
Mathematical Programming Glossary Supplement:
Tolerances

Harvey J. Greenberg
University of Colorado at Denver

http://www.cudenver.edu/~hgreenbe/

May 26, 2003

This is to identify tolerances used in mathematical programming and how some relate
to each other.

Whenever we base some decision on a comparison of numerical values, we must con-
sider the impurity of those values. Thus, if a decision depends on whether v = 0, we
instead test if |v| ≤ τ , where τ is some small value called a tolerance. More generally,
for a particular comparison of the form v = V , we define two tolerances: absolute and
relative, denoted τa and τr, respectively. Then, we test if

|v − V | ≤ τr|V |+ τa,

where we call V the referent value. (Some prefer the symmetry of using τr(|V |+ |v|)
instead of τr|V |.)

This extends to inequality testing by removing the absolute values: v ≤ V becomes

v − V ≤ τr|V |+ τa.

For example, to test if v ≤ 0, we test if v ≤ τa, and to test if v ≤ −1000, we test if
v + 1000 ≤ τr1000 + τa.

The use of absolute tolerance, relative tolerance and referent value stems from classical
error analysis [5, 3]. Many pairs of tolerances are in ANALYZE [4] for the different
decisions made in its procedures, notably its REDUCE command. Other systems use
tolerances differently. For example, PCx [1] (Argonne’s interior point method) uses
a single tolerance for each test. Their tests are of the form:

||r|| ≤ (1 + ||V ||)τ,

1



Tolerances, by H.J. Greenberg 2

where r is a residual and V is a related (referent) value. In particular, to test primal
feasibility for the system Ax = b, 0 ≤ x ≤ U ,

r =

(
Ax− b
x− U

)
and V =

(
b
U

)
.

In relation to the ANALYZE tests, PCx sets absolute and relative tolerances equal,
and they test the sum, rather than individual constraints.

There is also a very wide range of default values across systems: from 10−3 to 10−15,
with the most typical being 10−6 to 10−8. Most systems have τr ≤ τa, and many
solvers use either τr = 0 or τr = τa (some have no separate τr). Setting their values
requires an understanding of how they are used, particularly in relation to each other.
To illustrate, consider the following MILP:

min ZI = cx+Kz : y = Ax+Bz, Lx ≤ x ≤ Ux, Ly ≤ y ≤ Uy, z ∈ {0, 1}n.

Let ZP be the objective value of the LP relaxation, whose dual is the following:

max ZD = λxLx − µxUx + λyLy − µuUy − µz1 :

χ = πA+ λx − µx ≤ c
γ = −π + λy − µy ≤ 0
κ = πB − µz ≤ K

λx, µx, λy, µy ≥ 0,

where it is understood that a dual variable is absent if a bound is infinite (viz.,
µxjU

x
j ≡ 0 if Ux

j =∞ and λyiL
y
i ≡ 0 if Lyi = −∞).

Table 1 gives a list of decisions and tolerance tests that arise in mathematical pro-
gramming solvers, but note that tolerances can also depend upon when and why
they are being used. For example, primal feasibility tests only the continuous values
against their bounds. The tolerance values could be different when executing the
simplex method or some preprocessor because the consequences of a “wrong” deci-
sion differ. In fact, some algorithms have dynamic tolerances to allow more freedom
to choose pivot exchanges during an early stage and tightening in the later stages
of computation. Also, optimization algorithms, like the simplex method, are fault
tolerant — they usually recover if feasibility is lost due to a noisy basis inverse rep-
resentation. On the other hand, a preprocessing decision could permanently change
a status that has a chance of being incorrect.



Tolerances, by H.J. Greenberg 3

Decision Condition Tolerances Referent

Primal feasibility Lx ≤ x ≤ Ux τxfr , τxfa Lx, Ux

Ly ≤ y ≤ Uy τ yfr , τ yfa Ly, Uy

0 ≤ z ≤ 1 τ zfa n/a

z = 0, 1 τi n/a

Dual feasibility χ ≤ c τχfr , τχfa c

κ ≤ K τκfr , τκfa K

γ ≤ 0 τ0 n/a

λ, µ ≥ 0 τ0 n/a

Primal optimality ẐP ≤ ZP τ optr , τ opta β

Zi ≤ ZI τ optr , τ opta βi

Dual optimality ẐD ≥ ZD τ optr , τ opta δ

Duality gap ZP − ZD ≤ g τ gr , τ
g
a g

Zi − ZI ≤ G τGir , τGia G

Table 1: Standard Tolerances for an Optimizer

A feasible solution is an assignment of values to variables (primal or dual) that passes
the feasibility test (see table 1). An optimal solution is a feasible solution that passes
the optimality test. A near optimal solution is a feasible solution that passes the
duality gap test. These terms apply to the relaxation or the MILP, taken in context.

Special tests: τ0 is a tolerance for comparing v to 0, regardless of what v is. The test
for v ≤ 0 is v ≤ τ0, and the test for v ≥ 0 is v ≥ −τ0. The test for whether v is
an integer value also has just one tolerance, τi, and the test is whether v = bv + τic.
Testing for v = 0 depends on context. Two tests apply: v = bv + τic and |v| ≤ τ0.
(Generally, only one test is used.) They could produce different results.

In systems where v could be large, a relative tolerance is used for rounding. For
example, 1, 000, 000.1 is close enough to 1, 000, 000 to round it, but 1.1 is not close
enough to 1 to round it. The different decisions result from the relative magnitude
of the fractional part:

|v − bv + .5c| ≤ τr|v|.
For τr = 10−6, v = 1, 000, 000.1 would pass, and v would be rounded to 1,000,000,
but v = 1.1 would fail, so v would be classified as non-integer.

Added notation: Z∗ is the optimal objective value (without error) for the LP relax-



Tolerances, by H.J. Greenberg 4

ation; ẐP is the computed primal objective value for some feasible solution to the
LP relaxation; Ẑi is the computed primal objective value for some feasible solution,
which also satisfies z ∈ {0, 1}n; ẐD is the computed dual objective value for some
dual feasible solution to the LP relaxation; β is a computed bound for the LP relax-
ation (so ZP ≥ β if beta has no error); and βi is a computed bound for the MILP
(so ZI ≥ βi if betai has no error); δ is a computed bound for the dual of the LP
relaxation (so ZD ≤ δ if δ has no error).

Now we shall discuss how some tolerances are related. Near optimality is related to
the duality gap:

ZP − ZD ≤ ε→ (ZP ≤ Z∗ + ε and ZD ≥ Z∗ − ε).

For notational convenience, having made the point that x ≤ Ux might be tested
differently from whether y ≤ Uy, let us simplify the MILP to have fewer data objects:

min cx+Kz: Ax+Bz = b, x ≥ 0, z ∈ {0, 1}n.

Now suppose we have a termination rule for LP relaxation that consists of three tests:

Primal feasibility: |Aix+Biz − bi| ≤ τr|bi|+ τa for all i, and zj ≤ 1 + τa for all j.

Primal optimality: ẐP − β ≤ ε.

Duality gap: ẐP − ẐD ≤ g.

In general, primal optimality and duality gap tests can be redundant, or they can
reinforce each other to reduce occurrence of incorrect conclusions. In a numerically
pure world, β ≥ Z∗, but suppose β = Z∗+ βError . Passing the primal optimality test
implies

ẐP ≤ Z∗ + βError + ε.

This test is thus designed to suggest that we are within ε of optimality (corresponds
to setting τ optr = 0, τa = ε, and assuming βError = 0). The duality gap test has a
similar implication if we assume ẐD = Z∗ + ZError :

ẐP ≤ Z∗ + (1 + τ gr )|g|+ τ ga + ZError .

If we set g = 0 (asking for no duality gap), the relation becomes:

ẐP ≤ Z∗ + τ ga + ZError .

We reach the following conclusions:



Tolerances, by H.J. Greenberg 5

τ ga + βError > ε+ ZError → the primal optimality test dominates;

τ ga + βError < ε+ ZError → the duality gap test dominates;

τ ga + βError = ε+ ZError → the tests are redundant.

We do not know the errors, but we can control the tolerance settings. Suppose we
set τ ga = τ opta = ε. Then, if β = ẐD, the tests are redundant, but if we have a bound
computed independently of the dual, the two tests combine to give us a stronger test:

Terminate if feasible and ẐD ≤ Z∗ + ε+ min{ZError , βError}.

Now consider some pre-processing tests. Table 2 lists decisions that arise in some
tests, which use different tolerances. Each decision shown has an absolute and relative
tolerance associated with the tests.

Decision

Levels have changed

Prices have changed

Primal is infeasible

Dual is infeasible

Fix variable

Fix price

Original coefficient is not zero

Computed coefficient is not zero

Pivot coefficient is acceptable

Table 2: Some ANALYZE Decisions that Use Tolerances

The following example is from the ANALYZE User Guide [4] to illustrate an impor-
tant pitfall to avoid. Consider the 2× 2 system:

1
2x1 + x2 = 1
x1 + x2 = 2

This has the unique solution, x = (2, 0), and it is this uniqueness that causes a
problem with greater implications.

In successive bound reduction, the first order tests (i.e., the inexpensive ones) evaluate
rows (with matrix stored in column major form) to see if just one row alone can tighten



Tolerances, by H.J. Greenberg 6

a bound on a variable. Initially, the bounds are the original ones: L0 = L = (0, 0)
and U0 = U = (∞,∞). The first iteration results in the inference that x1 ≤ 2, from
the first equation and the fact that x1 ≥ 0. It similarly produces an upper bound,
x2 ≤ 1, so U1 = (2, 1). Still in iteration 1, the second equation causes the inference,
x1 ≥ 1, because we already have x2 ≤ 1 when we get there. Thus, L1 = (1, 0).

At a general iteration, we have inferred Lk1 ≤ x1 ≤ 2 and 0 ≤ x2 ≤ Uk
2 , where Lk1 < 2

and Uk
2 > 0. It is not difficult to show that at the end of iteration k, the inferred

bounds are:

Lk = (2− (1
2)k−1, 0) and Uk = (2, (1

2)k) for k = 1, . . .

This converges to the unique solution, but it does not reach it finitely. If the iterations
go far enough, the bounds become within a tolerance such that the action is to fix
the levels. Specifically, we have:

Fix x1 ∈ [2− (1
2)k−1, 2] if (1

2)k−1 ≤ τfix
r 2 + τfix

a .

Fix x2 ∈ [0, (1
2)k] if (1

2)k ≤ τfix
a .

Let τfix
r = 0, and take logarithms, so these tests are equivalent to the following:

Fix x1 ∈ [2− (1
2)k−1, 2] if k − 1 ≥ − log2 τ

fix
a .

Fix x2 ∈ [0, (1
2)k] if k ≥ − log2 τ

fix
a .

Here are some iterations to help visualize the sequences:

k Lk1 Uk
1 Lk2 Uk

2

1 2− 1 2 0 1
2

2 2− 1
2 2 0 1

4

3 2− 1
4 2 0 1

8

4 2− 1
8 2 0 1

16

Suppose we iterate to k = d− log2 τ
fix
a e, at which time we fix x2. (This occurs before

we would fix x1 because of interval widths: 2−Lk2 = (1
2)k−1 < Uk

1 = (1
2)k.) A natural

choice is to fix a variable at the midpoint of its interval, so fix

x2 = 1
2(2 + 2− (1

2)k−1) = 2− (1
2)k.

Now the first equation has the range [2− (1
2)k + (1

2)k−1, 2 + (1
2)k−1]. This follows from

having 0 ≤ x1 ≤ 2k and x2 = 2− (1
2)k.



REFERENCES 7

Using the inferred bounds, the minimum value of (1
2x1+x2) is 2+(1

2)k, and a feasibility
test compares this with its given lower bound, 2:

2 + (1
2)k − 2 ≥ τ inf

r 2 + τ inf
a

Suppose τ inf
r = 0, so we infer:

(1
2)k ≥ τ inf

a → Primal infeasible.

Equivalently,
k ≥ − log2 τ

inf
a → Primal infeasible.

This happens if τfix
a ≤ τ inf

a !

This example highlights two things:

Tolerances are related. The tolerance to fix a variable should strictly exceed the
infeasibility tolerance.

Fix a variable judiciously. When having inferred xj ∈ [Lj, Uj], such that Uj − Lj
is within tolerance of fixing xj, do so in the following order of choice:

1. If Lj is an original bound, fix xj = Lj;

2. If Uj is an original bound, fix xj = Uj;

3. If [Lj, Uj] contains an integer, p, fix xj = p.

4. If all of the above fail, fix xj = 1
2(Lj + Uj).

Nonlinear solvers use tolerances similarly, but with different default values. For ex-
ample, CONOPT [2] uses six tolerances, and feasibility uses an absolute tolerance of
4 × 10−10. Nonlinear functions have properties that introduce additional tolerances,
such as computing gradients and functional values iteratively.

References

[1] J. Czycyk, S. Mehrotra and S.J. Wright, PCx User Guide, Technical Report
OTC 96/01, Argonne National Laboratories, Argonne, IL, 1997.

[2] A. Drud, CONOPT User Manual.

[3] G. Forsythe and C.R. Moler, Computer Solution of Linear Algebraic Systems,
Prentice-Hall, Englewood Cliffs, NJ, 1967.



REFERENCES 8

[4] H.J. Greenberg, A Computer-Assisted Analysis System for Mathematical Pro-
gramming Models and Solutions: A User’s Guide for ANALYZE, Kluwer Aca-
demic Publishers, Boston, MA, 1993.

[5] J.H. Wilkinson, Rounding Errors in Algebraic Processes, Prentice-Hall, Engle-
wood Cliffs, NJ, 1963.


