1–5 Nested commands.

set len [expr [string length foobar] + 7]
=> 13

You can include variable references and nested commands in math expres-
sions. The example uses expr to add 7 to the length of the string foobar. As a
result of the inner-most command substitution, the expr command sees 6 + 7,
and len gets the value 13.

Example 1–6 Built-in math functions.

set pi [expr 2*asin(1.0)]
=> 3.14159

The expression evaluator supports a number of built-in math functions. A com-
plete listing is given on page 15. The example computes the value of pi.

By default, 6 significant digits are used when returning a floating point
value. This can be changed by setting the tcl_precision variable to the number
of significant digits desired. 17 digits of precision is enough to ensure that no
information is lost when converting back and forth between a string and an
IEEE double precision number.

Example 1–7 Controlling precision with tcl_precision.

expr 1 / 3
=> 0
expr 1 / 3.0
=> 0.333333
set tcl_precision 17
=> 17
expr 1 / 3.0
=> 0.33333333333333331

6 Tcl Fundamentals Chap.1

Created: December 15, 1994 —TclIntro.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Backslash Substitution

The final type of substitution done by the Tcl interpreter is backslash substitu-
tion. This is used to quote characters that have special meaning to the inter-
preter. For example, you can specify a literal dollar sign, brace, or bracket by
quoting it with a backslash. You can also specify characters that are hard to type
directly by giving their octal or hexadecimal value.

As a rule, however, if you find yourself using lots of backslashes, there is
probably a simpler way to achieve the effect you are striving for. For starters,
you can group things with curly braces to turn off all interpretation of special
characters. However, there are cases where backslashes are required.

Example 1–8 Quoting special characters with backslash.

set dollar \$
=> $
set x $dollar
=> $

In the example, the value of dollar does not affect the substitution done in the
assignment to x. After the example, the value of x and dollar is the single char-
acter, $. This is a crucial property of the Tcl interpreter: only a single round of
interpretation is done. You don’t have to worry about variables with funny val-
ues.

You can also specify characters with their hex or octal value:
set escape \0x1b

set escape \033

The value of variable escape is the ASCII ESC character, which has char-
acter code 27. The table on page 14 summarizes backslash substitutions.

Another common use of backslashes is to continue long commands on multi-
ple lines. A backslash as the last character in a line is converted into a space. In
addition, all the white space at the beginning of the next line is also absorbed by
this substitution. Often line continuations can be avoided by strategic placement
of opening curly braces as will be shown in the proc example below. However, the
case where this does not work is with nested commands delimited by square
brackets. Inside square brackets, the rule that newline and semi-colon are com-
mand terminators still applies. The backslash in the next example is required,
otherwise the expr command would get terminated too soon, and the value of
[string length $two] would be used as the name of a command!*

Example 1–9 Continuing long lines with backslashes.

set totalLength [expr [string length $one] + \

* The reasoning for this feature of the parse is consistency. A newline terminates a command
unless an argument is being grouped. This holds for both top level and nested commands. The
square brackets used for command substitution do not provide grouping. This allows the
nested commands to be embedded as part of an argument.

 Double Quotes 7

Created: December 15, 1994 —TclIntro.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

[string length $two]]

Double Quotes

Double quotes, like braces, are used to group words together. The difference
between double quotes and curly braces is that quotes allow substitutions to
occur in the group, while curly braces prevent substitutions.

Example 1–10 Grouping with double quotes allows substitutions.

set s Hello
puts stdout "The length of $s is [string length $s]."
=> The length of Hello is 5.
puts stdout {The length of $s is [string length $s].}
=> The length of $s is [string length $s].

In the first command of the example, the Tcl interpreter does variable and
command substitution on the second argument to puts. In the second command,
substitutions are prevented so the string is printed as is.

In practice, grouping with curly braces is used when substitutions on the
argument need to be delayed until a later time (or never done at all). Examples
include control flow statements and procedure declarations. Double quotes are
useful in simple cases like the puts command above.

Another common use of quotes is with the format command that is similar
to the C printf function. The first argument to format is a format specifier that
often includes special characters like newlines, tabs, and spaces. The only way to
effectively group these into a single argument to format is with quotes. The
quotes allow the Tcl interpreter to do the backslash substitutions of \n and \t
while ignoring spaces.

puts [format "Item: %s\t%5.3f" $name $value]

Here format is used to align a name and a value with a tab. The %s and
%5.3f indicate how the remaining arguments to format are to be formatted. Note
that the trailing \n usually found in a C printf call is not needed because puts

provides one for us. More details about the format command can be found in
Chapter 2.

Procedures

Tcl uses the proc command to define procedures. The basic syntax to define a
procedure is:

proc name arglist body

The first argument is the name of the procedure being defined. The name is
case sensitive, and in fact it can contain any characters. Procedure names and
variable names do not conflict with each other. The second argument is a list of

8 Tcl Fundamentals Chap.1

Created: December 15, 1994 —TclIntro.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

parameters to the procedure. The third argument is a command, or more typi-
cally a group of commands that form the procedure body. Once defined, a Tcl pro-
cedure is used just like any of the built-in commands.

Example 1–11 Defining a procedure.

proc diag {a b} {
set c [expr sqrt($a * $a + $b * $b)]
return $c

}

The diag procedure defined in the example computes the length of the diag-
onal side of a right triangle given the lengths of the other two sides. The sqrt

function is one of many math functions supported by the expr command. The
variable c is local to the procedure; it is only defined during execution of diag.
Variable scope is discussed further in Chapter 5. Use of this variable is not really
necessary in this example. The procedure body could also be written as:

return [expr sqrt($a * $a + $b * $b)]

The return command is optional in this example because the Tcl inter-
preter will return the value of the last command in the body as the value of the
procedure. So, the procedure body could be reduced to:

expr sqrt($a * $a + $b * $b)

Note the stylized use of curly braces in this example. Braces group the
arguments a and b into a single argument list to form the second argument to
the proc command. The curly brace at the end of the first line starts the third
argument. In this case, the Tcl interpreter sees the opening left brace, causing it
to ignore newline characters and gobble up text until a matching right brace is
found. (Double quotes have the same property. They group characters, including
newlines, until another double quote is found.) The result of the grouping is that
the third argument to proc is a sequence of commands. When they are evaluated
later, the embedded newlines will terminate each command. The other crucial
effect of the curly braces around the procedure body is to delay any substitutions
in the body until the time the procedure is called. For example, the variables a, b
and c are not defined until the procedure is called, so we do not want to do vari-
able substitution at the time diag is defined.

The proc command supports additional features such as having variable
numbers of arguments and default values for arguments. These are described in
detail in Chapter PROCS.

A While Loop Example

Let’s reinforce what we’ve learned so far with a longer example.

 A While Loop Example 9

Created: December 15, 1994 —TclIntro.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Example 1–12 A loop that multiplies the numbers from 1 to 10.

set i 1 ; set product 1
while {$i <= 10} {

set product [expr $product * $i]
incr i

}
set product
=> 3628800

The semi-colon is used on the first line to remind you that it is a command
terminator just like the newline character.

The example uses the while command to compute the product of a series of
numbers. The first argument to while is a boolean expression, and its second
argument is a sequence of commands, or command body, to execute. The while

command will evaluate the boolean expression, and then execute the body if the
expression is true (non-zero). The while command will continue to test the
expression and then evaluate the command body until the expression is false
(zero).

The same math expression evaluator used by the expr command is used by
while to evaluate the boolean expression. There is no need to explicitly use the
expr command in the first argument, even if you have a much more complex
expression.

The incr command is used to increment the value of the loop variable i.
The incr command can take an additional argument, a positive or negative inte-
ger by which to change the value of the variable. This is a handy command that
saves us from the longer command:

set i [expr $i + 1]

Curly braces are used to group the two arguments to while. The loop body
is grouped just like we grouped the procedure body earlier. The use of braces
around the boolean expression is also crucial because it delays variable substitu-
tion until the while command implementation tests the expression. The follow-
ing example is an infinite loop:

set i 1 ; while $i<=10 {incr i}

The loop will run indefinitely. The bug is that the Tcl interpreter will substi-
tute for $i before while is called, so while gets a constant expression 1<=10 that
will always be true. You can avoid these kinds of errors by adopting a consistent
coding style that always groups expressions and command bodies with curly
braces.

Expressions can include variable and command substitutions and still be
grouped with curly braces because the expression parser does its own round of
substitutions.* This is needed in the example if it is to obtain the current value of

* This means that an argument to expr can be subject to two rounds of substitution: one by the
Tcl interpreter before expr is called, and a second by the implementation of expr itself. Ordi-
narily this is not a problem because math values do not contain the characters that are special
to the Tcl interpreter. The fact that expr does substitutions on its argument internally means
that it is OK to group its argument with curly braces.

10 Tcl Fundamentals Chap.1

Created: December 15, 1994 —TclIntro.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

$i in the boolean expression.
The last command in the example uses set with a single argument. When

used in this way the set command returns the current value of the named vari-
able.

Grouping And Command Substitution

The following example demonstrates how nested commands interact with group-
ing arguments to the main command. A nested command is treated as one lump
of characters, regardless of its internal structure, so a nested command is always
included with the surrounding group of characters when collecting arguments
for the main command.

Example 1–13 Embedded command and variable substitution.

set x 7 ; set y 9
puts stdout $x+$y=[expr $x + $y]
=> 7+9=16

In the example the second argument to puts is:
$x+$y=[expr $x + $y]

The white space inside the nested command is ignored for the purposes of
grouping the argument. The Tcl interpreter makes a single pass through the
argument doing variable and command substitution. By the time it encounters
the left bracket, it has already done some variable substitutions to obtain:

7+9=

At that point it calls itself recursively to evaluate the nested command.
Again, the $x and $y are substituted before calling expr. Finally, the result of
expr is substituted for everything from the left bracket to the right bracket. The
puts command gets the following as its second argument:

7+9=16

The main point is that the grouping decision about puts’s second argument
is made before the command substitution is done. Even if the result of the nested
command contained spaces or other special characters, they would be ignored for
the purposes of grouping the arguments to the outer command. If you wanted the
output to look nicer, with spaces around the + and =, then you would use double
quotes to explicitly group the argument to puts:

puts stdout "$x + $y = [expr $x + $y]"

In contrast, it is never necessary to explicitly group a nested command with
double quotes if it makes up the whole argument. The following is a redundant
use of double quotes:

puts stdout "[expr $x + $y]"

In general, you can place a bracketed command anywhere. The following
computes a command name:

 More About Variable Substitution 11

Created: December 15, 1994 —TclIntro.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

[findCommand $x] arg arg

The following concatenates the results of two commands because there is no
whitespace between the] and [.

set x [cmd1 arg][cmd2 arg]

More About Variable Substitution

Grouping and variable substitution interact in the same way that grouping and
command substitution do. Spaces or special characters in variable values do not
affect grouping decisions because these decisions are made before the variable
values are substituted. The rule of thumb is grouping before substitution.

Example 1–14 Embedded variable references

set foo filename
set object $foo.o
=> filename.o
set a AAA
set b abc${a}def
=> abcAAAdef
set .o yuk!
set x ${.o}y
=> yuk!y

The Tcl interpreter makes some assumptions about variable names that
make it easy to embed their values into other strings. By default, it assumes that
variable names only contain letters, digits, and the underscore. The construct
$foo.o represents a concatenation of the value of foo and the literal “.o”.

If the variable reference is not delimited by punctuation or whitespace,
then you can use curly braces to explicitly delimit the variable name. This con-
struct can also be used to reference variables with funny characters in their
name (although you probably do not want variables named like that).

Substitution And Grouping Summary

The following rules summarize the fundamental mechanisms of grouping and
substitution that are performed by the Tcl interpreter before it invokes a com-
mand:

1. A dollar sign, $, causes variable substitution. Variables names can be any
length, and case is significant. If variable references are embedded into
other strings, they can be distinguished with ${varname} syntax.

2. Square brackets, [], cause command substitution. Everything between
the brackets is treated as a command, and everything including the brack-
ets is replaced with the result of the command. Nesting is allowed.

12 Tcl Fundamentals Chap.1

Created: December 15, 1994 —TclIntro.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

3. The backslash character, \, is used to quote special characters. You can
think of this as another form of substitution in which the backslash and the
next character(s) are replaced with a new character.

4. Substitutions can occur anywhere (unless prevented by curly brace group-
ing). A substitution can occur in the middle of a word. That is, part of the
word can be a constant string, and other parts of it can be the result of sub-
stitutions. Even the command name can be affected by substitutions.

5. Grouping with curly braces, { }, prevents substitutions. Braces nest. The
interpreter includes all characters between the matching left and right
brace in the group, including newlines, semi-colons, and nested braces. The
enclosing (i.e., outer-most) braces are not included in the group.

6. Grouping with double-quotes, " ", allows substitutions. The interpreter
groups everything until another double-quote is found, including newlines
and semi-colons. The enclosing quotes are not included in the group of char-
acters. A double-quote character can be included in the group by quoting it
with a backslash.

7. Grouping decisions are made before substitutions are performed. This
means that the values of variables or command results do not affect group-
ing.

8. A single round of substitutions is performed before command invocation.
That is, the result of a substitution is not interpreted a second time. This
rule is important if you have a variable value or a command result that con-
tains special characters such as spaces, dollar-signs, square brackets or
braces. Because only a single round of substitution is done, you don’t have
to worry about special characters in values causing extra substitutions.

Fine Points

Here are some additional tips.

1. A well-formed Tcl list has whitespace, a left curly brace, or a left square
bracket before each left curly brace. After a right curly brace you can have
either another right brace, a right square bracket, or whitespace. This is
because white space is used as the separator, while the braces only provide
grouping. One common error is to forget a space between the right curly
brace that ends one argument and the left curly brace that begins the next
one.

2. A double-quote is only interesting when it comes after white space. That is,
the interpreter only uses it for grouping in this case. As with braces, white
space, a right bracket, or a right curly brace are the only things allowed
after the closing quote.

3. Spaces are not required around the square brackets used for command sub-

 Comments 13

Created: December 15, 1994 —TclIntro.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

stitution. For the purposes of grouping, the interpreter considers every-
thing between the square brackets as part of the same group.

4. When grouping with braces or double quotes, newlines and semi-colons are
ignored for the purposes of command termination. They get included in the
group of characters just like all the others.

5. During command substitution, newlines and semi-colons are significant as
command terminators. If you have a long command that is nested in square
brackets, put a backslash before the newline if you want to continue the
command on another line.

Comments

Tcl uses the # character for comments. Unlike many languages, the # must occur
at the beginning of a command. (Much like REM in Basic.) An easy trick to append
a comment to the end of a command is to proceed the # with a semicolon in order
to terminate the previous command.

Here are some parameters

set rate 7.0;# The interest rate

set months 60;# The loan term

One subtle effect to watch out for is that a backslash effectively continues a
comment line onto the next line of the script. In addition, a semi-colon inside a
comment is not significant. Only a newline terminates comments.

Here is the start of a Tcl comment \

and some more of it ; still in the comment

Command Line Arguments

The Tcl shells pass the command line arguments to the script as the value of the
argv variable. argv is a list, so you use the lindex command described in Chap-
ter 3 to extract items from the argument list.

set first [lindex $argv 0]

set second [lindex $argv 1]

Table 1–5 on page 18 gives the complete set of pre-defined variables. You
can also use the info vars command to find out what is defined.

info vars

=> tcl_interactive argv0 argv auto_path argc env

14 Tcl Fundamentals Chap.1

Created: December 15, 1994 —TclIntro.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Reference

Backslash Sequences

Arithmetic Operators

Table 1–1 Backslash sequences.

\a Bell. (0x7)

\b Backspace. (0x8)

\f Form feed. (0xc)

\n Newline. (0xa)

\r Carriage return. (0xd)

\t Tab (0x9)

\v Vertical tab. (0xb)

\<newline> Replace newline and all leading whitespace on the following line
with a single space.

\\ Backslash. (‘\’)

\ooo Octal specification of character code. 1, 2, or 3 digits.

\xhh Hexadecimal specification of character code. 1 or 2 digits.

\c Replaced with literal c if c is not one of the cases listed above. In
particular, \$, \", \{ and \[are used to obtain these characters.

Table 1–2 Arithmetic Operators from highest to lowest precedence.

- ~ ! Unary minus, bitwise NOT, logical NOT.

* / % Multiply, divide, remainder.

+ - Add, subtract.

<< >> Left shift, right shift.

< > <= >= Comparison: less, greater, less or equal, greater or equal.

== != Equal, not equal.

& Bitwise AND.

^ Bitwise NOT.

| Bitwise OR.

&& Logical AND.

|| Logical OR.

x?y:z If x then y else z.

 Reference 15

Created: December 15, 1994 —TclIntro.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Built-in Math Functions

Core Tcl Commands

The pages given in Table 1–4 are the primary reference for the command.

Table 1–3 Built-in Math functions

acos(x) Arc-cosine of x.

asin(x) Arc-sine of x.

atan(x) Arc-tangent of x.

atan2(y,x) Rectangular (x,y) to polar(r,th). atan2 gives th

ceil(x) Least integral value greater than or equal to x.

cos(x) Cosine of x.

cosh(x) Hyperbolic cosine of x.

exp(x) Exponential, ex

floor(x) Greatest integral value less than or equal to x.

fmod(x,y) Floating point remainder of x/y.

hypot(x,y) Returns sqrt(x*x + y*y). r part of polar coordinates.

log(x) Natural log of x.

log10(x) Log base 10 of x.

pow(x,y) x to the y power, xy

sin(x) Sine of x.

sinh(x) Hyperbolic sine of x.

sqrt(x) Square root of x.

tan(x) Tangent of x.

tanh(x) Hyperbolic tangent of x.

abs(x) Absolute value of x.

double(x) Promote x to floating point.

int(x) Truncate x to an integer.

round(x) Round x to an integer.

Table 1–4 Built-in Tcl Commands

Command Pg. Description

append 21 Append arguments to a variable’s value. No spaces added.

16 Tcl Fundamentals Chap.1

Created: December 15, 1994 —TclIntro.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

array 37 Query array state and search through elements.

break 46 Premature loop exit.

catch 46 Trap errors.

cd 74 Change working directory.

close 74 Close an open I/O stream.

concat 32 concatenate arguments with spaces between. Splices lists
together.

continue 46 Continue with next loop iteration.

error 48 Raise an error.

eof 70 Check for end-of-file.

eval 59 concatenate arguments and then evaluate them as a com-
mand.

exec 65 Fork and execute a UNIX program.

exit 75 Terminate the process.

expr 4 Evaluate a math expression.

file 67 Query the file system.

flush 70 Flush output from an I/O stream’s internal buffers.

for 46 Loop construct similar to C for statement.

foreach 44 Loop construct over a list of values.

format 21 Format a string similar to C sprintf.

gets 72 Read a line of input from an I/O stream.

glob 74 Expand a pattern to matching file names.

global 53 Declare global variables.

history 81 Command-line history control.

if 42 Conditional command. Allows else and elseif clauses.

incr 8 Increment a variable by an integer amount.

info 77 Query the state of the Tcl interpreter.

join 35 concatenate list elements with a given separator string.

lappend 32 Add elements to the end of a list.

lindex 33 Fetch an element of a list.

linsert 34 Insert elements into a list.

list 32 Create a list out of the arguments.

Table 1–4 Built-in Tcl Commands

 Reference 17

Created: December 15, 1994 —TclIntro.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

llength 33 Return the number of elements in a list.

lrange 33 Return a range of list elements.

lreplace 34 Replace elements of a list

lsearch 34 Search for an element of a list that matches a pattern.

lsort 35 Sort a list.

open 70 Open a file or process pipeline for I/O.

pid 75 Return the process ID.

proc 51 Define a Tcl procedure.

puts 72 Output a string to an I/O stream.

pwd 74 Return the current working directory.

read 73 Read blocks of characters from an I/O stream.

regexp 26 Regular expression matching.

regsub 28 Substitutions based on regular expressions.

rename 52 Change the name of a Tcl command.

return 49 Return a value from a procedure.

scan 23 Similar to the C sscanf function.

seek 73 Set the seek offset of an I/O stream.

set 3 Assign a value to a variable.

source 1 Evaluate the Tcl commands in a file.

split 35 Chop a string up into list elements.

string 19 Operate on strings.

switch 43 Multi-way branch.

tell 73 Return the current seek offset of an I/O stream.

time 87 Measure the execution time of a command.

trace 39 Monitor variable assignments.

unknown 89 Unknown command handler.

unset 30 Undefine variables.

uplevel 57 Execute a command in a different scope.

upvar 55 Reference a variable in a different scope.

while 45 A loop construct.

Table 1–4 Built-in Tcl Commands

18 Tcl Fundamentals Chap.1

Created: December 15, 1994 —TclIntro.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Predefined Variables

Note that the tcl_prompt1 variable is not a string to print. Its value is
invoked as a command that prints the string. This lets you be arbitrarily fancy in
how you generate prompts, but it makes the simple case harder. Try this:

set tcl_prompt1 {puts -nonewline "yes master> "}

Table 1–5 Variables defined by tclsh.

argc The number of command line arguments

argv A list of the command line arguments

argv0 The name of the script being executed. If being used interac-
tively, argv0 is the name of the shell program.

env An array of the environment variables. See page 38.

tcl_interactive True (one) if the tclsh is prompting for commands.

tcl_prompt1 If defined, this is a command that outputs the prompt. .

tcl_prompt2 If defined, this is a command that outputs the prompt if the
current command is not yet complete.

auto_path The search path for script library directories. See page 90.

auto_index A map from command name to a Tcl command that defines it.

auto_noload If set, the library facility is disabled.

auto_noexec If set, the auto execute facility is disabled.

geometry (wish only). The value of the -geometry argument.

19

C H A P T E R

Created: December 15, 1994 —Strings.fm3—Copyright Prentice Hall—DRAFT: 1/11/95

 2

Strings and Pattern Matching 2

This chapter describes string manipulation and pattern matching. Tcl
commands described: string, append, format, regexp,
regsub, glob.

Strings are the basic data item in Tcl, so it
should not be surprising that there are a large number of commands to manipu-
late strings. A closely related topic is pattern matching, in which string compari-
sons are made more powerful by matching a string against a pattern. Tcl
supports two styles of pattern matching. Glob matching is a simple matching
similar to that used in many shell languages. Regular expression matching is
more complex and also more powerful.

The string Command

The general syntax of the Tcl string command is:
string operation stringvalue otherargs

That is, string’s first argument determines what it does, its second argu-
ment is a string, and there may be additional arguments depending on the oper-
ation.

Some of the string commands involve character indices into the string.
These count from zero. The end keyword refers to the last character in a string.

string range abcd 1 end

=> bcd

The following table summarizes the string command. Most of these com-
mands are closely related to the string functions in the standard C library.

20 Strings and Pattern Matching Chap.2

Created: December 15, 1994 —Strings.fm3—Copyright Prentice Hall—DRAFT: 1/11/95

Strings And Expresssions

Strings can be compared with expr using the comparison operators. How-
ever, there are a number of subtle issues that can cause problems. First, you
must quote the string value so the expression parser can identify it as a string
type. Then you must quote the expression with curly braces to preserve the dou-
ble quotes from being stripped off by the main interpreter.

if {$x == “foo”}

The killer, however, is that in spite of the quotes the expression evaluator
first converts things to numbers if possible, and then converts them back if it
detects a case of string comparison. This can lead to unexpected conversions
between strings that look like hex or octal numbers.

if {“0xa” == “10”} { puts stdout ack! }

=> ack!

As a result, the only bombproof way to compare strings is with the string

Table 2–1 The string command

string compare str1 str2 Compare strings lexicographically. Returns 0 if
equal, -1 if str1 sorts before str2, else 1.

string first str1 str2 Return the index in str2 of the first occurrence of
str1, or -1 if str1 is not found.

string index string index Return the character at the specified index.

string last str1 str2 Return the index in str2 of the last occurrence of
str1, or -1 if str1 is not found.

string length string Return the number of characters in string.

string match pattern str Return 1 if str matches the pattern, else 0.
Glob-style matching is used. See page 24

string range str i j Return the range of characters in str from i to j.

string tolower string Return string in lower case.

string toupper string Return string in upper case.

string trim string
?chars?

Trim the characters in chars from both ends of
string. chars defaults to whitespace.

string trimleft string
?chars?

Trim the characters in chars from the beginning of
string. chars defaults to whitespace.

string trimright string
?chars?

Trim the characters in chars from the end of
string. chars defaults to whitespace.

string wordend str ix Return the index in str of the character after the
word containing the character at index ix.

string wordstart str ix Return the index in str of the first character in
the word containing the character at index ix.

 The append Command 21

Created: December 15, 1994 —Strings.fm3—Copyright Prentice Hall—DRAFT: 1/11/95

compare command. This command also operates quite a bit faster because the
unnecessary conversions are eliminated. Like the C library strcmp function,
string compare returns 0 if the strings are equal, -1 if the first string is lexico-
graphically less than the second, or 1 if the first string is greater than the sec-
ond.

Example 2–1 Comparing strings.

if {[string compare $s1 $s2] == 0} {
strings are equal

}

The append Command

The append command takes a variable name as its first argument, and then it
concatenates its remaining arguments onto the current value of the named vari-
able. The variable will be created if it did not already exist.

set xyzzy z

append xyzzy a b c

=> zabc

The command provides an efficient way to add things to the end of a string.
It works by exploiting the memory allocation scheme used internally by Tcl that
allocates extra space to allow for string growth.

The format Command

The format command is similar to the C printf function. It formats a string
according to a format specification:

format spec value1 value2 ...

The spec argument includes literals and keywords. The literals are placed i
n the result as is, while each keyword indicates how to format the corresponding
argument. The keywords are introduced with a percent (%) that is followed by
zero or more modifiers and terminates with a conversion specifier. Example key-
words include %f for floating point, %d for integer and %s for string format. Use
%% to obtain a single percent character.

The following is a brief sketch of the keyword specification syntax. The com-
plete details can be found in the on-line manual page about format. The most
general keyword specification for each argument contains up to 6 parts: a posi-
tion specifier, flags, field width, precision, word length, and conversion character.

The examples in this section use double quotes around the format specifica-
tion. This is a habit because often the format contains white space, so grouping is
required, as well as backslash substitutions like \t or \n, and the quotes allow
substitution of these special characters.

22 Strings and Pattern Matching Chap.2

Created: December 15, 1994 —Strings.fm3—Copyright Prentice Hall—DRAFT: 1/11/95

The conversion characters are listed in the table below.

A position specifier is i$, which means take the value from argument i as
opposed to the normally corresponding argument. The position counts from 1. If
you group the format specification with double-quotes, you will need to quote the
$ with a backslash.

set lang 2

format “%${lang}\$s” one un uno

=> un

The position is useful for picking a string from a set, such as this simple
language-specific example. The position is also useful if the same value is
repeated in the formatted string. If a position is specified for one format key-
word, it must be used for all of them.

The flags in a format are used to specify padding and justification. The for-
mat flag characters are summarized in the table below.

Table 2–2 Format conversions

d Signed integer

u Unsigned integer

i Signed integer. The argument may be in hex (0x) or octal (0) format.

o Unsigned octal.

x or X Unsigned hexadecimal. ‘x’ gives lower-case results.

c Map from an integer to the character it represents in ASCII.

s A string.

f Floating point number in the format a.b

e or E Floating point number in scientific notation, a.bE+-c

g or G Floating point number in either %f or %e format, whichever is
shorter.

Table 2–3 format flags

- Left justify the field.

+ Always include a sign, either + or -.

space Proceed a number with a space, unless the number has a leading
sign. Useful for packing numbers close together.

0 Pad with zeros.

Leading 0 for octal. Leading 0x for hex. Always include a decimal
point in floating point. Do not remove trailing zeros (%g).

 The scan Command 23

Created: December 15, 1994 —Strings.fm3—Copyright Prentice Hall—DRAFT: 1/11/95

format “%#x” 20

=> 0x14

format “%#08x” 10

=> 0x0000000a

After the flags you can specify a minimum field width value. The value is
padded to this width if needed, normally with spaces, optionally with zeros if the
0 flag is used.

format “%-20s %3d” Label 2

=> Label2

You can compute a field width and pass it to format as one of the arguments
by using * as the field width specifier. In this case the next argument is used as
the field width instead of the value, and the argument after that is the value that
gets formatted.

set maxl 8

format “%-*s = %s” $maxl Key Value

=> KeyValue

The precision comes next, and it is specified with a period and a number.
For %f and %e it indicates how many digits come after the decimal point. For %g it
indicates the total number of significant digits used. For %d and %x it indicates
how many digits will be printed, padding with zeros if necessary.

format “%6.2f %6.2d” 1 1

=> 1.00 01

 (The storage length part comes last, but it is rarely useful because Tcl
maintains all floating point values in double-precision, and all integers as
words.)

If you want to preserve enough precision in a floating point number so that
scanning in the number later will result in the same thing, use %17g. (This magic
number applies to double-precision IEEE format.)

The scan Command

The scan command is like the C sscanf procedure. It parses a string according to
a format specification and assigns values to variables. It returns the number of
successful conversions it made. The general form of the command is given below:

scan string format var ?var? ?var? ...

The format for scan is nearly the same as in the format command. There is
no %u scan format. The %c scan format converts one character to its binary value.
Unlike the C sscanf %c, it does not allow a field width.

The scan format includes a set notation. Use square brackets to delimit a
set of characters. The set matches one or more characters that are copied into the
variable. A dash is used to specify a range. The following scans a field of all low-
ercase letters.

scan abcABC {%[a-z]} result

24 Strings and Pattern Matching Chap.2

Created: December 15, 1994 —Strings.fm3—Copyright Prentice Hall—DRAFT: 1/11/95

=> 1

set result

=> abc

If the first character in the set is a right square bracket, then it is consid-
ered part of the set. If the first character in the set is ^, then characters not in the
set match. Again, put a right square bracket right after the ^ to include it in the
set. Nothing special is required to include a left square bracket in the set. As in
the example shown above, you’ll want to protect the format with braces, or use
backslashes, because square brackets are special to the Tcl parser.

String Matching

The string match command implements glob-style pattern matching that is
modeled after the filename pattern matching done by various UNIX shells.
There are just 3 constructs used in glob patterns: match any number of any char-
acters (*), match any single character (?), or match one of a set of characters
([abc]).* Any other characters in a pattern are taken as literals that must match
the input exactly. To match all strings that begin with a.

string match a* alpha

=> 1

To match all two-letter strings:
string match ?? XY

=> 1

To match all strings that begin with either a or b:
string match {[ab]*} cello

=> 0

Be careful! Square brackets are also special to the Tcl interpreter, so you’ll
need to wrap the pattern up in curly braces to prevent it from being interpreted
as a nested command.

Another approach is to put the pattern into a variable:
set pat {[ab]*x}

string match $pat box

=> 1

The pattern specifies a range of characters with the syntax [x-y]. For
example, [a-z] represents the set of all lower-case letters, and [0-9] represents
all the digits. This range is applied to the ASCII collating sequence.

Finally, if you need to include a literal *, ?, or bracket in your pattern, pref-
ace it with a backslash.

string match {*\?} what?

=> 1

* The string match function does not support alternation in a pattern, such as the
{a,b,c} syntax of the C-shell. The glob command, however, does support this form.

 Regular Expressions 25

Created: December 15, 1994 —Strings.fm3—Copyright Prentice Hall—DRAFT: 1/11/95

In this case the pattern is quoted with curly braces because the Tcl inter-
preter is also doing backslash substitutions. Without the braces, you would have
to do the following:

string match *\\? ?

=> 1

Regular Expressions

The most powerful way to express patterns is with regular expressions. It has a
general pattern specification syntax, which includes the ability to extract sub-
strings from the matching string. This proves quite useful in picking apart data.

A pattern is a sequence of a literal character, a matching character, a repe-
tition clause, an alternation clause, or a subpattern grouped with parentheses.
The following table summarizes the syntax of regular expressions:

A number of examples of regular expressions are given below. Any pattern
than contains brackets, dollar sign, or spaces must be handled specially when
used in a Tcl command. Typically I use curly braces around patterns, although
the examples below do not quote anything.

The general wild-card character is the period, “.”. It matches any single
character. The following pattern matches all two-character strings.

..

The matching character can be restricted to a set of characters with the
[xyz] syntax. Any of the characters between the two brackets is allowed to
match. For example, the following matches either Hello or hello:

[Hh]ello

Table 2–4 Regular Expression Syntax

. Matches any character

* Matches zero or more.

+ Matches one or more.

? Matches zero or one.

() Groups a sub-pattern. The repetition and alternation operators apply to
the whole proceeding sub-pattern.

| Alternation.

[] Delimit a set of characters. Ranges are specified as [x-y]. If the first char-
acter in the set is ^, then there is a match if the remaining characters in
the set are not present.

^ Anchor the pattern to the beginning of the string. Only when first.

$ Anchor the pattern to the end of the string. Only when last.

26 Strings and Pattern Matching Chap.2

Created: December 15, 1994 —Strings.fm3—Copyright Prentice Hall—DRAFT: 1/11/95

The matching set can be specified as a range over the ASCII character set
with the [x-y] syntax, which is the same as with the glob mechanism. However,
there is also the ability to specify the complement of a set. That is, the matching
character can be anything except what is in the set. This is achieved with the
[^xyz] syntax. Ranges and complements can be combined. The following
matches anything except the upper and lowercase letters:

[^a-zA-Z]

Repetition is specified with *, for zero-or-more, +, for one-or-more, and ?, for
zero-or-one. These operators apply to the previous thing, which is either a
matching character, which could involve the set syntax, or a subpattern grouped
with parentheses. The following matches a string that contains b followed by
zero or more a’s:

ba*

While the following matches a string that has one or more sequences of ab:
(ab)+

The pattern that matches anything is:
.*

Alternation is specified with “|”. Another way to match either Hello or
hello would be with:

hello|Hello

In general, a pattern does not have to match the whole string. If you need
more control than this, then you can anchor the pattern to the beginning of the
string by starting the pattern with ^, or to the end of the string by ending the
pattern with $. You can force the pattern to match the whole string by using
both. All strings that begin with spaces or tabs are matched with the following.

^(|\t)+

Finally, if a pattern can match several parts of a string, the matcher takes
the match that occurs earliest in the input string. Then, if there is more than one
match from that same point, the matcher takes the longest possible match. The
rule of thumb is “first, then longest”.

The regexp Command

The regexp command provides direct access to the regular expression matcher.
Its syntax is:

regexp ?flags? pattern string ?match sub1 sub2...?

The return value is 1 if some part of the string matches the pattern, it is 0
otherwise.

The flags are optional and constrain the match as follows. If -nocase is
specified, then upper case characters in string are treated as lower case during
the match. If -indices is specified, then the match variables described below
will each contain a pair of numbers that are the indices that delimit the match
within string. Otherwise, the matching string itself is copied into the match

 The regexp Command 27

Created: December 15, 1994 —Strings.fm3—Copyright Prentice Hall—DRAFT: 1/11/95

variables. Finally, if your pattern begins with -, then you can use -- to separate
the flags from the pattern.

The pattern argument is a regular expression as described in the previous
section. If this contains $ or [, you have to be careful. The easiest thing to do is
group your patterns with curly braces. However, if your pattern contains back-
slash sequences like \n or \t you will have to group with double quotes so the Tcl
interpreter can do those substitutions. You will have to use \[and \$ in your
patterns in that case.

If string matches pattern, then the results of the match are stored into
the variables named in the command. These match variable arguments are
optional. If present, match is set to be the part of the string that matched the pat-
tern. The remaining variables are set to be the substrings of string that
matched the corresponding subpatterns in pattern. The correspondence is based
on the order of left parentheses in the pattern to avoid ambiguities that can arise
from nested subpatterns.

Example 2–2 Regular expression to parse the DISPLAY environment variable.

set env(DISPLAY) corvina:0.1
regexp {([^:]*):} $env(DISPLAY) match host
=> 1
set match
=> corvina:
set host
=> corvina

The example uses regexp to pick the hostname out of the DISPLAY environ-
ment variable, which has the form:

hostname:display

The pattern involves a complementary set, [^:], to match anything except
a colon. It uses repetition, *, to repeat that zero or more times. Then, it groups
that part into a subexpression with parentheses. The literal colon ensures that
the DISPLAY value matches the format we expect. The part of the string that
matches the pattern will be stored into the match variable. The part that we
really want is what matches the subpattern, and that will be stored into host.
The whole pattern has been grouped with braces to avoid the special meaning of
the square brackets to the Tcl interpreter. Without braces it would be:

regexp (\[^:]*): $env(DISPLAY) match host

This is quite a powerful statement, and it is efficient. If we only had the
string command to work with, we would have had to resort to the following,
which takes roughly twice as long to interpret.

set i [string first : $env(DISPLAY)]

if {$i >= 0} {

set host [string range $env(DISPLAY) 0 [expr $i-1]]

}

Multiple subpatterns are allowed. We can improve our pattern so that it

28 Strings and Pattern Matching Chap.2

Created: December 15, 1994 —Strings.fm3—Copyright Prentice Hall—DRAFT: 1/11/95

extracts the screen part of the DISPLAY as well as the host:
regexp {([^:]*):(.+)} $env(DISPLAY) match host screen

The regsub Command

The regsub command is used to do string substitution based on pattern match-
ing. Its syntax is:

regsub ?switches? pattern string subspec varname

The regsub command returns the number of matches and replacements, or
0 if there was no match. regsub copies string to varname, replacing occurrences
of pattern with the substitution specified by subspec.

The optional switches include -all, which means to replace all occurrences
of the pattern. Otherwise only the first occurrence is replaced. The -nocase

switch means that upper-case characters in the string are converted to lowercase
before matching. The -- switch is useful if your pattern begins with -.

The replacement pattern, subspec, can contain literal characters as well as
the following special sequences.

& is replaced with the string that matched the pattern.
\1 through \9 are replaced with the strings that match the corresponding

subpatterns in pattern. As with regexp, the correspondence is based on the
order of left parentheses in the pattern specification.

The following is used to replace a user’s home directory with a ~:
regsub ^$env(HOME)/ $pathname ~/ newpath

The following is used to construct a C compile command line given a file-
name. The \. is used to specify a match against period.

regsub {([^\.]*)\.c} file.c {cc -c & -o \1.o} ccCmd

The value assigned to ccCmd is:
 cc -c file.c -o file.o.

With an input pattern of file.c and a pattern of {([^\.]*)\.c}, the sub-
pattern matches everything up to the first period in the input, or just file. The
replacement pattern, {cc -c & -o \1.o} references the subpattern match with
\1, and the whole match with &.

29

C H A P T E R

Created: December 15, 1994 —Data.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

 3

Tcl Data Structures 3

This chapter describes two higher level data structures used in Tcl: lists and
arrays.

The basic data structure in Tcl is a string.
In addition, there are two higher-level data structures, lists and arrays. Lists are
implemented as strings. Their structure is defined by the syntax of the string.
The syntax rules are the same as for commands, and in fact commands are just a
particular instance of lists. Arrays are variables that have an index. The index is
a string value, so you can think of arrays as maps from one string (the index) to
another string (the value of the array element).

As a rule, lists are ok when they are short, or when you are building up a
command to be evaluated later. Arrays are more convenient and efficient for
larger collections of data.

More About Variables

Before we dive into lists and arrays, let‘s consider simple variables in a bit more
detail. The set command is used to define variables of any type. In addition, the
set command will return the value of a variable if it is only passed a single argu-
ment. It treats that argument as a variable name and returns the current value
of the variable. The dollar-sign syntax used to get the value of a variable is really
just a short-hand for using the set command in this way.

30 Tcl Data Structures Chap.3

Created: December 15, 1994 —Data.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Example 3–1 Using set to return a variable value.

set var {the value of var}
=> the value of var
set name var
=> var
set name
=> var
set $name
=> the value of var

This is a somewhat tricky example. In the last command, $name gets sub-
stituted with var. Then the set command returns the value of var, which is the

value of var. Another way to achieve a level of indirection like this is with
nested set commands. The last set command above can be written as follows

set [set name]

=> the value of var

The unset command

You can delete a variable with the unset command:
unset varName varName2 ...

Any number of variable names can be passed to the unset command. How-
ever, unset will raise an error if a variable is not already defined.

 You can delete an entire array, or just a single array element with unset.
Using unset on an array is a convenient way to clear out a big data structure.

Using info to find out about variables

The existence of a variable can be tested with the info exists command. For
example, because incr requires that a variable exists, you might have to test for
the existence of the variable first.

Example 3–2 Using info to determine if a variable exists.

if ![info exists foobar] {
set foobar 0

} else {
incr foobar

}

In Chapter 5 there is an example on page 56 that implements a new version
of incr that handles this case.

 Tcl Lists 31

Created: December 15, 1994 —Data.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Tcl Lists

Unlike list data structures in other languages, Tcl lists are just strings with a
special interpretation. By definition, a Tcl list has the same structure as a Tcl
command. That is, a list is simply a string with list elements separated by white
space. Braces or quotes can be used to group words with whitespace into a single
list element. Because of the relationship between lists and commands, the list-
related commands are used often when constructing Tcl commands.

The string representation of lists in Tcl has performance implications. The
string representation must be reparsed on each list access, so watch out for large
lists. If you find yourself maintaining large lists that must be frequently
accessed, consider changing your code to use arrays instead.

There are several Tcl commands related to lists, and these are described
briefly in Table 2-1. Their use will be described in more detail via some examples.

Table 3–1 List-related commands

list arg1 arg2 ... Creates a list out of all its arguments.

lindex list i Returns the i’th element from list.

llength list Returns the number of elements in list.

lrange list i j Returns the i’th through j’th elements from list.

lappend listVar arg arg ... Append a elements to the value of listVar.

linsert list index arg arg .. Insert elements into list before the element at
position index. Returns a new list.

lreplace list i j arg arg ... Replace elements i through j of list with the
args. Returns a new list.

lsearch mode list value Return the index of the element in list that
matches the value according to the mode, which
is -exact, -glob, or -regexp. -glob is the
default. Return -1 if not found.

lsort switches list Sort elements of the list according to the switches:
-ascii, -integer, -real, -increasing,
-decreasing, -command command. Returns a
new list.

concat arg arg arg ... Join multiple lists together into one list.

join list joinString Merge the elements of a list together by separat-
ing them with joinString.

split string splitChars Split a string up into list elements, using (and dis-
carding) the characters in splitChars as bound-
aries between list elements.

32 Tcl Data Structures Chap.3

Created: December 15, 1994 —Data.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Constructing Lists: list, lappend, and concat

The list command constructs a list out of its arguments such that there is one
list element for each argument. This is a important command, although it might
not seem like it at first glance, because it ensures that the resulting list has the
proper syntax. If any of the arguments contain special characters, the list com-
mand adds quoting to ensure they are parsed as a single element of the resulting
list.

Example 3–3 Constructing a list with the list command.

set x {1 2}
=> 1 2
set x
=> 1 2
list $x \$ foo
=> {1 2} {$} foo

One thing that can be confusing at first is that the braces used to group the
list value into one argument to the set command are not part of the list value. In
the example, the interpreter strips off the outer braces that are used to group the
second argument to set. However, the list command adds them back, which
could lead you to believe that the braces are part of x’s value, but they are not.

The lappend command is used to append elements to the end of a list. It is
efficient because it takes advantage of extra space allocated at the end of lists.
Like list, lappend preserves the structure of its arguments. That is, it may add
braces to group the values of its arguments so they retain their identity as list
elements when they are appended onto the string representation of the list. The
new elements added by lappend are peers of the existing list elements in the
variable.

Example 3–4 Using lappend to add elements to a list.

lappend new 1 2
=> 1 2
lappend new 3 "4 5"
=> 1 2 3 {4 5}
set new
=> 1 2 3 {4 5}

The lappend command is unique among the list-related commands because
its first argument is the name of a list-valued variable, while all the other com-
mands take list values as arguments. You can call lappend with the name of an
undefined variable and the variable will be created.

The concat command is useful for splicing together lists. It works by con-
catenating its arguments together, separating them with spaces. This joins mul-
tiple lists into one where the top-level list elements in each input list are also

 Getting List Elements: llength, lindex, and lrange 33

Created: December 15, 1994 —Data.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

top-level list elements (i.e. peers) in the resulting list.

Example 3–5 Using concat to splice together lists.

concat 1 {2 3} {4 5 6}
=> 1 2 3 4 5 6

It turns out that double quotes behave much like the concat command. The
following example compares the use of list, concat, and double quotes.

Example 3–6 Double quotes compared to the list command.

set x {1 2}
=> 1 2
set y "$x 3"
=> 1 2 3
set y [concat $x 3]
=> 1 2 3
set z [list $x 3]
=> {1 2} 3

The distinction between list and concat becomes important when Tcl com-
mands are built dynamically. The basic rule is that list and lappend preserve
list structure, while concat (or double-quotes) eliminate one level of list struc-
ture. The distinction can be subtle because there are examples where list and
concat return the same results. Unfortunately, this can lead to data-dependent
bugs. Throughout the examples of this book you will see the list command used
to safely construct lists. This issue is discussed more in Chapter 6.

Getting List Elements: llength, lindex, and lrange

The llength command returns the number of elements in a list.
llength {a b {c d} "e f g" h}

=> 5

The lindex command returns a particular element of a list. It takes an
index; list indices count from zero. The keyword end means the last element, and
it can be used with lindex, linsert, lrange, and lreplace.

lindex {1 2 3} 0

=> 1

The lrange command returns a range of list elements. It takes a list and
two indices as arguments.

lrange {1 2 3 {4 5}} 2 end

=> 3 {4 5}

34 Tcl Data Structures Chap.3

Created: December 15, 1994 —Data.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Modifying Lists: linsert and lreplace

The linsert command inserts elements into a list value at a specified
index. If the index is 0 or less, then the elements are added to the front. If the
index is equal to or greater than the length of the list, then the elements are
appended to the end. Otherwise, the elements are inserted before the element
that is current as position index.

lreplace is used to replace a range of list elements with new elements. If
you don’t specify any new elements, you effectively delete elements from a list.

Example 3–7 Modifying lists with linsert and lreplace.

linsert {1 2} 0 new stuff
=> new stuff 1 2
set x [list a {b c} e d]
=> a {b c} e d
lreplace $x 1 2 B C
=> a B C d
lreplace $x 0 0
=> {b c} e d

Searching Lists: lsearch

lsearch returns the index of a value in the list, or -1 if it is not present.
lsearch supports pattern matching in its search. Glob-style pattern matching is
the default, and this can be disabled with the -exact flag. The semantics of the
pattern matching done with the -glob and -regexp options is described in Chap-
ter 2. In the example below, the glob pattern l* matches the value list.

lsearch {here is a list} l*

=> 3

The lreplace command is often used with lsearch to determine if the list
already contains the elements. The example below uses lreplace to delete ele-
ments by not specifying any replacement list elements.

Example 3–8 Deleting a list element by value.

proc ldelete { list value } {
set ix [lsearch -exact $list $value]
if {$ix >= 0} {

return [lreplace $list $ix $ix]
} else {

return $list
}

}

 Sorting Lists: lsort 35

Created: December 15, 1994 —Data.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Sorting Lists: lsort

You can sort a list in a variety of ways with lsort. The three basic types of sorts
are specified with the -ascii, -integer, or -real options. The -increasing or
-decreasing option indicate the sorting order. The default option set is -ascii

-increasing. The list is not sorted in place. Instead, a new list value is returned.
You can provide your own sorting function for special-purpose sorting

needs. For example, suppose you have a list of person names, where each ele-
ment is itself a list containing the person’s first name, middle name (if any), and
last name. The default sort will sort by everyone’s first name. If you want to sort
by their last name, however, you need to supply a sorting function.

Example 3–9 Sorting a list using a comparison function.

proc mycompare {a b} {
set alast [lindex $a [expr [llength $a]-1]]
set blast [lindex $b [expr [llength $b]-1]]
set res [string compare $alast $blast]
if {$res != 0} {

return $res
} else {

return [string compare $a $b]
}

}
set list {{Brent B. Welch} {John Ousterhout} {Miles Davis}}
=> {Brent B. Welch} {John Ousterhout} {Miles Davis}
lsort -command mycompare $list
=> {Miles Davis} {John Ousterhout} {Brent B. Welch}

The mycompare procedure extracts the last element from each of its argu-
ments and compares those. If they are equal, then it just compares the whole of
each argument.

The split And join Commands

The split command takes a string and turns it into a list by breaking it at spec-
ified characters. The split command provides a robust way to turn input lines
into proper Tcl lists. Even if your data has space-separated words, you should be
very careful when using list operators on arbitrary input data. Otherwise, stray
double-quotes or curly braces in the input can result in invalid list structure and
errors in your script.

Example 3–10 Use split to turn input data into Tcl lists.

set line {welch:*:3116:100:Brent Welch:/usr/welch:/bin/csh}
split $line :
=> welch * 3116 100 {Brent Welch} /usr/welch /bin/csh
set line {this is "not a tcl list}

36 Tcl Data Structures Chap.3

Created: December 15, 1994 —Data.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

lindex $line 1
=> is
lindex $line 2
=> unmatched open quote in list
lindex [split $line] 2
=> "not

The default split character is white space. If there are multiple separator
characters in a row, these result in empty list elements - the separators are not
collapsed. The following command splits on commas, periods, spaces and tabs:

set line "\tHello, world."

split $line \ ,.\t

=> {} Hello {} world {}

The join command is the inverse of split. It takes a list value and refor-
mats it with specified characters separating the list elements. In doing so, it will
remove any curly braces from the string representation of the list that are used
to group the top-level elements. For example:

join {1 {2 3} {4 5 6}} :

=> 1:2 3:4 5 6

Arrays

The other primary data structure that Tcl has is arrays. An array is a variable
with a string-valued index, so you can think of an array as a mapping from
strings to strings. Internally an array is implemented with a hash table, so the
cost of accessing each element is about the same. (It is affected a little by the
length of the index.)

The index of an array is delimited by parentheses. The index can have any
string value, and it can be the result of variable or command substitution. Array
elements are defined with set:

set arr(index) value

The value of an array element is obtained with $ substitution:
set foo $arr(index)

Example 3–11 Using arrays.

set arr(0) 1
for {set i 1} {$i <= 10} {incr i} {

set arr($i) [expr $i * $arr([expr $i-1])]
}

This example sets arr(x) to the product of 1 * 2 * ... * x. The initial
assignment of arr(0) defines arr as an array variable. It is an error to use a
variable as both an array and a normal variable. The following would be an error
after the previous example:

 The array Command 37

Created: December 15, 1994 —Data.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

set arr 3

=> can’t set "arr": variable is array

If you have complex indices, use a comma to separate different parts of the
index. Avoid putting a space after the comma. It is legal, but a space in an index
value will cause problems because parenthesis are not used as a grouping mecha-
nism. The space in the index needs to be quoted with a backslash, or the whole
variable reference needs to be grouped:

set {arr(I’m asking for trouble)} {I told you so.}

Of course, if the array index is stored in a variable, then there is no problem
with spaces in the variable’s value. The following works fine:

set index {I’m asking for trouble}

set arr($index) {I told you so.}

The name of the array can be the result of a substitution. If the name of the
array is stored in another variable, then you must use set as shown in the last
command below to reference the array elements. If you are trying to pass an
array by name to a procedure, see the example on page 56, which uses a different
solution.

Example 3–12 What if the name of the array is in a variable.

set name TheArray
=> TheArray
set ${name}(xyz) {some value}
=> some value
set x $TheArray(xyz)
=> some value
set x ${name}(xyz)
=> TheArray(xyz)
set x [set name](xyz)
=> some value

The array Command

The array command returns information about array variables, and it can
be used to iterate through array elements.

Table 3–2 The array command

array exists arr Returns 1 if arr is an array variable.

array get arr Returns a list that alternates between an index
and the corresponding array value.

array names arr ?pattern? Return the list of all indices defined for arr, or
those that match the string match pattern.

array set arr list Initialize the array arr from list, which should
have the same form as the list returned by get.

38 Tcl Data Structures Chap.3

Created: December 15, 1994 —Data.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

The array names command is perhaps the most useful because it allows
easy iteration through an array with a foreach loop. (foreach is described in
more detail on page 44.)

foreach index [array names arr] { command body }

The order of the names returned by array names is arbitrary. It is essen-
tially determined by the hash table implementation of the array. You can limit
what names are returned by specifying a pattern argument. The pattern is the
kind supported by the string match command, which is described on page 24.

It is also possible to iterate through the elements of an array one at a time
using the search-related commands. The ordering is also random, and in practice
I find the foreach over the results of array names much more convenient. If your
array has an extremely large number of elements, or if you need to manage an
iteration over long period of time, then the array search operations might be
more appropriate.

The array get and array set operations are used to convert between an
array and a list. The list returned by array get has an even number of elements.
The first element is an index, and the next is the corresponding array value. The
ordering of the indexes is arbitrary. The list argument to array set must have
the same structure.

Example 3–13 Converting from an array to a list.

set fruit(best) kiwi
set fruit(worst) peach
set fruit(ok) banana
array get fruit
=> ok banana best kiwi worst peach

Environment Variables

In a UNIX environment, the processes environment variables are available
through the global array env. The name of the environment variable is the index,
e.g., env(PATH), and the array element contains the current value of the environ-
ment variable. If assignments are made to env, then they result in changes to the

array size arr Return the number of indices defined for arr.

array startsearch arr Return a search id key for a search through arr.

array nextelement arr id Return the value of the next element in array in
the search identified by id. Returns an empty
string if no more elements remain in the search.

array anymore arr id Returns 1 if more elements remain in the search.

array donesearch arr id End the search identified by id.

Table 3–2 The array command

 Tracing Variable Values 39

Created: December 15, 1994 —Data.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

corresponding environment variable.*

Example 3–14 printenv prints the environment variable values.

proc printenv { args } {
global env
set maxl 0
if {[llength $args] == 0} {

set args [lsort [array names env]]
}
foreach x $args {

if {[string length $x] > $maxl} {
set maxl [string length $x]

}
}
incr maxl 2
foreach x $args {

puts stdout [format "%*s = %s" $maxl $x $env($x)]
}

}
printenv USER SHELL TERM
=>
USER = welch
SHELL = /bin/csh
TERM = tx

Tracing Variable Values

The trace command lets you register a command to be called whenever a vari-
able is accessed, modified, or unset. This form of the command is:

trace variable name ops command

The name is a Tcl variable name, which can be a simple variable, an array,
or an array element. If a whole array is traced, then the trace is invoked when
any element is used according to ops. The ops argument is one or more of the let-
ters r, for read traces, w, for write traces, and u, for unset traces. The command is
executed when one of these events occurs. It is invoked as:

command name1 name2 op

The name1 argument is the variable or array name. The name2 argument is
the name of the array index, or null if the trace is on a simple variable. If there is
an unset trace on an entire array and the array is unset, then name2 is also null.
The value of the variable is not passed to the procedure. The upvar, uplevel, or
global commands have to be used to make the variable visible in the scope of the
trace command. These commands are described in more detail in Chapter 5.

The next example uses traces to implement a read-only variable. The value

* Environment variables are a collection of string-valued variables associated each a UNIX
process. Environment variables are inherited by child processes, so programs run with the Tcl
exec call will inherit the environment of the Tcl script.

40 Tcl Data Structures Chap.3

Created: December 15, 1994 —Data.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

is modified before the trace procedure is called, so another variable (or some
other mechanism) is needed to preserve the original value.

Example 3–15 Tracing variables.

set x-orig $x
trace variable x wu FixupX
proc FixupX { varName index op } {

upvar $varName var
global x-orig
switch $op {

w {set var $x-orig}
u {unset x-orig}

}
}

This example merely overrides the new value with the saved valued.
Another alternative is to raise an error with the error command. This will cause
the command that modified the variable to return the error. Another common
use of trace is to update a user interface widget in response to a variable change.
Several of the Tk widgets have this feature built into them.

If more than one trace is set on a variable, then they are invoked in the
reverse order; the most recent trace is executed first. If there is a trace on an
array and on an array element, then the trace on the array is invoked first. The
next example uses an array trace to dynamically create array elements.

Example 3–16 Creating array elements with array traces.

make sure variable is an array
set dynamic() {}
trace variable dynamic r FixupDynamic
proc FixupDynamic {name index op} {

global dynamic;# We know this is $name
if ![info exists dynamic($index)] {

set dynamic($index) 0
}

}

Information about traces on a variable is returned with the vinfo option.
trace vinfo dynamic

=> {r FixDynamic}

A trace is deleted with the vdelete trace option, which has the same form
as the variable option. For example, the trace in the previous example can be
removed with the following command.

trace vdelete dynamic r FixupDynamic

41

C H A P T E R

Created: December 15, 1994 —Control.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

 4

Control Flow Commands 4

This chapter describes the Tcl commands used for flow control: if, switch,
foreach, while, for, break continue, catch, error, return.

Control flow in Tcl is achieved with com-
mands, just like everything else. There are looping commands: while, foreach,
and for. There are conditional commands: if and switch. There is an error han-
dling command: catch. Finally, there are some commands to fine tune control
flow: break, continue, return, and error.

A flow control command often has a command body that is executed later,
either conditionally or in a loop. In this case, it is important to group the com-
mand body with curly braces to avoid substitutions at the time the control flow
command is invoked. Group with braces, and let the control flow command trig-
ger evaluation at the proper time. A flow control command returns the value of
the last command it chose to execute.

Another pleasant property of curly braces is that they group things
together while including newlines. The examples use braces in a way that is both
readable and convenient for extending the flow control commands across multi-
ple lines.

Commands like if, for and while involve boolean expressions. They use
the expr command internally, so there is no need for you to invoke expr explicitly
to evaluate their boolean test expressions.

42 Control Flow Commands Chap.4

Created: December 15, 1994 —Control.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

If Then Else

The if command is the basic conditional command. If an expression is true then
execute one command body, otherwise execute another command body. The sec-
ond command body (the else clause) is optional. The syntax of the command is:

if boolean then body1 else body2

The then and else keywords are optional. In practice, I omit then, but use
else as illustrated in the next example. I always use braces around the com-
mand bodies, even in the simplest cases.

Example 4–1 A conditional if-then-else command.

if {$x == 0} {
puts stderr “Divide by zero!”

} else {
set slope [expr $y/$x]

}

The style of this example takes advantage of the way the Tcl interpreter
parses commands. Recall that newlines are command terminators, except when
the interpreter is in the middle of a group defined by braces (or double quotes).
The stylized placement of the opening curly brace at the end of the first and third
line exploits this property to extend the if command over multiple lines.

The first argument to if is a boolean expression. As a matter of style this
expression is grouped with curly braces. The expression evaluator will perform
variable and command substitution on the expression for us. Using curly braces
ensures that these substitutions are performed at the proper time. It is possible
to be lax in this regard, with constructs like:

if $x break continue

This is a sloppy, albeit legitimate if command that will either break out of
a loop or continue with the next iteration depending on the value of variable x.
Instead, always use braces around the command bodies to avoid trouble later
and to improve the readability of your code. The following is much better (use
then if it suites your taste).

if {$x} { break } else { continue }

Chained conditionals can be created by using the elseif keyword.

Example 4–2 Chained conditional with elseif.

if {$key < 0} {
incr range 1

} elseif {$key == 0} {
return $range

} else {
incr range -1

}

 Switch 43

Created: December 15, 1994 —Control.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Any number of conditionals can be chained in this manner. However, the
switch command provides a more powerful way to test multiple conditions.

Switch

The switch command is used to branch to one of many command bodies depend-
ing on the value of an expression. In addition, the choice can be made on the
basis of pattern matching as well as simple comparisons. Pattern matching is
discussed in more detail in Chapter 2. Any number of pattern-body pairs can be
specified. If multiple patterns match, only the body of the first matching pattern
is evaluated.

The general form of the command is:
switch flags value pat1 body1 pat2 body2 ...

You can also group all the pattern-body pairs into one argument:
switch flags value { pat1 body1 pat2 body2 ... }

There are four possible flags that determine how value is matched.

-exact Match the value exactly to one of the patterns. (The default.)

-glob Use glob-style pattern matching. See page 24.

-regexp Use regular expression pattern matching. See page 25.

-- No flag (or end of flags). Useful when value can begin with -.

There are three approaches to grouping the pattern and body pairs. The dif-
ferences among them have to do with the substitutions that are performed (or
not) on the patterns. You will want to group the command bodies with curly
braces so that substitution only occurs on the body with the pattern that
matches the value.

The first style groups all the patterns and bodies into one argument. This
makes it easy to group the whole command without worrying about newlines,
and it suppresses any substitutions on the patterns.

Example 4–3 Using switch for an exact match.

switch -exact -- $value {
foo { doFoo; incr count(foo) }
bar { doBar; return $count(foo)}
default { incr count(other) }

}

If the pattern associated with the last body is default, then this command
body is executed if no other patterns match. Note that the default keyword only
works on the last pattern-body pair. If you use the default pattern on an earlier
body, it will be treated as a pattern to match the literal string default.

The second style is useful if you have variable references or backslash
sequences in the patterns that you need to have substituted. However, you have

44 Control Flow Commands Chap.4

Created: December 15, 1994 —Control.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

to use backslashes to escape the newlines in the command.

Example 4–4 Using switch with substitutions in the patterns.

switch -regexp -- $value \
^$key { body1 }\
\t### { body2 }\
{[0-9]*} { body3 }

In this example the first and second patterns have substitutions performed
to replace $key with its value and \t with a tab character. The third pattern is
quoted with curly braces to prevent command substitution; square brackets are
part of the regular expression syntax, too. (See page 25.)

A third style allows substitutions on the patterns without needing to quote
newlines, but you will have to backslash any double-quotes that appear in the
patterns or bodies.

Example 4–5 Using switch with all pattern body pairs grouped with quotes.

switch -glob -- $value “
${key}* { puts stdout \”Key is $value\” }
X* -
Y* { takeXorYaction $value }

“

If the body associated with a pattern is just “-”, then the switch command
“falls through” to the body associated with the next pattern. Any number of pat-
terns can be tied together in this fashion.

Foreach

The foreach command loops over a command body assigning a loop variable to
each of the values in a list. The syntax is:

foreach loopVar valueList commandBody

The first argument is the name of a variable, and the command body is executed
once for each element in the loop with the loop variable taking on successive val-
ues in the list. The list can be entered explicitly, as in the next example:

Example 4–6 Looping with foreach.

set i 1
foreach value {1 3 5 7 11 13 17 19 23} {

set i [expr $i*$value]
}
set i
=> 111546435

 While 45

Created: December 15, 1994 —Control.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

In the next example, a list-valued variable is used.

Example 4–7 Parsing command line arguments.

argv is set by the Tcl shells
foreach arg $argv {

switch -regexp -- $arg {
-foo {set fooOption 1}
-bar {barRelatedCommand}
-([0-9]+) {scan -%d $arg intValue}

}
}

The variable argv is set by the Tcl interpreter to be a list of the command
line arguments given when the interpreter was started up. The loop looks for
various command line options. The -- flag is required in this example because the
switch command will complain about a bad flag if the pattern begins with a -
character. The scan command, which is similar to the C library scanf function, is
used to pick a number out of one argument.

If the list of values is to contain variable values or command results, then
the list command should be used to form the list. Double-quotes should be
avoided because if any values or command results contain spaces or braces, the
list structure will be reparsed, which can lead to errors or unexpected results.

Example 4–8 Using list with foreach.

foreach x [list $a $b [foo]] {
puts stdout “x = $x”

}

The loop variable x will take on the value of a, the value of b, and the result
of the foo command, regardless of any special characters or whitespace in those
values.

While

The while command takes two arguments, a test and a command body:
while booleanExpr body

The while command repeatedly tests the boolean expression and then exe-
cutes the body if the expression is true (non-zero). Because the test expression is
evaluated again before each iteration of the loop, it is crucial to protect the
expression from any substitutions before the while command is invoked. The fol-
lowing is an infinite loop (See also Example 1-11 in Chapter 1):

set i 0 ; while $i<10 {incr i}

The following behaves as expected:
set i 0 ; while {$i<10} {incr i}

46 Control Flow Commands Chap.4

Created: December 15, 1994 —Control.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

It is also possible to put nested commands in the boolean expression. The
following example uses gets to read standard input. The gets command returns
the number of characters read, returning -1 upon end-of-file. Each time through
the loop the variable line contains the next line in the file.

Example 4–9 A while loop to read standard input.

set numLines 0 ; set numChars 0
while {[gets stdin line] >= 0} {

incr numLines
incr numChars [string length $line]

}

For

The for command is similar to the C for statement. It takes four arguments:
for initial test final body

The first argument is a command to initialize the loop. The second argu-
ment is a boolean expression that determines if the loop body will execute. The
third argument is a command to execute after the loop body. Finally there is the
loop body.

Example 4–10 A for loop.

for {set i 0} {$i < 10} {incr i 3} {
lappend aList $i

}
set aList
=> 0 3 6 9

Break And Continue

Loop execution can be controlled with the break and continue commands. The
break command causes immediate exit from a loop, while the continue com-
mand causes the loop to continue with the next iteration. Note that there is no
goto statement in Tcl.

Catch

Until now we have ignored the possibility of errors. In practice, however, a com-
mand will raise an error if it is called with the wrong number of arguments, or if
it detects some error condition particular to its implementation. If uncaught, an
error will abort execution of a script.* The catch command is used to trap such

 Catch 47

Created: December 15, 1994 —Control.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

errors. It takes two arguments:
catch command ?resultVar?

The first argument to catch is a command body. The second argument is
the name of a variable that will contain the result of the command, or an error
message if the command raises an error. catch returns 0 if there was no error
caught, or 1 if it did catch an error.

It is important to use curly braces to group the command (as opposed to
double-quotes) because catch will invoke the full Tcl interpreter on the com-
mand, so any needed substitutions will occur then. If double-quotes are used, an
extra round of substitutions will occur before catch is even called.The simplest
use of catch looks like the following.

catch { command }

A more careful catch phrase saves the result and prints an error message.

Example 4–11 A standard catch phrase.

if [catch { command arg1 arg2 ... } result] {
puts stderr $result

} else {
command was ok, result is its return value

}

The most general catch phrase is shown in the next example. Multiple com-
mands are grouped into a command body. The errorInfo variable is set by the
Tcl interpreter after an error to reflect the stack trace from the point of the error.

Example 4–12 A longer catch phrase.

if [catch {
command1
command2
command3

} result] {
global errorInfo
puts stderr $result
puts stderr “*** Tcl TRACE ***”
puts stderr $errorInfo

} else {
command body ok, result of last command is in result

}

These examples have not grouped the call to catch with curly braces. This
is OK because catch always returns a 0 or a 1, so the if command will parse cor-
rectly. However, if we had used while instead of if, then curly braces would be
necessary to ensure that the catch phrase was evaluated repeatedly.

* More precisely, the Tcl script will unwind and the current Tcl_Eval procedure will return
TCL_ERROR. In Tk, errors that arise during event handling trigger a call to tkerror, a Tcl
procedure you can implement in your application.

48 Control Flow Commands Chap.4

Created: December 15, 1994 —Control.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Error

The error command raises an error condition that will terminate a script unless
it is trapped with the catch command. The command takes up to three argu-
ments:

error message ?info? ?code?

The message becomes the error message stored in the result variable of the
catch command.

If the info argument is provided, then the Tcl interpreter uses this to ini-
tialize the errorInfo global variable. That variable is used to collect a stack
trace from the point of the error. If the info argument is not provided, then the
error command itself is used to initialize the errorInfo trace.

Example 4–13 The results of error with no info argument.

proc foo {} {
error bogus

}
foo
=> bogus
set errorInfo
=> bogus

while executing
“error bogus”

(procedure “foo” line 2)
invoked from within

“foo”

In the example above, the error command itself appears in the trace. One
common use of the info argument is to preserve the errorInfo that is available
after a catch. The example below, the information from the original error is pre-
served.

Example 4–14 Preserving errorInfo when calling error.

if [catch {foo} result] {
global errorInfo
set savedInfo $errorInfo
Attempt to handle the error here, but cannot...
error $result $savedInfo

}

The code argument is used to specify a concise, machine-readable descrip-
tion of the error. It gets stored into the global errorCode variable. It defaults to
NONE. Many of the file system commands return an errorCode that contains
starts with POSIX and contains the error code and associated message:

POSIX ENOENT {No such file or directory}

In addition, your application could define error codes of its own. Catch

 Return 49

Created: December 15, 1994 —Control.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

phrases could examine the code in the global errorCode variable and decide how
to respond to the error.

Return

The return command is used to return from a procedure. It is needed if return is
to occur before the end of the procedure body, or if a constant value needs to be
returned. As a matter of style, I also use return at the end of a procedure, even
though a procedure returns the value of the last command executed in the body.

Exceptional return conditions can be specified with some optional argu-
ments to return. The complete syntax is:

return ?-code c? ?-errorinfo i? ?-errorcode ec? string

The -code option value is one of ok, error, return, break, continue, or an
integer. ok is the default if -code is not specified.

The -code error option makes return behave much like the error com-
mand. In this case, the -errorcode option will set the global errorCode variable,
and the -errorinfo option will initialize the errorInfo global variable.

Example 4–15 Specifying errorinfo with return.

proc bar {} {
return -code error -errorinfo “I’m giving up” bogus

}
catch {bar} result
=> 1
set result
=> bogus
set errorInfo
=> I’m giving up
 invoked from within
“bar”

The return, break, and continue code options take effect in the caller of the
procedure doing the exceptional return. If -code return is specified then the
calling procedure returns. If -code break is specified, then the calling procedure
breaks out of a loop, and if -code continue is specified then the calling proce-
dure continues to the next iteration of the loop. Actually, with break and con-

tinue the interpreter will unwind the call stack until it finds a loop to operate on
in these cases. These -code options to return are rarely used, although they
enable the construction of new flow control commands entirely in Tcl.

50 Control Flow Commands Chap.4

Created: December 15, 1994 —Control.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

51

C H A P T E R

Created: December 15, 1994 —Procs.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

 5

Procedures and Scope 5

Commands covered: proc, global, upvar, uplevel.

Procedures are used to parameterize a
commonly used sequence of commands. In addition, each procedure has a new
local scope for variables. The scope of a variable is the range of commands over
which it is defined. This chapter describes the Tcl proc command in more detail,
and then goes on to consider issues of variable scope.

The proc Command

A Tcl procedure is defined with the proc command. It takes three arguments:
proc name params body

The first argument is the procedure name, which will be added to the set of
commands understood by the Tcl interpreter. The name is case sensitive, and can
contain any characters at all. The second argument is a list of parameter names.
The last argument is the body of the procedure.

Once defined, a Tcl procedure is used just like any other Tcl command.
When it is called, each argument is assigned to the corresponding parameter and
the body is evaluated. The result of the procedure is the result returned by the
last command in the body. The return command can be used to return a specific
value.

The parameter list for a procedure can include default values for parame-
ters. This allows the caller to leave out some of the command arguments.

52 Procedures and Scope Chap.5

Created: December 15, 1994 —Procs.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Example 5–1 Default parameter values.

proc p2 {a {b 7} {c -2} } {
expr $a / $b + $c

}
p2 6 3
=> 0

Here the procedure p2 can be called with one, two, or three arguments. If it
is called with only one argument, then the parameters b and c will take on the
values specified in the proc command. If two arguments are provided, then only
c will get the default value, and the arguments will be assigned to a and b. At
least one argument and no more than three arguments can be passed to p2.

A procedure can take a variable number of arguments by specifying the
args keyword as the last parameter. When the procedure is called, the args

parameter is a list that contains all the remaining values.

Example 5–2 Variable number of arguments.

proc argtest {a {b foo} args} {
foreach param {a b args} {

puts stdout “\t$param = [set $param]”
}

}
argtest 1
=> a = 1

b = foo
args =

argtest 1 2
=> a = 1

b = 2
args =

argtest 1 2 3
=> a = 1

b = 2
args = 3

argtest 1 2 3 4
=> a = 1

b = 2
args = 3 4

Changing command names with rename

The rename command changes the name of a command.There are two main
uses for rename. The first is to augment an existing procedure. Before you rede-
fine it with proc, rename the existing command.

rename foo foo.orig

 Then, from within the new implementation of foo you can invoke the origi-

 Scope 53

Created: December 15, 1994 —Procs.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

nal command as foo.orig. Existing users of foo will transparently use the new
version.

The other thing you can do with rename is completely hide a command by
renaming it to the empty string. For example, you might not want users to exe-
cute UNIX programs, so you could disable exec with the following command.

rename exec {}

Scope

There is a single, global scope for procedure names.*. You can define a pro-
cedure inside another procedure, but it is visible everywhere. There is a different
name space for variables and procedures, so you could have a procedure and a
variable with the same name without conflict.

Each procedure has a local scope for variables. That is, variables introduced
in the procedure only live for the duration of the procedure call. After the proce-
dure returns, those variables are undefined. Variables defined outside the proce-
dure are not visible to a procedure, unless the upvar or global scope commands
are used. If there is the same variable name in an outer scope, it is unaffected by
the use of that variable name inside a procedure.

Example 5–3 Variable scope and Tcl procedures.

set a 5
set b -8
proc p1 {a} {

set b 42
if {$a < 0} {

return $b
} else {

return $a
}

}
p1 $b
=> 42
p1 [expr $a*2]
=> 10

There is no conflict between the variables a and b in the outer scope and
either the parameter a or the local variable b.

The global Command

The top level scope is called the global scope. This scope is outside of any proce-
dure. Variables defined at the global scope have to be made accessible to the com-

* This is in contrast to Pascal and other Algol-like languages that have nested procedures, and
different than C that allows for file-private (static) procedures.

54 Procedures and Scope Chap.5

Created: December 15, 1994 —Procs.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

mands inside a procedure by using the global command. The syntax for global
is:

global varName1 varName2 ...

Once a variable is made accessible with the global command, it is used
just like any other variable. The variable does not have to be defined at the glo-
bal scope when the global command is used. When the variable is defined, it will
become visible in the global scope.

A useful trick is to collect your global variables into an array so that it is
easier to manage your global statements. Even though you can put any number
of variable names in the global command, it is tedious to update the various
global commands when you introduce a new global variable. Using arrays, only
a single global statement is needed. Another benefit of using arrays is that if
you choose the array name to reflect the function of the collection of procedures
that share the variables, (a module in other languages), then you will be less
likely to have conflicts when you integrate your script with other code.

Example 5–4 A random number generator.*

proc randomInit { seed } {
 global rand
 set rand(ia) 9301 ;# Multiplier
 set rand(ic) 49297 ;# Constant
 set rand(im) 233280;# Divisor
 set rand(seed) $seed;# Last result
}
proc random {} {
 global rand
 set rand(seed) \

[expr ($rand(seed)*$rand(ia) + $rand(ic)) % $rand(im)]
 return [expr $rand(seed)/double($rand(im))]
}
proc randomRange { range } {

expr int([random]*$range)
}
randomInit [pid]
=> 5049
random
=> 0.517687
random
=> 0.217177
randomRange 100
=> 17

* Adapted from “Numerical Recipes in C” by Press et al. Cambridge University Press, 1988

 Use Arrays for Global State 55

Created: December 15, 1994 —Procs.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Use Arrays for Global State

Tcl arrays are very flexible because there are no restrictions on the index
value. A very good use for arrays is to collect together a set of related variables,
much as one would use a record in other languages. An advantage of using
arrays in this fashion is that a global scope command applies to the whole array,
which simplifies the management of global variables.

For example, in a larger Tk application, each module of the implementation
may require a few global state variables. By collecting these together in an array
that has the same name as the module, name conflicts between different mod-
ules are avoided. Also, in each of the module’s procedures, a single global state-
ment will suffice to make all the state variables visible. More advanced scope
control mechanisms are introduced by various object systems for Tcl, such as
[incr tcl], which is described in Chapter 32.

The following artificial example uses an array to track the locations of some
imaginary objects. (More interesting examples will be given in the context of
some of the Tk widgets and applications.)

Example 5–5 Using arrays for global state.

proc ObjInit { o x y } {
global obj
set obj($o,x) $x
set obj($o,y) $y
set obj($o,dist) [expr sqrt($x * $x + $y * $y)]

}
proc ObjMove { o dx dy } {

global obj
if ![info exists obj($o,x)] {

error "Object $o not initialized"
}
incr obj($o,x) $dx
incr obj($o,y) $dy
set obj($o,dist) [expr sqrt($obj($o,x) * $obj($o,x) + \

$obj($o,y) * $obj($o,y))]
}

This example uses the global array obj to collect state variables, and it also
parameterizes the index names with the name of an object. Remember to avoid
spaces in the array indexes. The incr command and the info exist commands
work equally well array elements as on scalar variables.

Call By Name Using upvar

The upvar command is used for situations in which you need to pass the name of
a variable into a procedure as opposed to its value. Commonly this is used with
array variables. The upvar command associates a local variable with a variable

56 Procedures and Scope Chap.5

Created: December 15, 1994 —Procs.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

in a scope up the Tcl call stack. The syntax of the upvar command is:
upvar ?level? varName localvar

The level argument is optional, and it defaults to 1, which means one level
up the Tcl call stack. You can specify some other number of frames to go up, or
you can specify an absolute frame number with a #number syntax. Level #0 is the
global scope, so the global foo command is equivalent to:

upvar #0 foo foo

The variable in the uplevel stack frame can be either a scalar variable, an
array element, or an array name. In the first two cases, the local variable is
treated like a scalar variable. In the case of an array name, then the local vari-
able is also treated like an array.

The following procedure uses upvar in order to print out the value of a sca-
lar variable given its name. (See also Example 5–8 on page 56.)

Example 5–6 Print by name.

proc PrintByName { varName } {
upvar $varName var
puts stdout “$varName = $var”

}

Upvar can be used to fix incr procedure. One drawback of the built-in incr

is that it raises an error if the variable does not exist. We can make a version of
incr that will create the variable as needed.

Example 5–7 Improved incr procedure.

proc incr { varName {amount 1}} {
upvar $varName var
if [info exists var] {

set var [expr $var + $amount]
} else {

set var $amount
}
return $var

}

Passing arrays by name

The upvar command words on arrays. You can pass an array name to a proce-
dure and then use the upvar command to get an indirect reference to the array
variable in the caller’s scope. The next example illustrates this.

Example 5–8 Using an array to implement a stack.

proc Push { stack value } {
upvar $stack S

 The uplevel Command 57

Created: December 15, 1994 —Procs.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

if ![info exists S(top)] {
set S(top) 0

}
set S($S(top)) $value
incr S(top)

}
proc Pop { stack } {

upvar $stack S
if ![info exists S(top)] {

return {}
}
if {$S(top) == 0} {

return {}
} else {

incr S(top) -1
set x $S($S(top))
unset S($S(top))
return Sx

}
}

The array does not have to exist when the upvar command is called. The
Push and Pop procedures both guard against a non-existent array with the info

exists command. When the first assignment to S(top) is done by Push, the
array variable is created in the caller’s scope.

The uplevel Command

The uplevel command is similar to eval, except that it evaluates a command in
a different scope than the current procedure. It is useful for defining new control
structures entirely in Tcl. The syntax for uplevel is:

uplevel level command

As with upvar, the level parameter is optional and defaults to 1, which
means to execute the command in the scope of the calling procedure. The other
common use of level is #0, which means to evaluate the command in the global
scope.

When you specify the command argument, you have to be aware of any sub-
stitutions that might be performed by the Tcl interpreter before uplevel is
called. If you are entering the command directly, protect it with curly braces so
that substitutions occur in the correct scope. The following affects the variable x

in the caller’s scope.
uplevel {set x [expr $x + 1]}

However, the following will use the value of x in the current scope to define
the value of x in the calling scope, which is probably not what was intended:

uplevel “set x [expr $x + 1]”

It is also quite common to have the command in a variable. This is the case
when the command has been passed into your new control flow procedure as an

58 Procedures and Scope Chap.5

Created: December 15, 1994 —Procs.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

argument, or when you have built up the command using list and lappend. Or,
perhaps you have read the command from a user-interface widget. In the control-
flow case you most likely want to evaluate the command one level up:

uplevel $cmd

In the case of the user interface command, you probably want to evaluate
the command at the global scope:

uplevel #0 $cmd

Finally, if you are assembling a command from a few different lists, such as
the args parameter, then you’ll have to use concat explicitly with uplevel:

uplevel [concat $cmd $args]

59

C H A P T E R

Created: December 15, 1994 —Eval.fm3—Copyright Prentice Hall—DRAFT: 1/12/95

 6

Eval 6

This chapter describes explicit calls to the interpreter with the eval command.
An extra round of substitutions is performed that results in some useful
effects. The chapter describes the potential problems with eval and the
ways to avoid them. The chapter also describes the subst command
that does substitutions but no command invocation.

Evaluation involves substitutions, and it
is sometimes necessary to go through an extra round of substitutions. This is
achieved with the eval and subst commands. The need for more substitutions
can crop up in simple cases, such as dealing with the list-valued args parameter
to a procedure. In addition, there are commands like after, uplevel, and the Tk
send command that have similar properties to eval, except that the command
evaluation occurs later or in a different context.

The eval command is used to re-interpret a string as a command. It is very
useful in certain cases, but it can be tricky to assemble a command so it is evalu-
ated properly by eval. The root of the quoting problems is the internal use of
concat by eval and similar commands to smash all their arguments into one
command string. The result can be a loss of some important list structure so that
arguments are not passed through as you expect. One general strategy to avoid
these problems is to use list and lappend to explicitly form the command. In
other cases, the concat is actually quite useful in joining together lists (e.g.,
$args) to make up a single command.

Eval And List

The eval command results in another call to the Tcl interpreter. If you construct
a command dynamically, you will need to use eval to interpret it. For example,

60 Eval Chap.6

Created: December 15, 1994 —Eval.fm3—Copyright Prentice Hall—DRAFT: 1/12/95

suppose we want to construct the following command now, but execute it later.
puts stdout “Hello, World!”

In this case, it is sufficient to do the following:
set cmd {puts stdout “Hello, World!”}

=> puts stdout “Hello, World!”

sometime later...

eval $cmd

=> Hello, World!

However, suppose that the string to be output is stored in a variable, but
that variable will not be defined at the time eval is used. We can artificially cre-
ate this situation like this:

set string “Hello, World!”

set cmd {puts stdout $string}

unset string

eval $cmd

=> can’t read “string”: no such variable

The solution to this problem is to construct the command using list, as
shown in the example below.

Example 6–1 Using list to construct commands.

set string “Hello, World!”
set cmd [list puts stdout $string]
=> puts stdout {Hello, World!}
unset string
eval $cmd
=> Hello, World!

The trick is that list has formed a list that has three elements: puts, std-
out, and the value of string. The substitution of $string occurs before list is
called, and list takes care of grouping that value for us.

 In contrast, compare this to the most widely used incorrect approach:
set cmd “puts stdout $string”

=> puts stdout Hello, World!

eval $cmd

=> bad argument “World!”: should be “nonewline”

The use of double quotes is equivalent to doing:
set cmd [concat puts stdout $string]

The problem here is that concat does not preserve list structure. The main
lesson is that you should use list to construct commands if they contain vari-
able values or command results that are substituted now as opposed to later on
when the command is evaluated.

 Eval And Concat 61

Created: December 15, 1994 —Eval.fm3—Copyright Prentice Hall—DRAFT: 1/12/95

Eval And Concat

 This section illustrates cases where concat is useful in assembling a command
by concatenating multiple lists into one list. In fact, a concat is done internally
by eval if it gets more than one argument.

eval list1 list2 list3 ...

The effect of concat is to join all the lists into one list; a new level of list
structure is not added. This is useful if the lists are fragments of a command.

A common use for this form of eval is with the args construct in proce-
dures. The args parameter can be used to layer functionality over another proce-
dure. The new procedure takes optional arguments that are passed through to
the lower layer. The problem with using args, however, is the proper formation
of the call to the lower layer.The variable args has a bunch of arguments for the
command, but they are all assembled into a list inside args.

This is illustrated with a simple Tk example. At this point, all you need to
know is that a command to create a button looks like this:

button .foo -text Foo -command foo

After a button is created, it is made visible by packing it into the display:
pack .foo -side left

The following does not work:
set args {-text Foo -command foo}

button .foo $args

=> unknown option “-text Foo -command foo”

The problem is that $args is a list value, and button gets the whole list as a
single argument. Instead, button needs to get the elements of $args as individ-
ual arguments. In this case, you can use eval and rely on the fact that it will con-
catenate its arguments and form a single list before evaluating things. The
single list is, by definition, the same as a single Tcl command, so the button com-
mand parses correctly.

eval button .foo $args

=> .foo

Example 6–2 Using eval with $args.

PackedButton creates and packes a button.
proc PackedButton {path txt cmd {pack {-side right}} args} {

eval {button $path -text $txt -command $cmd} $args
eval {pack $path} $pack

}

In PackedButton, both pack and args are list-valued parameters that are
used as parts of a command. The internal concat done by eval is perfect for this
situation. The simplest call to PackedButton is given below.

PackedButton .new “New” { New }

The quotes and curly braces are redundant in this case, but are retained to

62 Eval Chap.6

Created: December 15, 1994 —Eval.fm3—Copyright Prentice Hall—DRAFT: 1/12/95

convey some type information. The pack argument takes on its default value,
and the args variable is an empty list. The two commands executed by Packed-

Button are:
button .new -text New -command New

pack .new -side right

PackedButton creates a horizontal stack of buttons by default. The packing
can be controlled with a packing specification:

PackedButton .save “Save” { Save $file } {-side left}

This changes the pack command to be:
pack .new -side left

The remaining arguments, if any, are passed through to the button com-
mand. This lets the caller fine tune some of the button attributes:

PackedButton .quit Quit { Exit } {-side left -padx 5} \

-background red

This changes the button command to be:
button .new -text New -command New -background red

Double-quotes and eval

You may be tempted to use double-quotes instead of curly braces in your
uses of eval. Don’t give in! The use of double-quotes will probably be wrong. Sup-
pose the first eval command were written like this:

eval “pack $path -text $txt -command $cmd $args”

This happens to work with the following because txt and cmd are one-word
arguments with no special characters in them.

PackedButton .quit Quit { Exit }

In the next call an error is raised, however.
PackedButton .save “Save” { Save $file }

=> can’t read “file”: no such variable

The danger is that the success of this approach depends on the value of the
parameters. The value of txt and the value of cmd are subject to another round of
substitutions and parsing. When those values contain spaces or special charac-
ters, the command gets parsed incorrectly.

To repeat, the safe construct is:
eval {pack $path -text $txt -command $cmd} $args

As you may be able to tell, this was one of the more difficult lessons I
learned, in spite of three uses of the word “concatenate” in the eval man page!

Commands That Concat Their Arguments

The uplevel command and two Tk commands, after and send, concatenate
their arguments into a command and execute it later in a different context.

 The subst Command 63

Created: December 15, 1994 —Eval.fm3—Copyright Prentice Hall—DRAFT: 1/12/95

Whenever I discover such a command I put it on my danger list and make sure I
explicitly form a single command argument with list instead of letting the com-
mand concat things together for me.

Get in the habit now:
after 100 [list doCmd $param1 $param2]

send $interp [list doCmd $param1 $param2];# Safe!

The worst part of this is that concat and list can result in the same thing,
so you can be led down the rosy garden path, only to be bitten later when values
change on you. The above two examples will always work. The next two will only
work if param1 and param2 have values that are single list elements:

after 100 doCmd $param1 $param2

send $interp doCmd $param1 $param2;# Unsafe!

If you use other Tcl extensions that provide eval-like functionality, carefully
check their documentation to see if they contain procedures that concat their
arguments into a command. For example, Tcl-DP, which provides a network ver-
sion of send, dp_send, also uses concat.

The subst Command

The subst command is used to do command and variable substitution, but with-
out invoking any command. It is similar to eval in that it does a round of substi-
tutions for you. However, it doesn’t try to interpret the result as a command.

set a “foo bar”

subst {a=$a date=[exec date]}

=> a=foo bar date=Thu Dec 15 10:13:48 PST 1994

The subst command does not honor the quoting effect of curly braces.
Instead, it will expand any variables or nested commands whereever they occur
in its input argument.

subst {a=$a date={[exec date]}}

=> a=foo bar date={Thu Dec 15 10:15:31 PST 1994}

You can use backslashes to prevent variable and command substitution,
though.

subst {a=\$a date=\[exec date]}

=> a=$a date=[exec date]

64 Eval Chap.6

Created: December 15, 1994 —Eval.fm3—Copyright Prentice Hall—DRAFT: 1/12/95

65

C H A P T E R

Created: December 15, 1994 —Unix.fm3—Copyright Prentice Hall—DRAFT: 1/12/95

 7

Working with UNIX 7

This chapter describes how to use Tcl in a UNIX environment. Tcl commands:
exec, open, close, read, write, seek, tell, glob, pwd,
cd.

This chapter describes how to run pro-
grams and access the file system from Tcl. While these commands were designed
for UNIX, they are also implemented (perhaps with limitations) in the Tcl ports
to other systems such as DOS and Macintosh. These capabilities enable your Tcl
script to be a general purpose glue that assembles other programs into a tool
that is customized for your needs.

Running Unix Programs With exec

The exec command is used to run other UNIX programs from your Tcl script.*

For example:
set d [exec date]

The standard output of the program is returned as the value of the exec

command. However, if the program writes to its standard error stream or exits
with a non-zero status code, then exec will raise an error.

The exec command supports a full set of I/O redirection and pipeline syn-
tax. Each UNIX process normally has three I/O streams associated with it: stan-
dard input, standard output, and standard error. With I/O redirection you can

* Unlike the C-shell exec command, the Tcl exec does not replace the current process with the
new one. Instead, the Tcl library forks first and executes the program as a child process.

66 Working with UNIX Chap.7

Created: December 15, 1994 —Unix.fm3—Copyright Prentice Hall—DRAFT: 1/12/95

divert these I/O streams to files or to I/O streams you have opened with the Tcl
open command. A pipeline is a chain of UNIX processes that have the standard
output of one command hooked up to the standard input of the next command in
the pipeline. Any number of programs can be linked together into a pipeline.

Example 7–1 Using exec on a process pipeline.

set n [exec sort < /etc/passwd | uniq | wc -l 2> /dev/null]

The example uses exec to run three programs in a pipeline. The first pro-
gram is sort, which takes its input from the file /etc/passwd. The output of sort
is piped into uniq, which suppresses duplicate lines. The output of uniq is piped
into wc, which counts up the lines for us. The error output of the command is
diverted to the null device in order to suppress any error messages.

Table 7–1 gives a summary of the syntax understood by the exec com-
mand. Note that a trailing & causes the program to run in the background. In
this case the process id is returned by the exec command. Otherwise, the exec

command blocks during execution of the program and the standard output of the
program is the return value of exec. The trailing newline in the output is
trimmed off, unless you specify -keepnewline as the first argument to exec.

Table 7–1 Summary of the exec syntax for I/O redirection.

-keepnewline (First arg only.) Do not discard trailing newline from the result.

| Pipe standard output from one process into another.

|& Pipe both standard output and standard error output.

< fileName Take input from the named file.

<@ fileId Take input from the I/O stream identified by fileId.

<< value Take input from the given value.

> fileName Overwrite fileName with standard output.

2> fileName Overwrite fileName with standard error output.

>& fileName Overwrite fileName with both standard error and standard out.

>> fileName Append standard output to the named file.

2>> fileName Append standard error to the named file.

>>& fileName Append both standard error and standard output to the named file.

>@ fileId Direct standard output to the I/O stream identified by fileId.

2>@ fileId Direct standard error to the I/O stream identified by fileId.

>&@ fileId Direct both standard error and standard output to the I/O stream.

& As the last argument, indicates pipeline should run in background.

 Looking At The File System 67

Created: December 15, 1994 —Unix.fm3—Copyright Prentice Hall—DRAFT: 1/12/95

 If you look closely at the I/O redirection syntax, you’ll see that it is built up
from a few basic building blocks. The basic idea is that ‘|’ stands for pipeline, ‘>’
for output, and ‘<‘ for input. The standard error is joined to the standard output
by ‘&’. Standard error is diverted separately by using ‘2>’. You can use your own I/
O streams by using ‘@’.

auto_noexec

The Tcl shell programs are set up by default to attempt to execute unknown
Tcl commands as UNIX programs. For example, you can get a directory listing by
typing:

ls

instead of
exec ls

This is handy if you are using the Tcl interpreter as a general shell. It can
also cause unexpected behavior when you are just playing around. To turn this
off, define the auto_noexec variable:

set auto_noexec anything

Looking At The File System

The Tcl file command provides several ways to check on the status of files in the
UNIX file system. For example, you can find out if a file exists and what type of
file it is. In fact, essentially all the information returned by the stat system call
is available via the file command. Table 7–2 gives a summary of the various
forms of the file command.

Table 7–2 The Tcl file command options.

file atime name Return access time as a decimal string.

file dirname name Return parent directory of file name.

file executable name Return 1 if name has execute permission, else 0.

file exists name Return 1 if name exists, else 0.

file extension name Return the part of name from the last dot ‘.’ to the end.

file isdirectory name Return 1 if name is a directory, else 0.

file isfile name Return 1 if name is not a directory, symbolic link, or
device, else 0.

file lstat name var Place stat results about the link name into var.

file mtime name Return modify time of name as a decimal string.

file owned name Return 1 if current user owns the file name, else 0.

68 Working with UNIX Chap.7

Created: December 15, 1994 —Unix.fm3—Copyright Prentice Hall—DRAFT: 1/12/95

The following command uses file mtime to compare the modify times of
two files.*

Example 7–2 A procedure to compare file modify times.

proc newer { file1 file2 } {
expr [file mtime $file1] > [file mtime $file2]

}

A few of the options operate on pathnames as opposed to returning informa-
tion about the file itself. You can use these commands on any string; there is no
requirement that the pathnames refer to an existing file. The dirname and tail

options are complementary. The first returns the parent directory of a pathname,
while tail returns the trailing component of the pathname. For a simple path-
name with a single component, the dirname option returns “.”, which is the
name of the current directory.

file dirname /a/b/c

=> /a/b

file tail /a/b/c

=> c

The extension and root options are also complementary. The extension

option returns everything from the last period in the name to the end (i.e., the
file suffix.) The root option returns everything up to, but not including, the last
period in the pathname.

file root /a/b.c

* If you have ever resorted to piping the results of ls -l into awk in order to derive this informa-
tion in other shell scripts, you’ll appreciate these options.

file readable name Return 1 if name has read permission, else 0.

file readlink name Return the contents of the symbolic link name.

file rootname name Return all but the extension (‘.’ and onwards) of name.

file size name Return the number of bytes in name.

file stat name var Place stat results about name into array var. The ele-
ments defined for var are: atime, ctime, dev, gid,
ino, mode, mtime, nlink, size, type, and uid.

file tail name Return all characters after last ‘/’ in name.

file type name Return type identifier, which is one of: file, direc-
tory, characterSpecial, blockSpecial, fifo,
link, or socket.

file writable name Return 1 if name has write permission, else 0.

Table 7–2 The Tcl file command options.

 Looking At The File System 69

Created: December 15, 1994 —Unix.fm3—Copyright Prentice Hall—DRAFT: 1/12/95

=> /a/b

file extension /a/b.c

=> .c

The makedir example given below uses the file command to determine if it
necessary to create the intermediate directories in a pathname. It calls itself
recursively, using file dirname in the recursive step in order to create the par-
ent directory. To do the actual work, it execs the mkdir program. An error can be
raised in two places, explicitly by the makedir procedure if it finds a non-direc-
tory in the pathname, or by the mkdir program if, for example, the user does not
have the permissions to create the directory.

Example 7–3 Creating a directory recusively.

proc makedir { pathname } {
if {[file isdirectory $pathname]} {

return $pathname
} elseif {[file exists $pathname]} {

error “Non-directory $pathname already exists.”
} else {

Recurse to create intermediate directories
makedir [file dirname $pathname]
exec mkdir $pathname
return $pathname

}
}

The most general file command options are stat and lstat. They take a
third argument that is the name of an array variable, and they initialize that
array with elements and values corresponding to the results of the stat system
call. The array elements defined are: atime, ctime, dev, gid, ino, mode,
mtime, nlink, size, type, and uid. All the element values are decimal strings,
except for type, which can have the values returned by the type option. (See the
UNIX man page on the stat system call for a description of these attributes.)

Example 7–4 Determining if pathnames reference the same file.

proc fileeq { path1 path2 } {
file stat $path1 stat1
file stat $path2 stat2
expr [$stat1(ino) == $stat2(ino) && \

$stat1(dev) == $stat2(dev)]
}

The example uses the device (dev) and inode (ino) attributes of a file to
determine if two pathnames reference the same file.

70 Working with UNIX Chap.7

Created: December 15, 1994 —Unix.fm3—Copyright Prentice Hall—DRAFT: 1/12/95

Input/Output

The table below lists the commands associated with file input/output.

Opening Files For I/O

The open command sets up an I/O stream to either a file or a pipeline of pro-
cesses. The basic syntax is:

open what ?access? ?permissions?

The what argument is either a file name or a pipeline specification similar
to that used by the exec command. The access argument can take two forms,
either a short character sequence that is compatible with the fopen library rou-
tine, or a list of POSIX access flags. Table 7–4 summarizes the first form, while
Table 7–5 summarizes the POSIX flags. If access is not specified, it defaults to
read. The permissions argument is a value used for the permission bits on a
newly created file. The default permission bits are 0666. Consult the man page
on the UNIX chmod command for more details about permission bits.

Example 7–5 Opening a file for writing.

set fileId [open /tmp/foo w 0600]
puts $fileId “Hello, foo!”
close $fileId

The return value of open is an identifier for the I/O stream. You use this in
the same way the stdout, stdin, and stderr identifiers have been used in the
examples so far, except that you need to store the result of open in a variable.

(You should consult your system’s man page for the open system call to
determine the precise effects of the NOCTTY and NONBLOCK flags.)

Table 7–3 Tcl commands used for file access.

open what ?access? ?permissions? Open a file or pipeline.

puts ?-nonewline? ?stream? string Write a string.

gets stream ?varname? Read a line.

read ?-nonewline? stream ?numBytes? Read bytes.

tell stream Return the seek offset.

seek stream offset ?origin? Set the seek offset. origin is one of
start, current, or end.

eof stream Query end-of-file status.

flush stream Write out buffers of a stream.

close stream Close an I/O stream.

 Opening Files For I/O 71

Created: December 15, 1994 —Unix.fm3—Copyright Prentice Hall—DRAFT: 1/12/95

Below is an example of how you’d use a list of POSIX access flags to open a
file for reading and writing, creating it if needed, and not truncating it, which is
something you cannot do with the simpler form of the access argument.

Example 7–6 Opening a file using the POSIX access flags.

set fileId [open /tmp/bar {RDWR CREAT}]

In general you want to be careful to check for errors when opening files. The
following example illustrates a catch phrase used to open files. Recall that catch
returns 1 if it catches an error, otherwise it returns zero. It treats its second
argument as the name of a variable. In the error case it puts the error message
into the variable. In the normal case it puts the result of the command into the
variable.

Example 7–7 A more careful use of open.

if [catch {open /tmp/data r} fileId] {
puts stderr “Cannot open /tmp/data: $fileId”

Table 7–4 Summary of the open access arguments.

r Open for reading. The file must exist.

r+ Open for reading and writing. The file must exist.

w Open for writing. Truncate if it exists. Create if it does not exist.

w+ Open for reading and writing. Truncate or create.

a Open for writing. The file must exist. Data is appended to the file.

a+ Open for reading and writing. File must exist. Data is appended.

Table 7–5 Summary of POSIX flags for the access argument.

RDONLY Open for reading.

WRONLY Open for writing.

RDWR Open for reading and writing.

APPEND Open for append.

CREAT Create the file if it does not exist.

EXCL If CREAT is specified also, then the file cannot already exist.

NOCTTY Prevent terminal devices from becoming the controlling termi-
nal.

NONBLOCK Do not block during the open.

TRUNC Truncate the file if it exists.

72 Working with UNIX Chap.7

Created: December 15, 1994 —Unix.fm3—Copyright Prentice Hall—DRAFT: 1/12/95

} else {
Read and process the file, then...
close $fileId

}

Opening a process pipeline is done by specifying the pipe character, ‘|’, as
the first character of the first argument. The remainder of the pipeline specifica-
tion is interpreted just as with the exec command, including input and output
redirection. The second argument determines which end of the pipeline you get
back from the open. The example below sorts the password file, and it uses the
split command to separate the file lines into list elements.

Example 7–8 Opening a process pipeline.

set input [open “|sort /etc/passwd” r]
set contents [split [read $input] \n]
close $input

You can open a pipeline for both read and write by specifying the r+ access
mode. However, in this case you need to worry about buffering.After a puts the
data may still be in a buffer in the Tcl library. Use the flush command to force
this data out to the spawned processes before you try to read any output from the
pipeline. In general, the expect extension, which is described in Chapter
EXPECT, provides a much more powerful way to do these kinds of things.

Reading And Writing

The standard UNIX I/O streams are already open for you. These streams are
identified by stdin, sdout, and stderr, respectively. Other I/O streams are iden-
tified by the return value of the open command. There are several commands
used with file identifiers.

The puts and gets commands

The puts command writes a string and a newline to the output stream.
There are a couple of details about the puts command that have not been used
yet. It takes a -nonewline argument that prevents the newline character that is
normally appended to the output stream. This will be used in the prompt exam-
ple below. The second feature is that the stream identifier is optional, defaulting
to stdout if not specified.

Example 7–9 Prompting for input.

puts -nonewline “Enter value: “
set answer [gets stdin]

 Reading And Writing 73

Created: December 15, 1994 —Unix.fm3—Copyright Prentice Hall—DRAFT: 1/12/95

The gets command reads a line of input, and it has two forms. In the exam-
ple above, with just a single argument, gets returns the line read from the spec-
ified I/O stream. It discards the trailing newline from the return value. If end-of-
file is reached, an empty string is returned. You have to use the eof command to
tell the difference between a blank line and end-of-file. (eof returns 1 if there is
end-of-file.) Given a second varName argument, gets stores the line into named
variable and returns the number of bytes read. It discards the trailing newline,
which is not counted. A -1 is returned if the stream has reached end of file.

Example 7–10 A read loop using gets.

while {[gets $stream line] >= 0} {
Process line

}
close $stream

The read command

The read command is used to read blocks of data, which can often be more
efficient. It isn’t clear in the table, but with read you can specify either the -non-

ewline argument or the numBytes argument, but not both. Without numBytes,
the whole file (or what is left in the I/O stream) is read and returned. The -none-

wline argument causes the trailing newline to be discarded. Given a byte count
argument, read returns that amount, or less if not enough data remains in the
stream. The trailing newline is not discarded in this case.

Example 7–11 A read loop using read and split.

foreach line [split [read $stream] \n] {
Process line

}
close $stream

For moderately sized files it is slightly faster, by about 10%, to loop over the lines
in a file using the read loop in the second example. In this case, read is used to
return the whole file, and split is used to chop the file up into list elements, one
for each line. For small files (less than 1K) it doesn’t really matter. For really
large files (megabytes) you might induce paging with this approach.

Random access I/O

The seek and tell commands are used for random access to I/O streams.
Each stream has a current position called the seek offset. Each read or write
operation updates the seek offset by the number of bytes transferred. The cur-
rent value of the offset is returned by the tell command. The seek command is
used to set the seek offset by an amount, which can be positive or negative, from

74 Working with UNIX Chap.7

Created: December 15, 1994 —Unix.fm3—Copyright Prentice Hall—DRAFT: 1/12/95

an origin, which is either start, current, or end.

Closing I/O streams

The close command is just as important as the others because it frees up
operating system resources associated with the I/O stream. If you forget to close
a stream it will be closed when your process exits. However, if you have a long-
running program, like a Tk script, you might exhaust some O/S resources if you
forget to close your I/O streams.

Note that the close command can raise an error. If the stream was a pro-
cess pipeline and any of the processes wrote to their standard error stream, then
this appears like an error to Tcl. The error is raised when the stream to the pipe-
line is finally closed. Similarly, if any of the processes in the pipeline exit with a
non-zero status, close will raise an error.

The Current Directory - cd And pwd

The UNIX process has a current directory that is used as the starting point when
resolving a relative pathname (a file name that does not begin with ‘/’). The pwd

command returns the current directory, and the cd command is used to change
the current directory. We’ll use these commands in the example below that
involves the glob command.

Matching File Names With glob

The glob command is used to expand a pattern into the set of matching file
names. The pattern syntax is like that of the string match command in which *

matches zero or more characters, ? matches a single character, and [abc]
matches a set of characters. In addition, a file glob pattern can include a con-
struct like {a,b,c} that will match any of a, b, or c. All other characters must
match themselves. The general form of the glob command is:

glob ?flags? pattern ?pattern? ...

The -nocomplain flag causes glob to return an empty list if not files match
the pattern. Otherwise glob will raise an error if no files match.

The -- flag is used to introduce the pattern if it begins with a -.
Unlike the glob matching in csh, the Tcl glob command only matches the

names of existing files. (In csh, the {a,b} construct can match non-existent
names.) In addition, the results of glob are not sorted. You’ll have to use the
lsort command to sort its result if that is important to you.

Example 7–12 Finding a file by name.

proc FindFile { startDir namePat } {
set pwd [pwd]

 The exit And pid commands 75

Created: December 15, 1994 —Unix.fm3—Copyright Prentice Hall—DRAFT: 1/12/95

if [catch {cd $startDir} err] {
puts stderr $err
return

}
foreach match [glob -nocomplain -- $namePat]{

puts stdout $startDir/$match
}
foreach file [glob -nocomplain *] {

if [file isdirectory $file] {
FindFile $startDir/$file $namePat

}
}
cd $pwd

}

The FindFile procedure traverses the file system hierarchy using recur-
sion. At each iteration it saves its current directory and then attempts to change
to the next subdirectory. A catch is used to guard against bogus names. The glob
command is used to match file names. FindFile is called recursively on each
subdirectory.

The exit And pid commands

The exit command is used to terminate your script. Note that exit causes the
whole UNIX process that was running the script to terminate. If you supply an
integer-valued argument to exit then that becomes the exit status of the pro-
cess.

The pid command returns the process ID of the current process. This can be
useful as the seed for a random number generator because it will change each
time you run your script. It is also common to embed the process ID in the name
of temporary files.

76 Working with UNIX Chap.7

Created: December 15, 1994 —Unix.fm3—Copyright Prentice Hall—DRAFT: 1/12/95

77

C H A P T E R

Created: December 15, 1994 —InfoDebug.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

 8

Reflection and Debugging 8

This chapter describes commands that give you a view into the interpreter. The
history command and a simple debugger are useful during
development and and debugging. The info command provides a
variety of information about the internals of the Tcl interpreter. The time
command measures the time it takes to execute a command.

Reflection provides feedback to a script
about the internal state of the interpreter. This is useful in a variety of cases,
from testing to see if a variable exists to dumping the state of the interpreter.
This chapter starts with a description of the info command that provides lots of
different information about the interpreter.

Interactive command history is the second topic of the chapter. The history
facility can save you some typing if you spend a lot of time entering commands
interactively.

Debugging is the last topic of the chapter. The old-fashioned approach of
adding puts commands to your code is often quite useful. It takes so little time to
add code and run another test that this is much less painful than if you had to
wait for a long compilation everytime you changed a print command. The tkin-
spect program is an inspector that lets you look into the state of a Tk application.
It can hook up to any Tk application dynamically, so it proves quite useful. Don
Libes has implemented a Tcl debugger that lets you set breakpoints and step
through your script. This debugger is described at the end of the chapter.

The info Command

Table 8–1 summarises the info command. The operations are described in more
detail after the table.

78 Reflection and Debugging Chap.8

Created: December 15, 1994 —InfoDebug.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Variables

There are three categories of variables: local, global, and visible. Informa-
tion about these categories is returned by the locals, globals, and vars opera-
tions, respectively. The local variables include procedure arguments as well as
locally defined variables. The global variables include all variables defined at the
global scope. The visible variables include locals, plus any variables made visible
via global or upvar commands. Remember that a variable may not be defined
yet even though a global command as declared it to belong to the global scope.
Perhaps the most commonly used operation is info exist, to test whether a vari-
able is defined or not.

A pattern can be specified to limit the returned list of variables to those
that mach the pattern. The pattern is interpreted according to the rules of the

Table 8–1 The info command.

info args procedure A list of procedure’s arguments.

info body procedure The commands in the body of procedure.

info cmdcount The number of commands executed so far.

info commands ?pattern? A list of all commands, or those matching pat-
tern. Includes built-ins and Tcl procedures.

info complete string True if string contains a complete Tcl command.

info default proc arg var True if arg has a default parameter value in pro-
cedure proc. The default value is stored into var.

info exists variable True if variable is defined.

info globals ?pattern? A list of all global variables, or those matching
pattern.

info level The stack level of the current procedure, or 0 for
the global scope.

info level number A list of the command and its arguments at the
specified level of the stack.

info library The pathname of the Tcl library directory.

info locals ?pattern? A list of t all local variables, or those matching
pattern.

info patchlevel The release patchlevel for Tcl.

info procs ?pattern? A list of all Tcl procedures, or those that match
pattern.

info script The name of the file being processed, or NULL.

info tclversion The version number of Tcl.

info vars ?pattern? A list of all visible variables, or those matching
pattern.

 The info Command 79

Created: December 15, 1994 —InfoDebug.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

string match command, which is described on page 24.

Procedures

You can find out everything about a Tcl procedure with the args, body, and
default operations.This is illustrated in the ShowProc example given below. The
puts commands use the -nonewline flag because the newlines in the procedure
body, if any, are retained.

Example 8–1 Printing a procedure definition.

proc ShowProc {{namepat *} {file stdout}} {
foreach proc [info procs $namepat] {

set needspace 0
puts -nonewline $file "proc $proc {"
foreach arg [info args $proc] {

if {$needspace) {
puts -nonewline $file " "

}
if [info default $proc $arg value] {

puts -nonewline $file "{$arg $value}"
} else {

puts -nonewline $file $arg
}

}
No newline needed because info body may return a
value that starts with a newline
puts -nonewline $file "} {"
puts -nonewline $file [info body $proc]
puts $file "}"

}
}

The info commands operation returns a list of all the commands, which
includes both built-in commands defined in C and Tcl procedures. There is no
operation that just returns the list of built-in commands. You have to write a pro-
cedure to take the difference of two lists to get that information.

The call stack

The info level operation returns information about the Tcl evaluation
stack, or call stack. The global level is numbered zero. A procedure called from
the global level is at level one in the call stack. A procedure it calls is at level two,
and so on. The info level command returns the current level number of the
stack if no level number is specified.

If a postitive level number is specified (e.g. info level 3) then the command
returns the procedure name and argument values at that level in the call stack.
If a negative level is specified, then it is relative to the current call stack. Rela-
tive level -1 is the level of the current procedure’s caller, and relative-level 0 is

80 Reflection and Debugging Chap.8

Created: December 15, 1994 —InfoDebug.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

the current procedure. The following example prints out the call stack. The Call-
Trace procedure avoids printing information about itself by starting at one less
than the current call stack level. It prints a more descriptive header instead of
its own call.

Example 8–2 Getting a trace of the Tcl call stack.

proc CallTrace {{file stdout}} {
puts $file "Tcl Call Trace"
for {set l [expr [info level]-1]} {$l > 0} {incr l -1} {

puts $file "$l: [info level $l]"
}

}

Command evaluation

The info complete operation figures out if a string is a complete Tcl com-
mand. This is useful for command interpreters that need to wait until the user
has typed in a complete Tcl command before passing it to eval.

If you want to know how many Tcl commands are executed, use the info

cmdcount command. This counts all commands, not just top-level commands.
The counter is never reset, so you need to sample it before and after a test run if
you want to know how many commands are executed during a test.

Scripts and the library

The name of the current script file is returned with the info script com-
mand. For example, if you use the source command to read commands from a
file, then info script will return the name of that file if it is called during execu-
tion of the commands in that script. This is true even if the info script com-
mand is called from a procedure that is not defined in the script.

The pathname of the Tcl library is returned by the info library command.
While you could put scripts into this directory, it might be better to have a sepa-
rate directory and use the script library facility described in Chapter 9. This will
make it easier to deal with new releases of Tcl, and to package up your code if
you want other sites to use it.

Version numbers

Each Tcl release has a version number such as 7.4. This number is returned
by the info tclversion command. If you want your script to run on a variety of
Tcl releases, you may need to test the version number and take different actions
in the case of incompatibilities between releases. If there are patches to the
release, then a patch level is incremented. The patch level is reset to zero on each
release, and it is returned by the info tclpatchlevel command.

 Interactive Command History 81

Created: December 15, 1994 —InfoDebug.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Interactive Command History

The Tcl shell programs keep a log of the commands that you type by using a
history facility. The log is controlled and accessed via the history command. The
history facility uses the term event to mean an entry in its history log. The events
are just commands, but they have an event ID that is their index in the log. You
can also specify an event with a negative index that counts backwards from the
end of the log. For example, event -1 is the previous event. Table 8–1 sumarises
the Tcl history command. Many forms take an event specifier, which defaults to
-1.

In practice you will want to take advantage of the ability to abbreviate the
history options and even the name of the history command itself. For the com-
mand you need to type a unique prefix, and this depends on what other com-
mands are already defined. For the options, there are unique one-letter
abbreviations for all of them. For example, you could reuse the last word of the
previous command with [hist w $]. This works because a $ that is not followed
by alphanumerics (or an open brace) is treated as a literal $.

Several of the history operations update the history list. They remove the
actual history command and replace it with the command that resulted from
the history operation. The event, redo, substitute, and words operations all
behave in this manner. This makes perfect sense because you’d rather have the
actual command in the history instead of the history command used to retrieve
the command.

Table 8–2 The history command.

history Short for history info with no count .

history add command
?exec?

Add the command to the history list. If exec is
specified, then execute the command.

history change new
?event?

Change the command specified by event to new
in the command history.

history event ?event? Returns the command specified by event.

history info ?count? Returns a formatted history list of the last count
commands, or of all commands.

history keep count Limit the history to the last count commands.

history nextid Returns the number of the next event.

history redo ?event? Repeate the specified command.

history substitute old
new ?event?

Globally replace old with new in the command
specified by event, then execute the result.

history words selector
?event?

Return list elements from the event according to
selector. List items count from zero. $ is the
last item. A range is specified as a-b, e.g., 1-$.

82 Reflection and Debugging Chap.8

Created: December 15, 1994 —InfoDebug.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

History syntax

Some extra syntax is supported when running interactively to make the history
facility more convenient to use. Table 8–1 shows the special history syntax sup-
ported by tclsh and wish.

The next example shows how some of the history operations work.

Example 8–3 Interactive history usage.

% set a 5
5
% set a [expr $a+7]
12
% history

1 set a 5
2 set a [expr $a+7]
3 history

% !2
19
% !!
26
% ^7^13
39
% !h

1 set a 5
2 set a [expr $a+7]
3 history
4 set a [expr $a+7]
5 set a [expr $a+7]
6 set a [expr $a+13]
7 history

A comparision to /bin/csh history syntax

The history syntax shown in the previous example is simpler than the his-
tory syntax provided by the C-shell. Not all of the history operations are sup-
ported with special syntax. The substitutions (using ^old^new) are performed

Table 8–3 Special history syntax.

!! Repeat the previous command.

!n Repeat command number n.If n is negative it counts backward
from the current command. The previous command is event -1.

!prefix Repeat the last command that begins with prefix.

!pattern Repeat the last command that matches pattern.

^old^new Globally replace old with new in the last command.

 Debugging 83

Created: December 15, 1994 —InfoDebug.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

globally on the previous command. This is different than the quick-history of the
C-shell. Instead, it is like the !:gs/old/new/ history command. So, for example,
if the example had included ^a^b in an attempt to set b to 39, an error would
have occurred because the command would have been changed to:

set b [expr $b+7]

If you want to improve the history syntax, you will need to modify the
unknown command, which is where it is implemented. This command is discussed
in more detail in Chapter 9. Here is the code from the unknown command that
implements the extra history syntax. The main limitation in comparision with-
the C-shell history syntax is that the ! substitutions are only performed when ! is
at the beginning of the command.

Example 8–4 Implementing special history syntax.

Excerpts from the standard unknown command
uplevel is used to run the command in the right context
if {$name == "!!"} {

return [uplevel {history redo}]
}
if [regexp {^!(.+)$} $name dummy event] {

return [uplevel [list history redo $event]]
}
if [regexp {^\^([^^]*)\^([^^]*)\^?$} $name dummy old new] {

return [uplevel [list history substitute $old $new]]
}

Debugging

The rapid turn around with Tcl coding means that it is often sufficient to add a
few puts statements to your script to gain some insight about its behavior. This
solution doesn’t scale too well, however. A slight improvement is to add a Debug

procedure that can have its output controlled better. You can log the information
to a file, or turn it off completely. In a Tk application, it is simple to create a text
widget to hold the contents of the log so you can view it from the application.
Here is a simple Debug procedure. To enable it you need to set the debug(enable)

variable. To have its output go to your terminal, set debug(file) to stderr.

Example 8–5 A Debug procedure.

proc Debug { string } {
global debug
if ![info exists debug(enabled)] {

Default is to do nothing
return

}
puts $debug(file) $string

84 Reflection and Debugging Chap.8

Created: December 15, 1994 —InfoDebug.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

}
proc DebugOn {{file {}}} {

global debug
set debug(enabled) 1
if {[string length $file] == 0} {

if [catch {open /tmp/debug.out w} fileID] {
put stderr "Cannot open /tmp/debug.out"
set debug(file) stderr

} else {
puts stderr "Debug info to /tmp/debug.out"
set debug(file) $fileID

}
}

}
proc DebugOff {} {

global debug
if [info exists debug(enabled)] {

unset debug(enabled)
flush $debug(file)
if {$debug(file) != "stderr" &&

 $debug(file) != "stdout"} {
close $debug(file)
unset $debug(file)

}
}

}

Don Libes’ debugger

Don Libes at the National Institute of Standards and Technology has built
a Tcl debugger that lets you set breakpoints and step through your scripts inter-
actively. He is also the author of the expect program that is described in Chapter
32. The debugger requires a modified Tcl shell because the debugger needs a few
more built-in commands to support it. This section assumes you have it built into
your shell already. The expect program includes the debugger, and creating a cus-
tom shell that includes the debugger is described in Chapter 32 on page 395.

 The most interesting feature of the debugger is that you set breakpoints by
specifying patterns that match commands. The reason for this is that Tcl doesn’t
keep around enough information to map from file line numbers to Tcl commands
in scripts. The pattern matching is a clever alternative, and it opens up lots of
possibilities.

The debugger defines several one-character command names. The com-
mands are only defined when the debugger is active, and you shouldn’t have one-
letter commands of your own so it should not create any conflicts :-) The way you
enter the debugger in the first place is left up to the application. The expect shell
enters the debugger when you generate a keyboard interrupt, and Chapter 32
shows how you can set this up for a customized Tcl shell. Table 8–4 sumarises
the debugger commands. They are described in more detail below.

 Don Libes’ debugger 85

Created: December 15, 1994 —InfoDebug.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

When you are at the debugger prompt, you are talking to your Tcl inter-
preter so you can issue any Tcl command. There is no need to define new com-
mands to look at variables. Just use set!

The s and n command are used to step through your script. They take an
optional parameter that indicates how many steps to take before stopping again.
The r command completes execution of the current procedure and stops right
after the procedure returns.

The w command prints the call stack. Each level is preceeded by its number,
with level 0 being the top of the stack. An asterisk is printed by the current
scope, which you can change as described next. Each line of the stack trace can
get quite long because of argument substitutions. Control the output width with
the -w argument.

The u and d commands change the current scope. They move up and down
the Tcl call stack, where "up" means towards the calling procedures. The very top
of the stack is the global scope. You need to use these commands to easily exam-
ine variables in different scopes. They take an optional parameter that specifies
what level to go to. If the level specifier begins with #, then it is an absolute level
number and the current scope changes to that level. Otherwise the scope moves
up or down the specified number of levels.

Breakpoints by pattern matching

The b command manipulates breakpoints. The location of a breakpoint is
specified by a pattern. When a command is executed that matches the pattern,
the breakpoint occurs. Eventually it will be possible to specify breakpoints by
line number, but the Tcl interpreter doesn’t keep around enough information to
make that easy to do. The general form of the command to set a breakpoint is
shown below.

Table 8–4 Debugger commands.

s ?n? Step into a procedure. Step once, or n times.

n ?n? Step over a procedure. Step over once, or n times.

r Return from a procedure.

b Set, clear or show a breakpoint.

c Continue execution to next breakpoint or interrupt.

w ?-w width? ?-c X? Show the call stack, limiting each line to width
charcters. -c 1 displays control characters as escape
sequences. -c 0 displays control characters normally.

u ?level? Move scope up the call stack one level, or to level level.

d ?level? Move scope down the call stack one level, or to level
level.

h Display help information.

86 Reflection and Debugging Chap.8

Created: December 15, 1994 —InfoDebug.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

b ?-re regexp? ?if condition? ?then action?

b ?-glob pattern? ?if condition? ?then action?

The b command supports both glob patterns and regular expressions. Pat-
terns will be discussed in more detail below. A breakpoint can have a test associ-
ated with it. The breakpoint will only occur if the condition is met. A breakpoint
can have an action, independent of a condition. The action provides a way to
patch code into your script. Finally, the pattern itself is also optional, so you can
have a breakpoint that is just a conditional. A breakpoint that just has an action
will trigger on every command.

Here are several examples.
b -re ^foobar

This breaks whenever the foobar command is invoked. The ^ in the regular
expression ensures that foobar is the first word in the command. In contrast, the
next breakpoint occurs whenever foobar is about to be called from within another
command. A glob pattern is used for comparision. A glob pattern has to match
the whole command string, hence the asterisk at the beginning and end of the
pattern.

b -glob {*\[foobar *}

The subpattern matching of the regular expression facility is supported. If
you have subpatterns, the parts of the string that match are stored in the dbg(1)
through dbg(9) array elements. The string that matched the whole pattern is
stored in dbg(0). The following breakpoint stops when the crunch command is
about to be called with its first argument greater than 1024.

b -re {^crunch ([0-9]+)} if {$dbg(1) > 1024}

If you just want to print information and keep going, you can put a c, s, n,
or r command into the action associated with a breakpoint. The following break-
point traces assignments to a variable.

b -re {^set a ([^]+)} then {

puts "a changing from $a to $dbg(1)"

c

}

The breakpoint is called before the command executes, so in this case $a

refers to the old value, and the pattern extracts the new value. If an error occurs
inside the action the error is discarded and the rest of the action is skipped.

Deleting break points

The b command with no arguments lists the defined breakpoints. Each
breakpoint is preceeded by an ID number. To delete a breakpoint, give the break-
point number preceeded by a minus sign:

b -N

 The tkerror Command 87

Created: December 15, 1994 —InfoDebug.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

The tkerror Command

When the Tk widgets encounter an error from a callback, such as the command
associated with a button, they signal the error by calling the tkerror procedure.
A default implementation displays a dialog and gives you an opportunity to view
the Tcl call stack at the point of the error. You can supply your own version of
tkerror. For example, my exmh application offers to send mail to me with a few
words of explanation from the user and a copy of the traceback. I get interesting
bug reports from all over the world!

The tkerror command is called with one argument that is the error mes-
sage. The global variable errorInfo contains the stack trace information.

The tkinspect Program

The tkinspect program is a Tk application that lets you look at the state of
other Tk applications. It displays procedures, variables, and the Tk widget hier-
archy. With tkinspect you can issue commands to another application in order to
change variables or test out commands. This turns out to be a very useful way to
debug Tk applications. It was written by Sam Shen and is available in the Tcl
archives. The current FTP address for this is:

ftp.aud.alcatel.com:/pub/tcl/code/tkinspect-4d.tar.gz

Performance Tuning

The time command measures the exectution time of a Tcl command. It takes an
optional parameter that is a repetition count.

time {set a "Hello, World!"} 1000

=> 305 microseconds per iteration

This provides a very simple timing mechanism. A more advanced profiler is
part of the Extended Tcl package, which is described on page 389. The profiler
monitors the number of calls, the CPU time, and the elapsed time spent in differ-
ent procedures.

Perhaps the most common performance bug in a Tcl program is the use of
big lists instead of arrays. Extracting items from a list is expensive because the
list must be reparsed in order to find each element. With a Tcl array you can
access any element in constant time.

In general, iterating through large data structures is slow because Tcl rep-
arses loop bodies and procedure bodies each time it evaluates them. Highly inter-
ative code is best optimized by moving it into C code.

If you really want to squeeze the last drop out of some Tcl code you can try
shorting the names of variables and commands used in the inner loops. For rea-
sons of good programming style you should not resort to this except in extreme
cases. You can use the rename command to create short names for the commands
used within a tight loop.

88 Reflection and Debugging Chap.8

Created: December 15, 1994 —InfoDebug.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

89

C H A P T E R

Created: December 15, 1994 —Library.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

 9

Script Libraries 9

You can use a script library to collect useful Tcl procedures together so they
can be used by more than one application. The library is implemented by
the unknown command handler, which also provides a few other
facilities. On of its features is the utomatic execution of UNIX programs
instead of having to use the Tcl exec command.

Libraries are used to collect useful sets of
Tcl procedures together so they can be used by multiple applications. For exam-
ple, you could use any of the code examples that come with this book by creating
a script library, and then directing your application to check in that library for
missing procedures. One way to structure a large application is to have a short
main script and a library of support scripts. The advantage of this approach is
that not all the Tcl code needs to be loaded to get the application started. Then,
as new features are accessed the code that implements them can be loaded.

If you are writing Tcl code that is designed to be used in a library, you need
to pay attention to some coding conventions. Because there is no formal module
system in Tcl, coding conventions have to be followed to avoid conflicts between
procedures and global variables used in different packages. This chapter
explains a simple coding convention for large Tcl programs.

The unknown Command

The Tcl library facility is made possible by the unknown command. Whenever the
Tcl interpreter encounters a command that it does not know about, it calls the
unknown command with the name of the missing command. The unknown com-
mand is implemented in Tcl, so you are free to provide your own mechanism to
handle unknown commands. This chapter describes the behavior of the default

90 Script Libraries Chap.9

Created: December 15, 1994 —Library.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

implementation of unknown, which can be found in the init.tcl file in the Tcl
library. The location of the library is returned by the info library command. In
order to bootstrap the library facility, the Tcl shells (tclsh and wish) invoke the
following Tcl command.

source [info library]/init.tcl

The tclIndex File

The unknown command uses an index to make the search for missing commands
fast. When you create a script library, you will have to generate the index that
records what procedures are defined in the library. The auto_mkindex procedure
creates the index, which is stored in a file named tclIndex that is kept in the
same directory as the files that make up the script library.

Suppose all the examples from this book are in the directory /usr/local/

tcl/welchbook. You can make the examples into a script library just by creating
the tclIndex file.

auto_mkindex /usr/local/tcl/welchbook *.tcl

You’ll need to update the tclIndex file if you add procedures or change any of
their names. A conservative approach to this is shown in the next example. It is
conservative because it recreates the index if anything in the library has
changed since the tclIndex file was last generated, whether or not the change
added or removed a Tcl procedure.

Example 9–1 Maintaining a tclIndex file.

proc Library_UpdateIndex { libdir } {
if ![file exists $libdir/tclIndex] {

set doit 1
} else {

set age [file mtime $libdir/tclIndex]
set doit 0
foreach file [glob $libdir/*.tcl] {

if {[file mtime $file] > $age} {
set doit 1
break

}
}

}
if { $doit } {

auto_mkindex $libdir *.tcl
}

}

Using A Library: auto_path

In order to use a script library you must inform the unknown command where to

 How Auto Loading Works 91

Created: December 15, 1994 —Library.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

look. It uses the auto_path variable to record a list of directories to search for
unknown commands. To continue our example, you can make the procedures in
the book examples available by putting this command at the beginning of your
scripts.

lappend auto_path /usr/local/tcl/welchbook

This has no effect if you have not created the tclIndex file. If you wanted to
be extra careful you can do also call Library_UpdateIndex. This will update the
index if you add new things to the library.

lappend auto_path /usr/local/tcl/welchbook

Library_UpdateIndex /usr/local/tcl/welchbook

This will not work if there is no tclIndex file at all because the unknown
procedure won’t be able to find the implementation of Library_UpdateIndex.
Once the tclIndex has been created for the first time, then this will ensure that
any new procedures added to the library will be installed into tclIndex. In prac-
tice, if you want this sort of automatic update it is wise to include something like
the Library_UpdateIndex file directly into your application as opposed to load-
ing it from the library it is supposed to be maintaining.

Disabling the library facility: auto_noload

If you do not want the unknown procedure to try and load procedures, you can
set the auto_noload variable to disable the mechanism.

set auto_noload anything

How Auto Loading Works

If you look at the contents of a tclIndex file you will find that it defines an array
named auto_index. One element of the array is defined for each procedure in the
script library. The value of the array element is a command that will define the
procedure. A line in the tclIndex file looks something like this.

set auto_index(Bind_Interface) "source $dir/bind_ui.tcl"

When the tclIndex file is read, the $dir gets substituted with the name of
the directory that contains the tclIndex file, so the result is a source command
that loads the file containing the Tcl procedure. The substitution is done with
eval, so you could build a tclIndex file that contained any commands at all and
count on $dir being defined properly. The next example is a simplified version of
the code that reads the tclIndex file.

Example 9–2 Loading a tclIndex file.

This is a simplified part of the auto_load
command that processes a tclIndex file.
Go throught auto_path from back to front
set i [expr [llength $auto_path]-1]
for {} {$i >= 0} {incr i -1} {

92 Script Libraries Chap.9

Created: December 15, 1994 —Library.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

set dir [lindex $auto_path $i]
if [catch {open $dir/tclIndex]} f] {

No index
continue

}
eval the file as a script. Because eval is
used instead of source, an extra round of
substitutions is performed and $dir get expanded
The real code checks for errors here.
eval [read $f]
close $f

}

The behavior of the auto_load facility is exploited by schemes that dynami-
cally link object code in order to define commands that are implemented in C. In
those cases the load Tcl command is used. This is not a standard command, yet,
because the details of dynamic linking vary considerably from system to system.

Interactive Conveniences

The unknown command provides a few other conveniences. These are only used
when you are typing commands directly. They are disabled once execution enters
a procedure or if the Tcl shell is not being used interactively. The convenience
features are automatic execution of programs, command history, and command
abbreviation. These options are tried, in order, if a command implementation
cannot be loaded from a script library.

Auto Execute

The unknown procedure implements a second feature: automatic execution
of external programs. This make a Tcl shell behave more like other UNIX shells
that are used to execute programs. The search for external programs is done
using the standard PATH environment variable that is used by other shells to find
programs. If you want to disable the feature all together, set the auto_noexec

variable.
set auto_noexec anything

History

The history facility described in Chapter 8 is implemented by the unknown

procedure.

Abbreviations

If you type a unique prefix of a command then unknown will figure that out
and execute the matching command for you. This is done after auto exec is

 Tcl Shell Library Environment 93

Created: December 15, 1994 —Library.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

attemped and history substitutions are performed.

Tcl Shell Library Environment

It may help to understand how the Tcl shells initialize their library environment.
The first toehold on the environment is made when the shells are compiled. At
that point the default pathname of the library directory is defined. For Tcl, this
pathname is returned by the info command:

info library

For Tk, the pathname is defined by the tk_library variable*. One of the
first things that a Tcl shell does is this:

source [info library]/init.tcl

The primary thing defined by init.tcl is the implementation of the
unknown procedure. For Tk, wish also does this:

source $tk_library/tk.tcl

This initializes the scripts that support the Tk widgets. There are still more
scripts, and they are organized as a library. So, the tk.tcl script sets up the auto_-
path variable so the Tk script library is accessible. It does this:

lappend auto_path $tk_library

To summarize, the bootstrap works as follows:

• The Tcl C library defines the pathname returned by the info library com-
mand, and this default can be overridden with the TCL_LIBRARY environ-
ment variable.

• The Tcl interpreter sources [info library]/init.tcl in order to define the
unknown command that implements the bulk of the library facility.

• The Tk C library defines a pathname and stores it into tk_library, a Tcl
variable. The default can be overridden with the Tk_LIBRARY environment
variable.

• The Tk interpreter sources init.tcl as above, and $tk_library/tk.tcl

• The Tk initialization script appends $tk_library to auto_path.

Normally these details are taken care of by the proper installation of the Tcl and
Tk software, but I find it helps to understand things when you see all the steps in
the initialization process.

Coding Style

If you supply a library then you need to follow some simple coding conventions to
make your library easier to use by other programmers. The main problem is that
there is no formal module system in Tcl, so you must follow some conventions to
* You can also override these settings with environment variables), TCL_LIBRARY and
TK_LIBRARY, but you shouldn’t have to resort to that.

94 Script Libraries Chap.9

Created: December 15, 1994 —Library.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

avoid name conflicts with other library packages and the main application.

A module prefix for procedure names

The first convention is to choose an identifying prefix for the procedures in
your package. For example, the preferences package in Chapter 28 uses Pref as
its prefix. All the procedures provided by the library begin with Pref. This con-
vention is extended to distinguish between private and exported procedures. An
exported procedure has an underscore after its prefix, and it is OK to call this
procedure from the main application or other library packages. Examples
include Pref_Add, Pref_Init, and Pref_Dialog. A private procedure is meant for
use only by the other procedures in the same package. Its name does not have
the underscore. Examples include PrefDialogItem and PrefXres.

A global array for state variables

You should use the same prefix on the global variables used by your pack-
age. You can alter the capitalization, just keep the same prefix. I capitalize proce-
dure names and use lowercase for variables. By sticking with the same prefix
you identify what variables belong to the package and you avoid conflict with
other packages.

In general I try to use a single global array for a package. The array pro-
vides a convenient place to collect together a set of related variables, much like a
struct is used in C. For example, the preferences package uses the pref array to
hold all its state information. It is also a good idea ot keep the use of the array
private. It is better coding practice to provide exported procedures than to let
other modules access your data structures directly. This makes it easier to
change the implementation of your package without affecting its clients.

If you do need to export a few key variables from your module, use the
underscore convention to distinquish exported variables too. If you need more
than one global variable, just stick with the prefix convention to avoid conflicts.

If you are dissapointed by the lack of real modules in Tcl, then you should
consider one of the object system extentions for Tcl. The [incr tcl] package
described in Chapter 32 provides classes that have their own scope for member
functions and instance variables.

95

C H A P T E R

Created: December 15, 1994 —TkIntro.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

 10

Tk Fundamentals 10

This chapter introduces the basic concepts used in the Tk toolkit for the X
window system. Tk adds about 35 Tcl commands that let you create and
manipulate widgets in a graphical user interface.

Tk is a toolkit for window programming.
It was been designed for the X window system, although ports to other window
systems are expected to appear soon. Tk shares many concepts with other win-
dowing toolkits, but you don’t need to know much about graphical user interfaces
to get started with Tk.

Tk provides a set of Tcl commands that create and manipulate widgets. A
widget is a window in a graphical user interface that has a particular appear-
ance and behavior. The terms widget and window are often used interchange-
ably. Widget types include buttons, scrollbars, menus, and text windows. Tk also
has a general purpose drawing widget called a canvas that lets you create
lighter-weight items like lines, boxes and bitmaps. The Tcl commands added by
the Tk extension are summarized at the end of this chapter.

The X window system supports a hierarchy of windows, and this is reflected
by the Tk commands, too. To an application, the window hierarchy means that
there is a primary window, and then inside that window there can be a number
of children windows. The children windows can contain more windows, and so
on. Just as a hierarchical file system has directories that are containers for files
and directories, a hierarchical window system uses windows as containers for
other windows. The hierarchy affects the naming scheme used for Tk widgets as
described below, and it is used to help arrange widgets on the screen.

Widgets are under the control of a geometry manager that controls their
size and location on the screen. Until a geometry manager learns about a widget,

96 Tk Fundamentals Chap.10

Created: December 15, 1994 —TkIntro.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

it will not be mapped onto the screen and you will not see it. There are a few dif-
ferent geometry managers you can use in Tk, although this book primarily uses
the packer. The main trick with any geometry manger is that you use frame wid-
gets as containers for other widgets. One or more widgets are created and then
arranged in a frame by a geometry manager. The packer is discussed in detail in
Chapter 12.

A Tk-based application has an event driven control flow, just as with most
window system toolkits. An event is handled by associating a Tcl command to
that event using the bind command. There are a large number of different
events defined by the X protocol, including mouse and keyboard events. Tk wid-
gets have default bindings so you do not have to program every detail yourself.
Bindings are discussed in detail in Chapter 13. You can also arrange for events to
occur after a specified period of time with the after command. The event loop is
implemented by the wish shell, or you can provide the event loop in your own C
program as described in Chapter 29.

Event bindings are structured into a simple hierarchcy of global bindings,
class bindings, and instance bindings. An example of a class is Button, which is
all the button widgets. The Tk toolkit provides the default behavior for buttons
as bindings on the Button class. You can supliment these bindings for an individ-
ual button, or define global bindings that apply to all bindings. You can even
introduce new binding classes in order to group sets of bindings together. The
binding hierarchy is controlled with the bindtags command.

A concept related to binding is focus. At any given time, one of the widgets
has the input focus, and keyboard events are directed to it. There are two gen-
eral approaches to focusing: give focus to the widget under the mouse, or explic-
itly set the focus to a particular widget. Tk provides commands to change focus
so you can implement either style of focus management. To support modal dialog
boxes, you can forcibly grab the focus away from other widgets. Chater 17
describes focus, grabs, and dialogs.

The basic structure of a Tk script begins by creating widgets and arranging
them with a geometry manager, and then binding actions to the widgets. After
the interpreter processes the commands that initialize the user interface, the
event loop is entered and your application begins running.

If you use wish interactively, it will create and display an empty main win-
dow and give you a command line prompt. With this interface, your keyboard
commands are handled by the event loop, so you can build up your Tk interface
gradually. As we will see, you will be able to change virtually all aspects of your
application interactively.

Hello World In Tk

Example 10–1 “Hello, World!” Tk program.

#!/usr/local/bin/wish -f
button .hello -text Hello \

 Hello World In Tk 97

Created: December 15, 1994 —TkIntro.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

-command {puts stdout “Hello, World!”}
pack .hello -padx 20 -pady 10

This three-line script creates a button that prints a message when you click
it. A picture of the interface is shown below. Above the button widget is a title
bar that is provided by the window manager, which in this case is twm.

The first line identifies the interpreter for the script.
#!/usr/local/bin/wish -f

 This special line is necessary if the script is in a file that will be used like
other UNIX command files. The -f flag is required in versions of Tk before 4.0.
Remember, on many UNIX systems the whole first line is limited to 32 characters,
including the #! and the -f.

The button command creates an instance of a button.
button .hello -text Hello \

-command {puts stdout “Hello, World!”}

=> .hello

The name of the button is .hello. The label on the button is Hello, and the
command associated with the button is:

puts stdout “Hello, World!”

The pack command maps the button onto the screen. Some padding param-
eters are supplied so there is space around the button.

pack .hello -padx 20 -pady 10

If you type these two commands into wish, you won’t see anything happen
when the button command is given. After the pack command, though, you will
see the empty main window shrink down to be just big enough to contain the but-
ton and its padding. The behavior of the packer will be discussed further in
Chapter 11 and Chapter12.

Tk uses an object-based system for creating and naming widgets. Associ-
ated with each class of widget (e.g., Button) is a command that creates instances
of that class of widget. As the widget is created, a new Tcl command is defined
that operates on that instance of the widget. The example creates a button
named .hello, and we can operate on the button using its name as a command.
For example, we can cause the button to highlight a few times:

.hello flash

Or, we can run the command associated with the button:
.hello invoke

=> Hello, World!

98 Tk Fundamentals Chap.10

Created: December 15, 1994 —TkIntro.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Naming Tk Widgets

The period in the name of the button instance, .hello, is required. Tk uses
a naming system for the widgets that reflects their position in a hierarchy of wid-
gets. The root of the hierarchy is the main window of the application, and its
name is simply “.”. This is similar to the naming convention for directories in
UNIX where the root directory is named “/”, and then / is used to separate com-
ponents of a file name. Tk uses “.” in the same way. Each widget that is a child
of the main window is named something like .foo. A child widget of .foo would
be .foo.bar, and so on. Just as file systems have directories that are containers
for files (and other directories), the Tk window hierarchy uses frame widgets
that are containers for widgets (and other frames).

There is one drawback to the Tk widget naming system. If your interface
changes enough it can result in some widgets changing their position in the wid-
get hierarchy, and hence having to change their name. You can insulate yourself
from this programming nuisance by using variables to hold the names of impor-
tant widgets. Use a variable reference instead of widget pathnames in case you
have to change things, or in case you want to reuse your code in a different inter-
face.

Configuring Tk Widgets

The example illustrates a style of named parameter passing that is preva-
lent in the Tk commands. Pairs of arguments are used to specify the attributes of
a widget. The attribute names begin with a -, such as -text, and the next argu-
ment is the value of that attribute. Even the simplest Tk widget can have a
dozen or more attributes that can be specified this way, and complex widgets can
have 20 or more attributes. However, the beauty of Tk is that you only need to
specify the attributes for which the default value is not good enough. This is
illustrated by the simplicity of this Hello, World example.

Finally, each widget instance supports a configure (often abbreviated to
config) operation that can query and change these attributes. The syntax for
config uses the same named argument pairs used when you create the widget.
For example, we can change the background color of the button to be red even
after it has been created and mapped onto the screen.

.hello config -background red

You can use configure to query the current value of an attribute by leaving
off the value. For example:

.hello config -background

=> -background background Background #ffe4c4 red

The returned information includes the command line switch, the resource
name, the class name, the default value, and the current value, which is last.
The class and resource name have to do with the X resource mechanism. In most
cases you just need the current value, and you can use the cget operation for

 About The Tk Man Pages 99

Created: December 15, 1994 —TkIntro.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

that.
.hello cget -background

=> red

Widgets attributes can be redefined any time, even the text and command
that were set when the button was created. The following command changes
.hello into a goodbye button:

.hello config -text Goodbye! -command exit

About The Tk Man Pages

The on-line manual pages that come with Tk provide a complete reference source
for the Tk commands. You should be able to use the UNIX man program to read
them.

% man button

There are a large number of attributes that are common across most of the
Tk widgets. These are described in a separate man page under the name
options. Each man page begins with a STANDARD OPTIONS section that lists
which of these standard attributes apply, but you have to look at the options

man page for the description.
Each attribute has three labels: its command-line switch, its name, and its

class. The command-line switch is the format you use in Tcl scripts. This form is
always all lowercase and prefixed with a hyphen (e.g., -offvalue).

The name and class have to do with X resource specifications. The resource
name for the attribute has no leading hyphen, and it has uppercase letters at
internal word boundaries (e.g., offValue). The resource class begins with an
upper case letter and has uppercase letters at internal word boundaries. (e.g.,
OffValue). You need to know these naming conventions if you specify widget
attributes via the X resource mechanism, which is described in more detail in
Chapter 27. In addition, the tables in this book list widget attributes by their
resource name because the command line switch can be derived from the
resource name by mapping it to all lowercase.

The primary advantage to using resources to specify attributes is that you
do not have to litter your code with attribute specifications. With just a few
resource database entries you can specify attributes for all your widgets. In addi-
tion, if attributes are specified with resources, users can provide alternate
resource specifications in order to override the values supplied by the applica-
tion. For attributes like colors and fonts, this feature can be important to users.

Summary Of The Tk Commands

The following two tables list the Tcl commands added by Tk. The first table
lists commands that create widgets. There are 15 different widgets in Tk,
although 4 of them are variations on a button, and 5 are devoted to different fla-

100 Tk Fundamentals Chap.10

Created: December 15, 1994 —TkIntro.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

vors of text display. The second table lists commands that manipulate widgets
and provide associated functions like input focus, event binding, and geometry
management. The page number in the table is the primary reference for the com-
mand, and there are other references in the index.

Table 10–1 Tk widget-creation commands

Command Pg. Description

button 145 Create a command button.

checkbutton 149 Create a toggle button that is linked to a Tcl variable.

radiobutton 149 Create one of a set of radio buttons that are linked to one
variable.

menubutton 153 Create a button that posts a menu.

menu 153 Create a menu.

canvas 227 Create a canvas, which supports lines, boxes, bitmaps,
images, arcs, text, polygons, and embedded widgets.

label 165 Create a read-only, one-line text label.

entry 180 Create a one-line text entry widget.

message 167 Create a read-only, multi-line text message.

listbox 183 Create a line-oriented, scrolling text widget.

text 212 Create a general purpose text widget.

scrollbar 172 Create a scrollbar that can be linked to another widget.

scale 169 Create a scale widget that adjusts the value of a variable.

frame 163 Create a container widget that is used with geometry man-
agers.

toplevel 163 Create a frame that is a new top level X window.

Table 10–2 Tk widget-manipulation commands

Command Pg. Description

after 259 Execute a command after a period of time elapses.

bell 176 Ring the X bell device.

bind 133 Bind a Tcl command to an X event.

bindtags 134 Create binding classes and control binding inheritence.

clipboard 255 Manipulate the X clipboard.

destroy 200 Delete a widget.

fileevent 260 Associate Tcl commands with file descriptors.

 Summary Of The Tk Commands 101

Created: December 15, 1994 —TkIntro.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

focus 195 Control the input focus.

grab 197 Steal the input focus from other widgets.

image 281 Create and manipulate images.

lower 132 Lower a window in the stacking order.

option 325 Access the Xresources database.

pack 130 The packer geometry manager.

place 130 The placer geometry manager.

raise 132 Raise a window in the stacking order.

selection 254 Manipulate the X PRIMARY selection.

send 261 Send a Tcl command to another Tk application.

tk 313 Query internal Tk state (e.g., the color model)

tkerror 87 Handler for background errors.

tkwait 198 Block awaiting an event.

update 200 Update the display by going through the event loop.

winfo 308 Query window state.

wm 303 Interact with the window manager.

Table 10–2 Tk widget-manipulation commands

102 Tk Fundamentals Chap.10

Created: December 15, 1994 —TkIntro.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

103

C H A P T E R

Created: March 15, 1994 —TkExamples.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

 11

Tk by Example 11

This chapter introduces Tk through a series of short examples.

Tk provides a quick and fun way to gen-
erate user interfaces. In this chapter we will go through a series of short example
programs in order to give you a feel for what you can do. Some details are glossed
over in this chapter and considered in more detail later. In particular, the pack-
ing geometry manager is covered in Chapter 12 and event bindings are discussed
in Chapter 13. The Tk widgets are discussed in more detail in later chapters.

ExecLog

Our first example provides a simple user interface to running a UNIX program.
The interface will consist of two buttons, Run it and Quit, an entry widget in
which to enter a command, and a text widget in which to log the results of run-
ning the program. The script runs the program in a pipeline and uses the
fileevent command to wait for output. This structure lets the user interface
remain responsive while the program executes. You could use this to run make,
for example, and it would save the results in the log. The complete example is
given first, and then its commands are discussed in more detail.

104 Tk by Example Chap.11

Created: March 15, 1994 —TkExamples.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Example 11–1 Logging the output of a UNIX program.

#!/usr/local/bin/wish -f
execlog - run a UNIX program and log the output

Set window title
wm title . ExecLog

Create a frame for buttons and entry.
frame .top -borderwidth 10
pack .top -side top -fill x

Create the command buttons.
button .top.quit -text Quit -command exit
set but [button .top.run -text "Run it" -command Run]
pack .top.quit .top.run -side right

Create a labeled entry for the command
label .top.l -text Command: -padx 0
entry .top.cmd -width 20 -relief sunken \

-textvariable command
pack .top.l -side left
pack .top.cmd -side left -fill x -expand true

Set up key binding equivalents to the buttons
bind .top.cmd <Return> Run
bind .top.cmd <Control-c> Stop
focus .top.cmd

Create a text widget to log the output
frame .t
set log [text .t.log -width 80 -height 10 \

-borderwidth 2 -relief raised -setgrid true \
-yscrollcommand {.t.scroll set}]

scrollbar .t.scroll -command {.t.log yview}
pack .t.scroll -side right -fill y
pack .t.log -side left -fill both -expand true

 ExecLog 105

Created: March 15, 1994 —TkExamples.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

pack .t -side top -fill both -expand true

Run the program and arrange to read its input
proc Run {} {

global command input log but
if [catch {open "|$command"} input] {

$log insert end $input\n
} else {

fileevent $input readable Log
$log insert end $command\n
$but config -text Stop -command Stop

}
}
Read and log output from the program
proc Log {} {

global input log
if [eof $input] {

Stop
} else {

gets $input line
$log insert end $line\n
$log see end

}
}
Stop the program and fix up the button
proc Stop {} {

global input but
catch {close $input}
$but config -text "Run it" -command Run

}

Window title

The first command sets the title that will appear in the title bar imple-
mented by the window manager. Recall that “.” is the name of the main window.

wm title . ExecLog

The wm command is used to communicate with the window manager. The
window manager is the program that lets you open, close, and resize windows. It
implements the title bar for the window and probably some small buttons to
close or resize the window. (Different window managers look different - the figure
shows a twm title bar.)

A frame for buttons, etc.

A frame is created to hold the widgets that appear along the top of the
interface. The frame has a border to provide some space around the widgets:

frame .top -borderwidth 10

The frame is positioned in the main window. The default packing side is the
top, so the -side top is redundant here, but used for clarity. The -fill x packing
option will make the frame fill out to the whole width of the main window.

106 Tk by Example Chap.11

Created: March 15, 1994 —TkExamples.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

pack .top -side top -fill x

Command buttons

Two buttons are created: one to run the command, the other to quit the pro-
gram. Their names, .top.quit and .top.run, imply that they are children of the
.top frame. This affects the pack command, which positions widgets inside their
parent by default.

button .buttons.quit -text Quit -command exit

set but [button .buttons.ping -text "Run it" \

-command Run]

pack .buttons.quit .buttons.ping -side right

A label and an entry

The label and entry are also created as children of the top frame. The
label is created with no padding in the X direction so it can be positioned right
next to the entry. The size of the entry is specified in terms of characters. The
relief attribute gives the entry some looks to set it apart visually on the display.
The contents of the entry widget are associated with the Tcl variable command.

label .top.l -text Command: -padx 0

entry .top.cmd -width 20 -relief sunken \

-textvariable command

The label and entry are positioned to the left inside the .top frame. The
additional packing parameters to the entry allow it to expand is packing space
and fill up that extra area with its display. The difference between packing space
and display space is discussed in Chapter 12.

pack .top.l -side left

pack .top.cmd -side left -fill x -expand true

Key bindings and focus

Key bindings are set up for the entry widget that provide an additional way
to invoke the functions of the application. The bind command associates a Tcl
command with an X event in a particular widget. The <Return> event is gener-
ated when the user presses the Return key on the keyboard. The <Control-c>

event is generated when the letter ‘c’ is typed while the Control key is already
held down. For the events to go to the entry widget, .top.cmd, input focus must
be given to the widget. By default, an entry widget gets the focus when you click
the left mouse button in it. The explicit focus command is helpful for users with
the focus-follows-mouse model. As soon as the mouse is over the main window
they can type into the entry.

bind .top.host <Return> Run

bind .top.cmd <Control-c> Stop

focus .top.cmd

 ExecLog 107

Created: March 15, 1994 —TkExamples.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

A resizable text and scrollbar

A text widget is created and packed into a frame along with a scrollbar.
The scrollbar is a separate widget in Tk, and it can be connected to a few differ-
ent widgets using the same setup as is used here. The text widget’s yscrollcom-
mand is used to update the display of the scrollbar when the text widget is
modified, and the scrollbar widget’s command is used to scroll the associated
widget when the user manipulates the scrollbar.

The setgrid attribute of the text widget is turned on. This has two effects.
The most important is that it allows interactive resizing of the main window. By
default, a Tk window is not resizable interactively, although it can always be
resized under program control. The other effect of gridding is to restrict the
resize so that only a whole number of lines and average sized characters can be
displayed.

frame .t

set log [text .t.log -width 80 -height 10 \

-borderwidth 2 -relief raised -setgrid true\

-yscrollcommand {.t.scroll set}]

scrollbar .t.scroll -command {.t.log yview}

pack .t.scroll -side right -fill y

pack .t.log -side left -fill both -expand true

pack .t -side top -fill both -expand true

 A side effect of creating a Tk widget is the creation of a new Tcl command
that operates on that widget. The name of the Tcl command is the same as the
Tk pathname of the widget. In this script, the text widget command, .t.log, will
be needed in several places. However, it is a good idea to put the Tk pathname of
an important widget into a variable because that pathname can change if you
reorganize your user interface. The disadvantage of this is that you must declare
the variable as a global inside procedures. The variable log is used for this pur-
pose in this example to demonstrate this style.

The Run proc

The Run procedure starts the UNIX program specified in the command
entry. That value is available via the global command variable because of the tex-

tvariable attribute of the entry. The command is run in a pipeline so that it exe-
cutes in the background. The catch command is used to guard against bogus
commands. The variable input will be set to an error message, or to the normal
open return that is a file descriptor. A trick is used so that the error output of the
program is captured. The program is started like this:

if [catch {open "|$command |& cat"} input] {

The leading | indicates that a pipeline is being created. If cat is not used
like this, then the error output from the pipeline, if any, shows up as an error
message when the pipeline is closed. In this example it turns out to be awkward
to distinguish between errors generated from the program and errors generated

108 Tk by Example Chap.11

Created: March 15, 1994 —TkExamples.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

because of the way the Stop procedure is implemented. Furthermore, some pro-
grams interleave output and error output, and you might want to see the error
output in order instead of all at the end.

If the pipeline is opened successfully, then a callback is setup using the
fileevent command. Whenever the pipeline generates output then the script
can read data from it. The Log procedure is registered to be called whenever the
pipeline is readable.

fileevent $input readable Log

The command (or the error message) is inserted into the log. This is done
using the name of the text widget, which is stored in the log variable, as a Tcl
command. The value of the command is appended to the log, and a newline is
added so its output will appear on the next line.

$log insert end $command\n

The text widget’s insert function takes two parameters: a mark and a
string to insert at that mark. The symbolic mark end represents the end of the
contents of the text widget.

The run button is changed into a stop button after the program is started.
This avoids a cluttered interface and demonstrates the dynamic nature of a Tk
interface. Again, because this button is used in a few different places in the
script, its pathname has been stored in the variable but.

$but config -text Stop -command Stop

The Log procedure

The Log procedure is invoked whenever data can be read from the pipeline,
and end-of-file has been reached. This condition is checked first, and the Stop

procedure is called to clean things up. Otherwise, one line of data is read and
inserted into the log. The text widget’s see operation is used to position the view
on the text so the new line is visible to the user.

if [eof $input] {

Stop

} else {

gets $input line

$log insert end $line\n

$log see end

}

The Stop procedure

The Stop procedure terminates the program by closing the pipeline. This
results in a signal, SIGPIPE, being delivered to the program the next time it does
a write to its standard output. The close is wrapped up with a catch. This sup-
presses the errors that can occur when the pipeline is closed prematurely on the
process. Finally, the button is restored to its run state so that the user can run
another command.

 The Example Browser 109

Created: March 15, 1994 —TkExamples.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

catch {close $input}

$but config -text "Run it" -command Run

In most cases, closing the pipeline is adequate to kill the job. If you really
need more sophisticated control over another process, you should check out the
expect Tcl extension, which is described briefly in Chapter 32 on page 391.

The Example Browser

The next example is an initial version of a browser for the code examples that
appear in this book. The basic idea is to provide a menu that selects the exam-
ples, and a text window to display the examples. Because there are so many
examples, a cascaded menu is set up to group the examples by the chapter in
which they occur.

Example 11–2 A browser for the code examples in the book.

#!/project/tcl/src/brent/wish
browse0.tcl --
Browser for the Tcl and Tk examples in the book.
Version 0

The directory containing all the tcl files
set browse(dir) /tilde/welch/doc/tclbook/examples

Set up the main display
wm minsize . 30 5
wm title . "Tcl Example Browser, v0"

frame .menubar
pack .menubar -fill x
button .menubar.quit -text Quit -command exit
pack .menubar.quit -side right

A label identifies the current example
label .menubar.label -textvariable browse(current)
pack .menubar.label -side right -fill x -expand true

Look through the .tcl files for the keywords
that group the examples.
foreach f [glob $browse(dir)/*.tcl] {

if [catch {open $f} in] {
puts stderr "Cannot open $f: $in"
continue

}
while {[gets $in line] >= 0} {

if [regexp -nocase {^# ([^]+) chapter} $line \
x keyword] {

lappend examples($keyword) $f
close $in
break

}

110 Tk by Example Chap.11

Created: March 15, 1994 —TkExamples.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

}
}
Create the menubutton and menu
menubutton .menubar.ex -text Examples -menu .menubar.ex.m
pack .menubar.ex -side left
set m [menu .menubar.ex.m]

Create a cascaded menu for each group of examples
set i 0
foreach key [lsort [array names examples]] {

$m add cascade -label $key -menu $m.sub$i
set sub [menu $m.sub$i -tearoff 0]
incr i
foreach item [lsort $examples($key)] {

$sub add command -label [file tail $item] \
-command [list Browse $item]

}
}

Create the text to display the example
frame .body
text .body.t -setgrid true -width 80 -height 25 \

-yscrollcommand {.body.s set}
scrollbar .body.s -command {.body.t yview} -orient vertical
pack .body.s -side left -fill y
pack .body.t -side right -fill both -expand true
pack .body -side top -fill both -expand true
set browse(text) .body.t

Display a specified file. The label is updated to
reflect what is displayed, and the text is left
in a read-only mode after the example is inserted.
proc Browse { file } {

global browse
set browse(current) [file tail $file]
set t $browse(text)
$t config -state normal
$t delete 1.0 end
if [catch {open $file} in] {

$t insert end $in
} else {

$t insert end [read $in]
close $in

}
$t config -state disabled

}

More about resizing windows

This example uses the wm minsize command to put a constraint on the min-
imum size of the window. The arguments specify the minimum width and height.
These values can be interpreted in two ways. By default they are pixel values.
However, if an internal widget has enabled geometry gridding, then the dimen-

 The Example Browser 111

Created: March 15, 1994 —TkExamples.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

sions are in grid units of that widget. In this case the text widget enables grid-
ding with its setgrid attribute, so the minimum size of the window will be set so
that the text window is at least 30 characters wide by 5 lines high.

wm minsize . 30 5

The other important side effect of setting the minimum size is that it
enables interactive resizing of the window. Interactive resizing is also enabled if
gridding is turned on by an interior widget, or if the maximum size is con-
strained with the wm maxsize command.

Managing global state

The example uses the browse array to collect its global variables. This
makes it simpler to reference the state from inside procedures because only the
array needs to be declared global. As the application grows over time and new
features are added, that global command won’t have to be adjusted. This style
also serves to emphasize what variables are important.

The example uses the array to hold the name of the example directory
(dir), the Tk pathname of the text display (text), and the name of the current
file (current).

Searching through files

The browser searches the file system to determine what it can display. It
uses glob to find all the Tcl files in the example directory. Each file is read one
line at a time with gets, and then regexp is used to scan for keywords. The loop
is repeated here for reference.

foreach f [glob $browse(dir)/*.tcl] {
if [catch {open $f} in] {

puts stderr "Cannot open $f: $in"
continue

}
while {[gets $in line] >= 0} {

if [regexp -nocase {^# ([^]+) chapter} $line \
x keyword] {

lappend examples($keyword) $f
close $in
break

}
}

}

The example files contain lines like this:
Canvas chapter

The regexp picks out the keyword Canvas with the ([^]+) part of the pat-
tern, and this gets assigned to the keyword variable. The x variable gets assigned
the value of the whole match, which is more than we are interested in. Once the
keyword is found the file is closed and the next file is searched. At the end of the

112 Tk by Example Chap.11

Created: March 15, 1994 —TkExamples.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

foreach loop the examples array has an element defined for each chapter key-
word, and the value of each element is a list of the files that had examples for
that chapter.

Cascaded menus

The values in the examples array are used to build up a cascaded menu
structure. First a menubutton is created that will post the main menu. It is asso-
ciated with the main menu with its menu attribute. The menu is created, and it
must be a child of the menu button for the menu display to work properly.

menubutton .menubar.ex -text Examples \
-menu .menubar.ex.m

set m [menu .menubar.ex.m]

For each example a cascade menu entry is added to the menu and the asso-
ciated menu is defined. Once again, the submenu is defined as a child of the main
menu. The submenu gets filled out with command entries that browse the file.
Note the inconsistency with menu entries. Their text is defined with the -label

option, not -text. Other than this they are much like buttons. Chapter 14
describes menus in more detail.

set i 0
foreach key [lsort [array names examples]] {

$m add cascade -label $key -menu $m.sub$i
set sub [menu $m.sub$i -tearoff 0]
incr i
foreach item [lsort $examples($key)] {

$sub add command -label [file tail $item] \
-command [list Browse $item]

}
}

The Browse proc

The Browse procedure is fairly simple. It sets browse(current) to be the
name of the file. This changes the main label because of its textvariable

attribute that ties it to this variable. The state attribute of the text widget is
manipulated so that the text is read-only after the text is inserted. You have to
set the state to normal before inserting the text, otherwise the insert has no
effect. Later enhancements to the browser will relax its read-only nature. Here
are a few commands from the body of Browse.

global browse
set browse(current) [file tail $file]
$t config -state normal
$t insert end [read $in]
$t config -state disabled

 A Tcl Shell 113

Created: March 15, 1994 —TkExamples.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

A Tcl Shell

This section demonstrates the text widget with a simple Tcl shell application.
Instead of using some other terminal emulator, it provides its own terminal envi-
ronment using a text widget. You can use the Tcl shell as a sandbox in which to
try out Tcl examples. The browser can too, by sending Tcl commands to the shell.
Because the shell is a separate program, the browser is insulated from crashes.
The shell and the browser are hooked together in Chapter 21.

Example 11–3 A Tcl shell in a text widget.

#!/project/tcl/src/brent/wish
Simple evaluator. It executes Tcl in its own interpreter
and it uses up the following identifiers.
Tk widgets:
.eval - the frame around the text log
Procedures:
_Eval - the main eval procedure
Variables:
prompt - the command line prompt
_t - holds the ID of the text widget

A frame, scrollbar, and text
frame .eval
set _t [text .eval.t -width 80 -height 20 \

-yscrollcommand {.eval.s set}]
scrollbar .eval.s -command {.eval.t yview}
pack .eval.s -side left -fill y
pack .eval.t -side right -fill both -expand true
pack .eval -fill both -expand true

Insert the prompt and initialize the limit mark
.eval.t insert insert "Tcl eval log\n"
set prompt "tcl> "
.eval.t insert insert $prompt
.eval.t mark set limit insert
.eval.t mark gravity limit left
focus .eval.t

Key bindings that limit input and eval things
bind .eval.t <Return> { _Eval .eval.t ; break }
bind .eval.t <Any-Key> {

if [%W compare insert < limit] {
%W mark set insert end

}
}
bindtags .eval.t {.eval.t Text all}

proc _Eval { t } {
global prompt _debug
set command [$t get limit end]
if [info complete $command] {

set err [catch {uplevel #0 $command} result]

114 Tk by Example Chap.11

Created: March 15, 1994 —TkExamples.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

if {$_debug} {
 puts stdout "$err: $result\n"
}
$t insert insert \n$result\n
$t insert insert $prompt
$t see insert
$t mark set limit insert
return

}
}

Naming issues

This example uses some funny names for variables and procedures. This is
a crude attempt to limit conflicts with the commands that you will type at the
shell. The comments at the beginning explain what identifiers are used by this
script. With a small amount of C programing you can easily introduce multiple
Tcl interpreters into a single process to avoid problems like this. There have been
some extensions published on the net that provide this capability at the Tcl level.
(ref minterp extension)

Text marks and bindings

The shell uses a text mark and some extra bindings to ensure that users
only type new text into the end of the text widget. The limit mark keeps track of
the boundary between the read-only area and the editable area. The mark is
used in two ways. First, the _Eval procedure looks at all the text between limit

and end to see if it is a complete Tcl command. If it is, it evaluates it at the global
scope using uplevel #0. Second, the <Any-Key> binding checks to see where the
insert point is, and bounces it to the end if the user tries to input text before the
limit mark. Chapter 18 describes the text widget and its mark facility in more
detail.

115

C H A P T E R

Created: December 15, 1994 —Packer.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

 12

The Pack Geometry Manager 12

This chapter explores the pack geometry manager that is used to position
widgets on the screen. The place geometry manager is also briefly
described.

Geometry managers arrange widgets on
the screen. There are a few different geometry managers, and you can use differ-
ent ones to control different parts of your user interface. This book primarily
uses the pack geometry manager, which is a constraint-based system. Tk also
provides the place geometry manager, which is discussed briefly at the end of
this chapter. Another interesting geometry manager is the table geometry man-
ager provided as part of the BLT extension package, which is reviewed in Chapter
32.

A geometry manager uses one widget as a parent, and it arranges multiple
children (also called slaves) inside the parent. The parent is almost always a
frame, but this is not strictly necessary. A widget can only be managed by one
geometry manager at a time. If a widget is not managed, then it doesn’t appear
on your display at all.

The packer is a powerful constraint-based geometry manager. Instead of
specifying in detail the placement of each window, the programmer defines some
constraints about how windows should be positioned, and the packer works out
the details. It is important to understand the algorithm used by the packer, oth-
erwise the constraint-based results may not be what you expect.

This chapter explores the packer through a series of examples. We will start
with a simple widget framework and then modify its layout to demonstrate how
the packer works. The background of the main window is set to black, and the
other frames are given different colors so you can identify frames and observe

116 The Pack Geometry Manager Chap.12

Created: December 15, 1994 —Packer.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

the effect of the different packing parameters.

Packing towards a side

Example 12–1 Two frames packed inside the main frame.

Make the main window black
. config -bg black
Create and pack two frames
frame .one -width 40 -height 40 -bg white
frame .two -width 100 -height 100 -bg grey50
pack .one .two -side top

The example creates two frames and packs them towards the top side of the
main window. The upper frame, .one, is not as big and the main window shows
through on either side. The children are packed towards the specified side in
order, so .one is on top. The four possible side are top, right, bottom, and left.
The top side is the default.

Shrinking frames and pack propagate

Note that the main window has shrunk down to be just large enough to
hold its two children. In most cases this is the desired behavior. If it isn’t you can
turn it off with the pack propagate command. Apply this to the parent frame,
and it will not adjust its size to fit its children.

Example 12–2 Turning off geometry propagation.

frame .one -width 40 -height 40 -bg white

 Horizontal And Vertical Stacking 117

Created: December 15, 1994 —Packer.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

frame .two -width 100 -height 100 -bg grey50
pack propagate . false
pack .one .two -side top

Horizontal And Vertical Stacking

In general you should stick with either horizontal or vertical stacking
within a frame. If you mix sides such as left and top, the effect might not be
what you expect. Instead, you should introduce more frames to pack a set of wid-
gets into a stack of a different orientation. For example, suppose we want to put
a row of buttons inside the upper frame in the examples we have given so far.

Example 12–3 A horizontal stack inside a vertical stack.

frame .one -bg white
frame .two -width 100 -height 50 -bg grey50
Create a row of buttons
foreach b {alpha beta gamma} {

button .one.$b -text $b
pack .one.$b -side left

}
pack .one .two -side top

You can build up more complex arrangements by introducing nested frames
and switching between horizontal and vertical stacking as you go. Within each
frame pack all the children with either a combination of -side left and -side

right, or -side top and -side bottom.

Example 12–4 Even more nesting of horizontal and vertical stacks.

frame .one -bg white
frame .two -width 100 -height 50 -bg grey50
foreach b {alpha beta} {

button .one.$b -text $b
pack .one.$b -side left

}

118 The Pack Geometry Manager Chap.12

Created: December 15, 1994 —Packer.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Create a frame for two more buttons
frame .one.right
foreach b {delta epsilon} {

button .one.right.$b -text $b
pack .one.right.$b -side bottom

}
pack .one.right -side right
pack .one .two -side top

This example replaces the .one.gamma button with a vertical stack of two
buttons, .one.right.delta and .one.right.epsilon. These are packed towards
the bottom of .one.right, so the first one packed is on the bottom.

The frame .one.right was packed to the right, and in the previous exam-
ple the button .one.gamma was packed to the left. In spite of the difference, they
ended up in the same position relative to the other two widgets packed inside the
.one frame. The next section explains why.

The Cavity Model

The packing algorithm is based on a cavity model for the available space
inside a frame. For example, when the main wish window is created, the main
frame is empty and there is an obvious space, or cavity, in which to place wid-
gets. The primary rule about the cavity is that a widget occupies one whole side
of the cavity. To demonstrate this, pack three widgets into the main frame. Put
the first two on the bottom, and the third one on the right.

Example 12–5 Mixing bottom and right packing sides.

pack two frames on the bottom.
frame .one -width 100 -height 50 -bg grey50
frame .two -width 40 -height 40 -bg white
pack .one .two -side bottom
pack another frame to the right
frame .three -width 20 -height 20 -bg red
pack .three -side right

 When we pack a third frame into the main window with -side left or -

side right, then the new frame is positioned inside the cavity, which is above
the two frames already packed toward the bottom side. The frame does not
appear to the right of the existing frames as you might have expected. This is

 Packing Space and Display Space 119

Created: December 15, 1994 —Packer.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

because the .two frame occupies the whole bottom side of the packing cavity,
even though its display does not fill up that side.

Can you tell where the packing cavity is after this example? It is to the left
of the frame .three, which is the last frame packed towards the right, and it is
above the frame .two., which is the last frame packed towards the bottom. This
explains why there was no difference between the previous two examples when
.one.gamma was packed to the left side, but .one.right was packed to the right.
At that point, packing to the left or right of the cavity had the same effect. How-
ever, it will affect what happens if another widget is packed into those two con-
figurations. Try out the following commands after running Example 12–3 and
Example 12–4 and compare the difference.*

button .one.omega -text omega

pack .one.omega -side right

Each packing parent has its own cavity, which is why introducing nested
frames can help. If you stick with a horizontal or vertical arrangement inside
any given frame, you can more easily simulate the packer’s behavior in you head!

Packing Space and Display Space

The packer distinguishes between packing space and display space when it
arranges the widgets. The display space is the area requested by a widget for the
purposes of painting itself. The packing space is the area allowed by the packer
for the placement of the widget. Because of geometry constraints, a widget may
be allocated more (or less) packing space than it needs to display itself. The extra
space, if any, is along the side of the cavity against which the widget was packed.

The -fill option

The -fill packing option causes a widget to fill up the allocated packing
space with its display. A widget can fill in the X or Y direction, or both. The
default is not to fill, which is why the black background of the main window has
shown through in the examples so far.

Example 12–6 Filling the display into extra packing space.

frame .one -width 100 -height 50 -bg grey50

* Answer: After Example 12–3 the new button is to the right of all buttons. After Example 12–
4 the new button is in between .one.beta and .one.right.

120 The Pack Geometry Manager Chap.12

Created: December 15, 1994 —Packer.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

frame .two -width 40 -height 40 -bg white
Pack with fill enabled
pack .one .two -side bottom -fill x
pack another frame to the right
The fill has no effect
frame .three -width 20 -height 20 -bg red
pack .three -side right -fill x

This is just like the previous example, except that -fill x has been speci-
fied for all the frames. The .two frame fills, but the .three frame does not. This
is because the fill will not expand into the packing cavity. In fact, after this exam-
ple, the packing cavity is the part that shows through in black. Another way to
look at this is that the .two frame was allocated the whole bottom side of the
packing cavity, so its fill can expand the frame to occupy that space. The .three

frame has only been allocated the right side, so a fill in the x direction will not
have any effect.

Another use of fill is for a menu bar that has buttons at either end and some
empty space between them. The frame that holds the buttons is packed towards
the top and fill is enabled in the X direction. Then, buttons can be packed into
the left and right sides of the menubar frame. Without the fill, the menubar
would shrink to be just large enough to hold all the buttons, and the buttons
would be squeezed together.

Example 12–7 Using horizontal fill in a menubar.

frame .menubar -bg white
frame .body -width 150 -height 50 -bg grey50
Create buttons at either end of the menubar
foreach b {alpha beta} {

button .menubar.$b -text $b
}
pack .menubar.alpha -side left
pack .menubar.beta -side right
Let the menu bar fill along the top
pack .menubar -side top -fill x
pack .body

Internal padding with -ipadx and -ipady

Another way to get more fill space is with the -ipadx and -ipady packing
options that request more display space in the x and y directions, respectively.
Due to other constraints the request might not be offered, but in general you can

 Packing Space and Display Space 121

Created: December 15, 1994 —Packer.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

use this to give a widget more display space. The next example is just like the
previous one except that some internal vertical padding has been added.

122 The Pack Geometry Manager Chap.12

Created: December 15, 1994 —Packer.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Example 12–8 The effects of internal padding (-ipady).

Create and pack two frames
frame .menubar -bg white
frame .body -width 150 -height 50 -bg grey50
Create buttons at either end of the menubar
foreach b {alpha beta} {
 button .menubar.$b -text $b
}
pack .menubar.alpha -side left -ipady 10
pack .menubar.beta -side right -ipadx 10
Let the menu bar fill along the top
pack .menubar -side top -fill x -ipady 5
pack .body

The alpha button is taller and the beta button is wider because of the inter-
nal padding. With a frame the internal padding reduces the space available for
the packing cavity, so the .menubar frame shows through above and below the
buttons.

Some widgets have attributes that result in more display space. It would be
hard to distinguish a frame with width 50 and no internal padding from a frame
with width 40 and a -ipadx 5 packing option. The packer would give the frame 5

more pixels of display space on either side for a total width of 50.
Buttons have their own -padx and -pady options that give them more dis-

play space, too. The padding provided by the button is used to keep its text away
from the edge of the button. The following example illustrates the difference. The
-anchor e button option positions the text as far to the right as possible. Chapter
14 describes buttons and their attributes in more detail.

Example 12–9 Button padding vs. packer padding.

Foo has internal padding from the packer
button .foo -text Foo -anchor e -padx 0 -pady 0
pack .foo -side right -ipadx 10 -ipady 10
Bar has its own padding
button .bar -text Bar -anchor e -pady 10 -padx 10
pack .bar -side right -ipadx 0 -ipady 0

 Expand And Resizing 123

Created: December 15, 1994 —Packer.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

External padding with -padx and -pady

The packer can provide external padding that allocates packing space that
cannot be filled. The space is outside of the border that widgets use to implement
their 3D reliefs. Example 22–2 on page 273 shows the different reliefs. The look
of a default button is achieved with an extra frame and some padding.

Example 12–10 The look of a default button.

. config -borderwidth 10
OK is the default button
frame .ok -borderwidth 2 -relief sunken
button .ok.b -text OK
pack .ok.b -padx 5 -pady 5
Cancel is not
button .cancel -text Cancel
pack .ok .cancel -side left -padx 5 -pady 5

Even if the .ok.b button were packed with -fill both, it would look the
same. The external padding provided by the packer will not be filled by the child
widgets.

Expand And Resizing

The -expand true packing option lets a widget expand its packing space
into unclaimed space in the packing cavity. Example 12–6 could use this on the
small frame on top to get it to expand across the top of the display, even though it
is packed to the right side. The more common case occurs when you have a resiz-
able window. When the user makes the window larger, the widgets have to be
told to take advantage of the extra space. Suppose you have a main widget like a
text, listbox, or canvas that is in a frame with a scrollbar. That frame has to
be told to expand into the extra space in its parent (e.g., the main window) and
then the main widget (e.g., the canvas) has to be told to expand into its parent
frame. Example 11–1 does this.

In nearly all cases the -fill both option is used along with -expand true

so that the widget actually uses its extra packing space for its own display. The
converse is not true. There are many cases where a widget should fill extra
space, but not attempt to expand into the packing cavity. The examples below
show the difference.

The main window can be made larger by interactive resizing, or under pro-
gram control with the wm geometry command. By default interactive resizing is

124 The Pack Geometry Manager Chap.12

Created: December 15, 1994 —Packer.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

not enabled. You must use the wm minisize or wm maxsize commands which
have the side effect of enabling interactive resizing. These commands place con-
straints on the size of the window. The text, canvas, and listbox widgets also
have a setgrid attribute that, if enabled, makes the main window resizable.
Chapter 24 describes geometry gridding.

Now we can investigate what happens when the window is made larger.
The next example starts like Example 12–7 but the size of the main window is
increased.

Example 12–11 Resizing without the expand option.

Make the main window black
. config -bg black
Create and pack two frames
frame .menubar -bg white
frame .body -width 150 -height 50 -bg grey50
Create buttons at either end of the menubar
foreach b {alpha beta} {

button .menubar.$b -text $b
}
pack .menubar.alpha -side left
pack .menubar.beta -side right
Let the menu bar fill along the top
pack .menubar -side top -fill x
pack .body
Resize the main window to be bigger
wm geometry . 200x100
Allow interactive resizing
wm minsize . 100 50

The only widget that claims any of the new space is .menubar because of its
-fill x packing option. The .body frame needs to be packed properly.

Example 12–12 Resizing with expand turned on.

Use all of Example 12–11 then repack .body

 Anchoring 125

Created: December 15, 1994 —Packer.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

pack .body -expand true -fill both

If more than one widget inside the same parent is allowed to expand, then
the packer shares the extra space between them proportionally. This is probably
not the effect you want in the examples we have built so far. The .menubar, for
example is not a good candidate for expansion.

Example 12–13 More than one expanding widget.

Use all of Example 12–11 then repack .menubar and .body
pack .menubar -expand true -fill x
pack .body -expand true -fill both

Anchoring

If a widget is left with more packing space than display space, then you can
position within its packing space using the -anchor packing option. The default
is -anchor center. The other options correspond to points on a compass: n, ne,
e, se, s, sw, s, nw.

Example 12–14 Setup for anchor experiments.

Make the main window black
. config -bg black
Create two frames to hold open the cavity
frame .prop -bg white -height 80 -width 20
frame .base -width 120 -height 20 -bg grey50
pack .base -side bottom
Float a label and the prop in the cavity
label .foo -text Foo
pack .prop .foo -side right -expand true

The .base frame is packed on the bottom. Then the .prop frame and the
.foo label are packed to the right with expand set but no fill. Instead of being

126 The Pack Geometry Manager Chap.12

Created: December 15, 1994 —Packer.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

pressed up against the right side, the expand gives each of these widgets half of
the extra space in the X direction. Their default anchor of center results in the
position shown. The next example shows some different anchor positions.

Example 12–15 The effects of non-center anchors.

Make the main window black
. config -bg black
Create two frames to hold open the cavity
frame .prop -bg white -height 80 -width 20
frame .base -width 120 -height 20 -bg grey50
pack .base -side bottom
Float the label and prop
Change their position with anchors
label .foo -text Foo
pack .prop -side right -expand true -anchor sw
pack .foo -side right -expand true -anchor ne

The label has room on all sides, so each of the different anchors will posi-
tion the it differently. The .prop frame only has room in the X direction, so it can
only be moved into three different positions: left, center, and right. Any of the
anchors w, nw, and sw will result in the left position. The anchors center, n, and s

will result in the center position. The anchors e, se, and ne will result in the
right position.

If you want to see all the variations, type in the following commands to ani-
mate the different packing anchors. The update idletasks forces any pending
display operations. The after 500 causes the script to wait for 500 milliseconds.

Example 12–16 Animating the packing anchors

foreach anchor {center n ne e se s sw w nw center} {
pack .foo .prop -anchor $anchor
Update the display
update idletasks
Wait half a second
after 500

}

Packing Order

The packer maintains an order among the children that are packed into a

 Packing Order 127

Created: December 15, 1994 —Packer.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

frame. By default, each new child is appended to the end of the packing order.
The most obvious effect of the order is that the children first in the packing order
are closest to the side they are packed against. You can control the packing order
with the -before and -after packing options, and you can reorganize widgets
after they have already been packed.

Example 12–17 Controlling the packing order.

Create five labels in order
foreach label {one two three four five} {

label .$label -text $label
pack .$label -side left

}
ShuffleUp moves a widget to the beginning of the order
proc ShuffleUp { parent child } {

set first [lindex [pack slaves $parent] 0]
pack $child -in $parent -before $first

}
ShuffleUp moves a widget to the end of the order
proc ShuffleDown { parent child } {

pack $child -in $parent
}
ShuffleUp . .five
ShuffleDown . .three

pack slaves and pack info

The pack slaves command returns the list of children in their packing
order. The ShuffleUp procedure uses this to find out the first child so it can
insert another child before it. The ShuffleDown procedure is easier because the
default is to append the child to the end of the packing order.

When a widget is repacked, then it retains all its packing parameters that
have already been set. If you need to examine the current packing parameters
for a widget use the pack info command.

pack info .five

=> -in . -anchor center -expand 0 -fill none -ipadx 0 \

-ipady 0 -padx 0 -pady 0 -side left

Pack the scrollbar first

The packing order also determines what happens when the window is made
too small. If the window is made small enough the packer will clip children that
come later in the packing order. It is for this reason that when you pack a
scrollbar and a text widget into a frame, pack the scrollbar first. Otherwise

128 The Pack Geometry Manager Chap.12

Created: December 15, 1994 —Packer.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

when the window is made smaller the text widget will take up all the space and
the scrollbar will be clipped.

Choosing The Parent For Packing

In nearly all of the examples in this chapter a widget is packed into its par-
ent frame. In general, it is possible to pack a widget into any descendent of its
parent. For example, the .a.b widget could be packed into .a, .a.c or .a.d.e.f.
The -in packing option lets you specify an alternate packing parent. One motiva-
tion for allowing this is that the frames introduced to get the arrangement right
can cause cluttered names for important widgets. In Example 12–4 the buttons
have names like .one.alpha and .one.right.delta, which is not that consis-
tent. Here is an alternate implementation of the same example that simplifies
the button pathnames and gives the same result.

Example 12–18 Packing into other relatives.

Create and pack two frames
frame .one -bg white
frame .two -width 100 -height 50 -bg grey50
Create a row of buttons
foreach b {alpha beta} {

button .$b -text $b
pack .$b -in .one -side left

}
Create a frame for two more buttons
frame .one.right
foreach b {delta epsilon} {

button .$b -text $b
pack .$b -in .one.right -side bottom

}
pack .one.right -side right
pack .one .two -side top

When you do this, remember that the order in which you create widgets is
important. Create the frames first, then create the widgets. The X stacking order
for windows will cause the later windows to obscure the windows created first.
The following is a common mistake.

button .a -text hello
frame .b
pack .a -in .b

If you cannot avoid this problem scenario, then you can use the raise com-
mand to fix things up.

raise .a

 Unpacking a Widget 129

Created: December 15, 1994 —Packer.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Unpacking a Widget

The pack forget command removes a widget from the packing order. The widget
gets unmapped so it is not visible. A widget can only be managed by one parent,
so you have to unpack it before moving the widget into another location. Unpack-
ing a widget can also be useful if you want to suppress extra features of your
interface. You can create all the parts of the interface, and just delay packing
them in until the user requests to see them. If you unpack a parent frame, the
packing structure inside it is maintained, but all the widgets inside the frame
get unmapped.

Packer Summary

Keep these rules of thumb about the packer in mind.

• Pack vertically (-side top and -side bottom) or horizontally (-side left
and -side right) within a frame. Only rarely will a different mixture of
packing directions work out the way you want. Add frames in order to build
up more complex structures.

• By default, the packer puts widgets into their parent frame, and the parent
frame must be created before the children that will be packed into it.

• If you put widgets into other relatives, remember to create the frames first
so the frames stay underneath the widgets packed into them.

• By default, the packer ignores -width and -height attributes of frames that
have widgets packed inside them. It shrinks frames to be just big enough to
allow for its borderwidth and to hold the widgets inside them. Use pack

propagate to turn off the shrink wrap behavior.
• The packer distinguishes between packing space and display space. A wid-

get’s display might not take up all the packing space allocated to it.
• The -fill option causes the display to fill up the packing space in the x or y

directions, or both.
• The -expand true option causes the packing space to expand into any room

in the packing cavity that is otherwise unclaimed. If more than one widget
in the same frame wants to expand, then they share the extra space.

• The -ipadx and -ipady options allocate more display space inside the bor-
der, if possible.

• The -padx and -pady options allocate more packing space outside the bor-
der, if possible.

130 The Pack Geometry Manager Chap.12

Created: December 15, 1994 —Packer.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

The pack Command

Table 12–1 summarizes the pack command. Refer to the examples in the
chapter for more detailed explanations of each command.

Table 12–2 summarizes the packing options for a widget. These are set with the
pack configure command, and the current settings are returned by the pack

info command.

The Place Geometry Manager

The place geometry manager is much simpler than the packer. You specify the
exact position and size of a window, or you specify the relative position and rela-
tive size of a widget. This is useful in a few situations, but it rapidly becomes

Table 12–1 A summary of the pack command.

pack win ?win ..? ?options? This is just like pack configure.

pack configure win ?win
...? ?options?

Pack one or more widgets according to the
options, which are given in the next table.

pack forget win ?win...? Unpack the specified windows.

pack info win Return the packing parameters of win.

pack propagate win ?bool? Query or set the geometry propagation of win,
which has other widgets packed inside it.

pack slaves win Return the list of widgets managed by win.

Table 12–2 Packing options.

-after win Pack after win in the packing order.

-anchor anchor center n ne e se s sw s nw

-before win Pack before win in the packing order.

-expand boolean Control expansion into the unclaimed packing cavity.

-fill style Control fill of packing space. style is: x y both none

-in win Pack inside win.

-ipadx amount Horizontal internal padding, in screen units.

-ipady amount Vertical internal padding, in screen units.

-padx amount Horizontal external padding, in screen units.

-pady amount Vertical external padding, in screen units.

-side side top right bottom left

 The Place Geometry Manager 131

Created: December 15, 1994 —Packer.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

tedious if you have to position lots of windows. The following place command
centers a window in its parent. I use this command to position dialogs that I
don’t want to be detached top-level windows.

place $w -in $parent -relx 0.5 -rely 0.5 -anchor center

The -relx and -rely specify the relative X and Y position of the anchor
point of the widget $w in $parent. The value is a number between zero and one,
so 0.5 specifies the middle. The anchor point determines what point in $w is posi-
tioned according to the specifications. In this case the center anchor point is
used so that the center of $w is centered in $parent. The default anchor point for
windows is their upper-left hand corner (nw).

It is not necessary for $parent to actually be the parent widget of $w. The
requirement is that $parent be the parent, or a descendent of the parent, of $w. It
also has to be in the same toplevel window. This guarantees that $w is visible
whenever $parent is visible. The following command positions a window five pix-
els above a sibling widget. If $sibling is repositioned, then $w moves with it.

place $w -in $sibling -relx 0.5 -y -5 -anchor s \

-bordermode outside

The -bordermode outside option is specified so that any decorative border
in $sibling is ignored when positioning $w. In this case the position is relative to
the outside edge of $sibling. By default, the border is taken into account to
make it easy to position widgets inside their parent’s border.

You do not have to place a widget inside a frame, either. I use the first place
command shown above to place a dialog in the middle of a text widget. In the
second command, $sibling and $w might both be label widgets, for example.

The place Command

Table 12–1 summarizes the usage of the place command.

Table 12–4 summarizes the placement options for a widget. These are set
with the place configure command, and the current settings are returned by
the place info command.

Table 12–3 A summary of the place command.

place win ?win ..?
?options?

This is just like place configure.

place configure win ?win
...? ?options?

Place one or more widgets according to the
options, which are given in the next table.

place forget win ?win...? Unmap the windows

place info win Return the placement parameters of win.

place slaves win Return the list of widgets managed by win.

132 The Pack Geometry Manager Chap.12

Created: December 15, 1994 —Packer.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Window Stacking Order

The raise and lower commands are used to control the X window stacking order.
X has a window hierarchy,and the stacking order controls the relative position of
sibling windows. By default, the stacking order is determined by the order that
windows are created. Newer widgets are higher in the stacking order so they
obscure older siblings. Consider this sequence of commands.

button .one

frame .two

pack .one -in .two

If you do this, you will not see the button. The problem is that the frame is
higher in the stacking order so it obscures the button. You can change the stack-
ing order with the raise command.

raise .one .two

This puts .one just above .two in the stacking order. If .two was not speci-
fied, then .one would be put at the top of the stacking order.

The lower command has a similar form. With one argument it puts that
window at the bottom of the stacking order. Otherwise it puts it just below
another window in the stacking order.

You can use raise and lower on toplevel windows to control their stacking
order among all other toplevel windows. For example, if a user requests a dialog
that is already displayed, use raise to make it pop to the foreground of their
cluttered X desktop.

Table 12–4 Placement options.

-in win Place inside (or relative to) win.

-anchor where nw n ne e se s sw s center. nw is the default.

-x coord X position, in screen units, of the anchor point.

-relx offset Relative X position. 0.0 is the left edge. 1.0 is the right edge.

-y coord Y position, in screen units, of the anchor point.

-rely offset Relative Y position. 0.0 is the top edge. 1.0 is the bottom edge.

-width size Widget of the window, in screen units.

-relwidth size Width relative to parent’s width. 1.0 is full width.

-height isze Height of the window, in screen units.

-relheight size Height relative to the parent’s height. 1.0 is full height.

-bordermode mode If mode is inside, then size and position is inside the par-
ent’s border. If mode is outside, then size and position are
relative to the outer edge of the parent.

133

C H A P T E R

Created: December 15, 1994 —Binding.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

 13

Binding Commands to X Events13

This chapter introduces the event binding mechanism in Tk. Bindings
associated a Tcl command with an event like a mouse click or a key
stroke.

Bindings associate a Tcl command with
an event from the X window system. Events include key press, key release, but-
ton press, button release, mouse entering a window, mouse leaving, window
changing size, window open, window close, focus in, focus out, and widget
destroyed. These event types, and more, will be described in more detail in this
chapter.

The bind Command

The bind command returns information about current bindings, and it defines
new bindings. Called with a single argument, a widget or class identifier, bind
returns the events for which there are command bindings.

bind Menubutton

=> <Key-Return> <Key-space> <ButtonRelease-1>

<B1-Motion> <Motion> <Button-1> <Leave> <Enter>

These events are button-related events. <Button-1> for example, is the
event generated when the user presses the first, or left-hand, mouse button. <B1-
Motion> is a mouse motion event modified by the first mouse button. This event
is generated when the user drags the mouse with the left button pressed. The
event syntax will be described in more detail below.

If bind is given a key sequence argument then it returns the Tcl command

134 Binding Commands to X Events Chap.13

Created: December 15, 1994 —Binding.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

bound to that sequence:
bind Menubutton <B1-Motion>

=> tkMbMotion %W down %X %Y

The Tcl commands in event bindings support an additional syntax for event
keywords. These keywords begin with a percent and have one more character
that identifies some attribute of the event. The keywords are replaced (i.e., sub-
stituted) with event-specific data before the Tcl command is evaluated. %W is
replaced with the widget’s pathname. The %X and %Y keywords are replaced with
the coordinates of the event relative to the screen. The %x and %x keywords are
replaced with the coordinates of the event relative to the widget. The event key-
words are summarized below.

The % substitutions are performed throughout the entire command bound to
an event, without regard to other quoting schemes. You have to use %% to obtain a
single percent. For this reason you should make your binding commands short,
adding a new procedure if necessary instead of littering percent signs through-
out your code.

All, Class, And Widget Bindings

A hierarchy of binding information determines what happens when an event
occurs. The default behavior of the Tk widgets are determined by class bindings.
You can add bindings on a particular instance of a widget to supplement the
class bindings. You can define global bindings by using the all keyword. The
default ordering among bindings is to execute the global bindings first, then the
class bindings, and finally the instance bindings.

Example 13–1 The binding hierarchy.

frame .one -width 30 -height 30
frame .two -width 30 -height 30
bind all <Control-c> {destroy %W}
bind all <Enter> {focus %W}
bind Frame <Enter> {%W config -bg red}
bind Frame <Leave> {%W config -bg white}
bind .two <Any-Button> {puts "Button %b at %x %y"}
focus default .
pack .one .two -side left

The example defines bindings at all three levels in the hierarchy. At the glo-
bal level a handler for <Control-c> is defined. Because this is a keystroke, it is
important to get the focus directed at the proper widget. Otherwise the main
window has the focus, and the destroy command will destroy the entire applica-
tion. In this case moving the mouse into a widget gives it the focus. If you prefer
click-to-type, bind to <Any-Button> instead of <Enter>.

At the class level the Frame class is set up to change its appearance when
the mouse moves into the window. At the instance level one of the frames is set

 All, Class, And Widget Bindings 135

Created: December 15, 1994 —Binding.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

up to report the location of mouse clicks.
The class for a widget is derived from the name of the command that cre-

ates it. A button widget has the class Button, a canvas has the class Canvas, and
so on. You can define bindings for pseudo-classes as described below, which is
useful for grouping bindings into different sets.

The bindtags command

The bindtags command controls the binding hierarchy, and with it you can
specify one or more pseudo-classes as a source of bindings. One way to emulate
the vi editor, for example, is to have two sets of bindings, one for insert mode and
one for command mode.

bind InsertMode <Any-Key> {%W insert insert %A}

bind InsertMode <Escape> {bindtags %W {all CommandMode}}

bind CommandMode <Key-i> {bindtags %W {all InsertMode}}

Of course, you need to define many more bindings to fully implement all the
vi commands. In this case the bindtags command has also simplified the binding
hierarchy to include just global bindings and the mode-specific bindings. If it
made sense, you could also reorder the hierarchy so that the global bindings
were executed last, for example. The order that the tags appear in the bindtags

command determines the order in which bindings are triggered.

break and continue in bindings

If you want to completely override the bindings for a particular widget you
can use the break command inside the event handler. This stops the progression
through the hierarchy of bindings. This works at any level, so a particular class
could suppress global bindings.

The continue command in a binding stops the current binding and contin-
ues with the command from the next level in the binding hierarchy.

Note that you cannot use the break or continue commands inside a proce-
dure that is called by the binding. This restriction is necessary because the pro-
cedure mechanism will not propogate the break. You would have to use the
return -code break command to signal the break from within a procedure.

A note about bindings in earlier versions of Tk

In versions of Tk 3.6 and earlier, only one source of bindings for an event is used.
If there is a binding on a widget instance for an event sequence, that binding
overrides any class-specific or global bindings for that event sequence. Similarly,
if there is a class-specific binding, then that overrides a global binding. You must
be careful if you modify the bindings on a widget if you do not want to disable the
default behavior. The following trick in Tk 3.6 (and earlier) ensures that the
class-specific binding is executed before the new binding.

bind .list <Button-1> “[bind Listbox <Button-1>] ; Doit”

136 Binding Commands to X Events Chap.13

Created: December 15, 1994 —Binding.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Event Syntax

The bind command uses the following syntax to describe events.
<modifier-modifier-type-detail>

The primary part of the description is the type, e.g. Button or Motion. The
detail is used in some events to identify keys or buttons, .e.g. Key-a or
Button-1. A modifier is another key or button that is already pressed when the
event occurs, e.g., Control-Key-a or B2-Motion. There can be multiple modifiers,
like Control-Shift-x.

The surrounding angle brackets are used to delimit a single event. The
bind command allows a binding to a sequence of events, so some grouping syntax
is needed. If there are no brackets, then the event defaults to a KeyPress event,
and all the characters specify keys in a sequence. Sequences are described in
more detail on page 141.

 The following table briefly mentions all the event types. More information
can be found on these events in the Event Reference section of the Xlib Reference
Manual.

Table 13–1 Event types. Comma-separated types are equivalent.

ButtonPress, Button A button is pressed (down).

ButtonRelease A button is released (up).

Circulate The window has had its stacking order change.

Colormap The colormap has changed.

Configure The window has changed size, position, border, or stack-
ing order.

Destroy The window has been destroyed.

Enter The mouse has entered the window.

Expose The window has been exposed.

FocusIn The window has received focus.

FocusOut The window has lost focus.

Gravity The window has moved because of a change in size of its
parent window.

Keymap The keyboard mapping has changed.

KeyPress, Key A key is pressed (down).

KeyRelease A key is released (up).

Motion The mouse is moving in the window.

Leave The mouse is leaving the window.

Map The window has been mapped (opened).

 Key Events 137

Created: December 15, 1994 —Binding.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

The most commonly used events are key presses, button presses, and
mouse motion. The Enter and Leave events indicate when the mouse enters a
widget. The Map and UnMap events let an application respond to the open and
close of the window. The Configure event is useful with a canvas if the display
needs to be changed when the window resizes. The remaining events in the table
have to do with dark corners of the X protocol, and they are seldom used.

Key Events

The KeyPress type is distinguished from KeyRelease so that you can have
different bindings for each of these events. KeyPress can be abbreviated Key, and
Key can be left off altogether if a detail is given to indicate what key. Finally, as a
special case for KeyPress events, the angle brackets can also be left out. The fol-
lowing are all equivalent event specifications.

<KeyPress-a>

<Key-a>

<a>

a

The detail for a key is also known as the keysym, which is an X technical
term that refers to the graphic printed on the key of the keyboard. For punctua-
tion and non-printing characters, special keysyms are defined. Commonly
encountered keysyms include (note capitalization):

Return, Escape, BackSpace, Tab, Up, Down, Left, Right,
comma, period, dollar, asciicircum, numbersign, exclam

The full list of definitions of these keysyms is buried inside an X11 header
file, and it can also be affected by a dynamic keyboard map, the X modmap. You
may find the next binding useful to determine just what the keysym for a partic-
ular key is on your system.*

bind $w <KeyPress> {puts stdout {%%K=%K %%A=%A}}

The %K keyword is replaced with the keysym from the event. The %A is
replaced with the printing character that results from the event and any modifi-
ers like Shift. The %% is replaced with a single percent sign. Note that these sub-
stitutions occur in spite of the curly braces used for grouping. If the user types a
capital Q, the output is:
* Use <Any-KeyPress> in versions of Tk before 4.0 so that extra modifiers do not prevent the
event from matching.

Property A property on the window has been changed or deleted.

Reparent A window has been reparented.

Unmap The window has been unmapped (iconified).

Visibility The window has changed visibility.

Table 13–1 Event types. Comma-separated types are equivalent.

138 Binding Commands to X Events Chap.13

Created: December 15, 1994 —Binding.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

%K=Shift_R %A={}

%K=Q %A=”Q”

In the first line with %K=Shift_R the {} indicates a NULL, a zero-valued byte,
which is generated when modifier keys are pressed. The NULL can be detected in
<KeyPress> bindings to avoid doing anything if only a modifier key is pressed.
The following might be used with an entry widget.

bind $w <KeyPress> {

if {%A != {}} {%W insert insert %A}

}

Button Events

Button events also distinguish between ButtonPress, (or Button), and But-

tonRelease. Button can be left off if a detail specifies a button by number. The
following are equivalent:

<ButtonPress-1>

<Button-1>

<1>

Note: the event <1> implies a ButtonPress event, while the event 1 implies
a KeyPress event.

The mouse is tracked by binding to the Enter, Leave, and Motion events.
Enter and Leave are triggered when the mouse comes into and exits out of the
widget, respectively. A Motion event is generated when the mouse moves within
a widget.

The coordinates of the mouse event are represented by the %x and %y key-
words in the binding command. The coordinates are widget-relative, with the ori-
gin at the upper-left hand corner of a widget’s window. The keywords %X and %Y

represent the coordinates relative to the root window.
bind $w <Enter> {puts stdout “Entered %W at %x %y”}

bind $w <Leave> {puts stdout “Left %W at %x %y”}

bind $w <Motion> {puts stdout “%W %x %y”}

Other Events

The <Map> and <Unmap> events are generated when a window is opened and
closed, or when a widget is packed or unpacked by its geometry manager.

The <Configure> event is generated when the window changes size. A can-
vas that computes its display based on its size can bind a redisplay procedure to
the <Configure> event, for example. The <Configure> event can be caused by
interactive resizing. It can also be caused by a configure -width widget com-
mand that changes the size of the widget. In general you should not reconfigure
a widget’s size while processing a <Configure> event to avoid an indefinite
sequence of these events.

 Modifiers 139

Created: December 15, 1994 —Binding.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

The <Destroy> event is generated when a widget is destroyed. (See also the
description of the wm command. It is possible to register Tcl commands to handle
various messages from the window manager.)

Chapter 17 presents some examples that use the <FocusIn> and <Focu-
sOut> events.

Modifiers

A modifier indicates that another key or button is being held down at the time of
the event. Typical modifiers are the Shift and Control keys. The mouse buttons
can also be used as modifiers. If an event does not specify any modifiers, then the
presence of a modifier key is ignored by the event dispatcher. However, if there
are two possible matching events then the more accurate match will be used.

For example, consider these three bindings:
bind $w <KeyPress> {puts "key=%A"}

bind $w <Key-c> {puts "just a c"}

bind $w <Control-Key-c> {exit}

The last event is more specific than the others, and its binding will be trig-
gered when the user types c with the Control key held down. If the user types c

with the Meta key held down, then the second binding will be triggered. The Meta

key is ignored because it doesn’t match any binding. If the user types something
other than a c, then the first binding will be triggered. If the user presses the
Shift key, then the keysym that is generated will be C, not c, so the last two
events will not match.

There are 8 modifier keys defined by the X protocol. The Control, Shift,
and Lock modifiers are found on nearly all keyboards. The Meta and Alt modifi-
ers tend to vary from system to system, and they may not be defined at all. They
are commonly mapped to be the same as Mod1 or Mod2, and Tk will try to deter-
mine how things are set up for you. The remaining modifiers, Mod3 through Mod5,
are sometimes mapped to other special keys. Table 13–2 summarizes the modi-
fiers.

Table 13–2 Event modifiers.

Control The Control key.

Shift The shift key.

Lock The caps-lock key.

Meta, M Defined to be the modifier (M1 through M5) that is
mapped to the Meta_L and Meta_R keysyms.

Alt Defined to be the modifier mapped to Alt_L and Alt_R.

Mod1, M1 The first modifier.

Mod2,M2,Alt The second modifier.

140 Binding Commands to X Events Chap.13

Created: December 15, 1994 —Binding.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

The UNIX xmodmap program will return the current mappings from keys
to these modifiers. The first column of its output lists the modifier. The rest of
each line identifies the keysym(s) and low-level keycodes that are mapped to
each modifier. The xmodmap program can also be used to change the mapping.

Example 13–2 Output from the UNIX xmodmap program.

xmodmap: up to 3 keys per modifier,
(keycodes in parentheses):

shift Shift_L (0x6a), Shift_R (0x75)
lock Caps_Lock (0x7e)
control Control_L (0x53)
mod1 Meta_L (0x7f), Meta_R (0x81)
mod2 Mode_switch (0x14)
mod3 Num_Lock (0x69)
mod4 Alt_L (0x1a)
mod5 F13 (0x20), F18 (0x50), F20 (0x68)

The button modifiers, B1 through B5, are most commonly used with the
Motion event to distinguish different mouse dragging operations.

The Double and Triple events match on repetitions of an event within a
short period of time. These are commonly used with mouse events. The main
thing to be careful with is that the binding for the regular press event will match
on the first press of the Double. Then the command bound to the Double event
will match on the second press. Similarly, a Double event will match on the first
two presses of a Triple event. Verify this by trying out the following bindings:

bind . <1> {puts stdout 1}

bind . <Double-1> {puts stdout 2}

bind . <Triple-1> {puts stdout 3}

Mod3,M3 Another modifier.

Mod4, M4 Another modifier.

Mod5, M5 Another modifier.

Button1, B1 The first mouse button (left).

Button2, B2 The second mouse button (middle).

Button3, B3 The third mouse button (right).

Button4, B4 The fourth mouse button.

Button5, B5 The fifth mouse button.

Double Matches double press event.

Triple Matches triple press event.

Any Matches any combination of modifiers.

Table 13–2 Event modifiers.

 Event Sequences 141

Created: December 15, 1994 —Binding.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Your bindings have to take into consideration that more than one command
could result from a Double or Triple event. This effect is compatible with an
interface that selects an object with the first click, and then operates on the
selected object with a Double event. In an editor, character, word, and line selec-
tion on a single, double and triple click, respectively, is a good example.*

Events in Tk 3.6 and earlier

In earlier versions of Tk, before version 4.0, extra modifier keys prevented
events from matching. If you wanted your bindings to be liberal about what mod-
ifiers were in effect, you had to use the Any modifier. This modifier is a wild card
that matches if zero or more modifiers are in effect. You can still use Any in Tk
4.0 scripts, but it has no effect.

Event Sequences

The bind command accepts a sequence of events in a specification, and most
commonly this is a sequence of key events.

bind . a {puts stdout A}

bind . abc {puts stdout C}

With these bindings in effect, both bindings will be executed when the user
types abc. The binding for a will be executed when a is pressed, even though this
event is also part of a longer sequence. This is similar to the behavior with Dou-

ble and Triple event modifiers. For this reason you have to be careful when
binding sequences. One trick is to put a null binding on the keypress used as the
prefix of a command sequence.

bind $w <Control-x> { }

bind $w <Control-x><Control-s> Save

bind $w <Control-x><Control-c> Quit

The null command for <Control-x> ensures that nothing happens until the
command sequence is completed. This trick is embodied by BindSequence in the
next example. If a sequence is detected, then a null binding is added for the pre-
fix. The procedure also supports the emacs convention that <Meta-x> is equiva-
lent to <Escape>x. This convention arose because Meta is not that standard
across keyboards. The regexp command is used to pick out the detail from the
<Meta> event.

Example 13–3 Emacs-like binding convention for Meta and Escape.

proc BindSequence { w seq cmd } {
bind $w $seq $cmd

* If you really want to disable this, you can experiment with using after to postpone process-
ing of one event The time constant in the bind implementation of <Double> is 500 millisec-
onds. At the single click event, schedule its action to occur after 600 milliseconds, and verify at
that time that the <Double> event has not occurred.

142 Binding Commands to X Events Chap.13

Created: December 15, 1994 —Binding.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Double-bind Meta-key and Escape-key
if [regexp {<Meta-(.*)>} $seq match letter] {

bind $w <Escape><$letter> $cmd
}
Make leading keystroke harmless
if [regexp {(<.+>)<.+>} $seq match prefix] {

bind $w $prefix { }
}

}

Event Keywords

The keyword substitutions are described in the table below. Remember that
these substitutions occur throughout the command, regardless of other Tcl quot-
ing conventions. Keep your binding commands short, introducing procedures if
needed. For the details about various event fields, consult the Xlib Reference
Manual. The string values for the keyword substitutions are listed after a short
description of the keyword. If no string values are listed, the keyword has an
integer value like a coordinate or window ID. The events applicable to the key-
word are listed last, in parentheses.

Table 13–3 A summary of the event keywords.

%% Use this to get a single percent sign.

%# The serial number for the event.

%a The above field from the event. (Configure)

%b Button number. (ButtonPress, ButtonRelease)

%c The count field. (Expose, Map)

%d The detail field.
NotifyAncestor, NotifyNonlinearVirtual, NotifyDetailNone,
NotifyPointer, NotifyInferior, NotifyPointerRoot, Noti-
fyNonlinear, NotifyVirtual. (Enter, Leave, FocusIn, FocusOut)

%f The focus field (0 or 1). (Enter, Leave)

%h The height field. (Configure, Expose)

%k The keycode field. (KeyPress, KeyRelease)

%m The mode field. NotifyNormal, NotifyGrab, NotifyUngrab, Notify-
WhileGrabbed. (Enter, Leave, FocusIn, FocusOut)

%o The override_redirect field. (Map, Reparent, Configure)

%p The place field. PlaceOnTop, PlaceOnBottom. (Circulate,)

 Event Keywords 143

Created: December 15, 1994 —Binding.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

%s The state field. A decimal string. (ButtonPress, ButtonRelease,
Enter, Leave, KeyPress, KeyRelease, Motion)
VisibilityUnobscured, VisibilityPartiallyObscured, Visi-
bilityFullyObscured. (Visibility)

%t The time field.

%v The value_mask field. (Configure)

%w The width field. (Configure, Expose)

%x The x coordinate, widget relative.

%y The y coordinate, widget relative.

%A The ASCII character from the event, or NULL. (KeyPress, KeyRelease)

%B The border_width field. (Configure)

%D The display field.

%E The send_event field.

%K The keysym from the event. (KeyPress, KeyRelease)

%N The keysym as a decimal number. (KeyPress, KeyRelease)

%R The root window ID.

%S The subwindow ID.

%T The type field.

%W The Tk pathname of the widget receiving the event.

%X The x_root field. Relative to the (virtual) root window. (ButtonPress,
ButtonRelease, KeyPress, KeyRelease, Motion)

%Y The y_root field. Relative to the (virtual) root window. (ButtonPress,
ButtonRelease, KeyPress, KeyRelease, Motion)

Table 13–3 A summary of the event keywords.

144 Binding Commands to X Events Chap.13

Created: December 15, 1994 —Binding.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

145

C H A P T E R

Created: March 15, 1994 —ButtonMenu.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

 14

Buttons and Menus 14

Buttons and menus are the primary way that applications expose functions to
users. This chapter describes how to create and manipulate buttons and
menus.

A button is a classic Tk widget because it
is associated with a Tcl command that invokes an action in the application. The
checkbutton and radiobutton widgets affect an application indirectly by con-
trolling a Tcl variable. A menu elaborates on this concept by organizing button-
like items into related sets, including cascaded menus. The menubutton widget is
a special kind of button that displays a menu when you click on it.

Associating a command to a button is often quite simple, as illustrated by
the Tk Hello World example:

button .hello -command {puts stdout “Hello, World!}

This chapter describes a few useful techniques for setting up the commands
in more general cases. If you use variables inside button commands, you have to
understand the scoping rules that apply. This is the first topic of the chapter.
Once you get scoping figured out, then the other aspects of buttons and menus
are quite straight-forward.

Button Commands and Scope Issues

Perhaps the trickiest issue with button commands has to do with variable
scoping. A button command is executed at the global scope, which is outside of
any procedure. If you create a button while inside a procedure, then the button
command will execute in a different scope later. This can be a source of confu-

146 Buttons and Menus Chap.14

Created: March 15, 1994 —ButtonMenu.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

sion. A related issue is that when you define a button you may want the values of
some variables as they are when the button is defined, while you want the value
of other variables as they are when the button is used. I think of this as the
“now” and “later” scopes. Again, when these two “scopes” are mixed, it can be
confusing.

The next example illustrates the problem. The button command is an
expression that includes the variable x that is defined in the global scope, and
val that is defined locally. This mixture makes things awkward.

Example 14–1 A troublesome button command.

proc Trouble {args} {
set b 0
label .label -textvariable x
set f [frame .buttons -borderwidth 10]
foreach val $args {

button $f.$b -text $val \
-command “set x \[expr \$x * $val\]”

pack $f.$b -side left
incr b

}
pack .label $f

}
set x 1
Trouble -1 4 7 36

The example uses a label widget to display the current value of x. The tex-

tvariable attribute is used so that the label displays the current value of the
variable, which is always a global variable. The button’s command is executed at
the global scope, so it updates the global variable x.

The definition of the button command is ugly, though. The value of the loop
variable val is needed when the button is defined, but the rest of the substitu-
tions need to be deferred until later. The variable substitution of $x and the com-
mand substitution of expr are suppressed by quoting with backslashes.

set x \[expr \$x * $val\]

In contrast, the following command will assign a constant expression to x

each time the button is clicked, and it depends on the current value of x, which
not defined in the version of Trouble above:

button $f.$b -text $val \

 Button Commands and Scope Issues 147

Created: March 15, 1994 —ButtonMenu.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

-command “set x [expr $x * $val]”

Another incorrect approach is to quote the whole command with braces.
This defers too much, preventing the value of val from being used at the correct
time.

The general technique for dealing with these sorts of scoping problems is to
introduce Tcl procedures for use as the button commands. The troublesome
example given above can be cleaned up by introducing a little procedure to
encapsulate the expression.

Example 14–2 Fixing up the troublesome situation.

proc LessTrouble { args } {
set b 0
label .label -textvariable x
set f [frame .buttons -borderwidth 10]
foreach val $args {

button $f.$b -text $val \
-command “UpdateX $val”

pack $f.$b -side left
incr b

}
pack .label $f

}
proc UpdateX { val } {

global x
set x [expr $x * $val]

}
set x 1
LessTrouble -1 4 7 36

It may seem just like extra work to introduce the helper procedure, Upda-
teX. However, it makes the code clearer in two ways. First, you do not have to
struggle with backslashes to get the button command defined correctly. Second,
the code is much clearer about the function of the button. It’s job is to update the
global variable x.

Double quotes are used in the button command to allow $val to be substi-
tuted. Whenever you use quotes like this, you have to be aware of the possible
values for the substitutions. If you are not careful, the command you create may
not be parsed correctly. The safest way to generate the command is with the list
procedure:

button $f.$b -text $val -command [list UpdateX $val]

The use of list ensures that the command is a list of two elements, Upda-
teX and the value of val. This is important because UpdateX only takes a single
argument. If val contained white space then the resulting command would be
parsed into more words than you expected. Of course, in this case we plan to
always call LessTrouble with a set of numbers, which do not contain white space.

The next example provides a more straight-forward application of proce-
dures for button commands. In this case the advantage of the procedure Max-

148 Buttons and Menus Chap.14

Created: March 15, 1994 —ButtonMenu.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

LineLength is that it creates a scope for the local variables used during the
button action. This ensures that the local variables do not accidentally conflict
with global variables used elsewhere in the program. There is also the standard
advantage of a procedure, which is that you may find another use for the action
in another part of your program.

Example 14–3 A button associated with a Tcl procedure.

proc MaxLineLength { file } {
set max 0
if [catch {open $file} in] {

return $in
}
foreach line [split [read $in] \n] {

set len [string length $line]
if {$len > $max} {

set max $len
}

}
return “Longest line is $max characters”

}
Create an entry to accept the file name,
a label to display the result
and a button to invoke the action
. config -borderwidth 10
entry .e -width 30 -bg white -relief sunken
button .doit -text “Max Line Length” \

-command {.label config -text [MaxLineLength [.e get]]}
label .label -text “Enter file name”
pack .e .doit .label -side top -pady 5

The example is centered around the MaxLineLength procedure. This opens
a file and loops over the lines finding the longest one. The file open is protected
with catch in case the user enters a bogus file name. In that case, the procedure
returns the error message from open. Otherwise the procedure returns a mes-
sage about the longest line in the file. The local variables in, max, and len are
hidden inside the scope of the procedure.

 Buttons Associated with Tcl Variables 149

Created: March 15, 1994 —ButtonMenu.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

The user interface has three widgets, an entry for user input, the button,
and a label to display the result. These are packed into a vertical stack, and the
main window is given a borderwidth so things look OK. Obviously this simple UI
can be improved in several ways. There is no Quit button, for example.

All the action happens in the button command:
.label config -text [MaxLineLength [.e get]]

Braces are used when defining the button command so that the command
substitutions all happen when the button is clicked. The value of the entry wid-
get is obtained with .e get. This value is passed into MaxLineLength, and the
result is configured as the text for the label. This command is still a little com-
plex for a button command. For example, suppose you wanted to invoke the same
command when the user pressed <Return> in the entry. You would end up
repeating this command in the entry binding. It might be better to introduce a
one-line procedure to capture this action so it is easy to bind the action to more
than one user action. Here is how that might look:

proc Doit {} {

.label config -text [MaxLineLength [.e get]]

}

button .doit -text “Max Line Length” -command Doit

bind .e <Return> Doit

Chapter 13 describes the bind command in detail, and Chapter 15 describes
the label widget, and Chapter 16 describes the entry widgets.

Buttons Associated with Tcl Variables

The checkbutton and radiobutton widgets are associated with a Tcl variable.
When one of these buttons is clicked, a value is assigned to the Tcl variable. In
addition, if the variable is assigned a value elsewhere in the program, the
appearance of the check or radio button is updated to reflect the new value. A set
of radiobuttons all share the same variable. The set represents a choice among
mutually exclusive options. In contrast, each checkbutton has its own variable.

The ShowChoices example uses a set of radiobuttons to display a set of
mutually exclusive choices in a user interface. The ShowBooleans example uses
checkbuttons.

150 Buttons and Menus Chap.14

Created: March 15, 1994 —ButtonMenu.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Example 14–4 Radio and Check buttons.

proc ShowChoices { parent varname args } {
set f [frame $parent.choices -borderwidth 5]
set b 0
foreach item $args {

radiobutton $f.$b -variable $varname \
-text $item -value $item

pack $f.$b -side left
incr b

}
pack $f -side top

}
proc ShowBooleans { parent args } {

set f [frame $parent.choices -borderwidth 5]
set b 0
foreach item $args {

checkbutton $f.$b -text $item -variable $item
pack $f.$b -side left
incr b

}
pack $f -side top

}
set choice kiwi
ShowChoices {} choice apple orange peach kiwi strawberry
set Bold 1 ; set Italic 1
ShowBooleans {} Bold Italic Underline

The ShowChoices procedure takes as arguments the parent frame, the
name of a variable, and a set of possible values for that variable. If the parent
frame is null, {}, then the interface is packed into the main window.
ShowChoices creates a radiobutton for each value, and it puts the value into the
text of the button. It also has to specify the value to assign to the variable when
the button is clicked. The default value is the name of the button, which would be
the value of b in the example. Another way to define the radiobuttons and get the
correct value would be like this:

radiobutton $f.$item -variable $varname -text $item

The danger of using $item as the button name is that not all values are
legal widget names. If the value contained a period or began with a capital letter,
the radiobutton command would raise an error. Tk uses periods, of course, to
reflect the widget hierarchy in names. Capitalized names are reserved for X

 Button Attributes 151

Created: March 15, 1994 —ButtonMenu.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

resource class names, so widget instance names cannot have capitalized compo-
nents. Chapter 27 describes X resources in more detail.

The ShowBooleans procedure is similar to ShowChoices. It takes a set of
variable names as arguments, and it creates a checkbutton for each variable.
The default values for the variable associated with a checkbutton are zero and
one, which is fine for this example. If you need particular values you can specify
them with the -onvalue and -offvalue attributes.

Radio and check buttons can have commands associated with them, just
like ordinary buttons. The command is invoked after the associated Tcl variable
has been updated. Remember that the Tcl variable is modified in the global
scope, so you need to access it with a global command if you use a procedure for
your button command. For example, you could log the changes to variables as
shown in the next example.

Example 14–5 Acommand on a radiobutton or checkbutton.

proc PrintByName { varname } {
upvar #0 $varname var
puts stdout “$varname = $var”

}
checkbutton $f.$b -text $item -variable $item \

-command [list PrintByName $item]
radiobutton $f.$b -variable $varname \

-text $item -value $item \
-command [list PrintByName $varname]

Button Attributes

The table below lists the attributes for the button, checkbutton, menubutton,
and radiobutton widgets. Unless otherwise indicated, the attributes apply to all
of these widget types. Chapters 22, 23, and 24 discuss many of these attributes
in more detail.

The table uses the X resource name, which has capitals at internal word
boundaries. In Tcl commands the attributes are specified with a dash and all
lowercase. Compare:

option add *Menubutton.highlightColor: red

$mb configure -highlightcolor red

The first command defines a resource database entry that covers all
menubutton widgets and gives them a red highlight. This only affects menubut-
tons created after the database entry is added. The second command changes an
existing button (.mb) to have a red highlight. Note the difference in capitalization
of color in the two commands. Chapter 27 explains how to use resource specifi-
cations for attributes.

152 Buttons and Menus Chap.14

Created: March 15, 1994 —ButtonMenu.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Table 14–1 Resource names of attributes for all button widgets.

activeBackground Background color when the mouse is over the button.

activeForeground Text color when the mouse is over the button.

anchor Anchor point for positioning the text.

background The normal background color.

bitmap A bitmap to display instead of text.

borderWidth Width of the border around the button.

command Tcl command to invoke when button is clicked.

cursor Cursor to display when mouse is over the widget.

disabledForeground Foreground (text) color when button is disabled.

font Font for the text.

foreground Foreground (text) color. (Also fg).

height Height, in lines for text, or screen units for images.

highlightColor Color for input focus highlight border.

highlightThickness Width of highlight border.

image Image to display instead of text or bitmap.

indicatorOn Boolean that controls if the indicator is displayed.
checkbutton menubutton radiobutton

justify Text justification: center left right

menu Menu posted when menubutton is clicked.

offValue Value for Tcl variable when checkbutton is not
selected.

onValue Value for Tcl variable when checkbutton is selected.

padX Extra space to the left and right of the button text.

padY Extra space above and below the button text.

relief 3D relief: flat, sunken, raised, groove, ridge.

selectColor Color for selector. checkbutton radiobutton

selectImage Alternate graphic image for selector.
checkbutton radiobutton

state Enabled (normal) or deactivated (disabled).

text Text to display in the button.

textVariable Tcl variable that has the value of the text.

underline Index of text character to underline.

value Value for Tcl variable when radiobutton is selected.

 Button Operations 153

Created: March 15, 1994 —ButtonMenu.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Button Operations

The table below summarizes the operations on button widgets. In the table $w is
a button, checkbutton, radiobutton, or menubutton, For the most part these
operations are used by the script libraries that implement the bindings for but-
tons. The cget and configure operations are the most commonly used.

Menus and Menubuttons

A menu presents a set of button-like menu entries to users. A menu entry is not a
full fledged Tk widget. Instead, you create a menu widget and then add entries to
the menu as shown below. There are several kinds of menu entries, including
command entries, check entries, and radio entries. These all behave much like
buttons, checkbuttons, and radiobuttons. Separator entries are used to visually
set apart entries. Cascade entries are used to post sub-menus. Tear-off entries
are used to detach a menu from its menu button so that it becomes a new top-
level window.

A menubutton is a special kind of button that posts (i.e., displays) a menu
when you press it. If you click on a menubutton, then the menu is posted and
remains posted until you click on a menu entry to select it, or click outside the
menu to dismiss it. If you press and hold the menubutton, then the menu is
unposted when you release the mouse. If you release the mouse over the menu it
selects the menu entry that was under the mouse.

You can have a command associated with a menubutton, too. The command
is invoked before the menu is posted, which means you can compute the menu
contents when the user presses the menubutton.

Our first menu example creates a sampler of the different entry types.

variable Tcl variable associated with the button.
checkbutton radiobutton

width Width, in characters for text, or screen units for image.

wrapLength Max character length before text is wrapped.

Table 14–2 Button operations. .

$w cget option Return the value of the specified attribute.

$w configure ?option?
?value” ...

Query or manipulate the configuration information for
the widget.

$w flash Redisplay the button several times in alternate colors.

$w invoke Invoke the action associated with the button, just as if
the user had pressed the mouse on it.

Table 14–1 Resource names of attributes for all button widgets.

154 Buttons and Menus Chap.14

Created: March 15, 1994 —ButtonMenu.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Example 14–6 A menu sampler.

menubutton .mb -text Sampler -menu .mb.menu
pack .mb -padx 10 -pady 10
set m [menu .mb.menu -tearoff 1]
$m add command -label Hello! -command {puts “Hello, World!”}
$m add check -label Boolean -variable foo \

-command {puts “foo = $foo”}
$m add separator
$m add cascade -label Fruit -menu $m.sub1
set m2 [menu $m.sub1 -tearoff 0]
$m2 add radio -label apple -variable fruit
$m2 add radio -label orange -variable fruit
$m2 add radio -label kiwi -variable fruit

The example creates a menubutton and two menus. The main menu
(.mb.menu) is a child of the menubutton (.mb). This relationship is necessary so
the menu displays correctly when the menubutton is selected. Similarly, the cas-
caded submenu (.mb.menu.sub1) is a child of the main menu. The first menu
entry is represented by the dashed line. This is a tear-off entry that, when
selected, makes a copy of the menu in a new toplevel window. This is useful if the
menu operations are invoked frequently. The -tearoff 0 argument is used when
creating the submenu to eliminate its tear-off entry.

The command, radio, and check entries are similar to the corresponding
button types. The main difference is that the text string in the menu entry is
defined the -label argument, not -text. The arguments to define the commands
and variables associated with the menu entries are the same as for the button
commands. Table 14–6 gives the complete set of attributes for menu entries.

The cascade menu entry is associated with another menu. It is distin-
guished by the small right arrow in the entry. When you select the entry the sub-
menu is posted. It is possible to have several levels of cascaded menus. There is

 Manipulating Menus and Menu Entries 155

Created: March 15, 1994 —ButtonMenu.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

no hard limit to the number of levels, except that your users will complain if you
nest menus too much.

Manipulating Menus and Menu Entries

A menu entry is referred to by an index. The index can be numerical, counting
from 0. There are also some keyword indices, which are summarized in Table 14–
3 . One of the most useful indices is a pattern that matches the label in the
menu entry. This form eliminates the need to keep track of the numerical indi-
ces.

There are a number of operations that apply to menu entries. The add operation
has been introduced already. The entryconfigure operation is similar to the
configure operation. It accepts the same attribute-value pairs used when the
menu entry was created. The delete operation removes a range of menu entries.
The rest of the operations are used by the library scripts that implement the
standard bindings for menus. The complete set of menu operations are summa-
rized in the next table. In the table, $w is a menu widget..

Table 14–3 Menu entry index keywords

index A numerical index counting from zero.

active The activated entry, either because it is under the mouse or has
been activated by keyboard traversal

last The last menu entry.

none No entry at all.

@ycoord The entry under the given Y coordinate. Use @%y in bindings.

pattern A string match pattern to match the label of a menu entry.

Table 14–4 Menu operations.

$w activate index Highlight the specified entry.

$w add type ?option
value? ...

Add a new menu entry of the specified type with
the given values for various attributes.

$w cget option Return the value for the configuration option.

$w configure ?option?
?value? ...

Return the configuration information for the
menu.

$w delete i1 ?i2? Delete the menu entries from index i1 to i2

$w entrycget index option Return the value of option for the specified menu
entry.

156 Buttons and Menus Chap.14

Created: March 15, 1994 —ButtonMenu.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

A Menu by Name Package

If your application supports extensible or user-defined menus, then it can be
tedious to expose all the details of the Tk menus. The examples in this section
create a little package that lets users refer to menus and entries by name. In
addition, the package supports keystroke accelerators for menus.

Example 14–7 A simple menu-by-name package.

proc MenuSetup { menubar } {
global Menu
frame $menubar
pack $menubar -side top -fill x
set Menu(menubar) $menubar
set Menu(uid) 0

}
proc Menu { label } {

global Menu
if [info exists Menu(menu,$label)] {

error “Menu $label already defined”
}
Create the menubutton and its menu
set name $Menu(menubar).mb$Menu(uid)
set menuName $name.menu
incr Menu(uid)
set mb [menubutton $name -text $label -menu $menuName]
pack $mb -side left
set menu [menu $menuName -tearoff 1]
Remember the name to menu mapping
set Menu(menu,$label) $menu

}

The MenuSetup procedure initializes the package. It creates a frame to hold
the set of menu buttons, and it initializes some state variables: the frame for the

$w entryconfigure index
?option? ?value? ...

Query or modify the configuration information for
the specified menu entry.

$w index index Return the numerical index corresponding to
index.

$w invoke index Invoke the command associated with the entry.

$w post x y Display the menu at the specified coordinates.

$w type index Return the type of the entry at index.

$w unpost Unmap the menu.

$w ypostion index Return the y coordinate of the top of the menu
entry.

Table 14–4 Menu operations.

 A Menu by Name Package 157

Created: March 15, 1994 —ButtonMenu.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

menubuttons and a counter used to generate widget pathnames. All the global
state for the package will be kept in the array called Menu.

The Menu procedure creates a menubutton and a menu. It records the associ-
ation between the text label of the menubutton and the menu that was created for
it. This mapping is used throughout the rest of the package so that the client of
the package can refer to the menu by its label (e.g., File) as opposed to the inter-
nal Tk pathname, (e.g., .top.menubar.file.menu).

Example 14–8 Adding menu entries.

proc MenuCommand { menuName label command } {
global Menu
if [catch {set Menu(menu,$menuName)} menu] {

error “No such menu: $menuName”
}
$menu add command -label $label -command $command

}

proc MenuCheck { menuName label var { command {} } } {
global Menu
if [catch {set Menu(menu,$menuName)} menu] {

error “No such menu: $menuName”
}
$menu add check -label $label -command $command \

-variable $var
}

proc MenuRadio { menuName label var {val {}} {command {}} } {
global Menu
if [catch {set Menu(menu,$menuName)} menu] {

error “No such menu: $menuName”
}
if {[string length $val] == 0} {

set val $label
}
$menu add radio -label $label -command $command \

-value $val -variable $var
}

proc MenuSeparator { menuName } {
global Menu
if [catch {set Menu(menu,$menuName)} menu] {

error “No such menu: $menuName”
}
$menu add separator

}

The procedures MenuCommand, MenuCheck, MenuRadio, and MenuSeparator

are simple wrappers around the basic menu commands. The only trick is that
they use the Menu variable to map from the menu label to the Tk widget name. If
the user specifies a bogus menu name, the undefined variable error is caught and
a more informative error is raised instead.

158 Buttons and Menus Chap.14

Created: March 15, 1994 —ButtonMenu.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Creating a cascaded menu also requires saving the mapping between the
label in the cascade entry and the Tk pathname for the submenu. This package
imposes a restriction that different menus, including submenus cannot have the
same label.

Example 14–9 A wrapper for cascade entries.

proc MenuCascade { menuName label } {
global Menu
if [catch {set Menu(menu,$menuName)} menu] {

error “No such menu: $menuName”
}
if [info exists Menu(menu,$label)] {

error “Menu $label already defined”
}
set sub $menu.sub$Menu(uid)
incr Menu(uid)
menu $sub -tearoff 0
$menu add cascade -label $label -menu $sub
set Menu(menu,$label) $sub

}

Creating the sampler menu with this package looks like this:

Example 14–10 Using the basic menu package.

MenuSetup
Menu Sampler
MenuCommand Sampler Hello! {puts “Hello, World!”}
MenuCheck Sampler Boolean foo {puts “foo = $foo”}
MenuSeparator Sampler
MenuCascade Sampler Fruit
MenuRadio Fruit apple fruit
MenuRadio Fruit orange fruit
MenuRadio Fruit kiwi fruit

The final touch on the menu package is to support accelerators in a consis-
tent way. A menu entry can display another column of information that is
assumed to be a keystroke identifier to remind users of a binding that also
invokes the menu entry. However, there is no guarantee that this string is cor-
rect, or that if the user changes the binding that the menu will be updated. The
MenuBind procedure takes care of this.

Example 14–11 Keeping the accelerator display up-to-date.

proc MenuBind { what sequence menuName label } {
global Menu
if [catch {set Menu(menu,$menuName)} menu] {

error “No such menu: $menuName”
}

 Popup Menus and Option Menus 159

Created: March 15, 1994 —ButtonMenu.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

if [catch {$menu index $label} index] {
error “$label not in menu $menuName”

}
set command [$menu entrycget $index -command]
bind $what $sequence $command
$menu entryconfigure $index -accelerator $sequence

}

The MenuBind command uses the index operation to find out what menu
entry has the given label. It updates the display of the entry using the entrycon-
figure operation, and it creates a binding using the bind command. This
approach has the advantage of keeping the keystroke command consistent with
the menu command, as well as updating the display. To try out MenuBind, add an
empty frame to the sampler example, and bind a keystroke to it and one of the
menu commands, like this:

frame .body -width 100 -height 50
pack .body ; focus .body
MenuBind .body <space> Sampler Hello!

Popup Menus and Option Menus

The Tk script library comes with two procedures that are used to create popup
menus and option menus. A popup menu is not associated with a button.
Instead, it is posted in response to a keystroke or other event in the application.
An option menu represents a choice with a set of radio entries, and it displays
the current choice in the text of the menu button.

The tk_popup command posts a popup menu. First, create the menu as
described above, except that you do not need a menubutton. Then post the popup
menu like this:

tk_popup $menu $x $y $entry

The last argument specifies the entry to activate when the menu is posted.
It is an optional parameter that defaults to 1. The menu is posted at the specified
X and Y coordinates in its parent widget.

The tk_optionMenu command creates a menubutton and a menu full of
radio entries. It is invoked like this:

tk_optionMenu w varname firstValue ?value value ...?

The first argument is the pathname of the menubutton to create. The sec-
ond is the variable name. The third is the initial value for the variable, and the
rest or the other choices for the value. The menubutton displays the current
choice and a small symbol, the indicator, to indicate it is a choice menu.

Keyboard Traversal

The default bindings for menus allow for keyboard selection of menu entries. The
selection process is started by pressing <Alt-x> where x is the distinguishing let-

160 Buttons and Menus Chap.14

Created: March 15, 1994 —ButtonMenu.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

ter for a menubutton. The underline attribute of a menubutton is used to high-
light the appropriate letter. The underline value is a number that specifies a
character position, and the count starts at zero. For example, a File menu with a
highlighted F is created like this:

menubutton .menubar.file -text File -underline 0 \

-menu .menubar.file.m

When the user types <Alt-f> over the main window, the menu .menubar.-

file.m is posted. The case of the letter is not important.
After a menu is posted the arrow keys can be used to change the selected

entry. The <Up> and <Down> keys move within a menu, and the <Left> and
<Right> keys move between adjacent menus. The bindings assume that you cre-
ate your menus from left to right.

If any of the menu entries have a letter highlighted with the -underline

option, then typing that letter will invoke that menu entry. For example, an
Export entry that is invoked by typing x can be created like this:

.menubar.file.m add command -label Export -underline 1 \

-command File_Export

The <space> and <Return> keys will invoke the menu entry that is cur-
rently selected. The <Escape> key will abort the menu selection and unpost the
menu.

Menu Attributes

A menu has a few global attributes, and then each menu entry has many button-
like attributes that describe its appearance and behavior. The table below gives
the attributes that apply globally to the menu, unless overridden by a per-entry
attribute. The table uses the X resource names, which may have a capital at inte-
rior word boundaries. In Tcl commands use all lowercase and a leading dash.

Table 14–5 Resource names of attributes for menu widgets.

activeBackground Background color when the mouse is over a menu entry.

activeForeground Text color when the mouse is over a menu entry.

activeBorderWidth Width of the raised border around active entries.

background The normal background color for menu entries.

borderWidth Width of the border around all the menu entries.

cursor Cursor to display when mouse is over the menu.

disabledForeground Foreground (text) color when menu entries are disabled.

font Default font for the text.

foreground Foreground color. (Also fg).

 Menu Attributes 161

Created: March 15, 1994 —ButtonMenu.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

The attributes for menu entries are only valid in Tcl commands; they are not
supported directly by the X resource database. You can still use the resource
database for menu entries as described in Example 27–5 on page 328. The table
below describes the attributes for menu entries, as you would use them in a Tcl
command (i.e., all lowercase with a leading dash.).

postCommand Tcl command to run just before menu is posted.

selectColor Color for selector in check and radio type entries.

tearOff True if menu should contain a tear off entry.

Table 14–6 Attributes for menu entries.

-activebackground Background color when the mouse is over the entry.

-activeforeground Foreground (text) color with mouse is over the entry.

-accelerator Text to display as a reminder about keystroke binding.

-background The normal background color.

-bitmap A bitmap to display instead of text.

-command Tcl command to invoke when entry is invoked.

-font Default font for the text.

-foreground Foreground color. (Also fg).

-image Image to display instead of text or bitmap.

-label Text to display in the menu entry.

-justify Text justification: center left right

-menu Menu posted when cascade entry is invoked.

-offvalue Value for Tcl variable when checkbutton entry is not
selected.

-onvalue Value for Tcl variable when checkbutton entry is
selected.

-selectcolor Color for selector. checkbutton and radiobutton
entries.

-state normal active disabled

-underline Index of text character to underline.

-value Value for Tcl variable when radiobutton entry is
selected.

-variable Tcl variable associated with the checkbutton or
radiobutton entry.

Table 14–5 Resource names of attributes for menu widgets.

162 Buttons and Menus Chap.14

Created: March 15, 1994 —ButtonMenu.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

163

C H A P T E R

Created: March 15, 1994 —SimpleWidgets.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

 15

Simple Tk Widgets 15

This chapter describes several simple Tk widgets: the frame, label, message,
scale, and scrollbar. In general, these widgets require minimal setup to
be useful in your application. The bell command rings the X display bell,
and doesn’t fit into other chapters, so it is described here.

This chapter describes five simple wid-
gets. The frame is a building block for widget layout. The label provides a line of
read-only text. The message provides a read-only block of text that gets format-
ted onto several lines. The scale is a slider-like widget used to set a numeric
value. The scrollbar is used to control other widgets. These widgets (and the
bell command) are not that interesting by themselves, so this chapter reviews
their functions rather briefly.

Chapter 22, 23, and 24 go into more detail about some of the generic widget
attributes shared by the widgets presented in this chapter. The examples in this
chapter use the default widget attributes in most cases.

Frames and Top-Level Windows

Frames have been introduced before for use with the geometry managers. There
is not much to a frame, except for its background color and border. You can also
specify a colormap and visual type for a frame. Chapter 23 describes visual types
and colormaps in more detail.

A toplevel widget is like a frame, except that it is created as a new toplevel
window. That is, it is not positioned inside the main window of the application.
This is useful for dialog boxes, for example. A toplevel has the same attributes
as a frame, plus it has a screen option that lets you put the toplevel on any X dis-

164 Simple Tk Widgets Chap.15

Created: March 15, 1994 —SimpleWidgets.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

play. The value of the screen option uses the same format that you use when you
start an application

host:display.screen

For example, I have one X server on my workstation corvina that controls
two screens. My two screens are named corvina:0.0 and corvina:0.1. If the
screen specifier is left off, it defaults to 0.

Attributes for frames and toplevels

Table 15–2 lists the attributes for the frame and toplevel widgets. The
attributes are named according to their X resource name, which includes a capi-
tal letter at internal word boundaries. When you specify an attribute in a Tcl
command when creating or reconfiguring a widget, however, you specify the
attribute with a dash and all lowercase letters. Chapter 27 explains how to use
resource specifications for attributes. Chapters 22, 23, and 24 discuss many of
these attributes in more detail.

The class, colormap, visual, and screen attributes cannot be changed
after the frame or toplevel has been created. These settings are so fundamental
that you basically need to destroy the frame and start over if you have to change
one of these.

Table 15–1 Resource names of attributes for frame and toplevel widgets.

background Background color (also bg).

borderWidth Extra space around the edge of the label.

class X resource class and binding class name.

colormap The value is new or the name of a window.

cursor Cursor to display when mouse is over the label.

height In screen units for bitmaps, in lines for text.

highlightColor Color for input focus highlight.

highlightThickness Thickness of focus highlight rectangle.

relief 3D relief: flat, sunken, raised, groove, ridge.

screen An X display specification. (toplevel only, and this
cannot be specified in the resource database.)

visual staticgrey greyscale staticcolor
pseudocolor directcolor truecolor

width Width. In characters for text labels.

 The label Widget 165

Created: March 15, 1994 —SimpleWidgets.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

The label Widget

The label widget provides a read-only text label, plus it has attributes that let
you control the position of the label within the display space. Most commonly,
however, you just need to specify the text for the label.

label .version -text "MyApp v1.0"

The text can be specified indirectly by using a Tcl variable to hold the text.
In this case the label will be updated whenever the value of the Tcl variable
changes. The variable is used from the global scope, even if there happens to be a
local variable by the same name when you create the widget inside a procedure.

set version "MyApp v1.0"

label .version -textvariable version

The appearance of a label can be changed dynamically by using the config-
ure widget operation. If you change the text or font of a label you are liable to
change the size of the widget, and this will cause the packer to shuffle window
positions. You can avoid this by specifying a width for the label that is large
enough to hold all the strings you plan to display in it. The width is specified in
characters, not screen coordinates.

Example 15–1 A label that displays different strings.

proc FixedWidthLabel { name values } {
name is a widget name to be created
values is a list of strings
set maxWidth 0
foreach value $values {

if {[string length $value] > $maxWidth} {
set maxWidth [string length $value]

}
}
Use -anchor w to left-justify short strings
label $name -width $maxWidth -anchor w \

-text [lindex $values 0]
return $name

}

The FixedWidthLabel example is used to create a label with a width big
enough to hold a set of different strings. It uses the -anchor w attribute to left
justify strings that are shorter than the maximum. The text for the label can be
changed later by using the configure widget command:

FixedWidthLabel .status {OK Busy Error}

.status config -text Busy

A label can display a bitmap instead of a text string. For a discussion of
using bitmaps, see Chapter 23 and the section on Bitmaps and Images.

166 Simple Tk Widgets Chap.15

Created: March 15, 1994 —SimpleWidgets.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Label attributes

Table 15–2 lists the widget attributes for the label widget. The attributes
are named according to their X resource name, which includes a capital letter at
internal word boundaries. When you specify an attribute in a Tcl command when
creating or reconfiguring a widget, however, you specify the attribute with a
dash and all lowercase letters. Chapter 27 explains how to use resource specifica-
tions for attributes. Chapters 22, 23, and 24 discuss many of these attributes in
more detail.

Label width and wrapLength

When a label is displaying text, its width attribute is interpreted as a num-
ber of characters. The label is made wide enough to hold this number of averaged
width characters in the label’s font. However, if the label is holding a bitmap or

Table 15–2 Resource names of attributes for label widgets.

anchor Relative position of the label within its packing space.

background Background color (also bg).

bitmap Name of a bitmap to display instead of a text string.

borderWidth Extra space around the edge of the label.

cursor Cursor to display when mouse is over the label.

font Font for the label’s text.

foreground Foreground color. (Also fg).

height In screen units for bitmaps, in lines for text.

highlightColor Color for input focus highlight.

highlightThickness Thickness of focus highlight rectangle.

image Specifies image to display instead of bitmap or text.

justify Text justification: left, right, center.

padX Extra space to the left and right of the label.

padY Extra space above and below the label.

relief 3D relief: flat, sunken, raised, groove, ridge.

text Text to display.

textVariable Name of Tcl variable. Its value is displayed.

underline Index of character to underline.

width Width. In characters for text labels.

wrapLength Length at which text is wrapped in screen units.

 The message Widget 167

Created: March 15, 1994 —SimpleWidgets.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

an image, then the width is in pixels or another screen unit.
The wrapLength attribute determines when a label’s text is wrapped onto

multiple lines. The wrap length is always screen units. If you need to compute a
wrapLenth based on the font metrics (instead of guessing) then you’ll have to use
a text widget with the same font. Chapter 18 describes the text widget opera-
tions that return size information for characters.

The message Widget

The message widget displays a long text string by formatting it onto several
lines. It is designed for use in dialog boxes. It can format the text into a box of a
given width, in screen units, or a given aspect ratio. The aspect ratio is defined to
be the ratio of the width to the height, times 100. The default is 150, which
means the text will be one and a half times as wide as it is high.

Example 15–2 The message widget formats long lines of text.

message .msg -justify center -text "This is a very long text\
line that will be broken into many lines by the\
message widget"

pack .msg

This example creates a message widget with one long line of text. Back-
slashes are used to continue the text string without embedding any newlines.
(You can also just type a long line into your script.) Note that backslash-newline
collapses white space after the newline into a single space.

A newline in the string forces a line break in the message display. You can
retain exact control over the formatting by putting newlines into your string and
specifying a very large aspect ratio. In the next example, grouping with double
quotes is used to continue the string over more than one line. The newline char-
acter between the quotes is included in the string, and it causes a line break.

168 Simple Tk Widgets Chap.15

Created: March 15, 1994 —SimpleWidgets.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Example 15–3 Controlling the text layout in a message widget.

message .msg -aspect 1000 -justify left -text \
"This is the first long line of text,
and this is the second line."
pack .msg

Message Attributes

The table on the next page lists the attributes for the message widget. The table
list the X resource name, which has capitals at internal word boundaries. In Tcl
commands the attributes are specified with a dash and all lowercase.

Table 15–3 Resource names for attributes for message widgets.

anchor Relative position of the text within its packing space.

aspect 100 * width / height. Default 150.

background Background color (also bg).

borderWidth Extra space around the edge of the text.

cursor Cursor to display when mouse is over the widget.

font Font for the label’s text.

foreground Foreground color. (Also fg).

highlightColor Color for input focus highlight.

highlightThickness Thickness of focus highlight rectangle.

justify left, center, or right. Defaults to left.

padX Extra space to the left and right of the text.

padY Extra space above and below the text.

relief 3D relief: flat, sunken, raised, groove, ridge.

text Text to display.

textVariable Name of Tcl variable. Its value is displayed.

width Width, in screen units.

 Arranging Labels and Messages 169

Created: March 15, 1994 —SimpleWidgets.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Arranging Labels and Messages

Both the label and message widgets have attributes that control the position of
their text in much the same way that the packer controls the position of widgets
within a frame. These attributes are padX, padY, anchor and borderWidth. The
anchor takes effect when the size of the widget is larger than the space needed to
display its text. This happens when you specify the -width attribute or if you
pack the widget with filling enabled and there is extra room. See Chapter 22 and
the section on Padding and Anchors for more details.

The scale Widget

The scale widget displays a slider in a trough. The trough represents a range of
numeric values, and the slider position represents the current value. The scale

can have an associated label, and it can display its current value next to the
slider.

The value of the scale can be used in three different ways. You can explic-
itly get and set the value with widget commands. You can associate the scale

with a Tcl variable. The variable is kept in sync with the value of the scale, and
changing the variable affects the scale. Finally, you can arrange for a Tcl com-
mand to be executed when the scale value changes. You specify the initial part
of the Tcl command, and the scale implementation adds the current value as
another argument to the command.

Example 15–4 A scale widget.

scale .scale -from -10 -to 20 -length 200 -variable x \
-orient horizontal -label "The value of X" \
-command myprint

proc myprint { value } {puts "The value of X is $value"}
pack .scale

The example shows a scale that has both a variable and a command. Typi-
cally you would use just one of these options. The myprint procedure can get the
value in two ways. As well as using its argument, it could use a global x com-
mand to make the scale variable visible in its scope.

The scale has a resolution and bigIncrement attribute that determine

170 Simple Tk Widgets Chap.15

Created: March 15, 1994 —SimpleWidgets.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

how its value can be changed. If the resolution is set to 0.1, for example, then the
value will be rounded to the nearest tenth. The bigIncrement attribute is used
in the keyboard bindings to shift the value by a large amount. Table 15–4 lists
the bindings for scale widgets.

Scale attributes

The following table lists the scale widget attributes. The table uses the X
resource Class name, which has capitals at internal word boundaries. In Tcl com-
mands the attributes are specified with a dash and all lowercase.

Table 15–4 Default bindings for scale widgets.

<Button-1> Clicking on the trough moves the slider by one unit
of resolution towards the mouse click.

<Control-Button-1> Clicking on the trough moves the slider all the way
to the end of the trough towards the mouse click.

<Left> <Up> Move the slider towards the left (top) by one unit.

<Control-Left>
<Control-Up>

Move the slider towards the left (top) by the value of
the bigIncrement attribute.

<Right> <Down> Move the slider towards the right (bottom) one unit.

<Control-Right>
<Control-Down>

Move the slider towards the right (bottom) by the
value of the bigIncrement attribute.

<Home> Move the slider all the way to the left (top).

<End> Move the slider all the way to the right (bottom).

Table 15–5 Resource names for attributes for scale widgets.

activeBackground Background color when the mouse is over the slider.

background The background color. (Also bg in commands.)

bigIncrement Coarse grain slider adjustment value.

borderWidth Extra space around the edge of the text.

command Command to invoke when the value changes. The cur-
rent value is appended as another argument

cursor Cursor to display when mouse is over the widget.

digits Number of significant digits in scale value.

from Minimum value. The left or top end of the scale.

font Font for the label.

foreground Foreground color. (Also fg).

highlightColor Color for input focus highlight.

 The scale Widget 171

Created: March 15, 1994 —SimpleWidgets.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Programming scales

The scale widget supports a number of operations. For the most part these
are used by the default bindings and you won’t need to program the scale

directly. Table 15–6 lists the operations supported by the scale. In the table, $w
is a scale widget.

highlightThickness Thickness of focus highlight rectangle.

label A string to display with the scale.

length The length, in screen units, of the long axis of the scale.

orient horizontal or vertical

relief 3D relief: flat, sunken, raised, groove, ridge.

repeatDelay Delay before keyboard auto-repeat starts. Auto-repeat
is used when pressing <Button-1> on the trough.

repeatInterval Time period between auto-repeat events.

resolution The value is rounded to a multiple of this value.

showValue If true, value is displayed next to the slider.

sliderLength The length, in screen units, of the slider.

state normal, active, or disabled

tickInterval Spacing between tick marks. Zero means no marks.

to Maximum value. Right or bottom end of the scale.

troughColor The color of the bar on which the slider sits.

variable Name of Tcl variable. Changes to the scale widget are
reflected in the Tcl variable value, and changes in the
Tcl variable are reflected in the scale display.

width Width of the trough, or slider bar.

Table 15–6 Operations on scale widgets..

$w cget option Return the value of the configuration option.

$w configure ... Query or modify the widget configuration.

$w coords ?value? Returns the coordinates of the point in the trough
that corresponds to value, or the scale’s value.

$w get ?x y? Return the value of the scale, or the value that
corresponds to the position given by x and y.

$w identify x y Returns trough1, slider, or trough2 to indi-
cate what is under the position given by x and y

Table 15–5 Resource names for attributes for scale widgets.

172 Simple Tk Widgets Chap.15

Created: March 15, 1994 —SimpleWidgets.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

The scrollbar Widget

The scrollbar is used to control the display of another widget. The Tk widgets
designed to work with scrollbars are the entry, listbox, text, and canvas wid-
gets. There is a simple protocol between the scrollbar and these widgets. While
this section explains the protocol, you don’t need to know the details to use a
scrollbar. All you need to know is how to set things up, and then these widgets
take care of themselves.

A scrollbar is made up of 5 components: arrow1, trough1, slider, trough2,
and arrow2. The arrows are on either end, with arrow1 being the arrow to the
left for horizontal scrollbars, or the arrow on top for vertical scrollbars. The
slider represents the relative position of the information displayed in the associ-
ated widget, and the size of the slider represents the relative amount of the infor-
mation displayed. The two trough regions are the areas between the slider and
the arrows. If the slider covers all of the trough area, you can see all the informa-
tion in the associated widget.

The protocol between the scrollbar and its associated widget (or widgets)
is initialized by registering a command with each of the widgets. The scrollbar

has a command attribute that is uses to scroll the associated widget. The xview

and yview operations of the scrollable widgets are designed for this. These opera-
tions require parameters that indicate how to adjust their view, and the scrollbar
adds these parameters when it calls the command. The command to create a
scrollbar for a text widget would look something like this:

scrollbar .scroll -command {.text yview} -orient vertical

The scrollable widgets have xscrollcommand and/or yscrollcommand

attributes that they use to update the display of the scrollbar. The scrollbar

set operation is designed for this callback. Additional parameters are appended
to these commands that indicate how much information is visible in the widget
and the relative position of that information. The command below sets up the
other half of the relationship between the scrollbar and the text widget.

text .text -yscrollcommand {.scroll set}

The protocol works like this. When the scrollbar is manipulated by the user
it calls its registered command with some parameters that indicate what the user
said to do. The associated widget responds to this command (e.g., its xview oper-
ation) by changing its display. After the widget changes its display, it calls the
scrollbar by using its registered xscrollcommand or yscrollcommand (e.g., the
set operation) with some parameters that indicate the new relative size and
position of the display. The scrollbar updates its appearance to reflect this infor-
mation. The protocol supports widgets that change their display by themselves,
such as by dragging them with <B2-Motion> events or simply by adding more
information. When this happens, the scrollbar will be updated correctly, even

$w set value Set the value of the scale.

Table 15–6 Operations on scale widgets..

 The scrollbar Widget 173

Created: March 15, 1994 —SimpleWidgets.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

though it did not cause the display change.

Example 15–5 A text widget and two scrollbars.

proc ScrolledText { f width height } {
frame $f
The setgrid setting allows the window to be resized.
text $f.text -width $width -height $height \

-setgrid true -wrap none \
-xscrollcommand [list $f.xscroll set] \
-yscrollcommand [list $f.yscroll set]

scrollbar $f.xscroll -orient horizontal \
-command [list $f.text xview]

scrollbar $f.yscroll -orient vertical \
-command [list $f.text yview]

pack $f.xscroll -side bottom -fill x
pack $f.yscroll -side right -fill y
The fill and expand are needed when resizing.
pack $f.text -side left -fill both -expand true
pack $f -side top -fill both -expand true
return $f.text

}
set t [ScrolledText .f 40 8]
set in [open /etc/passwd]
$t insert end [read $in]
close $in

The example associates a text widget with two scrollbars. It reads and
inserts the password file into the text widget. There is not enough room to dis-
play all the text, and the scrollbars indicate how much text is visible. Chapter 18
describes the text widget in more detail.

Table 15–4 lists the default bindings for scrollbars. Button 1 and button 2
of the mouse have the same bindings. A scrollbar does not normally get the key-
board focus, so you will have to direct the focus to it explicitly for the key bind-
ings like <Up> and <Down> to take effect.

174 Simple Tk Widgets Chap.15

Created: March 15, 1994 —SimpleWidgets.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Scrollbar attributes

Table 15–8 lists the scrollbar attributes. The table uses the X resource
name for the attribute, which has capitals at internal word boundaries. In Tcl
commands the attributes are specified with a dash and all lowercase.

Table 15–7 Default bindings for scrollbar widgets.

<Button-1> <Button-2> Clicking on the arrows scrolls by one unit.
Clicking on the trough moves by one screenful.

<B1-Motion> <B2-Motion> Dragging the slider scrolls dynamically.

<Control-Button-1>
<Control-Button-2>

Clicking on the trough or arrow scrolls all the
way to the beginning (end) of the widget.

<Up> <Down> Scroll up (down) by one unit

<Control-Up>
<Control-Down>

Scroll up (down) by one screenful.

<Left> <Right> Scroll left (right) by one unit.

<Control-Left>
<Control-Right>

Scroll left (right) by one screenful.

<Prior> <Next> Scroll back (forward) by one screenful.

<Home> Scroll all the way to the left (top).

<End> Scroll all the way to the right (bottom).

Table 15–8 Resource names of attributes for scrollbar widgets.

activeBackground Color when the mouse is over the slider or arrows.

activeRelief Relief of slider and arrows when mouse is over them.

background The background color. (Also bg in commands.)

borderWidth Extra space around the edge of the scrollbar.

command Prefix of the command to invoke when the scrollbar
changes. Typically this is a xview or yview operation.

cursor Cursor to display when mouse is over the widget.

highlightColor Color for input focus highlight.

highlightThickness Thickness of focus highlight rectangle.

jump If true, dragging the elevator does not scroll dynamically.
Instead, the display jumps to the new position.

orient horizontal or vertical

repeatDelay Delay before keyboard auto-repeat starts. Auto-repeat is
used when pressing <Button-1> on the trough or arrows.

 The scrollbar Widget 175

Created: March 15, 1994 —SimpleWidgets.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

There is no length attribute for a scrollbar. Instead, a scrollbar is
designed to be packed next to another widget with a fill option that lets the
scrollbar display grow to the right size. The relief of the scrollbar cannot be
changed from raised. Only the relief of the active element can be set. The back-

ground color is used for the slider, the arrows, and the border The slider and
arrows are displayed in the activeBackground color when the mouse is over
them. The trough is always displayed in the troughColor.

Programming scrollbars

The scrollbar widget supports a number of operations. However, for the
most part these are used by the default bindings. Table 15–6 lists the opera-
tions supported by the scrollbar. In the table, $w is a scrollbar widget.

The Tk 3.6 protocol

The protocol between the scrollbar and its associated widget changed in
Tk 4.0. The scrollbar is backward compatible. The old protocol had 4 parame-
ters in the set operation: totalUnits, windowUnits, firstUnit, and lastUnit. If
a scrollbar is updated with this form of a set command, then the get operation
also changes to return this information. When the scrollbar makes the callback
to the other widget (e.g., an xview or yview operation), it passes a single extra

repeatInterval Time period between auto-repeat events.

troughColor The color of the bar on which the slider sits.

width Width of the narrow dimension of the scrollbar.

Table 15–9 Operations on scrollbar widgets.

$w activate ?element? Query or set the active element, which can be
arrow1, arrow2, or slider.

$w cget option Return the value of the configuration option.

$w configure ... Query or modify the widget configuration.

$w fraction x y Return a number between 0 and 1 that indicates the
relative location of the point in the trough.

$s get Return first and last from the set operation.

$w identify x y Returns arrow1, trough1, slider, trough2, or
arrow2, to indicate what is under the point.

$w set first last Set the scrollbar parameters. first is the relative
position of the top (left) of the display. last is the
relative position of the bottom (right) of the display.

Table 15–8 Resource names of attributes for scrollbar widgets.

176 Simple Tk Widgets Chap.15

Created: March 15, 1994 —SimpleWidgets.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

parameter that specifies what unit to display at the top (left) of the associated
widget. The Tk widgets’ xview and yview operations are also backward compati-
ble with this interface.

The bell Command

The bell command rings the X display bell. About the only interesting property
of the bell is that it is associated with the display, so even if you are executing
your program on a remote machine, the bell is heard by the user. If your applica-
tion has windows on multiple displays, you can direct the bell to the display of a
particular window with the -displayof option. The syntax for the bell command
is given below:

bell ?-displayof window?

If you want to control the bell’s duration, pitch, or volume, you need to use
the xset program. The volume is in percent of a maximum, e.g. 50. In practice,
many keyboard bells only support a variable duration, and the pitch is fixed. The
arguments of xset that controll the bell are shown below.

exec xset b ?volume? ?hertz? ?milliseconds?

The b argument by itself resets the bell to the default parameters. You can
turn the bell off with -b, or you can use the on or off arguments.

exec xset -b

exec xset b ?on? ?off?

177

C H A P T E R

Created: March 15, 1994 —ListboxEntry.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

 16

Entry and Listbox Widgets 16

The entry widget provides a single line of text for use as a data entry field. The
listbox provides a scrollable list of text lines.

Listbox and entry widgets are specialized
text widgets. They provide a subset of the functionality of the general purpose
text widget. They are a bit more complex than the simple widgets presented in
the previous chapter. You are more likely to program behavior for these widgets,
especially the listbox.

The entry Widget

The entry widget provides a one-line type-in area. It is commonly used in dialog
boxes when values need to be filled in, or as a simple command entry widget. The
entry widget supports editing, scrolling, and selections, which make it quite a bit
more complex than label or message widgets. Fortunately, the default settings
for an entry widget make it usable right away. You click with the left button to
set the insert point, and then type in text. Text is selected by dragging out a
selection with the left button. The entry can be scrolled horizontally by dragging
with the middle mouse button.

The complete set of bindings is given in the table below. When the table
lists two sequences they are equivalent. For example, both the left arrow key
(<Left>) and <Control-b> move the insert cursor to the left by one character.
The table does not list all the right arrow key bindings, although there are corre-
sponding bindings for the left and right arrow keys. The middle mouse button

178 Entry and Listbox Widgets Chap.16

Created: March 15, 1994 —ListboxEntry.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

(<Button-2>) is overloaded with two functions. If you click and release the mid-
dle button, then the selection is inserted at the insert cursor. The location of the
middle click does not matter. If you press and hold the middle button, then you
can scroll the contents of the entry by dragging the mouse to the left or right.

Table 16–1 Default bindings for entry widgets.

<Button-1> Set insert point in start a selection.

<B1-Motion> Drag out a selection.

<Double-Button-1> Select a word.

<Triple-Button-1> Select all text in the entry.

<Shift-B1-Motion> Adjust the ends of the selection.

<Control-Button-1> Set insert point, leaving selection as is.

<Button-2> Paste selection at the insert cursor.

<B2-Motion> Scroll horizontally.

<Left> <Control-b> Move insert cursor one character left. Start selection.

<Shift-Left> Move cursor left and extend selection.

<Control-Left> Move cursor left one word. Start selection.

<Meta-b> Same as <Control-Left>

<Control-Shift-Left> Move cursor left one word and extend the selection.

<Right> <Control-f> The bindings for Right correspond to the Left key.

<Meta-f> Same as <Control-Right>, move right one word.

<Home> <Control-a> Move cursor to beginning of entry.

<Shift-Home> Move cursor to beginning and extend the selection.

<End> <Control-e> Move cursor to end of entry.

<Shift-End> Move cursor to end and extend the selection.

<Select> <Control-Space> Anchor the selection at the insert cursor.

<Shift-Select>
<Control-Shift-Space>

Adjust the selection to the insert cursor.

<Control-slash> Selects all the text in the entry.

<Control-backslash> Clears the selection in the entry.

<Delete> Delete the selection or delete next character.

<Backspace> <Control-h> Delete the selection or delete previous character.

<Control-d> Delete next character.

<Meta-d> Delete next word.

 The entry Widget 179

Created: March 15, 1994 —ListboxEntry.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

One common use of an entry widget is to associate a label with it, and a
command to execute when <Return> is pressed in the entry. This is implemented
in the following example.

Example 16–1 A command, a label and an entry.

proc CommandEntry { name label width command args } {
frame $name
label $name.label -text $label -width $width -anchor w
eval {entry $name.entry -relief sunken} $args
pack $name.label -side left
pack $name.entry -side right -fill x -expand true
bind $name.entry <Return> $command
return $name.entry

}
CommandEntry .name Name 10 UpdateAddress -textvar addr(name)
CommandEntry .address1 Address 10 UpdateAddress \

-textvar addr(line1)
CommandEntry .address2 "" 10 UpdateAddress \

-textvar addr(line2)
CommandEntry .phone Phone 10 UpdateAddress \

-textvar addr(phone)
pack .name .address1 .address2 .phone

CommandEntry creates a frame to hold the label and the entry widget. The
label and lwidth arguments are used to define the label. The explicit width and
the -anchor w are used so that you can line up the labels if you have more than
one CommandEntry. The label is packed first so it does not get clipped if the frame
is made too small. The entry is packed so it will fill up any extra space, if any.
The args parameter is used to pass extra parameters along to the entry widget.

<Control-k> Delete to the end of the entry.

<Control-w> Delete previous word.

<Control-x> Delete the section, if it exists.

<Control-t> Transpose characters.

Table 16–1 Default bindings for entry widgets.

180 Entry and Listbox Widgets Chap.16

Created: March 15, 1994 —ListboxEntry.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

This requires the use of eval as discussed in Chapter 6. The Tcl command is
bound to the <Return> keystroke. Finally, the pathname of the entry widget is
returned in case the caller needs it.

The example includes four sample calls to CommandEntry and the pack com-
mand used to arrange them. The -relief sunken for the entry widget sets them
apart visually, and you can see the effect of the -anchor w on the labels. The
-textvar attribute is used to associate a Tcl variable with the entries, and in this
case array elements are specified. The Tcl command UpdateAddress can get the
current values of the entry widgets through the global array variable addr.

entry attributes

The following table lists the entry widget attributes. The table lists the X
resource name, which has capitals at internal word boundaries. In Tcl commands
the attributes are specified with a dash and all lowercase.

Table 16–2 Resource names for attributes of entry widgets.

background Background color (also bg).

borderWidth Extra space around the edge of the text (also bd).

cursor Cursor to display when mouse is over the widget.

exportSelection If "true", then the selected text is exported via the X
selection mechanism.

font Font for the text.

foreground Foreground color. (Also fg).

highlightColor Color for input focus highlight.

highlightThickness Thickness of focus highlight rectangle.

insertBackground Background for area covered by insert cursor.

insertBorderWidth Width of cursor border. Non-zero for 3D effect.

insertOffTime Time, in milliseconds the insert cursor blinks off.

insertOnTime Time, in milliseconds the insert cursor blinks on.

insertWidth Width of insert cursor. Default is 2.

justify Text justification: left, right, center.

relief 3D relief: flat, sunken, raised, groove, ridge.

selectBackground Background color of selection.

selectForeground Foreground color of selection.

selectBorderWidth Widget of selection border. Non-zero for 3D effect.

show If false, asterisk (*) are displayed instead of contents.

 The entry Widget 181

Created: March 15, 1994 —ListboxEntry.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Perhaps the most useful attribute of an entry widget is the textVariable

attribute. Use this to mirror the contents of the entry widget in a Tcl variable
and your scripts will be simpler. Changes to the entry widget are reflected in the
Tcl variable value, and changes in the Tcl variable are reflected in the entry con-
tents.

An entry widget has several attributes that control the appearance of the
selection and the insert cursor, such as selectBackground and insertWidth. The
exportSelection attribute controls whether or not the selected text in the entry

can be pasted into other applications. The show attribute is useful for entries
that accept passwords or other sensitive information. Instead of displaying text,
asterisks are displayed if show is false. The state attribute determines if the
contents of an entry can be modified. Set the state to disabled to prevent modi-
fication, and set it to normal to allow modification.

.name.entry config -state disabled ;# read-only

.name.entry config -state normal ;# editable

Programming entry widgets

The default bindings for entry widgets are fairly good. However, you can
completely control the entry with a set of widget operations for inserting, delet-
ing, selecting, and scrolling. The operations involve addressing character posi-
tions called indices. The indices count from zero. The entry defines some
symbolic indices such as end. The index corresponding to an X coordinate is spec-
ified with @xcoord, such as @26. Table 16–3 lists the formats for indices.

state disabled (read-only) or normal.

textVariable Name of Tcl variable.

width Width, in characters.

xScrollCommand Used to connect entry to a scrollbar.

Table 16–3 Indices for entry widgets

0 Index of the first character.

anchor The index of the anchor point of the selection.

end Index of the last character.

number Index a character, counting from zero.

insert The character right after the insertion cursor.

sel.first The first character in the selection.

sel.last The character just after the last character in the selection.

@xcoord The character under the specified X coordinate.

Table 16–2 Resource names for attributes of entry widgets.

182 Entry and Listbox Widgets Chap.16

Created: March 15, 1994 —ListboxEntry.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

 Table 16–4 summarizes the widget operations. In the table, $w is an entry

widget.

Use the bind interface from Chapter 13 to browse the Entry class bindings.
You will see examples of these operations. For example, the binding for <Button-
1> includes the following commands.

%W icursor @%x

%W select from @%x

if {[lindex [%W config -state] 4] == "normal"} {focus %W}

Table 16–4 Operations on entry widgets.

$w cget option Return the value of the configuration option.

$w configure ... Query or modify the widget configuration.

$w delete first ?last? Delete the characters from first to last, not
including the character at last. The character at
first is deleted if last is not given.

$w get Return the string in the entry.

$w icursor index Move the insert cursor.

$w index index Return the numerical index corresponding to
index.

$w insert index string Insert the string at the given index.

$w scan mark x Start a scroll operation. x is a screen coordinate.

$w scan dragto x Scroll from previous mark position.

$w select adjust index Move the boundary of an existing selection.

$w select clear Clear the selection.

$w select from index Set the anchor position for the selection.

$w select present Returns 1 if there is a selection in the entry.

$w select range start end Select the characters from start to the one just
before end.

$w select to index Extend a selection.

$w xview Return the offset and span of visible contents.
These are both real numbers between 0 and 1.0

$w xview index Shift the display so the character at index is at
the left edge of the display.

$w xview moveto fraction Shift the display so that fraction of the contents
are off the left edge of the display.

$w xview scroll num what Scroll the contents by the specified number of
what, which can be units or pages.

 The listbox Widget 183

Created: March 15, 1994 —ListboxEntry.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Recall that the % triggers substitutions in binding commands, and that %W is
replaced with the widget pathname and %x is replaced with the X coordinate of
the mouse event. Chapter 13 describes bindings and these substitutions in
detail. These commands set the insert point to the point of the mouse click by
using the @%x index, which will be turned into something like @17 when the bind-
ing is invoked. The binding also starts a selection. If the entry is not in the dis-
abled state, then keyboard focus is given to the entry so that it gets KeyPress

events.

The listbox Widget

The listbox widget displays a set of text lines in a scrollable display. The basic
text unit is a line. There are operations to insert, select, and delete lines, but
there are no operations to modify the characters in a line. As such, the listbox is
suitable for displaying a set of choices, such as in a file selection dialog, but it is
not right for a general purpose text editor. The text widget described in the next
chapter is designed for general text display and editing.

A listbox is almost always associated with a scrollbar, even though you
can also scroll by dragging with the middle mouse button. The following example
associates two scrollbars with a listbox, one for both the X and Y directions.

Example 16–2 A listbox with scrollbars.

proc ScrolledListbox { parent args } {
Create listbox attached to scrollbars, pass thru $args
frame $parent
eval {listbox $parent.list \

-yscrollcommand [list $parent.sy set] \
-xscrollcommand [list $parent.sx set]} $args

Create scrollbars attached to the listbox
scrollbar $parent.sx -orient horizontal \

-command [list $parent.list xview]
scrollbar $parent.sy -orient vertical \

-command [list $parent.list yview]
Arrange them in the parent frame
pack $parent.sx -side bottom -fill x
pack $parent.sy -side right -fill y
Pack to allow for resizing
pack $parent.list -side left -fill both -expand true
return $parent.list

}
ScrolledListbox .f -width 20 -height 5 -setgrid true

184 Entry and Listbox Widgets Chap.16

Created: March 15, 1994 —ListboxEntry.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

pack .f -fill both -expand true
.f.list insert end "This is a listbox"
.f.list insert end "It is line-oriented"

The ScrolledListbox procedure uses the eval and $args technique
described in Chapter 6 to pass through extra arguments to the listbox. The
example specifies the width, height, and setgrid values for the listbox. The
main window becomes resizable as a side effect of gridding the listbox. Chapter
24 describes gridding and geometry in more detail.

The listbox has two scrolling commands associated with it, one each for
the X and Y directions. These commands set the parameters of the scrollbar with
its set command. This is most of what you need to know about scrollbars,
although Chapter 15 describes them in more detail.

The listbox is controlled by the command associated with a scrollbar.
When the user clicks on the scrollbar, it commands the listbox to change its
display. When the listbox changes its display, it commands the scrollbars to
update their display. Thus the scrollbars display themselves correctly whether
the user scrolls with the scrollbars or by dragging the listbox with the middle
mouse button.

The list command is used to construct the scroll commands so that $par-
ent gets expanded and the command has the right form. It is also used in the
scrollbar commands when defining their command attributes. While you could
use double-quotes instead of list here, make a habit of using list when con-
structing Tcl commands. This habit prevents bugs that arise when variable val-
ues include special characters. For more discussion, see Chapter 6 and 3.

The packing commands arrange three widgets on three different sides of
the parent frame. This is one of the few cases where a mixture of horizontal and
vertical packing within the same frame works. However, the arrangement causes
the bottom scrollbar to extend past the listbox a little bit. If you want to line up
the bottom scrollbar with the listbox, you must introduce a little frame to space
things out, and then another frame to hold this spacer and one of the scrollbars.
The second version of ScrolledListbox presented below achieves this.

Example 16–3 A listbox with scrollbars and better alignment.

proc ScrolledListbox2 { parent args } {
Create listbox attached to scrollbars, pass thru $args
eval {listbox $parent.list \

-yscrollcommand [list $parent.sy set]
-xscrollcommand [list $parent.pad.sx set]} $args

 The listbox Widget 185

Created: March 15, 1994 —ListboxEntry.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

scrollbar $parent.sy -orient vertical
-command [list $parent.list yview]

Create extra frame to hold pad and horizontal scrollbar
frame $parent.pad
scrollbar $parent.pad.sx -orient horizontal

-command [list $parent.list xview]
Create padding based on the scrollbar’s width
and its borders.
set pad [expr [$parent.sy cget -width] + 2* \

([$parent.sy cget -bd] + \
 [$parent.sy cget -highlightthickness])]

frame $parent.pad.it -width $pad -height $pad
Arrange everything in the parent frame
pack $parent.pad -side bottom -fill x
pack $parent.pad.it -side right
pack $parent.pad.sx -side bottom -fill x
pack $parent.sy -side right -fill y
pack $parent.list -side left -fill both -expand true
return $parent.list

}
ScrolledListbox2 .f -width 20 -height 5 -setgrid true
pack .f -expand true -fill both
.f.list insert end \

"The bottom scrollbar" "is aligned with frames"

 The packing parameters are a bit subtle in ScrolledListbox2. The bottom
scrollbar of the previous example is replaced by a frame, $parent.pad, that con-
tains the horizontal scrollbar and another frame for padding. It is packed with
the same parameters that the horizontal scrollbar was packed with before: -side
bottom -fill x. The padding frame and the horizontal scrollbar are packed
inside that. Here we see another case of mixing horizontal and vertical packing,
with the pad to the right and the scrollbar to the bottom:

pack $parent.pad.sx -side bottom -fill x

The combination of -side bottom and -fill x enables the scrollbar to fill
out the whole bottom side of the virtual packing cavity. Another way to pack the
horizontal scrollbar is given below. The -expand true is required, otherwise the
-side left squeezes down the scrollbar to a minimum size.

pack $parent.pad.sx -side left -fill x -expand true

Programming listboxes

The listbox is the first of the specialized text widgets that really requires some
programming to make it useful. There are listbox operations to insert and delete
items. There are also a set of operations to control the selection and scrolling, but
these are already used by the pre-defined bindings, which are discussed in the
next section.

The listbox operations use indices to reference lines in the listbox. The
lines are numbered starting at zero. Keyword indices are also used for some spe-
cial lines. The listbox keeps track of an active element, which is displayed with

186 Entry and Listbox Widgets Chap.16

Created: March 15, 1994 —ListboxEntry.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

underlined text. There is also a selection anchor that is used when adjusting
selections. The keywords used for indices are summarized in the table below.

The table below gives the operations used to program a listbox. In the
table, $w is a listbox widget. Most of the operations have to do with the selec-
tion, and these operations are already programmed by the default bindings for
the Listbox widget class.

Table 16–5 Indices for listbox widgets

0 Index of the first line.

active The index of the activated line.

anchor The index of the anchor point of the selection.

end Index of the last line.

number Index a line, counting from zero.

@x,y The line closest to the specified X and Y coordinate.

Table 16–6 Operations on listbox widgets..

$w activate index Activate the specified line.

$w bbox index Return the bounding box of the text in the speci-
fied line in the form: xoff yoff width height.

$w cget option Return the value of the configuration option.

$w configure ... Query or modify the widget configuration.

$w curselection Return a list of indices of the selected lines.

$w delete first ?last? Delete the lines from first to last, including
the line at last. The line at first is deleted if
last is not given.

$w get first ?last? Return the lines from first to last as a list.

$w index index Return the numerical index corresponding to
index.

$w insert index ?string
string string ...?

Insert the string items before the line at index.
If index is end, then append the items.

$w nearest y Return the index of the line closest to the widget-
relative Y coordinate.

$w scan mark x y Start a scroll operation. x and y are widget-rela-
tive screen coordinates

$w scan dragto x y Scroll from previous mark position.

$w see index Adjust the display so the line at index is visible.

 The listbox Widget 187

Created: March 15, 1994 —ListboxEntry.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

The most common programming task for a listbox is to insert text. If your
data is in a list, then you can loop through the list and insert each element at the
end.

foreach item $list {

$listbox insert end $item

}

You can do the same thing by using eval to concatenate the list onto a sin-
gle insert command.

eval {$listbox insert end} $list

It is also common to react to mouse clicks on a listbox. The following exam-
ple displays two listboxes. When the user clicks on an item in the first listbox, it
is copied into the second listbox. When an item in the second listbox is selected, it
is removed.

$w select anchor index Anchor the selection at the specified line.

$w select clear Clear the selection.

$w select includes index Returns 1 if the line at index is in the selection.

$w select set start ?end? Select the lines from start to end.

$w xview Return the offset and span of visible contents.
These are both real numbers between 0 and 1.0

$w xview index Shift the display so the character at index is at
the left edge of the display.

$w xview moveto fraction Shift the display so that fraction of the contents
are off the left edge of the display.

$w xview scroll num what Scroll the contents horizontally by the specified
number of what, which can be units or pages.

$w yview Return the offset and span of visible contents.
These are both real numbers between 0 and 1.0

$w yview index Shift the display so the line at index is at the top
edge of the display.

$w yview moveto fraction Shift the display so that fraction of the contents
are off the top of the display.

$w yview scroll num what Scroll the contents vertically by the specified
number of what, which can be units or pages.

Table 16–6 Operations on listbox widgets..

188 Entry and Listbox Widgets Chap.16

Created: March 15, 1994 —ListboxEntry.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Example 16–4 Choosing items from a listbox

proc ListSelect { parent choices } {
Create two lists side by side
frame $parent
ScrolledListbox2 $parent.choices -width 20 -height 5 \

-setgrid true
ScrolledListbox2 $parent.picked -width 20 -height 5 \

-setgrid true
The setgrid allows interactive resizing, so the
pack parameters need expand and fill.
pack $parent.choices $parent.picked -side left \

-expand true -fill both

Selecting in choice moves items into picked
bind $parent.choices.list <ButtonPress-1> \

{ListSelectStart %W %y}
bind $parent.choices.list <B1-Motion> \

{ListSelectExtend %W %y}
bind $parent.choices.list <ButtonRelease-1> \

[list ListSelectEnd %W %y $parent.picked.list]

Selecting in picked deletes items
bind $parent.picked.list <ButtonPress-1> \

{ListSelectStart %W %y}
bind $parent.picked.list <B1-Motion> \

{ListSelectExtend %W %y}
bind $parent.picked.list <ButtonRelease-1> \

{ListDeleteEnd %W %y}

Insert all the choices
eval is used to construct a command where each
item in choices is a separate argument
eval {$parent.choices.list insert 0} $choices

}

proc ListSelectStart { w y } {
$w select anchor [$w nearest $y]

}

 Listbox Bindings 189

Created: March 15, 1994 —ListboxEntry.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

proc ListSelectExtend { w y } {
$w select set anchor [$w nearest $y]

}
proc ListSelectEnd {w y list} {

$w select set anchor [$w nearest $y]
foreach i [$w curselection] {

$list insert end [$w get $i]
}

}
proc ListDeleteEnd {w y} {

$w select set anchor [$w nearest $y]
foreach i [lsort -decreasing [$w curselection]] {

$list delete $i
}

}
ListSelect .f {apples oranges bananas \

grapes mangos peaches pears}
pack .f -expand true -fill both

The ListSelect procedure creates two lists using ScrolledListbox2. Bind-
ings are created to move items from choices to picked, and to delete items from
picked. Consider the <ButtonRelease-1> binding for choices:

bind $parent.choices.list <ButtonRelease-1> \

[list ListSelectEnd %W %y $parent.picked.list]

The list command is used to construct the Tcl command because we need
to expand the value of $parent at the time the binding is created. The command
will be evaluated later at the global scope, and parent will not be defined after
the ListSelect procedure returns. Or, worse yet, an existing global variable
named parent will be used, which is unlikely to be correct!

Short procedures are used to implement the binding command, even though
two of them are just one line. This style has two advantages. First, it confines the
% substitutions done by bind to a single command. Second, if there are any tem-
porary variables, such as the loop counter i, they are hidden within the scope of
the procedure.

The ListSelectEnd procedure extends the current selection to the listbox

item under the given Y coordinate. It gets the list of all the selected items, and
loops over this list to insert them into the other list. The ListDeleteEnd proce-
dure is similar. However, it sorts the selection indices in reverse order. It deletes
items from the bottom up so the indices remain valid throughout the process.

Listbox Bindings

A listbox has an active element and it may have one or more selected elements.
The active element is highlighted with an underline, and the selected elements
are highlighted with a different color. There are 4 selection modes for a listbox,
and the bindings vary somewhat depending what mode the listbox is in. You can
always select items with the mouse bindings, but the listbox needs the input

190 Entry and Listbox Widgets Chap.16

Created: March 15, 1994 —ListboxEntry.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

focus for the key bindings to work. The 4 possible selectMode settings are
described below.

Browse select mode

In browse selection mode, <Button-1> selects the item under the mouse and
dragging with the mouse moves the selection, too. Table 16–8 gives the bindings
for browse mode.

Single select mode

In single selection mode, <Button-1> selects the item under the mouse,
but dragging the mouse does not change the selection. When you release the
mouse, the item under that point is activated. Table 16–9 gives the bindings for
single mode.

Table 16–7 The values for the selectMode of a listbox.

single A single element can be selected.

browse A single element can be selected, and the selection can be
dragged with the mouse. This is the default.

multiple More than one element can be selected by toggling the selection
state of items, but you only select or deselect one line at a time.

extended More than one element can be selected by dragging out a selec-
tion with the shift or control keys.

Table 16–8 Bindings for browse selection mode.

<Button-1> Select the item under the mouse. This becomes the
active element, too.

<B1-Motion> Same as <Button-1>, the selection moves with the
mouse.

<Shift-Button-1> Activate the item under the mouse. The selection is not
changed.

<Key-Up> <Key-Down> Move the active item up (down) one line, and select it.

<Control-Home> Activate and select the first element of the listbox.

<Control-End> Activate and select the last element of the listbox.

<space> <Select>
<Control-slash>

Select the active element.

Table 16–9 Bindings for a listbox in single selectMode.

<ButtonPress-1> Select the item under the mouse.

 Listbox Bindings 191

Created: March 15, 1994 —ListboxEntry.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Extended select mode

In extended selection mode multiple items are selected by dragging out a
selection with the first mouse button. Hold down the Shift key to adjust the
ends of the selection. Use the Control key to make a disjoint selection. The Con-

trol key works in a toggle fashion, changing the selection state of the item under
the mouse. If this starts a new part of the selection, then dragging the mouse
extends the new part of the selection. If the toggle action cleared the selected
item, then dragging the mouse continues to clear the selection. The extended
mode is quite intuitive once you try it out. Table 16–10 gives the complete set of
bindings for extended mode.

<ButtonRelease-1> Activate the item under the mouse.

<Shift-Button-1> Activate the item under the mouse. The selection is not
changed.

<Key-Up> <Key-Down> Move the active item up (down) one line. The selection
is not changed.

<Control-Home> Activate and select the first element of the listbox.

<Control-End> Activate and select the last element of the listbox.

<space> <Select>
<Control-slash>

Select the active element.

<Control-backslash> Clear the selection.

Table 16–10 Bindings for extended selection mode.

<Button-1> Select the item under the mouse. This becomes the
anchor point for adjusting the selection.

<B1-Motion> Sweep out a selection from the anchor point.

<ButtonRelease-1> Activate the item under the mouse.

<Shift-Button-1> Adjust the selection from the anchor item to the item
under the mouse.

<Shift-B1-Motion> Continue to adjust the selection from the anchor.

<Control-Button-1> Toggle the selection state of the item under the
mouse, and make this the anchor point.

<Control-B1-Motion> Set the selection state of the items from the anchor
point to the item under the mouse to be the same as
the selection state of the anchor point.

<Key-Up> <Key-Down> Move the active item up (down) one line, and start
out a new selection with this item as the anchor
point.

Table 16–9 Bindings for a listbox in single selectMode.

192 Entry and Listbox Widgets Chap.16

Created: March 15, 1994 —ListboxEntry.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Multiple select mode

In multiple selection mode you can have more than one item selected, but
you only add or remove one item at a time. Dragging the mouse does not sweep
out a selection. If you click on a selected item it is deselected. Table 16–11 gives
the complete set of bindings for multiple selection mode.

Scroll bindings

There are a number of bindings that scroll the display of the listbox. As well

<Shift-Up> <Shift-Down> Move the active element up (down) and extend the
selection to include this element.

<Control-Home> Activate and select the first element of the listbox.

<Control-Shift-Home> Extend the selection to the first element.

<Control-End> Activate and select the last element of the listbox.

<Control-Shift-End> Extend the selection to the last element.

<space> <Select> Select the active element.

<Escape> Cancel the previous selection action.

<Control-slash> Select everything in the listbox.

<Control-backslash> Clear the selection.

Table 16–11 Bindings for multiple selection mode.

<Button-1> Select the item under the mouse.

<ButtonRelease-1> Activate the item under the mouse.

<Key-Up> <Key-Down> Move the active item up (down) one line, and start
out a new selection with this item as the anchor
point.

<Shift-Up> <Shift-Down> Move the active element up (down).

<Control-Home> Activate and select the first element of the listbox.

<Control-Shift-Home> Activate the first element of the listbox.

<Control-End> Activate and select the last element of the listbox.

<Control-Shift-End> Activate the last element of the listbox.

<space> <Select> Select the active element.

<Control-slash> Select everything in the listbox.

<Control-backslash> Clear the selection.

Table 16–10 Bindings for extended selection mode.

 Listbox Bindings 193

Created: March 15, 1994 —ListboxEntry.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

as the standard middle-drag scrolling, there are some additional key bindings for
scrolling. The scroll-related bindings are summarized in the table below.

listbox attributes

Table 16–13 lists the listbox widget attributes. The table uses the X resource
name for the attribute, which has capitals at internal word boundaries. In Tcl
commands the attributes are specified with a dash and all lowercase.

Table 16–12 Scroll bindings common to all selection modes.

<Button-2> Mark the start of a scroll operation.

<B2-Motion> Scroll vertically and horizontally.

<Left> <Right> Scroll horizontally by one character.

<Control-Left> <Control-Right>
<Control-Prior> <Control-Next>

Scroll horizontally by one screen
width.

<Prior> <Next> Scroll vertically by one screen height.

<Home> <End> Scroll to left and right edges of the
screen, respectively.

Table 16–13 Resource names of attributes for listbox widgets.

background Background color (also bg).

borderWidth Extra space around the edge of the text.

cursor Cursor to display when mouse is over the widget.

exportSelection If true, then the selected text is exported via the X
selection mechanism.

font Font for the text.

foreground Foreground color. (Also fg).

height Number of lines in the listbox.

highlightColor Color for input focus highlight.

highlightThickness Thickness of focus highlight rectangle.

relief 3D relief: flat, sunken, raised, groove, ridge.

selectBackground Background color of selection.

selectForeground Foreground color of selection.

selectBorderWidth Widget of selection border. Non-zero for 3D effect.

selectMode browse, single, extended, multiple

setGrid Boolean. Set gridding attribute.

194 Entry and Listbox Widgets Chap.16

Created: March 15, 1994 —ListboxEntry.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Geometry gridding

The setGrid attribute affects interactive resizing of the window containing
the listbox. By default, a window can be resized to any size. If gridding is turned
on, however, the size is restricted so that a whole number of listbox lines and a
whole number of average-width characters will be displayed. In addition, grid-
ding affects the user feedback during an interactive resize, assuming the window
manager displays the current size of the window in numeric terms. Without grid-
ding the size is reported in pixel dimensions. When gridding is turned on, then
the size is reported in grided units (e.g., 20x10).

width Width, in average character sizes.

xScrollCommand Used to connect listbox to a horizontal scrollbar.

yScrollCommand Used to connect listbox to a vertical scrollbar.

Table 16–13 Resource names of attributes for listbox widgets.

195

C H A P T E R

Created: March 15, 1994 —Dialog.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

 17

Focus, Grabs, and Dialogs 17

Input focus directs keyboard events to different widgets. The grab mechanism
lets a widget capture the input focus. Dialog boxes are the classic
example of a user interface object that uses grabs.

Dialog boxes are a classic feature in a
user interface. The application needs some user response before it can continue.
It displays some information and some controls, and the user must interact with
this dialog box before the application can continue. To implement this, the appli-
cation grabs the input focus so the user can only interact with the dialog box.
This chapter describes focus and grabs, and finishes with some examples of dia-
log boxes.

Input Focus

The X window system directs keyboard events to the main window that cur-
rently has the input focus. The application, in turn, directs the keyboard events
to one of the widgets within that toplevel window. The focus command is used to
set focus to a particular widget. Tk remembers what widget has focus within a
toplevel window, and automatically gives focus to that widget when the window
manager gives focus to a toplevel window.

Two focus models are used: focus-follows-mouse, and click-to-type. In the
first, moving the mouse into a toplevel window gives the application focus. In the
second, the user must click on a window for it to get focus, and thereafter the
position of the mouse is not important. Within a toplevel window, Tk uses the
click-to-type model by default. In addition, the creation order of widgets deter-

196 Focus, Grabs, and Dialogs Chap.17

Created: March 15, 1994 —Dialog.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

mines a traversal order for focus. Use the tk_focusNext and tk_focusPrev pro-
cedures to change the focus to the next (previous) widget in the focus order.

You can get the focus-follows-mouse model within a toplevel window by call-
ing the tk_focusFollowsMouse procedure. However, in many cases you will find
that an explicit focus model is actually more convenient for users.

The focus command

Table 17–1 sumarises the focus command. The implementation supports
an application that has windows on multiple displays with a separate focus win-
dow on each display. The -displayof option can be used to query the focus on a
particular display. The -lastfor option finds out what widget last had the focus
within the same toplevel as another window. Tk will restore focus to that window
if the widget that has the focus is destroyed. The toplevel widget gets the focus if
no widget claims it.

Focus follows mouse

To implement the focus-follows-mouse model you need to track the <Enter>

and <Leave> events that are generated when the mouse moves in and out of wid-
gets. The tk_focusFollowsMouse procedure sets up this binding (the real proce-
dure is only slightly more complicated).

bind all <Enter> {focus %W}

It might be better to set up this binding only for those widget classes for
which it makes sense to get the input focus. The next example does this. The
focus detail (%d) is checked by the code in order to filter out extraneous focus
events generated by X. That trick is borrowed from tk_focusFollowsMouse. (The
Xlib reference manual discourages you from attempting to understand the
details of its focus mechanism. After reading it, I understand why. This code
seems plausible.)

Example 17–1 Setting focus-follows-mouse input focus model.

proc FocusFollowsMouse {} {
foreach class {Button Checkbutton Radiobutton Menubutton\

Menu Canvas Entry Listbox Text} {

Table 17–1 The focus command.

focus Return the widget that currently has the focus on the
display of the application’s main window.

focus window Set the focus to window.

focus -displayof win Return the focus widget on the same display as win.

focus -lastfor win Return the name of the last widget to have the focus
on the display of win.

 Grabbing the Focus 197

Created: March 15, 1994 —Dialog.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

bind $class <Enter> {
if {("%d" == "NotifyAncestor") ||

 ("%d" == "NotifyNonlinear") ||
 ("%d" == "NotifyInferior")} {
focus %W

}
}

}
}

}

Click to type

To implement the click-to-type focus model you need to set up a binding on
the button events. The <Any-Button> event will work nicely.

bind all <Any-Button> {focus %W}

Again, it might be better to restrict this binding to those classes for which it
makes sense. The previous example can be modified easily to account for this.

Hybrid models

You can develop hybrid models that are natural for users. If you have a dia-
log or form-like window with several entry widgets, then it can be tedious for the
user to position the mouse over the various entries in order to direct focus.
Instead, click-to-type as well as keyboard shortcuts like <Tab> or <Return> may
be easier for the user, even if they use focus-follows-mouse with their window
manager.

Grabbing the Focus

An input grab is used to override the normal focus mechanism. For example, a
dialog box can grab the focus so that the user cannot interact with other windows
in the application. The typical scenario is that the application is performing
some task but it needs user input. The grab restricts the user’s actions so it can-
not drive the application into an inconsistent state. A global grab prevents the
user from interacting with other applications, too, even the window manager. Tk
menus use a global grab, for example, which is how they unpost themselves no
matter where you click the mouse. When an application prompts for a password
a global grab is also a good idea. This prevents the user from accidentally typing
their password into a random window. Table 17–1 summarizes the grab com-
mand.

Table 17–2 The grab command.

grab ?-global? window Set a grab to a particular window.

198 Focus, Grabs, and Dialogs Chap.17

Created: March 15, 1994 —Dialog.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

In most cases you only need to use the grab and grab release commands.
Note that the grab set command is equivalent to the grab command. The next
section includes examples that use the grab command.

Dialogs

The tkwait Command

This section presents a number of different examples of dialogs. In nearly all
cases the tkwait command is used to wait for the dialog to complete. This com-
mand waits for something to happen, and the key thing is that tkwait allows
events to be processed while waiting. This effectively suspends part of your
application while other parts can respond to user input. Table 17–1 summarizes
the tkwait command.

The variable specified in the tkwait variable command is a global vari-
able. Remember this if you use procedures to modify the variable. They must
declare it global or the tkwait command will not notice the assignments.

The tkwait visibility waits for the visibility state of the window to change.
Most commonly this is used to wait for a newly created window to become visible.
For example, if you have any sort of animation in a complex dialog, you’ll want to
wait until the dialog is displayed before starting the animation.

Prompter dialog

The GetValue dialog gets a value from the user, returning the value
entered, or the empty string if the user cancels the operation.

grab current ?window? Query the grabs on the display of window, or on all
displays if window is omitted.

grab release window Release a grab on window.

grab set ?-global? win Set a grab to a particular window.

grab status window Returns none, local, or global.

Table 17–3 The tkwait command.

tkwait variable varname Wait for the global variable varname to be set.

tkwait visibility win Wait for the window win to become visible.

tkwait window win Wait for the window win to be destroyed.

Table 17–2 The grab command.

 Dialogs 199

Created: March 15, 1994 —Dialog.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Example 17–2 A simple dialog.

proc GetValue { prompt } {
global prompt
set f [toplevel .prompt -borderwidth 10]
message $f.msg -text $prompt
entry $f.entry -textvariable prompt(result)
set b [frame $f.buttons -bd 10]
pack $f.msg $f.entry $f.buttons -side top -fill x

bind $f.entry <Return> {set prompt(ok) 1}
bind $f.entry <Control-c> {set prompt(ok) 0}
button $b.ok -text OK -command {set prompt(ok) 1}
button $b.cancel -text Cancel -command {set prompt(ok) 0}

focus $f.entry
grab $w
tkwait variable prompt(ok)
grab release $w
destroy $w
if {$prompt(ok)} {

return $prompt(result)
} else {

return {}
}

}
GetValue "Please enter a name"

The tkwait variable command is used to wait for the dialog to complete.
Anything that changes the prompt(ok) variable will cause the tkwait command
to return, and then the dialog will be completed. The variable is set if the user
presses the OK or Cancel buttons, of if they press <Return> or <Control-c> in the
entry widget.

The focus is set to the entry widget and a grab is placed so the user can only
interact with the dialog box. The sequence of focus, grab, tkwait, and grab

release is fairly standard.

200 Focus, Grabs, and Dialogs Chap.17

Created: March 15, 1994 —Dialog.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Destroying widgets

The destroy command deletes one or more widgets. If the widget has chil-
dren, all the children are destroyed, too. The example deletes the dialog with a
single destroy operation on the toplevel window.

You can wait for a window to be deleted with the tkwait window command.
tkwait window pathname

This provides an alternate way to synchronize things when using dialogs.

Focusing on buttons

The previous example defined two key bindings for the entry widget that
invoked the same commands used by the buttons. An alternative that is more
like the interfaces in the Windows environment is to has key bindings that shift
the focus to different widgets. The Tk widgets, even buttons and scrollbars, have
bindings that support keyboard interaction. A <space> for example, will invoke
the command associated with a button, assuming the button has the input focus.
The Tk widgets highlight themselves when they get focus, too, so the user has
some notion of what is going on.

The following bindings cause the <Tab> key to cycle focus among the wid-
gets in the prompter dialog.

bind $f.entry <Tab> [list focus $b.ok]

bind $b.ok <Tab> [list focus $b.cancel]

bind $b.cancel <Tab> [list focus $f.entry]

Another way to shift focus is to use a standard key sequence where the last
letter indicates what widget to focus on. The label and button widgets have an
underline attribute that indicates what letter to underline. If you use that letter
as the ID for a widget, users will know (with some training) how to focus on dif-
ferent widgets.

Animation with the update command

Suppose you want to entertain your user while your application is busy. By
default, the user interface will just hang until your processing completes. Even if
you are changing a label or entry widget in the middle of processing, the updates
to that widget will be batched up until an idle moment. The user will notice that
the window is not refreshed when it gets obscured and uncovered, and they will
not see your feedback. The update command forces Tk to go through its event
loop. The safest way to use update is with its idletasks option.

Example 17–3 A feedback procedure.

proc Feedback { message } {
global feedback
An entry widget is used because it won’t change size
based on the message length, and it can be scrolled

 File Selection Dialog 201

Created: March 15, 1994 —Dialog.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

set e $feedback(entry)
$e config -state normal
$e delete 0 end
$e insert 0 $message
Leave the entry in a read-only state
$e config -state disabled
Force a display update
update idletasks

}

The Tk widgets update their display at idle moments, which basically
means after everything else is taken care of. This lets them collapse updates into
one interaction with the X server, and it improves the batching effects that are
part of the X protocol. A call to update idletasks causes any pending display
updates to be processed.

If you use the update command with no options, then all events are pro-
cessed. In particular, user input events are processed. If you are not careful, it
can have unexpected effects because another thread of execution is launched into
your Tcl interpreter. The current thread is suspended and any callbacks that
result from input events get to execute. It is usually better to use the tkwait

command instead of a naked update.

File Selection Dialog

Selecting files is common to many applications. This section presents a file selec-
tion dialog that supports file name completion. The dialog displays the current
directory, and has an entry widget in which to enter a name. It uses a listbox to
display the contents of the current directory. There is an OK and a Cancel button.
These buttons set a variable and the dialog finishes, returning the selected path-
name or an empty string.

Some key bindings are set up to allow for keyboard selection. Once the cor-
rect pathname is entered, a <Return> is equivalent to hitting the OK button.
<Control-c> is equivalent to hitting the Cancel button. <space> does file name
completion, which is discussed in more detail below. A <Tab> changes focus to the
listbox so that its bindings can be used for selection. The arrow keys move the
selection up and down. A <space> copies the current name into the entry, and a
<Return> is like hitting the OK button. A picture of the dialog appears below.

Creating the dialog

Example 17–4 A file selection dialog.

proc fileselect {{why "File Selection"} {default {}} } {
global fileselect

catch {destroy .fileselect}

202 Focus, Grabs, and Dialogs Chap.17

Created: March 15, 1994 —Dialog.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

set t [toplevel .fileselect -bd 4]

message $t.msg -aspect 1000 -text $why
pack $t.msg -side top -fill x

Create a read-only entry for the current directory
set fileselect(dirEnt) [entry $t.dir -width 15 \

-relief flat -state disabled]
pack $t.dir -side top -fill x

Create an entry for the pathname
The value is kept in fileselect(path)
frame $t.top
label $t.top.l -text "File:" -padx 0
set e [entry $t.top.path -relief sunken \

-textvariable fileselect(path)]
pack $t.top -side top -fill x
pack $t.top.l -side left
pack $t.top.path -side right -fill x -expand true
set fileselect(pathEnt) $e

Set up bindings to invoke OK and Cancel
bind $e <Return> fileselectOK
bind $e <Control-c> fileselectCancel
bind $e <space> fileselectComplete
focus $e

 File Selection Dialog 203

Created: March 15, 1994 —Dialog.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Create a listbox to hold the directory contents
listbox $t.list -yscrollcommand [list $t.scroll set]
scrollbar $t.scroll -command [list $t.list yview]

A single click copies the name into the entry
A double-click selects the name
bind $t.list <Button-1> {fileselectClick %y}
bind $t.list <Double-Button-1> {

fileselectClick %y ; fileselectOK
}

Warp focus to listbox so the user can use arrow keys
bind $e <Tab> "focus $t.list ; $t.list select set 0"
bind $t.list <Return> fileselectTake
bind $t.list <space> {fileselectTake ; break}
bind $t.list <Tab> "focus $e"

Create the OK and Cancel buttons
The OK button has a rim to indicate it is the default
frame $t.buttons -bd 10
frame $t.buttons.ok -bd 2 -relief sunken
button $t.buttons.ok.b -text OK \

-command fileselectOK
button $t.buttons.cancel -text Cancel \

-command fileselectCancel

Pack the list, scrollbar, and button box
in a horizontal stack below the upper widgets
pack $t.list -side left -fill both -expand true
pack $t.scroll -side left -fill y
pack $t.buttons -side left -fill both
pack $t.buttons.ok $t.buttons.cancel \

-side top -padx 10 -pady 5
pack $t.buttons.ok.b -padx 4 -pady 4

Initialize variables and list the directory
if {[string length $default] == 0} {

set fileselect(path) {}
set dir [pwd]

} else {
set fileselect(path) [file tail $default]
set dir [file dirname $default]

}
set fileselect(dir) {}
set fileselect(done) 0

Wait for the listbox to be visible so
we can provide feedback during the listing
tkwait visibility .fileselect.list
fileselectList $dir

tkwait variable fileselect(done)
destroy .fileselect
return $fileselect(path)

204 Focus, Grabs, and Dialogs Chap.17

Created: March 15, 1994 —Dialog.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

}

The tkwait command is used in two ways in this dialog. First, tkwait vis-
ibility is used so we can delay listing the directory until the listbox is visible. A
special message is displayed there during the listing, which can take some time
for larger directories. This ensures that the dialog appears quickly so the user
knows what is going on. After this, tkwait variable is used to wait for the user
interaction to complete.

Listing the directory

Much of the complexity of the file selection process has to do with looking
through the directory and doing file name completion. The code uses file

dirname to extract the directory part of a pathname, and file tail to extract
the last component of a directory. The glob command is used to do the directory
listing. It also has the nice property of expanding pathnames that begin with a ~.

Example 17–5 Listing a directory for fileselect.

proc fileselectList { dir {files {}} } {
global fileselect

Update the directory, being careful
to view the tail end
set e $fileselect(dirEnt)
$e config -state normal
$e delete 0 end
$e insert 0 $dir
$e config -state disabled
$e xview moveto 1

Give the user some feedback
set fileselect(dir) $dir
.fileselect.list delete 0 end
.fileselect.list insert 0 Listing...
update idletasks

.fileselect.list delete 0
if {[string length $files] == 0} {

List the directory and add an
entry for the parent directory
set files [glob -nocomplain $fileselect(dir)/*]
.fileselect.list insert end ../

}

Sort the directories to the front
set dirs {}
set other {}
foreach f [lsort $files] {

if [file isdirectory $f] {
lappend dirs [file tail $f]/

 File Selection Dialog 205

Created: March 15, 1994 —Dialog.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

} else {
lappend others [file tail $f]

}
}
foreach f [concat $dirs $others] {
 .fileselect.list insert end $f
}

}

The fileselectList procedure does three things: update the directory
name, provide some feedback, and finally list the directory. The entry widget
that holds the pathname is kept read-only, so it has to be reconfigured when it is
updated. Then the entry’s xview moveto operation is used to ensure that the tail
end of the pathname is visible. An argument of 1 is specified, which tries to scroll
all of the pathname off screen to the left, but the widget implementation limits
the scrolling so it works just the way we want it to.

Before the directory is listed the listbox is cleared an a single line is put into
it. The update idletasks command forces Tk to do all its pending screen updates
so the user sees this message while she waits for the directory listing.

The directory listing itself is fairly straight-forward. The glob command is
used if no file list is passed in. The slow part is the file isdirectory test on
each pathname to decide if the trailing / should be appended. This requires a file
system stat system call, which can be expensive. The directories are sorted into
the beginning of the list.

Accepting a name

There are a few different cases when the user clicks the OK button or other-
wise accepts the current name. The easy case is when the name matches an
existing file in the current directory. The complete name is put into the global
fileselect(path) variable and the fileselect(done) variable is set to signal
that we are done. If an existing directory is specified, then the fileselectList

routine is called to list its contents. The parent directory has to be handled spe-
cially because we want to trim off the last component of the current directory.
Without the special case the ../ components remain in the directory pathname,
which is still valid, but ugly.

The user can type a file name pattern, such as *.tcl. We test for this by
trying the glob command to see if it matches on anything. If it matches a single
file, fileselectOK is called recursively. Otherwise, fileselectList is called to
display the results.

If the glob fails, then the user may have typed in a new absolute pathname.
Until now we have assumed that what they typed was relative to the current
directory. The glob command is used again, and we leave out the current direc-
tory. If glob fails the user has not typed anything good, so we attempt file name
completion. Otherwise we ignore the return from glob and call fileselectOK
recursively instead. This works because we fix up the current directory with file

dirname, which doesn’t care if the input name exists.

206 Focus, Grabs, and Dialogs Chap.17

Created: March 15, 1994 —Dialog.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Example 17–6 Accepting a file name.

proc fileselectOK {} {
global fileselect

Handle the parent directory specially
if {[regexp {˙˙/?} $fileselect(path)]} {

set fileselect(path) {}
fileselectList [file dirname $fileselect(dir)]
return

}

set path $fileselect(dir)/$fileselect(path)

if [file isdirectory $path] {
set fileselect(path) {}
fileselectList $path
return

}
if [file exists $path] {

set fileselect(path) $path
set fileselect(done) 1
return

}
Neither a file or a directory.
See if glob will find something
if [catch {glob $path} files] {

No, perhaps the user typed a new
absolute pathname
if [catch {glob $fileselect(path)} path] {

Nothing good - attempt completion
fileselectComplete
return

} else {
OK - try again
set fileselect(dir) \

[file dirname $fileselect(path)]
set fileselect(path) \

[file tail $fileselect(path)]
fileselectOK
return

}
} else {

Ok - current directory is ok,
either select the file or list them.
if {[llength [split $files]] == 1} {

set fileselect(path) $files
fileselectOK

} else {
set fileselect(dir) \

[file dirname [lindex $files 0]]
fileselectList $fileselect(dir) $files

}
}

 File Selection Dialog 207

Created: March 15, 1994 —Dialog.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

}

Easy stuff

If the user hits Cancel, or presses <Control-c>, the result variable is
cleared and the done variable is set to end the dialog. The fileselectCancel

procedure does this.
The user can select something from the listbox in two ways. If they click on

an item, then the listbox nearest operation is used to find out which one. If they
have shifted focus to the listbox with <Tab> and then press <space>, then the
listbox curselection operation is used to find out what is selected. These two
operations return a listbox index, so the listbox get operation is used to get the
actual value.

Example 17–7 Simple support routines.

proc fileselectCancel {} {
global fileselect
set fileselect(done) 1
set fileselect(path) {}

}

proc fileselectClick { y } {
Take the item the user clicked on
global fileselect
set l .fileselect.list
set fileselect(path) [$l get [$l nearest $y]]
focus $fileselect(pathEnt)

}
proc fileselectTake {} {

Take the currently selected list item and
change focus back to the entry
global fileselect
set l .fileselect.list
set fileselect(path) [$l get [$l curselection]]
focus $fileselect(pathEnt)

}

File name completion

File name completion tries to match what the user has typed against exist-
ing files. It more complex than using glob to match files because the common
prefix of the matching names is filled in for the user. In addition, the matching
names are listed in the listbox. The search for the matching prefix is crude, but
effective. The prefix begins as the string typed by the user. Then, the first match-
ing name from the glob is used as the source for the rest of the prefix. The prefix
is lengthened by one until it fails to match all the names in the list.

208 Focus, Grabs, and Dialogs Chap.17

Created: March 15, 1994 —Dialog.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Example 17–8 File name completion.

proc fileselectComplete {} {
global fileselect

Do file name completion
Nuke the space that triggered this call
set fileselect(path) [string trim $fileselect(path) \t\]

Figure out what directory we are looking at
dir is the directory
tail is the partial name
if {[string match /* $fileselect(path)]} {

set dir [file dirname $fileselect(path)]
set tail [file tail $fileselect(path)]

} elseif [string match ~* $fileselect(path)] {
if [catch {file dirname $fileselect(path)} dir] {

return ;# Bad user
}
set tail [file tail $fileselect(path)]

} else {
set path $fileselect(dir)/$fileselect(path)
set dir [file dirname $path]
set tail [file tail $path]

}
See what files are there
set files [glob -nocomplain $dir/$tail*]
if {[llength [split $files]] == 1} {

Matched a single file
set fileselect(dir) $dir
set fileselect(path) [file tail $files]

} else {
if {[llength [split $files]] > 1} {

Find the longest common prefix
set l [expr [string length $tail]-1]
set miss 0
Remember that files has absolute paths
set file1 [file tail [lindex $files 0]]
while {!$miss} {

incr l
if {$l == [string length $file1]} {

file1 is a prefix of all others
break

}
set new [string range $file1 0 $l]
foreach f $files {

if ![string match $new* [file tail $f]] {
set miss 1
incr l -1
break

}
}

}
set fileselect(path) [string range $file1 0 $l]

}

 File Selection Dialog 209

Created: March 15, 1994 —Dialog.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

fileselectList $dir $files
}

}

210 Focus, Grabs, and Dialogs Chap.17

Created: March 15, 1994 —Dialog.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

211

C H A P T E R

Created: March 15, 1994 —TkText.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

 18

The text Widget 18

Tk text widget is a general purpose editable text widget with features for line
spacing, justification, tags, marks, and embedded windows.

The Tk text widget is a versatile widget
that is simple to use for basic text display and manipulation, while at the same
time it has many advanced features to support sophisticated applications. The
line spacing and justification can be controlled on a line-by-line basis. Fonts,
sizes, and colors are controlled with tags that apply to ranges of text. Edit opera-
tions use positional marks that keep track of locations in text, even as text is
inserted and deleted.

Text widget taxonomy

Tk provides several widgets that handle text. The label widget provides a
single line of read-only text. The entry widget provides a single line for user
type-in. The message widget arranges its read-only text in multiple lines with a
given width or aspect ratio. The listbox widget holds a set of scrollable text
lines. And, finally, the text widget is a general-purpose multi-line text widget.
While it is possible to use the text widget for all of these purposes, using the spe-
cialized widgets can be more convenient.

The main drawback of having several different text-related widgets is that
there is some inconsistency among the widgets. The entry, listbox, and text

widgets have different notions of text addressing. The entry addresses charac-
ters, the listbox addresses lines, and the text widget addresses lines and char-
acters. In addition, both the entry and text widgets provide operations to insert

212 The text Widget Chap.18

Created: March 15, 1994 —TkText.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

and edit text, but they differ slightly. Chapter 18 describes the entry and list-

box widgets. Chapter 15 describes the label and message widgets.

Text Indices

The characters in a text widget are addressed by their line number and the char-
acter position within the line. Lines are numbered starting at one, while charac-
ters are numbered starting at zero. The numbering for lines was chosen to be
compatible with other programs that number lines starting at one, like compilers
that generate line-oriented error messages. Here are some examples of text indi-
ces.

There are also symbolic indices. The insert index is the position at which new
characters are normally inserted when the user types in characters. You can
define new indices called marks, too, as described below. Table 18–1 summa-
rizes the various forms for a text index.

The text widget supports a simple sort of arithmetic on indices. You can
specify "the end of the line with this index" and "three characters before this
index", and so on. This is done by grouping a modifying expression with the
index. For example, the insert index can be modified like this:

"insert lineend"

"insert -3 chars"

Table 18–2 summarizes the set of index modifiers.
The interpretation of indices and their modifiers is designed to operate well

with the delete and addtag operations of the text widget. These operations

1.0 The first character.

1.1 The second character on the first line.

1.end The character just before the newline on line one.

Table 18–1 Forms for the indices in text widgets.

line.char Lines count from 1. Characters count from 0.

@x,y The character under the specified position.

end Just after the very last character.

insert The position right after the insert cursor.

mark Just after the named mark.

tag.first The first character in the range tagged with tag.

tag.last Just after the last character tagged with tag.

window The position of the embedded window.

 Text Marks 213

Created: March 15, 1994 —TkText.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

apply to a range of text defined by two indices. The second index refers to the
character just after the end of the range. For example, the following command
deletes the word containing the insert cursor.

$t delete "insert wordstart" "insert wordend"

You can supply several modifiers to an index, and they are applied in left to
right order. If you want to delete a whole include, including the trailing newline,
you need to do the following. Otherwise the newline remains and you are left
with a blank line.

$t delete "insert linestart" "insert lineend +1 char"

Text Marks

A mark is a symbolic name for a position between two characters. Marks have
the property that when text is inserted or deleted they retain their logical posi-
tion, not their numerical index position. Even if you delete the text surrounding
a mark it remains intact. Marks are created with the mark set operation, and
have to be explicitly deleted with the mark unset operation. Once defined, a mark
can be used in operations that require indices.

$t mark set foobar "insert wordstart"

$t delete foobar "foobar lineend"

$t mark unset foobar

When a mark is defined, it is set to be just before the character specified by
the index. In the example above, this is just before the first character of the word
where the insert cursor is. When a mark is used in an operation that requires an
index it refers to the character just after the mark. So, in many ways the mark
seems associated with the character right after it, except that the mark remains
even if that character is deleted.

You can use almost any string for the name of a mark. However, do not use
pure numbers, and do not include spaces, plus (+) or minus (-). These characters
are used in the mark arithmetic and will cause problems if you put them into

Table 18–2 Index modifiers for text widgets.

+ count chars count characters past the index.

- count chars count characters before the index.

+ count lines count lines past the index, retaining character position.

- count lines count lines past the index, retaining character position.

linestart The beginning of the line.

lineend The end of the line (just before the newline character).

wordstart The first character of a word.

wordend Just after the last character of a word.

214 The text Widget Chap.18

Created: March 15, 1994 —TkText.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

mark names. The mark names operation returns a list of all defined marks.
The insert mark defines where the insert cursor is displayed. The insert

mark is treated specially: you cannot remove it with the mark unset operation.
Attempting to do so does not raise an error, though, so the following is a quick
way to unset all marks.

eval {$t mark unset} [$t mark names]

Each mark has a gravity that determines what happens when characters
are inserted at the mark. The default gravity is right, which means that the
mark sticks to the character that was to its right. Inserting text at a mark with
right gravity causes the mark to be pushed along so it is always after the
inserted text.* With left gravity the mark stays with the character to its left, so
inserted text goes after the mark and the mark does not move. The mark grav-

ity operation is used to query and modify the gravity of a mark.
$t mark gravity foobar

=> right

$t mark gravity foobar left

Text Tags

A tag is a symbolic name for a range of characters. You can use almost any string
for the name of a tag. However, do not use pure numbers, and do not include
spaces, plus (+) or minus (-). These characters are used in the mark arithmetic
and will cause problems if you use them tag names.

A tag has attributes that affect the display of text that is tagged with it.
These attributes include fonts, colors, line spacing and justification. A tag can
have event bindings so you can create hypertext. A tag can be used for non-dis-
play reasons, too. The text widget operations described later include operations
to find out what tags are defined and where they are applied.

A tag is added to a range with the tag add operation. The following com-
mand applies the tag everywhere to all the text in the widget.

$t tag add everywhere 1.0 end

You can add one or more tags when text is inserted, too.
$t insert insert "new text" someTag someOtherTag

If you do not specify tags when text is inserted, then the text will pick up
any tags that are present on the characters on both sides of the insertion point.
(Before Tk 4.0, tags from the left hand character were picked up.) If you specify
tags in the insert operation, only those tags are applied to the text.

A tag is removed from a range of text with the tag remove operation. Even
if there is no text labeled with a tag, its attribute settings are remembered. All
information about a tag can be removed with the tag delete operation.

* In versions of Tk before 4.0, marks only had right gravity, which made some uses of marks
awkward.

 Text Tags 215

Created: March 15, 1994 —TkText.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

$t tag remove everywhere 3.0 6.end

$t tag delete everywhere

Tag attributes

The attributes for a tag are defined with the tag configure operation.
Table 18–3 gives the complete set of attributes for tags. For example, a tag for
blue text is defined with the following command:

$t tag configure blue -foreground blue

The relief and border width attributes go together. If you specify a relief
without a borderwidth, then there is no visible effect. The default relief is flat,
too, so if you specify a borderwidth without a relief you won’t see any effect
either.

The stipple attributes require a bitmap argument. For example, to "grey
out" text you could use a foreground stipple of gray50. Bitmaps and colors are
explained in more detail in Chapter 23.

$t tag configure disabled -fgstipple gray50

You can set up the appearance (and bindings) for tags once in your applica-
tion, even before you have labeled any text with the tags. The attributes are

Table 18–3 Attributes for text tags.

-background color The background color for text.

-bgstipple bitmap A stipple pattern for the background color.

-borderwidth pixels The width for 3D border effects.

-fgstipple bitmap A stipple pattern for the foreground color.

-font font The font for the text.

-foreground color The foreground color for text.

-justify how left right center

-lmargin1 pixels Normal left indent for a line.

-lmargin2 pixels Indent for the part of a line that gets wrapped.

-offset pixels Baseline offset. Positive for superscripts.

-relief what flat raised sunken ridge groove

-rmargin pixels Right hand margin.

-spacing1 pixels Additional space above a line.

-spacing2 pixels Additional space above wrapped part of line.

-spacing3 pixels Additional space below a line.

-underline boolean If true, the text is underlined.

216 The text Widget Chap.18

Created: March 15, 1994 —TkText.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

retained until you explicitly remove the tag. If you are going to use the same
appearance over and over again then it will be more efficient to do the setup once
so that Tk can retain the graphics context.

The next example defines a few tags for character styles you might see in
an editor. The example is a bit over simplified. In practice you would want to
parameterize the font family and the size for the fonts.

Example 18–1 Tag configurations for basic character styles.

proc TextStyles { t } {
$t tag configure bold -font *-times-bold-r-*-12-*
$t tag configure italic -font *-times-medium-i-*-12-*
$t tag configure fixed -font fixed
$t tag configure underline -underline true
$t tag configure super -offset 6 \

-font *-helvetica-medium-r-*-8-*
$t tag configure sub -offset -6 \

-font *-helvetica-medium-r-*-8-*
}

On the other hand, if you change the configuration of a tag, any text with
that tag will be redisplayed with the new attributes. Similarly, if you change a
binding on a tag, all tagged characters are affected immediately.

Mixing attributes from different tags

A character can be labeled with more than one tag. In this case an ordering
among the tags determines the priority of the attributes from the different tags.
The tags might not conflict, either. For example, one tag could determine the
font, another could determine that foreground color, and so on. Only if different
tags try to supply the same attribute is the priority ordering taken into account.
The latest tag added to a range of text has the highest priority. The ordering of
tags can be controlled explicitly with the tag raise and tag lower commands.

You can achieve interesting effects by composing attributes from different
tags. In a mail reader, for example, the listing of messages in a mail folder can
use one color to indicate messages that are marked for delete, and it can use
another color for messages that are marked to be moved into another folder.
These tags might be defined like this:

$t tag configure deleted -background grey75

$t tag configure moved -background yellow

These tags don’t mix. However, a selection could be indicated with an
underline, for example.

$t tag configure select -underline true

With these tags defined, you can add and remove the select tag to indicate
what messages have been selected, and the underline is independent of the back-
ground color.

 Line Spacing and Justification 217

Created: March 15, 1994 —TkText.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Line Spacing and Justification

The spacing and justification for text has several attributes. The situation
is complicated a little by wrapped text lines. The text widget distinguishes
between the first display line and the remaining display lines for a given text
line. For example, if a line in the text widget has 80 characters but the window is
only wide enough for 30, then the line may be wrapped onto three display lines.
See Table 18–7 on page 226 for a description of the text widget’s wrap attribute
that controls this behavior.

Spacing is controlled with three attributes, and there are global spacing
attributes as well as per-tag spacing attributes. The -spacing1 attribute adds
space above the first display line, while -spacing2 adds space above the subse-
quent display lines that exist because of wrapping, if any. The -spacing3

attribute adds space before the last display line, which could be the same as the
first display line if the line is not wrapped at all.

The margin settings also distinguish between the first and remaining dis-
play lines. The -lmargin1 attribute specifies the indent for the first display line,
while the -lmargin2 attribute specifies the indent for the rest of the display
lines, if any. There is only a single attribute, -rmargin, for the right indent.
These margin attributes are only tag attributes. The closest thing for the text
widget as a whole is the -padx attribute, but this adds an equal amount of spac-
ing on both sides.

Example 18–2 Line spacing and justification in the text widget.

proc TextExample { f } {
frame $f
pack $f -side top -fill both -expand true

218 The text Widget Chap.18

Created: March 15, 1994 —TkText.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

set t [text $f.t -setgrid true -wrap word \
-width 42 -height 14 \
-yscrollcommand "$f.sy set"]

scrollbar $f.sy -orient vert -command "$f.t yview"
pack $f.sy -side right -fill y
pack $f.t -side left -fill both -expand true

$t tag configure para -spacing1 0.25i -spacing2 0.1i \
-lmargin1 0.5i -lmargin2 0.1i -rmargin 0.5i

$t tag configure hang -lmargin1 0.1i -lmargin2 0.5i

$t insert end "Here is a line with no special settings\n"
$t insert end "Now is the time for all good women and men

to come to the aid of their country. In this great time of
need, no one can avoid their responsibility.\n"

$t insert end "The quick brown fox jumps over the lazy
dog."

$t tag add para 2.0 2.end
$t tag add hang 3.0 3.end

}

The example defines two tags, para and hang, that have different spacing
and margins. The -spacing1 setting for para causes the white space after the
first line. The -spacing2 setting causes the white space between the wrapped
portions of the second paragraph. The hang tag has no spacing attributes so the
last paragraph starts right below the previous paragraph. You can also see the
difference between the -lmargin1 and -lmargin2 settings.

The newline characters are inserted explicitly. Each newline character
defines a new line for the purposes of indexing, but not necessarily for display,
and this example shows. In the third line there is no newline. This means that if
more text is inserted at the end mark, it will be on the same logical line.

The values for the spacing and margin parameters are in screen units.
Because different fonts are different sizes, you may need to compute the spacings
as a function of the character sizes. The bbox operation returns the bounding box
for a given character.

$t insert 1.0 "ABCDE"

$t bbox 1.0

=> 3 3 7 13

set height [lindex [$t bbox 1.0] 3]

=> 13

Text justification is limited to three styles: left, right or center. There is
no setting that causes the text to line up on both margins, which would have to
be achieved by introducing variable spacing between words.

 The Selection 219

Created: March 15, 1994 —TkText.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

The Selection

The selection is implemented with a predefined tag named sel. When the user
makes a selection with the mouse, the selected characters are tagged with sel. If
the application tags characters with sel then the selection is changed to be those
characters. This is just what is done with the default bindings in order to set the
selection.

The exportSelection attribute of a text widget controls whether or not
selected text is exported by the X selection mechanism. By default the selection
is exported. In this case, when another widget or application asserts ownership
of the selection then the sel tag is removed from any characters that are tagged
with it.

You cannot delete the sel tag with the tag delete operation. However, it is
not an error to do so. You can delete all the tags on the text widget with the fol-
lowing command:

eval {$t tag delete} [$t tag names]

Tag Bindings

A tag can have bindings associated with it so that when the user clicks on differ-
ent areas of the text display then different things happen. The syntax for the tag

bind command is similar to that of the main Tk bind command. You can both
query and set the bindings for a tag. Chapter 13 describes the bind command
and the syntax for events in detail.

The only events supported by the tag bind command are Enter, Leave, But-
tonPress, Motion, and KeyPress. ButtonPress and KeyPress can be shorted to
Button and Key as in the regular bind command. The Enter and Leave events
are triggered when the mouse moves in and out of characters with a tag, which is
different than when the mouse moves in and out of the window.

If a character has multiple tags, then the bindings associated with all the
tags will be invoked, in the order from lowest priority tag to highest priority tag.
After all the tag bindings have run, the binding associated with the main widget
is run, if any. The continue and break commands work inside tag bindings in a
similar fashion as they work with regular command bindings. See Chapter 13 for
the details.

The next example defines a text button that has a highlighted relief and an
action associated with it.

Example 18–3 An active text button.

proc TextButton { t start end command } {
global textbutton
if ![info exists textbutton(uid)] {

set textbutton(uid) 0
} else {

incr textbutton(uid)

220 The text Widget Chap.18

Created: March 15, 1994 —TkText.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

}
set tag button$textbutton(uid)
$t tag configure $tag -relief raised -borderwidth 2
if {[tk colormodel $t] == "color"} {

$t tag configure $tag -background thistle
}
$t tag bind $tag <Enter> {%W config -cursor tcross}
$t tag bind $tag <Leave> {

%W config -cursor [lindex [%W config -cursor] 3]
}
$t tag bind $tag <Button-1> $command
$t tag add $tag $start $end

}

The example generates a new tag name so that each text button is unique.
The relief and background are set for the tag to set it apart visually. The tk col-

ormodel command is used to find out if the display supports color before adding a
colored background to the tag. The command is bound to <Button-1>, which is
the same as <ButtonPress-1>. The cursor is changed when the mouse is over the
tagged are by binding to the <Enter> and <Leave> events. Upon leaving the
tagged area, the cursor is reset to the default setting for the widget, which is the
third element of the configuration information. Another approach would be to
save and restore the cursor setting for the window.

To behave even more like a button the action should trigger upon <Button-

Release-1>, and the appearance should change upon <ButtonPress-1>. If this is
important to you, you can always embed a real Tk button. Embedding widgets is
described in the next section.

Embedded Widgets

The text widget can display one or more other widgets as well as text. You can
include picture, for example, by constructing it in a canvas and then inserting
the canvas into the text widget. An embedded widget takes up one character in
terms of indices. You can address the widget by its index position or by the Tk
pathname of the widget.

For example, suppose $t names a text widget. The following commands cre-
ate a button and insert it into the text widget. The button behaves normally, and
in this case it will invoke the Help command when the user clicks on it.

button $t.help -bitmap questhead -command Help

$t window create end -window $t.help

By default an embedded widget is centered vertically on its text line. You
can adjust this with the -align option to the window create command. The pos-
sible alignments are top, center, baseline, or bottom.

top Top of widget lines up with top of text line.

center Center of widget lines up with center of text line.

 Embedded Widgets 221

Created: March 15, 1994 —TkText.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

You can postpone the creation of the embedded widget by specifying a Tcl
command that creates the window, instead of specifying the -window option. This
delayed creation is useful if you have lots of widgets embedded in your text. In
this case the Tcl command is evaluated just before the text widget needs to dis-
play the window. In other words, when the user scrolls the text so the widget
would appear, the Tcl command is run to create the widget.

Example 18–4 Delayed creation of embedded widgets.

$t window create end -create [list MakeGoBack $t]
proc MakeGoBack { t } {

button $t.goback -text "Go to Line 1" \
-command [list $t see 1.0]

}

It might seem excessive to introduce the MakeGoBack procedure in this
example, but it actually makes things easier. The fact that the button has its
own command make that you have to quote things if you do not introduce the
procedure. Furthermore, if you are really creating buttons on the fly they are
likely to require more complex setup than in this simple example. Without the
procedure you have to do the following. It may not seem messy now, but if you
need to execute more than one Tcl command to create the widget or if the embed-
ded button has a complex command, the quoting can quickly get out of hand.

$t window create end -create "button $t.goback \

-text {Go to Line 1} -command \{$t.goback see 1.0\}"

Table 18–4 gives the complete set of options for creating embedded wid-
gets. You can change these later with the window configure operation. For exam-
ple:

$t window configure $t.goback -align bottom.

baseline Bottom of widget lines up with text baseline.

bottom Bottom of widget lines up with bottom of text line.

Table 18–4 Options to the window create operation.

-align where top center bottom baseline

-create command Tcl command to create the widget.

-padx pixels Padding on either side of the widget.

-pady pixels Padding above and below the widget.

-stretch boolean If true, the widget is stretched vertically to match
the spacing of the text line.

-window pathname Tk pathname of the widget to embed.

222 The text Widget Chap.18

Created: March 15, 1994 —TkText.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

You can specify the window to reconfigure with either the index where the
window is located, or by its pathname. Note that end is not a good candidate for
the index because the text widget treats it specially. A character, or widget,
inserted at end is really inserted right before the very last character, which is
always a newline.

Text Bindings

There is an extensive set of default bindings for text widgets. In general,
the commands that move the insert cursor also clear and the selection. Often you
can hold the Shift key down to extend the selection instead, or hold the Control
key down to move the insert cursor without affecting the insert cursor. Table 18–
5 lists the default bindings for the text widget.

Table 18–5 Bindings for the text widget.

<Any-Key> Insert normal printing characters.

<Button-1> Set the insert point, clear the selection, set focus.

<Control-Button-1> Set the insert point without affecting the selection.

<B1-Motion> Sweep out a selection from the insert point.

<Double-Button-1> Select the word under the mouse.

<Triple-Button-1> Select the line under the mouse.

<Shift-Button-1> Adjust the end of selection closest to the mouse.

<Shift-B1-Motion> Continue to adjust the selection.

<Button-2> Paste the selection, or set the scrolling anchor.

<B2-Motion> Scroll the window.

<Key-Left> <Control-b> Move the cursor left one character. Clear selection.

<Shift-Left> Move the cursor and extend the selection.

<Control-Left> Move the cursor by words. Clear the selection.

<Control-Shift-Left> Move the cursor by words. Extend the selection.

<Key-Right> <Control-f> All Right bindings are analogous to Left bindings.

<Meta-b> <Meta-f> Same as <Control-Left> and <Control-Right>

<Key-Up> <Control-p> Move the cursor up one line. Clear the selection.

<Shift-Up> Move the cursor up one line. Extend the selection.

<Control-Up> Move the cursor up by paragraphs, which are a
group of lines separated by a blank line.

<Control-Shift-Up> Move the cursor up by paragraph. Extend selection.

 Text Operations 223

Created: March 15, 1994 —TkText.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Text Operations

Table 18–6 below describes the text widget operations, including some that are
not discussed in this chapter. In the table, $t is a text widget.

<Key-Down> <Control-n> All Down bindings are analogous to Up bindings.

<Next> <Prior> Move the cursor by a screenful. Clear the selection.

<Shift-Next>
<Shift-Prior>

Move the cursor by a screenful. Extend the selection.

<Home> <Control-a> Move the cursor to line start. Clear the selection.

<Shift-Home> Move the cursor to line start. Extend the selection.

<End> <Control-e> Move the cursor to line end. Clear the selection.

<Shift-End> Move the cursor to line end. Extend the selection.

<Control-Home>
<Meta-less>

Move the cursor to the beginning of text. Clear the
selection.

<Control-End>
<Meta-greater>

Move the cursor to the end of text. Clear the selec-
tion.

<Select>
<Control-space>

Set the selection anchor to the position of the cursor.

<Shift-Select>
<Control-Shift-space>

Adjust the selection to the position of the cursor.

<Control-slash> Select everything in the text widget.

<Control-backslash> Clear the selection.

<Delete> Delete the selection, if any. Otherwise delete the
character to the right of the cursor.

<BackSpace> <Control-h> Delete the selection, if any. Otherwise delete the
character to the left of the cursor.

<Control-d> Delete character to the right of the cursor.

<Meta-d> Delete word to the right of the cursor.

<Control-k> Delete from cursor to end of the line. If you are at the
end of line, delete the newline character.

<Control-o> Insert a newline but do not advance the cursor.

<Control-w> Delete the word to the left of the cursor.

<Control-x> Deletes the selection, if any.

<Control-t> Transpose the characters on either side of the cursor.

Table 18–5 Bindings for the text widget.

224 The text Widget Chap.18

Created: March 15, 1994 —TkText.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Table 18–6 Operations for the text widget.

$t bbox index Return the bounding box of the character at
index. 4 numbers are returned: x y width
height.

$t cget option Return the value of the configuration option.

$t compare i1 op i2 Perform index comparison. ix and i2 are
indexes. op is one of: < <= == >= > !=

$t configure ... Query or set configuration options.

$t debug boolean Enable consistency checking for B-tree code.

$t delete i1 ?i2? Delete from i1 up to, but not including i2. Just
delete the character at i1 if i2 is not specified.

$t dlineinfo index Return the bounding box, in pixels, of the display
for the line containing index. 5 numbers are
returned, x y width height baseline.

$t get i1 ?i2? Return the text from i1 to i2, or just the charac-
ter at i1 if i2 is not specified.

$t index index Return the numerical value of index

$t insert index chars
?tags?

Insert chars at the specified index. If tags are
specified they are added to the new characters.

$t mark gravity name
?direction?

Query or assign a gravity direction to the mark
name. direction, if specified, is left or right.

$t mark names Return a list of defined marks.

$t mark set name index Define a mark name at the given index.

$t mark unset name1
?name2 ...?

Delete the named mark(s).

$t scan mark x y Anchor a scrolling operation.

$t scan dragto x y Scroll based on a new position.

$t search ?switches? pat-
tern index ?varName?

Search for text starting at index. The index of the
start of the match is returned. The number of
characters in the match is stored in varName.
Switches are: -forw, -back, -exact, -
regexp, -nowrap, --

$t see index Position the view to see index.

$t tag add name i1 ?i2? Add the tag to i1 through, but not including i2,
or just the character at i1 if i2 is not given.

$t tag bind name
?sequence? ?script?

Query or define bindings for the tag name.

$t tag cget name option Return the value of option for tag name.

 Text Attributes 225

Created: March 15, 1994 —TkText.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Text Attributes

The table below lists the attributes for the text widget. The table uses the X
resource Class name, which has capitals at internal word boundaries. In Tcl com-
mands the attributes are specified with a dash and all lowercase.

$t tag delete tag1 ?tag2
...?

Delete information for the named tags.

$t tag lower tag ?before? Lower the priority of tag to the lowest priority or
to just below tag below.

$t tag names ?index? Return the names of the tags at the specified
index, or in the whole widget, sorted from lowest
to highest priority.

$t tag nextrange tag i1
?i2?

Return a list of two indices that are the next
range of text with tag that starts at or after i1
and before index i2, or the end.

$t tag raise tag ?above? Raise the priority of tag to the highest priority, or
to just above the priority of above.

$t tag ranges tag Return a list describing all the ranges of tag.

$t tag remove tag i1 ?i2? Remove tag from the range i1 up to, but not
including i2, or just at i1 if i2 is not specified.

$t window config ir ... Query or modify the configuration of the embed-
ded window

$t window create ir
?option value ...?

Create an embedded window. The configuration
options depend on the type of the window.

$t xview Return two fractions between zero and one that
describe the amount of text off screen to the left
and the amount of text displayed.

$t xview moveto fraction Position the text so fraction of the text is off
screen to the left.

$t xview scroll num what Scroll num of what, which is units or pages.

$t yview Return two fractions between zero and one that
describe the amount of text off screen towards the
beginning and the amount of text displayed.

$t yview moveto fraction Position the text so fraction of the text is off
screen towards the beginning.

$t yview scroll num what Scroll num of what, which is units or pages.

$t yview ?-pickplace? ix Obsoleted by the see operation, which is similar.

$t yview number Position line number at the top of the screen.
Obsoleted by the yview moveto operation.

Table 18–6 Operations for the text widget.

226 The text Widget Chap.18

Created: March 15, 1994 —TkText.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Table 18–7 Resource names of attributes for text widgets.

background Background color (also bg).

borderWidth Extra space around the edge of the text.

cursor Cursor to display when mouse is over the widget.

font Default font for the text.

foreground Foreground color. (Also fg).

highlightColor Color for input focus highlight border.

highlightThickness Width of highlight border.

insertBackground Color for the insert cursor.

insertBorderWidth Size of 3D border for insert cursor.

insertOffTime Milliseconds insert cursor blinks off.

insertOnTime Milliseconds insert cursor blinks on.

insertWidth Width of the insert cursor.

padX Extra space to the left and right of the text.

padY Extra space above and below the text.

relief 3D relief: flat, sunken, raised, groove, ridge.

selectBackground Background color of selected text.

selectForeground Foreground color of selected text.

selectBorderWidth Size of 3D border for selection highlight.

setGrid Enable/disable geometry gridding.

spacing1 Extra space above each unwrapped line.

spacing2 Space between parts of a line that have wrapped.

spacing3 Extra space below an unwrapped line.

state Editable (normal) or read-only (disabled).

width Width, in characters, of the text display.

wrap Line wrap mode: none char word

xScrollCommand Tcl command prefix for horizontal scrolling.

yScrollCommand Tcl command prefix for vertical scrolling.

227

C H A P T E R

Created: December 1, 1994 —Canvas.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

 19

The canvas Widget 19

This canvas widget provides a general-purpose display that can programmed
to display a variety of objects including arcs, images, lines, ovals,
polygons, rectangles, text, and embedded windows.Hello,

Canvas widgets are very flexible widgets
that can be programmed to display almost anything and to respond in just about
any fashion to user input. A canvas displays objects such as lines and images,
and each object can be programed to respond to user input, or they can be ani-
mated under program control. There are several pre-defined canvas object types.
Chapter X describes the a C programming interface for creating new canvas
objects. This chapter presents a couple of examples before covering the features
of the canvas in more detail.

Hello, World!

A simple exercise for a canvas is to create an object that you can drag around
with the mouse. The next example does this.

Example 19–1 The canvas Hello, World! example.

proc Hello {} {
Create and pack the canvas
canvas .c -width 400 -height 100
pack .c
Create a text object on the canvas
.c create text 50 50 -text "Hello, World!" -tag movable
Bind actions to objects with the movable tag

228 The canvas Widget Chap.19

Created: December 1, 1994 —Canvas.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

.c bind movable <Button-1> {Mark %x %y %W}

.c bind movable <B1-Motion> {Drag %x %y %W}
}

proc Mark { x y w } {
global state
Find the object
set state($w,obj) [$w find closest $x $y]
set state($w,x) $x
set state($w,y) $y

}
proc Drag { x y w } {

global state
set dx [expr $x - $state($w,x)]
set dy [expr $y - $state($w,y)]
$w move $state($w,obj) $dx $dy
set state($w,x) $x
set state($w,y) $y

}

The example creates a text object and gives it a tag named movable. Tags
are discussed in a moment. The first argument after create specifies the type,
and the remaining arguments depend on the type of object being created. In this
case a text object needs two coordinates for its location. There is also text, of
course, and finally a tag. The complete set of attributes for text objects are given
later in this chapter.

.c create text 50 50 -text "Hello, World!" -tag movable

The create operation returns an ID for the object being created, which
would have been 1 in this case. However, the code manipulates the canvas
objects by specifying a tag instead of an object ID. A tag is a more general handle
on canvas objects. Many objects can have the same tag, and an object can have
more than one tag. A tag can be (almost) any string; avoid spaces and numbers.
Nearly all the canvas operations operate on either tags or object IDs.

The example defines behavior for objects with the movable tag. The path-
name of the canvas (%W) is passed to Mark and Drag so these procedures could be
used on different canvases. The %x and %y keywords get substituted with the X
and Y coordinate of the event.

.c bind movable <Button-1> {Mark %x %y %W}

.c bind movable <B1-Motion> {Drag %x %y %W}

The Move and Drag procedures let you drag the object around the canvas.
Because they are applied to any object with the movable tag, the Mark procedure
must first find out what object was clicked on. It uses the find operation:

set state($w,obj) [$w find closest $x $y]

The actual moving is done in Drag with the move operation:
$w move $state($w,obj) $dx $dy

Try creating a few other object types and dragging them around, too.
.c create rect 10 10 30 30 -fill red -tag movable

 The Double-Slider Example 229

Created: December 1, 1994 —Canvas.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

.c create line 1 1 40 40 90 60 -width 2 -tag movable

.c create poly 1 1 40 40 90 60 -fill blue -tag movable

The example may seem a little cluttered by the general use of state and its
indices that are parameterized by the canvas pathname. However, if you get into
the habit of doing this early, then you will find it easy to write code that is reus-
able among programs.

The Double-Slider Example

This section presents an example that constructs a scale-like object that has two
sliders on it. The sliders represent the minimum and maximum values for some
parameter. Clearly, the minimum cannot be greater than the maximum, and vice
versa. The example creates three rectangles on the canvas. One rectangle forms
the long axis of the slider. The other two rectangles are markers that represent
the values. Two text objects float below the markers to give the current values of
the minimum and maximum.

Example 19–2 A double slider canvas example.

proc Scale2 {w min max {width {}} } {
global scale2
if {$width == {}} {

Set the long dimension, in pixels
set width [expr $max - $min]

}
Save parameters
set scale2($w,scale) [expr ($max-$min)/$width.0]
set scale2($w,min) $min
set scale2($w,max) $max
set scale2($w,Min) $min
set scale2($w,Max) $max
set scale2($w,L) 10
set scale2($w,R) [expr $width+10]

Build from 0 to 100, then scale and move it by 10 later
Distance between left edges of boxes is 100
The left box sticks up, and the right one hangs down
canvas $w
$w create rect 0 0 110 10 -fill grey -tag slider
$w create rect 0 -4 10 10 -fill black -tag {left lbox}
$w create rect 100 0 110 14 -fill red -tag {right rbox}
$w create text 5 16 -anchor n -text $min -tag {left lnum}

230 The canvas Widget Chap.19

Created: December 1, 1994 —Canvas.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

$w create text 105 16 -anchor n -text $max \
-tag {right rnum} -fill red

Stretch/shrink the slider to the right length,
set scale [expr ($width+10) / 110.0]
$w scale slider 0 0 $scale 1.0
move the right box and text to match new length
set nx [lindex [$w coords slider] 2]
$w move right [expr $nx-110] 0

Move everything into view
$w move all 10 10

Make the canvas fit comfortably around the image
set bbox [$w bbox all]
set height [expr [lindex $bbox 3]+4]
$w config -height $height -width [expr $width+30]

Bind drag actions
$w bind left <Button-1> {Start %W %x lbox}
$w bind right <Button-1> {Start %W %x rbox}
$w bind left <B1-Motion> {Move %W %x lbox}
$w bind right <B1-Motion> {Move %W %x rbox}

}

The slider is constructed with absolute coordinates, and then it is scaled to
be the desired width. The alternative is to compute the coordinates based on the
desired width. The scale and move operations are used in this example to illus-
trate them. I also found it a little clearer to use numbers when creating the ini-
tial layout as opposed to using expr or introducing more variables. It only makes
sense to scale the slider bar. If the marker boxes are scaled, then their shape gets
distorted, too. The scale operation takes a reference point, which in our case is (0,
0), and independent scale factors for the X and Y dimensions. The scale factor is
computed from the width parameter, taking into account the extra length added
(10) so that the distance between the left edge of the boxes is $width.

set scale [expr ($width+10) / 110.0]

$w scale slider 0 0 $scale 1.0

After stretching the slider bar its new coordinates are used to determine
how to move the right box and right hanging text. The coords operation returns
a list of 4 numbers, x1 y1 x2 y2. The distance to move is just the difference
between the new right coordinate and the value used when constructing the
slider initially. The box and text share the same tag, right, so they are both
moved with a single move command.

set nx [lindex [$w coords slider] 2]

$w move right [expr $nx-110] 0

After the slider is constructed it is shifted away from (0, 0), which is the
upper-left corner of the canvas. The bbox operation returns four coordinates, x1
y1 x2 y2, that define the bounding box of the items with the given tag. In the
example, y1 is zero, so y2 gives us the height of the image. The information

 The Double-Slider Example 231

Created: December 1, 1994 —Canvas.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

returned by bbox can be off by a few pixels, and the example needs a few more
pixels of height to avoid clipping the text. The width is computed based on the
extra length added for the marker box, the 10 pixels the whole image was
shifted, and 10 more for the same amount of space on the right side.

set bbox [$w bbox all]

set height [expr [lindex $bbox 3]+4]

$w config -height $height -width [expr $width+30]

Finally, the bindings are defined for the box and hanging text. Again, the
general tags left and right are used for the bindings. This means you can drag
either the box or the text to move the slider. The pathname of the canvas is
passed into these procedures so you could have more than one double slider in
your interface.

$w bind left <Button-1> {Start %W %x lbox}

$w bind right <Button-1> {Start %W %x rbox}

$w bind left <B1-Motion> {Move %W %x lbox}

$w bind right <B1-Motion> {Move %W %x rbox}

The Start and Move implementations are shown below.

Example 19–3 Moving the markers for the double-slider.

proc Start { w x what } {
global scale2
Remember the anchor point for the drag
set scale2($w,$what) $x

}
proc Move { w x what } {

global scale2

Compute delta and update anchor point
set x1 $scale2($w,$what)
set scale2($w,$what) $x
set dx [expr $x - $x1]

Find out where the boxes are currently
set rx [lindex [$w coords rbox] 0]
set lx [lindex [$w coords lbox] 0]

if {$what == "lbox"} {
Constrain the movement to be between the
left edge and the right marker.
if {$lx + $dx > $rx} {

set dx [expr $rx - $lx]
set scale2($w,$what) $rx

} elseif {$lx + $dx < $scale2($w,L)} {
set dx [expr $scale2($w,L) - $lx]
set scale2($w,$what) $scale2($w,L)

}
$w move left $dx 0

Update the minimum value and the hanging text

232 The canvas Widget Chap.19

Created: December 1, 1994 —Canvas.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

set lx [lindex [$w coords lbox] 0]
set scale2($w,min) [expr int($scale2($w,Min) + \

($lx-$scale2($w,L)) * $scale2($w,scale))]
$w itemconfigure lnum -text $scale2($w,min)

} else {
Constrain the movement to be between the
right edge and the left marker
if {$rx + $dx < $lx} {

set dx [expr $lx - $rx]
set scale2($w,$what) $lx

} elseif {$rx + $dx > $scale2($w,R)} {
set dx [expr $scale2($w,R) - $rx]
set scale2($w,$what) $scale2($w,R)

}
$w move right $dx 0

Update the maximum value and the hanging text
set rx [lindex [$w coords right] 0]
set scale2($w,max) [expr int($scale2($w,Min) + \

($rx-$scale2($w,L)) * $scale2($w,scale))]
$w itemconfigure rnum -text $scale2($w,max)

}
}
proc Value {w} {

global scale2
Return the current values of the double slider
return [list $scale2($w,min) $scale2($w,max)]

}

The Start procedure initializes an anchor position, scale2($w,$what), and
Move uses this to detect how far the mouse has moved. The change in position,
dx, is constrained so that the markers cannot move outside their bounds. The
anchor is updated if a constraint was used, and this means the marker will not
move until the mouse is moved back over the marker. (Try commenting out the
assignments to scale2($w,$what) inside the if statement.) After the marker
and hanging text are moved, the value of the associated parameter is computed
based on the parameters of the scale. Finally, the Value procedure is used to
query the current values of the double slider.

The canvas tag facility is very useful. The example uses the all tag to move
all the items, and to find out the bounding box of the image. The left box and the
left hanging text both have the left tag. They can be moved together, and they
share the same bindings. Similarly, the right tag is shared by the right box and
the right hanging text. Each item has its own unique tag so it can be manipu-
lated individually, too. Those tags are slider, lbox, lnum, rbox, rnum. Note that
the itemconfigure operation is used to change the text. If there were several
objects with the same tag, then itemconfigure could be used to change all of
them.

 Canvas Coordinates 233

Created: December 1, 1994 —Canvas.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Canvas Coordinates

The position and possibly the size of a canvas object is determined by a set of
coordinates. Different objects are characterized by different numbers of coordi-
nates. For example, text objects have two coordinates, x1 y1, that specify their
anchor point. A line can have many pairs of coordinates that specify the end-
points of its segments. The coordinates are set when the object is created, and
they can be updated later with the coords operation. By default coordinates are
in pixels. If you suffix a coordinate with one of the following letters then you
change these units:

c centimeters

i inch

m millimeters

p printer points (1/72 inches)

The coordinate space of the canvas positions 0, 0 at the top left corner.
Larger X coordinates are to the right, and larger Y coordinates are downward.
The width and height attributes of the canvas determine its viewable area. The
scrollRegion attribute of the canvas determines the boundaries of the canvas.
The view onto the scroll region is changed with the xview and yview commands.
These are designed to work with scrollbars.

Example 19–4 A large scrollable canvas.

proc ScrolledCanvas { c width height region } {
frame $c
canvas $c.canvas -width $width -height $height \

-scrollregion $region \
-xscrollcommand [list $c.xscroll set] \
-yscrollcommand [list $c.yscroll set]

scrollbar $c.xscroll -orient horizontal \
-command [list $c.canvas xview]

scrollbar $c.yscroll -orient vertical \
-command [list $c.canvas yview]

pack $c.xscroll -side bottom -fill x
pack $c.yscroll -side right -fill y
pack $c.canvas -side left -fill both -expand true
pack $c -side top -fill both -expand true
return $c.canvas

}
ScrolledCanvas .c 300 200 {0 0 1000 400}
=> .c.canvas

The next several sections describe the built-in object types for canvases.

Arcs

An arc is a section of an oval. The dimensions of the oval are determined by four

234 The canvas Widget Chap.19

Created: December 1, 1994 —Canvas.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

coordinates that are its bounding box. The arc is then determined by two angles,
the start angle and the extent. The region of the oval can be filled or unfilled,
and there are three different ways to define the fill region. The pieslice style
connects the arc with the center point of the oval. The chord style connects the
two endpoints of the arc. The arc style just fills the arc itself and there is no out-
line.

Example 19–5 Canvas arc items.

$c create arc 10 10 100 100 -start 45 -extent -90 \
-style pieslice -fill orange -outline black

$c create arc 10 10 100 100 -start 135 -extent 90 \
-style chord -fill blue -outline white -width 4

$c create arc 10 10 100 100 -start 255 -extent 45 \
-style arc -fill black -width 2

Table 19–1 gives the complete set of arc attributes.

Table 19–1 Attributes for arc canvas items.

-extent degrees The length of the arc in the counter-clockwise direction.

-fill color The color of the interior of the arc region.

-outline color The color of the arc itself.

-start degrees The starting angle of the arc.

-stipple bitmap A stipple pattern for the fill.

-style style pieslice, chord, arc

-tags tagList List of tags for the arc item.

-width num Width, in canvas coordinates, of the arc and outline.

 Bitmap Items 235

Created: December 1, 1994 —Canvas.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Bitmap Items

A bitmap is a simple graphic with a foreground and background color. One-bit
per pixel is used to choose between the foreground and the background. A canvas
bitmap item is positioned with two coordinates and an anchor position. Its size is
determined by the bitmap data. The bitmap itself is specified with a symbolic
name or by the name of a file that contains its definition. If the name begins with
an @ it indicates a file name. The bitmaps built into wish are shown in the exam-
ple below. There is a C interface for registering more bitmaps under a name.

Example 19–6 Canvas bitmap items.

set o [$c create bitmap 10 10 -bitmap @candle.xbm -anchor nw]
set x [lindex [$c bbox $o] 2];# Right edge of bitmap
foreach builtin {error gray25 gray50 hourglass \

info questhead question warning} {
incr x 20
set o [$c create bitmap $x 30 -bitmap $builtin -anchor c\

-background white -foreground blue]
set x [lindex [$c bbox $o] 2]

}

Table 19–1 gives the complete set of bitmap attributes.

Table 19–2 Attributes for bitmap canvas items.

-anchor position c n ne e se s sw w nw

-background color The background color (for zero bits).

-bitmap name A built in bitmap.

-bitmap @filename A bitmap defined by a file.

-foreground color The foreground color (for one bits).

-tags tagList List of tags for the bitmap item.

236 The canvas Widget Chap.19

Created: December 1, 1994 —Canvas.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Images

The canvas image objects use the general image mechanism of Tk. An
image has to be defined first using the image command. This command is
described Chapter 23 in the section Bitmaps and Images. Once you have defined
an image, all you need to specify for the canvas is its position, anchor point, and
any tags. The size and color information is set when the image is defined. If an
image is redefined then anything that is displaying that image gets updated
automatically.

Example 19–7 Canvas image items.

image create bitmap hourglass2 \
-file hourglass.bitmap -maskfile hourglass.mask \
-background white -foreground blue]

for {set x 20} {$x < 300} {incr x 20} {
$c create image $x 10 -image hourglass2 -anchor nw
incr x [image width hourglass2]

}

Table 19–1 lists the attributes for canvas image items.

Line Items

A line has two or more sets of coordinates, where each set of coordinates defines
an endpoint of a line segment. The segments can be joined in several different
styles, and the whole line can be drawn with a spline fit as opposed to straight-
line segments. The next example draws a line in two steps. In the first past, sin-
gle-segment lines are drawn. When the stroke completes, these are replaced with
a single line segment that is drawn with a spline curve.

Table 19–3 Attributes for image canvas items.

-anchor position c n ne e se s sw w nw

-image name The name of an image.

-tags tagList List of tags for the image item.

 Line Items 237

Created: December 1, 1994 —Canvas.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Example 19–8 A canvas stroke drawing example.

proc StrokeInit {} {
canvas .c ; pack .c
bind .c <Button-1> {StrokeBegin %W %x %y}
bind .c <B1-Motion> {Stroke %W %x %y}
bind .c <ButtonRelease-1> {StrokeEnd %W %x %y}

}
proc StrokeBegin { w x y } {

global stroke
catch {unset stroke}
set stroke(N) 0
set stroke(0) [list $x $y]

}
proc Stroke { w x y } {

global stroke
set last $stroke($stroke(N))
incr stroke(N)
set stroke($stroke(N)) [list $x $y]
eval {$w create line} $last {$x $y -tag segments}

}
proc StrokeEnd { w x y } {

global stroke
set points {}
for {set i 0} {$i <= $stroke(N)} {incr i} {

append points $stroke($i) " "
}
$w delete segments
eval {$w create line} $points \

{-tag line -joinstyle round -smooth true -arrow last}
}

The example uses the stroke array to hold the points of the line as it builds
up the stroke. At the end of the stroke it assembles the points into a list. The
eval command is used to splice this list of points into the create line command.

238 The canvas Widget Chap.19

Created: December 1, 1994 —Canvas.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Recall that eval uses concat if it gets multiple argument. The other parts of the
create line command are protected by braces so they only get evaluated once.
Chapter 6 describes this trick in more detail.

The arrow attribute adds an arrow head to the end of the stroke. If you try
out this example you’ll notice that the arrow isn’t always aimed like you expect.
This is because there are often many points generated quite close together as you
lift up on the mouse button. In fact, the X and Y coordinates of seen by Stro-

keEnd are always the same as those seen by the last Stroke call. If you add this
duplicate point to the end of the list of points, no arrowhead is drawn at all. In
practice you might want to make Stroke filter out points that are two close
together.

Table 19–1 gives the complete set of line attributes. The capstyle affects
the way the ends of the line are drawn. The joinstyle affects the way line seg-
ments are joined together.

Oval Items

An oval is defined by two sets of coordinates that define its bounding box. If the
box is square, a circle is drawn. You can set the color of the interior of the oval as
well as the outline of the oval. A sampler of ovals is shown in the next example.

Example 19–9 Canvas oval items

$c create oval 10 10 80 80 -fill red -width 4
$c create oval 100 10 150 80 -fill blue -width 0
$c create oval 170 10 250 40 -fill black -stipple gray25.

Table 19–4 Attributes for line canvas items.

-arrow where none first last both

-arrowshape {a b c} Three parameters that describe the shape of the arrow.
c is the width and b is the overall length. a is the length
of the part that touches the line. (e.g., 8 10 3)

-capstyle what butt projecting round

-fill color The color of the line.

-joinstyle what bevel miter round

-smooth boolean If true, a spline curve is drawn.

-splinesteps num Number of line segments that approximate the spline.

-stipple bitmap Stipple pattern for line fill.

-tags tagList Set of tags for the line item.

-width width Width of the line, in screen units.

 Polygon Items 239

Created: December 1, 1994 —Canvas.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

The various artifacts on the ovals are a function of the quality of your X
server. Different X servers draw circles better and faster than others. Table 19–
1 gives the complete set of oval attributes.

Polygon Items

A polygon is a closed shape specified by a number of sets of points, one for each
vertex of the polygon. The vertices can be connected with smooth or straight
lines. There is no outline option for a polygon. You can get an outline by drawing
a line with the same coordinates, although you will need to duplicate the starting
point at the end of the list of coordinates for the line.

Example 19–10 Canvas polygon items.

$c create poly 20 -40 40 -20 40 20 20 40 -20 40 \
-40 20 -40 -20 -20 -40 -fill red

$c create line 20 -40 40 -20 40 20 20 40 -20 40 \
-40 20 -40 -20 -20 -40 20 -40 -fill white -width 5

$c create text 0 0 -text STOP -fill white
$c move all 50 50

Table 19–1 gives the complete set of polygon attributes.

Table 19–5 Attributes for oval canvas items.

-fill color The color of the interior of the oval.

-outline color The color for the outline of the oval.

-stipple bitmap Stipple pattern for oval fill.

-tags tagList Set of tags for the oval item.

-width width The thickness of the outline.

240 The canvas Widget Chap.19

Created: December 1, 1994 —Canvas.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Rectangle Items

A rectangle is specified with two coordinates that are its opposite corners. A
rectangle can have a fill color and an outline color. The example below drags out
a box as the user drags the mouse. All it requires is remembering the last rectan-
gle drawn so it can be delete when the next box is drawn.

Example 19–11 Dragging out a box.

proc BoxInit {} {
canvas .c -bg white ; pack .c
bind .c <Button-1> {BoxBegin %W %x %y}
bind .c <B1-Motion> {BoxDrag %W %x %y}

}
proc BoxBegin { w x y } {

global box
set box(anchor) [list $x $y]
catch {unset box(last)}

}
proc BoxDrag { w x y } {

global box
catch {$w delete $box(last)}
set box(last) [eval {$w create rect} $box(anchor) \

{$x $y -tag box}]
}

Table 19–6 Attributes for polygon canvas items.

-fill color The color of the polygon.

-smooth boolean If true, a spline curve is drawn around the points.

-splinesteps num Number of line segments that approximate the spline.

-stipple bitmap Stipple pattern for polygon fill.

-tags tagList Set of tags for the line item.

 Text Items 241

Created: December 1, 1994 —Canvas.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

The example uses box(anchor) to record the start of the box. This is a list
with two elements. The eval command is used so that this list can be spliced into
the create rect command. Table 19–1 gives the complete set of rectangle
attributes.

Text Items

The canvas text item provides yet another way to display and edit text. It sup-
ports selection, editing, and can extend onto multiple lines. The position of a text
item is given by one set of coordinates and an anchor position. The size of the
text is determined by the number of lines and the length of each line. By default
a new line is started if there is a newline in the text string. If a width is specified,
in screen units, then any line that is longer than this is wrapped onto multiple
lines. The wrap occurs before a space character.

The editing and selection operations for text items operations use indices to
specify positions within a given text item. These are very similar to those used in
the entry widget. Table 19–8 summarizes the indices for canvas text items.

There are several canvas operations that manipulate text items. These are
similar to some of the operations of the entry widget, except that they are param-
eterized by the tag or ID of the canvas object being manipulated. If the tag refers
to more than one object, then the operations apply to the first object in the dis-

Table 19–7 Attributes for rectangle canvas items.

-fill color The color of the interior of the rectangle.

-outline color The color for the outline of the rectangle.

-stipple bitmap Stipple pattern for rectangle fill.

-tags tagList Set of tags for the rectangle item.

-width width The thickness of the outline.

Table 19–8 Indices for canvas text items

0 Index of the first character.

end Index just past the last character.

number Index a character, counting from zero.

insert The character right after the insertion cursor.

sel.first The first character in the selection.

sel.last The last character in the selection.

@x,y The character under the specified X and Y coordinate.

242 The canvas Widget Chap.19

Created: December 1, 1994 —Canvas.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

play list that supports an insert cursor. Table 19–9 summarizes these opera-
tions. In the table $t is a text item or tag and $c is a canvas.

There are no default bindings for canvas text items. The following example
sets up some rudimentary bindings for canvas text items. The <Button-1> and
<Button-2> bindings are on the canvas as a whole. The rest of the bindings are
on items with the text tag. The bindings try to be careful about introducing tem-
porary variables because they execute at the global scope. This is a hint that it
might be better to create a procedure for each binding.

The <Button-1> binding uses the canvas find overlapping operation to
see if a text object has been clicked. This operation is a little more awkward than
the find closest operation, but find closest will find an object no matter how
far away it is.

The <Button-2> binding does one of two things. It pastes the selection into
the canvas item that has the focus. If no item has the focus, then a new text item
is created with the selection as its value.

Example 19–12 Simple edit bindings for canvas text items.

proc CanvasEditBind { c } {
bind $c <Button-1> {

focus %W
if {[%W find overlapping [expr %x-2] [expr %y-2] \

[expr %x+2] [expr %y+2]] == {}} {
%W focus {}

}
}
$c bind text <Button-1> {

%W focus current

Table 19–9 Canvas operations that apply to text items.

$c dchars $t first ?last? Delete the characters from first through last,
or just the character at first.

$c focus ?$t? Set input focus to the specified item, or return the
id of the item with the focus if not it is given.

$c icursor $t index Set the insert cursor to just before index.

$c index $t index Return the numerical value of index.

$c insert $t index string Insert the string just before index.

$c select adjust $t index Move the boundary of an existing selection.

$c select clear Clear the selection.

$c select from $t index Start a selection.

$c select item Returns the id of the selected item, if any.

$c select to $t index Extend the selection to the specified index.

 Text Items 243

Created: December 1, 1994 —Canvas.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

%W icursor current @%x,%y
%W select from current @%x,%y

}
$c bind text <B1-Motion> {

%W select to current @%x,%y
}
$c bind text <Delete> {

if {[%W select item] != {}} {
%W dchars [%W select item] sel.first sel.last

} elseif {[%W focus] != {}} {
%W dchars [%W focus] insert

}
}
$c bind text <Control-d> {

if {[%W focus] != {}} {
%W dchars [%W focus] insert

}
}
$c bind text <Control-h> {

if {[%W select item] != {}} {
%W dchars [%W select item] sel.first sel.last

} elseif {[%W focus] != {}} {
set _t [%W focus]
%W icursor $_t [expr [%W index $_t insert]-1]
%W dchars $_t insert
unset _t

}
}
$c bind text <BackSpace> [$c bind text <Control-h>]

$c bind text <Control-Delete> {
%W delete current

}
$c bind text <Return> {

%W insert current insert \n
}
$c bind text <Any-Key> {

%W insert current insert %A
}
bind $c <Button-2> {

if {[catch {selection get} _s] == 0} {
if {[%W focus] != {}} {

%W insert [%W focus] insert $_s
} else {

%W create text %x %y -text $_s -anchor nw \
-tag text

}
unset _s

}
}
$c bind text <Key-Right> {

%W icursor current [expr [%W index current insert]+1]
}
$c bind text <Control-f> [$c bind text <Key-Right>]
$c bind text <Key-Left> {

244 The canvas Widget Chap.19

Created: December 1, 1994 —Canvas.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

%W icursor current [expr [%W index current insert]-1]
}
$c bind text <Control-b> [$c bind text <Key-Left>]

}

Table 19–1 gives the complete set of attributes for text items. Note that
there are no foreground and background attributes. Instead, the fill color speci-
fies the color for the text. It is possible to stipple the text, too.

Window Items

A window item allows you to position other Tk widgets on a canvas. The position
is specified by one set of coordinates and an anchor position. You can also specify
the width and height, or you can let the widget determine its own size. The
example below uses a canvas to provide a scrolling surface for a large set of
labeled entries. A frame is created and a set of labeled entry widgets are packed
into it. This main frame is put onto the canvas as a single window item. This way
we let the packer take care of arranging all the labeled entries. The size of the
canvas is set up so that a whole number of labeled entries are displayed. The
scroll region and scroll increment are set up so that clicking on the scrollbar
arrows brings one new labeled entry completely into view.

Example 19–13 Using a canvas to scroll a set of widgets.

proc Example { top title labels } {
Create a resizable toplevel window
toplevel $top
wm minsize $top 200 100
wm title $top $title

Create a frame for buttons,
Only Dismiss does anything useful
set f [frame $top.buttons -bd 4]

Table 19–10 Attributes for text canvas items.

-anchor position c n ne e se s sw w nw

-fill color The foreground color for the text.

-font font The font for the text.

-justify how left right center

-stipple bitmap Stipple pattern for the text fill.

-tags tagList Set of tags for the rectangle item.

-text string The string to display.

-width width The thickness of the outline.

 Window Items 245

Created: December 1, 1994 —Canvas.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

button $f.quit -text Dismiss -command "destroy $top"
button $f.save -text Save
button $f.reset -text Reset
pack $f.quit $f.save $f.reset -side right
pack $f -side top -fill x

Create a scrollable canvas
frame $top.c
canvas $top.c.canvas -width 10 -height 10 \

-yscrollcommand [list $top.c.yscroll set]
scrollbar $top.c.yscroll -orient vertical \

-command [list $top.c.canvas yview]
pack $top.c.yscroll -side right -fill y
pack $top.c.canvas -side left -fill both -expand true
pack $top.c -side top -fill both -expand true

SetOfLabeledEntries $top.c$top.canvas $labels
}
proc SetOfLabeledEntries { canvas labels } {

Create one frame to hold everything
and position it on the canvas
set f [frame $canvas.f -bd 0]
$canvas create window 0 0 -anchor nw -window $f

Find out how big the labels are
set max 0
foreach label $labels {

set len [string length $label]
if {$len > $max} {

set max $len
}

}
Create and pack the labeled entries
set i 0
foreach label $labels {

frame $f.$i
label $f.$i.label -text $label -width $max
entry $f.$i.entry
pack $f.$i.label -side left
pack $f.$i.entry -side right -fill x
pack $f.$i -side top -fill x
incr i

}
set child [lindex [pack slaves $f] 0]

Wait for the window to become visible and then
set up the scroll region and increment based on
the size of the frame and the subframes

tkwait visibility $child
set incr [winfo height $child]
set width [winfo width $f]
set height [winfo height $f]
$canvas config -scrollregion "0 0 $width $height"
$canvas config -scrollincrement $incr

246 The canvas Widget Chap.19

Created: December 1, 1994 —Canvas.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

if {$height > 4 * $incr} {
set height [expr 4 * $incr]

}
$canvas config -width $width -height $height

}
Example .top "An example" {

alpha beta gamma delta epsilon zeta eta theta iota kappa
lambda mu nu xi omicron pi rho sigma tau upsilon
phi chi psi omega}

The tkwait visibility command is important to the example. It causes
the script to suspend execution until the toplevel window, $top, is displayed on
the screen. The wait is necessary so the right information gets returned by the
winfo width and winfo height commands. By waiting for a subframe of the main
frame, $child, we ensure that the packer has gone through all its processing to
position the interior frames. The canvas’s scroll region is set to be just large
enough to hold the complete frame. The scroll increment is set to the height of
one of the subframes.

Canvas Operations

Table 19–11 below summarizes the operations on canvas widgets. In the
table, $t represents a tag that identifies one or more canvas objects, or it repre-
sents the numerical ID of a single canvas object. In some cases an operation only
operates on a single object. If a tag identifies several objects, the first object in
the display list is operated on.

The canvas display list refers to the global order among canvas objects.
New objects are put at the end of the display list. Objects later in the display list
obscure objects earlier in the list. The term above refers to objects later in the
display list.

Table 19–9 describes several of the canvas operations that only apply to
text objects. They are dchars focus index icursor insert select. Those oper-
ations are not repeated in the next table. In the table, $t is a text item or tag
and $c is a canvas.

Table 19–11 Operations on a canvas widget.

$c addtag tag above $t Add tag to the item just above $t in the display
list.

$c addtag tag all Add tag to all objects in the canvas.

$c addtag tag below $t Add tag to the item just below $t in the display
list.

 Canvas Operations 247

Created: December 1, 1994 —Canvas.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

$c addtag tag closest x y
?halo? ?start?

Add tag to the item closest to the x y position. If
more than one object is the same distance away, or
if more than one object is within halo pixels, then
the last one in the display list (uppermost) is
returned. If start is specified, the closest object
after start in the display list is returned.

$c addtag tag enclosed x1
y1 x2 y2

Add tag to the items completely enclosed in the
specified region. x1 <= x2, y1 <= y2.

$c addtag tag withtag $t Add tag to the items identified by $t.

$c bbox $t ?tag tag ...? Return the bounding box of the items identified by
the tag(s) in the form x1 y1 x2 y2

$c bind $t ?sequence?
?command?

Set or query the bindings of canvas items.

$c canvasx screenx ?grid? Map from the X screen coordinate screenx to the
X coordinate in canvas space, rounded to multi-
ples of grid if specified.

$c canvasy screeny ?grid? Map from screen Y to canvas Y.

$c cget option Return the value of option for the canvas.

$c configure ... Query or update the attributes of the canvas.

$c coords $t ?x1 y1 ...? Query or modify the coordinates of the item.

$c create type x y ?x2
y2? ?opt value ...?

Create a canvas object of the specified type at the
specified coordinates.

$c delete $t ?tag ...? Delete the item(s) specified by the tag(s) or IDs.

$c dtag $t ?deltag? Remove the specified tags from the items identi-
fied by $t. If deltag is omitted, it defaults to $t

$c find addtagSearch ... Return the IDs of the tags that match the search
specification: above all below closest
enclosed withtag as for the addtag operation.

$c gettags $t Return the tags associated with the first item
identified by $t.

$c itemconfigure $t ... Query or reconfigure item $t.

$c lower $t ?belowThis? Move the items identified by $t to the beginning
of the display list, or just before belowThis.

$c move $t dx dy Move $t by the specified amount.

$c postscript ... Generate postscript. See the next section.

$c raise $t ?aboveThis? Move the items identified by $t to the end of the
display list, or just after aboveThis.

Table 19–11 Operations on a canvas widget.

248 The canvas Widget Chap.19

Created: December 1, 1994 —Canvas.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Generating Postscript

The postscript operation generates postscript based on the contents of a can-
vas. There are many options that refine the postscript. You control what region of
the canvas is printed with the -width, -height, -x and -y options. You control
the size and location of this in the output with the -pageanchor, -pagex, -pagey,
-pagewidth, and -pageheight options. The postscript is written to the file named
by the -file option, or it is returned as the value of the postscript canvas opera-
tion.

You control fonts with a mapping from X screen fonts to postscript fonts.
Define an array where the index is the name of the X font and the contents are
the name and pointsize of a postscript font.

Table 19–12 summarizes all the options for generating postscript.

$c scale $t x0 y0 xS yS Scale the coordinates of the items identified by $t.
The distance between x0 and a given X coordinate
changes by a factor of xS. Similarly for Y.

$c scan mark x y Set a mark for a scrolling operation.

$c scan dragto x y Scroll the canvas from the previous mark.

$c type $t Return the type of the first item identified by $t.

$c xview index Position the canvas so that index (in scroll incre-
ments) is at the left edge of the screen.

$c yview index Position the canvas so that index (in scroll incre-
ments) is at the top edge of the screen.

Table 19–12 Canvas postscript options.

-colormap varName The index of varName is a named color, and the
contents of each element is the postscript code to
generate the RGB values for that color.

-colormode mode mode is one of: color grey mono

-file name The file in which to write the postscript. If not
specified, the postscript is returned as the result
of the command.

-fontmap varName The index of varName is an X font name. Each
element contains a list of two items, a postscript
font name and a point size.

-height size Height of the area to print.

-pageanchor anchor anchor is one of: c n ne e se s sw s nw

Table 19–11 Operations on a canvas widget.

 Generating Postscript 249

Created: December 1, 1994 —Canvas.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

The next example positions a number of text objects with different fonts
onto a canvas. For each different X font used, it records a mapping to a postscript
font. The example has a fairly simple font mapping, and in fact the canvas would
have probably guessed the same font mapping itself. If you use more exotic
screen fonts you may need to help the canvas widget with an explicit font map.

The example positions the output at the upper-left corner of the printed
page by using the -pagex, -pagey and -pageanchor options. Recall that post-
script has its origin at the lower left corner of the page.

Example 19–14 Generating postscript from a canvas.

proc Setup {} {
global fontMap
canvas .c
pack .c -fill both -expand true
set x 10
set y 10
set last [.c create text $x $y -text "Font sampler" \

-font fixed -anchor nw]

Create several strings in different fonts and sizes

foreach family {times courier helvetica} {
set weight bold
switch -- $family {

times { set fill blue; set psfont Times}
courier { set fill green; set psfont Courier }
helvetica { set fill red; set psfont Helvetica }

}
foreach size {10 14 24} {

set y [expr 4+[lindex [.c bbox $last] 3]]

Guard against missing fonts

-pageheight size Height of image on the output. A floating point
number followed by c (centimeters) i (inches) m
(millimeters) p (printer points).

-pagewidth size Width of image on the output.

-pagex position The output X coordinate of the anchor point.

-pagey position The output Y coordinate of the anchor point.

-rotate boolean If true, rotate so that X axis is the long direction of
the page (landscape orientation).

-width size Size of the area to print.

-x position Canvas X coordinate of left edge of the image.

-y position Canvas Y coordinate of top edge of the image.

Table 19–12 Canvas postscript options.

250 The canvas Widget Chap.19

Created: December 1, 1994 —Canvas.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

if {[catch {.c create text $x $y \
-text $family-$weight-$size \
-anchor nw -fill $fill \
-font -*-$family-$weight-*-*-*-$size-*} \

it] == 0} {
set fontMap(-*-$family-$weight-*-*-*-$size-*)\

[list $psfont $size]
set last $it

}
}

}
set fontMap(fixed) [list Courier 12]

}
proc Postscript { c file } {

global fontMap
Tweak the output color
set colorMap(blue) {0.1 0.1 0.9 setrgbcolor}
set colorMap(green) {0.0 0.9 0.1 setrgbcolor}
Position the text at the upper-left corner of
an 8.5 by 11 inch sheet of paper
$c postscript -fontmap fontMap -colormap colorMap \

-file $file \
-pagex 0.i -pagey 11.i -pageanchor nw

}

Canvas Attributes

Table 19–13 lists the attributes for the canvas widget. The table uses the X
resource Class name, which has capitals at internal word boundaries. In Tcl com-
mands the attributes are specified with a dash and all lowercase.

Table 19–13 Resource names of attributes for the canvas widget.

background The normal background color.

borderWidth The width of the border around the canvas.

closeEnough Distance from mouse to an overlapping object.

confine Boolean. True constrains view to the scroll region.

cursor Cursor to display when mouse is over the widget.

height Height, in screen units, of canvas display.

highlightColor Color for input focus highlight border.

highlightThickness Width of highlight border.

insertBackground Background for area covered by insert cursor.

insertBorderwidth Width of cursor border. Non-zero for 3D effect.

insertOffTime Time, in milliseconds the insert cursor blinks off.

 Hints 251

Created: December 1, 1994 —Canvas.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

The scroll region of a canvas defines the boundaries of the canvas coordi-
nate space. It is specified as four coordinates, x1 y1 x2 y2 where (x1, y1) is the
top-left corner and (x2, y2) is the lower right corner. If the constrain attribute is
true, then the canvas cannot be scrolled outside this region. It is OK to position
canvas objects partially or totally off the scroll region, they just may not be visi-
ble. The scroll increment determines how much the canvas is scrolled when the
user clicks on the arrows in the scroll bar.

The closeEnough attribute indicates how far away a position can be from
an object and still be considered to overlap it. This applies to the overlapping

search criteria.

Hints

Large coordinate spaces

Coordinates for canvas items are stored internally as floating point num-
bers, so the values returned by the coords operation will be floating point num-
bers. If you have a very large canvas, you may need to adjust the precision with
which you see coordinates by setting the tcl_precision variable. This is an
issue if you query coordinates, perform a computation on them, and then update
the coordinates.

Scaling and Rotation

The scale operation scales the coordinates of one or more canvas items. It is
not possible to scale the whole coordinate space. The main problem with this is

insertOnTime Time, in milliseconds the insert cursor blinks on.

insertWidth Width of insert cursor. Default is 2.

relief 3D relief: flat, sunken, raised, groove, ridge.

scrollIncrement The minimum scrolling distance.

scrollRegion Left, top, right, and bottom coordinates of the canvas

selectBackground Background color of selection.

selectForeground Foreground color of selection.

selectBorderWidth Widget of selection border. Non-zero for 3D effect.

width Width, in characters for text, or screen units for image.

xScrollCommand Tcl command prefix for horizontal scrolling.

yScrollCommand Tcl command prefix for vertical scrolling.

Table 19–13 Resource names of attributes for the canvas widget.

252 The canvas Widget Chap.19

Created: December 1, 1994 —Canvas.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

that you can lose precision when scaling and unscaling objects because their
internal coordinates are actually changed by the scale operation. For simple
cases this is not a problem, but in extreme cases it can show up.

The canvas does not support rotation.

X Resources

There is no resource database support built into the canvas and its items.
You can, however, define resources and query them yourself. For example, you
could define

*Canvas.foreground:blue

This would have no effect by default. However, your code could look for this
resource with option get. You’d then have to specify this color directly for the
-fill attribute of your objects.

set fg [option get $c foreground {}]

$c create rect 0 0 10 10 -fill $fg

The main reason to take this approach is to let your users customize the
appearance of canvas objects without changing your code.

Objects with many points

The canvas implementation seems well optimized to handle lots and lots of
canvas objects. However, if an object like a line or a polygon has very many
points that define it, the implementation ends up scanning through these points
linearly. This can adversely affect the time it takes to process mouse events in
the area of the canvas containing such an item. Apparently any object in the
vicinity of a mouse click is scanned to see if the mouse has hit it so that any bind-
ings can be fired.

253

C H A P T E R

Created: March 15, 1994 —Selection.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

 20

Selections and the Clipboard 20

Cut and paste allows information exchange between applications. The X
selection mechanism is used for this purpose. The clipboard selection is
a special-purpose selection mechanism used by the OpenLook tools.

S elections are handled in a general way
by X, including a provision for different selections, different data types, and dif-
ferent formats for the data. For the most part you can ignore these details
because they are handled by the Tk widgets. However, you can also control the
selection explicitly. This chapter describes how.

There are two Tcl commands that deal with selections. The selection com-
mand is a general purpose command that can set and get different selections. By
default it manipulates the PRIMARY selection. The clipboard command is used to
store data for later retrieval using CLIPBOARD selection. The next example imple-
ments a robust paste operation by checking for both of these selections.

Example 20–1 Paste the PRIMARY or CLIPBOARD selection.

proc Paste { t } {
if [catch {selection get} sel] {

if [catch {selection get -selection CLIPBOARD} sel] {
no selection or clipboard data
return

}
}
$t insert insert $sel

}

254 Selections and the Clipboard Chap.20

Created: March 15, 1994 —Selection.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

The selection Command

The basic model for selections is that there is an owner for a selection, and other
applications request the value of the selection from that owner. The X server
keeps track of ownership, and applications are informed when some other appli-
cation takes away ownership. Several of the Tk widgets implement selections
and take care of asserting ownership and returning its value. The selection get

command returns the value of the current selection, or raises an error if the
selection does not exist. The error conditions are checked in the previous exam-
ple.

For many purposes the selection handling that is built into the Tk widgets
is adequate. If you want more control over selection ownership, you can provide a
handler for selection requests. The last section of this chapter presents an exam-
ple of this.

A selection can have a type. The default is STRING. The type is different
than the name of the selection (e.g., PRIMARY or CLIPBOARD). Each type can have a
format, and the default is also STRING. Ordinarily these defaults are fine. If you
are dealing with non-Tk applications, however, you may have to ask for their
selections by the right type (e.g., FILE_NAME). Other formats include ATOM and
INTEGER. An ATOM is a name that is registered with the X server and identified by
number. It is probably not a good idea to use non-STRING types and formats
because it limits what other applications can use the information. The details
about selection types and formats are specified in the Inter-Client Communica-
tion Conventions Manual (ICCCM).

Table 20–1 summarizes the selection command. All of the operations
take an optional parameter that specifies what selection is being manipulated.
This defaults to PRIMARY. Some of the operations take a pair of parameters that
specify what X display the selection is on. The value for this is a Tk pathname of
a window, and the selection on that window’s display is manipulated. The default
is to manipulate the selection on the display of the main window.

Table 20–1 The selection command.

selection clear ?-displayof
win? ?-selection sel?

Clear the specified selection.

selection get ?displayof win?
?-selection sel? ?-type type?

Return the specified selection. Type defaults
to STRING.

selection handle ?-selection
sel? ?-type type? ?-format
format? window command

Define command to be the handler for selec-
tion requests when window owns the selec-
tion.

selection own ?-displayof
window? ?-selection sel?

Return the Tk pathname of the window that
owns the selection, if it is in this application.

selection own ?-command com-
mand? ?-selection sel? window

Assert that window owns the sel selection.
The command is called when ownership of
the selection is taken away from window.

 The clipboard Command 255

Created: March 15, 1994 —Selection.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

The clipboard Command

The clipboard command is used to install values into the CLIPBOARD selec-
tion. The CLIPBOARD is meant for values that have been recently or temporarily
deleted. The selection command is used to retrieve values from the CLIPBOARD

selection. For example, the Paste function in Example 20–1 will insert from the
CLIPBOARD if there is no PRIMARY selection. Table 20–1 summarizes the clip-

board command.

Interoperation with OpenLook

The CLIPBOARD is necessary to interoperate correctly with OpenLook. When
the user presses the Copy or Cut function keys in an OpenLook application, a
value is copied into the CLIPBOARD. A Paste inserts the contents of the CLIP-

BOARD; the contents of the PRIMARY selection are ignored.
In contrast, toolkits like Tk and Xt that use the PRIMARY selection do not

need a Copy step. Instead, dragging out a selection with the mouse automatically
asserts ownership of the PRIMARY selection, and paste inserts the value of the
PRIMARY selection.

Selection Handlers

The selection handle command registers a Tcl command to handle selec-
tion requests. The command is called to return the value of the selection to a
requesting application. If the selection value is large, the command may be
called several times to return the selection in pieces. The command gets two
parameters that indicate the offset within the selection to start returning data,
and the maximum number of bytes to return. If the command returns fewer than
that many bytes, the selection request is assumed to be completed. Otherwise
the command is called again to get the rest of the data, and the offset parameter
is adjusted accordingly.

You can also get a callback when you lose ownership of the selection. At
that time it is appropriate to unhighlight the selected object in your interface.
The selection own command is used to set up ownership and register a callback
when you lose ownership.

Table 20–2 The clipboard command.

clipboard clear ?-displayof
win?

Clear the CLIPBOARD selection.

clipboard append ?-displayof
win? ?-format format? ?-type
type? data

Append data to the CLIPBOARD with the
specified type and format, which both
default to STRING.

256 Selections and the Clipboard Chap.20

Created: March 15, 1994 —Selection.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

A canvas selection handler

The following example illustrates a selection handler for a canvas widget. A
description of the selected object is returned in such a way that the requester can
create an identical object. The example lacks highlighting for the selected object,
but otherwise provides full cut, copy and paste functionality.

Example 20–2 A selection handler for canvas widgets.

proc SetupCanvasSelect { c } {
Create a canvas with a couple of objects
canvas $c
pack $c
$c create rect 10 10 50 50 -fill red -tag object
$c create poly 100 100 100 30 140 50 -fill orange \

-tag object
Set up cut and paste bindings
$c bind object <1> [list CanvasSelect $c %x %y]
$c bind object <3> [list CanvasCut $c %x %y]
bind $c <2> [list CanvasPaste $c %x %y]
Register the handler for selection requests
selection handle $c [list CanvasSelectHandle $c]

}

proc CanvasSelect { w x y } {
Select an item on the canvas.
This should highlight the object somehow, but doesn’t
global canvas
set id [$w find closest $x $y]
set canvas(select,$w) $id
Claim ownership of the PRIMARY selection
selection own -command [list CanvasSelectLose $w] $w

}

proc CanvasCut { w x y } {
Delete an object from the canvas, saving its
description into the CLIPBOARD selection
global canvas
set id [$w find closest $x $y]
Clear the selection so Paste gets the clipboard
selection clear
clipboard clear
clipboard append [CanvasDescription $w $id]
$w delete $id

}

proc CanvasSelectHandle { w offset maxbytes } {
Handle a selection request
global canvas
if ![info exists canvas(select,$w)] {

error "No selected item"
}
set id $canvas(select,$w)
Return the requested chunk of data.

 Selection Handlers 257

Created: March 15, 1994 —Selection.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

return [string range [CanvasDescription $w $id] \
$offset [expr $offset+$maxbytes]]

}
proc CanvasDescription { w id } {

Generate a description of the object that can
be used to recreate it later.
set type [$w type $id]
set coords [$w coords $id]
set config {}
Bundle up non-default configuration settings
foreach conf [$w itemconfigure $id] {

itemconfigure returns a list like
-fill {} {} {} red
set default [lindex $conf 3]
set value [lindex $conf 4]
if {[string compare $default $value] != 0} {

append config [list [lindex $conf 0] $value] " "
}

}
return [concat CanvasObject $type $coords $config]

}

proc CanvasSelectLose { w } {
Some other app has claimed the selection
global canvas
unset canvas(select,$w)

}

proc CanvasPaste { w x y } {
Paste the selection, from either the
PRIMARY or CLIPBOARD selections
if [catch {selection get} sel] {

if [catch {selection get -selection CLIPBOARD} sel] {
no selection or clipboard data
return

}
}
if [regexp {^CanvasObject} $sel] {

if [catch {eval {$w create} [lrange $sel 1 end]} id] {
return;

}
look at the first coordinate to see where to
move the object. Element 1 is the type, the
next two are the first coordinate
set x1 [lindex $sel 2]
set y1 [lindex $sel 3]
$w move $id [expr $x-$x1] [expr $y-$y1]

}
}

258 Selections and the Clipboard Chap.20

Created: March 15, 1994 —Selection.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

259

C H A P T E R

Created: March 15, 1994 —Send.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

 21

Callbacks and Handlers 21

This chapter describes the send command that is used to invoke Tcl
commands in other applications, the after command that causes Tcl
commands to occur at a time in the future, and the fileevent
command that registers a command to occur in response to file I/O.

Callbacks and interprocess communica-
tion provide powerful mechanisms for structuring your application. The send

command lets Tk applications send each other Tcl commands and cooperate in
very flexible ways. A large application can be structured as a set of smaller tools
that cooperate instead of one large monolith. This encourages reuse, and it
exploits your workstations multiprogramming capabilities. Within a single
application you can use the after command to cause events to occur at a speci-
fied time in the future. This is useful for periodic tasks and animations. The
fileevent command lets you application do I/O processing in the background
and response as needed when I/O events occur. Together, all of these mechanisms
support a flexible and powerful applications.

The after Command

The after command sets up commands to happen in the future. In its simplest
form it just pauses the application for a specified time, in milliseconds. During
this time the application processes no events. This behavior is different than the
tkwait command that does allow event processing. The example below waits for
half a second.

after 500

The after command can register a Tcl command to occur after period of

260 Callbacks and Handlers Chap.21

Created: March 15, 1994 —Send.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

time, in milliseconds. The after command behaves like eval; if you give it extra
arguments it concatenates them to form a single command. If your argument
structure is important, use list to build the command. The following example
always works, no matter what the value of myvariable is.

after 500 [list puts $myvariable]

The return value of after is an identifier for the registered command. You
can cancel this command with the after cancel operation. You specify either the
identifier returned from after, or the command string. In the latter case the
event that matches the command string exactly is canceled.

Table 21–1 summarizes the after command.

The fileevent Command

The fileevent command registers a procedure that is called when an I/O stream
is ready for read or write events. For example, you can open a pipeline for read-
ing, and then process the data from the pipeline using a command registered
with fileevent. The advantage of this approach is that your application can do
other things, like update the user interface, while waiting for data from the pipe-
line. If you use a Tcl extension like Tcl-DP that lets you open network I/O
streams, then you can also use fileevent to register procedures to handle data
from those I/O streams. You can use fileevent on stdin and stdout, too.

The command registered with fileevent uses the regular Tcl commands to
read or write data on the I/O stream. For example, if the pipeline generates line-
oriented output, you can use gets to read a line of input. If you try and read more
data than is available, your application will hang waiting for more input. For
this reason you should read one line in your fileevent handler, assuming the data
is line-oriented. If you know the pipeline will generate data in fixed-sized blocks,
then you can use the read command to read one block.

Currently there is no support for non-blocking writes, so there is a chance
that writing too much data on a writable I/O stream will block your process.

You should check for end-of-file in your read handler because it will be
called when end-of-file occurs. It is safe to close the stream inside the file han-
dler. Closing the stream automatically unregisters the handler.

There can be at most one read handler and one write handler for an I/O
stream. If you register a handler and one is already registered, then the old reg-
istration is removed. If you call fileevent without a command argument it

Table 21–1 The after command.

after milliseconds Pause for milliseconds.

after ms arg ?arg...? Concatenate the args into a command and execute it
after ms milliseconds. Immediately returns an ID.

after cancel id Cancel the command registered under id.

after cancel command Cancel the registered command.

 The send Command 261

Created: March 15, 1994 —Send.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

returns the currently registered command, or null if there is none. If you register
the null string, it deletes the current file handler.

The example below shows a typical read event handler. A pipeline is opened
for reading and its command executes in the background. The Reader command
is invoked when data is available on the pipe. The end-of-file condition is
checked, and then a single line of input is read and processed. Example 11–1
also uses fileevent to read from a pipeline.

Example 21–1 A read event file handler.

set pipe [open "|some command"]
fileevent $pipe readable [list Reader $pipe]
proc Reader { pipe } {

if [eof $pipe] {
catch {close $pipe}
return

}
gets $pipe line
Process one line

}

Table 21–1 summarizes the fileevent command.

The send Command

The send command invokes a Tcl command in another application. This
provides a very general way for scripts to cooperate. The general form of the com-
mand is

send interp arg ?arg...?

Perhaps the trickiest thing to get right with send is interp, which is the
name of the other application. An application defines its own name when it cre-
ates its main window. The wish shell uses as its name the last component of the
filename of the script it is executing. For example, if the file /usr/local/bin/

exmh begins with:
#!/usr/local/bin/wish

The wish shell will interpret the script and set up its application name to be
exmh. However, if another instance of the exmh application is already running,
then wish will choose the name exmh #2, and so on. If wish is not executing from
a file, then its name is just wish. You may have noticed wish #2 or wish #3 in

Table 21–2 The fileevent command.

fileevent fileId readable
?command?

Query or register command to be called
when fileId is readable.

fileevent fileId writable
?command?

Query or register command to be called
when fileId is writable.

262 Callbacks and Handlers Chap.21

Created: March 15, 1994 —Send.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

your window title bars, and this reflects the fact that multiple wish applications
are running on your display. If you application crashes it can forget to unregister
its name. The tkinspect program has a facility to clean up these old registrations.

A script can find out its own name, so you can pass names around or put
them into files in order to set up communications. The tk appname command is
used to get or change the application name.

set myname [tk appname]

tk appname aNewName

In Tk 3.6 and earlier, you have to use the winfo name command to get the
name of the application.

set myname [winfo name .]

The sender script

The following example is a general purpose script that reads input and then
sends it to another application. You can put this at the end of a pipeline in order
to get a loopback effect to the main application, although you can also use
fileevent for similar effects. One advantage of send over fileevent is that the
sender and receiver can be more independent. A logging application, for exam-
ple, can come and go independently of the applications that log error messages.

Example 21–2 The sender application.

#!/usr/local/bin/wish
sender takes up to four arguments:
1) the name of the application to which to send.
2) a command prefix
3) the name of another application to notify when
after the end of the data.
4) the command to use in the notification.

Hide the unneeded window
wm withdraw .

Process command line arguments
if {$argc == 0} {

puts stderr "Usage: send name ?cmd? ?uiName?"
exit 1

} else {
set app [lindex $argv 0]

}
if {$argc > 1} {

set cmd [lindex $argv 1]
} else {

set cmd Send_Insert
}
if {$argc > 2} {

set ui [lindex $argv 2]
set uiCmd Send_Done

}

 The send Command 263

Created: March 15, 1994 —Send.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

if {$argc > 3} {
set uiCmd [lindex $argv 3]

}
Read input and send it to the logger
while {! [eof stdin]} {

set numBytes [gets stdin input]
if {$numBytes < 0} {

break
}
Ignore errors with the logger
catch {send $app [concat $cmd [list $input\n]]}

}
Notify the controller, if any
if [info exists ui] {

if [catch {send $ui $uiCmd} msg] {
puts stderr "send.tcl could not notify $ui\n$msg"

}
}
This is necessary to force wish to exit.
exit

The sender application supports communication with two processes. It
sends all its input to a primary "logging" application. When the input finishes, it
can send a notification message to another "controller" application. The logger
and the controller could be the same application. An example that sets up this
three way relationship is given later.

Consider the send command used in the example:
send $app [concat $cmd [list $input\n]]

The combination of concat and list is a little tricky. The list command is
used to quote the value of the input line. This quoted value is then appended to
the command so it appears as a single extra argument. Without the quoting by
list, the value of the input line will affect the way the remote interpreter parses
the command. Consider these alternatives:

send $app [list $cmd $input]

This form is safe, except that it limits $cmd to be a single word. If cmd con-
tains a value like the ones given below, the remote interpreter will not parse it
correctly. It will treat the whole multi-word value as the name of a command.

.log insert end

.log see end ; .log insert end

The version below is the most common wrong answer:
send $app $cmd $input

The send command will concatenate $cmd and $input together, and the
result will be parsed again by the remote interpreter. The success or failure of
the remote command depends on the value of the input data, which is always a
bad idea.

264 Callbacks and Handlers Chap.21

Created: March 15, 1994 —Send.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Using sender

The example below is taken from a control panel that runs jobs in the back-
ground and uses sender to send their output to an editor for logging. When the
job finishes, the control panel is notified.

The editor is mxedit, a Tcl-based editor. It defines its application name to be
mxedit pathname, where pathname is the name of the file being edited. That
name will be passed to sender as the name of the logging application. The control
panel passes its own name as the name of the controller, and it uses the tk app-

name command to find out its own name.

Example 21–3 Using the sender application.

#!/project/tcl/src/brent/wish
Send chapter
Control Panel demo

wm title . Controller

Create a frame for buttons and entry.
frame .top -borderwidth 10
pack .top -side top -fill x

 The send Command 265

Created: March 15, 1994 —Send.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Create the command buttons.
button .top.quit -text Quit -command exit
set but [button .top.run -text "Run it" -command Run \

-width 6]
pack .top.quit .top.run -side right

Create a labeled entry for the command
label .top.l -text Command: -padx 0
entry .top.cmd -width 20 -relief sunken \

-textvariable command
pack .top.l -side left
pack .top.cmd -side left -fill x -expand true

Set up key binding equivalents to the buttons
bind .top.cmd <Return> Run
bind .top.cmd <Control-c> Stop
focus .top.cmd

Fork an editor to log the output.
exec mxedit /tmp/log.[pid] &

set sendCmd [list /usr/local/bin/send.tcl \
"mxedit /tmp/log.[pid]" mxInsert [tk appname]]

Run the program and arrange to log its input via sender
proc Run {} {

global command job sendCmd but
set cmd [concat exec $command |& $sendCmd &]
send "mxedit /tmp/log.[pid]" [list mxInsert $command\n]
if [catch {eval $cmd} job] {

send "mxedit /tmp/log.[pid]" [list mxInsert $job\n]
} else {

$but config -text Stop -command Stop
}

}
Stop the program and fix up the button
proc Stop {} {

global job but
job contains multiple pids
catch {eval {exec kill} $job}
send "mxedit /tmp/log.[pid]" [list mxInsert ABORT\n]
$but config -text "Run it" -command Run

}
Handle the callback from sender
proc Send_Done {} {

global but
send "mxedit /tmp/log.[pid]" [list mxInsert DONE\n]
$but config -text "Run it" -command Run

}

This example is very similar to the ExecLog application from Example 11–
1 on page 104. Instead of creating a text widget for a log, this version forks the
mxedit program to serve as the logging application. The command is run in a

266 Callbacks and Handlers Chap.21

Created: March 15, 1994 —Send.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

pipeline. Instead of reading the pipeline itself, the control panel lets the sender
program send the output to the editor. When the process completes, the sender
notifies the control panel.

The formation of the command to execute is done in two parts. First, the
sendCmd variable is set up with the right arguments to send.tcl. This includes the
result of tk appname, which gives the name of the controller application. Once
again, it is crucial to use list so that spaces in the names of the interpreters are
quoted properly. In the second step the user’s command is concatenated into a
pipeline command, and eval is used to interpret the carefully constructed com-
mand.

The return from exec is a list of process ids, one for each process in the
pipeline. This leads to another use of eval to construct a kill command that
lists each process id as separate arguments.

The example always uses list to construct the command used in a send. In
this case it is necessary in order to preserve the newline character that is
appended to the string being inserted. Another approach would be to use curly
braces. In that case the \n would be converted to a newline character by the
remote interpreter. However, this doesn’t work when the command or error mes-
sage is being sent. In these cases the variable needs to be expanded, so list is
used in all cases for consistency.

Hooking the browser to a shell

Chapter 11 presented two examples, a browser for the examples in this
book and a simple shell in which to try out Tcl commands. The two examples
shown below hook these two applications together using the send command. The
first example adds a Load button to the browser that tells the shell to source the
current file. The browser starts up the shell, if necesarry.

Example 21–4 Hooking the browser to an eval server.

Add this to Example 11–2
button .menubar.load -text Load -command Load
pack .menubar.load -side right

Start up the eval.tcl script.
proc StartEvalServer {} {

global browse
Start the shell and pass it our name.
exec eval.tcl [tk appname] &
Wait for eval.tcl to send us its name
tkwait variable browse(evalInterp)

}
proc Load {} {

global browse
if {[lsearch [winfo interps] eval.tcl] < 0} {

StartEvalServer
}
if [catch {send $browse(evalInterp) {info vars}} err] {

 The send Command 267

Created: March 15, 1994 —Send.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

It probably died - restart it.
StartEvalServer

}
Send the command, using after 1 so that _EvalServe
is done asynchronously. We don’t wait. The three
list commands foil the concat done by send, after, and
the uplevel in _EvalServe
send $browse(evalInterp) \

[list after 1 [list _EvalServe \
[list source $browse(current)]]]

}

The number of lists created before the send command may seem excessive.
Here is what happens. First, the send command concats its arguments, so
instead of letting it do that, we pass it a single list. The after command also con-
cats its arguments, so it is passed a list as well. If you didn’t care how long the
command would take, you could eliminate the use of after to simplify things.
Finally, _EvalServe expects a single argument that is a valid command, so list

is used to construct that.
We need to add two things to Example 11–3 to get it to support these addi-

tions to the browser. First, when it starts up it needs to send us its application
name. We pass our own name on its command line, so it knows how to talk to us.
Second, an _EvalServer procedure is added. It accepts a remote command, echos
it in the text widget, and then evaluates it. The results, or errors, are added to
the text widget.

Example 21–5 Making the shell into an eval server.

Add this to the beginning of Example 11–3
if {$argc > 0} {

Check in with the browser
send [lindex $argv 0] \

[list set browse(evalInterp) [tk appname]]
}

Add this after _Eval
proc _EvalServe { command } {

global prompt

set t .eval.t
$t insert insert $command\n

set err [catch {uplevel #0 $command} result]
$t insert insert \n$result\n
$t insert insert $prompt
$t see insert
$t mark set limit insert

}

268 Callbacks and Handlers Chap.21

Created: March 15, 1994 —Send.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

269

C H A P T E R

Created: March 15, 1994 —TkAttrs.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

 22

Tk Widget Attributes 22

Each Tk widget has a number of attributes that affect its appearance and
behavior. This chapter describes the use of attributes in general, and
covers some of the size and appearance-related attributes. The next two
chapters cover the attributes associated with colors, images, and text.

This chapter describes some of the widget
attributes that are in common among many Tk widgets. A widget always pro-
vides a default value for its attributes, so you can avoid specifying most of them.
If you want to fine tune things, however, you’ll need to know about all the widget
attributes. You may want to just skim through this chapter first, and then refer
back to it once you have learned more about a particular Tk widget.

Configuring Attributes

Attributes for Tk widgets are specified when the widget is created. They can be
changed dynamically at any time after that, too. In both cases the syntax is sim-
ilar, using pairs of arguments. The first item in the pair identifies the attribute,
the second provides the value. For example, a button can be created like this:

button .doit -text Doit -command DoSomething

The name of the button is .doit, and two attributes are specified, the text

and the command. The .doit button can be changed later with the configure

widget operation:
.doit configure -text Stop -command StopIt

The current configuration of a widget can be queried with another form of
the configure operation. If you just supply an attribute, the settings associated
with that attribute are returned:

270 Tk Widget Attributes Chap.22

Created: March 15, 1994 —TkAttrs.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

.doit configure -text

=> -text text Text { } Stop

This command returns several pieces of information: the command line
switch, the resource name, the resource class, the default value, and the current
value. In most cases you want the current value, which comes last. One way to
get this value is with lindex:

lindex [.doit configure -text] 4

Tk 4.0 added a cget widget command that makes life easier. Just do:
.doit cget -text

=> Stop

You can also configure widget attributes indirectly by using the X resource
database. An advantage of using the resource database is that users can recon-
figure your application without touching the code. Otherwise, if you specify
attribute values explicitly in the code, they cannot be overridden by resource set-
tings. This is especially important for attributes like fonts and colors.

The tables in this chapter list the attributes by their X resource name,
which may have a capital letter at an internal word boundary (e.g., activeBack-
ground). When you specify attributes in a Tcl command, use all lowercase
instead, plus a leading dash. Compare:

option add *Button.activeBackground red

$button configure -activebackground red

The first command defines a resource that affects all buttons created after
that point, while the second command changes an existing button. Command
line settings override resource database specifications. Chapter 27 describes the
use of X resources in more detail.

Size

Most widgets have a width and height attribute that specifies their desired size,
although there are some special cases described below. In all cases, the geometry
manager for a widget may modify the size to some degree. The table below sum-
marizes the attributes used to specify the size for widgets.

Table 22–1 Size attribute resource names.

aspect The aspect ratio of a message widget, which is 100 times the
ratio of width divided by height.
message

height Height, in text lines or screen units.
button canvas checkbutton frame label listbox
listbox menubutton radiobutton text toplevel

length The long dimension of a scale.
scale

 Size 271

Created: March 15, 1994 —TkAttrs.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Most of the text-related widgets interpret their sizes in units of characters
for width and lines for height. All other widgets, including the message widget,
interpret their dimensions in screen units. Screen units are pixels by default,
although you can suffix the dimension with a unit specifier:

c centimeters

i inch

m millimeters

p printer points (1/72 inches)

Scales and scrollbars can have two orientations as specified by the orient

attribute, so width and height are somewhat ambiguous. These widgets do not
support a height attribute, and they interpret their width attribute to mean the
size of their narrow dimension. The scale has a length attribute that deter-
mines its long dimension. Scrollbars do not even have a length. Instead, a
scrollbar is assumed to be packed next to the widget it controls, and the fill

packing attribute is used to extend the scrollbar to match the length of its adja-
cent widget. Example 15–5 shows how to pack scrollbars with another widget.

The message widget displays a fixed string on multiple lines, and it uses
one of two attributes to constrain its size: its aspect or its width. The aspect
ratio is defined to be 100*width/height, and it formats its text to honor this con-
straint. However, if a width is specified, it just uses that and uses as many lines
(i.e. as much height) as needed. Example 15–2 and Example 15–3 show how
message widgets display text.

It is somewhat unfortunate that text-oriented widgets only take character-
and line-oriented dimensions. These sizes change with the font used for the
label, and if you want a precise size you might be frustrated. One trick is to put
each widget, such as a label, in its own frame. Specify the size you want for the
frame, and then pack the label and turn off size propagation. For example:

orient Orientation for long and narrow widgets:
horizontal vertical.
scale scrollbar.

width Width, in characters or screen units.
button canvas checkbutton entry frame label
listbox menubutton message radiobutton scale
scrollbar text toplevel

Table 22–1 Size attribute resource names.

272 Tk Widget Attributes Chap.22

Created: March 15, 1994 —TkAttrs.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Example 22–1 Equal-sized labels

proc EqualSizedLabels { parent width height strings args } {
set l 0
foreach s $strings {

frame $parent.$l -width $width -height $height
pack propagate $parent.$l false
pack $parent.$l -side left
eval {label $parent.$l.l -text $s} $args
pack $parent.$l.l -fill both -expand true
incr l

}
}
frame .f ; pack .f
EqualSizedLabels .f 1i 1c {apple orange strawberry kiwi} \

-relief raised

The frames $parent.$l are all created with the same size. The pack prop-

agate command prevents these frames from changing size when the labels are
packed into them later. The labels are packed with fill and expand turned on so
they fill up the fixed-sized frames around them.

Borders and Relief

The three dimensional appearance of widgets is determined by two
attributes: borderWidth and relief. The borderWidth adds extra space around
the edge of a widget’s display, and this area can be displayed in a number of ways
according to the relief attribute. The example on the next page illustrates the
different reliefs

Table 22–2 Border and relief attribute resource names.

borderWidth The width of the border around a widget, in screen units.
button canvas checkbutton entry frame label
listbox menu menubutton message radiobutton
scale scrollbar text toplevel

bd Short for borderWidth. Tcl commands only.

 The Focus Highlight 273

Created: March 15, 1994 —TkAttrs.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Example 22–2 3D relief sampler.

frame .f -borderwidth 10
pack .f
foreach relief {raised sunken flat ridge groove} {

label .f.$relief -text $relief -relief $relief -bd 4
pack .f.$relief -side left -padx 4

}

The activeBorderWidth attribute is a special case for menus. It defines the
border width for the menu entries. The relief of a menu is (currently) not config-
urable. It probably isn’t worth adjusting the menu border width attributes
because the default looks OK.

The activeRelief applies to the elements of a scrollbar (the elevator and
two arrows) when the mouse is over them. In this case there is no corresponding
border width to play with, and changing the activeRelief doesn’t look that
great.

The Focus Highlight

Each widget can have a focus highlight that indicates what widget cur-
rently has the input focus. This is a thin rectangle around each widget that is
displayed in the normal background color by default. When the widget gets the
input focus, the highlight rectangle is displayed in an alternate color. The addi-
tion of the highlight adds a small amount of space outside the border described
in the previous section. Attributes control the width and color of this rectangle. If
the widget is zero, no highlight is displayed.

By default, only the widgets that normally expect input focus have a non-

relief The appearance of the border:
flat raised sunken ridge groove
button canvas checkbutton entry frame label
listbox menubutton message radiobutton scale
scrollbar text toplevel

activeBorderWidth The borderwidth for menu entries.

activeRelief The relief for a active scrollbar elements.

Table 22–2 Border and relief attribute resource names.

274 Tk Widget Attributes Chap.22

Created: March 15, 1994 —TkAttrs.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

zero width highlight border. This includes the text, entry, and listbox widgets.
It also includes the button and menu widgets because there is a set of keyboard
traversal bindings that focus input on these widgets, too.

Padding and Anchors

Some widgets have padding and anchor attributes that are similar in spirit to
some packing attributes described in Chapter 12, The Pack Geometry Manager.
However, they are distinct from the packing attributes, and this section explains
how they work together with the packer

The padding attributes for a widget define space that is never occupied by
the display of the widgets contents. For example, if you create a label with the
following attributes and pack it into a frame by itself, you will see the text is still
centered, in spite of the anchor attribute.

label .foo -text Foo -padx 20 -anchor e

pack .foo

The anchor attribute only affects the display if there is extra room for
another reason. One way to get extra room is to specify a width attribute that is
longer than the text. The following label has right-justified text. You can also see
the effect of the default padx value for labels that keeps the text spaced away
from the right edge.

label .foo -text Foo -width 10 -anchor e

pack .foo

Table 22–3 Border and relief attribute resource names.

highlightColor The color of the highlight when the widget has focus.

highlightThickness The width of the highlight border.

Table 22–4 Layout attribute resource names.

anchor The anchor position of the widget: n ne e se s sw w nw center.
button, checkbutton, label, menubutton, message,
radiobutton.

padX, padY Padding space in the X or Y direction, in screen units.
button checkbutton label menubutton message radiobut-
ton text

 Putting It All Together 275

Created: March 15, 1994 —TkAttrs.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Another way to get extra display space is with the -ipadx and -ipady pack-
ing parameters. The example in the next section illustrates this effect. Chapter
12 has several more packing examples of the packing parameters.

Putting It All Together

The number of different attributes that contribute to the size and appearance
can be confusing. The example in this section uses a label to demonstrate the dif-
ference among size, borders, padding, and the highlight. Padding can come from
the geometry manager, and it can come from widget attributes.

Example 22–3 Borders and padding.

frame .f -bg white
label .f.one -text One -relief raised
pack .f.one -side top
label .f.two -text Two \

-highlightthickness 4 -highlightcolor red \
-borderwidth 5 -relief raised \
-padx 0 -pady 0 \
-width 10 -anchor w

pack .f.two -side top -pady 10 -ipady 10 -fill both
focus .f.two
pack .f

The first label in the example uses a raised relief so you can see the default
2-pixel border. There is no highlight on a label by default. There is one pixel of
internal padding so that the text is spaced away from the edge of the label. The
second label adds a highlight rectangle by specifying a non-zero thickness. Wid-
gets like buttons, entries, listboxes, and text have a highlight rectangle by

276 Tk Widget Attributes Chap.22

Created: March 15, 1994 —TkAttrs.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

default. The second label’s padding attributes are reduced to zero. The anchor
positions the text right next to the border in the upper left (nw) corner. However,
note the effect of the padding provided by the packer. There is both external and
internal padding in the Y direction. The external padding (from pack -pady)
results in unfilled space. The internal packing (pack -ipady) is used by the label
for its display. This is different than the label’s own -pady attribute, which keeps
the text away from the edge of the widget.

277

C H A P T E R

Created: March 15, 1994 —Color.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

 23

Color, Images, and Cursors 23

This chapter describes the color attributes shared by the Tk widgets. Images
and bitmaps can be displayed instead of text by several widgets. This
chapter describes that commands that create and manipulate images.
The shape of the mouse cursor when it is over a particular widget is also
controlled by attributes. This chapter includes a figure that shows all the
cursors in the X cursor font.

Color is one of the most fun things to play
with in a user interface. However, this chapter makes no attempt to improve
your taste in color choices; it just describes the attributes that affect color.
Because color choices are often personal, it is a good idea to specify them via X
resources so your users can change them easily. For example, Tk does not have a
reverse video mode. However, with a couple resource specifications you can con-
vert a monochrome display into reverse video. The definitions are given in the
next example. The Foreground and Background class names are used, and the
various foreground and background colors (e.g., activeBackground) are given
the right resource class so these settings work out.

Example 23–1 Resources for reverse video.

proc ReverseVideo {} {
option add *Foreground white
option add *Background black

}

This chapter describes images, too. The image facility in Tk lets you create
an image and then have other Tk widgets display it. The same image can be dis-
played by many different widgets (or multiple times on a canvas). If you redefine
an image, its display is updated in whatever widgets are displaying it.

The last topic of the chapter is cursors. All widgets can control what the

278 Color, Images, and Cursors Chap.23

Created: March 15, 1994 —Color.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

mouse cursor looks like when it is over them. In addition, the widgets that sup-
port text input define another cursor, the insert cursor. Its appearance is con-
trolled with a few related attributes.

Colors

There are several color attributes. The foreground color is used to draw an ele-
ment, while the background color is used for the blank area behind the element.
Text, for example, is painted with the foreground color. There are several varia-
tions on foreground and background that reflect different states for widgets or
items they are displaying. Table 23–1 lists the resource names for color
attributes. The table indicates what widgets use the different color attributes.
Remember to use all lowercase and a leading dash when specifying attributes in
a Tcl command.

Table 23–1 Color attribute resource names.

background The normal background color.
button canvas checkbutton entry frame label
listbox menu menubutton message radiobutton
scale scrollbar text toplevel

bg Short for background. Command line only.

foreground The normal foreground color.
button checkbutton entry label listbox menu
menubutton message radiobutton scale text

fg Short for foreground. Command line only.

activeBackground The background when a mouse button will take an action.
button checkbutton menu menubutton radiobutton
scale scrollbar

activeForeground The foreground when the mouse is over an active widget.
button checkbutton menu menubutton radiobutton

disabledForeground The foreground when a widget is disabled.
button checkbutton menu menubutton radiobutton

highlightColor The color for input focus highlight.
button canvas checkbutton entry frame label
menubutton radiobutton scale scrollbar text
toplevel

insertBackground The background for the area covered by the insert cursor.
canvas entry text

selectBackground The background of selected items.
canvas entry listbox text

selectColor The color of the selector indicator.
checkbutton radiobutton

 Colors 279

Created: March 15, 1994 —Color.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Color values are specified in two ways: symbolically (e.g., red), or by hexa-
decimal numbers (e.g., #ff0000). The leading # distinguishes the hexadecimal
representation from the symbolic one. The number is divided into three equal
sized fields that give the red, green, and blue values, respectively. The fields can
specify 4, 8, 12, or 16 bits of a color:

#RGB 4 bits per color

#RRGGBB8 bits per color

#RRRGGGBBB12 bits per color

#RRRRGGGGBBBB16 bits per color

If you specify more resolution than is supported by the X server, the low
order bits of each field are discarded. The different display types supported by X
are described in the next section. Each field ranges from 0, which means no color,
to a maximum, which is all ones in binary, or all f in hex, that means full color
saturation. For example, pure red can be specified four ways:

#f00 #ff0000 #fff000000 #ffff00000000

The symbolic color names understood by the X server may vary from sys-
tem to system. You can hunt around for a file named rgb.txt in the X directory
structure to find a listing of them. Or, run the xcolors program that comes with
the standard X distribution.

The winfo rgb command maps from a color name (or value) to three num-
bers that are its red, green, and blue values. You can use this to compute varia-
tions on a color. The ColorDarken procedure shown below uses the winfo rgb

command to get the red, green, and blue components of the input color. It
reduces these amounts by 5 percent, and reconstructs the color specification
using the format command.

Example 23–2 Computing a darker color

proc ColorDarken { color } {
set rgb [winfo rgb $color]
return [format “#%03x%03x%03x” \

[expr round([lindex $rgb 0] * 0.95)] \
[expr round([lindex $rgb 1] * 0.95)] \
[expr round([lindex $rgb 2] * 0.95)]]

}

selectForeground The foreground of selected items.
canvas entry listbox text

troughColor The trough part of scales and scrollbars.
scale scrollbar

Table 23–1 Color attribute resource names.

280 Color, Images, and Cursors Chap.23

Created: March 15, 1994 —Color.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Colormaps and Visuals

For the most part Tk manages the color resources of the display for you.
However, if your application uses a lot of colors you may need to control the dis-
play with the Visual and Colormap attributes described in this section. Competi-
tion from other applications can cause color allocations to fail, and this causes Tk
to switch into monochrome mode (i.e., black and white).

Each pixel on the screen is represented by one or more bits of memory.
There are a number of ways to map from a value stored at a pixel to the color
that appears on the screen at that pixel. The mapping is a function of the num-
ber of bits at each pixel, which is called the depth of the display, and the style of
interpretation, or visual class. The 6 visual classes defined by X are listed in the
table below. Some of the visuals use a colormap that maps from the value stored
at a pixel to a value used by the hardware to generate a color. A colormap
enables a compact encoding for a much richer color. For example, a 256 entry col-
ormap can be indexed with 8 bits, but it may contain 24 bits of color information.
If you run the UNIX xdpyinfo program it will report the different visual classes
supported by your display.

The frame and toplevel widgets support a Colormap and Visual attribute
that gives you control over these features of the X display. Again, in a Tcl com-
mand specify these attributes in all lowercase with a leading dash. Unlike other
attributes, these cannot be changed after the widget is created. The value of the
Visual attribute has two parts, a visual type and the desired depth of the display.
The following example requests a greyscale visual with a depth of 4 bits per
pixel.

toplevel .grey -visual “greyscale 4”

By default a widget inherits the colormap and visual from its parent wid-
get. The value of the Colormap attribute can be the keyword new, in which case
the frame or toplevel gets a new private colormap, or it can be the name of
another widget, in which case the frame or toplevel shares the colormap of that
widget. When sharing colormaps, the other widget must be on the same screen
and using the same visual class.

Table 23–2 Visual classes for X displays. Values for the visual attribute.

staticgrey Greyscale with a fixed colormap defined by the X server.

greyscale Greyscale with a writable colormap.

staticcolor Uses a colormap defined by the X server.

pseudocolor Color values determined by single writable colormap.

directcolor Color values determined by three independent colormaps.

truecolor Color values determined by read-only independent colormaps?

 Bitmaps and Images 281

Created: March 15, 1994 —Color.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Bitmaps and Images

The label and all the button widgets have an image attribute that specifies a
graphic image to display. Using an image takes two steps. In the first step the
image is created via the image create command. This command returns an iden-
tifier for the image, and it is this identifier that is passed to widgets as the value
of their image attribute.

Example 23–3 Specifying an image attribute for a widget.

set im [image create bitmap \
-file glyph.bitmap -maskfile glyph.mask \
-background white -foreground blue]

button .foo -image $im

There are three things that can be displayed by labels and all the buttons:
text, bitmaps, and images. If more than one of these attributes are specified,
then the image has priority over the bitmap, and the bitmap has priority over
the text. You can remove the image or bitmap attribute by specifying a null
string for its value. The text, if any, will be displayed instead.

The image Command

Table 23–3 summarizes the image command.

The exact set of options for image create depend on the image type. There
are two built-in image types: bitmap and photo. Chapter 30 describes the C
interface for defining new image types.

bimap images

A bitmap image has a main image and a mask image. The main image is

Table 23–3 Summary of the image command.

image create type
?name? ?options?

Create an image of the specified type. If name is not
specified, one is made up. The remaining arguments
depend on the type of image being created.

image delete name Delete the named image.

image height name Return the height of the image, in pixels.

image names Return the list of defined images.

image type name Return the type of the named image.

image types Return the list of possible image types.

image width name Return the width of the image, in pixels.

282 Color, Images, and Cursors Chap.23

Created: March 15, 1994 —Color.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

drawn in the foreground color. The mask image is drawn in the background color,
unless the corresponding bit is set in the main image. The remaining bits are
“clear” and the widget’s normal background color shows through. For the bitmap

image type supports the following options.

The bitmap definition files are stylized C structure definitions that are
parsed by X. These are generated by bitmap editors such as bitmap program,
which comes with the standard X distribution. The -file and -maskfile options
name a file that contains such a definition. The -data and -maskdata options
specify a string in the same format as the contents of one of those files.

The bitmap attribute

The label and all the button widgets also support a bitmap attribute, which
is a special case of an image. This attribute is a little more convenient than the
image attribute because the extra step of creating an image is not required. How-
ever, there is some power and flexibility with the image command, such as the
ability to reconfigure a named image (e.g., for animation) that is not possible
with a bitmap. .

Example 23–4 Specifying a bitmap for a widget.

button .foo -bitmap @glyph.bitmap -fg blue

The @ syntax for the bitmap attribute signals that a file containing the bit-
map is being specified. It is also possible to name built-in bitmaps. The pre-
defined bitmaps are shown in the next figure along with their symbolic name.
Chapter X describes the C interface for defining built in bitmaps.

Example 23–5 The built-in bitmaps

foreach name {error gray25 gray50 hourglass \
info questhead question warning} {

frame .$name
label .$name.l -text $name -width 9 -anchor w

Table 23–4 Bitmap image options

-background color The background color. (no -bg equivalent)

-data string The contents of the bitmap as a string.

-file name The name of the file containing a bitmap definition.

-foreground color The foreground color. (no -fg equivalent)

-maskdata string The contents of the mask as a string.

-maskfile name The name of the file containing the mask data.

 Bitmaps and Images 283

Created: March 15, 1994 —Color.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

label .$name.b -bitmap $name
pack .$name.l -side left
pack .$name.b -side top
pack .$name -side top -expand true -fill x

}

photo images

The photo image type was contributed by Paul Mackerras. It displays full
color images and can do dithering and gamma correction. The photo image sup-
ports different image formats, although the only format supported by Tk 4.0 is
the PPM format. There is a C interface to define new photo formats.

Table 23–5 lists the attributes for photo images. These are specified in the
image create photo command.

The format indicates what format the data is in. However, the photo imple-
mentation will try all format handlers until it find one that accepts the data. An
explicit format limits what handlers are tried. The format name is treated as a
prefix that is compared against the names of handlers. Case is not significant in
the format name.

Table 23–5 Photo image attributes

-format format Specifies the data format for the file or data string.

-data string The contents of the photo as a string.

-file name The name of the file containing a photo definition.

-gamma value A gamma correction factor, which must be greater than
zero. A value greater than one brightens an image.

-height value The height, in screen units.

-palette spec A single number specifies the number of grey levels.
Three numbers separated by slashes determines the
number of red, blue, and green levels.

-width value The width of the image, in screen units.

284 Color, Images, and Cursors Chap.23

Created: March 15, 1994 —Color.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

The palette setting determines how many colors or graylevels are used
with rendering an image. If a single number is specified, the image is rendered in
greyscale with that many different graylevels. For full color, three numbers sep-
arated by slashes specify the number of shades of red, green, and blue, respec-
tively. The more levels you specify the more room you take up in your colormap.
The photo widget will switch to a private colormap if necessary. Multiply the
number of red, green, and blue shades to determine how many different colors
you use. If you have an 8-bit display, there are only 256 colors available. Reason-
able palette settings that don’t hog the colormap include 5/5/4 and 6/6/5. You
can get away with fewer shades of blue because the human eye is less sensitive
to blue.

After you create an image you can operate on it with several image instance
operations. In the table below, $p is a photo image handle returned by the image

create photo command.

Table 23–7 lists the options available when you copy data from one image
to another. The regions involved in the copy are specified by the upper-left and
lower-right corners. If the lower-right corner of the source is not specified, then it
defaults to the lower-right corner of the image. If the lower-right corner of the
destination is not specified, then the size is determined by the are of the source.
Otherwise, the source image may be cropped or replicated to fill up the destina-
tion.

Table 23–7 lists the read options, and Table 23–7 lists the write options.
The format option is more important for writing, because otherwise the first for-
mat found will be used. With reading, the format is determined automatically,
although if there are multiple image types that can read the same data, you can
use the format to chose the one you want.

Table 23–6 Photo image operations.

$p blank Clear the image. It becomes transparent.

$p cget option Return the configuration attribute option.

$p configure ... Reconfigure the photo image attributes.

$p copy source
options

Copy another image. Table 23–7 lists the copy options.

$p get x y Return the pixel value at position x y.

$p put data ?-to
x1 y1 x2 y2?

Insert data into the image. data is a list of rows, where
each row is a list of colors.

$p read file
options

Load an image from a file. Table X lists the read
options.

$p redither Reapply the dithering algorithm to the image.

$p write file
options

Save the image to file accoring to options. Table X
lists the write options.

 The Mouse Cursor 285

Created: March 15, 1994 —Color.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

The Mouse Cursor

The cursor attribute defines the mouse cursor. This attribute can have a number
of forms. The simplest is a symbolic name for one of the glyphs in the X cursor
font, which is shown in the figure on the next page. Optionally, a foreground and
background color for the cursor can be specified. Here are some examples:

$w config -cursor watch;# stop-watch cursor

$w config -cursor {gumby blue};# blue gumby

Table 23–7 Image copy options.

-from x1 y1 ?x2 y2? Specifies the location and area in the source image. If
x2 and y2 are not given, there are set to the bottom-
right corner.

-to x1 y1 ?x2 y2? Specifies the location and area in the destination. If x2
and y2 are not given, the size is determined by the
source. The source may be cropped or tiled to fill the
destination.

-shrink Shrink the destination so its bottom right corner
matches the bottom right corner of the data copied in.
This has no effect if the width and height have been
set for the image.

-zoom x ?y? Magnify the source so each source pixel becomes a block
of x by y pixels. y defaults to x if it isn’t specified.

-decimate x ?y? Reduce the source by taking every x’th pixel in the X
direction and every y’th pixel in the Y direction. y
defaults to x.

Table 23–8 Image read options.

-format format Specifies the format of the data. By default, the format
is determined automatically.

-from x1 y1 ?x2 y2? Specifies a subregion of the source data. If x2 and y2
are not given, the size is determined by the data.

-to x1 y1 Specifies the top-left corner of the new data.

-shrink Shrink the destination so its bottom right corner
matches the bottom right corner of the data read in.
This has no efect if the width and height have been set
for the image.

Table 23–9 Image write options.

-format format Specifies the format of the data. By default, the format
is determined automatically.

-from x1 y1 ?x2 y2? Specifies a subregion of the data to save. If x2 and y2
are not given, they are set to the lower-right corner.

286 Color, Images, and Cursors Chap.23

Created: March 15, 1994 —Color.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

$w config -cursor {X_cursor red white};# red X on white

The other form for the cursor attribute specifies a file that contains the def-
inition of the cursor bitmap. If two file names are specified, then the second spec-
ifies the cursor mask that determines what bits of the background get covered
up. Bitmap editing programs like idraw and iconedit can be used to generate
these files. Here are some example cursor specification using files. You need to
specify a foreground color, and if you specify a mask file then you also need to
specify a background color.

$w config -cursor “@timer.bitmap black”

$w config -cursor “@timer.bitmap timer.mask black red”

 The Text Insert Cursor 287

Created: March 15, 1994 —Color.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

The Text Insert Cursor

The text, entry, and canvas widgets have a second cursor to mark the text
insertion point. The text insert cursor is described by a set of attributes. These
attributes can make the insert cursor vary from a thin vertical line to a large
rectangle with its own relief. Table 23–10 lists these attributes. The default
insert cursor is a 2-pixel wide vertical line. You may not like the look of a wide
insert cursor. The cursor is centered between two characters, so a wide one does
not look the same as the block cursors found in many terminal emulators.
Instead of occupying the space of a single character, it partially overlaps the two
characters on either side.

Table 23–10 Cursor attribute resource names.

cursor The mouse cursor. See text for sample formats.
button canvas checkbutton entry frame label
listbox menu menubutton message radiobutton
scale scrollbar text toplevel

insertBackground Color for the text insert cursor.
canvas entry text

insertBorderWidth Width for three dimensional appearance.
canvas entry text

insertOffTime Milliseconds the cursor blinks off.
canvas entry text

insertOnTime Milliseconds the cursor blinks on.
canvas entry text

insertWidth Width of the text insert cursor, in screen units.
canvas entry text

288 Color, Images, and Cursors Chap.23

Created: March 15, 1994 —Color.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

289

C H A P T E R

Created: March 15, 1994 —Font.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

 24

Fonts and Text Attributes 24

This chapter describes the naming convention for X fonts. The examples show
how to trap errors from missing fonts. This chapter describes other text-
related attributes such as justification, anchoring, and geometry gridding.

Fonts can cause trouble because the set of
installed fonts can vary from system to system. This chapter describes the font
naming convention and the pattern matching done on font names. If you use
many different fonts in your application, you should specify them in the most
general way so the chances of the font name matching an installed font is
increased.

After fonts are described, the chapter explains a few of the widget
attributes that relate to fonts. This includes justification, anchors, and geometry
gridding.

Fonts

Fonts are specified with X font names. The font names are specified with the
-font attribute when creating or reconfiguring a widget.

label .foo -text “Foo” -font fixed

This label command creates a label widget with the fixed font. fixed is an
example of a short font name. Other short names might include 6x12, 9x15, or
times12. However, these aliases are site dependent. In fact, all font names are
site dependent because different fonts may be installed on different systems. The
only font guaranteed to exist is named fixed.

The more general form of a font name has several components that describe

290 Fonts and Text Attributes Chap.24

Created: March 15, 1994 —Font.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

various attributes of the font. Each component is separated by a dash, and aster-
isk (*) is used for unspecified components. Short font names are just aliases for
these more complete specifications. Here is an example:

-*-times-medium-r-normal-*-18-*-*-*-*-*-iso8859-1

The components of font names are listed in Table 24–1 in the order in
which they occur in the font specification. The table gives the possible values for
the components. If there is an ellipsis (...) then there are more possibilities, too.

The most common attributes chosen for a font are its family, weight, slant,
and size. The family determines the basic look, such as courier or helvetica.
The weight is usually bold or medium. The slant component is a bit cryptic, but
i means italic, r means roman (i.e., normal), and o means oblique. A given font
family might have an italic version, or an oblique version, but not both. Simi-
larly, not all weights are offered by all font families. Size can be specified in pix-
els (i.e., screen pixels) or points. Points are meant to be independent of the
screen resolution. On a 75dpi font, there are about 10 points per pixel. Again, not
all font sizes are available in all fonts.

It is generally a good idea to specify just a few key aspects of the font and
use * for the remaining components. The X server will attempt to match the font
specification with its set of installed fonts, but it will fail if there is a specific
component that it cannot match. If the first or last character of the font name is

Table 24–1 X Font specification components.

Component Description

foundry adobe xerox linotype misc ...

family times helvetica lucida courier symbol ...

weight bold medium demibold demi normal book light

slant i r o

swidth normal sans narrow semicondensed

adstyle sans

pixels 8 10 12 14 18 24 36 48 72 144 ...

points 0 80 100 120 140 180 240 360 480 720 ...

resx 0 72 75 100

resy 0 72 75 100

space p m c

avgWidth 73 94 124 ...

registry iso8859 xerox dec adobe jisx0208.1983 ...

encoding 1 fontspecific dectech symbol dingbats

 Fonts 291

Created: March 15, 1994 —Font.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

an asterisk, then that can match multiple components. The following selects a 12
pixel times font:

times-medium-r--*-12*

Two useful UNIX programs that deal with X fonts are xlsfonts and xfontsel.
These are part of the standard X11 distribution. xlsfonts simply lists the avail-
able fonts that match a given font name. It uses the same pattern matching that
the server does. Because asterisk is special to most UNIX shells, you’ll need to
quote the font name argument if you run xslfonts from your shell. xfontsel has
a graphical user interface and displays the font that matches a given font name.

Unfortunately, if a font is missing, neither Tk nor the X server attempt to
substitute another font, not even fixed. The FindFont routine looks around for
an existing font. It falls back to fixed if nothing else matches.

Example 24–1 FindFont matches an existing font.

proc FindFont { w {sizes 14} {weight medium} {slant r}} {
foreach family {times courier helvetica} {

foreach size $sizes {
if {[catch {$w config -font \

-*-$family-$weight-$slant-*-*-$size-*}] == 0} {
return -*-$family-$weight-$slant-*-*-$size-*

}
}

}
$w config -font fixed
return fixed

}

 The FindFont proc takes the name of a widget, w, as an argument, plus
some optional font characteristics. All five kinds of text widgets take a -font

attribute specification, so you can use this routine on any of them. The sizes

argument is a set of pixel sizes for the font (not points). The routine is written so
you can supply a choice of sizes, but it fixes the set of families it uses and allows
only a single weight and slant. Another approach is to loop through a set of more
explicit font names, with fixed being your last choice. The font that works is
returned by the procedure so that the search results can be saved and reused
later. This is important because opening a font for the first time is a fairly heavy-
weight operation, and a failed font lookup is also expensive.

Another approach to the font problem is to create a wrapper around the Tk
widget creation routines. While you are at it you can switch some attributes to
positional arguments if you find you are always specifying them.

Example 24–2 Handling missing font errors.

proc Button { name text command args } {
set cmd [list button $name -text $text -command $command]
if [catch {concat $cmd $args} w] {

puts stderr “Button (warning) $w”

292 Fonts and Text Attributes Chap.24

Created: March 15, 1994 —Font.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Delete the font specified in args, if any
set ix [lsearch $args -font]
if {$ix >= 0} {

set args [lreplace $args $ix [expr $ix+1]]
}
This font overrides the resource database
eval $cmd $args {-font fixed}

}
return $name

}

The Button procedure creates a button and always takes a text and com-

mand argument. Note that list is used to carefully construct the prefix of the Tcl
command so that the values of text and command are preserved. Other argu-
ments are passed through with args. The procedure falls back to the fixed font
if the button command fails. It is careful to eliminate the font specified in args, if
it exists. The explicit font overrides any setting from the resource database or
the Tk defaults. Of course, it might fail for some more legitimate reason, but that
is allowed to happen in the backup case. The next example provides a generate
wrapper that can be used when creating any widget.

Example 24–3 FontWidget protects against font errors.

proc FontWidget { args } {
if [catch $args w] {

Delete the font specified in args, if any
set ix [lsearch $args -font]
if {$ix >= 0} {

set args [lreplace $args $ix [expr $ix+1]]
}
This font overrides the resource database
set w [eval $args {-font fixed}]

}
return $w

}
FontWidget button .foo -text Foo -font garbage

Text Layout

There are two simple text layout attributes, justify and wrapLength. The
text widget introduces several more layout-related attributes, and Chapter X
describe those in detail. The two attributes described in this section apply to the
various button widgets, the label, entry, and message widgets. Those widgets
are described in Chapters 14, 15, and 16.

The justify attribute causes text to be centered, left-justified, or right jus-
tified. The default justification is center for all the widgets in the table, except
for the entry widget that is left-justified by default.

The wrapLength attribute specifies how long a line of text is before it is

 Padding and Anchors 293

Created: March 15, 1994 —Font.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

wrapped onto another line. It is used to create multi-line buttons and labels. This
attribute is specified in screen units, however, not string length. It is probably
easier to achieve the desired line breaks by inserting newlines into the text for
the button or label and specifying a wrapLength of 0, which is the default.

Padding and Anchors

Some widgets have padding and anchor attributes that are similar in spirit to
some packing attributes described in Chapter 12, The Pack Geometry Manager.
However, they are distinct from the packing attributes, and this section explains
how they work together with the packer

The padding attributes for a widget define space that is never occupied by
the display of the widgets contents. For example, if you create a label with the
following attributes and pack it into a frame by itself, you will see the text is still
centered, in spite of the anchor attribute.

label .foo -text Foo -padx 20 -anchor e

pack .foo

The anchor attribute only affects the display if there is extra room for
another reason. One way to get extra room is to specify a width attribute that is
longer than the text. The following label has right-justified text.

label .foo -text Foo -width 10 -anchor e

Table 24–2 Resource names for layout attributes.

justify Text line justification: left center right.
button checkbutton entry label menubutton message
radiobutton

wrapLength Maximum line length for text, in screen units.
button checkbutton label menubutton radiobutton

Table 24–3 Resource names for padding and anchors.

anchor The anchor position of the widget: n ne e se s sw w nw center.
button, checkbutton, label, menubutton, message,
radiobutton.

padX, padY Padding space in the X or Y direction, in screen units.
button checkbutton label menubutton message radiobut-
ton text

294 Fonts and Text Attributes Chap.24

Created: March 15, 1994 —Font.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

pack .foo

Another way to get extra display space is with the -ipadx and -ipady pack-
ing parameters. The following commands produce approximately the same dis-
play as the last example. With the packing parameters you specify things in
screen dimensions instead of string lengths.

label .foo -text Foo -anchor e

pack .foo -ipadx 25

Chapter 12 has several more packing examples that illustrate the effects of
the packing parameters.

Gridding, Resizing, and Geometry

The text and listbox widgets support geometry gridding. This is an alternate
interpretation of the main window geometry that is in terms of grid units, typi-
cally characters, as opposed to pixels. The setGrid attribute is a boolean that
indicates if gridding should be turn on. The widget implementation takes care of
defining a grid size that matches its character size.

When a widget is gridded, its size is constrained to have a whole number of
grid units displayed. In other words, the height will be constrained to show a
whole number of text lines, and the width will be constrained to show a whole
number of average width characters. This affects interactive resizing by users,
as well as the various window manger commands (wm) that relate to geometry.
When gridding is turned on, the geometry argument (e.g., 24x80) is interpreted
as grid units, otherwise it is interpreted as pixels. The window manager geome-
try commands are summarized below. In all cases, the win parameter to the wm

command is a toplevel window. However, widget that asks for gridding is typi-
cally an interior window surrounded by a collection of other widgets.

An important side-effect of gridding is that it enables interactive resizing
by the user. Setting the minsize or maxsize of a window also enables resizing.

Table 24–4 Geometry commands affected by gridding.

wm geometry win ?geometry? Set or query the geometry of a window.

wm minsize win ?width height? Set the minimum window size.

wm maxsize win ?width height? Set the maximum window size.

wm grid win ?width height dw dh? Define the grid parameters.

 Selection Attributes 295

Created: March 15, 1994 —Font.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Otherwise, Tk windows are only resizable under program control. Try out the fol-
lowing example with and without the -setgrid flag., and with and without the
wm minsize command. The ScrolledListbox procedure is defined on page 183.

Example 24–4 A gridded, resizable listbox.

wm minsize . 20 20
button .quit -text Quit -command exit
pack .quit -side top -anchor e
frame .f
pack .f -side top -fill both -expand true
ScrolledListbox .f -width 10 -height 5 -setgrid true

Selection Attributes

Each widget can export its selection via the X selection mechanism. This is con-
trolled with the exportSelection attribute. The colors for selected text are set
with selectForeground and selectBackground attributes. The selection is
drawn in a raised relief, and the selectBorderWidth attribute affects the 3D
appearance. Choose a border width of zero to get a flat relief.

A Font Selection Application

This chapter concludes with an application that lets you browse the fonts avail-
able in your system. This is modeled after the xfontsel program. It displays a set
of menus, one for each component of a font name. You can select different values
for the components, although the complete space of font possibilities is not
defined. You might choose components that result in an invalid font name. The
tool also lets you browse the list of available fonts, though, so you can find out
what is offered.

Example 24–5 A font selection application.

#!/import/tcl/bin/wish+
The menus are big, so position the window
near the upper-left corner of the display
wm geometry . +30+30

Create a frame and buttons along the top
frame .buttons
pack .buttons -side top -fill x
button .buttons.quit -text Quit -command exit
button .buttons.reset -text Reset -command Reset
pack .buttons.quit .buttons.reset -side right

An entry widget is used for status messages
entry .buttons.e -textvar status -relief flat

296 Fonts and Text Attributes Chap.24

Created: March 15, 1994 —Font.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

pack .buttons.e -side top -fill x
proc Status { string } {

global status
set status $string
update idletasks

}
So we can see status messages
tkwait visibility .buttons.e

The application uses the font global variable for its state. It creates a sta-
tus line and a few buttons at the top. Underneath that is a set of menus, one for
each font component. The next example creates the menu buttons for the menus.

Example 24–6 Menus for each font component.

Set up the menus. There is one for each
component of a font name, except that the two resolutions
are combined and the avgWidth is suppressed.
frame .menubar
set font(comps) {foundry family weight slant swidth \

adstyle pixels points res res2 \
space avgWidth registry encoding}

foreach x $font(comps) {
font(component) lists all possible component values
font(cur,component) keeps the current component values
set font(cur,$x) *
set font($x) {}
Trim out the second resolution and the average width
if {$x == "res2" || $x == "avgWidth"} {

continue
}
The border and highlight thickness are set to 0 so the
button texts run together into one long string.
menubutton .menubar.$x -menu .menubar.$x.m -text -$x \

-padx 0 -bd 0 -font fixed \
-highlightthickness 0

menu .menubar.$x.m
pack .menubar.$x -side left
Create the initial wild card entry for the component
.menubar.$x.m add radio -label * \

-variable font(cur,$x) \
-value * \
-command [list DoFont]

}

The menus for two components are left out. The two resolutions are virtu-
ally always the same, so one is enough. The avgWidth component varies wildly,
and user probably won’t choose a font based on it. Variable traces are used to fix
up the values associated with these components. The second resolution is tied to
the first resolution. The avgWidth always returns *, which matches anything.
The points are set to 10 times the pixels if the pixels are set. However, if that

 A Font Selection Application 297

Created: March 15, 1994 —Font.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

isn’t right, which sometimes happens, then the user can still set the points
explicitly.

Example 24–7 Using variable traces to fix things up.

Use traces to patch up the suppressed font(comps)
trace variable font(cur,res2) r TraceRes2
proc TraceRes2 { args } {

global font
set font(cur,res2) $font(cur,res)

}
trace variable font(cur,avgWidth) r TraceWidth
proc TraceWidth { args } {

global font
set font(cur,avgWidth) *

}
Mostly, but not always, the points are 10x the pixels
trace variable font(cur,pixels) w TracePixels
proc TracePixels { args } {

global font
catch {
 # Might not be a number
 set font(cur,points) [expr 10*$font(cur,pixels)]
}

}

The application displays a listbox with all the possible font names in it. If
you click on a font name its font is displayed. The set of possible font names is
obtained by running the xlsfonts program.

Example 24–8 Listing available fonts.

Create a listbox to hold all the font names
frame .body
set font(list) [listbox .body.list \

-setgrid true -selectmode browse \
-yscrollcommand {.body.scroll set}]

scrollbar .body.scroll -command {.body.list yview}
pack .body.scroll -side right -fill y
pack .body.list -side left -fill both -expand true

Clicking on an item displays the font
bind $font(list) <ButtonRelease-1> [list SelectFont
$font(list) %y]

Use the xlsfonts program to generate a
list of all fonts known to the server.
Status "Listing fonts..."
if [catch {open "|xlsfonts *"} in] {

puts stderr "xlsfonts failed $in"
exit 1

}

298 Fonts and Text Attributes Chap.24

Created: March 15, 1994 —Font.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

A simple data structure is created based on the list of available fonts. For
each font component, all possible values are recorded. These values are used to
create menus later on.

Example 24–9 Determining possible font components.

set font(num) 0
set numAliases 0
set font(N) 0
while {[gets $in line] >= 0} {

$font(list) insert end $line
fonts(all,$i) is the master list of existing fonts
This is used to avoid potentially expensive
searches for fonts on the server, and to
highlight the matching font in the listbox
when a pattern is specified.
set font(all,$font(N)) $line
incr font(N)

set parts [split $line -]
if {[llength $parts] < 14} {

Aliases do not have the full information
lappend aliases $line
incr numAliases

} else {
incr font(num)
Chop up the font name and record the
unique font(comps) in the font array.
The leading - in font names means that
parts has a leading null element and we
start at element 1 (not zero).
set i 1
foreach x $font(comps) {

set value [lindex $parts $i]
incr i
if {[lsearch $font($x) $value] < 0} {

Missing this entry, so add it
lappend font($x) $value

}
}

}
}

Menus are created so the user can select different font components. Radio
button entries are used so that the current selection is highlighted. The special
case for the two suppressed components crops up here. We let the variable traces
fix up those values.

Example 24–10 Creating the radiobutton menu entries.

Fill out the menus
foreach x $font(comps) {

 A Font Selection Application 299

Created: March 15, 1994 —Font.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

if {$x == "res2" || $x == "avgWidth"} {
 continue
}
foreach value [lsort $font($x)] {

if {[string length $value] == 0} {
set label (nil)

} else {
set label $value

}
.menubar.$x.m add radio -label $label \

-variable font(cur,$x) \
-value $value \
-command DoFont

}
}
Status "Found $font(num) fonts and $numAliases aliases"

Below the menu is a label that holds the current font name. Below that is a
message widget that displays a sample of the font. One of two messages are dis-
played, depending on if the font is matched or not.

Example 24–11 Setting up the label and message widgets.

This label displays the current font
label .font -textvar font(current) -bd 5 -font fixed

A message displays a string in the font.
set font(msg) [message .font(msg) -aspect 1000 -borderwidth
10]
set font(sampler) "
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqurstuvwxyz
0123456789
!@#$%^&*()_+-=[]{};:’'‘~,.<>/?\\|
"
set font(errormsg) "

(No matching font)

"
font Now pack the main display
pack .menubar -side top -fill x
pack .body -side top -fill both -expand true
pack .font $font(msg) -side top

The next example has the core procedures of the example. The DoFont pro-
cedure is triggered by changing a radio button menu entry. It rebuilds the font
name and calls SetFont. The SetFont procedure searches the list of all fonts for a
match. This prevents expensive searches by the X server, and it allows the appli-
cation to highlight the matching font in the listbox. The SelectFont procedure is
triggered by a selection in the listbox. It also constructs a font name and calls

300 Fonts and Text Attributes Chap.24

Created: March 15, 1994 —Font.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

SetFont. Finally, Reset restores the font name to the match-all pattern.

Example 24–12 The font selection procedures.

proc DoFont { } {
global font
set font(current) {}
foreach x $font(comps) {
 append font(current) -$font(cur,$x)
}
SetFont

}
proc SelectFont { list y } {

Extract a font name from the listbox
global font
set ix [$font(list) nearest $y]
set font(current) [$font(list) get $ix]
set parts [split $font(current) -]
if {[llength $parts] < 14} {

foreach x $font(comps) {
set font(cur,$x) {}

}
} else {

set i 1
foreach x $font(comps) {

set value [lindex $parts $i]
incr i
set font(cur,$x) $value

}
}
SetFont

}
proc SetFont {} {

global font
Generate a regular expression from the font pattern
regsub -all -- {‹nil›} $font(current) {} font(current)
regsub -all -- {*} $font(current) {[^-]*} pattern
for {set n 0} {$n < $font(N)} {incr n} {

if [regexp -- $pattern $font(all,$n)] {
$font(msg) config -font $font(current) \

-text $font(sampler)
catch {$font(list) select clear \

[$font(list) curselection]}
$font(list) select set $n
$font(list) see $n
return

}
}
$font(msg) config -text $font(errormsg)

}

proc Reset {} {
global font
foreach x $font(comps) {

 A Font Selection Application 301

Created: March 15, 1994 —Font.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

set font(cur,$x) *
}
DoFont
Status "$font(num) fonts"

}

Reset

This is what the interface looks like.

302 Fonts and Text Attributes Chap.24

Created: March 15, 1994 —Font.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

303

C H A P T E R

Created: March 15, 1994 —Window.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

 25

Window Managers and Window
Information 25

A window manager is a special application that can control the size and
location of other applications’ windows. The wm command provides an
interface to the window manager. The winfo command returns
information about windows.

Management of toplevel windows is done
by a distinguished application called the window manager. The window manager
controls the position of toplevel windows, and it provides a way to resize win-
dows, open and close them, and it implements a border and decorative title for
windows. The window manager contributes to the general look and feel of the X
display, but there is no requirement that the look and feel of the window man-
ager be the same as that used in an application. The wm command is used to
interact with the window manager so that the application itself can control its
size, position, and iconified state.

If you need to fine tune your display you may need some detailed informa-
tion about widgets. The winfo command returns all sorts of information about
windows, including interior widgets, not just toplevel windows.

The wm Command

The wm command has about 20 operations that interact with the window man-
ager. The general form of the commands is:

wm operation win ?args?

In all cases the win argument must be for a toplevel window. Otherwise an
error is raised. In many cases the operation either sets or queries a value. If a
new value is not specified, then the current settings are returned. For example,

304 Window Managers and Window Information Chap.25

Created: March 15, 1994 —Window.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

the first command below returns the current window geometry, and the next
command defines a new geometry.

wm geometry .
=> 300x200+327+20
wm geometry . 400x200+0+0

The operations can be grouped into four main categories.

• Size, placement and decoration of windows.
• Icons.
• Long term session state.
• Miscellaneous.

Size, placement, and decoration

Perhaps the most commonly used wm operation is wm title that sets the
title of the window. The title appears in the title bar that the window manager
places above your application’s main window. The title may also appear in the
icon for your window, unless you specify another name with wm iconname.

wm title . "My Application"

The wm geometry command can be used to adjust the position or size of your
main windows. A geometry specification has the general form WxH+X+Y, where W

is the widget, H is the height, and X and Y specify the location of the upper-left
corner of the window. The location +0+0 is the upper-left corner of the display.
You can specify a negative X or Y to position the bottom (right) side of the window
relative to the bottom (right) side of the display. For example, +0-0 is the lower
left corner, and -100-100 is offset from the lower-right corner by 100 pixels in the
X and Y direction. If you do not specify a geometry, then the current geometry is
returned.

A window can have a gridded geometry, which means that the geometry is
in terms of some unit other than pixels. For example, the text and listbox wid-
gets can set a grid based on the size of the characters they display. You can define
a grid with the wm grid command, or you can use that command to find out what
the current grid size is. The next example sets up gridded geometry for a canvas.

Example 25–1 Gridded geometry for a canvas.

canvas .c -width 300 -height 150
pack .c -fill both -expand true
wm geometry
=> 300x200+678+477
wm grid . 30 15 10 10
wm geometry .
=> 30x20+678+477

An important side effect of gridding is that it enables interactive resizing of
windows. By default, Tk windows are not resizable except by program control.

 The wm Command 305

Created: March 15, 1994 —Window.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

You can constrain the minimum size, maximum size, and the aspect ratio of
a toplevel window. The aspect ratio is the width divided by the height. The con-
straint is applied when the user resizes the window interactively. The minsize,
maxsize, and aspect operations apply these constraints. As with gridding, a side
effect of setting one of these constraints is to allow interactive resizing.

Some window managers insist on having the user position windows. The
sizefrom and positionfrom operations let you pretend that the user specified
the size and position in order to work around this restriction.

Table 25–1 summarizes the wm commands that deal with size, decorations,
placement.

Icons

When you close a window the window manager unmaps the window and
replaces it with an icon. You can open and close the window yourself with the
deiconify and iconify operations, respectively. Use the withdraw operation to
unmap the window without replacing it with an icon. The state operation
returns the current state, which is one of normal, iconified, or withdrawn. If
you withdraw a window, you can restore it with deiconify.

You can set the attributes of the icon with the iconname, iconposition,
iconbitmap, and iconmask operations. The icon’s mask is used to get irregularly
shaped icons. Chapter 23 describes how masks bitmaps are defined. In the case
of an icon, it is most likely that you have the definition in a file, so your command
will look like this:

wm iconbitmap . @myfilename

Table 25–2 summarizes the window manager commands that have to do

Table 25–1 Size, placement and decoration window manager operations.

wm apsect win ?a b c d? Constrain win’s ratio of width to height to
be between (a/b and c/d).

wm geometry win ?geometry? Query or set the geometry of win.

wm grid win ?w h dx dy? Query or set the grid size. w and h are the
base size, in grid units. dx and dy are the
size, in pixels, of a grid unit.

wm group win ?leader? Query or set the group leader (a toplevel
widget) for win. The window manager may
unmap all the group at once.

wm maxsize win ?width height? Constrain the maximum size of win.

wm minsize win ?width height? Constrain the minimum size of win.

wm positionfrom win ?who? Query or set who to be program or user.

wm sizefrom win ?who? Query or set who to be program or user.

wm title win ?string? Query or set the window title to string.

306 Window Managers and Window Information Chap.25

Created: March 15, 1994 —Window.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

with icons.

Session state

Some window managers support the notion of a session that lasts between
runs of the window system. A session is implemented by saving state about the
applications that are running, and using this information to restart the applica-
tions when the window system is restarted. This section also describes how you
can intercept requests to quit your application so you can stop cleanly.

An easy way to participate in the session protocol is to save the command
used to start up your application. The wm command operation does this. The wish
shell saves this information, so it is just a matter of registering it with the win-
dow manager. argv0 is the command, and argv is the command line arguments.

wm command . "$argv0 $argv"

If your application is typically run on a different host than the one with the
display (like in an Xterminal environment), then you also need to record what
host to run the application on. Use the wm client operation for this. You may
need to use uname -n instead of hostname on your system.

wm client . [exec hostname]

The window manager usually provides a way to quit applications. If you
have any special processing that needs to take place when the user quits, then
you need to intercept the quit action. Use the wm protocol operation to register a
command that handles the WM_DELETE_WINDOW message from the window man-
ager. The command must eventually call exit to actually stop your application.

wm protocol . WM_DELETE_WINDOW Quit

Other window manager messages that you can intercept are WM_SAVE_Y-

OURSELF and WM_TAKE_FOCUS. The first is called by some session managers when
shutting down. The latter is used in the active focus model. Tk (and this book)

Table 25–2 Window manager commands for icons.

wm deiconify win Open the window win.

wm iconbitmap win ?bitmap? Query or define the bitmap for the icon.

wm iconify win Close the window win.

wm iconmask win ?mask? Query or define the mask for the icon.

wm iconname win ?name? Query or set the name on the icon.

wm iconposition win ?x y? Query or set the location of the icon.

wm iconwindow win ?window? Query or specify an alternate window to dis-
play when in the iconified state.

wm state win Returns normal, iconic, or withdrawn.

wm withdraw win Unmap the window and forget about it. No
icon is displayed.

 The wm Command 307

Created: March 15, 1994 —Window.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

assumes a passive focus model where the window manager assigns focus to a
toplevel window.

describes the session-related window manager operations.

Miscellaneous

A window manager works by reparenting an applications window so it is a
child of the window that forms the border and decorative title bar. The wm frame

operation returns the window ID of the new parent, or the id of the window itself
if it has not been reparented. The winfo id command returns the id of a window.
The wm overrideredirect operation can set a bit that overrides the reparenting.
This means that no title or border will be drawn around the window, and you
cannot control the window through the window manager.

The wm group operation is used to collect groups of windows so that the
window manager can open and close them together. Not all window managers
implement this. One window, typically the main window, is chosen as the leader.
The other members of the group are iconified when it is iconified.

The wm transient operation informs the window manager that this is a
temporary window and there is no need to decorate it with the border and deco-
rative title bar. This is used, for example, on pop-up menus, but in that case it is
handled by the menu implementation.

Table 25–4 lists the remaining window manager operations.

Table 25–3 Session-related window manager operations.

wm client win ?name? Record the hostname in the WM_CLIENT_MA-
CHINE property.

wm command win ?command? Record the startup command in the WM_COMMAND
property.

wm protocol win ?name?
?command?

Register a command to handle the protocol request
name, which can be WM_DELETE_WINDOW,
WM_SAVE_YOURSELF, WM_TAKE_FOCUS.

Table 25–4 Miscellaneous window manager operations.

wm focusmodel win ?what? Set the focus model to active or passive. Many
parts of Tk assume the passive model.

wm frame win Return the ID of the parent of win has been rep-
arented, otherwise return the ID of win itself.

wm group win ?leader? Assign win to the group headed by leader.

wm overrideredirect win
?boolean?

Set the override redirect bit that suppresses rep-
arenting by the window manager.

wm transient win ?leader? Query or mark a window as transient window
working for leader, another widget.

308 Window Managers and Window Information Chap.25

Created: March 15, 1994 —Window.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

The winfo Command

The winfo command has just over 40 operations that return information about a
widget or the display. The operations fall into the following categories.

• Sending commands between applications.
• Family relationships.
• Size.
• Location.
• Virtual root coordinates.
• Atoms and IDs.
• Colormaps and visuals.

Sending commands between applications

Each Tk application has a name that is used when sending commands
between applications using the send command. The list of Tk applications is
returned by the interps operation. The tk appname is used to get the name of the
application, and that command can also be used to set the application name. In
Tk 3.6 and earlier, you had to use winfo name . to get the name of the applica-
tion.

Example 25–2 Telling other applications what your name is.

foreach app [winfo interps] {
catch {send $app [list Iam [tk appname .]]}

}

The example shows how your application might connect up with several
existing applications. It contacts each registered Tk interpreter and sends a
short command that contains the applications own name as a parameter. The
other application can use that name to communicate back.

Table 25–5 summarizes these commands.

Family relationships

The Tk widgets are arranged in a hierarchy, and you can use the winfo com-

Table 25–5 Information useful with the send command.

tk appname ?newname? Query or set the name used with send.

winfo name . Also returns the name used for send, for back-
ward compatibility with Tk 3.6 and earlier.

winfo name pathname Return the last component of pathname.

winfo interps Return the list of registered Tk applications.

 The winfo Command 309

Created: March 15, 1994 —Window.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

mand to find out about the structure of the hierarchy. The winfo children opera-
tion returns the children of a window, and the winfo parent operation returns
the parent. The parent of the main window is null (i.e., an empty string).

A widget is also a member of a class, which is used for bindings and as a key
into the X resource database. The winfo class operation returns this informa-
tion. You can test for the existence of a window with window exists, and whether
or not a window is mapped onto the screen with winfo ismapped.

The winfo manager operation tells you what geometry manager is control-
ling the placement of the window. This returns the name geometry manager
command. Examples include pack, place, canvas, and text. The last two indi-
cate the widget is imbedded into a canvas or text widget.

Table 25–5 summarizes these winfo operations.

Size

The winfo width and winfo height operations return the width and height
of a window, respectively. However, a window’s size is not set until a geometry
manager maps a window onto the display. Initially a window starts out with a
width and height of 1. You can use tkwait visibility to wait for a window to be
mapped before asking its width or height.

Alternatively, you can ask for the requested width and height of a window.
Use winfo reqwidth and winfo reqheight for this information. The requested
size may not be accurate, however, because the geometry manager may allocate
more of less space, and the user may resize the window.

The winfo geometry operation returns the size and position of the window
in the standard geometry format: WxH+X+Y. In this case the X and Y offsets are
relative to the parent widget, or relative to the root window in the case of the
main window.

You can find out how big the display is, too. The winfo screenwidth and
winfo screenheight operations return this information in pixels. The winfo

screenmmwidth and winfo screenmmheight return this information in millime-
ters.

You can convert between pixels and screen distances with the winfo pixels

and winfo fpixels operations. Given a number of screen units such as 10m, 3c,
or 72p, these return the corresponding number of pixels. The first form rounds to

Table 25–6 Information about the window hierarchy.

winfo children win Return the list of children widgets of win.

winfo class win Return the binding and resource class of win.

winfo exists win Returns 1 if the win exists.

winfo ismapped win Returns 1 if win is mapped onto the screen.

winfo manager win The geometry manager: pack place canvas text

winfo parent win Returns the parent widget of win.

310 Window Managers and Window Information Chap.25

Created: March 15, 1994 —Window.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

a whole number, while the second form returns a floating point number. Chapter
22 has an explanation of the screen units. For example:

set pixelsToInch [winfo pixels . 2.54c]

Table 25–5 summarizes these operations.

Location

The winfo x and winfo y operations return the position of a window rela-
tive to its parent widget. In the case of the main window, this is its location on
the screen. The winfo rootx and winfo rooty return the location of a widget on
the screen, even if it is not a toplevel window.

The winfo containing operation returns the pathname of the window that
contains a point on the screen. This is useful in implementing menus and drag
and drop applications.

The winfo toplevel operation returns the pathname of the toplevel win-
dow that contains a widget. If the window is itself a toplevel, then this operation
returns its pathname.

The winfo screen operation returns the display identifier for the screen of
the window. This value is useful in the selection command.

Table 25–5 summarizes these operations.

Table 25–7 Information about the window size.

winfo fpixels win num Convert num, in screen units, to pixels. Returns a
floating point number.

winfo geometry win Return the geometry of win, in pixels and relative
to the parent in the form WxH+X+Y

winfo height win Return the height of win, in pixels.

winfo pixels win num Convert num to a whole number of pixels.

winfo reqheight win Return the requested height of win, in pixels.

winfo reqwidth win Return the requested width of win, in pixels.

winfo screenheight win Return the height of the screen, in pixels.

winfo screenmmheight win Return the height of the screen, in millimeters.

winfo screenmmwidth win Return the width of the screen, in millimeters.

winfo screenwidth win Return the width of the screen, in pixels.

winfo width win Return the width of win, in pixels.

Table 25–8 Information about the window location.

winfo containing win x y Return the pathname of the window at x and y.

winfo rootx win Return the X screen position of win.

 The winfo Command 311

Created: March 15, 1994 —Window.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Virtual root window

A virtual root window is used by some window managers to give the user a
larger virtual screen. At any given time only a portion of the virtual screen is vis-
ible, and the user can change the view on the virtual screen to bring different
applications into view. In this case, the winfo x and winfo y operations return
the coordinates of a main window in the virtual root window (i.e., not the screen).

The winfo vrootheight and winfo vrootwidth operations return the size of
the virtual root window. If there is no virtual root window, then these just return
the size of the screen.

The winfo vrootx and winfo vrooty are used to map from the coordinates
in the virtual root window to screen-relative coordinates. These operations
return 0 if there is no virtual root window. Otherwise they return a negative
number. If you add this number to the value returned by winfo x or winfo y, it
gives the screen-relative coordinate of the window.

Table 25–5 summarizes these operations.

Atoms and IDs

An atom is an X technical term for an identifier that is registered with the
X server. Applications map names into atoms, and the X server assigns each
atom a 32 bit identifier that can then be passed around. One of the few places
this is used in Tk is when the selection mechanism is used to interface with dif-

winfo rooty win Return the Y screen position of win.

winfo screen win Return the display identifier of win’s screen.

winfo toplevel win Return the pathname of the toplevel that contains
win.

winfo x win Return the X position of win in its parent.

winfo y win Return the Y position of win in its parent.

Table 25–9 Information associated with virtual root windows.

winfo containing win x y Return the pathname of the window at x and y.

winfo rootx win Return the X screen position of win.

winfo rooty win Return the Y screen position of win.

winfo screen win Return the display identifier of win’s screen.

winfo toplevel win Return the pathname of the toplevel that contains
win.

winfo x win Return the X position of win in its parent.

winfo y win Return the Y position of win in its parent.

Table 25–8 Information about the window location.

312 Window Managers and Window Information Chap.25

Created: March 15, 1994 —Window.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

ferent toolkits. In some cases the selection is returned as atoms, which appear as
32 bit integers. The winfo atomname operation converts that number into an
atom (i.e., a string), and the winfo atom registers a string with the X server and
returns the 32-bit identifier as a hexadecimal string.

Each widget has an ID from the X server. The winfo id command returns
this identifier. The winfo pathname operation returns the Tk pathname of the
widget that has a given ID, but only if the window is part of the same applica-
tion.

Table 25–5 summarizes these operations.

Colormaps and visuals

Chapter 23 describes colormaps and visual classes in detail. The winfo

depth returns the number of bits used to represent the color in each pixel. The
winfo cells command returns the number of colormap entries used by the
visual class of a window. These two values of generally related. A window with 8
bits per pixel usually has 256 colormap cells. The winfo screendepth and winfo

screencells return this information for the default visual class of the screen.
The winfo visualsavailable command returns a list of the visual classes

and screen depths that are available. For example, a display with 8 bits per pixel
might report the following visual classes are available:

winfo visualsavailable .

=> {staticgray 8} {grayscale 8} {staticcolor 8} \

{pseudocolor 8}

The winfo visual operation returns the visual class of a window, and the
winfo screenvisual returns the default visual class of the screen.

The winfo rgb operation converts from a color name or value to the red,
green, and blue components of that color. Three decimal values are returns.
Example 23–2 uses this command to compute a slightly darker version of the
same color.

Table 25–5 summarizes these operations.

Table 25–10 Information about atoms and window ids.

winfo atom name Returns the 32-bit identifier for the atom name.

winfo atomname id Returns the atom that corresponds to the 32-bit ID.

winfo id win Returns the X window ID of win.

winfo pathname id Returns the Tk pathname of the window with id, or null.

Table 25–11 Information about colormaps and visual classes.

winfo cells win Returns the number of colormap cells in win’s visual.

winfo depth win Return the number of bits per pixel for win.

 The tk Command 313

Created: March 15, 1994 —Window.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

The tk Command

The tk command provides a few miscellaneous entry points into the Tk library.
The first form is used to set or query the application name used with the Tk send
command. If you define a new name and it is already in use by another applica-
tion, (perhaps another instance of yourself) then a number is appened to the
name (e.g., #2, #3, and so on).

tk appname ?name?

The other form of the tk command is used to query and set the colormodel
of the application. The colormodel is either monochrome or color, and it deter-
mines what default colors are chosen the the Tk widgets. You should test the col-
ormodel yourself before setting up colors in your application. Note that when a
color allocation fails, Tk automatically changes the colormodel to monochrome.
You can force it back into color mode with another call to tk colormodel. This
form of the command is shown below.

tk colormodel window ?what?

winfo rgb win color Return the red, green, and blue values for color.

winfo screencells win Returns the number of colormap cells in the default
visual.

winfo screendepth win Returns the number of bits per pixel in the screen’s
default visual.

winfo visual win Returns the visual class of win.

winfo visualsavailable
win

Returns a list of pairs that specify the visual type
and bits per pixel of the available visual classes.

Table 25–11 Information about colormaps and visual classes.

314 Window Managers and Window Information Chap.25

Created: March 15, 1994 —Window.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

315

C H A P T E R

Created: December 15, 1994 —BindUI.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

 26

A User Interface to bind 26

This chapter presents a user interface to view and edit bindings.

A good way to learn about how a widget
works is to examine the bindings that are defined for it. This chapter presents a
user interface that lets you browse and change bindings for a widget or a class of
widgets. Here is what the display looks like.

A Binding User Interface

The interface uses a pair of listboxes to display the events and their associated
commands. An entry widget is used to enter the name of a widget or a class.
There are a few command buttons that let the user add a new binding, edit an

316 A User Interface to bind Chap.26

Created: December 15, 1994 —BindUI.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

existing binding, save the bindings to a file, and dismiss the dialog.

Example 26–1 A user interface to widget bindings.

proc Bind_Interface { w } {
Our state
global bind
set bind(class) $w

Set a class used for resource specifications
set frame [toplevel .bindui -class Bindui]
Default relief
option add *Bindui*Entry.relief sunken startup
option add *Bindui*Listbox.relief raised startup
Default Listbox sizes
option add *Bindui*key.width 18 startup
option add *Bindui*cmd.width 25 startup
option add *Bindui*Listbox.height 5 startup

A labeled entry at the top to hold the current
widget name or class.
set t [frame $frame.top -bd 2]
label $t.l -text "Bindings for"
entry $t.e -textvariable bind(class)
pack $t.l -side left
pack $t.e -side left -fill x -expand true
pack $t -side top -fill x

bind $t.e <Return> [list Bind_Display $frame]

Command buttons
button $t.quit -text Dismiss \

-command [list destroy $frame]
button $t.save -text Save \

-command [list Bind_Save $frame]
button $t.edit -text Edit \

-command [list Bind_Edit $frame]
button $t.new -text New \

-command [list Bind_New $frame]
pack $t.quit $t.save $t.edit $t.new -side right

A pair of listboxes and a scrollbar
scrollbar $frame.s -orient vertical \

-command [list BindYview \
[list $frame.key $frame.cmd]]

listbox $frame.key \
-yscrollcommand [list $frame.s set] \
-exportselection false

listbox $frame.cmd \
-yscrollcommand [list $frame.s set]

pack $frame.s -side left -fill y
pack $frame.key $frame.cmd -side left \

-fill both -expand true

 A Pair of Listboxes Working Together 317

Created: December 15, 1994 —BindUI.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

foreach l [list $frame.key $frame.cmd] {
bind $l <B2-Motion>\

[list BindDragto %x %y $frame.key $frame.cmd]
bind $l <Button-2> \

[list BindMark %x %y $frame.key $frame.cmd]
bind $l <Button-1> \

[list BindSelect %y $frame.key $frame.cmd]
bind $l <B1-Motion> \

[list BindSelect %y $frame.key $frame.cmd]
bind $l <Shift-B1-Motion> {}
bind $l <Shift-Button-1> {}

}
Initialize the display
Bind_Display $frame

}

The Bind_Interface command takes a widget name or class as a parame-
ter. It creates a toplevel window and gives it the Bindui class so that X resources
can be set to control widget attributes. The option add command is used to set
up the default listbox sizes. The lowest priority, startup, is given to these
resources so that clients of the package can override the size with their own
resource specifications.

At the top of the interface is a labeled entry widget. The entry holds the
name of the class or widget for which the bindings are displayed. The textvari-

able option of the entry widget is used so that the entry’s contents are available
in a variable, bind(class). Pressing <Return> in the entry invokes
Bind_Display that fills in the display.

Example 26–2 Bind_Display presents the bindings for a given widget or class.

proc Bind_Display { frame } {
global bind
$frame.key delete 0 end
$frame.cmd delete 0 end
foreach seq [bind $bind(class)] {

$frame.key insert end $seq
$frame.cmd insert end [bind $bind(class) $seq]

}
}

The Bind_Display procedure fills in the display with the binding informa-
tion. It used the bind command to find out what events have bindings, and what
the command associated with each event is. It loops through this information
and fills in the listboxes.

A Pair of Listboxes Working Together

The two listboxes in the interface, $frame.key and $frame.cmd, are set up to

318 A User Interface to bind Chap.26

Created: December 15, 1994 —BindUI.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

work as a unit. A selection in one causes a parallel selection in the other. A single
scrollbar scrolls both of them. This is achieved with some simple bindings that
accept a variable number of arguments. The first arguments are coordinates, and
then the rest are some number of listboxes that need to be operated on as a
group.

Example 26–3 Related listboxes are configured to select items together.

foreach l [list $frame.key $frame.cmd] {
bind $l <Button-1> \

[list BindSelect %y $frame.key $frame.cmd]
bind $l <B1-Motion> \

[list BindSelect %y $frame.key $frame.cmd]
}
proc BindSelect { y args } {

foreach w $args {
$w select clear 0 end
$w select anchor [$w nearest $y]
$w select set anchor [$w nearest $y]

}
}

The bind commands from Bind_Interface are repeated in the example.
The BindSelect routine selects an item in both listboxes. In order to have both
selections highlighted, the listboxes are prevented from exporting their selection
as the X PRIMARY selection. Otherwise, the last listbox to assert the selection
would steal the selection rights away from the first widget.

A single scrollbar is created and set up to control both listboxes.

Example 26–4 Controlling a pair of listboxes with one scrollbar.

scrollbar $frame.s -orient vertical \
-command [list BindYview [list $frame.key $frame.cmd]]

proc BindYview { lists args } {
foreach l $lists {

eval {$l yview} $args
}

}

The scrollbar command from the Bind_Interface procedure is repeated
in the example. The BindYview command is used to change the display of the
listboxes associated with the scrollbar. Before the scroll command is evaluated
some additional parameters are added that specify how to position the display.
The details are essentially private between the scrollbar and the listbox, so the
args keyword is used to represent these extra arguments, and eval is used to
pass them through BindYview. The reasoning for using eval like this is
explained in Chapter 6 in the section on Eval And Concat.

The Listbox class bindings for <Button-2> and <B2-Motion> cause the list-

 The Editing Interface 319

Created: December 15, 1994 —BindUI.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

box to scroll as the user drags the widget with the middle mouse button. These
bindings are adjusted in the example so that both listboxes move together.

Example 26–5 Drag-scrolling a pair of listboxes together.

bind $l <B2-Motion>\
[list BindDragto %x %y $frame.key $frame.cmd]

bind $l <Button-2> \
[list BindMark %x %y $frame.key $frame.cmd]

proc BindDragto { x y args } {
foreach w $args {

$w scan dragto $x $y
}

}
proc BindMark { x y args } {

foreach w $args {
$w scan mark $x $y

}
}

The bind commands from the Bind_Interface procedure are repeated in
this example. The BindMark procedure does a scan mark that defines an origin,
and BindDragto does a scan dragto that scrolls the widget based on the distance
from that origin. All Tk widgets that scroll support yview, scan mark, and scan

dragto. Thus the BindYview, BindMark, and BindDragto procedures are general
enough to be used with any set of widgets that scroll together.

The Editing Interface

Editing and defining a new binding is done in a pair of entry widgets. These
widgets are created and packed into the display dynamically when the user
presses the New or Edit button.

320 A User Interface to bind Chap.26

Created: December 15, 1994 —BindUI.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Example 26–6 An interface to define bindings.

proc Bind_New { frame } {
if [catch {frame $frame.edit} f] {

Frame already created
set f $frame.edit

} else {
foreach x {key cmd} {

set f2 [frame $f.$x]
pack $f2 -fill x
label $f2.l -width 9 -anchor e
pack $f2.l -side left
entry $f2.e
pack $f2.e -side left -fill x -expand true
bind $f2.e <Return> [list BindDefine $f]

}
$f.key.l config -text Event:
$f.cmd.l config -text Command

}
pack $frame.edit -after $frame.top -fill x

}
proc Bind_Edit { frame } {

Bind_New $frame
set line [$frame.key curselection]
if {$line == {}} {

return
}
$frame.key.e delete 0 end
$frame.key.e insert 0 [$frame.key get $line]
$frame.cmd.e delete 0 end
$frame.cmd.e insert 0 [$frame.cmd get $line]

}

The -width 9 and -anchor e attributes for the label widgets are specified
so that the Event: and Command: labels will line up properly. Another approach
would be to fix the width of the entry widgets, and then use the -anchor option
when packing the labels.

 The Editing Interface 321

Created: December 15, 1994 —BindUI.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

label $f2.l
entry $f2.e -width 44
pack $f2.e -side right
pack $f2.l -side right -anchor e

All that remains is the actual change or definition of a binding, and some
way to remember the bindings the next time the application is run. A simple
technique is to write out the definitions as a series of Tcl commands that define
them.

Example 26–7 Defining and saving bindings.

proc BindDefine { f } {
if [catch {

bind [$f.top.e get] [$f.edit.key.e get] \
[$f.edit.cmd.e get]

} err] {
Status $err

} else {
Remove the edit window
pack forget $f.edit

}
}
proc Bind_Save { dotfile args } {

set out [open $dotfile.new w]
foreach w $args {

foreach seq [bind $w] {
Output a Tcl command
puts $out [list bind $w $seq [bind $w $seq]]

}
}
close $out
exec mv $dotfile.new $dotfile

}
proc Bind_Read { dotfile } {

if [catch {
if [file exists $dotfile] {

Read the saved Tcl commands
source $dotfile

}
} err] {

Status "Bind_Read $dotfile failed: $err"
}

}

The BindDefine procedure attempts a bind command that uses the con-
tents of the entries. If it succeeds, then the edit window is removed by unpacking
it. The Bind_Save procedure writes a series of Tcl commands to a file. It is crucial
that the list command be used to construct the command properly. Finally, Bin-
d_Read uses the source command to read the saved commands.

The application will have to call Bind_Read as part of its initialization in
order to get the customized bindings for the widget or class. It will also have to

322 A User Interface to bind Chap.26

Created: December 15, 1994 —BindUI.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

provide a way to invoke Bind_Interface, such as a button, menu entry, or key
binding.

323

C H A P T E R

created: December 15, 1994 —Resources.fm3—copyright prentice hall—draft: 1/12/95

 27

Using X Resources 27

This chapter describes the use of the X resource database. It describes a way
for users to define buttons and menu via resource specifications.

X supports a resource database through
which your application can be customized by users and site administrators. The
database holds specifications of widget attributes such as fonts and colors. You
can control all attributes of the Tk widgets through the resource database. It can
also be used as a more general database of application-specific parameter set-
tings.

Because a Tk application can use Tcl for customization, it might not seem
necessary to use the X resource mechanism. However, partly because users have
grown to expect it, and partly because of the flexibility it provides, the X resource
mechanism is a useful tool for your Tk application.

An Introduction To X Resources

When a Tk widget is created, its attributes are set by one of three sources. the
most evident source is the command line switches in the tcl command, such as
the -text quit attribute specification for a button. If an attribute is not specified
on the command line, then the X resource database is queried as described below.
Finally, if there is nothing in the resource database, then a hardcoded value from
the widget implementation is used. It is important to note that command line
specifications have priority over resource database specifications.

The resource database consists of a set of keys and values. Unlike many

324 Using X Resources Chap.27

created: December 15, 1994 —Resources.fm3—copyright prentice hall—draft: 1/12/95

databases, however, the keys are patterns that are matched against the names of
widgets and attributes. This makes it possible to specify attribute values for a
large number of widgets with just a few database entries. In addition, the
resource database can be shared by many applications, so users and administra-
tors can define common attributes for their whole set of applications.

The resource database is maintained in main memory by the Tk toolkit. It
is initialized from your ~/.xdefaults file, and from additional files that are
explicitly loaded by the Tk application.* You can also add individual database
entries with the option tcl command.

The pattern language for the keys is related to the naming convention for
tk widgets. Recall that a widget name reflects its position in the hierarchy of
windows. You can think of the resource names as extending the hierarchy one
more level at the bottom to account for all the attributes of each individual wid-
get. There is also a new level of the hierarchy at the top in order to specify the
application by name. For example, the database could contain an entry like the
following in order to define a font for the quit button in a frame called .buttons.

Tk.buttons.quit.font: fixed

The leading Tk. matches the default class name for wish applications. You
could also specify a more specific application name, such as exmh, or an asterisk
to match any application.

Resource keys can also specify classes of widgets and attributes as opposed
to individual instances. The quit button, for example, is an instance of the But-
ton class. Class names for widgets are the same as the tcl command used to cre-
ate them, except for a leading capital. A class-oriented specification that would
set the font for all buttons in the .buttons frame would be:

Tk.buttons.Button.font: fixed

Patterns allow you to replace one or more components of the resource name
with an asterisk (*). For example, to set the font for all the widgets packed into
the .buttons frame, you could use the resource name *buttons*font. Or, you
could specify the font for all buttons with the pattern *Button.font. In these
examples we have replaced the leading Tk with an asterisk as well. It is the abil-
ity to collapse several layers of the hierarchical name with a single asterisk that
makes it easy to specify attributes for many widgets with just a few database
entries.

You can determine the resource names for the attributes of different wid-
gets by consulting their man page, or by remembering the following convention.
The resource name is the same as the command line switch (without the leading
dash), except that multi-word attributes use a capital letter at the internal word
boundaries. For example, if the command line switch is -offvalue, then the cor-
responding resource name is offValue. There are also class names for attributes,
which are also distinguished with a leading capital (e.g., OffValue).

* This is a bit different than the Xt toolkit that loads specifications from as many as 5 different
files to allow for per-user, per-site, per-application, per-machine, and per-user-per-application
specifications.

 Loading Option Database Files 325

created: December 15, 1994 —Resources.fm3—copyright prentice hall—draft: 1/12/95

Warning: order is important!

The matching between a widget name and the patterns in the database can
be ambiguous. It is possible that multiple patterns can match the same widget.
The way this is resolved in Tk is by the ordering of database entries, with later
entries taking precedence.* Suppose the database contained just two entries, in
this order.

*Text*foreground: blue

*foreground: red

In spite of the more specific *Text*foreground entry, all widgets will have a
red foreground, even text widgets. For this reason you should list your most
general patterns early in your resource files, and give the more specific patterns
later.

Loading Option Database Files

The option command is used to manipulate the resource database. The first
form of the command is used to load a file containing database entries.

option readfile filename ?priority?

The priority can be used to distinguish different sources of resource infor-
mation and give them different priorities. From lowest to highest, the priorities
are: widgetDefault, startupFile, userdDefault, interactive. These names
can be abbreviated. The default priority is interactive.

Example 27–1 Reading an option database file.

if [file exists $appdefaults] {
if [catch {option readfile $appdefaults startup} err] {

puts stderr “error in $appdefaults: $err”
}

}

The format of the entries in the file is:
key: value

The key has the pattern format described above. The value can be any-
thing, and there is no need to group multi-word values with any quoting charac-
ters. In fact, quotes will be picked up as part of the value.

Comment lines are introduced by the exclamation character (!).

Example 27–2 A file containing resource specifications.

!
! Grey color set

* This is unlike other toolkits that use the length of a pattern where longer matching patterns
have precedence, and instance specifications have priority over class specifications. (This may
change in Tk 4.0).

326 Using X Resources Chap.27

created: December 15, 1994 —Resources.fm3—copyright prentice hall—draft: 1/12/95

! Slightly modified from Ron Frederick’s nv grey family
!
*activeBackground: white
*activeForeground: black
*selectColor: black
*background: #efefef
*foreground: black
*selectBackground: #bfdfff
*troughColor: #efefef
*Scrollbar.background: #dfdfdf
*Scale.background: #dfdfdf
*disabledforeground: #7f7f7f

The example resource file specifies an alternate color scheme for the Tk
widget set that is based on a family of gray levels. Color highlighting shows up
well against this backdrop. Most of these colors are applied generically to all the
widgets (e.g., *background), while there are a few special cases for scale and
scrollbar widgets. The hex values for the colors specify 2 digits (8 bits) each for
red, green, and blue.

Adding Individual Database Entries

You can enter individual database entries with the option add Tcl command.
This is appropriate to handle special cases, or if you do not want to manage a
separate per-application resource specification file. The command syntax is:

option add pattern value ?priority?

The priority is the same as that used with option readfile. The pattern

and value are the same as in the file entries, except that the key does not have a
trailing colon when specified in an option add command. Some of the specifica-
tions from the last example could be added as follows:

option add *foreground black

option add *Scrollbar.background #dfdfdf

You can clear out the option database altogether with:
option clear

Accessing The Database

Often it is sufficient to just set up the database and let the widget implementa-
tions use the values. However, it is also possible to record application-specific
information in the database. To fetch a resource value, use option get:

option get window name class

The window is a Tk widget pathname. The name is a resource name. In this
case, it is not a pattern or a full name. Instead, it is the simple resource name as
specified in the man page. Similarly, the class is a simple class name. It is possi-
ble to specify a null name or class. If there is no matching database entry, option

 User Defined Buttons 327

created: December 15, 1994 —Resources.fm3—copyright prentice hall—draft: 1/12/95

get returns the empty string.

User Defined Buttons

In a big application there might be many functions provided by various menus,
but suppose we wanted users to be able to define a set of their own buttons for
frequently executed commands. Or, as we will describe later, perhaps users can
augment the application with their own Tcl code. The following scheme lets them
define buttons to invoke their own code or their favorite commands.*

The user interface will create a special frame to hold the user-defined but-
tons, and place it appropriately. Assume the frame is created like this:

frame .user -class User

The class specification for the frame means that we can name resources for
the widgets inside the frame relative to *User. Users will specify the buttons that
go in the frame via a personal file containing X resource specifications.

The first problem is that there is no means to enumerate the database, so
we must create a resource that lists the names of the user defined buttons. We
will use the name buttonlist, and make an entry for *user.buttonlist that
specifies what buttons are being defined. It is possible to use artificial resource
names like this, but they must be relative to an existing Tk widget.

Example 27–3 Using resources to specify user-defined buttons.

*User.buttonlist: save search justify quit
*User.save.text: Save
*User.save.command: File_Save
*User.search.text: Search
*User.search.command: Edit_Search
*User.justify.text: Justify
*User.justify.command: Edit_Justify
*user.quit.text: Quit
*User.quit.command: File_Quit
*User.quit.background: red

In this example we have listed four buttons and specified some of the
attributes for each, most importantly the text and command attributes. We are
assuming, of course, that the application manual publishes a set of commands
that users can invoke safely. In this simple example the commands are all one
word, but there is no problem with multi-word commands. There is no interpre-
tation done of the value, so it can include references to Tcl variables and nested
command calls. The code that uses these resource specifications to define the
buttons is given below.

* Special thanks go to John Robert LoVerso for this idea.

328 Using X Resources Chap.27

created: December 15, 1994 —Resources.fm3—copyright prentice hall—draft: 1/12/95

Example 27–4 Defining buttons from the resource database.

proc ButtonResources { f class } {
frame $f -class $class -borderwidth 2
pack $f -side top
foreach b [option get $f buttonlist {}] {

if [catch {button $f.$b}] {
button $f.$b -font fixed

}
pack $f.$b -side right

}
}

The catch phrase is introduced to handle a common problem with fonts and
widget creation. If the user’s resources specify a bogus or missing font, then the
widget creation command will fail. The catch phrase guards against this case by
falling back to the fixed font, which is guaranteed by the X server to always
exist.

The button specification given in the previous example results in the dis-
play shown below.

option readfile button.resources

ButtonResources .user user

User Defined Menus

User-defined menus can be set up with a similar scheme. However, it is a little
more complex because there are no resources for specific menu entries. We have
to use some more artificial resources to emulate this. First use menulist to name
the set of menus. Then for each of these we define an entrylist resource.
Finally, for each entry we define a few more resources for the label, command,
and menu entry type. The conventions will be illustrated by the next example.

Example 27–5 Specifying menu entries via resources.

*User.menulist: stuff
*User.stuff.text: My stuff
*User.stuff.m.entrylist: keep insert find
*User.stuff.m.l_keep: Keep on send
*User.stuff.m.t_keep: check
*User.stuff.m.v_keep: checkvar
*User.stuff.m.l_insert: Insert File...
*User.stuff.m.c_insert: InsertFileDialog

 User Defined Menus 329

created: December 15, 1994 —Resources.fm3—copyright prentice hall—draft: 1/12/95

*User.stuff.m.l_find: Find
*User.stuff.m.t_find: cascade
*User.stuff.m.m_find: find
*User.stuff.m.find.entrylist: next prev
*User.stuff.m.find.l_next: Next
*User.stuff.m.find.c_next: Find_Next
*User.stuff.m.find.l_prev: Previous
*User.stuff.m.find.c_prev: Find_Previous

The menu structure created from the resource specification is shown below.

In the example, stuff is defined to be a menu. Actually, .user.stuff is a
Tk menubutton. It has a menu as its child, .user.stuff.m, where the .m is set up
by convention. You will see this in the code for MenuResources below. The entryl-
ist for the menu is similar in spirit to the buttonlist resource. For each entry,
however, we have to be a little creative with the next level of resource names.
The following resources are used to specify the first entry in the menu:

*User.stuff.m.l_keep: Keep on send

*User.stuff.m.t_keep: check

*User.stuff.m.v_keep: checkvar

The l_entryname resource specifies the label (text) for the entry. The t_en-

tryname resource specifies the type of the entry, which is a command entry by
default. In this case we are defining a checkbutton entry. Associated with a
checkbutton entry is a variable, which is defined with the v_entryname resource.

The insert menu entry is simpler, just requiring a label resource, l_in-
sert, and a command resource, c_insert:

*user.stuff.m.l_insert: insert file...

*user.stuff.m.c_insert: insertfiledialog

The find menu entry is for a cascaded menu. This requires the type, t_find,
to be cascade. Associated with a cascade entry is a submenu, m_find, and again a
label, l_find:

*User.stuff.m.l_find: find
*User.stuff.m.t_find: cascade
*User.stuff.m.m_find: find
The conventions are the same for the cascaded menus, with *user.-

stuff.m.find.entrylist defining the entries, and so on. The code to support all

330 Using X Resources Chap.27

created: December 15, 1994 —Resources.fm3—copyright prentice hall—draft: 1/12/95

this is given in the next example.

Example 27–6 Defining menus from resource specifications.

proc MenuResources { f class } {
set f [frame .user -class User]
pack $f -side top
foreach b [option get $f menulist {}] {

set cmd [list menubutton $f.$b -menu $f.$b.m \
-relief raised]

if [catch $cmd t] {
eval $cmd {-font fixed}

}
if [catch {menu $f.$b.m}] {

menu $f.$b.m -font fixed

pack $f.$b -side right
MenuButtonInner $f.$b.m

}
}
proc MenuButtonInner { menu } {

foreach e [option get $menu entrylist {}] {
set l [option get $menu l_$e {}]
set c [option get $menu c_$e {}]
set v [option get $menu v_$e {}]
switch -- [option get $menu t_$e {}] {

check {
$menu add checkbutton -label $l -command $c \

-variable $v
}
radio {

$menu add radiobutton -label $l -command $c \
-variable $v

}
separator {

$menu add separator
}
cascade {

set sub [option get $menu m_$e {}]
if {[string length $sub] != 0} {

set submenu [menu $menu.$sub -tearoff 0]
$menu add cascade -label $l -command $c \

 -menu $submenu
menubuttoninner $submenu

}
}
default {

$menu add command -label $l -command $c
}

}
}

}

331

C H A P T E R

Created: December 15, 1994 —Preferences.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

 28

Managing User Preferences 28

This chapter describes a user preferences package. The X resource database
is used to store preference settings. Applications specify what Tcl
variables get initialized from what database entries. A user interface lets
the user browse and change their settings.

User customization is an important part
of any complex application. There are always design decisions that could go
either way. A typical approach to choose a reasonable default but then allow
users to change the default setting through a preferences user interface. This
chapter describes a preference package that works by tying together a Tcl vari-
able, which is used by the application, and an X resource specification, which can
be set by the user. In addition, a user interface is provided so the user does not
have to edit the resource database directly.

App-Defaults Files

We will assume that it is sufficient to have two sources of application defaults, a
per-application database and a per-user database. In addition, we will allow for
some resources to be specific to color and monochrome displays. The following
example initializes the preference package by reading in the per-application and
per-user resource specification files. There is also an initialization of the global
array pref that will be used to hold state information about the preferences
package. The Pref_Init procedure is called like this:

Pref_Init $library/foo-defaults ~/.foo-defaults

We assume $library is the directory holding support files for the foo

application, and that per-user defaults will be kept ~/.foo-defaults.

332 Managing User Preferences Chap.28

Created: December 15, 1994 —Preferences.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Example 28–1 Preferences initialization.

proc Pref_Init { userDefaults appDefaults } {
global pref

set pref(uid) 0;# for a unique identifier for widgets
set pref(userDefaults) $userDefaults
set pref(appDefaults) $appDefaults

PrefReadFile $appDefaults startup
if [file exists $userDefaults] {

PrefReadFile $userDefaults user
}

}
proc PrefReadFile { basename level } {

if [catch {option readfile $basename $level} err] {
Status “Error in $basename: $err”

}
if {[tk colormodel .] == “color”} {

if [file exists $basename-color] {
if [catch {option readfile \

$basename-color $level} err] {
Status “Error in $basename-color: $err”

}
}

} else {
if [file exists $basename-mono] {

if [catch {option readfile $basename-mono $level
Status “Error in $basename-mono: $err”

}
}

}
}

The PrefReadFile procedure reads a resource file and then looks for
another file with the suffix -color or -mono depending on the color model of the
display. The tk colormodel command is used to find out what the toolkit thinks
the display is capable of handling. The choices are either color or monochrome.

With this scheme a user would put generic settings in their ~/.foo-

defaults file, and they would put their color specifications in their ~/.foo-

defaults-color or ~/.foo-defaults-mono files. You could extend PrefReadFile

to allow for per-host files as well.
Another approach is to use the winfo visuals command which provides

more detailed information about the display characteristics. You could detect a
greyscale visual and support a third set of color possibilities. Visuals are dis-
cussed in Chapter 23.

Throughout this chapter we will assume that the Status procedure is used
to display messages to the user. It could be as simple as:

proc Status { s } { puts stderr $s }

 Defining Preferences 333

Created: December 15, 1994 —Preferences.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Defining Preferences

This section describes the Pref_Add procedure that is used by an application to
define preference items. A preference item defines a relationship between a Tcl
variable and an X resource name. A default value, a label, and a more extensive
help string are also associated with the item. The Tcl variable is undefined at the
time Pref_Add is called, then it is set from the value for the resource, if it exists,
otherwise it is set to the default value. Each preference item will be represented
by a Tcl list of these 5 elements. A few short routines hide the layout of the item
lists and make the rest of the code read a bit better. Pref_Add is shown along
with these below:

Example 28–2 Adding preference items.

proc PrefVar { item } { lindex $item 0 }
proc PrefXres { item } { lindex $item 1 }
proc PrefDefault { item } { lindex $item 2 }
proc PrefComment { item } { lindex $item 3 }
proc PrefHelp { item } { lindex $item 4 }

proc Pref_Add { prefs } {
global pref
append pref(items) $prefs
foreach item $prefs {

set varName [PrefVar $item]
set xresName [PrefXres $item]
set value [PrefValue $varName $xresName]
if {$value == {}} {

Set variables that are still not set
set default [PrefDefault $item]
if {[llength $default] > 1} {

if {[lindex $default 0] == “CHOICE”} {
PrefValueSet $varName [lindex $default 1]

} else {
PrefValueSet $varName $default

}
} else {

Is it a boolean?
if {$default == “OFF”} {

PrefValueSet $varName 0
} elseif {$default == “ON”} {

PrefValueSet $varName 1
} else {

This is a string or numeric
PrefValueSet $varName $default

}
}

} else {
Should map boolean resources to 0, 1 here.

}
}

}

334 Managing User Preferences Chap.28

Created: December 15, 1994 —Preferences.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

(One small improvement can be made to Pref_Add. If a user specifies a bool-
ean resource manually, they might use “true” instead of 1 and “false” instead of
0. Pref_Add should fix that up for us.)

The procedures PrefValue and PrefValueSet are used to query and set the
value of the named variable, which can be an array element or a simple variable.
The upvar #0 command is used to set the variable in the global scope.

Example 28–3 Setting preference variables.

PrefValue returns the value of the variable if it exists,
otherwise it returns the X resource database value
proc PrefValue { varName xres } {

upvar #0 $varName var
if [info exists var] {

return $var
}
set var [option get . $xres {}]

}
PrefValueSet defines a variable in the globla scope.
proc PrefValueSet { varName value } {

upvar #0 $varName var
set var $value

}

An important side effect of the Pref_Add call is that the variables in the
preference item are defined at the global scope. It is also worth noting that
PrefValue will honor any existing value for a variable, so if the variable is
already set at the global scope then neither the resource value or the default
value will be used. It is easy to change PrefValue to always set the variable if
this is not the behavior you want.

Example 28–4 Using the preferences package.

PrefAdd {
{win(scrollside) scrollbarSide {CHOICE left right}

“Scrollbar placement”
“Scrollbars can be positioned on either the left or
right side of the text and canvas widgets.”}

{win(typeinkills) typeinKills OFF
“Type-in kills selection”

“This setting determines whether or not the selection
is deleted when new text is typed in.”}

{win(scrollspeed) scrollSpeed 15 “Scrolling speed”
“This parameter affects the scrolling rate when a selection
is dragged off the edge of the window. Smaller numbers
scroll faster, but can consume more CPU.”}
}

 Any number of preference items can be specified in a call to Pref_Add. The
list-of-lists structure is created by proper placement of the curly braces, and it is

 The Preferences User Interface 335

Created: December 15, 1994 —Preferences.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

preserved when the argument is appended to the master list of preferences, pre-
f(items).In this example Pref_Add gets passed a single argument that is a Tcl
list with three elements. The Tcl variables are array elements, presumably
related to the Win module of the application. The resource names are associated
with the main application as opposed to any particular widget. They will be spec-
ified in the database like this:

*scrollbarSide: left

*typeinKills: 0

*scrollSpeed: 15

The Preferences User Interface

The figure shows what the interface looks like for the items added with the Pre-

f_Add command given in the previous section. The popup window with the
extended help text appears after you click on “Scrollbar placement”.

The user interface to the preference settings is table driven. As a result of
all the Pref_Add calls, a single list of all the preference items is built up. The
interface is constructed by looping through this list and creating a user interface
item for each

Example 28–5 A user interface to the preference items.

proc Pref_Dialog {} {
global pref
if [catch {toplevel .pref}] {

raise .pref
} else {

wm title .pref “Preferences”
set buttons [frame .pref.but]
pack .pref.but -side top -fill x
button $buttons.quit -text Quit \

-command {PrefDismiss}
button $buttons.save -text Save \

-command {PrefSave}
button $buttons.reset -text Reset \

-command {PrefReset ; PrefDismiss}

336 Managing User Preferences Chap.28

Created: December 15, 1994 —Preferences.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

label $buttons.label \
 -text “Click labels for info on each item”

pack $buttons.label -side left -fill x
pack $buttons.quit $buttons.save $buttons.reset \

-side right

frame .pref.b -borderwidth 2 -relief raised
pack .pref.b -fill both
set body [frame .pref.b.b -bd 10]
pack .pref.b.b -fill both

set maxWidth 0
foreach item $pref(items) {

set len [string length [PrefComment $item]]
if {$len > $maxWidth} {

set maxWidth $len
}

}
foreach item $pref(items) {

PrefDialogItem $body $item $maxWidth
}

}
}

The interface supports three different types of preference items: boolean,
choice, and general value. A boolean is implemented with a checkbutton that is
tied to the Tcl variable, which will get a value of either 0 or 1. A boolean is identi-
fied by a default value that is either ON or OFF. A choice item is implemented as a
set of radiobuttons, one for each choice. A choice item is identified by a default
value that is a list with the first element equal to CHOICE. The remaining list
items are the choices, with the first one being the default choice. If neither of
these cases, boolean or choice, are detected, then an entry widget is created to
hold the general value of the preference item.

Example 28–6 Interface objects for different preference types.

proc PrefDialogItem { frame item width } {
global pref
incr pref(uid)
set f [frame $frame.p$pref(uid) -borderwidth 2]
pack $f -fill x
label $f.label -text [PrefComment $item] -width $width
bind $f.label <1> \

[list PrefItemHelp %X %Y [PrefHelp $item]]
pack $f.label -side left
set default [PrefDefault $item]
if {([llength $default] > 1) &&

 ([lindex $default 0] == “CHOICE”)} {
foreach choice [lreplace $default 0 0] {

incr pref(uid)
radiobutton $f.c$pref(uid) -text $choice \

-variable [PrefVar $item] -value $choice

 The Preferences User Interface 337

Created: December 15, 1994 —Preferences.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

pack $f.c$pref(uid) -side left
}

} else {
if {$default == “OFF” || $default == “ON”} {

This is a boolean
set varName [PrefVar $item]
checkbutton $f.check -text “On” -variable $varName
pack $f.check -side left

} else {
This is a string or numeric
entry $f.entry -width 10 -relief sunken
pack $f.entry -side left -fill x -expand true
set pref(entry,[PrefVar $item]) $f.entry
set varName [PrefVar $item]
$f.entry insert 0 [uplevel #0 [list set $varName]]
bind $f.entry <Return> “PrefEntrySet %W $varName”

}
}

}
proc PrefEntrySet { entry varName } {

PrefValueSet $varName [$entry get]
}

The use of radio and check buttons that are tied directly to the Tcl variables
results in a slightly different mode of operation for the preferences interface than
is provided by other toolkits. Typically a user will make some settings and then
choose Save or Cancel. In this interface, when the user clicks a radiobutton or a
checkbutton then the Tcl variable is set immediately. Of course, there are still
Save and Cancel buttons, but there is also an intermediate state in which the
settings have been made but they have not been saved to a file. This is either a
feature that lets users try out settings without committing to them, or it is a bug.
However, changing this requires introducing a parallel set of variables to shadow
the real variables until the user hits Save, which is tedious to implement.

In order to obtain a similar effect with the general preference item, the
<Return> key is bound to a procedure that will set the associated Tcl variable to
the value from the entry widget. PrefEntrySet is a one-line procedure that
saves us from having to use the more awkward binding given below. Grouping
with double-quotes allows substitution of $varName, but then we need to quote
the square brackets to postpone command substitution.

bind $f.entry <Return> “PrefValueSet $varName \[%W get\]”

The binding on <Return> is done as opposed to using the -textvariable

option because it interacts with traces on the variable a bit better. With trace

you can arrange for a Tcl command to be executed when a variable is changed.
For a general preference item it is better to wait until the complete value is
entered before responding to its new value. A tracing example is given in the
next section.

The other aspect of the user interface is the display of additional help infor-
mation for each item. If there are lots of preference items then there isn’t enough
room to display this information directly. Instead, clicking on the short descrip-

338 Managing User Preferences Chap.28

Created: December 15, 1994 —Preferences.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

tion for each item brings up a toplevel window with the help text for that item.

Example 28–7 Displaying the help text for an item.

proc PrefItemHelp { x y text } {
catch {destroy .prefitemhelp}
if {$text == {}} {

return
}
set self [toplevel .prefitemhelp -class Itemhelp]
wm title $self “Item help”
wm geometry $self +[expr $x+10]+[expr $y+10]
wm transient $self .pref
message $self.msg -text $text -aspect 1500
pack $self.msg
bind $self.msg <1> {PrefNukeItemHelp .prefitemhelp}
.pref.but.label configure -text \

“Click on popup or another label”
}
proc PrefNukeItemHelp { t } {

.pref.but.label configure -text \
“Click labels for info on each item”

destroy $t
}

Managing The Preferences File

The preference settings are saved in the per-user file. The file is divided into two
parts. The tail is automatically re-written by the preferences package. Users can
manually add resource specifications to the beginning of the file and they will be
preserved.

Example 28–8 Saving preferences settings to a file.

PrefSave writes the resource specifications to the
end of the per-user resource file, allowing users to
add other resources to the beginning.
proc PrefSave {} {

global pref
if [catch {

set old [open $pref(userDefaults) r]
set oldValues [split [read $old] \n]
close $old

}] {
set oldValues {}

}
if [catch {open $pref(userDefaults).new w} out] {

.pref.but.label configure -text \
“Cannot save in $pref(userDefaults).new: $out”
return

}

 Managing The Preferences File 339

Created: December 15, 1994 —Preferences.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

foreach line $oldValues {
if {$line == \

“!!! Lines below here automatically added”} {
break

} else {
puts $out $line

}
}
puts $out “!!! Lines below here automatically added”
puts $out “!!! [exec date]”
puts $out “!!! Do not edit below here”
foreach item $preferences {

set varName [PrefVar $item]
set xresName [PrefXres $item]
if [info exists pref(entry,$varName)] {

PrefEntrySet $pref(entry,$varName) $varName
}
set value [PrefValue $varName $xresName]
puts $out [format “%s\t%s” *${xresName}: $value]

}
close $out
set new [glob $pref(userDefaults).new]
set old [file root $new]
if [catch {exec mv $new $old} err] {

Status “Cannot install $new: $err”
return

}
PrefDismiss

}

There is one fine point in PrefSave, which is that the value from the entry
widget for general purpose items is obtained explicitly in case the user has not
already pressed <Return> to update the Tcl variable.

Example 28–9 Read settings from the preferences file.

proc PrefReset {} {
global pref
Re-read user defaults
option clear
PrefReadFile $pref(appDefaults) startup
PrefReadFile $pref(userDefaults) user
Clear variables
set items $pref(items)
set pref(items) {}
foreach item $items {

uplevel #0 [list unset [PrefVar $item]]
}
Restore values
Pref_Add $items

}
proc PrefDismiss {} {

destroy .pref

340 Managing User Preferences Chap.28

Created: December 15, 1994 —Preferences.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

catch {destroy .prefitemhelp}
}

The interface is rounded out with the PrefReset and PrefDismiss proce-
dures. A reset is achieved by clearing the option database and reloading it, and
then temporarily clearing the preference items and their associated variables
and then redefining them with Pref_Add.

Tracing Changes To Preference Variables

Suppose, for example, we want to repack the scrollbars when the user
changes their scrollside setting from left to right. This is done by setting a
trace on the win(scrollside) variable. When the user changes that via the user
interface, the trace routine will be called. The trace command and its associated
procedure are given below. The variable must be declared global before setting
up the trace, which is not otherwise required if Pref_Add is the only command
using the variable.

Example 28–10 Tracing a Tcl variable in a preference item.

PrefAdd {
{win(scrollside) scrollbarSide {CHOICE left right}

“Scrollbar placement”
“Scrollbars can be positioned on either the left or
right side of the text and canvas widgets.”}
}
global win
set win(lastscrollside) $win(scrollside)
trace variable win(scrollside) w ScrollFixup

Assume win(scrollbar) identifies the scrollbar widget

proc ScrollFixup { name1 name2 op } {
global win
if {$win(scrollside) != $win(lastscrollside)} {

set parent [lindex [pack info $win(scrollbar)] 1]
pack forget $win(scrollbar)
set firstchild [lindex [pack slaves $parent] 0]
pack $win(scrollbar) -in $parent -before $firstchild \

-side $win(scrollside) -fill y
set win(lastscrollside) $win(scrollside)

}
}

341

C H A P T E R

Created: December 15, 1994 —CProgIntro.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

 29

C Programming and Tcl 29

This chapter explains how to extend the basic Tcl shells with new built-in
commands. It describes how to include a Tcl interpreter in an existing
application. The chapter reviews some of the support facilities provided
by the Tcl C library, including a hash table package.

Tcl is designed to be easily extensible by
writing new command implementations in C. A command implemented in C is
more efficient than an equivalent Tcl procedure. A more pressing reason to write
C code is that it may not be possible to provide the same functionality purely in
Tcl. Suppose you have a new device, perhaps a color scanner or a unique input
device. The programming interface to that device is through a set of C proce-
dures that initialize and manipulate the state of the device. Without some work
on your part, that interface is not accessible to your Tcl scripts. You are in the
same situation if you have a C library that implements some specialized function
such as a database. Foretunately, it is rather straight-forward to provide a Tcl
interface that corresponds to the C interface. Unfortunately it is not automatic.
This chapter explains how to provide a Tcl interface as a one or more new Tcl
commands that you implement in C.

An alternative to writing new Tcl commands is to write stand-alone pro-
grams in C and use the Tcl exec command to run these programs. However,
there is additional overhead in running an external program as compared to
invoking a Tcl command that is part of the same application. There may be long
lived state associated with your application (e.g., the database), and it may make
sense for a collection of Tcl commands to provide an interface to this state than to
run a program each time you want to access it. An external program is more suit-
able for one-shot operations like encrypting a file.

Another way to view Tcl is as a C library that is easy to integrate into your

342 C Programming and Tcl Chap.29

Created: December 15, 1994 —CProgIntro.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

existing application. By adding the Tcl interpreter you can configure and control
your application with Tcl scripts, and with Tk you can provide a nice graphical
interface to it. This was the original model for Tcl. Applications would be largely
application-specific C code and include a small amount of Tcl for configuration
and the graphical interface. However, the basic Tcl shells proved so useful by
themselves that relatively few Tcl programers need to worry about programming
in C.

Using the Tcl C Library

This chapter does not provide a complete reference to the procedures exported by
the Tcl C library. Instead, the general use of the procedures is explained at the
end of this chapter, and a few of them appear in the code examples. You will need
to refer to the on-line manual pages for the routines for the specific details about
each procedure. This approach differs from the rest of the chapters on the Tcl
scripting commands, but space and time preclude a detailed treatment of the Tcl
C library. Besides, their man pages are an excellent source of information. The
goal of this chapter is to give you an overall idea of what it is like to integrate C
and Tcl, and to provide a few working examples.

Application Structure

This section describes the overall structure of an application that includes a Tcl
interpreter. The relationship between the Tcl interpreter and the rest of your
application can be set up in a variety of ways. A general picture is shown below.

The Tcl C library implements the interpreter and the core Tcl commands
such as set, while, and proc. Application-specific Tcl commands are imple-
mented in C or C++ and registered as commands in the interpreter. The inter-
preter calls these command procedures when the script uses the application-
specific Tcl command. The command procedures are typically thin layers over

Your
Application

Application
Specific
Tcl Commands

Tcl
Library

Tcl Script Tcl

C

 Tcl_Main and Tcl_AppInit 343

Created: December 15, 1994 —CProgIntro.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

existing functionality in your application. Finally, by using Tcl_Eval, your appli-
cation can invoke functionality programmed in the script layer. You can query
and set Tcl variables from C using the Tcl_SetVar and Tcl_GetVar procedures.

The application creates an interpreter with Tcl_CreateInterp and regis-
ters new commands with Tcl_CreateCommand. Then it evaluates a script to ini-
tialize the application by calling Tcl_EvalFile. The script can be as simple as
defining a few variables that are parameters of a computation, or, it can be as
ambitious as building a large user interface. The situation is slightly more com-
plicated if you are using Tk and providing a graphical user interface, but not
much more complex. Using Tk and C is described in the next chapter.

Tcl_Main and Tcl_AppInit

The Tcl library supports the basic application structure through the
Tcl_Main procedure that is designed to be called from your main program.
Tcl_Main does three things:

• It creates an interpreter that includes all the standard Tcl commands like
set and proc. It also defines a few Tcl variables like argc and argv. These
have the command line arguments that were passed to your application.

• It calls Tcl_AppInit, which is not part of the Tcl library. Instead, your appli-
cation provides this procedure. In Tcl_AppInit you can register additional
appcliation-specific Tcl commands.

• It reads a script or goes into an interactive loop.

To use Tcl_Main you call it from your main program and provide an imple-
mentation of the Tcl_AppInit procedure. An example is shown below.

Example 29–1 A canonical Tcl main program and Tcl_AppInit.

/* main.c */
#include <tcl.h>

/*
* Declarations for application-specific command procedures
*/
int RandomCmd(ClientData clientData,

Tcl_Interp *interp,
int argc, char *argv[]);

main(int argc, char *argv[]) {
Tcl_Main(argc, argv);
exit(0);

}
/*
* Tcl_AppInit is called from Tcl_Main
* after the Tcl interpreter has been created,
* and before the script file

344 C Programming and Tcl Chap.29

Created: December 15, 1994 —CProgIntro.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

* or interactive command loop is entered.
*/
int
Tcl_AppInit(Tcl_Interp *interp) {

/*
 * Initialize packages
 * Tcl_Init sets up the Tcl library facility.
 */
if (Tcl_Init(interp) == TCL_ERROR) {

return TCL_ERROR;
}
/*
 * Register application-specific commands.
 */
Tcl_CreateCommand(interp, "random", RandomCmd,

(ClientData)NULL, (Tcl_CmdDeleteProc *)NULL);
/*
 * Define startup filename. This file is read in
 * case the program is run interactively.
 */
tcl_RcFileName = "~/.myapp.tcl";
return TCL_OK;

}

The main program calls Tcl_Main with the argc and argv parameters
passed into the program. These are the strings passed to the program on the
command line, and Tcl_Main will store these values into Tcl variables by the
same name. Tcl_AppInit is called by Tcl_Main with one argument, a handle on
a newly created interpreter. There are three parts to the Tcl_AppInit procedure.
The first part initializes the various packages used by the application. The exam-
ple just calls Tcl_Init to complete the setup of the Tcl interpreter. While the core
Tcl commands are defined during Tcl_CreateInterp, which is called by
Tcl_Main, there is some additional setup required for the Tcl library facility that
is done by the Tcl_Init call. The library facility is described later in this chapter.

The second part of Tcl_AppInit does application-specific initialization. The
example registers a command procedure, RandomCmd that implements a new Tcl
command, random. When the Tcl script uses the random command, the RandomCmd

procedure will be invoked by the Tcl library. The command procedure will be
described in the next section. The third part defines an application startup
script, tcl_RcFileName, that is used if the program is used interactively.

The standard main in Tcl 7.3

The Tcl_Main procedure was added in Tcl 7.4. Prior to that the Tcl library
actually included a main program, so all you needed was a Tcl_AppInit proce-
dure. There were some problems with using main from the library, especially
with C++ programs, so Tcl_Main was introduced.

 A C Command Procedure 345

Created: December 15, 1994 —CProgIntro.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

A C Command Procedure

The interface to a C command procedure is much like the interface to the main

program. The arguments from the Tcl command are available as an array of
strings defined by an argv parameter and counted by an argc parameter. In
addition, the handle on the interpreter is passed, along with the client data that
was registered when the command was defined. The client data is useful if the
same command procedure is implementing many different commands. For exam-
ple, a Tk command procedure can implement the commands corresponding to the
various instances of a particular type of Tk widget. It that case, client data is
used to hold a pointer to the data structure defining the particular instance of
the widget.

The return value of a Tcl command is either a string or an error message. A
field in the interp data structure is used to return this value, and the the com-
mand procedure returns either TCL_OK or TCL_ERROR to indicate success or fail-
ure. The procedure can also return TCL_BREAK, TCL_CONTINUE, or an application-
specific code, which might be useful if you are implementing new kinds of built-
in control structures. The examples in this book only use TCL_OK and TCL_ERROR.
The use of the result field to return string values is described in the next section.

Example 29–2 The RandomCmd C command procedure.

/*
* RandomCmd --
* This implements the random Tcl command. With no arguments
* the command returns a random integer.
* With an integer valued argument "range",
* it returns a random integer between 0 and range.
*/
int
RandomCmd(ClientData clientData, Tcl_Interp *interp,

int argc, char *argv[])
{

int rand, error;
int limit = 0;
if (argc > 2) {

interp->result = "Usage: random ?range?";
return TCL_ERROR;

}
if (argc == 2) {

error = Tcl_GetInt(interp, argv[1], &limit);
if (error != TCL_OK) {

return error;
}

}
rand = random();
if (limit != 0) {

rand = rand % limit;
}
sprintf(interp->result, "%d", rand);
return TCL_OK;

346 C Programming and Tcl Chap.29

Created: December 15, 1994 —CProgIntro.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

}

The random implementation accepts an optional argument that is a range
over which the random numbers should be returned. The argc parameter is
tested to see if this argument has been given in the Tcl command. argc counts
the command name as well as the arguments, so in our case argc == 2 indicates
that the command has been invoked something like:

random 25

The procedure Tcl_GetInt is used to convert the string-valued argument to
an integer. It does error checking and sets the interpreter’s result field in the
case of error, so we can just return if it fails to return TCL_OK.

Finally, the real work of calling random is done, and the result is formatted
directly into the result buffer. TCL_OK is returned to signal success.

Managing The Result’s Storage

There is a simple protocol used to manage the storage for a command proce-
dure’s result string. It involves two fields in the interpreter structure, interp-
>result that holds the value, and interp->freeProc that determines how the
storage is cleaned up. When a command is called the interpreter provides default
storage of TCL_RESULT_SIZE bytes, which is 200 by default. The default cleanup
action is to do nothing. These defaults support two simple ways to define the
result of a command. One way is to use sprintf to format the result in place.

sprintf(interp->result, "%d", rand);

 Using sprintf is suitable if you know your result string is short, which is
often the case. The other way is to set interp->result to the address of a con-
stant string. In this case the original result buffer is not used, and there is no
cleanup required because the string is compiled into the program.

interp->result = "Usage: random ?random?";

In more general cases the following procedures should be used to manage
the result and freeProc fields.

Tcl_SetResult(interp, string, freeProc)

Tcl_AppendResult(interp, str1, str2, str3, (char *)NULL)

Tcl_AppendElement(interp, string)

Tcl_SetResult sets the return value to be string. The freeProc argument
describes how the result should be disposed of. TCL_STATIC is used in the case
where the result is a constant string allocated by the compiler. TCL_DYNAMIC is
used if the result is allocated with malloc. TCL_VOLATILE is used if the result is
in a stack variable. In this case the Tcl interpreter will make a copy of the result
before calling any other command procedures. Finally, if you have your own
memory allocator, pass in the address of the procedure that should free up the
result.

Tcl_AppendResult copies its arguments into the result buffer, reallocating

 Invoking Scripts From C 347

Created: December 15, 1994 —CProgIntro.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

the buffer if necessary. The arguments are concatenated onto the end of the
existing result, if any. Tcl_AppendResult can be called several times in order to
build up a result.

Tcl_AppendElement adds the string to the result as a proper Tcl list ele-
ment. It may add braces or backslashes to get the proper structure.

Invoking Scripts From C

The main program is not the only place you can evaluate a Tcl script. The
Tcl_Eval procedure can be used essentially at any time to evaluate a Tcl com-
mand.

Tcl_Eval(Tcl_Interp *interp, char *command);

This is how the command associated with a button is invoked, for example.
The only caveat about this is that the script may destroy the widget or Tcl com-
mand that invoked it. To guard against this, the Tk_Preserve, Tk_Release, and
Tk_EventuallyFree procedures can be used to manage any data structures asso-
ciated with the widget or Tcl command. These are described on page 363.

You should also be aware that Tcl_Eval may modify the string that is
passed into it as a side effect of the way substitutions are performed. If you pass
a constant string to Tcl_Eval, make sure your compiler hasn’t put the string con-
stant into read-only memory. If you use the gcc compiler you may need to use the
-fwritable-strings option.

Bypassing Tcl_Eval

In a performance critical situation you may want to avoid some of the over-
head associated with Tcl_Eval. David Nichols showed me a clever trick by which
you can call the implementation of a C command procedure directly. The trick is
facilitated by the Tcl_GetCommandInfo procedure that returns the address of the
C command procedure for a Tcl command, plus its client data pointer. The
Tcl_Invoke procedure shown in the next example implements this trick. It is
used much like Tcl_VarEval, except that each of its arguments becomes an argu-
ment to the Tcl command without any substitutions being performed.

For example, you might want to insert a large chunk of text into a text wid-
get without worriying about the parsing done by Tcl_Eval. You could use
Tcl_Invoke like this:

Tcl_Invoke(interp, ".t", "insert", "insert", buf, NULL);

Or:
Tcl_Invoke(interp, "set", "foo", "$xyz [blah] {", NULL);

No substitutions are performed on any of the arguments because Tcl_Eval

is out of the picture. The variable foo gets the literal value $xyz [blah] {.

348 C Programming and Tcl Chap.29

Created: December 15, 1994 —CProgIntro.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Example 29–3 Calling C command procedure directly.

#include <varargs.h>
#include <tcl.h>
/*
* Tcl_Invoke --
* Call this somewhat like Tcl_VarEval:
* Tcl_Invoke(interp, cmdName, arg1, arg2, ..., NULL);
* Each arg becomes one argument to the command,
* with no substitutions or parsing.
*/
int
Tcl_Invoke(va_alist)

va_dcl /* Variable number of arguments */
{

Tcl_Interp *interp;
char *cmd;
char **argv;
int argc, max;
Tcl_CmdInfo info;
va_list pvar;
int result;

va_start(pvar);
interp = va_arg(pvar, Tcl_Interp *);
cmd = va_arg(pvar, char *);
/*
 * Build an argv vector out of the rest of the arguments.
 */
max = 10;
argv = (char **)malloc(max * sizeof(char *));
argv[0] = cmd;
argc = 1;
while (1) {

argv[argc] = va_arg(pvar, char *);
if (argv[argc] == (char *)NULL) {

break;
}
argc++;
if (argc >= max) {

/*
 * Allocate a bigger vector and copy old values in.
 */
int i;
char **oldargv = argv;
argv = (char **)malloc(2*max * sizeof(char *));
for (i=0 ; i<max ; i++) {

argv[i] = oldargv[i];
}
free(oldargv);
max = 2*max;

}
}
Tcl_ResetResult(interp);
/*

 Putting A Tcl Program Together 349

Created: December 15, 1994 —CProgIntro.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

 * Map from the command name to a C procedure.
 */
if (Tcl_GetCommandInfo(interp, cmd, &info)) {

result = (*info.proc)(info.clientData, interp,
argc, argv);

} else {
Tcl_AppendResult(interp, "Unknown command \"",

cmd, "\"", NULL);
result = TCL_ERROR;

}
va_end(pvar);
free(argv);
return result;

}

Putting A Tcl Program Together

Assuming you’ve put the examples into files named tclMain.c, random.c, and
tclInvoke.o you are ready to try them out. You need to know the locations of
two things, the tcl.h include file and the tcl C library. In this book we’ll assume
they are in /usr/local/include and /usr/local/lib, respectively, but you
should check with your local system administrator to see how things are set up
at your site.

Example 29–4 A Makefile for a simple Tcl C program.

INC = -I/usr/local/include
LIBS = -L/usr/local/lib -ltcl -lm
DEBUG = -g
CFLAGS =$(DEBUG) $(INC)

OBJS = tclMain.o random.o tclInvoke.o

mytcl : $(OBJS)
$(CC) -o mytcl $(OBJS) $(LIBS)

The details in this Makefile may not be correct for your system. In some
cases the math library (-lm) is included in the standard C library. You should
consult a local expert and define a Makefile so you can record the details specific
to your site.

An Overview of the Tcl C library

This section provides a brief survey of other facilities provided by the Tcl C
library. For the complete details about each procedure mentioned here, consult
the on-line manual pages. The man pages describe groups of related C proce-
dures. For example, Tcl_CreateCommand and Tcl_DeleteCommand are described

350 C Programming and Tcl Chap.29

Created: December 15, 1994 —CProgIntro.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

in the CrtCommand man page. Your site may not have additional links setup to let
you utter "man Tcl_CreateCommand". Instead, you may have to use "man CrtCom-
mand". For this reason, the name of the man page is noted in each section that
introduces the procedures.

Application initialization

The Tcl_Main and Tcl_AppInit procedures are described in the AppInit

and Tcl_Main man pages, respectively.

Creating and deleting interpreters

A Tcl interpreter is created and deleted with the Tcl_CreateInterp and
Tcl_DeleteInterp procedures, which are described in the CrtInterp man page.
You can register a callback to occur when the interpreter is deleted with Tcl_-

CallWhenDeleted. Unregister the callback with Tcl_DontCallWhenDeleted.
These two procedures are described in the CallDel man page.

Creating and deleteing commands

Register a new Tcl command with Tcl_CreateCommand, and delete a com-
mand with Tcl_DeleteCommand. The Tcl_GetCommandInfo and Tcl_SetCommand-

Info procedures query and modify the procedure that implement a Tcl command
and the clientdata that is associated with the command. All of these are
described in the CrtCommand man page.

Managing the result string

The result string is managed through the Tcl_SetResult, Tcl_Appen-

dResult, Tcl_AppendElement, and Tcl_ResetResult procedures. These are
described in the SetResult man page. Error information is managed with the
Tcl_AddErrorInfo, Tcl_SetErrorCode, and Tcl_PosixError procedures, which
are described in the AddErrInfo man page.

Lists and command parsing

If you are reading commands, you can test for a complete command with
Tcl_CommandComplete, which is described in the CmdCmplt man page.You can do
backslash substitutions with Tcl_Backslash, which is described in the Back-

slash man page. The Tcl_Concat procedure, which is described in the Concat

man page, concatenates its arguments with a space separator, just like the Tcl
concat command.

You can chop a list up into its elements with Tcl_SplitList, which returns
an array of strings. You can create a list out of an array of strings with Tcl_M-

erge. This behaves like the list command in that it will add syntax to the
strings so that the list structure has one element for each of the strings. The

 An Overview of the Tcl C library 351

Created: December 15, 1994 —CProgIntro.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Tcl_ScanElement and Tcl_ConvertElement procedures are used by Tcl_Merge.
All of these are described in the SplitList man page.

Command pipelines

The Tcl_CreatePipeline procedure does all the work of setting up a pipe-
line between processes. It handles file redirection and implements all the syntax
supported by the exec and open commands. It is described by the CrtPipelin

man page.
If the command pipeline is run in the background, then a list of process

identifiers is returned. You can detach these processes with Tcl_DetachPids,
and you can clean up after them with Tcl_ReapDetachedProcs. These are
described in the DetachPid man page.

Tracing the actions of the Tcl interpreter

There are several procedures that let you trace the execution of the Tcl
interpreter and provide control over its behavior. The Tcl_CreateTrace registers
a procedure that is called before the execution of each Tcl command. Remove the
registration with Tcl_DeleteTrace. These are described in the CrtTrace man
page.

You can trace modifications and accesses to Tcl variables with Tcl_Trace-

Var and Tcl_TraceVar2. The second form is used with array elements. Remove
the traces with Tcl_UntraceVar and Tcl_UntraceVar2. You can query the traces
on variables with Tcl_VarTraceInfo and Tcl_VarTraceInfo2. These are all
described in the TraceVar man page.

Evalutating Tcl commands

The Tcl_Eval command is used to evaluate a string as a Tcl command.
Tcl_VarEval takes a variable number of string arguments and concatenates
them before evaluation. The Tcl_EvalFile command reads commands from a
file. Tcl_GlobalEval evaulates a string at the global scope. These are all
described in the Eval man page.

If you are implementing an interactive command interpreter and want to
use the history facility, then call Tcl_RecordAndEval. This records the command
on the history list and then behaves like Tcl_GlobalEval. This is described in
the RecordEval man page.

You can set the recursion limit of the interpreter with Tcl_SetRecursion-

Limit, which is described in the SetRecLmt man page.
If you are implementing a new control structure you may need to use the

Tcl_AllowExceptions procedure. This makes it OK for Tcl_Eval and friends to
return something other than TCL_OK and TCL_ERROR. This is described in the
AllowExc man page.

352 C Programming and Tcl Chap.29

Created: December 15, 1994 —CProgIntro.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Manipulating Tcl variables

You can set a Tcl variable with Tcl_SetVar and Tcl_SetVar2. The second
form is used for array elements. You can retrieve the value of a Tcl variable with
Tcl_GetVar and Tcl_GetVar2. You can delete variables with Tcl_UnsetVar and
Tcl_UnsetVar2. These are all described in the SetVar man page.

You can link a Tcl variable and a C variable together with Tcl_LinkVar, and
break the relationship with Tcl_UnlinkVar. Setting the Tcl variable modifies the
C variable, and reading the Tcl variable returns the value of the C variable.
These are described in the LinkVar man page.

Use the Tcl_UpVar and Tcl_UpVar2 procedures to link Tcl variables from
different scopes together. You may need to do if your command takes the name of
a variable as an argument as opposed to a value. These procedures are used in
the implementation of the upvar Tcl command, and they are described in the
UpVar man page.

Evalutating expressions

The Tcl expression evaluator is available through the Tcl_ExprLong,
Tcl_ExprDouble, Tcl_ExprBool and Tcl_ExprString procedures. These all use
the same evaluator, but they differ in how they return their result. They are
described in the ExprLong man page.

You can register the implementation of new math functions by using the
Tcl_CreateMathFunc procedure, which is described in the CrtMathFnc man page.

Converting numbers

You can convert strings into numbers with the Tcl_GetInt, Tcl_GetDouble,
and Tcl_GetBoolean procedures, which are described in the GetInt man page.
The Tcl_PrintDouble procedure converts a floating point number to a string. It
is used by Tcl anytime it need to do this conversion, and it honors the precision
specified by the tcl_precision variable. It is described in the PrintDbl man
page.

Hash tables

Tcl has a nice hash table package that automatically grows the hash table
data structures as more elements are added to the table. Because everything is a
string, you may need to set up a hash table that maps from a string-valued key
to an internal data structure. The procedures in the package are Tcl_InitHash-

Table, Tcl_DeleteHashTable, Tcl_CreateHashEntry, Tcl_DeleteHashEntry,
Tcl_FindHashEntry, Tcl_GetHashValue, Tcl_SetHashValue, Tcl_GetHashKey,
Tcl_FirstHashEntry, Tcl_NextHashEntry, and Tcl_HashStats. These are
described in the Hash man page.

 An Overview of the Tcl C library 353

Created: December 15, 1994 —CProgIntro.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Dynamic Strings

The Tcl dynamic string package is designed for strings that get built up
incrementaly. You will need to use dynamic strings if you use the Tcl_TildeS-

ubst procedure. The procedures in the package are Tcl_DStringInit, Tcl_D-
StringAppend, Tcl_DStringAppendElement, Tcl_DStringStartSublist,
Tcl_DStringEndSublist, Tcl_DStringLength, Tcl_DStringValue, Tcl_DString-
SetLength, Tcl_DStringFree, Tcl_DStringResult, and Tcl_DStringGetResult.
These are described in the DString man page.

Regular expressions and string matching

The regular expression library used by Tcl is exported through the Tcl_-

RegExpMatch, Tcl_RegExpCompile, Tcl_RegExpExec, and Tcl_RegExpRange pro-
cedures. These are described in the RegExp man page. The string match function
is available through the Tcl_StringMatch procedure, which is described in the
StrMatch man page.

Tilde Substitution

The Tcl_TildeSubst procedure converts filenames that begin with ~ into
absolute pathnames. The ~ syntax is used to refer to the home directory of a user.

Working with signals

Tcl provides a simple package for safely dealing with signals and other
asynchronous events. You register a handler for an event with Tcl_AsyncCreate.
When the event occurs, you mark the handler as ready with Tcl_AsyncMark.
When the Tcl interpreter is at a safe point, it uses Tcl_AsyncInvoke to call all
the ready handlers. Your application can call Tcl_AsyncInvoke, too. Use
Tcl_AsyncDelete to unregister a handler. These are described in the Async man
page.

354 C Programming and Tcl Chap.29

Created: December 15, 1994 —CProgIntro.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

355

C H A P T E R

Created: December 15, 1994 —CProgTk.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

 30

C Programming and Tk 30

This chapter explains how to include Tk in your application. It includes an
overview of the Tk C library. The next chapter shows a sample widget
implementation.

Tk has a few ways of its own that it can
be extended. You can implement new widgets, new canvas items, new image
types, and new geometry managers. This chapter provides a brief introduction to
these topics and some examples. Geometry managers are not described,
although you can read about the table geometry manager provided by the BLT
extension in the next chapter.

The structure of an application that uses Tk is a little different than the
basic structure outlined in the previous chapter. After an initialization phase
your program enters an event loop so it can process window system events. If you
use certain extensions like Tcl-DP, you will also need an event loop. Tk_MainLoop
is an event loop that processes window events, and Tk_DoOneEvent can be used if
you build your own event loop. If you use Tk_MainLoop, you can have it call han-
dlers for your own I/O streams by using Tk_CreateFileHandler. Thus there is
some initial setup, the evaluation of a script, and then a processing loop.

Tk_Main and Tcl_AppInit

The Tk library supports the basic application structure through the
Tk_Main procedure that is designed to be called from your main program.
Tk_Main does the following things:

• Like Tcl_Main it creates a Tcl interpreter and defines the argc and argv Tcl

356 C Programming and Tk Chap.30

Created: December 15, 1994 —CProgTk.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

variables. The complete set of variables is listed below.
• It parses some window-related command line arguments. These are listed

below.
• It creates the main window for your application by calling

Tk_CreateMainWindow. It also defines the env(DISPLAY) variable.
• It calls Tcl_AppInit, which is is provided by your application. Your

Tcl_AppInit should call Tcl_Init and Tk_Init as shown in the example.
• It reads a script or sets up to read interactive commands.
• It enters an event loop in order to process window events and interactive

commands.

Example 30–1 A canonical Tk main program and Tcl_AppInit.

/* main.c */
#include <tk.h>

main(int argc, char *argv[]) {
Tk_Main(argc, argv);
exit(0);

}
/*
* New features added by this wish.
*/
int ClockCmd(ClientData clientData,

Tcl_Interp *interp,
int argc, char *argv[]);

/*
* Tcl_AppInit is called from Tcl_Main
* after the Tcl interpreter has been created,
* and before the script file
* or interactive command loop is entered.
*/
int
Tcl_AppInit(Tcl_Interp *interp) {

/*
 * Initialize packages
 * Tcl_Init sets up the Tcl library facility.
 */
if (Tcl_Init(interp) == TCL_ERROR) {

return TCL_ERROR;
}
if (Tk_Init(interp) == TCL_ERROR) {

return TCL_ERROR;
}
/*
* Define application-specific commands here.
 */
Tcl_CreateCommand(interp, "clock", ClockCmd,

(ClientData)Tk_MainWindow(interp),
(Tcl_CmdDeleteProc *)NULL);

 A Custom Main Program 357

Created: December 15, 1994 —CProgTk.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

/*
 * Define startup filename. This file is read in
 * case the program is run interactively.
 */
tcl_RcFileName = "~/.myapp.tcl";
return TCL_OK;

}

The use of Tk_Main is very similar to using Tcl_Main. Both procedures call
Tcl_AppInit for initialization. If you are using Tk then you need to call both
Tcl_Init and Tk_Init from your Tcl_AppInit procedure. The first sets up the
Tcl library, and the second sets up the script library used with the Tk widgets.
This is important because much of the default behavior and event bindings for
the Tk widgets are defined by its script library.

This example sets up for the clock widget example, the pixmap image type,
and the label canvas item type that are the subject of examples later in this
chapter.

A Custom Main Program

In more complex applications you may need to have complete control over
the main program. This section gives an example that has a custom event loop. It
shows much of the boiler-plate code needed to initialize a Tk application. In addi-
tion, it sets up an error handler for X protocol errors. This is mainly useful so you
can set a breakpoint and find out what is causing the problem.

You should carefully consider whether a custom main program is really nec-
essary. The primary point of this example is to give you an understanding of
what goes on inside Tk_Main. In most cases Tk_Main should be sufficient for your
needs.

Example 30–2 A custom Tk main program.

#include <tk.h>
/*
 * XErrorProc --
 * Toe-hold for debugging X Protocol botches.
 */
static int
XErrorProc(data, errEventPtr)

ClientData data;
XErrorEvent *errEventPtr;

{
Tk_Window w = (Tk_Window)data;
fprintf(stderr, "X protocol error: ");
fprintf(stderr, "error=%d request=%d minor=%d\n",

errEventPtr->error_code, errEventPtr->request_code,
errEventPtr->minor_code);

/*

358 C Programming and Tk Chap.30

Created: December 15, 1994 —CProgTk.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

 * Claim to have handled the error.
 */
return 0;

}

Tk_Window mainWindow;

/*
 * A table for command line arguments.
 */
static char *display = NULL;
static int debug = 0;
static char *geometry = NULL;

Tk_ArgvInfo argTable[] = {
{"-display", TK_ARGV_STRING, (char *) NULL,
(char *) &display, "Display to use"},
{"-debug", TK_ARGV_CONSTANT, (char *) 1, (char *) &debug,

"Set things up for gdb-type debugging"},
{"", TK_ARGV_END, },

};
/*
 * This program takes one argument, which is the
 * name of a script to interpret.
 */
main(int argc, char *argv[])
{

Tcl_Interp *interp;
int error; char *trace;

interp = Tcl_CreateInterp();
if (Tk_ParseArgv(interp, (Tk_Window) NULL, &argc, argv,

argTable, 0) != TCL_OK) {
fprintf(stderr, "%s\n", interp->result);
exit(1);

}
if (argc < 2) {

fprintf(stderr, "Usage: %s filename\n", argv[0]);
exit(1);

}

/*
 * Create the main window. The name of the application
 * for use with the send command is "myapp". The
 * class of the application for X resources is "Myapp".
 */
mainWindow = Tk_CreateMainWindow(interp, display,

"myapp", "Myapp");
if (mainWindow == NULL) {

fprintf(stderr, "%s\n", interp->result);
exit(1);

}
/*
 * Register the X protocol error handler, and ask for
 * a synchronous protocol to help debugging.

 A Custom Main Program 359

Created: December 15, 1994 —CProgTk.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

 */
Tk_CreateErrorHandler(Tk_Display(mainWindow), -1, -1, -1,

XErrorProc, (ClientData)mainWindow);
if (debug) {

XSynchronize(Tk_Display(mainWindow), True);
}
/*
 * Grab an initial size and background.
 */
Tk_GeometryRequest(mainWindow, 200, 200);
Tk_SetWindowBackground(mainWindow,

WhitePixelOfScreen(Tk_Screen(mainWindow)));

/*
 * This is where Tcl_AppInit would be called.
 * In this case, we do the work right here.
 */
if (Tcl_Init(interp) != TCL_OK) {

fprintf(stderr, "Tcl_Init failed: %s\n",
 interp->result);

}
if (Tk_Init(interp) != TCL_OK) {

fprintf(stderr, "Tk_Init failed: %s\n",
 interp->result);

}
error = Tcl_EvalFile(interp, argv[1]);
if (error != TCL_OK) {

fprintf(stderr, "%s: %s\n", argv[1],
interp->result);

trace = Tcl_GetVar(interp, "errorInfo",
TCL_GLOBAL_ONLY);

if (trace != NULL) {
fprintf(stderr, "*** TCL TRACE ***\n");
fprintf(stderr, "%s\n", trace);

}
}
/*
 * Enter the custom event loop.
 */
while (MyappExists()) {

Tk_DoOneEvent(TK_ALL_EVENTS);
MyappStuff();

}
/*
 * Call the Tcl exit to ensure that everything is
 * cleaned up properly.
 */
Tcl_Eval(interp, "exit");
return 0;

}

The command line arguments are parsed with Tk_ParseArgv. Then
Tcl_CreateInterp creates an interpreter context, and Tk_CreateMainWindow

creates the first window. As a side effect it defines all the Tk-related Tcl com-

360 C Programming and Tk Chap.30

Created: December 15, 1994 —CProgTk.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

mands. The default window size is set, and the rest of the appearance is left up
to the script. Tcl_Init and Tk_Init are called to complete the setup of these
packages. Tk_Init has to be called after Tk_CreateMainWindow.

The handler for X protocol errors is installed with Tk_CreateErrorHandler.
If the debug flag is set, then the X protocol is put into synchronous mode. This
means that any protocol errors will occur as a direct result of your graphic opera-
tions, so you can put a breakpoint in XErrorProc and see what call causes the
problems.

The application is really defined by the script, which is processed by the
Tcl_EvalFile command. Its file name argument is argv[1], which is the first
argument to the program when it is run from the command line. If the user types
a bad file name, then Tcl_EvalFile will return an error so we can avoid checking
for that ourselves.

This argument convention means that you can specify your program
directly in the script with the #! notation. That is, if your program is named
myapp, and it is stored as /usr/joe/bin/myapp, then you can begin a script with:

#!/usr/joe/bin/myapp

The script will be processed by your version of the Tcl interpreter Remem-
ber there is a 32 character limit on this line in most UNIX systems, including the
#!.

Much of the main program is devoted to handling any errors from the
script. First, the return code from Tcl_EvalFile is checked. If it is not TCL_OK,
then an error has occurred in the script. An error message is available in
interp->result. We can provide even more detailed information to the user
than the error message generated by the offending command. The interpreter
maintains a variable errorInfo that is a stack trace of the commands that led
up to the error. The Tcl_GetVar call returns us its value, or NULL if it is unde-
fined. In practice, you would probably prompt the user before dumping the Tcl
trace.

A Custom Event Loop

An event loop is used to process window system events and other events like tim-
ers and network sockets. The different event types are described below. All Tk
applications must have an event loop so they function properly in the window
system environment. Tk provides a standard event loop with the Tk_MainLoop

procedure, which should be sufficient for most cases.
 You can provide your own event loop as shown in the previous example. In

this case you call Tk_DoOneEvent to process any outstanding Tk events. By
default, Tk_DoOneEvent handles all event types and will block if there are no
events ready. It takes a bitmap of flag arguments that control what kind of
events it will handle and whether or not it will block. Specify the TK_DONT_WAIT

flag if you don’t want it to block. In this case you typically want to process all out-
standing requests and then go do some application-specific processing.
Tk_DoOneEvent returns 1 if there are more events ready to process.

 An Overview of the Tk C library. 361

Created: December 15, 1994 —CProgTk.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Example 30–3 Using Tk_DoOneEvent with TK_DONT_WAIT.

void
DoAllTkEvents() {

while (Tk_DoOneEvent(TK_ALL_EVENTS|TK_DONT_WAIT)) {
/* keep processing Tk events */

}
}

The other way to customize the event loop is to register handlers for differ-
ent events and use the Tk_MainLoop procedure. Tk_MainLoop takes no parame-
ters and it returns when the last window is destroyed. It uses Tk_DoOneEvent to
process events. Unless you have some really special requirements, using
Tk_MainLoop and the registration procedures described below is preferable to
using Tk_DoOneEvent directly.

There are four event classes, and they are handled in the following order by
Tk_DoOneEvent.

• Window events. Use the Tk_CreateEventHandler procedure to register a
handler for these events. Use the TK_X_EVENTS flag to process these in
Tk_DoOneEvent.

• File events. Use these events to wait on slow devices and network connec-
tions. Register a handler with Tk_CreateFileHandler. Use the TK_FI-

LE_EVENTS flag to process these in Tk_DoOneEvent.
• Timer events. You can set up events to occur after a specified time period.

Use the Tk_CreateTimerHandler procedure to register a handler for the
event. Use the TK_TIMER_EVENTS flag to process these in Tk_DoOneEvent.

• Idle events. These events are processed when there is nothing else to do.
Virtually all the Tk widgets use idle events to display themselves. Use the
Tk_DoWhenIdle procedure to register a procedure to call once at the next
idle time. Use the TK_IDLE_EVENTS flag to process these in Tk_DoOneEvent.

An Overview of the Tk C library.

The next few sections briefly introduce the facilities provided by the Tk C library.
For the complete details you will need to consult the on line manual pages. The
man page for each set of routines is identified in the description so you can easily
find the right on-line documentation. Your site may not be set up so that the man
page is available by the name of the routine. You many need to know the name of
the man page first.

Parsing command line arguments

The Tk_ParseArgv procedure parses command line arguments. This proce-
dure is designed for use by main programs. While you could use it for Tcl com-

362 C Programming and Tk Chap.30

Created: December 15, 1994 —CProgTk.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

mands, the Tk_ConfigureWidget procedure might be better suited. The
Tk_ParseArgv procedure is described by the ParseArgv man page.

The standard application setup

The Tk_Main procedure does the standard setup for your application’s main
window and event loop. It is described by the Tk_Main man page.

Creating windows

The Tk_CreateMainWindow procedure is what Tk_Main uses to create the
main window for your application. The Tk_CreateWindow and Tk_CreateWindow-

FromPath are used to create windows for widgets. The actual creation of the win-
dow in the X server is delayed until an idle point. You can force the window to be
created with Tk_MakeWindowExist. Destroy a window with Tk_DestroyWindow.
These are described in the CrtMainWin man page.

The Tk_MainWindow procedure returns the handle on the applications main
window. It is described in the MainWin man page. The Tk_MapWindow and Tk_Un-

mapWindow are used to display and withdraw a window, respectively. They are
described in the MapWindow man page. The Tk_MoveToplevelWindow call is used
to position a toplevel window. It is described in the MoveToplev man page.

Translate between window names and the Tk_Window type with Tk_Name,
Tk_PathName, and Tk_NameToWindow. These are described in the Name man page.

Application name for send

The name of the application is defined or changed with Tk_SetAppName.
This name is used when other applications send it Tcl commands using the send

command. This procedure is described in the SetAppName man page.

Configuring windows

The configuration of a window includes its width, height, cursor, and so on.
Tk provides a set of routines that use Xlib routines to configure a window and
also cache the results. This makes it efficient to query these settings because the
X server does not need to be contacted. The window configuration routines are
Tk_ConfigureWindow, Tk_MoveWindow, Tk_ResizeWindow, Tk_MoveResizeWindow,
Tk_SetWindowBorderWidth Tk_ChangeWindowAttributes, Tk_SetWindowBack-

ground, Tk_SetWindowBackgroundPixmap, Tk_SetWindowBorder, Tk_SetWindow-
BorderPixmap, Tk_SetWindowColormap, Tk_DefineCursor, and
Tk_UndefineCursor. These are described in the ConfigWind man page.

Window coordinates

The coordinates of a widget relative to the root window (the main screen)
are returned by Tk_GetRootCoords. This is described in the GetRootCrd man

 An Overview of the Tk C library. 363

Created: December 15, 1994 —CProgTk.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

page. The Tk_GetVRootGeometry procedure returns the size and position of a
window relative to the virtual root window. This is described by the GetVRoot

man page. The Tk_CoordsToWindow procedure locates the window under a given
coordinate. It is described in the CoordToWin man page.

Window stacking order

Control the stacking order of windows in the X window hierarchy with
Tk_RestackWindow. This is described in the Restack man page.

Window information

Tk keeps lots of information associated with each window, or wiget. The fol-
lowing calls are fast macros that return the information without calling the X
server: Tk_WindowId, Tk_Parent, Tk_Display, Tk_DisplayName, Tk_ScreenNum-
ber, Tk_Screen, Tk_X, Tk_Y, Tk_Width, Tk_Height, Tk_Changes, Tk_Attributes,
Tk_IsMapped, Tk_IsTopLevel, Tk_ReqWidth, Tk_ReqHeight, Tk_InternalBorder-
Width, Tk_Visual, Tk_Depth, and Tk_Colormap. These are described in the Win-

dowId man page.

Configuring widget attributes

The Tk_WidgetConfigure procedure parses command line specification of
attributes and allocates resources like colors and fonts. Related procedures
include Tk_Offset, Tk_ConfigureInfo, Tk_ConfigureValue, Tk_FreeOptions,
and these are described in the ConfigWidg man page.

Safe handling of the widget data structure

If your widget makes callbacks to the script level it might invoke a Tcl com-
mand that deletes the widget. To avoid havoc in such situations, a simple refer-
ence counting scheme can be implemented for data structures. Call Tk_Preserve
to increment the use count, and call Tk_Release to decrement the count. Then,
when your widget is destroyed, use the Tk_EventuallyFree procedure to indi-
rectly call the procedure that cleans up your widget data structure. If the data
structure is in use, then the clean up call is delayed until after the last reference
to the data structure is released with Tk_Release. These procedures are
described in the Preserve man page.

The selection and clipboard

Retrieve the current selection with Tk_GetSelection. This is described in
the GetSelect man page. Register a handler for X selection requests with
Tk_CreateSelHandler. Unregister the handler with Tk_DeleteSelHandler.
These are described in the CrtSelHdlr man page. Claim ownership of the selec-
tion with Tk_OwnSelection. This is described in the OwnSelect man page.

364 C Programming and Tk Chap.30

Created: December 15, 1994 —CProgTk.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Manipulate the clipboard with Tk_ClipboardClear and Tk_ClipboardAp-

pend, which are described in the Clipboard man page.

Event bindings

The routines that manage bindings are exported by the Tk library so you
can manage bindings your self. For example, the canvas widget does this to
implement bindings on canvas items. The procedures are Tk_CreateBinding-

Table, Tk_DeleteBindingTable, Tk_CreateBinding, Tk_DeleteBinding, Tk_Get-
Binding, Tk_GetAllBindings, Tk_DeleteAllBindings, and Tk_BindEvent. These
are described in the BindTable man page.

Event loop interface

The standard event loop is implemented by Tk_MainLoop. If you write your
own event loop you need to call Tk_DoOneEvent so Tk can handle its events. If
you read X events directly, e.g., through Tk_CreateGenericHandler, then you can
dispatch to the correct handler for the event with Tk_HandleEvent. These are
described in the DoOneEvent man page.

If you want to use the Tk event loop mechnaims without using the rest of
Tk tookit, which requires a connection to an X server, then call Tk_EventInit to
set up the event registration mechanism. You can create handlers for file, timer,
and idle events after this call.

Restrict or delay events with the Tk_RestrictEvent procedure, which is
described in the RestrictEv man page.

Handling X events

Use Tk_CreateEventHandler to set up a handler for specific X events. Wid-
get implementations need a handler for expose and resize events, for example.
Remove the registration with Tk_DeleteEventHandler. These are described in
the EventHndlr man page.

You can set up a handler for all X events with Tk_CreateGenericHandler.
This is useful in some modal interactions where you have to poll for a certain
event. Delete the handler with Tk_DeleteGenericHandler. These are described
in the CrtGenHdlr man page.

File handlers

Use Tk_CreateFileHandler to register handlers for I/O streams. You set up
the handlers to be called when the I/O stream is ready for reading or writing, or
both. Or, you can use the lower-level Tk_CreateFileHandler2, which is called
every time through the event loop so it can decide for itself if the I/O stream is
ready. File handlers are called after X event handlers.

 An Overview of the Tk C library. 365

Created: December 15, 1994 —CProgTk.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Timer events

Register a callback to occur at some time in the future with Tk_CreateTim-

erHandler. The handler is only called once. If you need to delete the handler
before it gets called, use Tk_DeleteTimerHandler. These are described in the
Tk_TimerToken man page.

Idle callbacks

If there are no outstanding events, the Tk makes idle callbacks before wait-
ing for new events to arrive. In general, Tk widgets queue their display routines
to be called at idle time. Use Tk_DoWhenIdle to queue an idle callback, and use
Tk_CancelIdleCall to remove the callback from the queue. These are described
in the DoWhenIdle man page.

Sleeping

The Tk_Sleep procedure delays execution for a specified number of millisec-
onds. It is described in the Sleep man page.

Reporting script errors

If you widget makes a callback into the script level, what do you do when
the callback returns an error? Use the Tk_BackgroundError procedure that
invokes the standard tkerror procedure to report the error to the user. This is
described in the BackgdErr man page.

Handling X protocol errors

You can handle X protocol errors by registering a handler with Tk_Cre-

ateErrorHandler. Unregister it with Tk_DeleteErrorHandler. These are
described in the CrtErrHdlr man page. Because X has an asynchronous inter-
face, the error will be reported sometime after the offending call was made. You
can call the Xlib XSynchronize routine to turn off the asynchronous behavior in
order to help you debug.

Using the X resource database.

The Tk_GetOption procedure looks up items in the X resource database.
This is described in the GetOption man page.

The resource class of a window is set with Tk_SetClass, and the current
class setting is retrieved with Tk_Class. These are described in the SetClass

man page.

366 C Programming and Tk Chap.30

Created: December 15, 1994 —CProgTk.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Managing bitmaps

Tk maintains a registry of bitmaps by name, e.g. gray50 and questhead.
You can define new bitmaps with Tk_DefineBitmap, and you can get a handle on
the bitmap from its name with Tk_GetBitmap. Related procedures include
Tk_NameOfBitmap, Tk_SizeOfBitmap, Tk_FreeBitmap, and Tk_GetBitmapFrom-

Data. These are described in the GetBitmap man page.

Creating new image types

The Tk_CreateImageType procedure is used to register the implementation
of a new image type. The registration includes several procedures that callback
into the implementation to support creation, display, and deletion of images. The
interface to an image implementation is described in the CrtImgType man page.

When an image changes, the widgets that display it are notified by calling
Tk_ImgChanged. This is described in the ImgChanged man page.

Using an image in a widget

The following routines support widgets that display images. Tk_GetImage
maps from the name to a Tk_Image data structure. Tk_RedrawImage causes the
image to update its display. Tk_SizeOfImage tells you how big it is. When the
image is no longer in use, call Tk_FreeImage. These are described in the GetIm-

age man page.

Photo image types

One of the image types is photo, which has its own C interface for defining
new formats. The job of a format handler is to read and write different image for-
mats such as GIF or JPEG so that the photo image can display them. The Tk_Cre-

atePhotoImageFormat procedure sets up the interface, and it is described in the
CrtPhImgFmt man page.

There are several support routines for photo format handlers. The
Tk_FindPhoto procedure maps from a photo name to its associated Tk_PhotoHan-

dle data structure. The image is updated with Tk_PhotoBlank, Tk_PhotoPut-
Block, and Tk_PhotoPutZoomedBlock. The image values can be obtained with
Tk_PhotoGetImage. The size of the image can be manipulated with Tk_PhotoEx-

pand, Tk_PhotoGetSize, and Tk_PhotoSetSize. These support routines are
described in the FindPhoto man page.

Canvas object support

The C interface for defining new canvas items is exported via the Tk_Cre-

ateItemType procedure. The description for a canvas item includes a set of proce-
dures that the canvas widget uses to call the implementation of the canvas item
type. This interface is described in detail in the CrtItemType man page.

 An Overview of the Tk C library. 367

Created: December 15, 1994 —CProgTk.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

There are support routines for the managers of new item types. The CanvT-

kwin man page describes Tk_CanvasTkwin, Tk_CanvasGetCoord, Tk_CanvasDraw-
ableCoords, Tk_CanvasSetStippleOrigin, Tk_CanvasWindowCoords, and
Tk_CanvasEventuallyRedraw. The following procedures help with the generation
of postscript: Tk_CanvasPsY, Tk_CanvasPsBitmap, Tk_CanvasPsColor, Tk_Can-

vasPsFont, Tk_CanvasPsPath, and Tk_CanvasPsStipple. These are described by
the CanvPsY man page. If you are manipulating text items directly, then you can
use the Tk_CanvasTextInfo procedure to get a description of the selection state
and other details about the text item. This procedure is described in the CanvTx-

tInfo man page.

Geometry managment

A widget requests a certain size with the Tk_GeometryRequest procedure. If
it draws a border inside that area, it calls Tk_SetInternalBorder. The geome-
tery manager responds to these requests, although the widget may get a differ-
ent size. These are described in the GeomReq man page.

The Tk_ManageGeometry procedure sets up the relationship between the
geometry manager and a widget. This is described in the ManageGeom man page.

The Tk_MaintainGeometry arranges for one window to stay at a fixed posi-
tion relative to another widget. This is used by the place geometry manager. The
relationship is broken with the Tk_UnmaintainGeometry call. These are
described in the MaintGeom man page.

The Tk_SetGrid enabled gridded geometry management. The grid is turned
off with Tk_UnsetGrid. These are described in the SetGrid man page.

String identifiers (UIDS)

Tk maintains a database of string values such that a string only appears in
it once. The Tk_Uid type refers to such a string. You can test for equality by using
the value of Tk_Uid, which is the strings address, as an identifier. A Tk_Uid is
used as a name in the various GetByName calls introduced below. The Tk_GetUid

procedure installs a string into the registry. It is described in the GetUid man
page.

Colors and Colormaps

Use Tk_GetColor and Tk_GetColorByValue to allocate a color. You can
retrieve the string name of a color with Tk_NameOfColor. When you are done
using a color you need to call Tk_FreeColor. Colors are shared among widgets, so
it is important to free them when you are done using them. These are described
in the GetColor man page.

Use Tk_GetColormap and Tk_FreeColormap to allocate and free a colormap.
Colormaps are shared, if possible, so you should use these routines instead of the
lower-level X routines to allocate colormaps. These are described in the GetClr-

map man page.

368 C Programming and Tk Chap.30

Created: December 15, 1994 —CProgTk.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

The color model used by the screen can be set and queried with Tk_SetCol-

orModel and Tk_GetColorModel. For example, you can force a window into mono-
chrome mode when it runs on a color screen. These are described in the
SetCModel man page.

The window’s visual type is set with Tk_SetWindowVisual. This is described
in the SetVisual man page.

3D Borders

The three dimensional relief used for widget borders is supported by a col-
lection of routines described by the 3DBorder man page. The routines are
Tk_Get3DBorder, Tk_Draw3DRectangle, Tk_Fill3DRectangle, Tk_Draw3DPoly-

gon, Tk_Fill3DPolygon, Tk_3DVerticalBevel, Tk_3DHorizontalBevel, Tk_Set-
BackgroundFromBorder, Tk_NameOf3DBorder, Tk_3DBorderColor,
Tk_3DBorderGC, and Tk_Free3DBorder.

Mouse cursors

Allocate a cursor with Tk_GetCursor and Tk_GetCursorFromData. Map back
to the name of the cursor with Tk_NameOfCursor. Release the cursor resource
with Tk_FreeCursor. These are described in the GetCursor man page.

Font structures

Allocate a font with Tk_GetFontStruct. Get the name of a font with
Tk_NameOfFontStruct. Release the font with Tk_FreeFontStruct. These are
described in the GetFontStr man page.

Graphics Contexts

Allocate a graphics context with Tk_GetGC, and free it with Tk_FreeGC.
These are described in the GetGC man page.

Allocate a pixmap

Allocate and free pixmaps with Tk_GetPixmap and Tk_FreePixmap. These
are described in the GetPixmap man page.

Screen measurements

Translate between strings like 4c or 72p and screen distances with Tk_Get-

Pixels and Tk_GetScreenMM. The first call returns pixels (integers), the second
returns millimeters as a floating point number. These are described in the Get-

Pixels man page.

 An Overview of the Tk C library. 369

Created: December 15, 1994 —CProgTk.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Relief style

Translate between relief styles and names with Tk_GetRelief and
Tk_NameOfRelief. These are described in the GetRelief man page.

Text anchor positions

Translate between strings and anchor positions with Tk_GetAnchor and
Tk_NameOfAnchor. These are described in the GetAnchor man page.

Line cap styles

Translate between line cap styles and names with Tk_GetCapStyle and
Tk_NameOfCapStyle. These are described in the GetCapStyl man page.

Line join styles

Translate between line join styles and names with Tk_GetJoinStyle and
Tk_NameOfJoinStyle. These are described in the GetJoinStl man page.

Text justification styles

Translate between line justification styles and names with Tk_GetJustify

and Tk_NameOfJustify. These are described in teh GetJustify man page.

Atoms

An atom is an integer that references a string that has been registered with
the X server. Tk maintians a cache of the atom registry to avoid contacting the X
server when atoms are used. Use Tk_InternAtom to install an atom in the regis-
try, and Tk_GetAtomName to return the name given an atom. These are described
by the InternAtom man page.

X resource ID management

Each X resource like a color or pixmap has a resource ID associated with it.
The Tk_FreeXId call releases an ID so it can be reused. This is used, for example,
by routines like Tk_FreeColor and Tk_FreePixmap. It is described in the FreeXId

man page.

370 C Programming and Tk Chap.30

Created: December 15, 1994 —CProgTk.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

371

C H A P T E R

Created: December 15, 1994 —CTkWidget.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

 31

Writing a Tk Widget in C 31

This chapter describes in the implementation of a simple clock widget.

A custom widget implemented in C has
the advantage of being effecient and flexible. However, it is more work, too. This
chapter illustrates the effort by explaining the implementation of a clock widget.

Implementing a New Widget

This section describes the implementation of a clock Tk widget. This is just a dig-
ital clock that displays the current time according to a format string. The format-
ing is done by the strftime library, so you can use any format supported by that
routine. The default format is %H:%M:%S, which results in 16:23:45.

 The implementation of a widget includes several parts.

• A data structure to describe one instance of the widget.
• A set of configuration options for the widget.
• A command procedure to create a new instance of the widget.
• A command procedure ot operate on an instance of the widget.
• A configuration procedure used when creating and reconfiguring the widget.
• An event handling procedure.
• A display procedure.
• Other widget-specific procedures.

372 Writing a Tk Widget in C Chap.31

Created: December 15, 1994 —CTkWidget.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

The Widget Data Structure

Each widget is associated with a data structure that describes it. Any wid-
get structure will need a pointer to the Tcl interpreter, the Tk window, and the X
display. The interpreter is used in many of the Tcl and Tk library calls, and it
provides a way to call out to the script or query and set Tcl variables. The Tk
window is needed for various Tk operations, and the X display is used when
doing low-level graphic operations. The rest of the information in the data struc-
ture depends on the widget. The structure for the clock widget is given below.
The different types will be explained as they are used in the rest of the code.

Example 31–1 The Clock widget data structure.

#include "tkPort.h"
#include "tk.h"

typedef struct {
Tk_Window tkwin; /* The window for the widget */
Display *display; /* X’s handle on the display */
Tcl_Interp *interp; /* Interpreter of the widget */
/*
 * Clock-specific attributes.
 */
int borderWidth; /* Size of 3-D border */
int relief; /* Style of 3-D border */
Tk_3DBorder background;/* Color for border, background */
XColor *foreground; /* Color for the text */
XColor *highlight; /* Color for the highlight */
int highlightWidth; /* Thickness of highlight rim */
XFontStruct *fontPtr; /* Font info for the text */
char *format; /* Format for the clock text */
/*
 * Graphic contexts and other support.
 */
GC highlightGC; /* Highlight graphics context */
GC textGC; /* Text graphics context */
Tk_TimerToken token; /* For periodic callbacks */
char *clock; /* Pointer to the clock string */
int numChars; /* in the text */
int textWidth; /* in pixels */
int textHeight; /* in pixels */
int flags; /* Flags defined below */

} Clock;
/*
* Flag bit definitions.
*/
#define REDRAW_PENDING 0x1
#define GOT_FOCUS 0x2
#define TICKING 0x4

 Specifying Widget Attributes 373

Created: December 15, 1994 —CTkWidget.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Specifying Widget Attributes

Several of the fields in the Clock structure are attributes that can be set
when the widget is create or reconfigured with the configure operation. The
default values, their resource names, and their class names are specified with an
array of Tk_ConfigSpec records, and this array is processed by the Tk_Config-

ureWidget operation. The specifications for the Clock structure are given in the
next example.

Example 31–2 Configuration specs for the clock widget.

static Tk_ConfigSpec configSpecs[] = {
{TK_CONFIG_BORDER, "-background", "background",

"Background","light blue",
Tk_Offset(Clock, background), TK_CONFIG_COLOR_ONLY},

{TK_CONFIG_BORDER, "-background", "background",
"Background","white", Tk_Offset(Clock, background),
TK_CONFIG_MONO_ONLY},

{TK_CONFIG_SYNONYM, "-bg", "background", (char *) NULL,
(char *) NULL, 0, 0},

{TK_CONFIG_SYNONYM, "-bd", "borderWidth", (char *) NULL,
(char *) NULL, 0, 0},

{TK_CONFIG_PIXELS, "-borderwidth", "borderWidth",
"BorderWidth","2", Tk_Offset(Clock, borderWidth), 0},

{TK_CONFIG_RELIEF, "-relief", "relief", "Relief",
"ridge", Tk_Offset(Clock, relief), 0},

{TK_CONFIG_COLOR, "-foreground", "foreground",
"Foreground","black", Tk_Offset(Clock, foreground),
0},

{TK_CONFIG_SYNONYM, "-fg", "foreground", (char *) NULL,
(char *) NULL, 0, 0},

{TK_CONFIG_COLOR, "-highlightcolor", "highlightColor",
"HighlightColor","red", Tk_Offset(Clock, highlight),
TK_CONFIG_COLOR_ONLY},

{TK_CONFIG_COLOR, "-highlightcolor", "highlightColor",
 "HighlightColor","black",
Tk_Offset(Clock, highlight),TK_CONFIG_MONO_ONLY},

{TK_CONFIG_PIXELS, "-highlightthickness",
"highlightThickness","HighlightThickness",
"2", Tk_Offset(Clock, highlightWidth), 0},

{TK_CONFIG_STRING, "-format", "format", "Format",
"%H:%M:%S", Tk_Offset(Clock, format), 0},

{TK_CONFIG_FONT, "-font", "font", "Font",
"*courier-medium-r-normal-*-18-*",
 Tk_Offset(Clock, fontPtr), 0},

{TK_CONFIG_END, (char *) NULL, (char *) NULL,
 (char *) NULL, (char *) NULL, 0, 0}

374 Writing a Tk Widget in C Chap.31

Created: December 15, 1994 —CTkWidget.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

};

The initial field is a type, such as TK_CONFIG_BORDER. Colors and borders
will be explained shortly. The next field is the command line flag for the
attribute, e.g. -background. Then comes the resource name and the class name.
The default value is next, e.g., light blue. The offset of a structure member is
next, and the Tk_Offset macro is used to compute this offset. The last field is a
bitmask fo flags. The two used in this example are TK_CONFIG_COLOR_ONLY and
TK_CONFIG_MONO_ONLY, which restrict the application of the configuration setting
to color and monochrome displays, respectively. You can define additional flags
and pass them into Tk_ConfigureWidget if you have a family of widgets that
share most, but not all, of their attributes. The tkButton.c file in the Tk sources
has an example of this.

Table 31–1 lists the correspondence bewtween the configuration type
passed Tk_ConfigureWidget and the type of the associated field in the widget
data structure. The complete details are given in the ConfigWidg man page.
Some of the table entries reference a Tk procedure like Tk_GetCapStyle. In
those cases an integer-valued field takes on a few limited values that are
described in the man page for that procedure.

Table 31–1 Configuration flags and corresponding C types.

TK_CONFIG_ACTIVE_CURSOR Cursor

TK_CONFIG_ANCHOR Tk_Anchor

TK_CONFIG_BITMAP Pixmap

TK_CONFIG_BOOLEAN int (0 or 1)

TK_CONFIG_BORDER Tk_3DBorder *

TK_CONFIG_CAP_STYLE int (see Tk_GetCapStyle)

TK_CONFIG_COLOR XColor *

TK_CONFIG_CURSOR Cursor

TK_CONFIG_CUSTOM

TK_CONFIG_DOUBLE double

TK_CONFIG_END (signals end of options)

TK_CONFIG_FONT XFontStruct *

TK_CONFIG_INT int

TK_CONFIG_JOIN_STYLE int (see Tk_GetJoinStyle)

TK_CONFIG_JUSTIFY Tk_Justify

TK_CONFIG_MM double

TK_CONFIG_PIXELS int

 The Widget Class Command 375

Created: December 15, 1994 —CTkWidget.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

The Widget Class Command

The Tcl command that creates an instance of a widget is known as the class
command. In our example, the clock command creates a clock widget. The com-
mand procedure for the clock command is shown below. The procedure allocates
the Clock data structure. It registers an event handler that gets called when the
widget is exposed, resized, or gets focus. It creates a new Tcl command that oper-
ates on the wiget. Finally, it calls ClockConfigure to set up the widget according
to the attributes specified on the command line and the default configuration
specifications.

Example 31–3 The ClockCmd command procedure.

int
ClockCmd(clientData, interp, argc, argv)

ClientData clientData; /* Main window of the app */
Tcl_Interp *interp; /* Current interpreter. */
int argc; /* Number of arguments. */
char **argv; /* Argument strings. */

{
Tk_Window main = (Tk_Window) clientData;
Clock *clockPtr;
Tk_Window tkwin;

if (argc < 2) {
Tcl_AppendResult(interp, "wrong # args: should be '",

 argv[0], " pathName ?options?'", (char *) NULL);
return TCL_ERROR;

}
tkwin = Tk_CreateWindowFromPath(interp, main,

 argv[1], (char *) NULL);
if (tkwin == NULL) {

return TCL_ERROR;
}
Tk_SetClass(tkwin, "Clock");
/*
 * Allocate and initialize the widget record.
 */
clockPtr = (Clock *) ckalloc(sizeof(Clock));
clockPtr->tkwin = tkwin;
clockPtr->display = Tk_Display(tkwin);

TK_CONFIG_RELIEF int (see Tk_GetRelief)

TK_CONFIG_STRING char *

TK_CONFIG_SYNONYM (alias for other option)

TK_CONFIG_UID Tk_Uid

TK_CONFIG_WINDOW Tk_Window

Table 31–1 Configuration flags and corresponding C types.

376 Writing a Tk Widget in C Chap.31

Created: December 15, 1994 —CTkWidget.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

clockPtr->interp = interp;
clockPtr->borderWidth = 0;
clockPtr->highlightWidth = 0;
clockPtr->relief = TK_RELIEF_FLAT;
clockPtr->background = NULL;
clockPtr->foreground = NULL;
clockPtr->highlight = NULL;
clockPtr->fontPtr = NULL;
clockPtr->textGC = None;
clockPtr->highlightGC = None;
clockPtr->token = NULL;
clockPtr->clock = NULL;
clockPtr->numChars = 0;
clockPtr->textWidth = 0;
clockPtr->textHeight = 0;
clockPtr->flags = 0;
/*
 * Register a handler for when the window is
 * exposed or resized.
 */
Tk_CreateEventHandler(clockPtr->tkwin,

ExposureMask|StructureNotifyMask|FocusChangeMask,
ClockEventProc, (ClientData) clockPtr);

/*
 * Create a Tcl command that operates on the widget.
 */
Tcl_CreateCommand(interp, Tk_PathName(clockPtr->tkwin),

ClockInstanceCmd,
(ClientData) clockPtr, (void (*)()) NULL);

/*
 * Parse the command line arguments.
 */
if (ClockConfigure(interp, clockPtr,

 argc-2, argv+2, 0) != TCL_OK) {
Tk_DestroyWindow(clockPtr->tkwin);
return TCL_ERROR;

}
interp->result = Tk_PathName(clockPtr->tkwin);
return TCL_OK;

}

Widget Instance Command

For each instance of a widget a new command is created that operates on
that widget. This is called the widget instance command. Its name is the same as
the Tk pathname of the widget. In the clock example, all that is done on
instances is to query and change their attributes. Most of the work is done by
Tk_ConfigureWidget and ClockConfigure, which is shown in the next section.
The ClockInstanceCmd command procedure is shown in the next exmaple.

 Widget Instance Command 377

Created: December 15, 1994 —CTkWidget.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Example 31–4 The ClockInstanceCmd command procedure.

static int
ClockInstanceCmd(clientData, interp, argc, argv)

ClientData clientData; /* A pointer to a Clock struct */
Tcl_Interp *interp; /* The interpreter */
int argc; /* The number of arguments */
char *argv[]; /* The command line arguments */

{
Clock *clockPtr = (Clock *)clientData;
int result = TCL_OK;
char c;
int length;

if (argc < 2) {
Tcl_AppendResult(interp, "wrong # args: should be '",

argv[0], " option ?arg arg ...?'", (char *) NULL);
return TCL_ERROR;

}
c = argv[1][0];
length = strlen(argv[1]);
if ((c == ’c’) && (strncmp(argv[1], "cget", length) == 0)

&& (length >= 2)) {
if (argc != 3) {

Tcl_AppendResult(interp,
 "wrong # args: should be '",
argv[0], " cget option'",
(char *) NULL);

return TCL_ERROR;
}
result = Tk_ConfigureValue(interp, clockPtr->tkwin,

 configSpecs, (char *) clockPtr, argv[2], 0);
} else if ((c == ’c’) &&

(strncmp(argv[1], "configure", length) == 0)
&& (length >= 2)) {

if (argc == 2) {
/*
 * Return all configuration information.
 */
result = Tk_ConfigureInfo(interp, clockPtr->tkwin,

configSpecs, (char *) clockPtr,
(char *) NULL,0);

} else if (argc == 3) {
/*
 * Return info about one attribute, like cget.
 */
result = Tk_ConfigureInfo(interp, clockPtr->tkwin,

configSpecs, (char *) clockPtr, argv[2], 0);
} else {

/*
 * Change one or more attributes.
 */
result = ClockConfigure(interp, clockPtr, argc-2,

argv+2,TK_CONFIG_ARGV_ONLY);
}

378 Writing a Tk Widget in C Chap.31

Created: December 15, 1994 —CTkWidget.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

} else {
Tcl_AppendResult(interp, "bad option '", argv[1],

"': must be cget, configure, position, or size",
(char *) NULL);

return TCL_ERROR;
}
return result;

}

Configuring And Reconfiguring Attributes

When the widget is created or reconfigured, then the implementation needs
to allocate the resources implied by the attribute settings. Each clock widget
uses some colors and a font. These are described by graphics contexts. A graphic
context is used by X to parameterize graphic operations. Instead of specifying
every possible attribute in the X calls, a graphics context is initialized with a
subset of the parameters and this is passed into the X drawing commands. The
context can specify the foreground and background colors, clip masks, line styles,
and so on. In the example, two different graphics contexts are used, one for the
highlight rectangle and one for the text and background. They use different col-
ors, so different contexts are needed. The graphics contexts are allocated once
and reused each time the widget is displayed.

There are two kinds of color resources used by the widget. The focus high-
light and the text foreground are simple colors. The background is a Tk_3DBor-
der, which is a set of colors used to render 3D borders. The background color is
specified in the attribute, and the other colors are computed based on that color.
The code uses Tk_3DBorderColor to map back to the originial color for use in the
background of the widget.

After the resources are set up, a call to redisplay the widget is scheduled for
the next idle period. This is a standard idiom for Tk widgets. It means that you
can create and reconfigure a widget in the middle of a script, and all the changes
only result in one redisplay. The REDRAW_PENDING flag is used to ensure that only
one redisplay is queued up at any time. The ClockConfigure procedure is shown
in the next example.

Example 31–5 ClockConfigure allocates resources for the widget.

static int
ClockConfigure(interp, clockPtr, argc, argv, flags)

Tcl_Interp *interp;/* Needed for return values and errors
*/

Clock *clockPtr; /* The per-instance data structure */
int argc; /* Number of valid entries in argv */
char *argv[]; /* The command line arguments */
int flags; /* Tk_ConfigureClock flags */

{
XGCValues gcValues;

 Configuring And Reconfiguring Attributes 379

Created: December 15, 1994 —CTkWidget.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

GC newGC;

/*
 * Tk_ConfigureWidget parses the command line arguments
 * and looks for defaults in the resource database.
 */
if (Tk_ConfigureWidget(interp, clockPtr->tkwin,

configSpecs, argc, argv, (char *) clockPtr, flags)
!= TCL_OK) {

return TCL_ERROR;
}
/*
 * Give the widget a default background so it doesn’t get
 * a random background between the time it is initially
 * displayed by the X server and we paint it
 */
Tk_SetWindowBackground(clockPtr->tkwin,

Tk_3DBorderColor(clockPtr->background)->pixel);
/*
 * Set up the graphics contexts to display the widget.
 * These contexts are all used to draw off-screen
 * pixmaps, so turn off exposure notifications.
 */
gcValues.graphics_exposures = False;
gcValues.background = clockPtr->highlight->pixel;
newGC = Tk_GetGC(clockPtr->tkwin,

GCBackground|GCGraphicsExposures, &gcValues);
if (clockPtr->highlightGC != None) {

Tk_FreeGC(clockPtr->display, clockPtr->highlightGC);
}
clockPtr->highlightGC = newGC;

gcValues.background =
Tk_3DBorderColor(clockPtr->background)->pixel;

gcValues.foreground = clockPtr->foreground->pixel;
gcValues.font = clockPtr->fontPtr->fid;
newGC = Tk_GetGC(clockPtr->tkwin,

GCBackground|GCForeground|GCFont|GCGraphicsExposures,
&gcValues);

if (clockPtr->textGC != None) {
Tk_FreeGC(clockPtr->display, clockPtr->textGC);

}
clockPtr->textGC = newGC;

/*
 * Determine how big the widget wants to be.
 */
ComputeGeometry(clockPtr);

/*
 * Set up a call to display ourself.
 */
if ((clockPtr->tkwin != NULL) &&

 Tk_IsMapped(clockPtr->tkwin)
&& !(clockPtr->flags & REDRAW_PENDING)) {

380 Writing a Tk Widget in C Chap.31

Created: December 15, 1994 —CTkWidget.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Tk_DoWhenIdle(ClockDisplay, (ClientData) clockPtr);
clockPtr->flags |= REDRAW_PENDING;

}
return TCL_OK;

}

Displaying The Clock

There are two parts to a widget’s display. First the size must be determined.
This is done at configuration time, and then that space is requested from the
geometry manager. When the widget is later displayed, it should use the
Tk_Width and Tk_Height calls to find out how much space it was actually allo-
cated by the geometry manager. The next example shows ComputeGeometry.

Example 31–6 ComputeGeometry figures out how big the widget is.

static void
ComputeGeometry(Clock *clockPtr)
{

int width, height;
struct tm *tmPtr; /* Time info split into fields */
struct timeval tv; /* BSD-style time value */
int offset = clockPtr->highlightWidth +

clockPtr->borderWidth
+ 2; /* Should be padX attribute */

char clock[1000];

/*
 * Get the time and format it to see how big it will be.
 * gettimeofday returns the current time.
 * localtime parses this into day, hour, etc.
 * strftime formats this into a string according to
 * a format. By default we use %H:%M:%S
 */
gettimeofday(&tv, NULL);
tmPtr = localtime(&tv.tv_sec);
strftime(clock, 1000, clockPtr->format, tmPtr);
if (clockPtr->clock != NULL) {

ckfree(clockPtr->clock);
}
clockPtr->clock = ckalloc(1+strlen(clock));
clockPtr->numChars = strlen(clock);
/*
 * Let Tk tell us how big the string will be.
 */
TkComputeTextGeometry(clockPtr->fontPtr, clock,

clockPtr->numChars, 0, &clockPtr->textWidth,
&clockPtr->textHeight);

width = clockPtr->textWidth + 2*offset;
height = clockPtr->textHeight + 2*offset;
/*

 Displaying The Clock 381

Created: December 15, 1994 —CTkWidget.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

 * Request size and border from the geometry manager.
 */
Tk_GeometryRequest(clockPtr->tkwin, width, height);
Tk_SetInternalBorder(clockPtr->tkwin, offset);

}

Finally we get to the actual display of the widget! The routine is careful to
check that the widget still exists and is mapped. This is important because the
redisplay is scheduled asynchronously. The current time is converted to a string.
This uses library procedures that exist on SunOS. There might be different rou-
tines on your system. The string is painted into a pixmap, which is a drawable
region of memory that is off-screen. After the whole display has been painted,
the pixmap is copied into on-screen memory to avoid flickering as the image is
cleared and repainted. The text is painted first, then the borders. This ensures
that the borders overwrite the text if the widget has not been allocated enough
room by the geometry manager.

This example allocates and frees the off-screen pixmap for each redisplay.
This is the standard idiom for Tk widgets. They temporarily allocate the off-
screen pixmap each time they redisplay. In the case of a clock that updates every
second, it might be reasonable to permanently allocate the pixmap and store its
pointer in the Clock data structure. Make sure to reallocate the pixmap if the
size changes.

After the display is finished, another call to the display routine is scheduled
to happen in one second. If you were to embellish this widget, you might want to
make the uptime period a paramter. The TICKING flag is used to note that the
timer callback is scheduled. It is checked when the widget is destroyed so that
the callback can be canceled. The next example shows ClockDisplay.

Example 31–7 The ClockDisplay procedure.

static void
ClockDisplay(ClientData clientData)
{

Clock *clockPtr = (Clock *)clientData;
Tk_Window tkwin = clockPtr->tkwin;
Pixmap pixmap;
int offset, x, y;
struct tm *tmPtr;/* Time info split into fields */
struct timeval tv;/* BSD-style time value */
/*
 * Make sure the button still exists
 * and is mapped onto the display before painting.
 */
clockPtr->flags &= ~(REDRAW_PENDING|TICKING);
if ((clockPtr->tkwin == NULL) || !Tk_IsMapped(tkwin)) {

return;
}
/*
 * Format the time into a string.
 * localtime chops up the time into fields.

382 Writing a Tk Widget in C Chap.31

Created: December 15, 1994 —CTkWidget.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

 * strftime formats the fields into a string.
 */
gettimeofday(&tv, NULL);
tmPtr = localtime(&tv.tv_sec);
strftime(clockPtr->clock, clockPtr->numChars+1,

clockPtr->format, tmPtr);
/*
 * To avoid flicker when the display is updated, the new
 * image is painted in an offscreen pixmap and then
 * copied onto the display in one operation.
 */
pixmap = Tk_GetPixmap(clockPtr->display,

Tk_WindowId(tkwin),Tk_Width(tkwin),
Tk_Height(tkwin), Tk_Depth(tkwin));

Tk_Fill3DRectangle(clockPtr->display, pixmap,
clockPtr->background, 0, 0, Tk_Width(tkwin),
Tk_Height(tkwin), 0, TK_RELIEF_FLAT);

/*
 * Paint the text first.
 */
offset = clockPtr->highlightWidth +

clockPtr->borderWidth;
x = (Tk_Width(tkwin) - clockPtr->textWidth)/2;
if (x < 0) x = 0;
y = (Tk_Height(tkwin) - clockPtr->textHeight)/2;
if (y < 0) y = 0;

TkDisplayText(clockPtr->display, pixmap,
clockPtr->fontPtr, clockPtr->clock,
clockPtr->numChars, x, y, clockPtr->textWidth,
TK_JUSTIFY_CENTER, -1, clockPtr->textGC);

/*
 * Display the borders, so they overwrite any of the
 * text that extends to the edge of the display.
 */
if (clockPtr->relief != TK_RELIEF_FLAT) {

Tk_Draw3DRectangle(clockPtr->display, pixmap,
clockPtr->background, clockPtr->highlightWidth,
clockPtr->highlightWidth,
Tk_Width(tkwin) - 2*clockPtr->highlightWidth,
Tk_Height(tkwin) - 2*clockPtr->highlightWidth,
clockPtr->borderWidth, clockPtr->relief);

}
if (clockPtr->highlightWidth != 0) {

GC gc;
if (clockPtr->flags & GOT_FOCUS) {

gc = clockPtr->highlightGC;
} else {

gc = Tk_3DBorderGC(clockPtr->background,
TK_3D_FLAT_GC);

}
TkDrawFocusHighlight(tkwin, gc,

clockPtr->highlightWidth, pixmap);
}
/*

 The Window Event Procedure 383

Created: December 15, 1994 —CTkWidget.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

 * Copy the information from the off-screen pixmap onto
 * the screen, then delete the pixmap.
 */
XCopyArea(clockPtr->display, pixmap, Tk_WindowId(tkwin),

clockPtr->textGC, 0, 0, Tk_Width(tkwin),
Tk_Height(tkwin), 0, 0);

Tk_FreePixmap(clockPtr->display, pixmap);
/*
 * Queue another call to ourselves.
 */
clockPtr->token = Tk_CreateTimerHandler(1000,

ClockDisplay, (ClientData)clockPtr);
clockPtr->flags |= TICKING;

}

The Window Event Procedure

Each widget registers an event handler for expose and resize events. If it
implements and focus highlight, it also needs to be notified of focus events. If you
have used other toolkits, you may expect to register callbacks for mouse and key-
stroke events too. You shouldn’t have to do that. Instead, use the regular Tk bind
facility and define your bindings in Tcl. That way they can be customized by
applications.

Example 31–8 The ClockEventProc handles window events.

static void
ClockEventProc(ClientData clientData, XEvent *eventPtr)
{

Clock *clockPtr = (Clock *) clientData;
if ((eventPtr->type == Expose) &&

(eventPtr->xexpose.count == 0)) {
goto redraw;

} else if (eventPtr->type == DestroyNotify) {
Tcl_DeleteCommand(clockPtr->interp,

Tk_PathName(clockPtr->tkwin));
/*
 * Zapping the tkwin lets the other procedures
 * know we are being destroyed.
 */
clockPtr->tkwin = NULL;
if (clockPtr->flags & REDRAW_PENDING) {

Tk_CancelIdleCall(ClockDisplay,
(ClientData) clockPtr);

clockPtr->flags &= ~REDRAW_PENDING;
}
if (clockPtr->flags & TICKING) {

Tk_DeleteTimerHandler(clockPtr->token);
clockPtr->flags &= ~TICKING;

}
/*

384 Writing a Tk Widget in C Chap.31

Created: December 15, 1994 —CTkWidget.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

 * This results in a call to ClockDestroy.
 */
Tk_EventuallyFree((ClientData) clockPtr,

ClockDestroy);
} else if (eventPtr->type == FocusIn) {

if (eventPtr->xfocus.detail != NotifyPointer) {
clockPtr->flags |= GOT_FOCUS;
if (clockPtr->highlightWidth > 0) {

goto redraw;
}

}
} else if (eventPtr->type == FocusOut) {

if (eventPtr->xfocus.detail != NotifyPointer) {
clockPtr->flags &= ~GOT_FOCUS;
if (clockPtr->highlightWidth > 0) {

goto redraw;
}

}
}
return;

redraw:
if ((clockPtr->tkwin != NULL) &&

!(clockPtr->flags & REDRAW_PENDING)) {
Tk_DoWhenIdle(ClockDisplay, (ClientData) clockPtr);
clockPtr->flags |= REDRAW_PENDING;

}
}

Final Cleanup

When a widget is destroyed you need to free up any resources it has allo-
cated. The resources associated with attributes are cleaned up by Tk_FreeOp-

tions. The others you must take care of yourself. The ClockDestroy procedure is
called as a result fo the Tk_EventuallyFree call in the ClockEventProc. The
Tk_EventuallyFree procedure is part of a protocol that is needed for widgets
that might get deleted when in the middle of processing. Typically the Tk_Pre-

serve and Tk_Release procedures are called at the beginning and end of the wid-
get instance command to mark the widget as being in use. Tk_EventuallyFree
will wait until Tk_Release is called before calling the cleanup procedure. The
next example shows ClockDestroy.

Example 31–9 The ClockDestroy cleanup procedure.

static void
ClockDestroy(clientData)
 ClientData clientData;/* Info about entry widget. */
{

register Clock *clockPtr = (Clock *) clientData;

/*

 Final Cleanup 385

Created: December 15, 1994 —CTkWidget.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

 * Free up all the stuff that requires special handling,
 * then let Tk_FreeOptions handle resources associated
 * with the widget attributes.
 */
if (clockPtr->highlightGC != None) {

Tk_FreeGC(clockPtr->display, clockPtr->highlightGC);
}
if (clockPtr->textGC != None) {

Tk_FreeGC(clockPtr->display, clockPtr->textGC);
}
if (clockPtr->clock != NULL) {

ckfree(clockPtr->clock);
}
if (clockPtr->flags & TICKING) {

Tk_DeleteTimerHandler(clockPtr->token);
}
if (clockPtr->flags & REDRAW_PENDING) {

Tk_CancelIdleCall(ClockDisplay,
(ClientData) clockPtr);

}
/*
 * This frees up colors and fonts and any allocated
 * storage associated with the widget attributes.
 */
Tk_FreeOptions(configSpecs, (char *) clockPtr,

clockPtr->display, 0);
ckfree((char *) clockPtr);

}

386 Writing a Tk Widget in C Chap.31

Created: December 15, 1994 —CTkWidget.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

387

C H A P T E R

Created: January 6, 1995 —Extensions.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

 32

Tcl Extension Packages 32

This chapter surveys a few of the more popular Tcl extension packages.

Extension packages add suites of Tcl com-
mands, usually as a combination of new built-in commands written in C and
associated Tcl procedures. Some extensions provide new Tk widgets and geome-
try managers. This chapter surveys a few of the more popular extensions. Some
are complex enough to deserve their own book, so this chapter is just meant to
give you a feel for what these packages have to offer. For the details, you will
have to consult the documentation that comes with the packages. This chapter
briefly describes the following packages.

• Extended Tcl adds commands that provide access to more Unix libraries and
system calls. It adds new list operations and new loop constructs. It adds
profiling commands so you can analyze the performance of your Tcl scripts.

• Expect adds commands that let you control interactive programs. Programs
that insist on having a conversation with a user can be fooled by expect into
doing work for you automatically.

• Tcl debugger. Part of the Expect package includes a small Tcl debugger that
lets you set breakpoints and step through scripts.

• Tcl-dp adds commands that set up network connections among Tcl inter-
preters. You can set up distributed systems using Tcl-dp.

• BLT provides a table geometry manager for Tk, a graph widget, and more.
• [incr tcl] provides an object system for Tcl. The scope for variables and pro-

cedures can be limited by using classes, and multiple inheritence can be

388 Tcl Extension Packages Chap.32

Created: January 6, 1995 —Extensions.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

used to set up a class hierarchy. The Tk-like interface with attributes and
values is well supported by the package so you can create mega-widgets
that look and feel like native Tk widgets to the programmer.
There are many more extentions available on the internet, and there is not

enough time or space to describe even these extentions in much detail. This
chapter provides a few tips on how to integrate these extensions into your appli-
cation and what they can provide for you.

Extended Tcl

Extended Tcl, or tclX, provides many new built-in commands and support proce-
dures. It provides access to more UNIX system calls and librarys, and it provides
tools that are useful for developing large Tcl applications. Over time, features
from tclX have been adopted by Ousterhout for use in the core language. For
example, arrays and the addinput command originated from tclX.

The tclX extension is a little different from other applications because it
assumes a more fundamental role. It provides its own script library mechanism,
which is described in more detail below, and its own interactive shell. The ext-
neded Tcl shell is normally installed as tcl, and the Extended Tcl/Tk shell is nor-
mally installed as wishx.

There is one main manual page for tclX that describes all the commands
and Tcl procedures provided by the package. The system also comes with a built-
in help system so you can easily browse the man pages for standard Tcl and
Extended tcl. The tclhelp program provides a graphical interface to the help sys-
tem, or use the help command when running under the Extended Tcl shell, tcl.

Extended Tcl was designed and implemented by Karl Lehenbauer and
Mark Diekhans, with help in the early stages from Peter da Silva. Extended Tcl
is freely redistributable, including for commercial use and resale. You can fetch
the tclX distribution from the following FTP site:

ftp.neosoft.com:/pub/tcl/distrib/tclX7.4a.tar.gz

Adding tclX to your application

TclX has a different script library mechanism that makes integrating it into
your application a little different that other extension packages. The main thing
is that you need to call TclX_Init in your Tcl_AppInit procedure, not the stan-
dard Tcl_Init procedure. A version of the tclAppInit.c that is oriented
towards Extended Tcl is provided with its distribution. The tclX library facility
can read the tclIndex files of the standard library mechanism, so you can still
use other packages.

It is possible, but rather awkward, to use the tclX commands and proce-
dures with the standard library mechanism, which is described in Chapter 9.
Instead of calling TclX_Init, you call TclXCmd_Init that only registers the built-
in commands provided by TclX. However, gaining access to the Tcl procedures

 Extended Tcl 389

Created: January 6, 1995 —Extensions.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

added by tclX is awkward because tclX insists on completely overriding the stan-
dard tcl library. It goes so far as to change the result of the info library call if
you use its script library mechanism. This means that you can use one library
directory or the other, but not both at the same time. You will have to copy the
tcl.tlib file out of the tclX library directory into another location, or teach your
application where to find it. It is probably easiest to use the tclX library system if
you are using Extended Tcl.

More UNIX system calls

Extended Tcl provides several UNIX-related commands. Most of the follow-
ing should be familar to a UNIX programmer: alarm, chgrp, chmod, chown,
chroot, convertclock, dup, execl, fmtclock, fork, getclock, kill, link, mkdir,
nice, pipe, readdir, rmdir, select, signal, sleep, system, sync, times, umask,
unlink, and wait. The id command provides several operation on user, group,
and process IDs.

File operations

The bsearch command does a binary search of a sorted file. The copyfile

command copies a file, and frename changes the name of a file. Low level file con-
trols are provided with fcntl, flock, funlock, and fstat. Use lgets to read the
next complete Tcl list into a list varible. The read_file and write_file com-
mands provide basic I/O operations. The recusrive_glob command matches file
names in a directory hierarchy.

New loop constructs

The loop command is an optimized version of the for loop that works with
constant start, end, and increment values. The for_array_keys command loops
over the contents of an array. The for_recursive_glob command loops over file
names that match a pattern. The for_file command loops over lines in a file.

Command line addons

A script can explicitly enter an interactive command loop with the com-

mandloop command. The echo command makes it easy to print values. The dirs,
pushd, and popd commands provide a stack of working directories. The infox

command provides information like the application name, the version nubmer,
and so on.

Debugging and development support

The cmdtrace procedure shows what commands are being executed. The
profile command sets up a profile of the CPU time used by each procedure or
command. The profile results are formatted with the profrep command. Use

390 Tcl Extension Packages Chap.32

Created: January 6, 1995 —Extensions.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

showprocs to display a procedure definition, edprocs to bring up an editor on a
procedure, and saveprocs to save procedure definitions to a file.

TCP/IP access

The server_info command returns name, address, and alias information
about servers. The server_open command opens a TCP socket to specified host
and port. The fstat remotehost command returns the IP address of the remote
peer if the file is an open socket. Once a socket is opened, it can be read and writ-
ten with the regular file I/O commands, and select can be used to wait for the
socket to be ready for I/O.

File scanning (i.e., awk)

You can search for patterns in files and then execute commands when lines
match those patterns. This provides a similar sort of functionality as awk. The
process starts by defining a context with the scancontext command. The scan-

match command registers patterns and commands. The scanfile command
reads a file and does matching according to a context. When a line is matched,
information is placed into the matchInfo array for use by the associated com-
mand.

Math functions as commands

Procedures are defined that let you use the math functions as command
names. The commands are implemented like this.

proc sin {x} { uplevel [list expr sin($x)] }

List operations

New built-in list operations are provided. The lvarpop command removes
an element from a list and returns its value, which is useful for processing com-
mand line arguments. The lvarpush command is similar to linsert. The las-

sign command assigns a set of variables values from a list. The lmatch command
returns all the elements of a list that match a pattern. The lempty command is a
shorthand for testing the list length against zero. The lvarcat command is simi-
lar to the lappend command.

There are four procedures that provide higher level list operations. The
intersect procedure returns the common elements of two lists. The intersect3

procedure returns three lists: the elements only in the first list, the elements in
both lists, and the elements only in the second list. The union procedure merges
to lists. The lrmdups procedure removes duplicates from a list.

Keyed list data structure

A keyed list is a list where each element is a key-value pair. The value can

 Expect: Controlling Interactive Programs 391

Created: January 6, 1995 —Extensions.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

also be a keyed list, leading to a recursive data structure. Extended Tcl provides
built-in support to make accessing keyed lists efficient. The keylset command
sets the value associated with a key. The keylkeys returns a list of the keys in a
keyed list. The keylget command returns the value associated with a key. The
keyldel command deletes a key-value pair.

String utilities

Several built-in commands provide the same function as uses of the string

command. The cequal command is short for checking string compare with zero.
The clength command is short for string length. The crange command is short
for string range. The cindex command is short for string index. The collate

command is short for string compare, plus it has locale support for different
character sets. Because these are built-in commands, they are faster that writing
Tcl procedures to obtain the shorthand, and a tiny bit faster than the string

command because there is less argument checking.
The ctype command provides several operations on strings, such as check-

ing for spaces, alphanumberics, and digits. It can also convert between charac-
ters and their ordinal values.

The cexpand command expands backslash sequences in a string. The rep-

licat command creates copies of a string. The translit command maps charac-
ters in a string to new values in a similar fashion as the UNIX tr program.

XPG/3 message catalog

The XPG/3 message catalog supports internationalization of your program.
You build a catalog that has messages in different languages. The catopen com-
mand returns a handle on a catalog. The catgets command takes a default
string, looks for it in the catalog, and returns the right string for the current
locale setting. The catclose command closes the handle on the catalog.

Memory debugging

Extended Tcl provides both C library hooks to help you debug memory prob-
lems, and a Tcl interface that dumps out a map of how your dynamic memory
arena is being used. Consult the Memory man page that comes with TclX for
details.

Expect: Controlling Interactive Programs

Expect gives you control over interactive programs. For example, you can have
two instances of the chess program play each other. More practical applications
include automated access to FTP sites or navigation through network firewalls.
If you are stuck with a program that does something useful but insists on an
interactive interface, then you can automate its use with expect. It provides

392 Tcl Extension Packages Chap.32

Created: January 6, 1995 —Extensions.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

sophisticated control over processes and UNIX pseudo-terminals, so you can do
things with expect that you just cannot do with ordinary shell scripts.

The expect shell program includes the core Tcl commands and the addi-
tional expect commands. The expectk shell also includes Tk, so you can have a
graphical interface. If you have a custom C program you can include the expect
commands by linking in its C library, libexpect.a. You can use the C interface
directly, but in nearly all cases you will find it easier to drive expect (and the rest
of your application) from Tcl.

The expect package was designed and implemented by Don Libes. Histori-
cally it is the first extension package. Libes wrote the intial version in about two
weeks after he first heard about Tcl. He had long wanted to write something like
expect, and Tcl provided just the infrastructure that he needed to get started. By
now the expect package is quite sophisticated. Libes has an excellent book about
Expect, Exploring Expect, published by O’Reilly & Associates, Inc.

As of this writing, the current version of expect is 5.13, and it is compatible
with Tcl 7.4. A version 5.14 is expected which will take advantage of some of the
new features in Tcl and improve the debugger that comes with expect. You can
always fetch the latest version of expect by FTP from the following site and file
name.

ftp.cme.nist.gov:/pub/expect/expect.tar.Z

The rest of this section provides a short overview of expect and gives a few
tips that may help you understand how expect works. Expect is a rich facility,
however, and this section only scratches the surface.

The core expect commandsl

There are four fundamental commands added by expect: spawn, exp_send,
expect, and interact. The spawn command executes a program and returns a
handle that is used to control I/O to the program. The exp_send command sends
input to the program. (If you are not also using Tk, then you can shorten this
command to send.) The expect command pattern matches on output from the
program. The expect command is used somewhat like the Tcl switch command.
There are several branches that have different patterns, and a block fo Tcl com-
mands is associated with each pattern. When the program generates output that
matches a pattern, the associated Tcl commands are executed.

The send_user and expect_user commands are analagous to exp_send and
expect, but they use the I/O connection to the user instead of the process. A com-
mon idiom is to expect a prompt from the process, expect_user the response,
and then exp_send the response to the program. Generally the user sees every-
thing so you do not need to send_user all the program output.

The interact command reconnects the program and the user so you can
interact with the program directly. The interact command also does pattern
matching, so you can set up Tcl commands to execute when you type certain
character sequences or when the program emits certain strings. Thus you can
switch back and forth between human interaction and program controlled inter-

 Expect: Controlling Interactive Programs 393

Created: January 6, 1995 —Extensions.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

action. Expect is quite powerful!

Pattern matching

The default pattern matching used by expect is glob-style. You can use reg-
ular expression matching by specifying the -re option to the expect command.
Most of the work in writing an expect script is getting the patterns right.When
writing your patterns, it is important to remember that expect relies on the Tcl
parser to expand backslash sequences like \r\n (carriage return, newline), which
is often an important part of an expect pattern. There is often a \n and or \r at
the end of a pattern to make sure that a whole line is matched, for example. You
need to group your patterns with double-quotes, not braces, to alllow backslash
substitutions.

If you use regular expressions the quoting can get complicated. You have to
worry about square brackets and dollar signs, which have different meanings to
Tcl and the regular expression parser. Matching a literal backslash is the most
tedious because it is special to both Tcl and the regular expression parser. You’ll
need four backslashes, which Tcl maps into two, which the regular expression
interprets as a single literal backslash.

There are a few pattern keywords. If an expect does not match within the
timeout period, the timeout pattern is matched. If the process closes its output
stream, then the eof pattern is matched.

Important variables

Expect uses a number of variables. A few of the more commonly used vari-
ables are described here.

The spawn command returns a value that is also placed into the spawn_id

variable. If you spawn several programs, you can implement a sort of job control
by changing the value of the global spawn_id variable. This affects which process
is involved with exp_send, expect, and interact commands. You can also specify
the id explicity with a -i argument to those commands.

Hint: If you use spawn in a procedure, you probably need to declare
spawn_id as a global variable. Otherwise, an exp_send or expect in anther con-
text will not see the right value for spawn_id. It is not strictly necessary to make
spawn_id global, but it is certainly necessary if you use it in different contexts.

The timeout variable controls how long expect waits for a match. Its value
is in seconds.

When a pattern is matched by expect, the results are put into the
expect_out array. The expect_out(0,string) element has the part of the input
that matched the pattern. If you use subpatterns in your regular expressions,
the parts that match those are available in expect_out(1,string), expect_o-
ut(2,string), and so on. The expect_out(buffer) element has the input that
matched the pattern, plus everything read before the match since the last
expect match.The interact command initializes an array called interact_out

which has a similar structure.

394 Tcl Extension Packages Chap.32

Created: January 6, 1995 —Extensions.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

The log_user variable controls whether or not the user sees the output from
the process. For some programs you may want to supress all the output. In other
cases it may be important for the user to see what is happening so they know
when to type responses, such as passwords.

An example expect script

The following example demonstrates the usefulness of expect. The situation
is an FTP server that uses a challenge response security system. Without expect,
the user needs two windows. In one window they run FTP. In the other window
they run a program that computes the reponse to the challenge from FTP. They
use cut and paste to feed the challenge from FTP to the key program, and use it
again to feed the response back to FTP. It is a tedious task that can be fully auto-
mated with expect.

Example 32–1 A sample expect script.

#!/usr/local/bin/expect -f
This logs into the FTP machine and
handles the S/Key authentication dance.

Setup global timeout action. Any expect that does not match
in timeout seconds will trigger this action.
expect_after timeout {

send_user "Timeout waiting for response\n"
exit 1

}
set timeout 30 ;# seconds

Run ftp and wait for Name prompt
spawn ftp parcftp.xerox.com
expect {*Name *:}

Get the name from the user pass it to FTP
expect_user "*\n"
exp_send $expect_out(buffer)

Wait for Skey Challenge, which looks like:
331 Skey Challenge "s/key 664 be42066"
expect -re {331.*s/key ([^"]+)"} {

set skey $expect_out(1,string)
}
Save the spawn ID of ftp and then
run the key program with the challenge as the argument
set ftpid $spawn_id
eval {spawn key} $skey

Read password with no echoing, pass it to key
system stty -echo
expect {password:}
expect_user "*\n" { send_user \n }
exp_send $expect_out(buffer)

 Expect’s Tcl debugger 395

Created: January 6, 1995 —Extensions.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Wait for the key response
expect -re "\n(.+)\[\r\n\]" {

set response $expect_out(1,string)
}
Close down the connection to the key program
close
system stty echo

Pull ftp back into the foreground
set spawn_id $ftpid
system stty echo
exp_send $response\n

Interact with FTP normally
expect {*ftp>*} { interact }

The example uses the expect_after command to set up a global timeout
action. The alternative is to include a timeout pattern on each expect command.
In that case the commands would look like this:

expect {*Name *:} { # Do nothing } \

timeout { send_user "You have to login!\n" ; exit 1 }

The system command is used to run UNIX programs. It is like exec, except
that the output is not returned and a /bin/sh is used to interpret the command.
The stty echo command turns off echoing on the terminal so the user doesn’t see
their password being typed.

Debugging expect scripts

The expect shell takes a -d flag that turns on debugging output. This shows
you all the characters generated by a program and all the attempts at pattern
matching. This is very useful. You become very aware of little details. Remember
that programs actually generate \r\n at the end of a line, even though their
printf only includes \n. The terminal driver converts a simple newline into a
carrage return, line feed sequence. Conversely, when you send data to a program,
you need to explicitly include a \n, but you don’t send \r.

Expect includes a debugger, which is described in the next section and in
Chapter 8. If you specify the -D 1 command line argument to the expect shell,
then this debugger is entered before your script starts execution. If you specify
the -D 0 command line argument, then the debugger is entered if you generate a
keyboard interrupt (SIGINT).

Expect’s Tcl debugger

The expect package includes a Tcl debugger. It lets you set breakpoints and
look at the Tcl execution stack.This section explains what you need to add to
your C program to make the debugger available to scripts. The interactive use of
the debugger is described in Chapter 8 on page 84.

396 Tcl Extension Packages Chap.32

Created: January 6, 1995 —Extensions.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

The Dbg C interface

The debugger is implemented in one file, Dbg.c, that is part of the expect
library. You can make the debugger separately from expect, but it is easiest to
link against the expect library. The core procedures are Dbg_On and Dbg_Off.*

void *Dbg_On(Tcl_Interp *interp, int immediate);

void *Dbg_Off(Tcl_Interp *interp);

If immediate is 1, then Dbg_On enters an interactive command loop right
away. Otherwise the debugger waits until just before the next command is evalu-
ated. It is reasonable to call Dbg_On with immediate set to zero from inside a SIG-

INT interrupt handler.
The Dbg_ArgcArgv call lets the debugger make a copy of the command line

arguments. It wants to print this information as part of its call stack display. If
the copy argument is 1, a copy of the argument strings is made and a pointer to
the allocated memory is returned. Otherwise it just retains a pointer and returns
0. The copy may be necessary because the Tk_ParseArgv procedure will modify
the argument list. Call Dbg_ArgcArgv first.

char **Dbg_ArgcArgv(int argc, char *argv[], int copy);

The Dbg_Active procedure returns 1 if the debugger is currently on. It does
no harm, by the way, to call Dbg_On if the debugger is already active.

int Dbg_Active(Tcl_Interp *interp);

The remaining procedures are only needed if you want to refine the behav-
ior of the debugger. You can change the command interpreter, and you can filter
out commands so the debugger ignores them.

The Dbg_Interactor procedure registers a command loop implementation
and a clientdata pointer. It returns the previously registered procedure.

Dbg_InterProc

Dbg_Interactor(Tcl_Interp *interp,

Dbg_InterpProc *inter_proc, ClientData data);

The command loop procedure needs to have the following signature.
int myinteractor(Tcl_Interp *interp);

Look in the Dbg.c file at the simpler_interactor procedure to see how the
command loop works. In practice the default interactor is just fine.

The Dbg_IgnoreFuncs procedure registers a filtering function that decides
what Tcl commands should be ignored. It returns the previously registered filter
procedure. The filter should be relatively efficient because it is called before
every command when the debugger is enabled.

Dbg_IgnoreFuncsProc

Dbg_IgnoreFuncs(Tcl_Interp *interp,

Dbg_IgnoreFuncsProc *ignoreproc);

* I will give the C signatures for the procedures involved because I no longer see them in the
standard Expect documentation. Libes described the debugger in a nice little paper, "A Debugger
for Tcl Applications", that appeared in the 1993 Tcl/Tk workshop.

 Expect’s Tcl debugger 397

Created: January 6, 1995 —Extensions.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

The ignoreproc procedure just takes a string as an argument, which is the
name of the command about to be executed. It returns 1 if the command should
be ignored.

int ignoreproc(char *s);

Handling SIGINT

A common way to enter the debugger is in response to a keyboard interrupt.
The details of signal handling vary a little from system to system, so you may
have to adjust this code somewhat. The Sig_Setup procedure is meant to be
called early in your main program. It does two things. It registers a signal han-
dler, and it registers a Tcl asynchronous event. It isn’t safe to do much more than
set a variable value inside a signal handler, and it certainly is not safe to call
Tcl_Eval in a signal handler. However, the Tcl interpreter lets you register pro-
cedures to be called at a safe point. The registration is done with Tcl_AsyncCre-

ate, and the handler is enabled with Tcl_AsyncMark. Finally, within the async
handler the debugger is entered by calling Dbg_On.

Example 32–2 A SIGINT handler.

#include <signal.h>
/*
* Token and handler procedure for async event.
*/
Tcl_AsyncHandler sig_Token;
int Sig_HandleSafe(ClientData data,

Tcl_Interp *interp, int code);
/*
* Set up a signal handler for interrupts.
* This also registers a handler for a Tcl asynchronous
* event, which is enabled in the interrupt handler.
*/
void
Sig_Setup(interp)

Tcl_Interp *interp;
{

RETSIGTYPE (*oldhandler)();
oldhandler = signal(SIGINT, Sig_HandleINT);
if ((int)oldhandler == -1) {

perror("signal failed");
exit(1);

}
sig_Token = Tcl_AsyncCreate(Sig_HandleSafe, NULL);

#if !defined(__hpux) & !defined(SVR4)
/*
 * Ensure that wait() kicks out on interrupt.
 */
siginterrupt(SIGINT, 1);on interrupt */

#endif
}
/*

398 Tcl Extension Packages Chap.32

Created: January 6, 1995 —Extensions.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

 * Invoked upon interrupt (control-C)
 */
RETSIGTYPE
Sig_HandleINT(sig, code, scp, addr)

int sig, code;
struct sigcontext *scp;
char *addr;

{
Tcl_AsyncMark(sig_Token);

}
/*
* Invoked at a safe point sometime after Tcl_AsyncMark
*/
int
Sig_HandleSafe(data, interp, code)

ClientData data;
Tcl_Interp *interp;
int code;

{
Dbg_On(interp, 1);/* Enter the Tcl debugger */

}

BLT

The BLT package has a number of Tk extensions: a bar graph widget, an X-Y
graph widget, a drag-and-drop facility, a table geometry manager, a busy win-
dow, and more. This section provides an overview of this excellect collection of
extensions. The gadgets in BLT where designed and built by George Howlett,
and Michael McLennan built the drag and drop facility. As of this writing BLT
version 1.7 is compatible with Tk 3.6 and Tcl 7.4. A 1.8 (or 2.0) release is
expected shortly that will be compatible with Tk 4.0 and Tcl 7.4. You can find the
BLT package in the Tcl archives in the extensions directory.

ftp.aud.alcaltel.com:pub/tcl/extensions/BLT-1.7.tar.gz

The BLT package is very clean to add to your application. All the commands
and variables that it defines begin with the blt_ prefix. Initialization simply
requires calling Blt_Init in your Tcl_AppInit procedure.

Drag and drop

The drag and drop paradigm lets you "pick up" an object in one window and
drag it into another window, even if that window is in another application. The
blt_drag&drop command provides a drag and drop cability for Tk applications. A
right click in a window creates a token window that you drag into another win-
dow. When the object is released, the TK send command is used to communicate
between the sender and the receiver.

 BLT 399

Created: January 6, 1995 —Extensions.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Hypertext

The blt_htext widget combines text and other widgets in the same scrolla-
ble window. The widget lets you embed Tcl commands in the text, and these com-
mands are invoked as the text is parsed and displayed. Tk 4.0 added similar
functions to the standard Tk text widget, except for the embedded Tcl com-
mands in the text.

Graphs

The blt_graph widget provides and X-Y plotting widget. You can configure
the graph in a variety of ways. The elements of the graph can have tags that are
similar to the canvas widget object tags. The blt_barchart widget provides a
bar graph display. It also has a tag facility.

Table geometry manager

The table geometry manager lets you position windows on a grid, which
makes it easy to line things up. The interface is designed by defining a grid that
can uneven spacing for the rows and colums. Widgets are positioned by specify-
ing a grid location and the number of rows and columns the widget can span. You
can constrain the size of the widget in various ways. A table geometry manager
will probably be added to the standard Tk library in a future release.

Bitmap support

In standard Tk, the only way to define new bitmaps in Tcl is to specify a file
that contains its definition. The blt_bitmap command lets you define a new bit-
map and give it a symbolic name. It also lets you query the names and sizes of
existing bitmaps.

Background exec

The blt_bgexec command runs a pipeline of processes in the background.
The output is collected into a Tcl variable. You use tkwait variable to detect
when the pipeline has completed operation.

Busy window

The blt_busy command creates an invisible window that covers your appli-
cation, provides a different cursor, and prevents the user from interacting with
your application.

Tracing Tcl commands

The blt_watch provides a Tcl interface to the Tcl trace facility. It lets you

400 Tcl Extension Packages Chap.32

Created: January 6, 1995 —Extensions.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

register Tcl commands to be called before and after the execution of all com-
mands. You can implement logging and profiling with this facility. The blt_de-

bug command displays each Tcl command before and after substitutions are
performed.

The old-fashioned cutbuffer

Old versions of X programs may still use the out-dated cutbuffer facility.
The blt_cutbuffer command provides an interface to the cutbuffer. This can
help improve your interoperation with other tools, although you should use the
regular selection mechanism by default.

Tcl-DP

The Tcl-DP extension creates network connections between Tcl interpreters
using the TCP protocol. It provides a client-server model so you can execute Tcl
commands in other interpreters. This is similar to the Tk send command, except
that Tcl-DP is not limited to applications on the same display. You can have Tcl-
DP without Tk, too, for clients or servers that have no graphical interface.

There are three shell programs: dpwish includes Tk and Tcl-DP. dptcl just
has the Tk event loop and Tcl-DP. The dpsh shell includes Tk, but can be started
with a -notk argument to prevent it from opening a display. Of course, all of
these include the standard Tcl commands, too.

The low-level networking functions are exported to both Tcl and C. For
example, the dp_packetSend Tcl command sends a network packet. The same
function is available from C with the Tdp_PacketSend procedure. Other C proce-
dures include Tdp_FindAddress, Tdp_CreateAddress, Tdp_PacketReceive, and
Tdp_RPC. These are bundled into the libdpnetwork.a library archive.

Tcl-DP was designed and built by Brian Smith, Steve Yen, and Stephen Tu.
Version 3.2 is compatible with Tcl 7.3 and Tk 3.6. When it is released, version 3.3
will be compatible with Tcl 7.4 and Tk 4.0. You can find the Tcl-DP distribution
at the following FTP site.

mm-ftp.cs.berkeley.edu

/pub/multimedia/Tcl-DP/tcl-dp3.2.tar.Z

Remote Procedure Call

The dp_MakeRPCServer command sets up the server’s network socket. The
dp_MakeRPCClient command sets up the client and connects to the server. The
dp_RPC command invokes a Tcl command in the server. The do_RDO command is
similar, except that it does not wait for completion of the command. It takes an
optional callback command so you can get notified when the asynchronous opera-
tion completes. The dp_CancelRPC is used to cancel asynchronous RPCs. The
dp_CloseRPC shuts down one end of a connection.

Servers are identified by a network address and port number. No higher-

 Tcl-DP 401

Created: January 6, 1995 —Extensions.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

level name service is provided, although you can often do quite well by using a
file in your shared network file system.

A simple form of security is provided. A server can define a set of trusted
hosts with the dp_Host command. Connections will only be accepted from clients
on those trusted hosts. Each command can be verified before execution. The
dp_SetCheckCmd registers a procedure that is called to verify a client request.
You could use the verification hook to enforce an authentication dialog, although
the TCP connect is not encrypted.

Connection setup

The dp_connect -server command is used by servers to create a listening
socket. Servers then use the dp_accept command to wait for new connections
from clients. Clients use the dp_connect command (without -server) to connect
to a server. The connect uses TCP by default. The -udp option creates a UDP con-
nection. The dp_socketOption provides an interface to the setsockopt and get-

sockopt system calls. The dp_shutdown command is used to close down a
connection. The dp_atclose command registers a command to be called just
before a connection is closed. The dp_atexit command registers a command to
be called when the process is exiting. These commands are used by the RPC-
related procedures described above.

Sending network data

The regular puts and gets commands can be used to transfer line-oriented
data over a connection.If you use these commands, it is necessary to use the eof

command to detect a closed connection.
The dp_send and dp_receive commands transfer data across a connection.

The dp_packetSend and dp_packetReceive transfer blocks of data while pre-
serving message boundaries. These use the TCP protocol, and they automatically
handle closed connections.

Using UDP

The dp_sendTo and dp_receiveFrom commands transfer packets using the
UDP protocol. These commands take an argument that specifies the remote net-
work address with which to communicate. These arguments are returned by
dp_address command, which maintains an address table.

Event processing

Tcl-DP uses the Tk event loop mechanism to wait for network data. It pro-
vides several commands that relate to the event loop processing. The dp_filehan-
dler command registers a command to be called when data is ready on a
connection. The dp_isready command indicates if data is available on a connec-
tion. The dp_whenidle command schedules a command to occur at the next idle

402 Tcl Extension Packages Chap.32

Created: January 6, 1995 —Extensions.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

point.
The following commands are provided by Tcl-DP in case Tk is not available.

The dp_update command forces a trip through the event loop. The dp_after

command executes a command after a specified time interval. dp_waitvariable
waits for a variable to be modified. These are equivalent to the following Tk com-
mands: update, after, and tkwait variable.

Replicated objects

A simple replicated object package is built on top of Tcl-DP. In the model, an
object is procedure with methods and slot values. Every object must implement
the configure, slotvalue, and destroy methods. The configure method is used
to query and set slot values, much like the Tk widget configure operation. The
slotvalue method returns the value of a slot, much like the cget operation of a
Tk widget.

An object is replicated on one or more sites, and updates to an object are
reflected in all copies. You can register callbacks that are invoked when the
object is modified. The dp_setf command sets a replicated slot value. The
dp_getf command returns a slot value. The dp_DistributeObject command
arranges for an object to be replicated on one or more sites. The dp_Undistribu-

teObject breaks the shared relationship among distributed objects. The
dp_SetTrigger, dp_AppendTrigger, and dp_AppendTriggerUnique commands
register a Tcl command to be called with a slot is modified. The dp_GetTriggers

command returns the registered triggers. The dp_ReleaseTrigger removes one
trigger, and the dp_ClearTrigger removes all triggers from a slot.

An object can be implemented by a command procedure written in C. All it
has to do is adhear to the conventions outlined above about what methods it sup-
ports. The method is just the first argument to the procedure. The object will be
invoked as follows:

objName method ?args?

Obviously, there must also be a command that creates instances of the
object. This should have the following form:

makeCmd objName ?-slot value? ?-slot value? ...

You can also implement objects with Tcl procedures. Several commands are
provided to support this: dp_objectCreateProc, dp_objectExists, dp_object-
Free, dp_objectConfigure dp_objectSlot, dp_objectSlotSet, dp_objectSlo-
tAppend, and dp_objectSlots.

The [incr tcl] Object System

The [incr tcl] extension provides an object system for Tcl. Its funny name is an
obvious spoof on C++. This extension adds classes with multiple inheritence to
Tcl. A class has methods, class procedures, private variables, public variables,
and class variables. All of these items are contained within their own scope. The

 The [incr tcl] Object System 403

Created: January 6, 1995 —Extensions.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

class procedures and class variables are shared by all objects in a class. The
methods, private variables, and public variables are per-object. A public variable
is a lot like the attributes for Tk widgets. Its value is defined when the object is
created, or changed later with a config method. The config syntax looks like
the syntax used with Tk widgets and their attributes.

The following summary of the [incr tcl] commands is taken straight from
the man page for the package.

Example 32–3 Summary of [incr tcl] commands

itcl_class className {
inherit baseClass ?baseClass...?

constructor args body
destructor body
A method is per-object
method name args body
proc creates class procedures
proc name args body

public vars have a config syntax to set their value
public varName ?init? ?config?
protected variables are per-object
protected varName ?init?
common variables are shared by the whole class
common varName ?init?

}

Create an object. The second form chooses the name.
className objName ?args...?
className #auto ?args...?

Invoke a class procedure proc from the global scope
className :: proc ?args...?

Invoke an object method
objName method ?args...?

Built-in methods
objName isa className
objName delete
objName info option ?args?

Get info about classes and objects
itcl_info classes ?pattern?
itcl_info objects ?pattern? ?-class className? ?-isa
className?

Commands available within class methods/procs:
global varName ?varName...?
Run command in the scope of the parent class (up)
previous command ?args...?
Run command in the scope of the most-specific class (down)

404 Tcl Extension Packages Chap.32

Created: January 6, 1995 —Extensions.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

virtual command ?args...?

The most important contribution of [incr tcl] is the added scope control. The
elements of a class are hidden inside its scope, so they do not clutter the global
Tcl name space. When you are inside a method or class procedure, you can
directly name other methods, class procedures, and the various class variables.
When you are outside a class, you can only invoke its methods through an object.
It is also possible to access class procedures with the :: syntax shown in the pre-
vious example. The scope control is implemented by creating a new Tcl inter-
preter for each class, although this is hidden from you when you use the
extension.

There is one restriction on the multiple inheritence provided by [incr tcl].
The inheritence graph must be a tree, not a more general directed-acyclic-graph.
For example, if you have a very general class called Obj that two classes A and B

inherit, then class C cannot inherit from both A and B. That causes the elements
of Obj to be inherited by two paths, and the implementation of [incr tcl] does not
allow this. You would have to replicate the elements of Obj in A and B in this
example.

Tcl_AppInit With Extensions

The next example shows a Tcl_AppInit that initializes several packages in
addition to the new commands and widgets from the previous chapters. Most of
the packages available from the Tcl archive have been structured so you can ini-
tialize them with a single call to there Package_Init procedure. To create the full
application, the Tcl_AppInit routine is linked with the libraries for Tcl and the
various extensions being used. The Makefile for that is given in the next exam-
ple.

Example 32–4 Tcl_AppInit and extension packages.

/* supertcl.c */
#include <stdio.h>
#include <tk.h>
#include <tclExtend.h>

extern char *exp_argv0;/* For expect */

/*
 * Our clock widget.
 */
int ClockCmd(ClientData clientData,

Tcl_Interp *interp,
int argc, char *argv[]);

/*
 * Our pixmap image type.
 */
extern Tk_ImageType tkPixmapImageType;

 Tcl_AppInit With Extensions 405

Created: January 6, 1995 —Extensions.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

main(int argc, char *argv[]) {
/*
 * Save arguments for expect and its debugger.
 */
exp_argv0 = argv[0];/* Needed by expect */
Dbg_ArgcArgv(argc, argv, 1);
/*
 * Create the main window. This calls
 * back into Tcl_AppInit.
 */
Tk_Main(argc, argv);
exit(0);

}

int
Tcl_AppInit(Tcl_Interp *interp) {

char *value;
Tk_Window main = Tk_MainWindow(interp);
/*
 * Initialize extensions
*/
if (TclX_Init(interp) == TCL_ERROR) {

/* TclX_Init is called instead of Tcl_Init */
return TCL_ERROR;

}
if (Tk_Init(interp) == TCL_ERROR) {

return TCL_ERROR;
}
if (Tdp_Init(interp) == TCL_ERROR) {/* Tcl-DP */

return TCL_ERROR;
}
if (Blt_Init(interp) == TCL_ERROR) {/* BLT */

return TCL_ERROR;
}
if (Exp_Init(interp) == TCL_ERROR) {/* Expect */

return TCL_ERROR;
}
/*
 * This affects X resource names.
 */
Tk_SetClass(main, "SuperTcl");
/*
 * Our own extra commands.
 */
Tcl_CreateCommand(interp, "clock", ClockCmd,

(ClientData)Tk_MainWindow(interp),
(Tcl_CmdDeleteProc *)NULL);

Tk_CreateImageType(&tkPixmapImageType);
/*
 * The remaining lines are similar to code in TkX_Init.
 * The tclApp variables define info returned by infox
 * The Tcl_SetupSigInt is a TclX utility that lets
 * keyboard interrupts stop the current Tcl command.

406 Tcl Extension Packages Chap.32

Created: January 6, 1995 —Extensions.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

 */
tclAppName = "SuperTcl";
tclAppLongname = "Tcl-Tk-TclX-DP-BLT-Expect-[incr tcl]";
tclAppVersion = "1.0";
/*
* If we are going to be interactive,
* Setup SIGINT handling.
*/
value = Tcl_GetVar (interp, "tcl_interactive",

 TCL_GLOBAL_ONLY);
if ((value != NULL) && (value [0] != ’0’))

Tcl_SetupSigInt ();

return TCL_OK;
}

Because Extended Tcl is being used, TclX_Init is called instead of
Tcl_Init. I think this is an unfortunate inconsistency, but Extended Tcl insists
on duplicating some things in Tcl and Tk, so this is necessary to avoid linker
problems. I have rebelled a little bit by calling Tk_Init instead of TkX_Init,
which is recommended by the TclX documentation. However, this means I do
much the same work by calling Tcl_SetupSigInt and defining the various

tclApp varibles.
The Makefile for the superwish program is given in the next example. The

program uses a mixture of shared and static libraries. Ideally all the packages
can be set up as shared libraries in order to reduce the size of the shell programs.
Shared libraries are described in LIBRARY chapter.

Example 32–5 Makefile for supertcl.

At our site all the Tcl packages have their
libraries in /import/tcl/lib, and the files
have the version number in them explicitly
The .so files are shared libraries

TCL_LIB = /import/tcl/lib/libtcl7_4_g.a
TK_LIB = /import/tcl/lib/libtk4_0_g.a

BLT_LIB = /import/tcl/lib/libBLT1_7.a
DP_LIB = /import/tcl/lib/libdpnetwork.so.3.2
EXP_LIB = /import/tcl/lib/libexpect5_13.a
TCLX_LIB = /import/tcl/lib/libtclx7_4.a
TKX_LIB = /import/tcl/lib/libtkx4_0.a
INCR_LIB = /import/tcl/lib/libitcl.so.1.3

The include files are also organized under
/import/tcl/include in directories that
reflect the packages’ version numbers.
INCS = -I/import/tcl/include/tk4.0 \

-I/import/tcl/include/tclX7.4a \
-I/import/tcl/include/tcl7.4 \
-I/import/X11R4/usr/include

 Other Extensions 407

Created: January 6, 1995 —Extensions.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

CFLAGS = -g $(INCS)
CC = gcc

The order of these libraries is important, expecially
having TKX TK TCLX TCL come last.
Your site may not need -lm for the math library
ALL_LIBS = $(DP_LIB) $(EXP_LIB) $(BLT_LIB) $(INCR_LIB) \

$(TKX_LIB) $(TK_LIB) $(TCLX_LIB) $(TCL_LIB) -lX11 -lm

OBJS = supertcl.o tkWidget.o tkImgPixmap.o
supertcl: $(OBJS)

$(CC) -o supertcl $(TRACE) $(OBJS) $(ALL_LIBS)

Other Extensions

There are lots of contributed Tcl packages. You should check out the Tcl FTP
archive site, which is currently

ftp.aud.alcatel.com

There is an excellent set of Frequently Asked Questions files that are main-
tained by Larry Virden. Volumes 4 and 5 of the FAQ list the contributed exten-
sions and the contributed applications, respectively. The TIX package provides
many compound widgets and an object system that is designed to support them.
The jstools package, which is contributed by Jay Sekora, contains a collection of
useful support scripts and applications. The list goes on and on, and gets
updated with new contributes regularly

Tcl applications

You should try out my nifty mail reader, exmh, which provides a graphical
front end for MH mail. It supports the MIME standard for multimedia mail, and
the PGP tool for encryption and digital signatures. The tkman program, written
by Tom Phelps, provides a great user interface to the UNIX man pages. The ical
program is a very useful calendar manager. There are several Tcl-based editors. I
ported Ousterhout’s mx editor into the Tk framework, and the result is mxedit. If
you like interface builders, try out XF, which lets you build Tk interfaces interac-
tively. Again, the list goes on and on

408 Tcl Extension Packages Chap.32

Created: January 6, 1995 —Extensions.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

409

C H A P T E R

Created: March 14, 1994 —Port4.0.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

 33

Porting to Tk 4.0 33

This chapter has notes about upgrading your application from earlier versions
of Tk such as Tk 3.6. This includes notable new features that you may
want to take advantage of as well as things that need to be fixed
because of incompatible changes.

Porting your scripts from any of the Tk 3.*
releases is pretty easy. Not that many things have changed. The sections in this
chapter summarize what has changed in Tk 4.0 and what some of the new com-
mands are.

wish

The wish shell no longer requires a -file (or -f) argument, so you can drop this
from your script header lines. This flag is still valid, but no longer necessary.

The class name of the application is set from the name of the script file
instead of always being Tk. If the script is /usr/local/bin/foobar, then the
class is set to Foobar, for example.

Obsolete Features

Several features that were replaced in previous versions are now completely
unsupported.

The variable that contains the version number is tk_version. The ancient
(pre 1.4) tkVersion is no longer supported.

Button widgets no longer have activate and deactivate operations.

410 Porting to Tk 4.0 Chap.33

Created: March 14, 1994 —Port4.0.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Instead,configure their state attribute.
Menus no longer have enable and disable operations. Instead, configure

their state attribute.

The cget Operation

All widgets support a cget operation that returns the current value of the speci-
fied configuration option. The following two commands are equivalent.

lindex [$w config option] 4

$w cget option

Nothing breaks with this change, but you should enjoy this feature.

Input Focus Highlight

Each widget can have an input focus highlight, which is a border that is drawn
in color when the widget has the input focus. This border is outside the border
used to draw the 3D relief for widgets. It has the pleasant visual effect of provid-
ing a little bit of space around widgets, even when they do not have the input
focus. The addition of the input focus highlight does not break anything, but it
will change the appearance of your interfaces a little. See Chapter 22 for a
description of the generic widget attributes related to this feature.

Bindings

The hierarchy of bindings has been fixed so that it is actually useful to define
bindings at each of the global (i.e., all), class, and instance levels. The new
bindtags command is used to define the order among these sources of binding
information. You can also introduce new binding classes, e.g. InsertMode, and
bind things to that class. Use the bindtags command to insert this class into the
binding hierarchy. The order of binding classes in the bindtags command deter-
mines the order in which bindings are triggered. Use break in a binding com-
mand to stop the progression, or use continue to go on to the next level.

bindtags $w [list all Text InsertMode $w]

The various Request events have gone away: CirculateRequest, Configur-
eRequest, MapRequest, ResizeRequest.

Extra modifier keys are ignored when matching events. While you can still
use the Any wild card modifier, it is no longer necessary. The Alt and Meta modi-
fiers are set up in general way so they are associated with the Alt_L, Alt_R,
Meta_L, and Meta_R keysyms.

 Scrollbar Interface 411

Created: March 14, 1994 —Port4.0.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Scrollbar Interface

The interface between scrollbars and the scrollable widgets has changed. Hap-
pily the change is transparent to most scripts. If you hook your scrollbars to wid-
gets in the straight-forward way, the new interface is compatible. If you use the
xview and yview widget commands directly, however, you may have to modify
your code. The old use still works, but there are new features of the these opera-
tions that give you even better control over. You can also query the view state so
you do not have to watch the scroll set commands to keep track of what is going
on. Finally, scrollable widgets are constrained so that end of their data remains
stuck at the bottom (right) of their display.

In most cases, nothing is broken by this change.

Pack info

Version 3 of Tk introduced a new syntax for the pack command, but the old syn-
tax was still supported. This continues to be true in nearly all cases except the
pack info command. If you are still using the old packer format, you should
probably take this opportunity to convert to the new packer syntax.

The problem with pack info is that its semantics changed. The new opera-
tion used to be known as pack newinfo. In the old packer, pack info returned a
list of all the slaves of a window and their packing configuration. Now pack info

returns the packing configuration for a particular slave.You must first use the
pack slaves command to get the list of all the slaves, and then use the (new)
pack info to get their configuration information.

Focus

The focus mechanism has been cleaned up to support different focus windows on
different screens. The focus command now takes a -displayof argument
because of this. Tk now remembers which widget inside each toplevel has the
focus. When the focus is given to a toplevel by the window manager, Tk automat-
ically assigns focus to the right widget. The -lastfor argument is used to query
which widget in a toplevel will get the focus by this means.

The focus default and focus none commands are no longer supported.
There is no real need for focus default anymore, and focus none can be
achieved by passing an empty string to the regular focus command.

The tk_focusFollowsMouse procedure can be used to change from the
default explicit focus model where a widget must claim the focus to one in which
moving the mouse into a widget automatically gives it the focus.

The tk_focusNext and tk_focusPrev procedures are used for keyboard tra-
versal of the focus among widgets. Most widgets have bindings for <Tab> and
<Shift-Tab> that cycle the focus among widgets.

412 Porting to Tk 4.0 Chap.33

Created: March 14, 1994 —Port4.0.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Send

The send command has been changed so that it does not time out after 5 seconds,
but instead waits indefinitely for a response. Specify the -async option if you do
not want to wait for a result. You can also specify an alternate display with the
-displayof option.

The name of an application can be set and queried with the new tk appname

command. Use this instead of winfo name ".".
Because of the changes in the send implementation, it is not possible to use

send between Tk 4.0 applications and earlier versions.

Internal Button Padding

Buttons and labels have new defaults for the amount of padding around their
text. There is more padding now, so your buttons will get bigger if you use the
default padX and padY attributes. The old defaults were one pixel for both
attributes. The new defaults are 3m for padX and 1m for padY, which map into
three pixels and ten pixels on my display.

There is a difference between buttons and the other button-like widgets. An
extra 2 pixels of padding is added, in spite of all padX and padY settings in the
case of simple buttons. If you want your checkbuttons, radiobuttons, menubut-
tons, and buttons all the same dimensions, you’ll need two extra pixels of pad-
ding for everything but simple buttons.

Radio Buttons

The default value for a radio button is no longer the name of the widget. Instead,
it is an empty string. Make sure you specify a -value option when setting up
your radio buttons.

Entry Widget

The scrollCommand attribute changed to xScrollCommand to be consistent with
other widgets that scroll horizontally. The view operation changed to the xview

operation for the same reasons.
The delete operation has changed the meaning of the second index so that

the second index refers to the character just after the affected text. The selection
operations have changed in a similar fashion. The sel.last index refers to the
character just after the end of the selection, so deleting from sel.first to
sel.last still works OK. The default bindings have been updated, of course, but
if you have custom bindings you will need to fix them.

 Menus 413

Created: March 14, 1994 —Port4.0.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Menus

The menu associated with a menubutton must be a child widget of the menubut-

ton. Similarly, the menu for a cascade menu entry must be a child of the menu.
The @y index for a menu always returns a valid index, even if the mouse

cursor is outside any entry. In this case, it simply returns the index of the closest
entry, instead of none.

The selector attribute is now selectColor.

Listboxes

Listboxes have changed quite a bit in Tk 4.0. Chapter 16 has all the details.
There are now 4 Motif-like selection styles, and two of these support disjoint
selections. The tk_listboxSingleSelect procedure no longer exists. Instead,
configure the selectMode attribute of the listbox.

You can selectively clear the selection, and query if there is a selection in
the listbox.

A listbox has an active element, which is drawn with an underline. It is ref-
erenced with the active index keyword.

The selection commands for listboxes have changed. Change:
$listbox select from index1

$listbox select to index2

To
$listbox select anchor index1

$listbox select set anchor index2

The set operation takes two indices, and anchor is a valid index, which typ-
ically corresponds to the start of a selection.

No geometry Attribute

The frame, toplevel, and listbox widgets no longer have a geometry attribute.
Use the width and height attributes instead. The geometry attribute got con-
fused with geometry specifications for toplevel windows. The use of width and
height is more consistent. Note that for listboxes the width and height is in
terms of lines and characters, while for frames and toplevels it is in screen units.

Text Widget

The tags and marks of the text widgets have been cleaned up a bit, justification
and spacing is supported, and you can embed widgets in the text display.

A mark now has a gravity, either left or right, that determines what hap-
pens when characters are inserted at the mark. With right gravity you get the

414 Porting to Tk 4.0 Chap.33

Created: March 14, 1994 —Port4.0.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

old behavior: the mark gets pushed along by the inserted text by sticking to the
right-hand character. With left gravity it remains stuck. The default is right
gravity. The mark gravity operation changes it.

When text is inserted, it only picks up tags that are present on both sides of
the insert point. Previously it would inherit the tags from the character to the
left of the insert mark. You can also override this default behavior by supplying
tags to the insert operation.

The widget scan operation supports horizontal scrolling. Instead of using
marks like @y, you need a mark like @x,y.

For a description of the new features, see Chapter 18.

Canvas scrollincrement

The canvas widget no longer has a scrollIncrement attribute. Instead, the
equivalent of the scroll increment is set at one tenth of the canvas. Scrolling by
one page scrolls by nine tenths of the canvas display. (Ugh - I like’d the fine grain
control provided by scrollIncrement.)

The Selection

The selection support has been generalized in Tk 4.0 to allow use of other selec-
tions such as the CLIPBOARD and SECONDARY selections. The changes to not break
anything, but you should check out the new clipboard command. Some other
toolkits, notably OpenLook, can only paste data from the clipboard.

Color Attributes

The names for some of the color attributes changed.

Table 33–1 Changes in color attribute names

Tk 3.6 Tk4.0

selector selectColor

Scrollbar.activeForeground Scrollbar.activeBackground

Scrollbar.background troughColor

Scrollbar.foreground Scrollbar.background

Scale.activeForeground Scale.activeBackground

Scale.background troughColor

Scale.sliderForeground Scale.background

(didn’t exist) highlightColor

 The bell Command 415

Created: March 14, 1994 —Port4.0.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

The bell Command

The bell command can be used to ring the bell associated with the X display. You
need to use the xset program to modify the parameters of the bell such as volume
and duration.

416 Porting to Tk 4.0 Chap.33

Created: March 14, 1994 —Port4.0.fm3—Copyright Prentice Hall—DRAFT: 1/13/95

Index

Created: May 9, 1994 —bookIX.doc—Copyright Prentice Hall—DRAFT: 1/13/95

-- 43

A
Abbreviations 92
activeBackground 278, 326
activeForeground 278, 326
after 62, 63, 96
-after 320
anchor 274, 293
-anchor 125, 165, 320
Any modifer 141
APP-DEFAULTS 331
appdefaults 325
APPEND 71
append 21
archive site for Tcl xxviii
args 52, 61, 179, 272, 291
argtest 52
argv 45
array names 39
-aspect 168
aspect ratio 167
aspect ratio of a message widget 270
atime 67
automatic execution of programs 92
auto_noexec 67, 92
auto_path 92, 93

B
B1-Motion 133
background 66, 278, 326
Backslash 14
backslash substitution 6
backslash-newline 167
Backspace 14
beep 176
-before 340
Bell 14
bell, Tk command 176
bg 278
bind 96, 106, 133, 149, 179, 320, 337, 338

Return key 104
BindSequence 141
bindtags 96, 135
BindYview 318
bitmap label 165
blockSpecial 68
bold 290
-borderwidth 105

borderwidth attribute 105
break 46
break, in bindings 135
button 104, 145, 148, 335
button command 145
button modifiers 140
Button procedure 291
Button-2 133
buttonlist 327
ButtonResources 328

C
call stack, viewing 79
CallTrace 80
Carriage return 14
cascade 330
catch 46, 48, 71, 75, 105, 291, 292, 320,

325, 328, 332, 338
cavity model 118
cd 74, 75
cget 270
Changing a button’s command 105
character code 14
characterSpecial 68
checkbutton 145, 149, 330, 337
circles 238
-class 328
classes 324
close 72, 74, 105, 339
close a window 138
-code 49
Color 326
color 278
color name 279
ColorDarken 279
command abbreviation 92
command body 9
command history 92
command line arguments 45
command procedures 342
command substitution 4
CommandEntry 179
comments 13
concat 31, 33, 60, 61, 63, 291
config 105
Configure 138
configure 269, 338
continue 46
continue, in bindings 135
CREAT 71

Created: May 9, 1994 —bookIX.doc—Copyright Prentice Hall—DRAFT: 1/13/95

418

curly braces 47

D
date 65
default 330
Default parameter values 52
Destroy 139
destroy 338
dialog boxes 167
directory 68
dirname 67
disabledForeground 278, 326
Double 140
double 54
Double quotes 7
double-quotes 47
dp_send 63

E
else 42
elseif 42
entry 104, 148, 177, 337
entrylist 328
env 39
environment variable 39
eof 105
EqualSizedLabels 272
error 48
errorCode 48
-errorcode 49
errorInfo 47, 48
-errorinfo 49
Escape-key 142
eval 59, 60, 61, 92, 179, 272, 292, 330
-exact 43
EXCL 71
exec 66, 69, 321, 339
executable 67
exists 67
expr 4, 9, 10, 20, 42, 52, 54, 68
extension 67

F
fg 278
fifo 68
file dirname 69
file exists 69, 325, 332
file isdirectory 69, 75
file modify times 68
fileeq 69
fileevent 105
-fill 119
FindFile 74
FindFont 291

fixed font 289
FixedWidthLabel 165
flush 72
focus 96, 104
font 324
-font 289, 291
font family 290
Fonts 289
for 46
foreach 39, 45, 52, 73, 75, 321, 336, 339
foreground 278, 326
Form feed 14
format 7, 21, 39, 279
frame 96, 98, 320, 335

G
geometry gridding 110
geometry manager 95
gets 46, 73, 105
glob 24, 74
-glob 43
global 39, 47, 54, 55, 105, 332
goto 46
grouping 2

H
height 270
highlightColor 278

I
if 42
-in 340
incr 9, 30, 42, 55, 56, 336
infinite loop 9
info exists 55, 56, 334
info library 93
init.tcl 93
input focus 106
insertBackground 278
insert, text operation 105
-ipadx 275, 294
isdirectory 67
isfile 67
italic 290
I/O redirection 65

J
join 31
justify 293
-justify 167

K
-keepnewline 66

419

Created: May 9, 1994 —bookIX.doc—Copyright Prentice Hall—DRAFT: 1/13/95

keysym 137

L
label 104, 148, 165, 336
lappend 31, 32, 46, 59, 93
ldelete 34
length 270
lindex 31, 33, 333
link 68
linsert 31, 34
list 31, 32, 33, 45, 59, 60, 63, 147, 291,

321, 330
llength 31, 33, 39, 333
lower, Tk command 132
lrange 31, 33
lreplace 31, 34, 292
lsearch 31, 34, 292
lsort 31, 39
lstat 67

M
makedir 69
Makefile for a Tcl C program 349
Map 138
mark 108
math expressions 4
MaxLineLength 148
menu 145, 153, 330
menu entries 153
menubutton 145, 153, 330
MenuButtonInner 330
menulist 328
MenuResources 330
message 167, 338
Meta-key 142
mkdir 69
modifier key 138
module 54
mtime 67

N
Newline 14
-nocomplain 74
NOCTTY 71
NONBLOCK 71
null binding 141

O
open 71, 321, 338

pipeline 105
option 326
option get 328, 330
option menus 159

option readfile 325, 332
orient 271
ovals 238
owned 67

P
pack 106, 148, 320, 335
pack forget 340
pack propagate 272
padX widget attribute 274, 293
padY widget attribute 274, 293
-pageanchor 249
-pagex 249
-pagey 249
Parsing command line arguments 45
pid 54
pipeline 65, 74
place, Tk command 131
points per pixel 290
Pop 57
popup menus 159
POSIX 48
PrefEntrySet 337
PreferencesDialogItem 336
PreferencesReadFile 332
PreferencesReset 339
PreferencesSave 338
Preferences_Add 333, 334, 340
Preferences_Dialog 335
Preferences_Init 332
PrefNukeItemHelp 338
PrefValue 334
PrefValueSet 334
PRIMARY selection 318
PrintByName 56, 151
printenv 39
printf 21
proc 7, 8, 39, 51, 52, 53
Push 56
puts 3, 10, 339
pwd 74

Q
Quit button 104
quoting with backquotes 146

R
radiobuton 330
radiobutton 145, 149, 336
raise 335
raise, Tk command 132
random number 54
randomInit 54
randomRange 54

Created: May 9, 1994 —bookIX.doc—Copyright Prentice Hall—DRAFT: 1/13/95

420

RDONLY 71
RDWR 71
read 72, 338
readable 68
readlink 68
regexp 26, 142
-regexp 43
regular expressions 25
relative position of windows 130
relative size of windows 130
relief attribute 106
resource 323
return 8, 49, 51, 69
RGB 279
ring the bell 176
rootname 68
round 279

S
scale 271
scan 45
scanf 45
scope 56
Screen units 271
scrollable text lines 211
scrollbar 271
scrollbar, with text 104, 107
ScrollFixup 340
scrolling a frame using a canvas 244
seed 54
see, text operation 105
selectBackground 278, 326
selectColor 278
selectForeground 279
selector 326
send 62, 63
separator 330
set 3, 9, 10, 29
setgrid attribute 107
significant digits 5
size 68, 270
socket 68
sort 72
source 2
split 31, 72, 73, 338
sqrt 8, 55
stack 56
stat 68
Status 332
stderr 3, 71
stdin 3
stdout 3
string 4, 19, 20
string compare 21
string length 39, 46, 330, 336

substitution 2, 3
switch 45, 330
symbolic link 68
syntax 2

T
Tab 14
tail 68
Tcl archive 404
tclIndex 91
Tcl_AppendElement 346
Tcl_AppendResult 346
Tcl_AppInit 344, 356
Tcl_CmdInfo 348
Tcl_CreateCommand 343, 344
Tcl_CreateInterp 343, 359
TCL_ERROR 345
Tcl_Eval 47, 343
Tcl_Eval runs Tcl commands from C 347
Tcl_EvalFile 343
Tcl_GetCommandInfo 349
Tcl_GetInt 345
Tcl_Init 344, 356
Tcl_Invoke bypasses Tcl_Eval 347
TCL_LIBRARY 93
TCL_OK 345
tcl_precision 5
tcl_RcFileName 344, 357
Tcl_SetResult 346
text 211
-textvariable 165
textvariable attribute 104
text, with scrollbar 104, 107
then 42
title bar 105
Title of window 104
tk colormodel 332
tk.tcl 93
Tk_CreateFileHandler 355
Tk_DoOneEvent 355
Tk_LIBRARY 93
tk_library 93
tk_listboxSingleSelect 413
Tk_MainLoop 355
toplevel 335, 338
trace 337
trace variable 340
Triple 140
troughColor 279
TRUNC 71
type 68

U
Unmap 138

421

Created: May 9, 1994 —bookIX.doc—Copyright Prentice Hall—DRAFT: 1/13/95

unset 57
uplevel 57, 339
upvar 55, 56, 151, 334
User input field, entry 104
user type-in 211

V
variable 3, 30
Vertical tab 14

W
while 9, 45, 73
widgets 95
width 271
window changes size 138
window is opened 138
window manager 105
winfo rgb 279
wm command 105
wm geometry 338
wm title 104, 335
wm transient 338
wrapLength 293
writable 68
WRONLY 71

X
X event 106
X resource database 323
X resource name 270
xfontsel 291
xlsfonts 291

